US3625214A - Drug-delivery device - Google Patents
Drug-delivery device Download PDFInfo
- Publication number
- US3625214A US3625214A US38237A US3625214DA US3625214A US 3625214 A US3625214 A US 3625214A US 38237 A US38237 A US 38237A US 3625214D A US3625214D A US 3625214DA US 3625214 A US3625214 A US 3625214A
- Authority
- US
- United States
- Prior art keywords
- drug
- delivery device
- film
- body fluids
- comprised
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2072—Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61D—VETERINARY INSTRUMENTS, IMPLEMENTS, TOOLS, OR METHODS
- A61D7/00—Devices or methods for introducing solid, liquid, or gaseous remedies or other materials into or onto the bodies of animals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2072—Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
- A61K9/2086—Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/70—Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M31/00—Devices for introducing or retaining media, e.g. remedies, in cavities of the body
- A61M31/002—Devices for releasing a drug at a continuous and controlled rate for a prolonged period of time
Definitions
- a drug-delivery device for prolongedly delivering drugs to patients according to any predetermined time release profile e.g., increasing, decreasing, constant, pulsing, sinusoidal, and like patterns of release, is fabricated by applying a drug coating of varying or uniform thickness to a relatively drug-impermeable film soluble in body fluids and thence rolling said coated film about itself in spiral or jeliyroli fashion.
- the outermost extremities of the film gradually erode at a predetermined rate in body fluids thus exposing coextensive extremities of the drug coating, also soluble in body fluids, and drug is released to the tissues of the body.
- Suitable design of the drug coating along the spiral e.g., of varying thickness, etc. provides for the aforesaid release patterns as the device disintegrates.
- PATENTEDDEC nan 35251214 INVENTOR Takeru Higuchi Attorney nnuc-nnuvnav DEVICE BACKGROUND OF THE INVENTION
- This invention relates to a device for delivering drugs to patients according to a programmed schedule and, more especially, to a device which can deliver drugs according to any desired program of release which may be therapeutically desired.
- one feature resides in the application of a drug coating of varying or uniform thickness to a relatively impermeable film soluble in body fluids.
- the coated film is spirally wound or rolled about itself in jellyroll fashion.
- the film gradually erodes or dissolves at a predetennined rate in body fluids thus exposing the drug coating.
- FIG. 1 is a side view of the coated substrate precursor structure of a drug-delivery device of this invention
- FIG. la is a top view of a drug-delivery device of this invention, formed from the structure of FIG. 1;
- FIG. lb is a side view of the structure of FIG. la;
- FIG. 2 is a side view of a coated substrate precursor structure of another drug-delivery device of this invention.
- FIG. 2a is a top view of another drug-delivery device of this invention, formed from the structure of FIG. 2;
- FIG. 2b is a top view of another drug-delivery device of this invention, also formed from the structure of FIG. 2;
- FIG. 20 is a side view of the structures of both FIG. 2a and FIG. 2b;
- FIG. 3 is a side view of a coated substrate precursor structure of yet another drug-delivery device of this invention.
- FIG. 3a is a top view of yet another drug-delivery device of this invention, formed from the structure of FIG. 3;
- FIG. 3b is a side view of the structure of FIG. 3a;
- FIG. 4 is a side view of a coated substrate precursor structure of still another drug-delivery device of this invention.
- FIG. 4a is a top view of still another drug-delivery device of this invention, formed from the structure of FIG. 4;
- FIG. 4b is a side view of the structure of FIG. 4a;
- This invention has for its essence an assemblage of relatively impermeable film separating slowly soluble, medicament-containing matrix composition.
- a relatively impermeable film 10 is shown which dissolves at a slow predetermined rate in body fluids.
- the film 10 is coated with a medicament Ill containing matrix composition 12 of constant thickness, which matrix is soluble in body fluids (FIG. I).
- the coated film is next spirally wound or rolled about itself in jellyroll" fashion to provide the drug-delivery device 13 of FIGS. Ia and lb.
- the drug-delivery device of this invention is either physically inserted or surgically implanted in the body or is administered via the gastrointestinal tract.
- the drug matrix layer becomes exposed and it too erodes, thus releasing the drug to the tissues of the body.
- the matrix layer is thin, relatively small amounts of medication are released per amount of film eroded.
- the matrix layer is thick the amount of medicament released will be enhanced.
- a drug dosage unit which can exhibit a constant slow rate of release of drug.
- FIG. 2 a relatively impenneable film I0 is also shown which dissolves very slowly in body fluids.
- the said film I0 is coated with a medicament I1 containing matrix composition 12 of uniformly varying thickness, namely, the drug or matrix layer is spread thin at a proximal end of the surface of the film but uniformly progressively thicker across to the distal end of the surface of the film.
- the drug-delivery device of this invention may be comprised of a drug-matrix layer such as to program any desired time release profile, and two other of such forms are illustrated in FIGS. 3, 3a, 3b, 4, 4a and 4b, with the FIGS. 3 depicting a unit which provides a pulsing release pattern and the FIGS. 41 a unit which provides a sinusoidal release pattern.
- the drugdelivery device of the invention is also advantageously capped at either end with a material 14 slowly soluble in body fluids so as to prevent even the slightest amount of drug from prematurely exuding out of said ends (see FIG. 6).
- the resulting device In many instances, it is desirable to provide for release of the drug immediately upon administration of the device. This can be achieved by coating the preformed device, as illustrated in any of FIGS. 10, 2a, 2b, 3a, da and 5, with a layer of the matrix 112 containing drug 11.
- film It can be coated with medicament 11 containing matrix composition 12 on both face surfaces thereof. Upon rolling this coated film about itself, the resulting device will bear a drug-containing coating on its exterior surface (FIG. 7a). In either event, the resulting device initially will release drug by dissolution of the exteriorly exposed coating of the matrix. Thereafter, the film will dissolve, eventually releasing drug disposed within the interior of the spirally wound device.
- the film or carrier materials 10 are flexible and relatively resistant to erosion in body fluids to provide for medicating action over a prolonged period of time and are preferably polymeric in nature.
- Exemplary materials include polymers of the following three general classes: (1 those which slowly dissolve in body fluids, for example, gelatin, glycerinated gelatin, formalin treated gelatin, collagen, polyvinylalcohol, and the like; (2) those which hydrolyze in body fluids, for example, the polymeric, essentially linear, dibasic acid anhydrides of the formula:
- polyanhydride polymers of sebacic and azelaic acids especially the polyanhydride polymers of sebacic and azelaic acids, polyhydroxyacetic acid such as described in U.S. Pat. Nos. 2,668,162 and 2,676,945, and polysulfite polymers; and (3) polymers cleaved by enzymes present in body fluids. for example, chitin, which is enzymatically cleaved by lysozyme.
- the polyanhydride polymers of theabove type (2) can be conveniently prepared by condensing the respective dibasic acids in the presence of SOCl,, benzene and ethyl acetate.
- the film or carrier material should be relatively impermeable to passage of the drug by difiusion or leaching. Otherwise, the rate of release of the drug will depend, at least in part, upon diffusion through the film rather than upon erosion of the film and matrix. Selection of appropriate membrane materials will be dependent on the particular drug to be used, and those skilled in the art can readily make the appropriate choices.
- Matrix materials used in fabricating the drug coating of constant or varying thickness are soluble in body fluids.
- the drug matrix substance must erode faster than the film such that, when physically inserted or implanted in the body or administered via the gastrointestinal tract, the film first erodes or dissolves in body fluids thus exposing the drug coating which thence itself erodes or dissolves and hence provides a slow rate of release of drug, albeit the erosion or dissolution is more rapid than that of the film material.
- erosion or dissolution of the film is the rate controlling step for drug administration; for once the film erodes at its predetennined rate, the drug is released relatively rapidly by dissolution of the matrix.
- Exemplary matrix materials include polyvinylpyrrolidone, water soluble starch, gum acacia, gum tragacanth, or the like, or even those film materials hereinbefore delineated, so long as the requirement is observed that the selected drug matrix substance must erode or dissolve faster than the selected film.
- Drug used to treat the body can be incorporated in the drug layer of the drug-delivery device of this invention.
- Drug is used herein in its broadest sense as including any composition or substance that will produce a pharmacologic response.
- Suitable drugs for use in therapy with the device of the invention include without limitation:
- Protein drugs such as insulin
- Desensitizing agents such as ragweed pollen antigens, hay fever pollen antigens, dust antigen and milk antigen;
- Vaccines such as smallpox, yellow fever, distemper, hog cholera, fowl pox, antivenom, scarlet fever, dyptheria toxoid, tetanus toxoid, pigeon pox, whooping cough, influenzae, rabies, mumps, measles, poliomyelitis, Newcastle disease, etc.;
- Antiinfectives such as antibiotics, including penicillin, tetracycline, chlortetracycline bacitracin, nystatin, streptomycin, neomycin, polymyxin, gramicidin, oxytetracycline, chloramphenicol, and erythromycin; sulfonamides, including sulfacetamide, sulfamethizole, sulfamethazine, sulfadiazine, sulfamerazine, and sulfisoxazole; anti-virals including idoxuridine; and other antiinfectives including nitrofurazone and sodium propionate;
- Antiallergenics such as antazoline, methapyrilene, chlorpheniramine, pyrilamine and prophenpyridamine;
- Antiallergenics such as hydrocortisone, cortisone, hydrocortisone acetate, dexamethasone, dexamethasone 2lphosphate, fluocinolone, triamcinolone, medrysone, prednisolone, prednisolone 2l-phosphate, and prednisolone acetate;
- Decongestants such as phenylcphrine, naphazoline, and tetrahydrazoline;
- Miotics and anticholinesterases such as pilocarpine, eserine salicylate, carbachol, diisopropyl fluorophosphate, phospholine iodide, and demecarium bromide;
- Sedatives and Hypnotics such as pentabarbital sodium, phenobarbital, secobarbital sodium, codeine, (abromoisovaleryl) urea, carbromal;
- Psychic Energizers such as 3-(2-aminopropyl) indole acetate and 3-(2-aminobutyl) indole acetate;
- Tranquilizers such as reserpine, chlorpromayline, and thiopropazate;
- Androgenic steroids such as methyltestosterone and fluorymesterone
- Estrogens such as estrone, l7 B-estradiol, ethinyl estradiol, and diethyl stilbesterol;
- Progestational agents such as progesterone, megestrol, melengestrol, chlormadinonc, ethisterone, norethynodrel, l9- nor-progesterone, norethindrone, medroxyprogesterone and 17 B-hydroxy-progesterone;
- Humoral agents such as the prostaglandins, for example PGE PGE and PGF l8.
- Antipyretics such as aspirin, sodium salicylate, and salicylamide;
- Antispasmodics such as atropine, mcthantheline, papaverine, and methscopolamine bromide;
- Antimalarials such as the 4-aminoquinolines, 8- aminoquinolines, chloroquine, and pyrimethamine;
- Antihistamines such as diphenhydramine, dimenhydrinate, tripelennamine, perphenazine, and chlorophenazine;
- Cardioactive agents such as dibenzhydroflumethiazide, flumethiazide, chlorothiazide, and aminotrate;
- Nutritional agents such as vitamins, essential amino acids and essential fats.
- Drugs can be in various forms, such as uncharged molecules, components of molecular complexes, or nonirritating, pharmacologically acceptable salts such as hydrochloride, hydrobromide, sulfate, phosphate, nitrate, borate, acetate, maleate, tartrate, salicylate, etc.
- pharmacologically acceptable salts such as hydrochloride, hydrobromide, sulfate, phosphate, nitrate, borate, acetate, maleate, tartrate, salicylate, etc.
- salts of metals, amines, or organic cations e.g., quaternary ammonium
- simple derivatives of the drugs such as ethers, esters, amides, etc.
- body pH, enzymes, etc. can be employed.
- the amount of drug incorporated in the drug-delivery device varies widely depending on the particular drug, the desired therapeutic elTect, and the time span for which it takes the film barrier and matrix material to erode or dissolve. Since a variety of devices in a variety of sizes and shapes are intended to provide complete dosage regimes for therapy for a variety of maladies, there is no critical upper limit on the amount of drug incorporated in the device. The lower limit too will depend on the activity of the drug and the time span of its release from the device. Thus it is not practical to define a range for the therapeutically effective amount of drug to be released by the device.
- the drug is mixed with the matrix material either at ambient or elevated temperatures to form a settable mixture.
- the settable mixture whether a dispersion or true solution, is then simply spread on the film substrate in constant or varying thicknesses (see the FIGS. of the drawing) and allowed to set, for example, by drying or hardening.
- the coated film is next spirally wound or rolled about itself in jellyroll to provide the subject device.
- the drug release profile of the device is determined. in most instances, a matrix of uniform drug concentration is applied over one entire surface of the film, at a constant or varying thickness.
- the matrix can be printed onto the film in various patterns, providing different rates of drug release.
- different portions of the film can be coated with matrix portions having different drug concentration. in each of these ways, the rate of release of drug from the device can be controlled and a wide variety of release patterns obtained.
- the drug-delivery device can be fabricated in any convenient shape for either physical insertion or implantation in the body or for administration via the gastrointestinal tract. Dimensions of the device can thus vary widely and are not of controlling importance.
- the lower limit of the size of the device is governed by the amount of the particular drug to be supplied to the body to elicit the desired pharmacologic response, as well as by the form the dosage unit takes, for example, implantate, suppository, peroral pellet, oral bolus, vaginal pessory, buccal or sublingual lozenge, ocular insert (e.g. as described in US. Pat. No. 3,416,530), the like.
- the upper limit on the size of the device Likewise with respect to the upper limit on the size of the device.
- any predetermined time release profile can be embodied in devices other than drug-delivery devices, namely, in any device where it is desired to provide for the prolonged release of any active ingredient according to any desired release pattern.
- a drug-delivery device for prolongedly delivering drugs according to any predetermined time release profile comprised of a spirally rolled substrate, said substrate being comprised of a relatively drug impermeable, flexible film erodible in body fluids and being coated with a drug-containing matrix composition, which matrix itself is erodible in body fluids.
- the drug-delivery device as defined by claim 1 bearing an external coating of said drug-containing matrix composition.
- a device for prolongedly delivering active ingredient to a given fluid environment according to any predetermined time release profile comprised of a spirally rolled substrate said substrate being comprised of a relatively active ingredient impermeable, flexible film erodible in a given fluid environment, said fllm being coated with an active ingredient containing matrix composition, which matrix itself is erodible in said given fluid environment.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Medicinal Preparation (AREA)
Abstract
A drug-delivery device for prolongedly delivering drugs to patients according to any predetermined time release profile, e.g., increasing, decreasing, constant, pulsing, sinusoidal, and like patterns of release, is fabricated by applying a drug coating of varying or uniform thickness to a relatively drugimpermeable film soluble in body fluids and thence rolling said coated film about itself in spiral or ''''jellyroll'''' fashion. Upon administration to the body, the outermost extremities of the film gradually erode at a predetermined rate in body fluids thus exposing coextensive extremities of the drug coating, also soluble in body fluids, and drug is released to the tissues of the body. Suitable design of the drug coating along the spiral, e.g., of varying thickness, etc. provides for the aforesaid release patterns as the device disintegrates.
Description
United States Patent 3,184,386 5/1965 Stephenson 3,416,530 12/1968 Ness ABSTRACT: A drug-delivery device for prolongedly delivering drugs to patients according to any predetermined time release profile, e.g., increasing, decreasing, constant, pulsing, sinusoidal, and like patterns of release, is fabricated by applying a drug coating of varying or uniform thickness to a relatively drug-impermeable film soluble in body fluids and thence rolling said coated film about itself in spiral or jeliyroli fashion. Upon administration to the body, the outermost extremities of the film gradually erode at a predetermined rate in body fluids thus exposing coextensive extremities of the drug coating, also soluble in body fluids, and drug is released to the tissues of the body. Suitable design of the drug coating along the spiral, e.g., of varying thickness, etc. provides for the aforesaid release patterns as the device disintegrates.
PATENTEDDEC nan 35251214 INVENTOR. Takeru Higuchi Attorney nnuc-nnuvnav DEVICE BACKGROUND OF THE INVENTION This invention relates to a device for delivering drugs to patients according to a programmed schedule and, more especially, to a device which can deliver drugs according to any desired program of release which may be therapeutically desired.
In the pharmaceutical field, most prolonged or sustained action medicators have had as their objective to release medication at a constant rate. However, many programs of therapy require that the quantity of medication administered vary with time. For example, in antibiotic therapy, it is common to administer a large initial dose of drug followed by smaller doses. Conversely, in desensitizing against allergens, therapeutic regimes often call for dose of the allergen to progressively increase over the time of treatment. More complex regimes, in which the dose of medication varies through periodic high and low points, are also known. In general, these therapeutic programs are practiced by periodically administering different amounts of medication in separate dosage forms. Such practice requires frequent acts by the patient or trained attendant and departures from the therapeutic program often occur. Thus, a need exists for a drug-delivery device that can provide any desired time profile for drug administration.
SUMMARY OF THE INVENTION Accordingly, it is a primary object of this invention to pro vide a device for delivering drugs to patients according to any predetermined time release profile.
In attaining the objects of this invention, one feature resides in the application of a drug coating of varying or uniform thickness to a relatively impermeable film soluble in body fluids. To provide the drug-delivery unit, the coated film is spirally wound or rolled about itself in jellyroll fashion. When the device is physically inserted or implanted in the body or administered via the gastrointestinal tract, the film gradually erodes or dissolves at a predetennined rate in body fluids thus exposing the drug coating. By suitable design of the film and of the drug coating, which itself dissolves in body fluids, one can obtain any desired release pattern including increasing, decreasing, pulsing, constant, sinusoidal, etc.
Other objects, features and advantages of this invention will become more apparent from the following description when taken in conjunction with the accompanying drawings, and wherein like reference numerals are used to indicate like or equivalent parts.
BRIEF DESCRIPTION OF THE DRAWINGS In the drawings:
FIG. 1 is a side view of the coated substrate precursor structure of a drug-delivery device of this invention;
FIG. la is a top view of a drug-delivery device of this invention, formed from the structure of FIG. 1;
FIG. lb is a side view of the structure of FIG. la;
FIG. 2 is a side view of a coated substrate precursor structure of another drug-delivery device of this invention;
FIG. 2a is a top view of another drug-delivery device of this invention, formed from the structure of FIG. 2;
FIG. 2b is a top view of another drug-delivery device of this invention, also formed from the structure of FIG. 2;
FIG. 20 is a side view of the structures of both FIG. 2a and FIG. 2b;
FIG. 3 is a side view of a coated substrate precursor structure of yet another drug-delivery device of this invention;
FIG. 3a is a top view of yet another drug-delivery device of this invention, formed from the structure of FIG. 3;
FIG. 3b is a side view of the structure of FIG. 3a;
FIG. 4 is a side view of a coated substrate precursor structure of still another drug-delivery device of this invention;
FIG. 4a is a top view of still another drug-delivery device of this invention, formed from the structure of FIG. 4;
FIG. 4b is a side view of the structure of FIG. 4a;
DETAILED DESCRIPTION OF THE INVENTION This invention has for its essence an assemblage of relatively impermeable film separating slowly soluble, medicament-containing matrix composition. Referring particularly to FIGS. I and la, a relatively impermeable film 10 is shown which dissolves at a slow predetermined rate in body fluids. The film 10 is coated with a medicament Ill containing matrix composition 12 of constant thickness, which matrix is soluble in body fluids (FIG. I).
The coated film is next spirally wound or rolled about itself in jellyroll" fashion to provide the drug-delivery device 13 of FIGS. Ia and lb.
To use the drug-delivery device of this invention, it is either physically inserted or surgically implanted in the body or is administered via the gastrointestinal tract. As the film is eroded away by the action of either gastrointestinal tissue or other body fluids, the drug matrix layer becomes exposed and it too erodes, thus releasing the drug to the tissues of the body. When the matrix layer is thin, relatively small amounts of medication are released per amount of film eroded. Conversely, if the matrix layer is thick the amount of medicament released will be enhanced. By adjusting the thickness of the matrix or the concentration of drug therein, any desired time release profile can be programmed.
By use of the drug-delivery device of FIGS. la and lb which is comprised of a drug-matrix coating of constant thickness, there is provided a drug dosage unit which can exhibit a constant slow rate of release of drug.
In FIG. 2 a relatively impenneable film I0 is also shown which dissolves very slowly in body fluids. However, in this embodiment the said film I0 is coated with a medicament I1 containing matrix composition 12 of uniformly varying thickness, namely, the drug or matrix layer is spread thin at a proximal end of the surface of the film but uniformly progressively thicker across to the distal end of the surface of the film.
It will thus be appreciated that, depending upon from which end the assemblage is wound about itself, there can be conveniently prepared drug-delivery devices which will provide constantly decreasing slow rate of release of drug (FIG. 2a) or constantly increasing slow rate of release of drug (FIG. 2b). In either event such devices would be identical in side plan view (FIG. 2c).
As described and illustrated above, the drug-delivery device of this invention may be comprised of a drug-matrix layer such as to program any desired time release profile, and two other of such forms are illustrated in FIGS. 3, 3a, 3b, 4, 4a and 4b, with the FIGS. 3 depicting a unit which provides a pulsing release pattern and the FIGS. 41 a unit which provides a sinusoidal release pattern.
Moreover, even though in the FIGS. of the drawing cylindrical structures are shown, it is apparent that flattened (FIG. 5) or other configurations can be easily provided. The drugdelivery device of the invention is also advantageously capped at either end with a material 14 slowly soluble in body fluids so as to prevent even the slightest amount of drug from prematurely exuding out of said ends (see FIG. 6).
In many instances, it is desirable to provide for release of the drug immediately upon administration of the device. This can be achieved by coating the preformed device, as illustrated in any of FIGS. 10, 2a, 2b, 3a, da and 5, with a layer of the matrix 112 containing drug 11. Alternatively, as illustrated in FIG. '7, film It) can be coated with medicament 11 containing matrix composition 12 on both face surfaces thereof. Upon rolling this coated film about itself, the resulting device will bear a drug-containing coating on its exterior surface (FIG. 7a). In either event, the resulting device initially will release drug by dissolution of the exteriorly exposed coating of the matrix. Thereafter, the film will dissolve, eventually releasing drug disposed within the interior of the spirally wound device.
The film or carrier materials 10 are flexible and relatively resistant to erosion in body fluids to provide for medicating action over a prolonged period of time and are preferably polymeric in nature. Exemplary materials include polymers of the following three general classes: (1 those which slowly dissolve in body fluids, for example, gelatin, glycerinated gelatin, formalin treated gelatin, collagen, polyvinylalcohol, and the like; (2) those which hydrolyze in body fluids, for example, the polymeric, essentially linear, dibasic acid anhydrides of the formula:
especially the polyanhydride polymers of sebacic and azelaic acids, polyhydroxyacetic acid such as described in U.S. Pat. Nos. 2,668,162 and 2,676,945, and polysulfite polymers; and (3) polymers cleaved by enzymes present in body fluids. for example, chitin, which is enzymatically cleaved by lysozyme.
The polyanhydride polymers of theabove type (2) can be conveniently prepared by condensing the respective dibasic acids in the presence of SOCl,, benzene and ethyl acetate.
The film or carrier material should be relatively impermeable to passage of the drug by difiusion or leaching. Otherwise, the rate of release of the drug will depend, at least in part, upon diffusion through the film rather than upon erosion of the film and matrix. Selection of appropriate membrane materials will be dependent on the particular drug to be used, and those skilled in the art can readily make the appropriate choices.
Matrix materials used in fabricating the drug coating of constant or varying thickness are soluble in body fluids. The drug matrix substance must erode faster than the film such that, when physically inserted or implanted in the body or administered via the gastrointestinal tract, the film first erodes or dissolves in body fluids thus exposing the drug coating which thence itself erodes or dissolves and hence provides a slow rate of release of drug, albeit the erosion or dissolution is more rapid than that of the film material. In this manner, erosion or dissolution of the film is the rate controlling step for drug administration; for once the film erodes at its predetennined rate, the drug is released relatively rapidly by dissolution of the matrix. Exemplary matrix materials include polyvinylpyrrolidone, water soluble starch, gum acacia, gum tragacanth, or the like, or even those film materials hereinbefore delineated, so long as the requirement is observed that the selected drug matrix substance must erode or dissolve faster than the selected film.
Any of the drugs used to treat the body can be incorporated in the drug layer of the drug-delivery device of this invention. Drug is used herein in its broadest sense as including any composition or substance that will produce a pharmacologic response.
Suitable drugs for use in therapy with the device of the invention include without limitation:
l. Protein drugs such as insulin;
2. Desensitizing agents such as ragweed pollen antigens, hay fever pollen antigens, dust antigen and milk antigen;
3. Vaccines such as smallpox, yellow fever, distemper, hog cholera, fowl pox, antivenom, scarlet fever, dyptheria toxoid, tetanus toxoid, pigeon pox, whooping cough, influenzae, rabies, mumps, measles, poliomyelitis, Newcastle disease, etc.;
4. Antiinfectives, such as antibiotics, including penicillin, tetracycline, chlortetracycline bacitracin, nystatin, streptomycin, neomycin, polymyxin, gramicidin, oxytetracycline, chloramphenicol, and erythromycin; sulfonamides, including sulfacetamide, sulfamethizole, sulfamethazine, sulfadiazine, sulfamerazine, and sulfisoxazole; anti-virals including idoxuridine; and other antiinfectives including nitrofurazone and sodium propionate;
5. Antiallergenics such as antazoline, methapyrilene, chlorpheniramine, pyrilamine and prophenpyridamine;
6. Antiallergenics such as hydrocortisone, cortisone, hydrocortisone acetate, dexamethasone, dexamethasone 2lphosphate, fluocinolone, triamcinolone, medrysone, prednisolone, prednisolone 2l-phosphate, and prednisolone acetate;
7. Decongestants such as phenylcphrine, naphazoline, and tetrahydrazoline;
8. Miotics and anticholinesterases such as pilocarpine, eserine salicylate, carbachol, diisopropyl fluorophosphate, phospholine iodide, and demecarium bromide;
such as atropine sulfate, cyclopentolate, homatropine, scopolamine, tropicamide, eucatropine, and hydroxyamphetamine;
l0. Sympathomimetics such as epinephrine;
l l. Sedatives and Hypnotics such as pentabarbital sodium, phenobarbital, secobarbital sodium, codeine, (abromoisovaleryl) urea, carbromal;
l2. Psychic Energizers such as 3-(2-aminopropyl) indole acetate and 3-(2-aminobutyl) indole acetate;
13. Tranquilizers such as reserpine, chlorpromayline, and thiopropazate;
l4. Androgenic steroids such as methyltestosterone and fluorymesterone;
15. Estrogens such as estrone, l7 B-estradiol, ethinyl estradiol, and diethyl stilbesterol;
l6. Progestational agents such as progesterone, megestrol, melengestrol, chlormadinonc, ethisterone, norethynodrel, l9- nor-progesterone, norethindrone, medroxyprogesterone and 17 B-hydroxy-progesterone;
l7. Humoral agents such as the prostaglandins, for example PGE PGE and PGF l8. Antipyretics such as aspirin, sodium salicylate, and salicylamide;
l9. Antispasmodics such as atropine, mcthantheline, papaverine, and methscopolamine bromide;
20. Antimalarials such as the 4-aminoquinolines, 8- aminoquinolines, chloroquine, and pyrimethamine;
21. Antihistamines such as diphenhydramine, dimenhydrinate, tripelennamine, perphenazine, and chlorophenazine;
22. Cardioactive agents such as dibenzhydroflumethiazide, flumethiazide, chlorothiazide, and aminotrate;
23. Nutritional agents such as vitamins, essential amino acids and essential fats.
Other drugs having the same or different physiological activity as those recited above can be employed in drug-delivery devices within the scope of the present invention.
Drugs can be in various forms, such as uncharged molecules, components of molecular complexes, or nonirritating, pharmacologically acceptable salts such as hydrochloride, hydrobromide, sulfate, phosphate, nitrate, borate, acetate, maleate, tartrate, salicylate, etc. For acidic drugs, salts of metals, amines, or organic cations (e.g., quaternary ammonium) can be employed. Furthermore, simple derivatives of the drugs (such as ethers, esters, amides, etc.) which have desirable retention and release characteristics but which are easily hydrolyzed by body pH, enzymes, etc., can be employed.
The amount of drug incorporated in the drug-delivery device varies widely depending on the particular drug, the desired therapeutic elTect, and the time span for which it takes the film barrier and matrix material to erode or dissolve. Since a variety of devices in a variety of sizes and shapes are intended to provide complete dosage regimes for therapy for a variety of maladies, there is no critical upper limit on the amount of drug incorporated in the device. The lower limit too will depend on the activity of the drug and the time span of its release from the device. Thus it is not practical to define a range for the therapeutically effective amount of drug to be released by the device.
To prepare the drug-delivery device of the invention, the drug is mixed with the matrix material either at ambient or elevated temperatures to form a settable mixture. The settable mixture, whether a dispersion or true solution, is then simply spread on the film substrate in constant or varying thicknesses (see the FIGS. of the drawing) and allowed to set, for example, by drying or hardening. The coated film is next spirally wound or rolled about itself in jellyroll to provide the subject device.
In applying the drug-containing matrix to the film, the drug release profile of the device is determined. in most instances, a matrix of uniform drug concentration is applied over one entire surface of the film, at a constant or varying thickness. However, the matrix can be printed onto the film in various patterns, providing different rates of drug release. In addition, different portions of the film can be coated with matrix portions having different drug concentration. in each of these ways, the rate of release of drug from the device can be controlled and a wide variety of release patterns obtained.
The drug-delivery device can be fabricated in any convenient shape for either physical insertion or implantation in the body or for administration via the gastrointestinal tract. Dimensions of the device can thus vary widely and are not of controlling importance. The lower limit of the size of the device is governed by the amount of the particular drug to be supplied to the body to elicit the desired pharmacologic response, as well as by the form the dosage unit takes, for example, implantate, suppository, peroral pellet, oral bolus, vaginal pessory, buccal or sublingual lozenge, ocular insert (e.g. as described in US. Pat. No. 3,416,530), the like. Likewise with respect to the upper limit on the size of the device. One of the prime advantages of the dosage form of the invention over the capsule types of the prior art is that any inadvertent flaw in the protective film barrier will not suddenly release the entire drug content. Another advantage, if used as an implantate or the like, is the total disappearance of the film barrier when its function has been completed. Likewise as regards the drug matrix material.
It too will be appreciated that the principle of providing any predetermined time release profile can be embodied in devices other than drug-delivery devices, namely, in any device where it is desired to provide for the prolonged release of any active ingredient according to any desired release pattern.
While there have been shown and described and pointed out the fundamental novel features of the invention as applied to the preferred embodiment, those skilled in the art will appreciate that various modifications, changes, and omissions in the drug-delivery device illustrated and described can be made without departing from the spirit of the invention. It is the intention, therefore, to be limited only by the scope of the following claims.
What is claimed is:
l. A drug-delivery device for prolongedly delivering drugs according to any predetermined time release profile comprised of a spirally rolled substrate, said substrate being comprised of a relatively drug impermeable, flexible film erodible in body fluids and being coated with a drug-containing matrix composition, which matrix itself is erodible in body fluids.
2. The drug-delivery device as defined by claim 1, wherein the matrix composition is more rapidly erodible in body fluids than said film.
3. The drug-delivery device as defined by claim 1, wherein the drug is uniformly distributed throughout the matrix composition.
4. The drug-delivery device as defined by claim 3, wherein the drug coating is of constant thickness along the spiral.
5. The drugelivery device as defined by claim 3, wherein the drug coating is of varying thickness.
6. The drug-delivery device as defined by claim 3, wherein the thickness of the drug coating increases along the spiral.
7. The drug-delivery device as defined by claim 3, wherein the thickness of the drug coating decreases along the spiral.
8. The drug-delivery device as defined by claim 3, wherein the drug coating is of sinusoidal thickness along the spiral.
9. The drug-delivery device as defined by claim 5, wherein the film is comprised of a polymeric material which slowly dissolves in body fluids.
10. The drug-delivery device as defined by claim 3, wherein the film is comprised of polymeric material which hydrolyzes in body fluids.
11. The drugdelivery device as defined by claim 3, wherein the membrane is comprised of polymeric material which is cleaved by enzymes present in body fluids.
112. The drug-delivery device as defined by claim 1 bearing an external coating of said drug-containing matrix composition.
13. A device for prolongedly delivering active ingredient to a given fluid environment according to any predetermined time release profile comprised of a spirally rolled substrate said substrate being comprised of a relatively active ingredient impermeable, flexible film erodible in a given fluid environment, said fllm being coated with an active ingredient containing matrix composition, which matrix itself is erodible in said given fluid environment.
14. The method of prolongedly delivering drug to a patient according to any predetermined time release profile comprising administering to said patient the drug-delivery device as defined by claim ll.
Claims (14)
1. A drug-delivery device for prolongedly delivering drugs according to any predetermined time release profile comprised of a spirally rolled substrate, said substrate being comprised of a relatively drug impermeable, flexible film erodible in body fluids and being coated with a drug-containing matrix composition, which matrix itself is erodible in body fluids.
2. The drug-delivery device as defined by claim 1, wherein the matrix composition is more rapidly erodible in body fluids than said film.
3. The drug-delivery device as defined by claim 1, wherein the drug is uniformly distributed throughout the matrix composition.
4. The drug-delivery device as defined by claim 3, wherein the drug coating is of constant thickness along the spiral.
5. The drug-delivery device as defined by claim 3, wherein the drug coating is of varying thickness.
6. The drug-delivery device as defined by claim 3, wherein the thickness of the drug coating increases along the spiral.
7. The drug-delivery device as defined by claim 3, wherein the thickness of the drug coating decreases along the spiral.
8. The drug-delivery device as defined by claim 3, wherein the drug coating is of sinusoidal thickness along the spiral.
9. The drug-delivery device as defined by claim 5, wherein the film is comprised of a polymeric material which slowly dissolves in body fluids.
10. The drug-delivery device as defined by claim 3, wherein the film is comprised of polymeric material which hydrolyzes in body fluids.
11. The drug-delivery device as defined by claim 3, wherein the membrane is comprised of polymeric material which is cleaved by enzymes present in body fluids.
12. The drug-delivery device as defined by claim 1 bearing an external coating of said drug-containing matrix composition.
13. A device for prolongedly delivering active ingredient to a given fluid environment according to any predetermined time release profile comprised of a spirally rolled substrate said substrate being comprised of a relatively active ingredient impermeable, flexible film erodible in a given fluid environment, said film being coated with an active ingredient containing matrix composition, which matrix itself is erodible in said given fluid environment.
14. The method of prolongedly delivering drug to a patient according to any predetermined time release profile comprising administering to said patient the drug-delivery device as defined by claim 1.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3823770A | 1970-05-18 | 1970-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3625214A true US3625214A (en) | 1971-12-07 |
Family
ID=21898792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US38237A Expired - Lifetime US3625214A (en) | 1970-05-18 | 1970-05-18 | Drug-delivery device |
Country Status (1)
Country | Link |
---|---|
US (1) | US3625214A (en) |
Cited By (249)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3826258A (en) * | 1972-02-07 | 1974-07-30 | S Abraham | Gradual release medicine carrier |
US3887699A (en) * | 1969-03-24 | 1975-06-03 | Seymour Yolles | Biodegradable polymeric article for dispensing drugs |
US3888975A (en) * | 1972-12-27 | 1975-06-10 | Alza Corp | Erodible intrauterine device |
US3892238A (en) * | 1971-09-16 | 1975-07-01 | Abbott Lab | Drug supporting anchor |
US3898986A (en) * | 1972-12-27 | 1975-08-12 | Alza Corp | Biotransformable intrauterine device |
US3926188A (en) * | 1974-11-14 | 1975-12-16 | Alza Corp | Laminated drug dispenser |
US3960150A (en) * | 1971-09-09 | 1976-06-01 | Alza Corporation | Bioerodible ocular device |
US3961628A (en) * | 1974-04-10 | 1976-06-08 | Alza Corporation | Ocular drug dispensing system |
US3971367A (en) * | 1972-12-27 | 1976-07-27 | Alza Corporation | Intrauterine device having means for changing from uterine-retentive shape to nonuterine-retentive shape |
US3981303A (en) * | 1971-09-09 | 1976-09-21 | Alza Corporation | Bioerodible ocular device |
US3986510A (en) * | 1971-09-09 | 1976-10-19 | Alza Corporation | Bioerodible ocular device |
US3993071A (en) * | 1971-09-09 | 1976-11-23 | Alza Corporation | Bioerodible ocular device |
US3993073A (en) * | 1969-04-01 | 1976-11-23 | Alza Corporation | Novel drug delivery device |
DE2656387A1 (en) * | 1975-12-15 | 1977-06-30 | Hoffmann La Roche | SOLID UNIVERSAL PHARMACEUTICAL DOSAGE FORM AS A DOSAGE FORM OF A DRUG, AND PROCESS AND SYSTEM FOR THEIR MANUFACTURING |
NL7601020A (en) * | 1976-02-02 | 1977-08-04 | Minnesota Mining & Mfg | Ballistic animal inoculation projectile - with an antigen within a polymer body permitting antigen release |
NL7601017A (en) * | 1976-02-02 | 1977-08-04 | Minnesota Mining & Mfg | Ballistically implantable projectile for animals - for controlled sustained release of biologically active materials on contact with animal body fluids |
US4083741A (en) * | 1975-12-15 | 1978-04-11 | Hoffmann-La Roche, Inc. | Novel dosage form |
US4126503A (en) * | 1975-12-15 | 1978-11-21 | Hoffmann-La Roche Inc. | Manufacture of pharmaceutical dosage forms |
US4126502A (en) * | 1975-12-15 | 1978-11-21 | Hoffmann-La Roche Inc. | Manufacture of pharmaceutical dosage forms |
US4135514A (en) * | 1974-12-23 | 1979-01-23 | Alza Corporation | Osmotic releasing system for administering ophthalmic drug to eye of animal |
EP0010987A1 (en) * | 1978-11-07 | 1980-05-14 | Beecham Group Plc | Device for oral administration to a ruminant animal |
US4228149A (en) * | 1977-06-09 | 1980-10-14 | Beecham Group Limited | Sustained release compositions |
EP0021758A1 (en) * | 1979-06-27 | 1981-01-07 | Beecham Group Plc | Veterinary preparations for ruminant animals |
EP0064841A1 (en) * | 1981-04-30 | 1982-11-17 | Smith and Nephew Associated Companies p.l.c. | Applicators for pharmaceutically active agents, their preparation and use |
DE3124981A1 (en) * | 1981-06-25 | 1983-01-13 | Dr. Ruhland Nachfolger GmbH, 8425 Neustadt | ACTIVE INGREDIENT COLLAGEN INSERT FOR INSERTION INTO BONES OR SOFT PARTS AND METHOD FOR THEIR PRODUCTION |
US4439183A (en) * | 1981-10-09 | 1984-03-27 | Alza Corporation | Parenteral agent dispensing equipment |
US4521211A (en) * | 1981-10-09 | 1985-06-04 | Alza Corporation | Parenteral agent dispensing equipment |
US4548598A (en) * | 1981-10-09 | 1985-10-22 | Alza Corporation | Parenteral agent dispensing equipment |
US4576604A (en) * | 1983-03-04 | 1986-03-18 | Alza Corporation | Osmotic system with instant drug availability |
US4673405A (en) * | 1983-03-04 | 1987-06-16 | Alza Corporation | Osmotic system with instant drug availability |
US4698062A (en) * | 1985-10-30 | 1987-10-06 | Alza Corporation | Medical device for pulsatile transdermal delivery of biologically active agents |
US4883666A (en) * | 1987-04-29 | 1989-11-28 | Massachusetts Institute Of Technology | Controlled drug delivery system for treatment of neural disorders |
US4886870A (en) * | 1984-05-21 | 1989-12-12 | Massachusetts Institute Of Technology | Bioerodible articles useful as implants and prostheses having predictable degradation rates |
US4891225A (en) * | 1984-05-21 | 1990-01-02 | Massachusetts Institute Of Technology | Bioerodible polyanhydrides for controlled drug delivery |
US4906474A (en) * | 1983-03-22 | 1990-03-06 | Massachusetts Institute Of Technology | Bioerodible polyanhydrides for controlled drug delivery |
US4946929A (en) * | 1983-03-22 | 1990-08-07 | Massachusetts Institute Of Technology | Bioerodible articles useful as implants and prostheses having predictable degradation rates |
WO1991017745A1 (en) * | 1990-05-23 | 1991-11-28 | Southwest Research Institute | Filament system for delivering a medicament and method |
US5079006A (en) * | 1987-07-15 | 1992-01-07 | Aprex Corporation | Pharmaceutical compositions containing a magnetically detectable material |
US5114719A (en) * | 1987-04-29 | 1992-05-19 | Sabel Bernhard A | Extended drug delivery of small, water-soluble molecules |
US5236734A (en) * | 1987-04-20 | 1993-08-17 | Fuisz Technologies Ltd. | Method of preparing a proteinaceous food product containing a melt spun oleaginous matrix |
US5238696A (en) * | 1987-04-20 | 1993-08-24 | Fuisz Technologies Ltd. | Method of preparing a frozen comestible |
WO1993021859A1 (en) * | 1992-04-30 | 1993-11-11 | Vincent Carmine Giampapa | Tissue-specific implantable therapeutic agent delivery system |
US5268110A (en) * | 1991-05-17 | 1993-12-07 | Fuisz Technologies Ltd. | Oil removing method |
US5279849A (en) * | 1992-05-12 | 1994-01-18 | Fuisz Technologies Ltd. | Dispersible polydextrose, compositions containing same and method for the preparation thereof |
US5286513A (en) * | 1987-04-20 | 1994-02-15 | Fuisz Technologies Ltd. | Proteinaceous food product containing a melt spun oleaginous matrix |
US5348758A (en) * | 1992-10-20 | 1994-09-20 | Fuisz Technologies Ltd. | Controlled melting point matrix formed with admixtures of a shearform matrix material and an oleaginous material |
US5380473A (en) * | 1992-10-23 | 1995-01-10 | Fuisz Technologies Ltd. | Process for making shearform matrix |
US5387431A (en) * | 1991-10-25 | 1995-02-07 | Fuisz Technologies Ltd. | Saccharide-based matrix |
US5407676A (en) * | 1990-12-14 | 1995-04-18 | Fuisz Technologies Ltd. | Hydrophilic form of perfluoro compounds and a method of manufacture |
US5427804A (en) * | 1992-03-05 | 1995-06-27 | Fuisz Technologies Ltd. | Low-fat edible proteins with maltodextrins and low-saturate oils |
US5445769A (en) * | 1994-06-27 | 1995-08-29 | Fuisz Technologies Ltd. | Spinner head for flash flow processing |
WO1995023598A1 (en) * | 1994-03-04 | 1995-09-08 | Trustees Of The Stevens Institute Of Technology | Controlled release microporous membranes |
US5456932A (en) * | 1987-04-20 | 1995-10-10 | Fuisz Technologies Ltd. | Method of converting a feedstock to a shearform product and product thereof |
US5464935A (en) * | 1992-05-28 | 1995-11-07 | Centocor, Inc. | Peptide inhibitors of selectin binding |
US5472731A (en) * | 1987-04-20 | 1995-12-05 | Fuisz Technologies Ltd. | Protein based food product |
US5501858A (en) * | 1992-05-12 | 1996-03-26 | Fuisz Technologies Ltd. | Rapidly dispersable compositions containing polydextrose |
US5516537A (en) * | 1987-04-20 | 1996-05-14 | Fuisz Technologies Ltd. | Frozen comestibles |
US5518551A (en) * | 1993-09-10 | 1996-05-21 | Fuisz Technologies Ltd. | Spheroidal crystal sugar and method of making |
US5518730A (en) * | 1992-06-03 | 1996-05-21 | Fuisz Technologies Ltd. | Biodegradable controlled release flash flow melt-spun delivery system |
US5520859A (en) * | 1993-10-07 | 1996-05-28 | Fuisz Technologies Ltd. | Method for flash flow processing having feed rate control |
EP0714912A2 (en) | 1990-07-17 | 1996-06-05 | The Board Of Regents Of The University Of Oklahoma | GMP-140 derived lektin-like domain peptides and their ligands |
US5545409A (en) * | 1989-02-22 | 1996-08-13 | Massachusetts Institute Of Technology | Delivery system for controlled release of bioactive factors |
US5549917A (en) * | 1994-07-01 | 1996-08-27 | Fuisz Technologies Ltd. | Flash flow formed solloid delivery systems |
US5556652A (en) * | 1994-08-05 | 1996-09-17 | Fuisz Technologies Ltd. | Comestibles containing stabilized highly odorous flavor component delivery systems |
US5567439A (en) * | 1994-06-14 | 1996-10-22 | Fuisz Technologies Ltd. | Delivery of controlled-release systems(s) |
US5576042A (en) * | 1991-10-25 | 1996-11-19 | Fuisz Technologies Ltd. | High intensity particulate polysaccharide based liquids |
US5587198A (en) * | 1995-05-31 | 1996-12-24 | Fuisz Technologies Ltd. | Positive hydration method of preparing confectionery and product therefrom |
US5593502A (en) * | 1993-10-07 | 1997-01-14 | Fuisz Technologies Ltd. | Method of making crystalline sugar and products resulting therefrom |
US5601835A (en) * | 1987-04-29 | 1997-02-11 | Massachusetts Institute Of Technology | Polymeric device for controlled drug delivery to the CNS |
US5602230A (en) * | 1992-05-28 | 1997-02-11 | Centocor, Inc. | Peptide inhibitors of selectin binding |
US5618785A (en) * | 1993-11-22 | 1997-04-08 | Centocor, Inc. | Peptide inhibitors of selectin binding |
US5622719A (en) * | 1993-09-10 | 1997-04-22 | Fuisz Technologies Ltd. | Process and apparatus for making rapidly dissolving dosage units and product therefrom |
US5624684A (en) * | 1991-05-17 | 1997-04-29 | Fuisz Technologies Ltd. | Enzyme systems |
US5651987A (en) * | 1991-12-17 | 1997-07-29 | Fuisz Technologies Ltd. | Ulcer prevention and treatment composition |
US5654273A (en) * | 1994-09-22 | 1997-08-05 | Children's Medical Center Corporation | Synducin mediated modulation of tissue repair |
US5654003A (en) * | 1992-03-05 | 1997-08-05 | Fuisz Technologies Ltd. | Process and apparatus for making tablets and tablets made therefrom |
US5660851A (en) * | 1989-12-26 | 1997-08-26 | Yissum Research Development Company Of The Hebrew Univ. Of Jerusalem | Ocular inserts |
US5660848A (en) * | 1994-11-02 | 1997-08-26 | The Population Council, Center For Biomedical Research | Subdermally implantable device |
US5695993A (en) * | 1994-08-12 | 1997-12-09 | Oklahoma Medical Research Foundation | Cloning and regulation of an endothelial cell protein C/activated protein C receptor |
US5710123A (en) * | 1992-12-18 | 1998-01-20 | Centocor, Inc. | Peptide inhibitors of selectin binding |
US5713852A (en) * | 1995-06-07 | 1998-02-03 | Alza Corporation | Oral dosage and method for treating painful conditions of the oral cavity |
US5728397A (en) * | 1992-05-12 | 1998-03-17 | Fuisz Technologies Ltd. | Polydextrose product and process |
US5753617A (en) * | 1992-09-08 | 1998-05-19 | Centocor, Inc. | Peptide inhibitors of cellular adhesion |
US5759539A (en) * | 1995-06-06 | 1998-06-02 | Georgia Research Foundation, Inc. | Method for rapid enzymatic alcohol removal |
EP0872234A2 (en) * | 1997-04-16 | 1998-10-21 | Röhm Gmbh | Laminar medical formulation |
US5843922A (en) * | 1994-07-29 | 1998-12-01 | Fuisz Technologies Ltd. | Preparation of oligosaccharides and products therefrom |
US5843884A (en) * | 1995-11-15 | 1998-12-01 | Oklahoma Medical Research Foundation | C9 complement inhibitor |
US5849900A (en) * | 1992-09-29 | 1998-12-15 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschafter E.V. | Inhibition of viruses by antisense oligomers capable of binding to polypurine rich tract of single-stranded RNA or RNA-DNA hybrids |
US5851553A (en) * | 1993-09-10 | 1998-12-22 | Fuisz Technologies, Ltd. | Process and apparatus for making rapidly dissolving dosage units and product therefrom |
US5853760A (en) * | 1993-12-04 | 1998-12-29 | Lts Lohmann Therapie-Systeme Gmbh & Co. Kg | Device for the controlled release of active substances |
US5859227A (en) * | 1996-07-31 | 1999-01-12 | Bearsden Bio, Inc. | RNA sequences which interact with RNA-binding proteins |
US5888982A (en) * | 1996-04-01 | 1999-03-30 | President And Fellows Of Harvard College | Regulation of vascular smooth muscle cell heme oxygenase-1 |
US5895664A (en) * | 1993-09-10 | 1999-04-20 | Fuisz Technologies Ltd. | Process for forming quickly dispersing comestible unit and product therefrom |
US5898066A (en) * | 1994-08-26 | 1999-04-27 | Children's Medical Center Corporation | Trophic factors for central nervous system regeneration |
US5916876A (en) * | 1992-09-08 | 1999-06-29 | Centocor, Inc. | Peptide inhibitors of leukocyte adhesion |
US5925333A (en) * | 1995-11-15 | 1999-07-20 | Massachusetts Institute Of Technology | Methods for modulation of lipid uptake |
US5962322A (en) * | 1996-11-15 | 1999-10-05 | Massachusetts Institute Of Technology | Methods for modulation of cholesterol transport |
US6001990A (en) * | 1994-05-10 | 1999-12-14 | The General Hospital Corporation | Antisense inhibition of hepatitis C virus |
US6004749A (en) * | 1996-07-31 | 1999-12-21 | Message Pharmaceuticals | Method for identifying compounds affecting RNA/RNA binding protein interactions |
US6020002A (en) * | 1994-06-14 | 2000-02-01 | Fuisz Technologies Ltd. | Delivery of controlled-release system(s) |
US6107029A (en) * | 1996-07-31 | 2000-08-22 | Message Pharmaceticals, Inc. | Universal method for detecting interactions between RNA molecules and RNA binding proteins |
US6124267A (en) * | 1991-02-05 | 2000-09-26 | Southpac Trust Internationals, Inc. | O-glycan inhibitors of selectin mediated inflammation derived from PSGL-1 |
JP2001501223A (en) * | 1996-09-30 | 2001-01-30 | アルザ コーポレイション | Dosage form and drug administration |
US6196993B1 (en) | 1998-04-20 | 2001-03-06 | Eyelab Group, Llc | Ophthalmic insert and method for sustained release of medication to the eye |
US6200751B1 (en) | 1996-11-08 | 2001-03-13 | Oklahoma Medical Research Foundation | Endothelial specific expression regulated by EPCR control elements |
US6203813B1 (en) | 1997-01-13 | 2001-03-20 | Lance L. Gooberman | Pharmaceutical delivery device and method of preparation therefor |
WO2001022947A2 (en) * | 1999-09-30 | 2001-04-05 | Lts Lohmann Therapie-Systeme Ag | Preparation containing active ingredients and/or auxiliary agents with a controlled release of these substances and the use and production of the same |
US20010012847A1 (en) * | 1996-11-12 | 2001-08-09 | Lam Andrew C. | Methods and devices for providing prolonged drug therapy |
US6284729B1 (en) | 1996-11-06 | 2001-09-04 | Children's Medical Center Corporation | Methods and reagents for regulating obesity |
US6299875B1 (en) | 1998-06-04 | 2001-10-09 | Panacea Pharmaceuticals, Llc | Methods to block IGE binding to cell surface receptors of mast cells |
US6309639B1 (en) | 1991-02-05 | 2001-10-30 | The Board Of Regents Of The University Of Oklahoma | Method for inhibiting an inflammatory response using antibodies to P-selectin glycoprotein ligand |
US6350859B1 (en) | 1994-06-23 | 2002-02-26 | Massachusetts Institute Of Technology | Class BI and CI scavenger receptors |
US6407236B1 (en) | 1998-09-16 | 2002-06-18 | Medco Research, Inc. | Adenosine A3 receptor modulators |
US6410508B1 (en) | 1998-10-07 | 2002-06-25 | Med College Georgia Res Inst | Glucose-dependent insulinotropic peptide for use as an osteotropic hormone |
US20030046718A1 (en) * | 1999-06-28 | 2003-03-06 | Massachusetts Institute Of Technology | Screening of compounds for treatment of atherosclerosis and heart attack |
US20030049784A1 (en) * | 2001-08-30 | 2003-03-13 | Mount Sinai School Of Medicine Of New York University | Alternatively spliced circulating tissue factor |
US20030157193A1 (en) * | 2002-02-05 | 2003-08-21 | Mcdonald William F. | Antimicrobial polymer |
FR2839645A1 (en) * | 2002-05-15 | 2003-11-21 | Backert Marie Elisabeth Cuine | Multilayer system for oral administration of drug(s), especially with specific release profile, comprises polymeric film carrier coated by spreading with drug-containing matrix layer(s) |
US20040077526A1 (en) * | 1997-09-05 | 2004-04-22 | Massachusetts Institute Of Technology | SR-BI antagonist and use thereof as contraceptives and in the treatment of steroidal overproduction |
US20040171073A1 (en) * | 2002-10-08 | 2004-09-02 | Massachusetts Institute Of Technology | Compounds for modulation of cholesterol transport |
US20040210208A1 (en) * | 2003-04-16 | 2004-10-21 | Cook Incorporated | Medical device with therapeutic agents |
US20050031605A1 (en) * | 2003-02-03 | 2005-02-10 | Bunn Howard F. | Compositions and methods of treating diabetes |
US20050085844A1 (en) * | 2002-12-24 | 2005-04-21 | Ovion, Inc. | Contraceptive device and delivery system |
US20050107772A1 (en) * | 2003-09-30 | 2005-05-19 | Guohua Chen | Osmotically driven active agent delivery device providing an ascending release profile |
US20050124862A1 (en) * | 2003-09-15 | 2005-06-09 | Mousa Shaker A. | Thyroid hormone analogs and methods of use |
US20050129746A1 (en) * | 2001-10-24 | 2005-06-16 | Lee Brian C. | Fluid-jet medicament delivery |
US6921825B2 (en) | 1998-09-16 | 2005-07-26 | King Pharmaceuticuals Research & Development, Inc. | Adenosine A3 receptor modulators |
US20050223420A1 (en) * | 2004-04-05 | 2005-10-06 | Massachusetts Institute Of Technology Commonwealth Of Massachusetts | Inducible heart attack animal model |
US6953568B1 (en) | 1998-08-25 | 2005-10-11 | Oklahoma Medical Research Foundation | Targeting of molecules to large vessel endothelium using EPCR |
US20060051391A1 (en) * | 2004-09-09 | 2006-03-09 | Dvoskin Victor O | Device for the controlled administration of substances to be inserted in a body cavity |
US20070009600A1 (en) * | 1993-05-27 | 2007-01-11 | Edgren David E | Antidepressant dosage form |
US7166568B1 (en) | 1998-02-09 | 2007-01-23 | Oklahoma Medical Research Foundation | Compositions and methods to inhibit formation of the C5b-9 complex of complement |
US7208467B2 (en) | 2002-06-07 | 2007-04-24 | Monty Krieger | Lipid-altering compositions for the treatment of infertility |
US20070196451A1 (en) * | 2006-02-22 | 2007-08-23 | Boston Scientific Scimed, Inc. | Extendable rolled delivery system |
US20070208074A1 (en) * | 2006-01-24 | 2007-09-06 | Bonni Azad M | Methods and compositions for treating and preventing tumors |
US20070282017A1 (en) * | 2006-03-01 | 2007-12-06 | Bonni Azad M | Methods and compositions for treating and preventing neurologic disorders |
US20080075663A1 (en) * | 2006-06-20 | 2008-03-27 | The J. David Gladstone Institutes | Mouse Model of Chronic Heart Failure and Coronary Atherosclerosis Regression |
US20080097380A1 (en) * | 2006-09-21 | 2008-04-24 | Li Kasey K | Method and apparatus for creating variable stiffness and/or reduction of soft tissue |
EP1920768A1 (en) * | 2006-11-10 | 2008-05-14 | Abbott GmbH & Co. KG | Solid dosage form with a film containing an active substance, as well as its method of production |
US20080124280A1 (en) * | 2003-09-15 | 2008-05-29 | Mousa Shaker A | Thyroid Hormone Analogs and Methods of Use |
US20080242608A1 (en) * | 2006-06-02 | 2008-10-02 | Azad Bonni | Methods and compositions for treating and preventing neurologic disorders |
US20090022806A1 (en) * | 2006-12-22 | 2009-01-22 | Mousa Shaker A | Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists and formulations and uses thereof |
US20090104121A1 (en) * | 2007-10-05 | 2009-04-23 | Plaxgen, Inc | Multi-subunit biological complexes for treatment of plaque-associated diseases |
US20090175794A1 (en) * | 2008-01-09 | 2009-07-09 | Molecular Insight Pharmaceuticals, Inc. | Inhibitors of carbonic anhydrase ix |
EP2133365A2 (en) | 2006-12-27 | 2009-12-16 | Emory University | Compositions and methods for the treatment of infections and tumors |
WO2010042759A2 (en) | 2008-10-08 | 2010-04-15 | Kyphia Pharmaceuticals Inc | Gaba conjugates and methods of use thereof |
US20100112600A1 (en) * | 2006-07-13 | 2010-05-06 | Azard Bonni | Methods and compositions for modulating synapse formation |
EP2194144A1 (en) | 2004-11-16 | 2010-06-09 | Trustees Of Boston University | Roles for dual Endothelin-1/Angiotensin II receptor (DEAR) in hypertension and angiogenesis |
US20100159021A1 (en) * | 2008-12-23 | 2010-06-24 | Paul Davis | Small Molecule Ligands of the Integrin RGD Recognition Site and Methods of Use |
US20100178246A1 (en) * | 2008-12-05 | 2010-07-15 | Molecular Insight Pharmaceuticals, Inc. | Technetium- and rhenium-bis(heteroaryl) complexes and methods of use thereof for inhibiting psma |
US20100183509A1 (en) * | 2008-01-09 | 2010-07-22 | Molecular Insight Pharmaceuticals, Inc. | Technetium- and rhenium-bis(heteroaryl) complexes and methods of use thereof |
US20100209382A1 (en) * | 2005-09-16 | 2010-08-19 | Ordway Research Institute, Inc. | Polyphenol Conjugates as RGD-Binding Compounds and Methods of Use |
US20100255108A1 (en) * | 2009-03-31 | 2010-10-07 | Hung-Yun Lin | Combination Treatment of Cancer With Cetuximab and Tetrac |
US7824704B2 (en) | 2003-05-02 | 2010-11-02 | Surmodics, Inc. | Controlled release bioactive agent delivery device |
WO2010148007A2 (en) | 2009-06-17 | 2010-12-23 | Ordway Research Institute, Inc. | Nanoparticle and polymer formulations for thyroid hormone, analogs, antagonists, and formulations and uses thereof |
US20110038852A1 (en) * | 2009-06-10 | 2011-02-17 | 3-V Biosciences, Inc. | Antivirals that target transporters, carriers, and ion channels |
US20110066141A1 (en) * | 2009-09-11 | 2011-03-17 | Cook Incorporated | Implantable medical device having an anti-gastric distress agent |
WO2011058164A1 (en) | 2009-11-13 | 2011-05-19 | Pangaea Biotech, S.A. | Molecular biomarkers for predicting response to tyrosine kinase inhibitors in lung cancer |
WO2011061625A2 (en) | 2009-11-19 | 2011-05-26 | Solis Biodyne | Compositions for increasing polypeptide stability and activity, and related methods |
US20110142941A1 (en) * | 2006-12-22 | 2011-06-16 | Davis Paul J | Nanoparticle and Polymer Formulations for Thyroid Hormone Analogs, Antagonists, and Formulations and Uses Thereof |
WO2011094430A2 (en) | 2010-01-27 | 2011-08-04 | Children's Medical Center Corporation | Pro-angiogenic fragments of prominin-1 and uses thereof |
WO2011116132A1 (en) | 2010-03-16 | 2011-09-22 | Titan Pharmaceuticals, Inc. | Heterogeneous implantable devices for drug delivery |
EP2380872A1 (en) | 2004-06-15 | 2011-10-26 | Polymedix, Inc. | Polycationic compounds and uses thereof |
EP2397156A1 (en) | 2005-06-08 | 2011-12-21 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for the treatment of persistent infections and cancer by inhibiting the programmed cell death 1 (PD-1)pathway |
EP2423331A2 (en) | 2004-03-31 | 2012-02-29 | The General Hospital Corporation | Method to determine responsiveness of cancer to epidermal growth factor receptor targeting treatments |
EP2444038A2 (en) | 2006-03-30 | 2012-04-25 | Conceptus, Inc. | Devices for deployment into a lumen |
EP2468883A1 (en) | 2010-12-22 | 2012-06-27 | Pangaea Biotech S.L. | Molecular biomarkers for predicting response to tyrosine kinase inhibitors in lung cancer |
US8211402B2 (en) | 2008-12-05 | 2012-07-03 | Molecular Insight Pharmaceuticals, Inc. | CA-IX specific radiopharmaceuticals for the treatment and imaging of cancer |
EP2476707A1 (en) | 2003-11-14 | 2012-07-18 | Children's Medical Center Corporation | Self-cleaving ribozymes and uses thereof |
WO2012109329A2 (en) | 2011-02-08 | 2012-08-16 | Children's Medical Center Corporation | Methods for treatment of melanoma |
US8246974B2 (en) | 2003-05-02 | 2012-08-21 | Surmodics, Inc. | Medical devices and methods for producing the same |
EP2492688A1 (en) | 2011-02-23 | 2012-08-29 | Pangaea Biotech, S.A. | Molecular biomarkers for predicting response to antitumor treatment in lung cancer |
WO2012149326A1 (en) * | 2011-04-29 | 2012-11-01 | Massachusetts Institute Of Technology | Layer processing for pharmaceuticals |
WO2013054200A2 (en) | 2011-10-10 | 2013-04-18 | The Hospital For Sick Children | Methods and compositions for screening and treating developmental disorders |
WO2013067451A2 (en) | 2011-11-04 | 2013-05-10 | Population Diagnostics Inc. | Methods and compositions for diagnosing, prognosing, and treating neurological conditions |
EP2662079A1 (en) | 2012-05-10 | 2013-11-13 | Ordway Research Institute, Inc. | Uses of formulations of thyroid hormone antagonists and nanoparticulate forms thereof to increase chemosensivity and radiosensitivity in tumor or cancer cells |
US8668926B1 (en) | 2003-09-15 | 2014-03-11 | Shaker A. Mousa | Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations thereof |
WO2014043519A1 (en) | 2012-09-14 | 2014-03-20 | Population Diagnostics Inc. | Methods and compositions for diagnosing, prognosing, and treating neurological conditions |
US8802240B2 (en) | 2011-01-06 | 2014-08-12 | Nanopharmaceuticals Llc | Uses of formulations of thyroid hormone analogs and nanoparticulate forms thereof to increase chemosensitivity and radiosensitivity in tumor or cancer cells |
US8821835B2 (en) | 2000-11-16 | 2014-09-02 | Microspherix Llc | Flexible and/or elastic brachytherapy seed or strand |
US20140309744A1 (en) * | 2011-02-28 | 2014-10-16 | Scimotana Pty Ltd | Surgical implant and method |
WO2015095767A1 (en) | 2013-12-20 | 2015-06-25 | 3-V Biosciences, Inc. | Heterocyclic modulators of lipid synthesis and combinations thereof |
WO2015105860A1 (en) | 2014-01-07 | 2015-07-16 | 3-V Biosciences, Inc. | Heterocyclic modulators of lipid synthesis for use against cancer and viral infections |
US9120837B2 (en) | 2012-01-06 | 2015-09-01 | Molecular Insight Pharmaceuticals | Metal complexes of poly(carboxyl)amine-containing ligands having an affinity for carbonic anhydrase IX |
WO2015149016A2 (en) | 2014-03-28 | 2015-10-01 | University Of Washington Through Its Center For Commercialization | Breast and ovarian cancer vaccines |
US9149547B2 (en) | 2009-06-15 | 2015-10-06 | Molecular Insight Pharmaceuticals, Inc. | Process for production of heterodimers of glutamic acid |
US9198887B2 (en) | 2003-09-15 | 2015-12-01 | Nanopharmaceuticals Llc | Thyroid hormone analogs and methods of use |
EP2963017A1 (en) | 2002-03-11 | 2016-01-06 | Molecular Insight Pharmaceuticals, Inc. | Technetium-dipyridine complexes, and methods of use thereof |
WO2016011386A1 (en) | 2014-07-18 | 2016-01-21 | University Of Washington | Cancer vaccine compositions and methods of use thereof |
WO2016054240A1 (en) | 2014-09-30 | 2016-04-07 | Sean Dalziel | Fixed dose combinations for the treatment of viral diseases |
US9308355B2 (en) | 2012-06-01 | 2016-04-12 | Surmodies, Inc. | Apparatus and methods for coating medical devices |
WO2016075578A1 (en) * | 2014-11-16 | 2016-05-19 | International Business Machines Corporation | Helical coil delivery device for active agent |
US9380813B2 (en) | 2014-02-11 | 2016-07-05 | Timothy McCullough | Drug delivery system and method |
US9393192B2 (en) | 2002-07-29 | 2016-07-19 | Alza Corporation | Methods and dosage forms for controlled delivery of paliperidone and risperidone |
US9408986B2 (en) * | 2014-02-11 | 2016-08-09 | Timothy McCullough | Methods and devices using cannabis vapors |
WO2016149271A1 (en) | 2015-03-19 | 2016-09-22 | 3-V Biosciences, Inc. | Heterocyclic modulators of lipid synthesis |
US9498536B2 (en) | 2005-09-15 | 2016-11-22 | Nanopharmaceuticals Llc | Method and composition of thyroid hormone analogues and nanoformulations thereof for treating anti-inflammatory disorders |
US9526763B2 (en) | 2005-02-03 | 2016-12-27 | Intarcia Therapeutics Inc. | Solvent/polymer solutions as suspension vehicles |
US9539200B2 (en) | 2005-02-03 | 2017-01-10 | Intarcia Therapeutics Inc. | Two-piece, internal-channel osmotic delivery system flow modulator |
US9572889B2 (en) | 2008-02-13 | 2017-02-21 | Intarcia Therapeutics, Inc. | Devices, formulations, and methods for delivery of multiple beneficial agents |
US9682127B2 (en) | 2005-02-03 | 2017-06-20 | Intarcia Therapeutics, Inc. | Osmotic delivery device comprising an insulinotropic peptide and uses thereof |
EP3190108A1 (en) | 2011-03-08 | 2017-07-12 | 3-V Biosciences, Inc. | Heterocyclic modulators of lipid synthesis |
US9707217B1 (en) | 2017-02-03 | 2017-07-18 | Osmotica Kereskedelmi Es Szolgaltato Kft | Dose-dumping resistant controlled release dosage form |
US9724293B2 (en) | 2003-11-17 | 2017-08-08 | Intarcia Therapeutics, Inc. | Methods of manufacturing viscous liquid pharmaceutical formulations |
WO2017192743A1 (en) | 2016-05-04 | 2017-11-09 | Abilita Bio, Inc. | Methods and platform for preparing multispanning membrane proteins |
US9827401B2 (en) | 2012-06-01 | 2017-11-28 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US9889085B1 (en) | 2014-09-30 | 2018-02-13 | Intarcia Therapeutics, Inc. | Therapeutic methods for the treatment of diabetes and related conditions for patients with high baseline HbA1c |
US10060934B2 (en) | 2013-11-18 | 2018-08-28 | Nanopharmaceuticals Llc | Methods for screening patients for resistance to angioinhibition, treatment and prophylaxis thereof |
US10059997B2 (en) | 2010-08-02 | 2018-08-28 | Population Bio, Inc. | Compositions and methods for discovery of causative mutations in genetic disorders |
WO2018158632A2 (en) | 2017-02-03 | 2018-09-07 | Population Bio, Inc. | Methods for assessing risk of developing a viral disease using a genetic test |
US10086096B2 (en) | 2013-01-14 | 2018-10-02 | Molecular Insight Pharmaceuticals, Inc. | Triazine based radiopharmaceuticals and radioimaging agents |
US10130686B2 (en) | 2005-09-15 | 2018-11-20 | Nanopharmaceuticals Llc | Method and composition of thyroid hormone analogues and nanoformulations thereof for treating inflammatory disorders |
USD835783S1 (en) | 2016-06-02 | 2018-12-11 | Intarcia Therapeutics, Inc. | Implant placement guide |
US10149870B2 (en) | 2012-02-29 | 2018-12-11 | The General Hospital Corporation | Compositions of microbiota and methods related thereto |
US10159714B2 (en) | 2011-02-16 | 2018-12-25 | Intarcia Therapeutics, Inc. | Compositions, devices and methods of use thereof for the treatment of cancers |
US10201616B2 (en) | 2016-06-07 | 2019-02-12 | Nanopharmaceuticals, Llc | Non-cleavable polymer conjugated with αVβ3 integrin thyroid antagonists |
US10210306B2 (en) | 2006-05-03 | 2019-02-19 | Population Bio, Inc. | Evaluating genetic disorders |
US10213960B2 (en) | 2014-05-20 | 2019-02-26 | Massachusetts Institute Of Technology | Plasticity induced bonding |
US10233495B2 (en) | 2012-09-27 | 2019-03-19 | The Hospital For Sick Children | Methods and compositions for screening and treating developmental disorders |
US10231923B2 (en) | 2009-09-28 | 2019-03-19 | Intarcia Therapeutics, Inc. | Rapid establishment and/or termination of substantial steady-state drug delivery |
US10328043B1 (en) | 2018-04-11 | 2019-06-25 | Nanopharmaceuticals, Llc. | Composition and method for dual targeting in treatment of neuroendocrine tumors |
US10407724B2 (en) | 2012-02-09 | 2019-09-10 | The Hospital For Sick Children | Methods and compositions for screening and treating developmental disorders |
USD860451S1 (en) | 2016-06-02 | 2019-09-17 | Intarcia Therapeutics, Inc. | Implant removal tool |
US10501517B2 (en) | 2016-05-16 | 2019-12-10 | Intarcia Therapeutics, Inc. | Glucagon-receptor selective polypeptides and methods of use thereof |
US10522240B2 (en) | 2006-05-03 | 2019-12-31 | Population Bio, Inc. | Evaluating genetic disorders |
WO2020001657A1 (en) | 2018-06-29 | 2020-01-02 | Wuhan Neurophth Biological Technology Limited Company | Compositions and methods for treating leber's hereditary optic neuropathy |
US10527170B2 (en) | 2006-08-09 | 2020-01-07 | Intarcia Therapeutics, Inc. | Osmotic delivery systems and piston assemblies for use therein |
WO2020033700A1 (en) | 2018-08-08 | 2020-02-13 | Pml Screening, Llc | Mathods for assessing the risk of developing progressive multifocal leukoencephalopathy caused by john cunningham virus by genetic testing |
US10633714B2 (en) | 2013-07-21 | 2020-04-28 | Pendulum Therapeutics, Inc. | Methods and systems for microbiome characterization, monitoring and treatment |
US10668116B2 (en) | 2014-10-31 | 2020-06-02 | Pendulum Therapeutics, Inc. | Methods and compositions relating to microbial treatment and diagnosis of disorders |
US10724096B2 (en) | 2014-09-05 | 2020-07-28 | Population Bio, Inc. | Methods and compositions for inhibiting and treating neurological conditions |
US10821240B2 (en) | 2014-02-11 | 2020-11-03 | Vapor Cartridge Technology Llc | Methods and drug delivery devices using cannabis |
US10835580B2 (en) | 2017-01-03 | 2020-11-17 | Intarcia Therapeutics, Inc. | Methods comprising continuous administration of a GLP-1 receptor agonist and co-administration of a drug |
US10925639B2 (en) | 2015-06-03 | 2021-02-23 | Intarcia Therapeutics, Inc. | Implant placement and removal systems |
US10961204B1 (en) | 2020-04-29 | 2021-03-30 | Nanopharmaceuticals Llc | Composition of scalable thyrointegrin antagonists with improved blood brain barrier penetration and retention into brain tumors |
US11034954B2 (en) | 2018-06-29 | 2021-06-15 | Wuhan Neurophth Biological Technology Limited Company | Compositions and methods for treating leber's hereditary optic neuropathy |
USD933219S1 (en) | 2018-07-13 | 2021-10-12 | Intarcia Therapeutics, Inc. | Implant removal tool and assembly |
US11246913B2 (en) | 2005-02-03 | 2022-02-15 | Intarcia Therapeutics, Inc. | Suspension formulation comprising an insulinotropic peptide |
US11352645B2 (en) | 2018-08-20 | 2022-06-07 | Wuhan Neurophth Biotechnology Limited Company | Compositions and methods for treating Leber's hereditary optic neuropathy |
US11351137B2 (en) | 2018-04-11 | 2022-06-07 | Nanopharmaceuticals Llc | Composition and method for dual targeting in treatment of neuroendocrine tumors |
US11357869B2 (en) | 2019-12-09 | 2022-06-14 | Wuhan Neurophth Biotechnology Limited Company | Compositions and methods for treating leber's hereditary optic neuropathy with NADH dehydrogenase proteins |
WO2022195044A1 (en) * | 2021-03-17 | 2022-09-22 | Lts Lohmann Therapie-Systeme Ag | Rolled oral thin films having a high level of active-ingredient loading |
US11497249B2 (en) | 2019-09-16 | 2022-11-15 | Vapor Cartridge Technology Llc | Drug delivery system with stackable substrates |
WO2023280157A1 (en) | 2021-07-05 | 2023-01-12 | 武汉纽福斯生物科技有限公司 | Construction and use of anti-vegf antibody in-vivo expression system |
WO2023011632A1 (en) | 2021-08-06 | 2023-02-09 | 武汉纽福斯生物科技有限公司 | Composition and method for treating leber's hereditary optic neuropathy caused by nd4 mutation |
US11583558B2 (en) | 2017-08-30 | 2023-02-21 | Pendulum Therapeutics, Inc. | Methods and compositions for treatment of microbiome-associated disorders |
US11628466B2 (en) | 2018-11-29 | 2023-04-18 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US11723888B2 (en) | 2021-12-09 | 2023-08-15 | Nanopharmaceuticals Llc | Polymer conjugated thyrointegrin antagonists |
US11819590B2 (en) | 2019-05-13 | 2023-11-21 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2099402A (en) * | 1934-01-17 | 1937-11-16 | Pratt Food Company | Pill or tablet |
US2928770A (en) * | 1958-11-28 | 1960-03-15 | Frank M Bardani | Sustained action pill |
US3184386A (en) * | 1958-05-02 | 1965-05-18 | Burroughs Wellcome Co | Prolonged action medicinal tablets |
US3416530A (en) * | 1966-03-02 | 1968-12-17 | Richard A. Ness | Eyeball medication dispensing tablet |
-
1970
- 1970-05-18 US US38237A patent/US3625214A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2099402A (en) * | 1934-01-17 | 1937-11-16 | Pratt Food Company | Pill or tablet |
US3184386A (en) * | 1958-05-02 | 1965-05-18 | Burroughs Wellcome Co | Prolonged action medicinal tablets |
US2928770A (en) * | 1958-11-28 | 1960-03-15 | Frank M Bardani | Sustained action pill |
US3416530A (en) * | 1966-03-02 | 1968-12-17 | Richard A. Ness | Eyeball medication dispensing tablet |
Cited By (461)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3887699A (en) * | 1969-03-24 | 1975-06-03 | Seymour Yolles | Biodegradable polymeric article for dispensing drugs |
US3993073A (en) * | 1969-04-01 | 1976-11-23 | Alza Corporation | Novel drug delivery device |
US3960150A (en) * | 1971-09-09 | 1976-06-01 | Alza Corporation | Bioerodible ocular device |
US3993071A (en) * | 1971-09-09 | 1976-11-23 | Alza Corporation | Bioerodible ocular device |
US3981303A (en) * | 1971-09-09 | 1976-09-21 | Alza Corporation | Bioerodible ocular device |
US3986510A (en) * | 1971-09-09 | 1976-10-19 | Alza Corporation | Bioerodible ocular device |
US3892238A (en) * | 1971-09-16 | 1975-07-01 | Abbott Lab | Drug supporting anchor |
US3826258A (en) * | 1972-02-07 | 1974-07-30 | S Abraham | Gradual release medicine carrier |
US3971367A (en) * | 1972-12-27 | 1976-07-27 | Alza Corporation | Intrauterine device having means for changing from uterine-retentive shape to nonuterine-retentive shape |
US3898986A (en) * | 1972-12-27 | 1975-08-12 | Alza Corp | Biotransformable intrauterine device |
US3888975A (en) * | 1972-12-27 | 1975-06-10 | Alza Corp | Erodible intrauterine device |
US3961628A (en) * | 1974-04-10 | 1976-06-08 | Alza Corporation | Ocular drug dispensing system |
US3926188A (en) * | 1974-11-14 | 1975-12-16 | Alza Corp | Laminated drug dispenser |
US4135514A (en) * | 1974-12-23 | 1979-01-23 | Alza Corporation | Osmotic releasing system for administering ophthalmic drug to eye of animal |
US4142526A (en) * | 1974-12-23 | 1979-03-06 | Alza Corporation | Osmotic releasing system with means for changing release therefrom |
US4126503A (en) * | 1975-12-15 | 1978-11-21 | Hoffmann-La Roche Inc. | Manufacture of pharmaceutical dosage forms |
US4083741A (en) * | 1975-12-15 | 1978-04-11 | Hoffmann-La Roche, Inc. | Novel dosage form |
US4126502A (en) * | 1975-12-15 | 1978-11-21 | Hoffmann-La Roche Inc. | Manufacture of pharmaceutical dosage forms |
DK152172B (en) * | 1975-12-15 | 1988-02-08 | Hoffmann La Roche | PROCEDURE FOR PREPARING A SOLID PHARMACEUTICAL UNIT DOSAGE FORM |
DE2656387A1 (en) * | 1975-12-15 | 1977-06-30 | Hoffmann La Roche | SOLID UNIVERSAL PHARMACEUTICAL DOSAGE FORM AS A DOSAGE FORM OF A DRUG, AND PROCESS AND SYSTEM FOR THEIR MANUFACTURING |
NL7601020A (en) * | 1976-02-02 | 1977-08-04 | Minnesota Mining & Mfg | Ballistic animal inoculation projectile - with an antigen within a polymer body permitting antigen release |
NL7601017A (en) * | 1976-02-02 | 1977-08-04 | Minnesota Mining & Mfg | Ballistically implantable projectile for animals - for controlled sustained release of biologically active materials on contact with animal body fluids |
US4228149A (en) * | 1977-06-09 | 1980-10-14 | Beecham Group Limited | Sustained release compositions |
EP0010987A1 (en) * | 1978-11-07 | 1980-05-14 | Beecham Group Plc | Device for oral administration to a ruminant animal |
US4308250A (en) * | 1978-11-07 | 1981-12-29 | Beecham Group Limited | Sustained drug release device |
EP0021758A1 (en) * | 1979-06-27 | 1981-01-07 | Beecham Group Plc | Veterinary preparations for ruminant animals |
EP0064841A1 (en) * | 1981-04-30 | 1982-11-17 | Smith and Nephew Associated Companies p.l.c. | Applicators for pharmaceutically active agents, their preparation and use |
US4540408A (en) * | 1981-04-30 | 1985-09-10 | Smith And Nephew Associated Companies Limited | Applicators for pharmacologically active agents, their preparation and use |
DE3124981A1 (en) * | 1981-06-25 | 1983-01-13 | Dr. Ruhland Nachfolger GmbH, 8425 Neustadt | ACTIVE INGREDIENT COLLAGEN INSERT FOR INSERTION INTO BONES OR SOFT PARTS AND METHOD FOR THEIR PRODUCTION |
US4439183A (en) * | 1981-10-09 | 1984-03-27 | Alza Corporation | Parenteral agent dispensing equipment |
US4521211A (en) * | 1981-10-09 | 1985-06-04 | Alza Corporation | Parenteral agent dispensing equipment |
US4548598A (en) * | 1981-10-09 | 1985-10-22 | Alza Corporation | Parenteral agent dispensing equipment |
US4576604A (en) * | 1983-03-04 | 1986-03-18 | Alza Corporation | Osmotic system with instant drug availability |
US4673405A (en) * | 1983-03-04 | 1987-06-16 | Alza Corporation | Osmotic system with instant drug availability |
US4906474A (en) * | 1983-03-22 | 1990-03-06 | Massachusetts Institute Of Technology | Bioerodible polyanhydrides for controlled drug delivery |
US4946929A (en) * | 1983-03-22 | 1990-08-07 | Massachusetts Institute Of Technology | Bioerodible articles useful as implants and prostheses having predictable degradation rates |
US4886870A (en) * | 1984-05-21 | 1989-12-12 | Massachusetts Institute Of Technology | Bioerodible articles useful as implants and prostheses having predictable degradation rates |
US4891225A (en) * | 1984-05-21 | 1990-01-02 | Massachusetts Institute Of Technology | Bioerodible polyanhydrides for controlled drug delivery |
US4698062A (en) * | 1985-10-30 | 1987-10-06 | Alza Corporation | Medical device for pulsatile transdermal delivery of biologically active agents |
US5516537A (en) * | 1987-04-20 | 1996-05-14 | Fuisz Technologies Ltd. | Frozen comestibles |
US5374447A (en) * | 1987-04-20 | 1994-12-20 | Fuisz Technologies Ltd. | Method of preparing a reduced-fat meat product |
US5236734A (en) * | 1987-04-20 | 1993-08-17 | Fuisz Technologies Ltd. | Method of preparing a proteinaceous food product containing a melt spun oleaginous matrix |
US5238696A (en) * | 1987-04-20 | 1993-08-24 | Fuisz Technologies Ltd. | Method of preparing a frozen comestible |
US5503862A (en) * | 1987-04-20 | 1996-04-02 | Fuisz Technologies Ltd. | Method of subjecting a protein-containing material to flash flow processing and product thereof |
US5490993A (en) * | 1987-04-20 | 1996-02-13 | Fuisz Technologies Ltd. | Method of preparing a proteinaceous food product containing a melt spun matrix and product thereof |
US5472731A (en) * | 1987-04-20 | 1995-12-05 | Fuisz Technologies Ltd. | Protein based food product |
US5286513A (en) * | 1987-04-20 | 1994-02-15 | Fuisz Technologies Ltd. | Proteinaceous food product containing a melt spun oleaginous matrix |
US5456932A (en) * | 1987-04-20 | 1995-10-10 | Fuisz Technologies Ltd. | Method of converting a feedstock to a shearform product and product thereof |
US5601835A (en) * | 1987-04-29 | 1997-02-11 | Massachusetts Institute Of Technology | Polymeric device for controlled drug delivery to the CNS |
US5114719A (en) * | 1987-04-29 | 1992-05-19 | Sabel Bernhard A | Extended drug delivery of small, water-soluble molecules |
US4883666A (en) * | 1987-04-29 | 1989-11-28 | Massachusetts Institute Of Technology | Controlled drug delivery system for treatment of neural disorders |
US5079006A (en) * | 1987-07-15 | 1992-01-07 | Aprex Corporation | Pharmaceutical compositions containing a magnetically detectable material |
US5629009A (en) * | 1989-02-22 | 1997-05-13 | Massachusetts Institute Of Technology | Delivery system for controlled release of bioactive factors |
US5545409A (en) * | 1989-02-22 | 1996-08-13 | Massachusetts Institute Of Technology | Delivery system for controlled release of bioactive factors |
US5660851A (en) * | 1989-12-26 | 1997-08-26 | Yissum Research Development Company Of The Hebrew Univ. Of Jerusalem | Ocular inserts |
WO1991017745A1 (en) * | 1990-05-23 | 1991-11-28 | Southwest Research Institute | Filament system for delivering a medicament and method |
US5167962A (en) * | 1990-05-23 | 1992-12-01 | Southwest Research Institute | Filament system for delivering a medicament and method |
EP0714912A2 (en) | 1990-07-17 | 1996-06-05 | The Board Of Regents Of The University Of Oklahoma | GMP-140 derived lektin-like domain peptides and their ligands |
US5407676A (en) * | 1990-12-14 | 1995-04-18 | Fuisz Technologies Ltd. | Hydrophilic form of perfluoro compounds and a method of manufacture |
US6506382B2 (en) | 1991-02-05 | 2003-01-14 | The Board Of Regents Of The University Of Oklahoma | Method for inhibiting reperfusion injury using antibodies to P-selectin glycoprotein ligand |
US20040132105A1 (en) * | 1991-02-05 | 2004-07-08 | Cummings Richard D. | Methods of detecting disorders involving defective p-selectin glycoprotein ligand or defective p-selectin |
US6667036B2 (en) | 1991-02-05 | 2003-12-23 | The Board Of Regents Of The University Of Oklahoma | Methods of treatment using antibodies to P-selectin glycoprotein ligand |
US6309639B1 (en) | 1991-02-05 | 2001-10-30 | The Board Of Regents Of The University Of Oklahoma | Method for inhibiting an inflammatory response using antibodies to P-selectin glycoprotein ligand |
US6124267A (en) * | 1991-02-05 | 2000-09-26 | Southpac Trust Internationals, Inc. | O-glycan inhibitors of selectin mediated inflammation derived from PSGL-1 |
US5326568A (en) * | 1991-05-03 | 1994-07-05 | Giampapa Vincent C | Method of tissue-specific delivery |
US6129926A (en) * | 1991-05-17 | 2000-10-10 | Fuisz Technologies Ltd. | Flash flow processing of thermoplastic polymers and products made therefrom |
US5268110A (en) * | 1991-05-17 | 1993-12-07 | Fuisz Technologies Ltd. | Oil removing method |
US5624684A (en) * | 1991-05-17 | 1997-04-29 | Fuisz Technologies Ltd. | Enzyme systems |
US5597608A (en) * | 1991-10-25 | 1997-01-28 | Fuisz Technologies Ltd. | Saccharide-based matrix incorporating maltodextrin and process for making |
US5576042A (en) * | 1991-10-25 | 1996-11-19 | Fuisz Technologies Ltd. | High intensity particulate polysaccharide based liquids |
US5429836A (en) * | 1991-10-25 | 1995-07-04 | Fuisz Technologies Ltd. | Saccharide-based matrix |
US5387431A (en) * | 1991-10-25 | 1995-02-07 | Fuisz Technologies Ltd. | Saccharide-based matrix |
US5709876A (en) * | 1991-10-25 | 1998-01-20 | Fuisz Technologies Ltd. | Saccharide-based matrix |
US5651987A (en) * | 1991-12-17 | 1997-07-29 | Fuisz Technologies Ltd. | Ulcer prevention and treatment composition |
US5427804A (en) * | 1992-03-05 | 1995-06-27 | Fuisz Technologies Ltd. | Low-fat edible proteins with maltodextrins and low-saturate oils |
US5654003A (en) * | 1992-03-05 | 1997-08-05 | Fuisz Technologies Ltd. | Process and apparatus for making tablets and tablets made therefrom |
WO1993021859A1 (en) * | 1992-04-30 | 1993-11-11 | Vincent Carmine Giampapa | Tissue-specific implantable therapeutic agent delivery system |
US5494677A (en) * | 1992-04-30 | 1996-02-27 | Giampapa; Vincent C. | Tissue-specific implantable therapeutic agent delivery system |
US5728397A (en) * | 1992-05-12 | 1998-03-17 | Fuisz Technologies Ltd. | Polydextrose product and process |
US5501858A (en) * | 1992-05-12 | 1996-03-26 | Fuisz Technologies Ltd. | Rapidly dispersable compositions containing polydextrose |
US5279849A (en) * | 1992-05-12 | 1994-01-18 | Fuisz Technologies Ltd. | Dispersible polydextrose, compositions containing same and method for the preparation thereof |
US5464935A (en) * | 1992-05-28 | 1995-11-07 | Centocor, Inc. | Peptide inhibitors of selectin binding |
US5602230A (en) * | 1992-05-28 | 1997-02-11 | Centocor, Inc. | Peptide inhibitors of selectin binding |
US5518730A (en) * | 1992-06-03 | 1996-05-21 | Fuisz Technologies Ltd. | Biodegradable controlled release flash flow melt-spun delivery system |
US5753617A (en) * | 1992-09-08 | 1998-05-19 | Centocor, Inc. | Peptide inhibitors of cellular adhesion |
US5916876A (en) * | 1992-09-08 | 1999-06-29 | Centocor, Inc. | Peptide inhibitors of leukocyte adhesion |
US5849900A (en) * | 1992-09-29 | 1998-12-15 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschafter E.V. | Inhibition of viruses by antisense oligomers capable of binding to polypurine rich tract of single-stranded RNA or RNA-DNA hybrids |
US5348758A (en) * | 1992-10-20 | 1994-09-20 | Fuisz Technologies Ltd. | Controlled melting point matrix formed with admixtures of a shearform matrix material and an oleaginous material |
US5380473A (en) * | 1992-10-23 | 1995-01-10 | Fuisz Technologies Ltd. | Process for making shearform matrix |
US5710123A (en) * | 1992-12-18 | 1998-01-20 | Centocor, Inc. | Peptide inhibitors of selectin binding |
US8084059B2 (en) | 1993-05-27 | 2011-12-27 | Alza Corporation | Antidepressant dosage form |
US20070009600A1 (en) * | 1993-05-27 | 2007-01-11 | Edgren David E | Antidepressant dosage form |
US5622719A (en) * | 1993-09-10 | 1997-04-22 | Fuisz Technologies Ltd. | Process and apparatus for making rapidly dissolving dosage units and product therefrom |
US5866163A (en) * | 1993-09-10 | 1999-02-02 | Fuisz Technologies Ltd. | Process and apparatus for making rapidly dissolving dosage units and product therefrom |
US5871781A (en) * | 1993-09-10 | 1999-02-16 | Fuisz Technologies Ltd. | Apparatus for making rapidly-dissolving dosage units |
US5601076A (en) * | 1993-09-10 | 1997-02-11 | Fuisz Technologies Ltd. | Spheroidal crystal sugar and method of making |
US5518551A (en) * | 1993-09-10 | 1996-05-21 | Fuisz Technologies Ltd. | Spheroidal crystal sugar and method of making |
US5851553A (en) * | 1993-09-10 | 1998-12-22 | Fuisz Technologies, Ltd. | Process and apparatus for making rapidly dissolving dosage units and product therefrom |
US5895664A (en) * | 1993-09-10 | 1999-04-20 | Fuisz Technologies Ltd. | Process for forming quickly dispersing comestible unit and product therefrom |
US5827563A (en) * | 1993-09-10 | 1998-10-27 | Fuisz Technologies Ltd. | Spheroidal crystal sugar |
US5520859A (en) * | 1993-10-07 | 1996-05-28 | Fuisz Technologies Ltd. | Method for flash flow processing having feed rate control |
US5597416A (en) * | 1993-10-07 | 1997-01-28 | Fuisz Technologies Ltd. | Method of making crystalline sugar and products resulting therefrom |
US5593502A (en) * | 1993-10-07 | 1997-01-14 | Fuisz Technologies Ltd. | Method of making crystalline sugar and products resulting therefrom |
US5618785A (en) * | 1993-11-22 | 1997-04-08 | Centocor, Inc. | Peptide inhibitors of selectin binding |
US5853760A (en) * | 1993-12-04 | 1998-12-29 | Lts Lohmann Therapie-Systeme Gmbh & Co. Kg | Device for the controlled release of active substances |
WO1995023598A1 (en) * | 1994-03-04 | 1995-09-08 | Trustees Of The Stevens Institute Of Technology | Controlled release microporous membranes |
US6110481A (en) * | 1994-03-04 | 2000-08-29 | Trustees Of The Stevens Institute Of Technology | Controlled release device based on aqueous-organic partitioning in porous membranes |
US5858385A (en) * | 1994-03-04 | 1999-01-12 | The Trustees Of The Stevens Institute Of Technology | Controlled release device and method based on aqueous--organic partitioning in porous membranes |
US6001990A (en) * | 1994-05-10 | 1999-12-14 | The General Hospital Corporation | Antisense inhibition of hepatitis C virus |
US5853762A (en) * | 1994-06-14 | 1998-12-29 | Fuisz Technologies Ltd | Delivery of controlled-release system(s) |
US6020002A (en) * | 1994-06-14 | 2000-02-01 | Fuisz Technologies Ltd. | Delivery of controlled-release system(s) |
US5733577A (en) * | 1994-06-14 | 1998-03-31 | Fuisz Technologies Ltd. | Delivery of controlled-release system (s) |
US5851552A (en) * | 1994-06-14 | 1998-12-22 | Fuisz Technologies, Ltd. | Delivery of controlled-release system(s) |
US5567439A (en) * | 1994-06-14 | 1996-10-22 | Fuisz Technologies Ltd. | Delivery of controlled-release systems(s) |
US7078511B1 (en) | 1994-06-23 | 2006-07-18 | Massachusette Institute Of Technology | Class BI and CI scavenger receptors |
US6350859B1 (en) | 1994-06-23 | 2002-02-26 | Massachusetts Institute Of Technology | Class BI and CI scavenger receptors |
US5445769A (en) * | 1994-06-27 | 1995-08-29 | Fuisz Technologies Ltd. | Spinner head for flash flow processing |
US5549917A (en) * | 1994-07-01 | 1996-08-27 | Fuisz Technologies Ltd. | Flash flow formed solloid delivery systems |
US5824342A (en) * | 1994-07-01 | 1998-10-20 | Fuisz Technologies Ltd. | Flash flow formed solloid delivery systems |
US5582855A (en) * | 1994-07-01 | 1996-12-10 | Fuisz Technologies Ltd. | Flash flow formed solloid delivery systems |
US5843922A (en) * | 1994-07-29 | 1998-12-01 | Fuisz Technologies Ltd. | Preparation of oligosaccharides and products therefrom |
US5556652A (en) * | 1994-08-05 | 1996-09-17 | Fuisz Technologies Ltd. | Comestibles containing stabilized highly odorous flavor component delivery systems |
US5633027A (en) * | 1994-08-05 | 1997-05-27 | Fuisz Technologies Ltd. | Confectioneries containing stabilized highly odorous flavor component delivery systems |
US5744180A (en) * | 1994-08-05 | 1998-04-28 | Fuisz Technologies Ltd. | Comestibles containing stabilized highly odorous flavor component delivery systems |
US7063843B1 (en) | 1994-08-12 | 2006-06-20 | Oklahoma Medical Research Foundation | Cloning and regulation of an endothelial cell protein C/activated protein C receptor |
US6399064B1 (en) | 1994-08-12 | 2002-06-04 | Oklahoma Medical Research Foundation | Cloning and regulation of an endothelial cell protein C/activated protein C receptor |
US5695993A (en) * | 1994-08-12 | 1997-12-09 | Oklahoma Medical Research Foundation | Cloning and regulation of an endothelial cell protein C/activated protein C receptor |
US5898066A (en) * | 1994-08-26 | 1999-04-27 | Children's Medical Center Corporation | Trophic factors for central nervous system regeneration |
US5654273A (en) * | 1994-09-22 | 1997-08-05 | Children's Medical Center Corporation | Synducin mediated modulation of tissue repair |
US5756115A (en) * | 1994-11-02 | 1998-05-26 | The Population Coucil, Center For Biomedical Research | Contraceptive method using a subdermally implantable device |
US5660848A (en) * | 1994-11-02 | 1997-08-26 | The Population Council, Center For Biomedical Research | Subdermally implantable device |
US5804247A (en) * | 1995-05-31 | 1998-09-08 | Fuisz Technologies Ltd. | Positive hydration method of preparing confectionary and product therefrom |
US5587198A (en) * | 1995-05-31 | 1996-12-24 | Fuisz Technologies Ltd. | Positive hydration method of preparing confectionery and product therefrom |
US5759539A (en) * | 1995-06-06 | 1998-06-02 | Georgia Research Foundation, Inc. | Method for rapid enzymatic alcohol removal |
US5713852A (en) * | 1995-06-07 | 1998-02-03 | Alza Corporation | Oral dosage and method for treating painful conditions of the oral cavity |
US5843884A (en) * | 1995-11-15 | 1998-12-01 | Oklahoma Medical Research Foundation | C9 complement inhibitor |
US5925333A (en) * | 1995-11-15 | 1999-07-20 | Massachusetts Institute Of Technology | Methods for modulation of lipid uptake |
US5888982A (en) * | 1996-04-01 | 1999-03-30 | President And Fellows Of Harvard College | Regulation of vascular smooth muscle cell heme oxygenase-1 |
US6004749A (en) * | 1996-07-31 | 1999-12-21 | Message Pharmaceuticals | Method for identifying compounds affecting RNA/RNA binding protein interactions |
US6107029A (en) * | 1996-07-31 | 2000-08-22 | Message Pharmaceticals, Inc. | Universal method for detecting interactions between RNA molecules and RNA binding proteins |
US5859227A (en) * | 1996-07-31 | 1999-01-12 | Bearsden Bio, Inc. | RNA sequences which interact with RNA-binding proteins |
JP2001501223A (en) * | 1996-09-30 | 2001-01-30 | アルザ コーポレイション | Dosage form and drug administration |
JP4714313B2 (en) * | 1996-09-30 | 2011-06-29 | アルザ コーポレイション | Dosage form and method of drug administration |
JP2010195822A (en) * | 1996-09-30 | 2010-09-09 | Alza Corp | Dosage form and method of administering drug |
US6284729B1 (en) | 1996-11-06 | 2001-09-04 | Children's Medical Center Corporation | Methods and reagents for regulating obesity |
US6200751B1 (en) | 1996-11-08 | 2001-03-13 | Oklahoma Medical Research Foundation | Endothelial specific expression regulated by EPCR control elements |
US9029416B2 (en) | 1996-11-12 | 2015-05-12 | Alza Corporation | Methods and devices for providing prolonged drug therapy |
US6919373B1 (en) | 1996-11-12 | 2005-07-19 | Alza Corporation | Methods and devices for providing prolonged drug therapy |
US20050238709A1 (en) * | 1996-11-12 | 2005-10-27 | Alza Corporation | Methods and devices for providing prolonged drug therapy |
US8629179B2 (en) | 1996-11-12 | 2014-01-14 | Alza Corporation | Methods and devices for providing prolonged drug therapy |
US6930129B2 (en) | 1996-11-12 | 2005-08-16 | Alza Corporation | Methods and devices for providing prolonged drug therapy |
US20100093796A1 (en) * | 1996-11-12 | 2010-04-15 | Gupta Suneel K | Methods and devices for providing prolonged drug therapy |
US8163798B2 (en) | 1996-11-12 | 2012-04-24 | Alza Corporation | Methods and devices for providing prolonged drug therapy |
US20050025832A1 (en) * | 1996-11-12 | 2005-02-03 | Alza Corporation | Methods and devices for providing prolonged drug therapy |
US20010012847A1 (en) * | 1996-11-12 | 2001-08-09 | Lam Andrew C. | Methods and devices for providing prolonged drug therapy |
US9144549B2 (en) | 1996-11-12 | 2015-09-29 | Alza Corporation | Methods and devices for providing prolonged drug therapy |
US9000038B2 (en) | 1996-11-12 | 2015-04-07 | Alza Corporation | Methods and devices for providing prolonged drug therapy |
US5962322A (en) * | 1996-11-15 | 1999-10-05 | Massachusetts Institute Of Technology | Methods for modulation of cholesterol transport |
US6203813B1 (en) | 1997-01-13 | 2001-03-20 | Lance L. Gooberman | Pharmaceutical delivery device and method of preparation therefor |
EP0872234A3 (en) * | 1997-04-16 | 2001-01-24 | Röhm Gmbh | Laminar medical formulation |
EP0872234A2 (en) * | 1997-04-16 | 1998-10-21 | Röhm Gmbh | Laminar medical formulation |
US6306428B1 (en) | 1997-04-16 | 2001-10-23 | Roehm Gmbh Chemische Fabrik | Time-release laminar pharmaceutical composition |
US20040077526A1 (en) * | 1997-09-05 | 2004-04-22 | Massachusetts Institute Of Technology | SR-BI antagonist and use thereof as contraceptives and in the treatment of steroidal overproduction |
US7166568B1 (en) | 1998-02-09 | 2007-01-23 | Oklahoma Medical Research Foundation | Compositions and methods to inhibit formation of the C5b-9 complex of complement |
US6196993B1 (en) | 1998-04-20 | 2001-03-06 | Eyelab Group, Llc | Ophthalmic insert and method for sustained release of medication to the eye |
US6299875B1 (en) | 1998-06-04 | 2001-10-09 | Panacea Pharmaceuticals, Llc | Methods to block IGE binding to cell surface receptors of mast cells |
US6953568B1 (en) | 1998-08-25 | 2005-10-11 | Oklahoma Medical Research Foundation | Targeting of molecules to large vessel endothelium using EPCR |
US6407236B1 (en) | 1998-09-16 | 2002-06-18 | Medco Research, Inc. | Adenosine A3 receptor modulators |
US6448253B1 (en) | 1998-09-16 | 2002-09-10 | King Pharmaceuticals Research And Development, Inc. | Adenosine A3 receptor modulators |
US6921825B2 (en) | 1998-09-16 | 2005-07-26 | King Pharmaceuticuals Research & Development, Inc. | Adenosine A3 receptor modulators |
US6410508B1 (en) | 1998-10-07 | 2002-06-25 | Med College Georgia Res Inst | Glucose-dependent insulinotropic peptide for use as an osteotropic hormone |
US20030046718A1 (en) * | 1999-06-28 | 2003-03-06 | Massachusetts Institute Of Technology | Screening of compounds for treatment of atherosclerosis and heart attack |
US7361684B2 (en) | 1999-06-28 | 2008-04-22 | Massachusetts Institute Of Technology | Screening of compounds for treatment of atherosclerosis and heart attack |
WO2001022947A2 (en) * | 1999-09-30 | 2001-04-05 | Lts Lohmann Therapie-Systeme Ag | Preparation containing active ingredients and/or auxiliary agents with a controlled release of these substances and the use and production of the same |
WO2001022947A3 (en) * | 1999-09-30 | 2001-10-11 | Lohmann Therapie Syst Lts | Preparation containing active ingredients and/or auxiliary agents with a controlled release of these substances and the use and production of the same |
JP2003510270A (en) * | 1999-09-30 | 2003-03-18 | エルテーエス ローマン テラピー−ジステーメ アーゲー | Formulations containing active and / or auxiliary substances and providing controlled release of said substances, and their use and manufacture |
US20080241216A1 (en) * | 1999-09-30 | 2008-10-02 | Lts Lohmann Therapie-Systeme Ag | Preparation Containing Active and/or Auxiliary Substances, With Controllable Release of Said Substances, As Well As Its Use and Manufacture |
US9636402B2 (en) | 2000-11-16 | 2017-05-02 | Microspherix Llc | Flexible and/or elastic brachytherapy seed or strand |
US9636401B2 (en) | 2000-11-16 | 2017-05-02 | Microspherix Llc | Flexible and/or elastic brachytherapy seed or strand |
US8821835B2 (en) | 2000-11-16 | 2014-09-02 | Microspherix Llc | Flexible and/or elastic brachytherapy seed or strand |
US10493181B2 (en) | 2000-11-16 | 2019-12-03 | Microspherix Llc | Flexible and/or elastic brachytherapy seed or strand |
US10994058B2 (en) | 2000-11-16 | 2021-05-04 | Microspherix Llc | Method for administering a flexible hormone rod |
US7045350B2 (en) | 2001-08-30 | 2006-05-16 | Mount Sinai School Of Medicine Of New York University | Alternatively spliced circulating tissue factor |
US20030049784A1 (en) * | 2001-08-30 | 2003-03-13 | Mount Sinai School Of Medicine Of New York University | Alternatively spliced circulating tissue factor |
US20050129746A1 (en) * | 2001-10-24 | 2005-06-16 | Lee Brian C. | Fluid-jet medicament delivery |
US20110204085A1 (en) * | 2001-10-24 | 2011-08-25 | Hewlett-Packard Development Company, L.P. | Fluid-jet medicament delivery |
US20030157193A1 (en) * | 2002-02-05 | 2003-08-21 | Mcdonald William F. | Antimicrobial polymer |
EP2963017A1 (en) | 2002-03-11 | 2016-01-06 | Molecular Insight Pharmaceuticals, Inc. | Technetium-dipyridine complexes, and methods of use thereof |
FR2839645A1 (en) * | 2002-05-15 | 2003-11-21 | Backert Marie Elisabeth Cuine | Multilayer system for oral administration of drug(s), especially with specific release profile, comprises polymeric film carrier coated by spreading with drug-containing matrix layer(s) |
US20050175699A1 (en) * | 2002-05-15 | 2005-08-11 | Cuine-Backert Marie E. | Multilamellar system for the administration of active agents by means of ingestion |
WO2003097019A1 (en) * | 2002-05-15 | 2003-11-27 | Marie Elisabeth Cuine-Backert | Multilamellar system for the administration of active agents by means of ingestion |
US20040006129A1 (en) * | 2002-05-16 | 2004-01-08 | Massachusetts Institute Of Technology | Prevention or treatment of abnormal lipoprotein, atherosclerosis and cholestasis |
US7208467B2 (en) | 2002-06-07 | 2007-04-24 | Monty Krieger | Lipid-altering compositions for the treatment of infertility |
US9393192B2 (en) | 2002-07-29 | 2016-07-19 | Alza Corporation | Methods and dosage forms for controlled delivery of paliperidone and risperidone |
US20040171073A1 (en) * | 2002-10-08 | 2004-09-02 | Massachusetts Institute Of Technology | Compounds for modulation of cholesterol transport |
US20050085844A1 (en) * | 2002-12-24 | 2005-04-21 | Ovion, Inc. | Contraceptive device and delivery system |
US20050031605A1 (en) * | 2003-02-03 | 2005-02-10 | Bunn Howard F. | Compositions and methods of treating diabetes |
US7780647B2 (en) | 2003-04-16 | 2010-08-24 | Cook Incorporated | Medical device with therapeutic agents |
US20080051737A1 (en) * | 2003-04-16 | 2008-02-28 | Cook Incorporated | Medical device with therapeutic agents |
US7306580B2 (en) | 2003-04-16 | 2007-12-11 | Cook Incorporated | Medical device with therapeutic agents |
US20040210208A1 (en) * | 2003-04-16 | 2004-10-21 | Cook Incorporated | Medical device with therapeutic agents |
WO2004093962A1 (en) * | 2003-04-16 | 2004-11-04 | Cook Incorporated | Medical device with therapeutic agents. |
US8246974B2 (en) | 2003-05-02 | 2012-08-21 | Surmodics, Inc. | Medical devices and methods for producing the same |
US7976862B2 (en) | 2003-05-02 | 2011-07-12 | Surmodics, Inc. | Controlled release bioactive agent delivery device |
US8021680B2 (en) | 2003-05-02 | 2011-09-20 | Surmodics, Inc. | Controlled release bioactive agent delivery device |
US8034369B2 (en) | 2003-05-02 | 2011-10-11 | Surmodics, Inc. | Controlled release bioactive agent delivery device |
US7824704B2 (en) | 2003-05-02 | 2010-11-02 | Surmodics, Inc. | Controlled release bioactive agent delivery device |
US8071134B2 (en) | 2003-09-15 | 2011-12-06 | Ordway Research Institute, Inc. | Thyroid hormone analogs and methods of use |
US9198887B2 (en) | 2003-09-15 | 2015-12-01 | Nanopharmaceuticals Llc | Thyroid hormone analogs and methods of use |
EP2335694A1 (en) | 2003-09-15 | 2011-06-22 | Ordway Research Institute, Inc. | Thyroid hormone analogs and methods of use. |
US9750709B2 (en) | 2003-09-15 | 2017-09-05 | Nanopharmaceuticals Llc | Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations thereof |
US8668926B1 (en) | 2003-09-15 | 2014-03-11 | Shaker A. Mousa | Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations thereof |
US9579300B2 (en) | 2003-09-15 | 2017-02-28 | Nanopharmaceuticals Llc | Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations thereof |
US20050124862A1 (en) * | 2003-09-15 | 2005-06-09 | Mousa Shaker A. | Thyroid hormone analogs and methods of use |
US8518451B2 (en) | 2003-09-15 | 2013-08-27 | Albany College of Pharmacy and Health Services | Thyroid hormone analogs and methods of use |
US20080124280A1 (en) * | 2003-09-15 | 2008-05-29 | Mousa Shaker A | Thyroid Hormone Analogs and Methods of Use |
US9980933B2 (en) | 2003-09-15 | 2018-05-29 | Nanopharmaceuticals Llc | Thyroid hormone analogs and methods of use |
US20100112079A1 (en) * | 2003-09-15 | 2010-05-06 | Ordway Research Institute, Inc. | Thyroid Hormone Analogs and Methods of Use |
US7785632B2 (en) | 2003-09-15 | 2010-08-31 | Ordway Research Institute, Inc. | Thyroid hormone analogs and methods of use |
US7241457B2 (en) * | 2003-09-30 | 2007-07-10 | Alza Corporation | Osmotically driven active agent delivery device providing an ascending release profile |
US20050107772A1 (en) * | 2003-09-30 | 2005-05-19 | Guohua Chen | Osmotically driven active agent delivery device providing an ascending release profile |
EP2476707A1 (en) | 2003-11-14 | 2012-07-18 | Children's Medical Center Corporation | Self-cleaving ribozymes and uses thereof |
EP3279328A1 (en) | 2003-11-14 | 2018-02-07 | Children's Medical Center Corporation | Self-cleaving ribozymes and uses thereof |
US9724293B2 (en) | 2003-11-17 | 2017-08-08 | Intarcia Therapeutics, Inc. | Methods of manufacturing viscous liquid pharmaceutical formulations |
EP2439285A1 (en) | 2004-03-31 | 2012-04-11 | The General Hospital Corporation | Method to determine responsiveness of cancer to epidermal growth factor receptor targeting treatments |
EP2423331A2 (en) | 2004-03-31 | 2012-02-29 | The General Hospital Corporation | Method to determine responsiveness of cancer to epidermal growth factor receptor targeting treatments |
EP3611273A1 (en) | 2004-03-31 | 2020-02-19 | The General Hospital Corporation | Method to determine responsiveness of cancer to epidermal growth factor receptor targeting treatments |
EP2447375A2 (en) | 2004-03-31 | 2012-05-02 | The General Hospital Corporation | Method to determine responsiveness of cancer to epidermal growth factor receptor targeting treatments |
EP2439284A1 (en) | 2004-03-31 | 2012-04-11 | The General Hospital Corporation | Method to determine responsiveness of cancer to epidermal growth factor receptor targeting treatments |
US20050223420A1 (en) * | 2004-04-05 | 2005-10-06 | Massachusetts Institute Of Technology Commonwealth Of Massachusetts | Inducible heart attack animal model |
US7514592B2 (en) | 2004-04-05 | 2009-04-07 | Massachusetts Institute Of Technology | Inducible heart attack animal model |
EP2380872A1 (en) | 2004-06-15 | 2011-10-26 | Polymedix, Inc. | Polycationic compounds and uses thereof |
US20060051391A1 (en) * | 2004-09-09 | 2006-03-09 | Dvoskin Victor O | Device for the controlled administration of substances to be inserted in a body cavity |
EP2194144A1 (en) | 2004-11-16 | 2010-06-09 | Trustees Of Boston University | Roles for dual Endothelin-1/Angiotensin II receptor (DEAR) in hypertension and angiogenesis |
US10363287B2 (en) | 2005-02-03 | 2019-07-30 | Intarcia Therapeutics, Inc. | Method of manufacturing an osmotic delivery device |
US9526763B2 (en) | 2005-02-03 | 2016-12-27 | Intarcia Therapeutics Inc. | Solvent/polymer solutions as suspension vehicles |
US9539200B2 (en) | 2005-02-03 | 2017-01-10 | Intarcia Therapeutics Inc. | Two-piece, internal-channel osmotic delivery system flow modulator |
US11246913B2 (en) | 2005-02-03 | 2022-02-15 | Intarcia Therapeutics, Inc. | Suspension formulation comprising an insulinotropic peptide |
US9682127B2 (en) | 2005-02-03 | 2017-06-20 | Intarcia Therapeutics, Inc. | Osmotic delivery device comprising an insulinotropic peptide and uses thereof |
EP4242655A2 (en) | 2005-06-08 | 2023-09-13 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for the treatment of persistent infections and cancer by inhibiting the programmed cell death 1 (pd-1)pathway |
EP2397156A1 (en) | 2005-06-08 | 2011-12-21 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for the treatment of persistent infections and cancer by inhibiting the programmed cell death 1 (PD-1)pathway |
EP2397155A1 (en) | 2005-06-08 | 2011-12-21 | Dana Farber Cancer Institute | Methods and compositions for the treatment of persistent infections and cancer by inhibiting the programmed cell death 1 (pd-1)pathway |
EP3130350A1 (en) | 2005-06-08 | 2017-02-15 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for the treatment of persistent infections and cancer by inhibiting the programmed cell death 1 (pd-1)pathway |
US9498536B2 (en) | 2005-09-15 | 2016-11-22 | Nanopharmaceuticals Llc | Method and composition of thyroid hormone analogues and nanoformulations thereof for treating anti-inflammatory disorders |
US10130686B2 (en) | 2005-09-15 | 2018-11-20 | Nanopharmaceuticals Llc | Method and composition of thyroid hormone analogues and nanoformulations thereof for treating inflammatory disorders |
US20100209382A1 (en) * | 2005-09-16 | 2010-08-19 | Ordway Research Institute, Inc. | Polyphenol Conjugates as RGD-Binding Compounds and Methods of Use |
US9272049B2 (en) | 2005-09-16 | 2016-03-01 | Nanopharmaceuticals Llc | Methods of stimulating fat mobilization using a polymer conjugated polyphenol |
US20070208074A1 (en) * | 2006-01-24 | 2007-09-06 | Bonni Azad M | Methods and compositions for treating and preventing tumors |
WO2007097867A1 (en) * | 2006-02-22 | 2007-08-30 | Boston Scientific Scimed, Inc. | Extendable rolled delivery system |
US20070196451A1 (en) * | 2006-02-22 | 2007-08-23 | Boston Scientific Scimed, Inc. | Extendable rolled delivery system |
US20070282017A1 (en) * | 2006-03-01 | 2007-12-06 | Bonni Azad M | Methods and compositions for treating and preventing neurologic disorders |
US7786090B2 (en) | 2006-03-01 | 2010-08-31 | President And Fellows Of Harvard College | Methods and compositions for treating and preventing neurologic disorders |
EP2444038A2 (en) | 2006-03-30 | 2012-04-25 | Conceptus, Inc. | Devices for deployment into a lumen |
US8707958B2 (en) | 2006-03-30 | 2014-04-29 | Bayer Essure Inc. | Methods and devices for deployment into a lumen |
US8235047B2 (en) | 2006-03-30 | 2012-08-07 | Conceptus, Inc. | Methods and devices for deployment into a lumen |
US10210306B2 (en) | 2006-05-03 | 2019-02-19 | Population Bio, Inc. | Evaluating genetic disorders |
US10529441B2 (en) | 2006-05-03 | 2020-01-07 | Population Bio, Inc. | Evaluating genetic disorders |
US10522240B2 (en) | 2006-05-03 | 2019-12-31 | Population Bio, Inc. | Evaluating genetic disorders |
US20080242608A1 (en) * | 2006-06-02 | 2008-10-02 | Azad Bonni | Methods and compositions for treating and preventing neurologic disorders |
US7960606B2 (en) | 2006-06-20 | 2011-06-14 | The J. David Gladstone Institutes | Mouse model of chronic heart failure and coronary atherosclerosis regression |
US20080075663A1 (en) * | 2006-06-20 | 2008-03-27 | The J. David Gladstone Institutes | Mouse Model of Chronic Heart Failure and Coronary Atherosclerosis Regression |
US20100112600A1 (en) * | 2006-07-13 | 2010-05-06 | Azard Bonni | Methods and compositions for modulating synapse formation |
US10527170B2 (en) | 2006-08-09 | 2020-01-07 | Intarcia Therapeutics, Inc. | Osmotic delivery systems and piston assemblies for use therein |
US20080097380A1 (en) * | 2006-09-21 | 2008-04-24 | Li Kasey K | Method and apparatus for creating variable stiffness and/or reduction of soft tissue |
US20100119583A1 (en) * | 2006-11-10 | 2010-05-13 | Abbott Gmbh & Co. Kg | Solid dosage form with a film containing an active substance, as well as its method of production |
EP1920768A1 (en) * | 2006-11-10 | 2008-05-14 | Abbott GmbH & Co. KG | Solid dosage form with a film containing an active substance, as well as its method of production |
WO2008056001A1 (en) * | 2006-11-10 | 2008-05-15 | Abbott Gmbh & Co. Kg | Solid dosage form with a film containing an active substance, as well as its method of production |
JP2014114309A (en) * | 2006-11-10 | 2014-06-26 | Abbott Gmbh & Kg | Solid dosage form with film containing active substance, as well as its method of production |
JP2010509295A (en) * | 2006-11-10 | 2010-03-25 | アボット ゲーエムベーハー ウント コンパニー カーゲー | Solid dosage form having a film containing an active substance and method for producing the same |
US8673344B2 (en) * | 2006-11-10 | 2014-03-18 | AbbVie Deutschland GmbH & Co. KG | Solid dosage form with a film containing an active substance, as well as its method of production |
US20090022806A1 (en) * | 2006-12-22 | 2009-01-22 | Mousa Shaker A | Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists and formulations and uses thereof |
US9289395B2 (en) | 2006-12-22 | 2016-03-22 | Nanopharmaceuticals Llc | Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations and uses thereof |
US20110142941A1 (en) * | 2006-12-22 | 2011-06-16 | Davis Paul J | Nanoparticle and Polymer Formulations for Thyroid Hormone Analogs, Antagonists, and Formulations and Uses Thereof |
EP2133365A2 (en) | 2006-12-27 | 2009-12-16 | Emory University | Compositions and methods for the treatment of infections and tumors |
EP3064220A2 (en) | 2006-12-27 | 2016-09-07 | Emory University | Compositions and methods for the treatment of infections and tumors |
EP3721903A1 (en) | 2006-12-27 | 2020-10-14 | Emory University | Compositions and methods for the treatment of infections and tumors |
US8932558B2 (en) | 2007-10-05 | 2015-01-13 | Plaxgen Inc | Multi-subunit biological complexes for treatment of plaque-associated diseases |
US20090104121A1 (en) * | 2007-10-05 | 2009-04-23 | Plaxgen, Inc | Multi-subunit biological complexes for treatment of plaque-associated diseases |
US8562945B2 (en) | 2008-01-09 | 2013-10-22 | Molecular Insight Pharmaceuticals, Inc. | Technetium- and rhenium-bis(heteroaryl) complexes and methods of use thereof |
US20100183509A1 (en) * | 2008-01-09 | 2010-07-22 | Molecular Insight Pharmaceuticals, Inc. | Technetium- and rhenium-bis(heteroaryl) complexes and methods of use thereof |
US8840865B2 (en) | 2008-01-09 | 2014-09-23 | Molecular Insight Pharmaceuticals, Inc. | Technetium- and rhenium-bis(heteroaryl) complexes and methods of use thereof |
US20090175794A1 (en) * | 2008-01-09 | 2009-07-09 | Molecular Insight Pharmaceuticals, Inc. | Inhibitors of carbonic anhydrase ix |
US8877970B2 (en) | 2008-01-09 | 2014-11-04 | Molecular Insight Pharmaceuticals, Inc. | Inhibitors of carbonic anhydrase IX |
US9433594B2 (en) | 2008-01-09 | 2016-09-06 | Molecular Insight Pharmaceuticals, Inc. | Technetium- and rhenium-bis(heteroaryl) complexes and methods of use thereof |
US8962799B2 (en) | 2008-01-09 | 2015-02-24 | Molecular Insight Pharmaceuticals, Inc. | Technetium—and rhenium-bis(heteroaryl) complexes and methods of use thereof |
US10441528B2 (en) | 2008-02-13 | 2019-10-15 | Intarcia Therapeutics, Inc. | Devices, formulations, and methods for delivery of multiple beneficial agents |
US9572889B2 (en) | 2008-02-13 | 2017-02-21 | Intarcia Therapeutics, Inc. | Devices, formulations, and methods for delivery of multiple beneficial agents |
US20100113497A1 (en) * | 2008-10-08 | 2010-05-06 | Kyphia Pharmaceuticals, Inc. | Gaba conjugates and methods of use thereof |
US8268887B2 (en) | 2008-10-08 | 2012-09-18 | Feng Xu | Drug conjugates and methods of use thereof |
WO2010042759A2 (en) | 2008-10-08 | 2010-04-15 | Kyphia Pharmaceuticals Inc | Gaba conjugates and methods of use thereof |
US10478412B2 (en) | 2008-10-08 | 2019-11-19 | Xgene Pharmaceutical Inc. | GABA conjugates and methods of use thereof |
US9186341B2 (en) | 2008-10-08 | 2015-11-17 | Feng Xu | GABA conjugates and methods of use thereof |
EP3075722A1 (en) | 2008-10-08 | 2016-10-05 | Xgene Pharmaceutical Inc | Gaba conjugates and methods of use thereof |
US8211401B2 (en) | 2008-12-05 | 2012-07-03 | Molecular Insight Pharmaceuticals, Inc. | Technetium- and rhenium-bis(heteroaryl) complexes and methods of use thereof for inhibiting PSMA |
US20100178246A1 (en) * | 2008-12-05 | 2010-07-15 | Molecular Insight Pharmaceuticals, Inc. | Technetium- and rhenium-bis(heteroaryl) complexes and methods of use thereof for inhibiting psma |
EP2706057A1 (en) | 2008-12-05 | 2014-03-12 | Molecular Insight Pharmaceuticals, Inc. | Bis(imidazolyl)compounds and radionuclide complexes |
US8211402B2 (en) | 2008-12-05 | 2012-07-03 | Molecular Insight Pharmaceuticals, Inc. | CA-IX specific radiopharmaceuticals for the treatment and imaging of cancer |
US20100159021A1 (en) * | 2008-12-23 | 2010-06-24 | Paul Davis | Small Molecule Ligands of the Integrin RGD Recognition Site and Methods of Use |
WO2010075332A1 (en) | 2008-12-23 | 2010-07-01 | Charitable Leadership Foundation | Small molecule ligands of the integrin rgd recognition site and methods of use |
US20100255108A1 (en) * | 2009-03-31 | 2010-10-07 | Hung-Yun Lin | Combination Treatment of Cancer With Cetuximab and Tetrac |
US9180107B2 (en) | 2009-03-31 | 2015-11-10 | Nanopharmaceuticals Llc | Combination treatment of cancer with cetuximab and tetrac |
US20110038852A1 (en) * | 2009-06-10 | 2011-02-17 | 3-V Biosciences, Inc. | Antivirals that target transporters, carriers, and ion channels |
US9149547B2 (en) | 2009-06-15 | 2015-10-06 | Molecular Insight Pharmaceuticals, Inc. | Process for production of heterodimers of glutamic acid |
US9839614B2 (en) | 2009-06-17 | 2017-12-12 | Nanopharmaceuticals, Llc | Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations and uses thereof |
WO2010148007A2 (en) | 2009-06-17 | 2010-12-23 | Ordway Research Institute, Inc. | Nanoparticle and polymer formulations for thyroid hormone, analogs, antagonists, and formulations and uses thereof |
US20110052715A1 (en) * | 2009-06-17 | 2011-03-03 | Davis Paul J | Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations and uses thereof |
US9220788B2 (en) | 2009-06-17 | 2015-12-29 | Nanopharmaceuticals Llc | Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations and uses thereof |
US20110066141A1 (en) * | 2009-09-11 | 2011-03-17 | Cook Incorporated | Implantable medical device having an anti-gastric distress agent |
US12042557B2 (en) | 2009-09-28 | 2024-07-23 | I2O Therapeutics, Inc. | Rapid establishment and/or termination of substantial steady-state drug delivery |
US10869830B2 (en) | 2009-09-28 | 2020-12-22 | Intarcia Therapeutics, Inc. | Rapid establishment and/or termination of substantial steady-state drug delivery |
US10231923B2 (en) | 2009-09-28 | 2019-03-19 | Intarcia Therapeutics, Inc. | Rapid establishment and/or termination of substantial steady-state drug delivery |
WO2011058164A1 (en) | 2009-11-13 | 2011-05-19 | Pangaea Biotech, S.A. | Molecular biomarkers for predicting response to tyrosine kinase inhibitors in lung cancer |
EP2905332A1 (en) | 2009-11-19 | 2015-08-12 | Solis Biodyne | Compositions for increasing polypeptide stability and activity, and related methods |
EP3461889A1 (en) | 2009-11-19 | 2019-04-03 | Solis Biodyne | Compositions for increasing polypeptide stability and activity, and related methods |
US12203106B2 (en) | 2009-11-19 | 2025-01-21 | Solis Biodyne Oü | Compositions for increasing polypeptide stability and activity, and related methods |
US11118169B2 (en) | 2009-11-19 | 2021-09-14 | Solis Biodyne Oü | Compositions for increasing polypeptide stability and activity, and related methods |
WO2011061625A2 (en) | 2009-11-19 | 2011-05-26 | Solis Biodyne | Compositions for increasing polypeptide stability and activity, and related methods |
US9816078B2 (en) | 2009-11-19 | 2017-11-14 | Solis Biodyne Oü | Compositions for increasing polypeptide stability and activity, and related methods |
WO2011094430A2 (en) | 2010-01-27 | 2011-08-04 | Children's Medical Center Corporation | Pro-angiogenic fragments of prominin-1 and uses thereof |
US20130202673A1 (en) * | 2010-03-16 | 2013-08-08 | Titan Pharmaceuticals, Inc. | Heterogeneous implantable devices for drug delivery |
US20130195951A1 (en) * | 2010-03-16 | 2013-08-01 | Titan Pharmaceuticals, Inc. | Heterogeneous implantable devices for drug delivery |
US20130195950A1 (en) * | 2010-03-16 | 2013-08-01 | Titan Pharmaceuticals, Inc. | Heterogeneous implantable devices for drug delivery |
WO2011116132A1 (en) | 2010-03-16 | 2011-09-22 | Titan Pharmaceuticals, Inc. | Heterogeneous implantable devices for drug delivery |
US20130189342A1 (en) * | 2010-03-16 | 2013-07-25 | Titan Pharmaceuticals, Inc. | Heterogeneous implantable devices for drug delivery |
US10111830B2 (en) * | 2010-03-16 | 2018-10-30 | Titan Pharmaceuticals, Inc. | Heterogeneous implantable devices for drug delivery |
US10123971B2 (en) * | 2010-03-16 | 2018-11-13 | Titan Pharmaceuticals, Inc. | Heterogeneous implantable devices for drug delivery |
US11788142B2 (en) | 2010-08-02 | 2023-10-17 | Population Bio, Inc. | Compositions and methods for discovery of causative mutations in genetic disorders |
US10059997B2 (en) | 2010-08-02 | 2018-08-28 | Population Bio, Inc. | Compositions and methods for discovery of causative mutations in genetic disorders |
WO2012085229A1 (en) | 2010-12-22 | 2012-06-28 | Pangaea Biotech, S.L. | Molecular biomarkers for predicting response to tyrosine kinase inhibitors in lung cancer |
EP2468883A1 (en) | 2010-12-22 | 2012-06-27 | Pangaea Biotech S.L. | Molecular biomarkers for predicting response to tyrosine kinase inhibitors in lung cancer |
US8802240B2 (en) | 2011-01-06 | 2014-08-12 | Nanopharmaceuticals Llc | Uses of formulations of thyroid hormone analogs and nanoparticulate forms thereof to increase chemosensitivity and radiosensitivity in tumor or cancer cells |
WO2012109329A2 (en) | 2011-02-08 | 2012-08-16 | Children's Medical Center Corporation | Methods for treatment of melanoma |
US10159714B2 (en) | 2011-02-16 | 2018-12-25 | Intarcia Therapeutics, Inc. | Compositions, devices and methods of use thereof for the treatment of cancers |
WO2012113819A1 (en) | 2011-02-23 | 2012-08-30 | Pangaea Biotech, S.L. | Molecular biomarkers for predicting response to antitumor treatment in lung cancer |
EP2492688A1 (en) | 2011-02-23 | 2012-08-29 | Pangaea Biotech, S.A. | Molecular biomarkers for predicting response to antitumor treatment in lung cancer |
US9883944B2 (en) * | 2011-02-28 | 2018-02-06 | Scimotana Pty Ltd | Surgical implant and method |
US20180125661A1 (en) * | 2011-02-28 | 2018-05-10 | Scimotana Pty Ltd | Surgical implant and method |
US20140309744A1 (en) * | 2011-02-28 | 2014-10-16 | Scimotana Pty Ltd | Surgical implant and method |
US10603171B2 (en) | 2011-02-28 | 2020-03-31 | Scimotana Pty Ltd | Surgical implant and method |
EP3190108A1 (en) | 2011-03-08 | 2017-07-12 | 3-V Biosciences, Inc. | Heterocyclic modulators of lipid synthesis |
WO2012149326A1 (en) * | 2011-04-29 | 2012-11-01 | Massachusetts Institute Of Technology | Layer processing for pharmaceuticals |
US9205089B2 (en) | 2011-04-29 | 2015-12-08 | Massachusetts Institute Of Technology | Layer processing for pharmaceuticals |
WO2013054200A2 (en) | 2011-10-10 | 2013-04-18 | The Hospital For Sick Children | Methods and compositions for screening and treating developmental disorders |
US11339439B2 (en) | 2011-10-10 | 2022-05-24 | The Hospital For Sick Children | Methods and compositions for screening and treating developmental disorders |
US11180807B2 (en) | 2011-11-04 | 2021-11-23 | Population Bio, Inc. | Methods for detecting a genetic variation in attractin-like 1 (ATRNL1) gene in subject with Parkinson's disease |
WO2013067451A2 (en) | 2011-11-04 | 2013-05-10 | Population Diagnostics Inc. | Methods and compositions for diagnosing, prognosing, and treating neurological conditions |
US9120837B2 (en) | 2012-01-06 | 2015-09-01 | Molecular Insight Pharmaceuticals | Metal complexes of poly(carboxyl)amine-containing ligands having an affinity for carbonic anhydrase IX |
US9422251B2 (en) | 2012-01-06 | 2016-08-23 | Molecular Insight Pharmaceuticals, Inc. | Metal complexes of poly(carboxyl)amine-containing ligands having an affinity for carbonic anhydrase IX |
US10407724B2 (en) | 2012-02-09 | 2019-09-10 | The Hospital For Sick Children | Methods and compositions for screening and treating developmental disorders |
US11174516B2 (en) | 2012-02-09 | 2021-11-16 | The Hospital For Sick Children | Methods and compositions for screening and treating developmental disorders |
US10729732B2 (en) | 2012-02-29 | 2020-08-04 | Ethicon Endo Surgery, Inc. | Compositions of microbiota and methods related thereto |
US12048721B2 (en) | 2012-02-29 | 2024-07-30 | The General Hospital Corporation | Compositions of microbiota and methods related thereto |
US11590176B2 (en) | 2012-02-29 | 2023-02-28 | Johnson & Johnson Consumer Inc. | Compositions of microbiota and methods related thereto |
US10149870B2 (en) | 2012-02-29 | 2018-12-11 | The General Hospital Corporation | Compositions of microbiota and methods related thereto |
EP2662079A1 (en) | 2012-05-10 | 2013-11-13 | Ordway Research Institute, Inc. | Uses of formulations of thyroid hormone antagonists and nanoparticulate forms thereof to increase chemosensivity and radiosensitivity in tumor or cancer cells |
US10099041B2 (en) | 2012-06-01 | 2018-10-16 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US9623215B2 (en) | 2012-06-01 | 2017-04-18 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US9827401B2 (en) | 2012-06-01 | 2017-11-28 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US10507309B2 (en) | 2012-06-01 | 2019-12-17 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US9308355B2 (en) | 2012-06-01 | 2016-04-12 | Surmodies, Inc. | Apparatus and methods for coating medical devices |
US11008614B2 (en) | 2012-09-14 | 2021-05-18 | Population Bio, Inc. | Methods for diagnosing, prognosing, and treating parkinsonism |
WO2014043519A1 (en) | 2012-09-14 | 2014-03-20 | Population Diagnostics Inc. | Methods and compositions for diagnosing, prognosing, and treating neurological conditions |
US9976180B2 (en) | 2012-09-14 | 2018-05-22 | Population Bio, Inc. | Methods for detecting a genetic variation in subjects with parkinsonism |
US12012634B2 (en) | 2012-09-14 | 2024-06-18 | Population Bio, Inc. | Methods for diagnosing, prognosing, and treating parkinson's disease or parkinsonism |
US11618925B2 (en) | 2012-09-27 | 2023-04-04 | Population Bio, Inc. | Methods and compositions for screening and treating developmental disorders |
US10597721B2 (en) | 2012-09-27 | 2020-03-24 | Population Bio, Inc. | Methods and compositions for screening and treating developmental disorders |
US10233495B2 (en) | 2012-09-27 | 2019-03-19 | The Hospital For Sick Children | Methods and compositions for screening and treating developmental disorders |
US10201624B2 (en) | 2013-01-14 | 2019-02-12 | Molecular Insight Pharmaceuticals, Inc. | Triazine based radiopharmaceuticals and radioimaging agents |
US11712485B2 (en) | 2013-01-14 | 2023-08-01 | Molecular Insight Pharmaceuticals, Inc. | Triazine based radiopharmaceuticals and radioimaging agents |
US10086096B2 (en) | 2013-01-14 | 2018-10-02 | Molecular Insight Pharmaceuticals, Inc. | Triazine based radiopharmaceuticals and radioimaging agents |
US10898598B2 (en) | 2013-01-14 | 2021-01-26 | Molecular Insight Pharmaceuticals, Inc. | Triazine based radiopharmaceuticals and radioimaging agents |
US10633714B2 (en) | 2013-07-21 | 2020-04-28 | Pendulum Therapeutics, Inc. | Methods and systems for microbiome characterization, monitoring and treatment |
US10060934B2 (en) | 2013-11-18 | 2018-08-28 | Nanopharmaceuticals Llc | Methods for screening patients for resistance to angioinhibition, treatment and prophylaxis thereof |
WO2015095767A1 (en) | 2013-12-20 | 2015-06-25 | 3-V Biosciences, Inc. | Heterocyclic modulators of lipid synthesis and combinations thereof |
WO2015105860A1 (en) | 2014-01-07 | 2015-07-16 | 3-V Biosciences, Inc. | Heterocyclic modulators of lipid synthesis for use against cancer and viral infections |
US11395891B2 (en) | 2014-02-11 | 2022-07-26 | Vapor Cartridge Technology Llc | Methods and delivery devices using herbal extracts |
US10034990B2 (en) | 2014-02-11 | 2018-07-31 | Vapor Cartridge Technology Llc | Drug delivery system and method |
US9380813B2 (en) | 2014-02-11 | 2016-07-05 | Timothy McCullough | Drug delivery system and method |
US9408986B2 (en) * | 2014-02-11 | 2016-08-09 | Timothy McCullough | Methods and devices using cannabis vapors |
US10821240B2 (en) | 2014-02-11 | 2020-11-03 | Vapor Cartridge Technology Llc | Methods and drug delivery devices using cannabis |
US10661036B2 (en) | 2014-02-11 | 2020-05-26 | Timothy McCullough | Methods and delivery devices using herbal extracts |
WO2015149016A2 (en) | 2014-03-28 | 2015-10-01 | University Of Washington Through Its Center For Commercialization | Breast and ovarian cancer vaccines |
US10703048B2 (en) | 2014-05-20 | 2020-07-07 | Massachusetts Institute Of Technology | Plasticity induced bonding |
US10213960B2 (en) | 2014-05-20 | 2019-02-26 | Massachusetts Institute Of Technology | Plasticity induced bonding |
US10759836B2 (en) | 2014-07-18 | 2020-09-01 | University Of Washington | Cancer vaccine compositions and methods of use thereof |
WO2016011386A1 (en) | 2014-07-18 | 2016-01-21 | University Of Washington | Cancer vaccine compositions and methods of use thereof |
US11549145B2 (en) | 2014-09-05 | 2023-01-10 | Population Bio, Inc. | Methods and compositions for inhibiting and treating neurological conditions |
US10724096B2 (en) | 2014-09-05 | 2020-07-28 | Population Bio, Inc. | Methods and compositions for inhibiting and treating neurological conditions |
WO2016054240A1 (en) | 2014-09-30 | 2016-04-07 | Sean Dalziel | Fixed dose combinations for the treatment of viral diseases |
US9889085B1 (en) | 2014-09-30 | 2018-02-13 | Intarcia Therapeutics, Inc. | Therapeutic methods for the treatment of diabetes and related conditions for patients with high baseline HbA1c |
US10583080B2 (en) | 2014-09-30 | 2020-03-10 | Intarcia Therapeutics, Inc. | Therapeutic methods for the treatment of diabetes and related conditions for patients with high baseline HbA1c |
US10842830B2 (en) | 2014-10-31 | 2020-11-24 | Pendulum Therapeutics, Inc. | Methods and compositions relating to microbial treatment and diagnosis of disorders |
US11278580B2 (en) | 2014-10-31 | 2022-03-22 | Pendulum Therapeutics, Inc. | Methods and compositions relating to microbial treatment and diagnosis of disorders |
US10675312B2 (en) | 2014-10-31 | 2020-06-09 | Pendulum Therapeutics, Inc. | Methods and compositions relating to microbial treatment and diagnosis of disorders |
US11931387B2 (en) | 2014-10-31 | 2024-03-19 | Pendulum Therapeutics, Inc. | Methods and compositions relating to microbial treatment and diagnosis of disorders |
US10668116B2 (en) | 2014-10-31 | 2020-06-02 | Pendulum Therapeutics, Inc. | Methods and compositions relating to microbial treatment and diagnosis of disorders |
US10842831B2 (en) | 2014-10-31 | 2020-11-24 | Pendulum Therapeutics, Inc. | Methods and compositions relating to microbial treatment and diagnosis of disorders |
US11213556B2 (en) | 2014-10-31 | 2022-01-04 | Pendulum Therapeutics, Inc. | Methods and compositions relating to microbial treatment and diagnosis of disorders |
US11364270B2 (en) | 2014-10-31 | 2022-06-21 | Pendulum Therapeutics, Inc. | Methods and compositions relating to microbial treatment and diagnosis of disorders |
GB2553612B (en) * | 2014-11-16 | 2020-03-04 | Ibm | Helical coil delivery device for active agent |
JP2017536868A (en) * | 2014-11-16 | 2017-12-14 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | Helical coil delivery device for active agents |
US9808608B2 (en) | 2014-11-16 | 2017-11-07 | International Business Machines Corporation | Helical coil delivery device for active agent |
WO2016075578A1 (en) * | 2014-11-16 | 2016-05-19 | International Business Machines Corporation | Helical coil delivery device for active agent |
GB2553612A (en) * | 2014-11-16 | 2018-03-14 | Ibm | Helical coil delivery device for active agent |
WO2016149271A1 (en) | 2015-03-19 | 2016-09-22 | 3-V Biosciences, Inc. | Heterocyclic modulators of lipid synthesis |
US10925639B2 (en) | 2015-06-03 | 2021-02-23 | Intarcia Therapeutics, Inc. | Implant placement and removal systems |
US10845367B2 (en) | 2016-05-04 | 2020-11-24 | Abilita Bio, Inc. | Modified multispanning membrane polypeptides and methods of use thereof to screen therapeutic agents |
WO2017192743A1 (en) | 2016-05-04 | 2017-11-09 | Abilita Bio, Inc. | Methods and platform for preparing multispanning membrane proteins |
US11214607B2 (en) | 2016-05-16 | 2022-01-04 | Intarcia Therapeutics Inc. | Glucagon-receptor selective polypeptides and methods of use thereof |
US11840559B2 (en) | 2016-05-16 | 2023-12-12 | I2O Therapeutics, Inc. | Glucagon-receptor selective polypeptides and methods of use thereof |
US10501517B2 (en) | 2016-05-16 | 2019-12-10 | Intarcia Therapeutics, Inc. | Glucagon-receptor selective polypeptides and methods of use thereof |
USD962433S1 (en) | 2016-06-02 | 2022-08-30 | Intarcia Therapeutics, Inc. | Implant placement guide |
USD912249S1 (en) | 2016-06-02 | 2021-03-02 | Intarcia Therapeutics, Inc. | Implant removal tool |
USD840030S1 (en) | 2016-06-02 | 2019-02-05 | Intarcia Therapeutics, Inc. | Implant placement guide |
USD860451S1 (en) | 2016-06-02 | 2019-09-17 | Intarcia Therapeutics, Inc. | Implant removal tool |
USD835783S1 (en) | 2016-06-02 | 2018-12-11 | Intarcia Therapeutics, Inc. | Implant placement guide |
US10695436B2 (en) | 2016-06-07 | 2020-06-30 | Nanopharmaceuticals, Llc | Non-cleavable polymer conjugated with alpha V beta 3 integrin thyroid antagonists |
US10201616B2 (en) | 2016-06-07 | 2019-02-12 | Nanopharmaceuticals, Llc | Non-cleavable polymer conjugated with αVβ3 integrin thyroid antagonists |
US11654183B2 (en) | 2017-01-03 | 2023-05-23 | Intarcia Therapeutics, Inc. | Methods comprising continuous administration of exenatide and co-administration of a drug |
US10835580B2 (en) | 2017-01-03 | 2020-11-17 | Intarcia Therapeutics, Inc. | Methods comprising continuous administration of a GLP-1 receptor agonist and co-administration of a drug |
US11913073B2 (en) | 2017-02-03 | 2024-02-27 | Pml Screening, Llc | Methods for assessing risk of developing a viral disease using a genetic test |
WO2018158632A2 (en) | 2017-02-03 | 2018-09-07 | Population Bio, Inc. | Methods for assessing risk of developing a viral disease using a genetic test |
US9707217B1 (en) | 2017-02-03 | 2017-07-18 | Osmotica Kereskedelmi Es Szolgaltato Kft | Dose-dumping resistant controlled release dosage form |
US9827234B1 (en) | 2017-02-03 | 2017-11-28 | Osmotica Kereskedelmi és Szolgáltató KFT | Dose-dumping resistant controlled release dosage form |
US10265308B2 (en) | 2017-02-03 | 2019-04-23 | Osmotica Kereskedelmi Es Szolgaltato Kft | Dose-dumping resistant controlled release dosage form |
US10563264B2 (en) | 2017-02-03 | 2020-02-18 | Pml Screening, Llc | Methods for assessing risk of developing a viral disease using a genetic test |
EP4417707A2 (en) | 2017-02-03 | 2024-08-21 | PML Screening, LLC | Methods for assessing risk of developing a viral disease using a genetic test |
US10941448B1 (en) | 2017-02-03 | 2021-03-09 | The Universite Paris-Saclay | Methods for assessing risk of developing a viral disease using a genetic test |
US10544463B2 (en) | 2017-02-03 | 2020-01-28 | Pml Screening, Llc | Methods for assessing risk of developing a viral disease using a genetic test |
US10695336B2 (en) | 2017-02-03 | 2020-06-30 | Osmotica Kereskedelmi Es Szolgaltato Kft | Dose-dumping resistant controlled release dosage form |
US10240205B2 (en) | 2017-02-03 | 2019-03-26 | Population Bio, Inc. | Methods for assessing risk of developing a viral disease using a genetic test |
US9855258B1 (en) | 2017-02-03 | 2018-01-02 | Osmotica Kereskedelmi és Szolgáltató KFT | Dose-dumping resistant controlled release dosage form |
US12233095B2 (en) | 2017-08-30 | 2025-02-25 | Pendulum Therapeutics Inc | Methods and compositions for treatment of microbiome associated disorders |
US11583558B2 (en) | 2017-08-30 | 2023-02-21 | Pendulum Therapeutics, Inc. | Methods and compositions for treatment of microbiome-associated disorders |
US11077082B2 (en) | 2018-04-11 | 2021-08-03 | Nanopharmaceuticals, Llc | Composition and method for dual targeting in treatment of neuroendocrine tumors |
US10328043B1 (en) | 2018-04-11 | 2019-06-25 | Nanopharmaceuticals, Llc. | Composition and method for dual targeting in treatment of neuroendocrine tumors |
US11351137B2 (en) | 2018-04-11 | 2022-06-07 | Nanopharmaceuticals Llc | Composition and method for dual targeting in treatment of neuroendocrine tumors |
WO2020001657A1 (en) | 2018-06-29 | 2020-01-02 | Wuhan Neurophth Biological Technology Limited Company | Compositions and methods for treating leber's hereditary optic neuropathy |
US11034954B2 (en) | 2018-06-29 | 2021-06-15 | Wuhan Neurophth Biological Technology Limited Company | Compositions and methods for treating leber's hereditary optic neuropathy |
US11332741B1 (en) | 2018-06-29 | 2022-05-17 | Wuhan Neurophth Biotechnology Limited Company | Compositions and methods for treating leber's hereditary optic neuropathy |
USD933219S1 (en) | 2018-07-13 | 2021-10-12 | Intarcia Therapeutics, Inc. | Implant removal tool and assembly |
US10961585B2 (en) | 2018-08-08 | 2021-03-30 | Pml Screening, Llc | Methods for assessing risk of developing a viral of disease using a genetic test |
EP4177356A1 (en) | 2018-08-08 | 2023-05-10 | PML Screening, LLC | Methods for assessing risk of developing a viral disease using a genetic test |
US12227807B2 (en) | 2018-08-08 | 2025-02-18 | Pml Screening, Llc | Methods for assessing risk of developing a viral disease using a genetic test |
US12241125B2 (en) | 2018-08-08 | 2025-03-04 | Pml Screening, Llc | Methods for assessing risk of developing a viral disease using a genetic test |
WO2020033700A1 (en) | 2018-08-08 | 2020-02-13 | Pml Screening, Llc | Mathods for assessing the risk of developing progressive multifocal leukoencephalopathy caused by john cunningham virus by genetic testing |
US11913074B2 (en) | 2018-08-08 | 2024-02-27 | Pml Screening, Llc | Methods for assessing risk of developing a viral disease using a genetic test |
EP4417708A2 (en) | 2018-08-08 | 2024-08-21 | PML Screening, LLC | Methods for assessing risk of developing a viral disease using a genetic test |
US12234513B2 (en) | 2018-08-08 | 2025-02-25 | Pml Screening, Llc | Methods for assessing risk of developing a viral disease using a genetic test |
US12054778B2 (en) | 2018-08-08 | 2024-08-06 | Pml Screening, Llc | Methods for assessing risk of developing a viral disease using a genetic test |
US11352645B2 (en) | 2018-08-20 | 2022-06-07 | Wuhan Neurophth Biotechnology Limited Company | Compositions and methods for treating Leber's hereditary optic neuropathy |
US11628466B2 (en) | 2018-11-29 | 2023-04-18 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US11819590B2 (en) | 2019-05-13 | 2023-11-21 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US11497249B2 (en) | 2019-09-16 | 2022-11-15 | Vapor Cartridge Technology Llc | Drug delivery system with stackable substrates |
US11357869B2 (en) | 2019-12-09 | 2022-06-14 | Wuhan Neurophth Biotechnology Limited Company | Compositions and methods for treating leber's hereditary optic neuropathy with NADH dehydrogenase proteins |
US10961204B1 (en) | 2020-04-29 | 2021-03-30 | Nanopharmaceuticals Llc | Composition of scalable thyrointegrin antagonists with improved blood brain barrier penetration and retention into brain tumors |
US11186551B2 (en) | 2020-04-29 | 2021-11-30 | Nanopharmaceuticals Llc | Composition of scalable thyrointegrin antagonists with improved retention in tumors |
WO2022195044A1 (en) * | 2021-03-17 | 2022-09-22 | Lts Lohmann Therapie-Systeme Ag | Rolled oral thin films having a high level of active-ingredient loading |
WO2023280157A1 (en) | 2021-07-05 | 2023-01-12 | 武汉纽福斯生物科技有限公司 | Construction and use of anti-vegf antibody in-vivo expression system |
WO2023011632A1 (en) | 2021-08-06 | 2023-02-09 | 武汉纽福斯生物科技有限公司 | Composition and method for treating leber's hereditary optic neuropathy caused by nd4 mutation |
US11723888B2 (en) | 2021-12-09 | 2023-08-15 | Nanopharmaceuticals Llc | Polymer conjugated thyrointegrin antagonists |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3625214A (en) | Drug-delivery device | |
US6203813B1 (en) | Pharmaceutical delivery device and method of preparation therefor | |
US3962414A (en) | Structured bioerodible drug delivery device | |
US3867519A (en) | Bioerodible drug delivery device | |
US3854480A (en) | Drug-delivery system | |
US4439194A (en) | Water and drug delivery system for suppository use | |
Langer | Implantable controlled release systems | |
US3760806A (en) | Helical osmotic dispenser with non-planar membrane | |
US3710795A (en) | Drug-delivery device with stretched, rate-controlling membrane | |
CN111465387B (en) | Separable microneedle array for sustained release of drug | |
EP0100424B1 (en) | Acid anhydrides as rate controlling agent for the erosion of polymers which latter polymers have beneficial substances dispersed throughout their matrix or where the polymer matrix surrounds the beneficial substance | |
US3732865A (en) | Osmotic dispenser | |
US3903880A (en) | Intrauterine device for managing the reproductive process | |
US3995632A (en) | Osmotic dispenser | |
Verma et al. | Drug delivery technologies and future directions | |
US4721613A (en) | Delivery system comprising means for shielding a multiplicity of reservoirs in selected environment of use | |
US3760805A (en) | Osmotic dispenser with collapsible supply container | |
US4052505A (en) | Ocular therapeutic system manufactured from copolymer | |
US4863744A (en) | Intestine drug delivery | |
US4069307A (en) | Drug-delivery device comprising certain polymeric materials for controlled release of drug | |
Robinson et al. | Controlled drug delivery: fundamentals and applications | |
US4144317A (en) | Device consisting of copolymer having acetoxy groups for delivering drugs | |
US3630200A (en) | Ocular insert | |
US3826258A (en) | Gradual release medicine carrier | |
US4898733A (en) | Layered, compression molded device for the sustained release of a beneficial agent |