US3102227A - Arrangement for deriving an adjustable partial voltage from an electric signal voltage - Google Patents
Arrangement for deriving an adjustable partial voltage from an electric signal voltage Download PDFInfo
- Publication number
- US3102227A US3102227A US718322A US71832258A US3102227A US 3102227 A US3102227 A US 3102227A US 718322 A US718322 A US 718322A US 71832258 A US71832258 A US 71832258A US 3102227 A US3102227 A US 3102227A
- Authority
- US
- United States
- Prior art keywords
- impedance
- impedances
- resistance
- voltage
- photosensitive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000036961 partial effect Effects 0.000 title description 8
- 230000005855 radiation Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 230000004907 flux Effects 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- ZVNPWFOVUDMGRP-UHFFFAOYSA-N 4-methylaminophenol sulfate Chemical compound OS(O)(=O)=O.CNC1=CC=C(O)C=C1.CNC1=CC=C(O)C=C1 ZVNPWFOVUDMGRP-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000402754 Erythranthe moschata Species 0.000 description 1
- 206010016275 Fear Diseases 0.000 description 1
- 241000218225 Trema Species 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- QHGVXILFMXYDRS-UHFFFAOYSA-N pyraclofos Chemical compound C1=C(OP(=O)(OCC)SCCC)C=NN1C1=CC=C(Cl)C=C1 QHGVXILFMXYDRS-UHFFFAOYSA-N 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G1/00—Details of arrangements for controlling amplification
- H03G1/02—Remote control of amplification, tone or bandwidth
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/10—Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
- G01J1/16—Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G1/00—Details of arrangements for controlling amplification
- H03G1/0005—Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
- H03G1/0035—Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements
- H03G1/0047—Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements using photo-electric elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G9/00—Combinations of two or more types of control, e.g. gain control and tone control
- H03G9/02—Combinations of two or more types of control, e.g. gain control and tone control in untuned amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03J—TUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
- H03J1/00—Details of adjusting, driving, indicating, or mechanical control arrangements for resonant circuits in general
- H03J1/02—Indicating arrangements
- H03J1/04—Indicating arrangements with optical indicating means
Definitions
- This .invention relates to an arrangement for deriving an adjustable partial voltage from an electric signal voltage supplied to the arrangement, which signal voltage 1s -supplied toa series Icombination of at least two impedlances, the partial voltage being taken from a part of this series combination.
- Such. arrangements are frequently used ixr-electrical and electronic apparatus, for example, radio receivers, amplifiersand measuring apparatus, in which an adjust- "able part of a vgiven signal voltage must be transmitted.
- a well 'known use is the gain control in low-frequency amplifiers.
- use is generally made of a socalled resistance.
- potentiometer comprising an electric ,resistancev which isv provided on an insulating support and may take the form of a carbon layer or of a resistance wire wound on the support, over which an electrical .contact supported from a movable member can be adjustably displaced.
- Such potentiometers lsuffer from the disadvantage that theyare liable to crackling, that is to say, the output signal taken from one end of the resistance path and the movable contact contains an electrical noise owing toicontact phenomena.
- the series combination includes a photo-resistance which is associated with a light source, means 'being' provided for adjustably'varying the irradiation of the photo-resistance by the light.
- the adjustment of the requiredratio between the partial voltage .and the signal voltage supplied' is obtained by optically varying the resistance of part of the series combination independently of the signal voltage. Consequently, all the junctions at which the applied signal voltage and/or the partial yvoltage is set up, are fixed and hence can be soldered.
- the adjustment of the irradiation of the photo-resistance is obtained by means of a member which'is arranged in the path of the luminous ux from ⁇ the lightsource to the photo-resistance so as to be displaceable at right angles thereto and which, according to its position, intercepts this luminous ux in a greater or lesser degree.
- This'member may be .designed in various manners. It may, for example, be an apertured mask or atransparentl member of continuously variable density, for example a photographic neutral wedge filter,
- variable irradiation of the photoresistance ' is produced by means of an electric light source, means being provided for controlling the electrical energy supplied to the light source.
- vthe arrangement contains a second photoresistance connected in series with the first photo-resistance.
- This second photo-resistance may be completely screened from irradiation so that it vacts as a resistance of fixed value in the series combination.
- a light source is associated ICC with this second photoresistance also, meansv being provided for adjustably varying theirradiation of this-second photo-resistance by the associated light source.
- the means for adjustingy the irradiationl of they two photo-resista'nces are coupled to oneanotherso that the variation in the irradiation of ⁇ one photo-resistance is always opposite tothe variation inthe irradiation of the other photo-resistance.
- the electrical voltage impressed upon the series combination is set to a constant value whichis matched to the protective light beam.
- the light incident on the photo-resistances rcontains kthe information to be utilized.
- FIG. l shows a first embodiment
- FIG. 2 is a front elevation of a photo-resistance used in the arrangement shown in FIG. l.
- FIG. 3 is a cross-sectional view of a second embodiment
- v FIG. 4 is a developed view of ⁇ two cooperating masks used in this second embodiment.
- FIG. 5 shows an embodiment which is highly suited to remote control.
- FIGURES 6 and 7 show an embodiment in which the impedance of the series combination is substantially independent of the adjustment of the arrangement.
- FIG. 8 is a front elevation of a multiple photoresistance which may be used in the arrangement shown in FIG. 7.
- FIG. 9 shows an embodiment to be used for physiological gain control in low-frequency amplifiers.
- the input terminals of the ⁇ arrangements are designated 1 and 2, the output terminals being designated 3 and 4.
- Anv electrical signal voltage V is applied to the input terminals 1 and 2.
- This voltage at each instant contains certain information which is to be transmitted by the arrangement so that it appears in a voltsulphide, provision is made of two comb-shaped interlaced electrodes 8 and 9.
- One of these electrodes which may consist of silver or conductive stannic oxide, is directly connected to the resistance 5, the other being directly connected to the input terminal 2 and the output terminal 4.
- a electrical light'source lll which may be a bicycle l of a displaceable mask having awcontinuouslyl variable headlight lamp, is associated with the photo-resistance 6.
- An iris diaphragm 11 is interposed between the, light source and the surface of the photo-resistance 6 upon which the electrodes 8 and 9 are provided. Adjustment ofthisdiaphragm by enlarging or diminishing a central aperture 12 enables ⁇ the surface area of the portion 13 (FIG.
- the electric resist-ance of the photo-resistance 6 is high. If this photo-resistance l isl a cadmium. sulphide disc having a ldiameter of 8.5 mms., the velectrodes 8 and 9 being spaced from -one another by 0.2 mm., the resistancevalue of the photo- 'resistance 6 can be adjusted by means of the diaphragm 11 from about 5 megohms to about'0.5 kilo-ohm.
- Y across terminals 3 and 4 can'be varied roughly from nine tenths to one thousandth of the input voltage V1.
- the component parts corresponding to those which sleeve at one end is provided with a lampholder 35 in which al lamp 10 is centrally mounted.
- the luminous, flux is controlled in a 'different manner, whichis particularly suitable for remote controLv
- The. arrangement shown in f'FIG. 5 is distinguished from those shown in FIGURES l to 4 by the absence of a separate movable memberbetween the' lamp 10 and the photo-resistance 6 and bythe inclusion of a variable resistance 52 in asupply lead 50through whichthe lamp 10 is supplied from asource 51. ⁇
- the supply source 51 may be a supply transformer in a radio receiver or the like.
- the control resistance 52 can beconnected to the apparatus incorporating the remainder of the arrangement by means of a twoconductor cord of substantially arbitrary length. r[he arrangement shown in FIG. 5 is of advantage also when the control resistance .52 is located in the apparatus itself.
- the lseries combination of the resistanceS and the photo-resistance 6 can be'disposed in the immediate vicinity of the detector ⁇ and the sleeve 32 is provided with a substantially tear-shaped ⁇ 'another to a maximum extent, the overlapping part which shifts towards the aperture tails can begradually .'reduced.
- the angular position of the rotatable sleeveV 34 with respect to the stationary' sleeve 32 determines the luminous llux received bythe photo-resistance 6. Consequently, the angular positioning of the sleeve ⁇ 34 determines the ratio between thef'output voltage, Vu
- the shape of the apertures 36 and 37 is chosen so l that the resistance value of the photo-resistance 6 as a functionof the angular position ofthe sleeve 34 has a substantially logarithmic variation.
- substantially vany required form of the resistance curve ofthe photo'- resistance can be achieved.
- the resistancevalue of the photo-resistance connected in the series combination is determined by an aperture in a mask, which aperture determines the light beam incident on the photo-resistance, in the arrangement according to FIG. .S it is not the'size of the light beam, ⁇ but the amount of light per .unit of surface of the photo-resistance which-is varied.
- Such can be obtained by the intcrposition between the lamp l0 and the photo-resistance 6 following first low-frequency amplifying stage, the control resistance 52 being mounted at a readily accessible point. This provides the advantage that the length ofthe conductors through which the low-frequency signal is transmitted can be keptnto a minimum without detracting from the operability.
- the resistance value of the photo-resistance 6 is also adjusted by controlling the electrical energy absorbed by thelamp 10.
- the lamp 61 is short-circuited while the lamp 10 has thefull voltage of the transformer 64 applied to it.y In the lowest position of the contact 66, this condition is reversed.
- the resistance values of the photo-resistances 6 and 60 are changed in opposite'senses.
- the output voltage Vu across the terminals 3 and 4 can be varied through a range extending from a very slight fraction of the input voltage Vj to substantially the entirel input voltage.
- control is effected by displacing a mask 70, which is pro- ⁇ vided with a rectangular aperture 71, parallel to the photo-resistances which are situated in the same plane behind the mask.v
- the two photo-resistances 6 and 60 both co-operate with a lamp 10 which through the aperture 7l irradiatcs a portion of cach of these photnJcsist- :mecs which is determined by the position nl' the mask 70.
- 'lhe ratio 0ll lite surface :trema ul the exposed purtion is determined by the position ot' the musk 70.
- the two photo-resistances 6 and y60 of the arrangement shown in FIG- 7 may form an integral structure.
- FIG; 8 is a front elevation of such a structure.
- a photo- '-sensitive'layer/S whichis coated on a support which is Anotshown'in-the drawing, ⁇ is-.providedwith-a number of parallel extending' electrode lines which are interconnected so asfto'torfmz three groupsl,l 82 yand-8 3.
- lines ofthe group 81 and those of the ⁇ group'83 are interlacedby lines of the-group 82.
- the lines of the group "f 81- are connected to the input-terminal 1
- the part t .of the" resistance structure which in the position of the mask 70-shownxin FIG. 7 is .exposed to light from the lamp 10, is shown in FIG. 8 by a rectangle ⁇ 84 shown in broken lines.
- a multiple photo-resistance as shown in FIG. 8 can be A:used to replace the resistance together with ⁇ the photoresistance 6 of the embodiments shown in FIGURES l, ⁇ 3 and 5; In this event, part of ther photo-resistance, for example-the part containing the. electrode lines 81, must Vbe permanently screened from lightv from the lamp 10,
- the outf Y put Avoltage Vuais taken from 'the photo-resistance ,-6 one end of which is directly connected to the input terminal -2.
- the resistance 5 can be replaced by a reactance, for
- the output voltage canbe taken from ⁇ one of :these impedances.
- vflight source luminous flux' and lirradiatior'il'y
- n concerned with radiation .
- kFor v the end in View use can also be made o radiation Outside the visible part offthe spectrum, for example ultravioletv and infrared radiations, provided :that the photorcsistance'or -resistances are sensitive to ysuch radiation.
- the audio-frequency input voltage is supplied, through terminalsl and 2, to the ⁇ series combination of a resistyinvention which is intended for physiological gain control ance 91', a'nsecond resistance 92 and a photo-resistance 93 whichffdrms anintegral-structure with a second photoresistance 94.
- a resistyinvention which is intended for physiological gain control ance 91', a'nsecond resistance 92 and a photo-resistance 93 whichffdrms anintegral-structure with a second photoresistance 94.
- the .two photo-resistances have combs shaped electrodes 95, 96 and 97, the latter being common 1 .toiboth photo-resistances.
- Electrodes are yprovided e on a disc pressed from a photo-sensitive substance, for
- thegelectrode 96 of the photo-resistance 94 v is connected tothejunction ofthe resistances 91 and' 92.
- a capacitorg99 is connected in parallel with the resistance 92.
- ouputterminals 3l and 4 are .directly connected to the'electrodes of the photo-'resistl By-means of a lamp '510, which may be lconnected t0 1a" transformer in a radio receiver,.anampliiier or other sound Aapparatus in which the arrangement is'included,
- the luminous flux 1.00 VStg-.'ikir'lg vthese photo-resistances can be-controlled bymeans which are not shown ,in the drawing. Thesemeans may consist of a displacea- .-ble mask rinterposed between the lamp 10 and the two photo-res,ist'ances or of a filter 'of locally varyingdensity oreolcnrr.vv Alternatively, use mayv be "made of means for controlling the supply of energy to the lamp 10.
- a circuit arrangement comprising ⁇ a source of time varying intelligence signal voltage, rst and second impedance elements connected in series circuit arrangement at least one of said impedance elements comprising .aphotosensitive impedance, means for impinging light'upon said photosensitive impedance, Emeans 1lor varying the intensity of light impinging on said photosensitive impedance independently of said ⁇ source of intelligence signal therebyl varying the impedance value of the said photosensitive impedance, means for applying said time varying intelligence signal voltage across said series circuit arrangement, and means for deriving an loutput voltage from one of said impedances, 'said output voltage ⁇ having a magnitude relatively less than that of said signal voltage and varying in a predetermined relationship with the impedance value of said photosensitive impedance.
- a circuitarrangement comprising a source of time varyingl intelligence signal voltage, rst and second impedance elements connected in series circuit arrangement at least one of said impedance elements comprising a photosensitive impedance, means for impinging light upon4 said photosensitive impedance, means for varying the intensity ofv 1ight impinging on said photosensitive impedance inde endently of said source of intelligence ⁇ ying theimpedance value of the said photosensitive pedance, said last-mentioned means comprising movable masking means positioned between said light impinging means and said photosensitive impedance, ⁇ means for applying said ltime varying intelligence signal voltage across said series circuit arrangement, and means for deriving an output voltage from one of said impedances, said output voltage having a magnitude relatively less than that of said signal voltagey and varying in a predetermined relationship with the impedance value of said photosensitive impedance.
- a circ-uit arrangementl comprising apair of. photosensitive 4impedances connected in series circuit arrangement with each other, a single light source for impinging j light upony said photosensitve impedances, means'for *varying 'the intensity of lght-impinging on saidphotosaid photosensitve impedances, ⁇ means for varying the .intensity o'f light impinging on said photosensitve impedances thereby ⁇ varyi'ng'the impedance values of .the said photosensitve impedances, meansv for applying ⁇ a signal n v'voltage across'said series circuit arrangement, and means for.
- Av circuit arrangement comprising'a 'pair' of photosensitve impedances thereby varying -the impedance values of the said photosensitve impedances, means -for applying a signal voltagev across Asaid seriescircuit arrangement;
- a circuit arrangement comprising a pair of photo- 'sensitive impedances connected in series circuit arrangesensitive impedances connected in series circuit arrangel -f ment .withl each ,other,'.said photosensitve impedances forming-an integral structure comprising a photosensitve ⁇ rna'terial and linear electrodes spaced in atleast three )groups positioned ,on the'lsurface of ysaidfphotosensitive vfrnaterial, said'el'ect'rodes being'jnter-laced with eachother',
- .. means ⁇ for irnpnging light uponA said ⁇ photosensitve impcdl lan'ces, means forvarying the intensity of light impinging 4.on ⁇ said fpho'tosensitive,impedances thereby' varying the impedance values of the vsaid photosensitve impedances,
- .A circuit arrangementcompris'ing first -and secondphotosensitve,impedances connected fin seriescircuit arrangement with eachother, a first lightsource Afor impingment' with each other, saidphotosensitve'impedances lforming an integral structure comprising aphotosensitive material and linear electrodes spaced in at least three.
- 1l. ⁇ 'A .circuit arrangement comprising a pair of photosensitive impedances connected inv series circuit arrangement with each other, means for yimpinging light upon y said photosensitve impedances, means for varying the ing light upon said first -photosensitive impedance, a
- said last-mentioned means comprising meansjfor increasing the intensity of light irnphotosensitve impedance, .means forvaryin-gthe intensity of light impinging on said first 'photosensitve impedance thereby varying the impedance-value ofthe saidy first phol tosensitive impedance, rneans4 for varyingtheintensityV of light impinging on said-second photosensitve impedance thereby ⁇ varying the impedance value ofthe vsaid second photosensitve impedance','means for applying a signal voltage across4 said series circuit arrangement, and 'meansv for deriving an output voltage from one of said photosensitive impedances, said output voltage having a magnitude relatively less than that of said signal
- a circuit arrangement comprisingfirst and second vphotosensitve impedances. connected vin series circuit l arrangement with each other, said first and second photosensitive impedances forming an integral structure comprising a ⁇ photosensitve material. and linear electrodes spaced in at least three groups positioned on the surface of said photosensitve material, said electrodes being interlaced 'with'each other, a first lightA source for impinging light upon said Vfirst photosensitve impedance, a second pinging on o ne of said photosensitve impedances and simultaneously decreasing the intensity of light impinging on the other of the said photosensitve impedances, means for applying a signal voltage across said series circuit arrangement, and means for deriving an output voltage from one of said photosensitve impedances, said output 60.
- a circ arrangement comprising first and second photosensitve impedances connected.- in ser-ies circuit arrangement with eaeh other, a first light source for impinging light'upon. said first photosensitve impedance, a second light source for impinging light upon said second photosensitve impedance, potentiometer means controlling-the input energy of said first and second light sources in a manner whereby the intensity of light impinging on ⁇ v one of said first and second photosensitve impedances is increased and the intensity of light impinging on thepother of the said first and second photosensitve impedances is simultaneously.
- v means for applying a signal 1 ment with each other, a single light source for impinging light ⁇ upon said photosensitive impedances, means for varying the intensity of /light impnging onsad photosensitive impedances thereby varying the impedance values rof the said photosensitive impedances, said lastmen-tioned means comprising movable masking means positioned ybetween said light source and said photosensitive impedances in a manner whereby the intensity of light impnging on one of said photosensitive impedances is increased and the intensity of light impnging on the other of saidphotosensitive impedances is simultaneously decreased, means for applying a signal voltage across said series circuit arrangement, and means for deriving an output voltage from one of said photosensitive impedances, said output voltage having a magnitude relatively less than that of said signal voltage and varying in a .predetermined relationship with the impedance values of said photosensitive.impedances.”v I l *al 14.
- a circuit arrangement comprising a-s'ource of time varying signal' intelligence voltage, a firstf'phot'os'ensitive Y impedance,v an impedanceV connected ⁇ "infseries circuit 4arrangementl with saidv first photosensitive impedance, ya
- a circuit arrangement comprising a source of time varying signal intelligence voltage, a first photosensitive impedance, an impedance connected in series circuit arrangement with said first photosensitive impedance, a second photosensitive impedance, said first and second photosensitive impedances forming an in-tegral structure comprising a photosensitive material yand linear electrodes spaced in at least three groups positioned on the surface voli said photosensitive material, said electrodes being interlaced with each other, a capacitor connected in series circuit arrangement with said second photosensitive irnpedance, said last-mentioned series circuit arrangement being connected in parallel with said first-mentioned series circuit arrangement, a single light source for impnging light upon said first and second photosensitive impedances, means for varying the intensity of light impnging on said first and second photosensitive impedances independently of said source of intelligence signal thereby Vvarying the impedance values -of the said first and second photosensitive impedances, said last-mentioned means :comprising means for
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Adjustable Resistors (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL879949X | 1957-03-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3102227A true US3102227A (en) | 1963-08-27 |
Family
ID=19851536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US718322A Expired - Lifetime US3102227A (en) | 1957-03-09 | 1958-02-28 | Arrangement for deriving an adjustable partial voltage from an electric signal voltage |
Country Status (9)
Country | Link |
---|---|
US (1) | US3102227A (it) |
JP (1) | JPS3816933B1 (it) |
BE (1) | BE565502A (it) |
CA (1) | CA626847A (it) |
DE (1) | DE1093883B (it) |
FR (1) | FR1201512A (it) |
GB (1) | GB879949A (it) |
IT (1) | IT585477A (it) |
NL (1) | NL215236A (it) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3168619A (en) * | 1962-07-13 | 1965-02-02 | Bankers Trust Co | Two-way audio communication |
US3171034A (en) * | 1961-12-21 | 1965-02-23 | Tomasulo Walter | Electro-optical control |
US3192387A (en) * | 1961-03-22 | 1965-06-29 | Robert M Goodman | Electro-optical device for producing a modulated voltage |
US3194967A (en) * | 1960-02-26 | 1965-07-13 | Ass Elect Ind | Variable electrical impedances |
US3235741A (en) * | 1961-04-24 | 1966-02-15 | Invac Corp | Switch |
US3258601A (en) * | 1966-06-28 | Photosensitive variable resistance device | ||
US3283157A (en) * | 1963-05-07 | 1966-11-01 | Instrumentation Labor Inc | Photomodulator for use with high gain d.c. amplifier |
US3289002A (en) * | 1961-04-25 | 1966-11-29 | Robert M Goodman | Electro-optical switching device using two photosensitive cells within an opaque housing |
US3308303A (en) * | 1963-06-28 | 1967-03-07 | Brunswick Corp | Transducer system employing electro-optical means |
US3365662A (en) * | 1963-07-18 | 1968-01-23 | Trw Inc | Ohmmeter having a constant current source including photovoltaic cell |
US3389266A (en) * | 1963-01-26 | 1968-06-18 | Kabushika Kaisha Daikin Seisak | Apparatus for measuring minute velocity fluctuations |
US3409378A (en) * | 1963-12-28 | 1968-11-05 | Nippon Kogaku Kk | Multi-element exposure meter |
US3521962A (en) * | 1964-06-19 | 1970-07-28 | Stanley Electric Co Ltd | Light responsive and measuring device |
US3684374A (en) * | 1970-07-29 | 1972-08-15 | Humphrey Res Ass | Focus detector |
US3859617A (en) * | 1972-09-26 | 1975-01-07 | Matsushita Electric Ind Co Ltd | Turnable, contactless variable resistor |
EP0176097A1 (en) * | 1984-09-28 | 1986-04-02 | Wang Laboratories Inc. | Apparatus for inputting a control signal from outside a cabinet to electrical circuitry inside the cabinet |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1201398B (de) * | 1959-11-27 | 1965-09-23 | Nordmende | Einrichtung zur kombinierten selbsttaetigen raum-lichtabhaengigen und fernbedienbaren Einstellung des Kontrastes und/oder der Helligkeit der Bildes bei einem Fernsehempfaenger |
DE1272341B (de) * | 1961-04-24 | 1968-07-11 | Philips Patentverwaltung | Einrichtung und Schaltungsanordnung mit einem lichtabhaengig gesteuerten, ein Wechselstromsignal fuehrenden Spannungsteiler in Fernsehgeraeten und sonstigen mit Bildsignalen arbeitenden Anlagen |
DE1254179B (de) * | 1961-04-24 | 1967-11-16 | Philips Patentverwaltung | Schaltungsanordnung zum Steuern eines Wechselstrom-Spannungsteilers durch Licht |
DE1175278B (de) * | 1961-05-26 | 1964-08-06 | Fernseh Gmbh | Anordnung zur AEnderung der Verstaerkung einer Verstaerkerstufe |
US3202905A (en) * | 1962-01-02 | 1965-08-24 | Straza Ind | Remotely controlled attenuator devices |
GB2131227B (en) * | 1982-11-26 | 1987-01-07 | Walter Margulis | Apparatus for measuring light beam characteristics |
JPS59112233A (ja) * | 1982-11-26 | 1984-06-28 | ナショナル・リサ−チ・ディベロプメント・コ−ポレ−ション | 光ビ−ム特性測定装置 |
DE19944025A1 (de) * | 1999-09-14 | 2001-03-15 | Siemens Ag | Veränderbarer Widerstand |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1602070A (en) * | 1923-02-12 | 1926-10-05 | Dragonetti Giovanni | Selenium cell without inertia |
US2706792A (en) * | 1951-05-25 | 1955-04-19 | Gen Electric | X-ray detection |
US2736848A (en) * | 1949-03-03 | 1956-02-28 | Rca Corp | Photocells |
US2749501A (en) * | 1950-10-06 | 1956-06-05 | California Packing Corp | Photoelectric voltage regulator |
US2961542A (en) * | 1956-11-02 | 1960-11-22 | Philco Corp | Radiation-detecting device and system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE155043C (it) * | ||||
DE555832C (de) * | 1931-01-14 | 1932-07-28 | Josef Heitz | Masselose Steuerung eines Stufenwiderstandes |
DE700878C (de) * | 1938-04-09 | 1941-01-02 | Aeg | Veraenderlicher elektrischer Widerstand |
DE820015C (de) * | 1949-09-10 | 1951-11-08 | Siemens & Halske A G | Verstaerker |
-
0
- IT IT585477D patent/IT585477A/it unknown
- NL NL215236D patent/NL215236A/xx unknown
- CA CA626847A patent/CA626847A/en not_active Expired
- BE BE565502D patent/BE565502A/xx unknown
-
1958
- 1958-02-28 US US718322A patent/US3102227A/en not_active Expired - Lifetime
- 1958-03-05 DE DEN14751A patent/DE1093883B/de active Pending
- 1958-03-06 GB GB7250/58A patent/GB879949A/en not_active Expired
- 1958-03-07 FR FR1201512D patent/FR1201512A/fr not_active Expired
- 1958-03-07 JP JP591958A patent/JPS3816933B1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1602070A (en) * | 1923-02-12 | 1926-10-05 | Dragonetti Giovanni | Selenium cell without inertia |
US2736848A (en) * | 1949-03-03 | 1956-02-28 | Rca Corp | Photocells |
US2749501A (en) * | 1950-10-06 | 1956-06-05 | California Packing Corp | Photoelectric voltage regulator |
US2706792A (en) * | 1951-05-25 | 1955-04-19 | Gen Electric | X-ray detection |
US2961542A (en) * | 1956-11-02 | 1960-11-22 | Philco Corp | Radiation-detecting device and system |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3258601A (en) * | 1966-06-28 | Photosensitive variable resistance device | ||
US3194967A (en) * | 1960-02-26 | 1965-07-13 | Ass Elect Ind | Variable electrical impedances |
US3192387A (en) * | 1961-03-22 | 1965-06-29 | Robert M Goodman | Electro-optical device for producing a modulated voltage |
US3235741A (en) * | 1961-04-24 | 1966-02-15 | Invac Corp | Switch |
US3289002A (en) * | 1961-04-25 | 1966-11-29 | Robert M Goodman | Electro-optical switching device using two photosensitive cells within an opaque housing |
US3171034A (en) * | 1961-12-21 | 1965-02-23 | Tomasulo Walter | Electro-optical control |
US3168619A (en) * | 1962-07-13 | 1965-02-02 | Bankers Trust Co | Two-way audio communication |
US3389266A (en) * | 1963-01-26 | 1968-06-18 | Kabushika Kaisha Daikin Seisak | Apparatus for measuring minute velocity fluctuations |
US3283157A (en) * | 1963-05-07 | 1966-11-01 | Instrumentation Labor Inc | Photomodulator for use with high gain d.c. amplifier |
US3308303A (en) * | 1963-06-28 | 1967-03-07 | Brunswick Corp | Transducer system employing electro-optical means |
US3365662A (en) * | 1963-07-18 | 1968-01-23 | Trw Inc | Ohmmeter having a constant current source including photovoltaic cell |
US3409378A (en) * | 1963-12-28 | 1968-11-05 | Nippon Kogaku Kk | Multi-element exposure meter |
US3521962A (en) * | 1964-06-19 | 1970-07-28 | Stanley Electric Co Ltd | Light responsive and measuring device |
US3684374A (en) * | 1970-07-29 | 1972-08-15 | Humphrey Res Ass | Focus detector |
US3859617A (en) * | 1972-09-26 | 1975-01-07 | Matsushita Electric Ind Co Ltd | Turnable, contactless variable resistor |
EP0176097A1 (en) * | 1984-09-28 | 1986-04-02 | Wang Laboratories Inc. | Apparatus for inputting a control signal from outside a cabinet to electrical circuitry inside the cabinet |
Also Published As
Publication number | Publication date |
---|---|
GB879949A (en) | 1961-10-11 |
NL215236A (it) | |
CA626847A (en) | 1961-09-05 |
BE565502A (it) | |
DE1093883B (de) | 1960-12-01 |
IT585477A (it) | |
FR1201512A (fr) | 1959-12-30 |
JPS3816933B1 (it) | 1963-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3102227A (en) | Arrangement for deriving an adjustable partial voltage from an electric signal voltage | |
US2773992A (en) | Display amplifier and method of making same | |
US2743430A (en) | Information storage devices | |
US1654068A (en) | Apparatus for the visual interpretation of speech and music | |
US2050737A (en) | Light translating apparatus | |
US2236172A (en) | Electro-optical system | |
US2967945A (en) | Variable electric impedance | |
US2298466A (en) | Electro-optical system and apparatus | |
US3165582A (en) | Automatic contrast and brilliance control system for television receivers | |
US3122638A (en) | Infrared detector system for flame and particle detection | |
US2882419A (en) | Image reproducing device | |
US3167722A (en) | Agc unit using photoconductors | |
US3107302A (en) | Two color background elimination detector | |
US2942131A (en) | Diemer | |
US2749501A (en) | Photoelectric voltage regulator | |
US2227037A (en) | Testing generator for image reproducing systems | |
US3217168A (en) | Photosensitive solid-state image intensifier | |
US2818548A (en) | Phase modulating device | |
US3283237A (en) | Photoelectric modulator with transparent electrostatic shields | |
US2370425A (en) | Television transmitting system | |
US2360012A (en) | Lamp modulated recording method and system | |
US1788553A (en) | Means for and method of amplifying electric impulses | |
US2294375A (en) | Photocell circuit | |
US3333208A (en) | Automatic gain control amplifier | |
US2713116A (en) | Ionic crystal relay system |