US3057356A - Medical cardiac pacemaker - Google Patents
Medical cardiac pacemaker Download PDFInfo
- Publication number
- US3057356A US3057356A US44796A US4479660A US3057356A US 3057356 A US3057356 A US 3057356A US 44796 A US44796 A US 44796A US 4479660 A US4479660 A US 4479660A US 3057356 A US3057356 A US 3057356A
- Authority
- US
- United States
- Prior art keywords
- transistor
- pulse
- collector
- pacemaker
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
Definitions
- This invention relates to medical prosthetic devices generally, and more particularly to an improved medical cardiac pacemaker.
- the heating of the heart is controlled by electrochemical nerve signals which originate at the sinus node, sometimes called the pacemaker.
- This node generates approximately 72 electrical pulses per minute which travel in an electrical chemical manner over the nerve networks of the heart.
- One group of nerves distributes the pacemarker signal over the surface of the auricle, causing the contraction of the auricle and the filling of the ventricle.
- Another group of nerves called the auricular-ventricular or AV bundle, carries the pacemaker signal down through the septum and, after about a 0.1 second delay, distributes it over the ventricle. This causes a slightly delayed contraction which then pumps blood into the arterial system of the body.
- the pacemaker signal no longer reaches the venticle, and the ventricle reverts to a beating rhythm of its own which is much slower than the pacemaker rate. If this idioventricular rhythm, or beating rhythm of the ventricle, drops below 40 beats per minute, the patient will usually suffer periodic fainting spells, while if the rate drops below 30 beats per minute, permanent brain damage or death may result.
- an artificial electronic pacemaker which is capable of furnishing a signal directly to the surface of the ventricle.
- the primary object of this invention is to provide an improved artificial cardiac pacemaker for restoring satisfactory heart rhythm to a heart which is functioning inadequately due to conduction defects in the auricularventricular bundle.
- Another object of this invention is to provide an artificial cardiac pacemaker requiring low power consumption, so that battery operation is feasible for long uninterrupted periods without battery replacement.
- Another object of this invention is to provide an artificial cardiac pacemaker which may be directly connected to the surface of the ventricle of the heart.
- a still further object of this invention is to provide an artificial cardiac pacemaker which is constructed from materials compatible to the body environment and is of such an electrical and mechanical configuration, that permanent implantation of the device within the human body is both feasible and practical.
- FIG. 1 illustrates a circuit diagram of the artificial cardiac pacemaker of the present invention
- FIG. 2 shows a circuit diagram of an embodiment of the invention of FIGURE 1 which is capable of operation at higher powers
- FIG. 3 is a perspective view of the circuit enclosing envelope and pulse supplying electrodes of the present invention.
- the cardiac pacemaker of the present invention includes a pulse forming oscillator circuit indicated generally at 10 in FIG. 1 which is cast into a hard epoxy compound and then covered with a thin coating of silicone rubber, which is compatible to the environment of the human body, to for-m an envelope 11 illustrated by FIG- URE 3.
- a wire 12 also insulated with silicone rubber, transmits the pulses from the circuit 10 contained within the envelope 11, to stainless steel electrodes 13. It is obvious that the pacemaker of the subject invention need not be limited to construction from the aforementioned materials, but that any materials compatible so the environment of the human body might be utilized.
- the physical configuration of the artificial pacemaker as illustrated by FIG. 3 provides inherent features of minimum size and weight to make feasible the complete implantation of the device within the human body.
- the envelope 11 is approximately 2% inches in diameter and A inch thick, and is therefore a thin, wafer-like construction.
- the total weight of the pacemaker is approximately 4 ounces.
- the electrodes 13 may be implanted in the ventricle of the heart, while the envelope 11 may be implanted outside the rib cage but under the skin, where it will be accessible for battery replacement as required.
- the pacemaker circuit 10 of FIG. 1 generates a square pulse of approximately 10 volts amplitude and approximately one millisecond duration.
- the circuit is capable of delivering a pulse of over three milli-amperes into cardiac tissue.
- the pacemaker circuit 10 consists of a timing transistor 14 having a collector electrode 15, base electrode 16, and a grounded emitter electrode 17.
- the collector electrode 15 of the transistor 14 is serially connected to the primary winding 18 of a feedback transformer 19.
- Feedback transformer 19 includes a secondary winding 20, which is electrically connected through a timing capacitor 21 to the base 16 of the transistor 14.
- the base electrode 16 of the transistor 14 is also connected to the primary winding 18 of the feedback transformer 19 by means of a resistor 22 which, acts in conjunction with the capacitor 21, to form a timing circuit.
- the feedback transformer 19 couples the output signal from the transistor 14 to the timing circuit formed by the capacitor 21 and the resistor 22.
- a unidirectional voltage source 23 provides voltage through the primary 18 of the feedback transformer 19 to the collector 15 of the transistor 14.
- An output lead 25 transmits a pulse from the collector 15 of the transistor 14 to a spot on the ventricular wall of the human heart, while a lead 3 25 connects a reference ground potential to an adjacent spot on the ventricular wall of the heart.
- the reference potential at the collector 15 of the transistor 14 drops suddenly to reference ground potential when the transistor becomes conducting. This causes a positive pulse to be applied to the output lead 24 and also across the feedback transformer 19 to the capacitor 21 and the base electrodes 16 of the transistor 14. This voltage application to the base 16 of the transistor drives the transistor '14 to saturation and thus continues to hold the collector electrode 15 at ground potential. After a predetermined period of time, in this case approximately one millisecond, the capacitor 21 becomes completely charged, and simultaneously, the induced voltage at the secondary winding 20 of the transformer 19 begins to decay.
- FIGURE 2 illustrates a pulse producing circuit indicated generally at 33 which is capable of generating pulses of considerably higher current value than the pacemaker illustrated by FIGURE 1.
- the pulse producing circuit 33 of FIGURE 2 includes all of the circuit components described in connection with FIGURE 1, and is additionally modified to provide a high power output.
- This modification includes a transistor amplifier 26 having a collector electrode 27, a base electrode 28, and a grounded emitter electrode 29.
- An emitter resistor 30 is inserted between the emitter electrode 17 of the transistor 14 and the source of ground potential, while the base electrode 28 of the transistor 26 is directly coupled to the emitter 17' of the transistor 14.
- the source of unidirectional voltage 23 furnishes voltage to the collector of the transistor 14' through the primary winding 18' of the transformer 19' in the manner described in connection with FIGURE 1.
- a collector resistor 31 is connected in the circuit between the unidirectional voltage source 23 and the collector 15' of the transistor 14', so that power is also furnished to the collector 27 of the transistor 26.
- the output lead 24' is connected from the collector 27 of the transistor 26 to a spot on the ventricular wall of a human heart, instead of being connected to the collector 15' of the transistor 14' as described in connection with FIGURE 1.
- a storage capacitor 32 is provided in the circuit between the collector 27 of the transistor 26 and a reception point on the ventricular wall of the diseased heart.
- the pulse forming circuit 33 of FIGURE 2 operates in much the same manner as the circuit 10 of FIGURE 1, with the exception that the output pulse from the transistor 14' is amplified by the transistor 26 prior to its transmission to the diseased heart undergoing treatment.
- a current pulse passes through the transistor 14' in the manner described in connection with FIGURE 1,
- This change of state of the transistor 26 produces a very high impedance between the collector electrode 27 and the emitter electrode 29 which effectively disconnects the capacitor 32 from the controlled section of cardiac tissue.
- the storage capacitor 32 will now recharge through the collector resistor 31 to the unidirectional reference potential of the potential source 23' in preparation for the next output pulse.
- the circuit 33 of FIGURE 2 produces a pulse amplitude of 10 milli-amperes, a pulse length of one millisecond, and a repetition rate of one pulse per second.
- the average battery drain under these conditions is approximately 10 micro amperes for the transistor 26 and 2 micro amperes for the timing transistor 14.
- a total of milli-ampere hours will be required.
- a 600 milli-ampere hour battery pack will supply over five years of continuous operation, and such a battery pack, along with the circuits described in conjunction with FIGS. 1 and 2 and the envelope and heart connections illustrated in FIG. 3, has proved to be of sufficient size and weight so as to be suitable for permanent implantation in the human body.
- the present invention provides a novel electronic cardiac pacemaker which may be implanted within the human body in its entirety to effectively control the action of a diseased heart for a prolonged period without the necessity of external power supplies.
- the arrangement and types of components utilized within this invention may be subject to numerous modifications well within the purview of this inventor who intends only to be limited to a liberal interpretation of the specification and appended claims.
- An electronic cardiac pacemaker for performing heart control functions comprising, in combination, a battery powered, transistorized, pulse producing circuit cast in a potting compound, a thin, wafer-like envelope formed about said pulse producing circuit, a pair of spaced electrodes for contacting a section of cardiac tissue, and transmission means extending between said pulse producing circuit and said spaced electrodes, said envelope, electrodes, and transmission means being constructed from material compatible with the environment of the human body to permit their implantation therein.
- An electronic cardiac pacemaker for performing heart control functions comprising, in combination: a miniaturized pulse generating means cast in a potting compound, said pulse generating means including a transistor oscillator having emitter, base, and collector electrodes, a source of unidirectional potential connected to said collector electrode, a ground reference source connected to said emitter electrode, a timing circuit connected to said base electrode, and an inductive feedback coupling between said timing circuit and said collector electrode, said timing circuit initiating intermittent conduction of said transistor to provide timed output pulses at said collector electrode, output means electrically connected to said collector electrode and to said ground reference source to supply said timed output pulses to a section of cardiac tissue, said output means including a pair of spaced electrodes for contacting a section of cardiac tissue and transmission means extending from said collector electrode to one of said spaced electrodes and from said ground reference source to the remaining one of said spaced electrodes, and an envelope of thin, waferlike construction to permit the complete implantation thereof between the skin and rib cage of the human body, said envelope encasing said pulse
- An electronic cardiac pacemaker for performing heart control functions comprising, in combination: a miniaturized pulse generating means cast in a potting compound, said pulse generating means including a transistor oscillator having emitter, base, and collector electrodes, a source of unidirectional potential connected to said collector electrode, a ground reference source connected to said emitter electrode, a timing circuit connected to said base electrode, and an inductive feedback coupling between said timing circuit and said collector electrode, said timing circuit initiating intermittent conduction of said transistor to provide timed output pulses at said emitter electrode, a transistor amplifier having a collector electrode connected to said source of unidirectional potential, an emitter electrode connected to said ground reference source, and a base electrode connected to receive the timed output pulses from the emitter electrode of said transistor oscillator, said timed output pulses driving said transistor amplifier between states of saturation and cutoff, a storage capacitor connected to the collector electrode of said transistor amplifier, said storage capacitor being controlled by said transistor amplifier to discharge a pulse potential when said amplifier is in a state of cutoff and to charge directly from said source of
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Electrotherapy Devices (AREA)
Description
Oct. 9, 1962 w. GREATBATCH 3,057,356
MEDICAL CARDIAC PACEMAKER Filed July 22, 1960 INVENT OR WILSON GREATBATCH ATTORNEY United States Patent Ofifice I 3,057,356 Patented Oct. 9, 1962 3,057,356 MEDICAL CARDIAC PACEMAKER Wilson Greatbatch, Clarence, N.Y., assignor to Wilson Greatbatch Inc., Clarence, N.Y., a corporation of New York Filed July 22, 1960, Ser. No. 44,796
4 Claims. (Cl. 128-422) This invention relates to medical prosthetic devices generally, and more particularly to an improved medical cardiac pacemaker.
Recent advances in modern medical science have made feasible the substitution of a mechanical or electrical element in place of a diseased or non-functional organ within the human body. In view of these medical advances, a demand has arisen for instruments capable of performing physiological functions previously performed by natural human organs. The prevalence of hear-t disease and the indispensible functions of the human heart as a life sustaining organ have made the development of instruments which are capable of affecting the function of the heart of paramount importance.
The heating of the heart is controlled by electrochemical nerve signals which originate at the sinus node, sometimes called the pacemaker. This node generates approximately 72 electrical pulses per minute which travel in an electrical chemical manner over the nerve networks of the heart. One group of nerves distributes the pacemarker signal over the surface of the auricle, causing the contraction of the auricle and the filling of the ventricle. Another group of nerves, called the auricular-ventricular or AV bundle, carries the pacemaker signal down through the septum and, after about a 0.1 second delay, distributes it over the ventricle. This causes a slightly delayed contraction which then pumps blood into the arterial system of the body. If the auricularventricular bundle becomes incapacitated, the pacemaker signal no longer reaches the venticle, and the ventricle reverts to a beating rhythm of its own which is much slower than the pacemaker rate. If this idioventricular rhythm, or beating rhythm of the ventricle, drops below 40 beats per minute, the patient will usually suffer periodic fainting spells, while if the rate drops below 30 beats per minute, permanent brain damage or death may result. When damage or incapacitation of the auricularventricular bundle is incurred, it is desirable to provide an artificial electronic pacemaker which is capable of furnishing a signal directly to the surface of the ventricle.
Artificial cardiac pacemakers presently in use have required considerable power and have either been incapable of operating from a battery power source or have required frequent battery replacement. The size and power requirements of the presently existing cardiac pacemakers have precluded the implantation of the device within the human body, thus necessitating external mountings with transmission wires passing through the skin of the patient. These restrictions, inherent in prior artificial pacemaker devices, have contributed to patient discomfort and incapacitation, and additionally have given rise to the possibility of infections and other dangers which might accompany a permanent or semi-permanent penetration of the human body shell by a foreign object.
The primary object of this invention is to provide an improved artificial cardiac pacemaker for restoring satisfactory heart rhythm to a heart which is functioning inadequately due to conduction defects in the auricularventricular bundle.
Another object of this invention is to provide an artificial cardiac pacemaker requiring low power consumption, so that battery operation is feasible for long uninterrupted periods without battery replacement.
Another object of this invention is to provide an artificial cardiac pacemaker which may be directly connected to the surface of the ventricle of the heart.
A still further object of this invention is to provide an artificial cardiac pacemaker which is constructed from materials compatible to the body environment and is of such an electrical and mechanical configuration, that permanent implantation of the device within the human body is both feasible and practical.
With the foregoing and other objects in view, the invention resides in the following specification and appended claims, certain embodiments and details of construction of which are illustrated in the accompanying drawings in which:
FIG. 1 illustrates a circuit diagram of the artificial cardiac pacemaker of the present invention;
FIG. 2 shows a circuit diagram of an embodiment of the invention of FIGURE 1 which is capable of operation at higher powers; and
FIG. 3 is a perspective view of the circuit enclosing envelope and pulse supplying electrodes of the present invention.
Basically, the cardiac pacemaker of the present invention includes a pulse forming oscillator circuit indicated generally at 10 in FIG. 1 which is cast into a hard epoxy compound and then covered with a thin coating of silicone rubber, which is compatible to the environment of the human body, to for-m an envelope 11 illustrated by FIG- URE 3. A wire 12, also insulated with silicone rubber, transmits the pulses from the circuit 10 contained within the envelope 11, to stainless steel electrodes 13. It is obvious that the pacemaker of the subject invention need not be limited to construction from the aforementioned materials, but that any materials compatible so the environment of the human body might be utilized.
The physical configuration of the artificial pacemaker as illustrated by FIG. 3 provides inherent features of minimum size and weight to make feasible the complete implantation of the device within the human body. The envelope 11 is approximately 2% inches in diameter and A inch thick, and is therefore a thin, wafer-like construction. The total weight of the pacemaker is approximately 4 ounces. In use, the electrodes 13 may be implanted in the ventricle of the heart, while the envelope 11 may be implanted outside the rib cage but under the skin, where it will be accessible for battery replacement as required.
The pacemaker circuit 10 of FIG. 1 generates a square pulse of approximately 10 volts amplitude and approximately one millisecond duration. The circuit is capable of delivering a pulse of over three milli-amperes into cardiac tissue.
Referring now to FIG. 1, the pacemaker circuit 10 consists of a timing transistor 14 having a collector electrode 15, base electrode 16, and a grounded emitter electrode 17. The collector electrode 15 of the transistor 14 is serially connected to the primary winding 18 of a feedback transformer 19. Feedback transformer 19 includes a secondary winding 20, which is electrically connected through a timing capacitor 21 to the base 16 of the transistor 14. The base electrode 16 of the transistor 14 is also connected to the primary winding 18 of the feedback transformer 19 by means of a resistor 22 which, acts in conjunction with the capacitor 21, to form a timing circuit. Thus, the feedback transformer 19 couples the output signal from the transistor 14 to the timing circuit formed by the capacitor 21 and the resistor 22. A unidirectional voltage source 23 provides voltage through the primary 18 of the feedback transformer 19 to the collector 15 of the transistor 14. An output lead 25 transmits a pulse from the collector 15 of the transistor 14 to a spot on the ventricular wall of the human heart, while a lead 3 25 connects a reference ground potential to an adjacent spot on the ventricular wall of the heart.
In the operation of the invention as illustrated by FIGURE 1, the reference potential at the collector 15 of the transistor 14 drops suddenly to reference ground potential when the transistor becomes conducting. This causes a positive pulse to be applied to the output lead 24 and also across the feedback transformer 19 to the capacitor 21 and the base electrodes 16 of the transistor 14. This voltage application to the base 16 of the transistor drives the transistor '14 to saturation and thus continues to hold the collector electrode 15 at ground potential. After a predetermined period of time, in this case approximately one millisecond, the capacitor 21 becomes completely charged, and simultaneously, the induced voltage at the secondary winding 20 of the transformer 19 begins to decay. This causes a reversal in the voltage at the base electrode 16 of the transistor 14, such reversal being amplified by the transistor and fed back through the transformer 19 and the capacitor 21 to the base electrode 16 of the transistor 14 to cause the flow of all collector current through the transistor to be out 01f. The transistor is held in this cut-off state by the accumulated charge on the capacitor 21 until the capacitor charge is drained off by the resistor 22. This resultant time delay is proportional to the product of the resistance of the resistor 22 and the capacity of the capacitor 21, and in particular pacemaker circuits may be equal to about one-tenth of this product. Thus by utilizing specific values of capacitance and resistance, an R-C product of approximately seconds may be obtained to produce a repetition rate of approximately one pulse per second. It is obvious that by varying the resistance and capacitance values of the resistor 22 and the capacitor 21, various pulse repetition rates might be ob tained. It is also feasible to substitute a potentiometer for the resistor 22, so that the pulse repetition rate of the circuit 10 might be adjustably controlled in order to vary the rhythm of a defective human heart.
FIGURE 2 illustrates a pulse producing circuit indicated generally at 33 which is capable of generating pulses of considerably higher current value than the pacemaker illustrated by FIGURE 1. The pulse producing circuit 33 of FIGURE 2 includes all of the circuit components described in connection with FIGURE 1, and is additionally modified to provide a high power output. This modification includes a transistor amplifier 26 having a collector electrode 27, a base electrode 28, and a grounded emitter electrode 29. An emitter resistor 30 is inserted between the emitter electrode 17 of the transistor 14 and the source of ground potential, while the base electrode 28 of the transistor 26 is directly coupled to the emitter 17' of the transistor 14. The source of unidirectional voltage 23 furnishes voltage to the collector of the transistor 14' through the primary winding 18' of the transformer 19' in the manner described in connection with FIGURE 1. A collector resistor 31 is connected in the circuit between the unidirectional voltage source 23 and the collector 15' of the transistor 14', so that power is also furnished to the collector 27 of the transistor 26. The output lead 24' is connected from the collector 27 of the transistor 26 to a spot on the ventricular wall of a human heart, instead of being connected to the collector 15' of the transistor 14' as described in connection with FIGURE 1. A storage capacitor 32 is provided in the circuit between the collector 27 of the transistor 26 and a reception point on the ventricular wall of the diseased heart.
The pulse forming circuit 33 of FIGURE 2 operates in much the same manner as the circuit 10 of FIGURE 1, with the exception that the output pulse from the transistor 14' is amplified by the transistor 26 prior to its transmission to the diseased heart undergoing treatment. When a current pulse passes through the transistor 14' in the manner described in connection with FIGURE 1,
current is caused to flow through the emitter resistor 30, thus causing a positive voltage pulse to appear at the emitter 17 of the transistor 14'. This positive pulse is applied to the base 28 of the transistor 26, causing it to saturate and provide a very low impedance path from the collector 27 through the transistor 26 to ground. This, in effect, connects the storage capacitor 32 directly across a section of cardiac tissue, and the storage capacitor discharges into the cardiac tissue initiating a ventricular contraction. When the current through the timing transistor 14' is cut-01f in the manner described in connection with FIG. 1, the voltage at the emitter 17' drops to reference ground potential, causing the transistor 26 to go quickly from saturation to cut-off. This change of state of the transistor 26 produces a very high impedance between the collector electrode 27 and the emitter electrode 29 which effectively disconnects the capacitor 32 from the controlled section of cardiac tissue. The storage capacitor 32 will now recharge through the collector resistor 31 to the unidirectional reference potential of the potential source 23' in preparation for the next output pulse.
In actual use, the circuit 33 of FIGURE 2 produces a pulse amplitude of 10 milli-amperes, a pulse length of one millisecond, and a repetition rate of one pulse per second. The average battery drain under these conditions is approximately 10 micro amperes for the transistor 26 and 2 micro amperes for the timing transistor 14. Thus over a period of one year or approximately 8750 hours, a total of milli-ampere hours will be required. Thus a 600 milli-ampere hour battery pack will supply over five years of continuous operation, and such a battery pack, along with the circuits described in conjunction with FIGS. 1 and 2 and the envelope and heart connections illustrated in FIG. 3, has proved to be of sufficient size and weight so as to be suitable for permanent implantation in the human body.
It will be readily apparent to those skilled in the art that the present invention provides a novel electronic cardiac pacemaker which may be implanted within the human body in its entirety to effectively control the action of a diseased heart for a prolonged period without the necessity of external power supplies. The arrangement and types of components utilized within this invention may be subject to numerous modifications well within the purview of this inventor who intends only to be limited to a liberal interpretation of the specification and appended claims.
I claim:
1. An electronic cardiac pacemaker for performing heart control functions comprising, in combination, a battery powered, transistorized, pulse producing circuit cast in a potting compound, a thin, wafer-like envelope formed about said pulse producing circuit, a pair of spaced electrodes for contacting a section of cardiac tissue, and transmission means extending between said pulse producing circuit and said spaced electrodes, said envelope, electrodes, and transmission means being constructed from material compatible with the environment of the human body to permit their implantation therein.
2. The invention of claim 1 wherein said thin, waferlike envelope and transmission means are covered with material of the class comprising silicone rubber.
3. An electronic cardiac pacemaker for performing heart control functions comprising, in combination: a miniaturized pulse generating means cast in a potting compound, said pulse generating means including a transistor oscillator having emitter, base, and collector electrodes, a source of unidirectional potential connected to said collector electrode, a ground reference source connected to said emitter electrode, a timing circuit connected to said base electrode, and an inductive feedback coupling between said timing circuit and said collector electrode, said timing circuit initiating intermittent conduction of said transistor to provide timed output pulses at said collector electrode, output means electrically connected to said collector electrode and to said ground reference source to supply said timed output pulses to a section of cardiac tissue, said output means including a pair of spaced electrodes for contacting a section of cardiac tissue and transmission means extending from said collector electrode to one of said spaced electrodes and from said ground reference source to the remaining one of said spaced electrodes, and an envelope of thin, waferlike construction to permit the complete implantation thereof between the skin and rib cage of the human body, said envelope encasing said pulse generating means and, with said spaced electrodes and transmission means, being constructed of a material compatible with the internal environment of the human body.
4. An electronic cardiac pacemaker for performing heart control functions comprising, in combination: a miniaturized pulse generating means cast in a potting compound, said pulse generating means including a transistor oscillator having emitter, base, and collector electrodes, a source of unidirectional potential connected to said collector electrode, a ground reference source connected to said emitter electrode, a timing circuit connected to said base electrode, and an inductive feedback coupling between said timing circuit and said collector electrode, said timing circuit initiating intermittent conduction of said transistor to provide timed output pulses at said emitter electrode, a transistor amplifier having a collector electrode connected to said source of unidirectional potential, an emitter electrode connected to said ground reference source, and a base electrode connected to receive the timed output pulses from the emitter electrode of said transistor oscillator, said timed output pulses driving said transistor amplifier between states of saturation and cutoff, a storage capacitor connected to the collector electrode of said transistor amplifier, said storage capacitor being controlled by said transistor amplifier to discharge a pulse potential when said amplifier is in a state of cutoff and to charge directly from said source of unidirectional potential when said amplifier is in a saturated state, output means electrically connected to said storage capacitor and said ground reference source to supply said pulse potential to a section of cardiac tissue, said output means including a pair of spaced electrodes for contacting a section of cardiac tissue and transmission means extending from said capacitor to one of said spaced electrodes and from said ground reference source to the remaining one of said spaced electrodes, and an envelope of thin, wafer-like construction to permit the complete implantation thereof between the skin and rib cage of the human body, said envelope encasing said pulse generating means and, with said spaced electrodes and transmission means, being constructed of a material compatible with the internal environment of the human body.
References Cited in the file of this patent UNITED STATES PATENTS Di Vette Ian. 19, 1960 Vibber Feb. 23, 1960 OTHER REFERENCES
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US44796A US3057356A (en) | 1960-07-22 | 1960-07-22 | Medical cardiac pacemaker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US44796A US3057356A (en) | 1960-07-22 | 1960-07-22 | Medical cardiac pacemaker |
Publications (1)
Publication Number | Publication Date |
---|---|
US3057356A true US3057356A (en) | 1962-10-09 |
Family
ID=21934380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US44796A Expired - Lifetime US3057356A (en) | 1960-07-22 | 1960-07-22 | Medical cardiac pacemaker |
Country Status (1)
Country | Link |
---|---|
US (1) | US3057356A (en) |
Cited By (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3083712A (en) * | 1961-11-29 | 1963-04-02 | Heinicke Instr Co Inc | Device for producing electrical muscle trerapy |
US3135264A (en) * | 1961-06-14 | 1964-06-02 | Electronics Aids Inc | Heart monitor-automatic control device |
US3180338A (en) * | 1961-01-06 | 1965-04-27 | Relaxacizor Inc | Electronic muscle stimulator |
US3198195A (en) * | 1962-10-18 | 1965-08-03 | William M Chardack | Implantable controls for cardiac pacemakers |
US3204637A (en) * | 1963-02-07 | 1965-09-07 | Erich J Frank | Stimulating apparatus |
US3212496A (en) * | 1962-08-21 | 1965-10-19 | United Aircraft Corp | Molecular physiological monitoring system |
US3236240A (en) * | 1962-09-06 | 1966-02-22 | Univ Minnesota | Implantable bladder stimulator |
US3242441A (en) * | 1963-04-19 | 1966-03-22 | A V Electronics Inc | Filtered semi-conductor resonant feedback oscillator |
US3241557A (en) * | 1962-05-02 | 1966-03-22 | Sutetaro Yamashiki | Low frequency therapeutic equipment |
US3244174A (en) * | 1964-01-31 | 1966-04-05 | Gen Electric | Body implantable conductor |
US3253595A (en) * | 1963-08-07 | 1966-05-31 | Cordis Corp | Cardiac pacer electrode system |
US3295528A (en) * | 1962-09-11 | 1967-01-03 | Sutetaro Yamashiki | Electrical therapeutic equipment |
US3421512A (en) * | 1965-12-15 | 1969-01-14 | Int Rectifier Corp | Implanted electrical device with biological power supply |
US3570473A (en) * | 1966-02-28 | 1971-03-16 | Cargille Scient Inc | Manually controllable medical aid oscillator instrument |
US3602229A (en) * | 1967-09-08 | 1971-08-31 | George Gustav Jaros | A method of fibrillating a heart and apparatus therefor |
US3659616A (en) * | 1968-08-31 | 1972-05-02 | Bohdan A Bukowiecki | Method of synchronization and stimulation by means of pulse pairs at implanted heart stimulators with constant rhythm and the circuit for implementation of this method |
US3665916A (en) * | 1968-09-30 | 1972-05-30 | Tokyo Shibaura Electric Co | Catheter type semiconductor radiation detector |
US3757793A (en) * | 1971-11-15 | 1973-09-11 | Medtronic Inc | Electrochemical cell with stepped voltage output |
US3804080A (en) * | 1971-08-10 | 1974-04-16 | Hewlett Packard Gmbh | Device for obtaining measurement at or within parts of the human body |
DE2554933A1 (en) * | 1974-12-09 | 1976-06-16 | Medtronic Inc | SYNCHRONOUS HEART PACEMAKER |
US3964487A (en) * | 1974-12-09 | 1976-06-22 | The Birtcher Corporation | Uncomplicated load-adapting electrosurgical cutting generator |
DE2719287A1 (en) * | 1976-04-30 | 1977-11-17 | Medtronic Inc | IMPLANTABLE LEAD WITH REINFORCING MANDRIN |
US4155353A (en) * | 1976-11-18 | 1979-05-22 | Davis William E | Electrode and method for laryngeal electromyography |
US4166470A (en) * | 1977-10-17 | 1979-09-04 | Medtronic, Inc. | Externally controlled and powered cardiac stimulating apparatus |
US4172459A (en) * | 1977-10-17 | 1979-10-30 | Medtronic, Inc. | Cardiac monitoring apparatus and monitor |
US4187854A (en) * | 1977-10-17 | 1980-02-12 | Medtronic, Inc. | Implantable demand pacemaker and monitor |
DE2944636A1 (en) * | 1978-11-06 | 1980-05-14 | Medtronic Inc | PULSE GENERATOR FOR MEDICAL DEVICES |
DE2944637A1 (en) * | 1978-11-06 | 1980-05-14 | Medtronic Inc | PROGRAMMABLE MEDICAL DEVICE |
US4730389A (en) * | 1986-08-15 | 1988-03-15 | Medtronic, Inc. | Method for fabrication of an implantable hermetic transparent container |
US4791935A (en) * | 1986-08-15 | 1988-12-20 | Medtronic, Inc. | Oxygen sensing pacemaker |
US4807629A (en) * | 1986-08-15 | 1989-02-28 | Medtronic, Inc. | Oxygen sensing pacemaker |
US4813421A (en) * | 1986-08-15 | 1989-03-21 | Medtronic, Inc. | Oxygen sensing pacemaker |
US4890617A (en) * | 1987-11-25 | 1990-01-02 | Medtronic, Inc. | Dual chamber activity responsive pacer |
EP0366807A1 (en) * | 1988-03-29 | 1990-05-09 | Nippon Zeon Co., Ltd. | Temporary pacing catheter |
US5161533A (en) * | 1991-09-19 | 1992-11-10 | Xomed-Treace Inc. | Break-apart needle electrode system for monitoring facial EMG |
US5233985A (en) * | 1990-08-10 | 1993-08-10 | Medtronic, Inc. | Cardiac pacemaker with operational amplifier output circuit |
US5265603A (en) * | 1990-12-12 | 1993-11-30 | Medtronic, Inc. | Electronic capture detection for a pacer |
US5336244A (en) * | 1992-10-07 | 1994-08-09 | Medtronic, Inc. | Temperature sensor based capture detection for a pacer |
US5342406A (en) * | 1992-10-07 | 1994-08-30 | Medtronic, Inc. | Oxygen sensor based capture detection for a pacer |
US5370668A (en) * | 1993-06-22 | 1994-12-06 | Medtronic, Inc. | Fault-tolerant elective replacement indication for implantable medical device |
US5370665A (en) * | 1990-08-10 | 1994-12-06 | Medtronic, Inc. | Medical stimulator with multiple operational amplifier output stimulation circuits |
US5387228A (en) * | 1993-06-22 | 1995-02-07 | Medtronic, Inc. | Cardiac pacemaker with programmable output pulse amplitude and method |
US5431695A (en) * | 1993-11-23 | 1995-07-11 | Medtronic, Inc. | Pacemaker |
US5522861A (en) * | 1993-11-23 | 1996-06-04 | Medtronic, Inc. | Access grommet assembly and devices using the assembly |
US5535097A (en) * | 1993-11-23 | 1996-07-09 | Medtronic, Inc. | Implantable medical device including a first enclosure portion having a feedthrough in a second interior surface |
US6306100B1 (en) | 1997-12-16 | 2001-10-23 | Richard L. Prass | Intraoperative neurophysiological monitoring system |
WO2002051499A1 (en) | 2000-12-21 | 2002-07-04 | Medtronic, Inc. | Preferred adi/r: a permanent pacing mode to eliminate ventricular pacing while maintaining backup support |
US20030078627A1 (en) * | 2000-12-21 | 2003-04-24 | Medtronic, Inc. | Preferred ADI/R: a permanent pacing mode to eliminate ventricular pacing while maintaining backup support |
US20030088185A1 (en) * | 2001-11-06 | 2003-05-08 | Prass Richard L. | Intraoperative neurophysiological monitoring system |
US20030144717A1 (en) * | 2002-01-28 | 2003-07-31 | Hagele Richard J. | Ceramic cardiac electrodes |
US6711440B2 (en) | 2002-04-11 | 2004-03-23 | Biophan Technologies, Inc. | MRI-compatible medical device with passive generation of optical sensing signals |
US6718203B2 (en) | 2001-02-20 | 2004-04-06 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US6725092B2 (en) | 2002-04-25 | 2004-04-20 | Biophan Technologies, Inc. | Electromagnetic radiation immune medical assist device adapter |
US6731979B2 (en) | 2001-08-30 | 2004-05-04 | Biophan Technologies Inc. | Pulse width cardiac pacing apparatus |
US20040102816A1 (en) * | 2002-11-26 | 2004-05-27 | Mazar Scott Thomas | Implantable medical device having a controlled diagnostic function |
US6829509B1 (en) | 2001-02-20 | 2004-12-07 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US20050055059A1 (en) * | 2000-12-21 | 2005-03-10 | Betzold Robert A. | Ventricular event filtering for an implantable medical device |
US6925328B2 (en) | 2000-04-20 | 2005-08-02 | Biophan Technologies, Inc. | MRI-compatible implantable device |
US20050177197A1 (en) * | 2000-12-21 | 2005-08-11 | Medtronic, Inc. | System and method for ventricular pacing with progressive conduction check interval |
US20050267539A1 (en) * | 2000-12-21 | 2005-12-01 | Medtronic, Inc. | System and method for ventricular pacing with AV interval modulation |
US6988001B2 (en) | 2001-10-31 | 2006-01-17 | Biophan Technologies, Inc. | Hermetic component housing for photonic catheter |
US20060085039A1 (en) * | 2004-10-20 | 2006-04-20 | Hastings Roger N | Leadless cardiac stimulation systems |
US20060089677A1 (en) * | 2004-10-25 | 2006-04-27 | Casavant David A | Self limited rate response |
US7054686B2 (en) | 2001-08-30 | 2006-05-30 | Biophan Technologies, Inc. | Pulsewidth electrical stimulation |
US20060167506A1 (en) * | 2005-01-21 | 2006-07-27 | Stoop Gustaaf A | Implantable medical device with ventricular pacing protocol |
US20060167508A1 (en) * | 2005-01-21 | 2006-07-27 | Willem Boute | Implantable medical device with ventricular pacing protocol including progressive conduction search |
US20070027508A1 (en) * | 2005-08-01 | 2007-02-01 | Ebr Systems, Inc. | Efficiently delivering acoustic stimulation energy to tissue |
US7254441B2 (en) | 2000-12-21 | 2007-08-07 | Medtronic, Inc. | Fully inhibited dual chamber pacing mode |
US20070203523A1 (en) * | 2006-02-28 | 2007-08-30 | Betzold Robert A | Implantable medical device with adaptive operation |
US20070219589A1 (en) * | 2006-01-20 | 2007-09-20 | Condie Catherine R | System and method of using AV conduction timing |
US20070219590A1 (en) * | 2004-10-20 | 2007-09-20 | Scimed Life Systems, Inc. | Leadless Cardiac Stimulation Systems |
US20070293898A1 (en) * | 2006-06-15 | 2007-12-20 | Sheldon Todd J | System and Method for Determining Intrinsic AV Interval Timing |
US20070293900A1 (en) * | 2006-06-15 | 2007-12-20 | Sheldon Todd J | System and Method for Promoting Intrinsic Conduction Through Atrial Timing |
US20070293899A1 (en) * | 2006-06-15 | 2007-12-20 | Sheldon Todd J | System and Method for Ventricular Interval Smoothing Following a Premature Ventricular Contraction |
US20070293897A1 (en) * | 2006-06-15 | 2007-12-20 | Sheldon Todd J | System and Method for Promoting Instrinsic Conduction Through Atrial Timing Modification and Calculation of Timing Parameters |
US20080027490A1 (en) * | 2006-07-31 | 2008-01-31 | Sheldon Todd J | Pacing Mode Event Classification with Rate Smoothing and Increased Ventricular Sensing |
US20080027493A1 (en) * | 2006-07-31 | 2008-01-31 | Sheldon Todd J | System and Method for Improving Ventricular Sensing |
US7389137B2 (en) | 2002-07-25 | 2008-06-17 | Biophan Technologies, Inc. | Optical MRI catheter system |
US7502647B2 (en) | 2006-07-31 | 2009-03-10 | Medtronic, Inc. | Rate smoothing pacing modality with increased ventricular sensing |
US7515958B2 (en) | 2006-07-31 | 2009-04-07 | Medtronic, Inc. | System and method for altering pacing modality |
US7689281B2 (en) | 2006-07-31 | 2010-03-30 | Medtronic, Inc. | Pacing mode event classification with increased ventricular sensing |
US7720537B2 (en) | 2006-07-31 | 2010-05-18 | Medtronic, Inc. | System and method for providing improved atrial pacing based on physiological need |
US20100222834A1 (en) * | 2009-02-27 | 2010-09-02 | Sweeney Michael O | System and method for conditional biventricular pacing |
US20100222837A1 (en) * | 2009-02-27 | 2010-09-02 | Sweeney Michael O | System and method for conditional biventricular pacing |
US20100222838A1 (en) * | 2009-02-27 | 2010-09-02 | Sweeney Michael O | System and method for conditional biventricular pacing |
US7840281B2 (en) | 2006-07-21 | 2010-11-23 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US7848823B2 (en) | 2005-12-09 | 2010-12-07 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US7856269B2 (en) | 2006-07-31 | 2010-12-21 | Medtronic, Inc. | System and method for determining phsyiologic events during pacing mode operation |
US7937161B2 (en) | 2006-03-31 | 2011-05-03 | Boston Scientific Scimed, Inc. | Cardiac stimulation electrodes, delivery devices, and implantation configurations |
US8050774B2 (en) | 2005-12-22 | 2011-11-01 | Boston Scientific Scimed, Inc. | Electrode apparatus, systems and methods |
US8204605B2 (en) | 2008-02-07 | 2012-06-19 | Cardiac Pacemakers, Inc. | Multi-site atrial electrostimulation |
US8290600B2 (en) | 2006-07-21 | 2012-10-16 | Boston Scientific Scimed, Inc. | Electrical stimulation of body tissue using interconnected electrode assemblies |
US8340780B2 (en) | 2004-10-20 | 2012-12-25 | Scimed Life Systems, Inc. | Leadless cardiac stimulation systems |
US8527046B2 (en) | 2000-04-20 | 2013-09-03 | Medtronic, Inc. | MRI-compatible implantable device |
US8644934B2 (en) | 2006-09-13 | 2014-02-04 | Boston Scientific Scimed Inc. | Cardiac stimulation using leadless electrode assemblies |
US8751015B2 (en) | 2010-11-30 | 2014-06-10 | University Of South Florida | Graphene electrodes on a planar cubic silicon carbide (3C-SiC) long term implantable neuronal prosthetic device |
US9283392B2 (en) | 2008-03-25 | 2016-03-15 | Ebr Systems, Inc. | Temporary electrode connection for wireless pacing systems |
US9931509B2 (en) | 2000-12-21 | 2018-04-03 | Medtronic, Inc. | Fully inhibited dual chamber pacing mode |
US10080903B2 (en) | 2007-05-23 | 2018-09-25 | Ebr Systems, Inc. | Optimizing energy transmission in a leadless tissue stimulation system |
US10583301B2 (en) | 2016-11-08 | 2020-03-10 | Cardiac Pacemakers, Inc. | Implantable medical device for atrial deployment |
US10850104B2 (en) | 2015-07-10 | 2020-12-01 | Axonics Modulation Technologies, Inc. | Implantable nerve stimulator having internal electronics without ASIC and methods of use |
US10971950B2 (en) | 2013-07-29 | 2021-04-06 | The Alfred E. Mann Foundation For Scientific Research | Microprocessor controlled class E driver |
US11026627B2 (en) | 2013-03-15 | 2021-06-08 | Cadwell Laboratories, Inc. | Surgical instruments for determining a location of a nerve during a procedure |
US11083903B2 (en) | 2016-01-29 | 2021-08-10 | Axonics, Inc. | Methods and systems for frequency adjustment to optimize charging of implantable neurostimulator |
US11110283B2 (en) | 2018-02-22 | 2021-09-07 | Axonics, Inc. | Neurostimulation leads for trial nerve stimulation and methods of use |
US11116985B2 (en) | 2014-08-15 | 2021-09-14 | Axonics, Inc. | Clinician programmer for use with an implantable neurostimulation lead |
US11123569B2 (en) | 2015-01-09 | 2021-09-21 | Axonics, Inc. | Patient remote and associated methods of use with a nerve stimulation system |
US11177610B2 (en) | 2017-01-23 | 2021-11-16 | Cadwell Laboratories, ino. | Neuromonitoring connection system |
US11213675B2 (en) | 2014-08-15 | 2022-01-04 | Axonics, Inc. | Implantable lead affixation structure for nerve stimulation to alleviate bladder dysfunction and other indication |
US11253182B2 (en) | 2018-05-04 | 2022-02-22 | Cadwell Laboratories, Inc. | Apparatus and method for polyphasic multi-output constant-current and constant-voltage neurophysiological stimulation |
US11260236B2 (en) | 2016-02-12 | 2022-03-01 | Axonics, Inc. | External pulse generator device and affixation device for trial nerve stimulation and methods of use |
US11338144B2 (en) | 2013-03-15 | 2022-05-24 | Alfred E. Mann Foundation For Scientific Research | Current sensing multiple output current stimulators |
US11389659B2 (en) | 2014-08-15 | 2022-07-19 | Axonics, Inc. | External pulse generator device and associated methods for trial nerve stimulation |
US20220273956A1 (en) * | 2021-02-26 | 2022-09-01 | Medtronic, Inc. | Polymeric enclosure for implantable medical device |
US11439829B2 (en) | 2019-05-24 | 2022-09-13 | Axonics, Inc. | Clinician programmer methods and systems for maintaining target operating temperatures |
US11443649B2 (en) | 2018-06-29 | 2022-09-13 | Cadwell Laboratories, Inc. | Neurophysiological monitoring training simulator |
US11478648B2 (en) | 2015-01-09 | 2022-10-25 | Axonics, Inc. | Antenna and methods of use for an implantable nerve stimulator |
US11484721B2 (en) * | 2018-12-13 | 2022-11-01 | Heraeus Deutschland GmbH & Co. KG | Contacting method and system |
US11484723B2 (en) | 2015-01-09 | 2022-11-01 | Axonics, Inc. | Attachment devices and associated methods of use with a nerve stimulation charging device |
US11497916B2 (en) | 2014-08-15 | 2022-11-15 | Axonics, Inc. | Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder |
US11642537B2 (en) | 2019-03-11 | 2023-05-09 | Axonics, Inc. | Charging device with off-center coil |
US11730411B2 (en) | 2014-08-15 | 2023-08-22 | Axonics, Inc. | Methods for determining neurostimulation electrode configurations based on neural localization |
US11848090B2 (en) | 2019-05-24 | 2023-12-19 | Axonics, Inc. | Trainer for a neurostimulator programmer and associated methods of use with a neurostimulation system |
US11992339B2 (en) | 2018-05-04 | 2024-05-28 | Cadwell Laboratories, Inc. | Systems and methods for dynamic neurophysiological stimulation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2921584A (en) * | 1954-12-17 | 1960-01-19 | Honeywell Regulator Co | Vessel occluder |
US2925814A (en) * | 1956-10-30 | 1960-02-23 | Foster L Vibber | Transfusion apparatus |
-
1960
- 1960-07-22 US US44796A patent/US3057356A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2921584A (en) * | 1954-12-17 | 1960-01-19 | Honeywell Regulator Co | Vessel occluder |
US2925814A (en) * | 1956-10-30 | 1960-02-23 | Foster L Vibber | Transfusion apparatus |
Cited By (233)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3180338A (en) * | 1961-01-06 | 1965-04-27 | Relaxacizor Inc | Electronic muscle stimulator |
US3135264A (en) * | 1961-06-14 | 1964-06-02 | Electronics Aids Inc | Heart monitor-automatic control device |
US3083712A (en) * | 1961-11-29 | 1963-04-02 | Heinicke Instr Co Inc | Device for producing electrical muscle trerapy |
US3241557A (en) * | 1962-05-02 | 1966-03-22 | Sutetaro Yamashiki | Low frequency therapeutic equipment |
US3212496A (en) * | 1962-08-21 | 1965-10-19 | United Aircraft Corp | Molecular physiological monitoring system |
US3236240A (en) * | 1962-09-06 | 1966-02-22 | Univ Minnesota | Implantable bladder stimulator |
US3295528A (en) * | 1962-09-11 | 1967-01-03 | Sutetaro Yamashiki | Electrical therapeutic equipment |
US3198195A (en) * | 1962-10-18 | 1965-08-03 | William M Chardack | Implantable controls for cardiac pacemakers |
US3204637A (en) * | 1963-02-07 | 1965-09-07 | Erich J Frank | Stimulating apparatus |
US3242441A (en) * | 1963-04-19 | 1966-03-22 | A V Electronics Inc | Filtered semi-conductor resonant feedback oscillator |
US3253595A (en) * | 1963-08-07 | 1966-05-31 | Cordis Corp | Cardiac pacer electrode system |
US3244174A (en) * | 1964-01-31 | 1966-04-05 | Gen Electric | Body implantable conductor |
US3421512A (en) * | 1965-12-15 | 1969-01-14 | Int Rectifier Corp | Implanted electrical device with biological power supply |
US3570473A (en) * | 1966-02-28 | 1971-03-16 | Cargille Scient Inc | Manually controllable medical aid oscillator instrument |
US3602229A (en) * | 1967-09-08 | 1971-08-31 | George Gustav Jaros | A method of fibrillating a heart and apparatus therefor |
US3659616A (en) * | 1968-08-31 | 1972-05-02 | Bohdan A Bukowiecki | Method of synchronization and stimulation by means of pulse pairs at implanted heart stimulators with constant rhythm and the circuit for implementation of this method |
US3665916A (en) * | 1968-09-30 | 1972-05-30 | Tokyo Shibaura Electric Co | Catheter type semiconductor radiation detector |
US3804080A (en) * | 1971-08-10 | 1974-04-16 | Hewlett Packard Gmbh | Device for obtaining measurement at or within parts of the human body |
US3757793A (en) * | 1971-11-15 | 1973-09-11 | Medtronic Inc | Electrochemical cell with stepped voltage output |
DE2554933A1 (en) * | 1974-12-09 | 1976-06-16 | Medtronic Inc | SYNCHRONOUS HEART PACEMAKER |
US3964487A (en) * | 1974-12-09 | 1976-06-22 | The Birtcher Corporation | Uncomplicated load-adapting electrosurgical cutting generator |
DE2719287A1 (en) * | 1976-04-30 | 1977-11-17 | Medtronic Inc | IMPLANTABLE LEAD WITH REINFORCING MANDRIN |
US4155353A (en) * | 1976-11-18 | 1979-05-22 | Davis William E | Electrode and method for laryngeal electromyography |
US4166470A (en) * | 1977-10-17 | 1979-09-04 | Medtronic, Inc. | Externally controlled and powered cardiac stimulating apparatus |
US4172459A (en) * | 1977-10-17 | 1979-10-30 | Medtronic, Inc. | Cardiac monitoring apparatus and monitor |
US4187854A (en) * | 1977-10-17 | 1980-02-12 | Medtronic, Inc. | Implantable demand pacemaker and monitor |
DE2944636A1 (en) * | 1978-11-06 | 1980-05-14 | Medtronic Inc | PULSE GENERATOR FOR MEDICAL DEVICES |
DE2944637A1 (en) * | 1978-11-06 | 1980-05-14 | Medtronic Inc | PROGRAMMABLE MEDICAL DEVICE |
US4730389A (en) * | 1986-08-15 | 1988-03-15 | Medtronic, Inc. | Method for fabrication of an implantable hermetic transparent container |
US4791935A (en) * | 1986-08-15 | 1988-12-20 | Medtronic, Inc. | Oxygen sensing pacemaker |
US4807629A (en) * | 1986-08-15 | 1989-02-28 | Medtronic, Inc. | Oxygen sensing pacemaker |
US4813421A (en) * | 1986-08-15 | 1989-03-21 | Medtronic, Inc. | Oxygen sensing pacemaker |
US4890617A (en) * | 1987-11-25 | 1990-01-02 | Medtronic, Inc. | Dual chamber activity responsive pacer |
EP0366807B1 (en) * | 1988-03-29 | 1996-10-23 | Nippon Zeon Co., Ltd. | Temporary pacing catheter |
EP0366807A1 (en) * | 1988-03-29 | 1990-05-09 | Nippon Zeon Co., Ltd. | Temporary pacing catheter |
US5233985A (en) * | 1990-08-10 | 1993-08-10 | Medtronic, Inc. | Cardiac pacemaker with operational amplifier output circuit |
US5370665A (en) * | 1990-08-10 | 1994-12-06 | Medtronic, Inc. | Medical stimulator with multiple operational amplifier output stimulation circuits |
US5265603A (en) * | 1990-12-12 | 1993-11-30 | Medtronic, Inc. | Electronic capture detection for a pacer |
US5161533A (en) * | 1991-09-19 | 1992-11-10 | Xomed-Treace Inc. | Break-apart needle electrode system for monitoring facial EMG |
US5336244A (en) * | 1992-10-07 | 1994-08-09 | Medtronic, Inc. | Temperature sensor based capture detection for a pacer |
US5342406A (en) * | 1992-10-07 | 1994-08-30 | Medtronic, Inc. | Oxygen sensor based capture detection for a pacer |
US5387228A (en) * | 1993-06-22 | 1995-02-07 | Medtronic, Inc. | Cardiac pacemaker with programmable output pulse amplitude and method |
US5402070A (en) * | 1993-06-22 | 1995-03-28 | Medtronic, Inc. | Fault-tolerant elective replacement indication for implantable medical device |
US5370668A (en) * | 1993-06-22 | 1994-12-06 | Medtronic, Inc. | Fault-tolerant elective replacement indication for implantable medical device |
US5431695A (en) * | 1993-11-23 | 1995-07-11 | Medtronic, Inc. | Pacemaker |
US5522861A (en) * | 1993-11-23 | 1996-06-04 | Medtronic, Inc. | Access grommet assembly and devices using the assembly |
US5535097A (en) * | 1993-11-23 | 1996-07-09 | Medtronic, Inc. | Implantable medical device including a first enclosure portion having a feedthrough in a second interior surface |
US6306100B1 (en) | 1997-12-16 | 2001-10-23 | Richard L. Prass | Intraoperative neurophysiological monitoring system |
US8527046B2 (en) | 2000-04-20 | 2013-09-03 | Medtronic, Inc. | MRI-compatible implantable device |
US6925328B2 (en) | 2000-04-20 | 2005-08-02 | Biophan Technologies, Inc. | MRI-compatible implantable device |
US20030078627A1 (en) * | 2000-12-21 | 2003-04-24 | Medtronic, Inc. | Preferred ADI/R: a permanent pacing mode to eliminate ventricular pacing while maintaining backup support |
US7881793B2 (en) | 2000-12-21 | 2011-02-01 | Medtronic, Inc. | System and method for ventricular pacing with progressive conduction check interval |
EP2098265A2 (en) | 2000-12-21 | 2009-09-09 | Medtronic, Inc. | Preferred ADI/R: a permanent pacing mode to eliminate ventricular pacing while maintaining backup support |
US20050055059A1 (en) * | 2000-12-21 | 2005-03-10 | Betzold Robert A. | Ventricular event filtering for an implantable medical device |
US8060202B2 (en) | 2000-12-21 | 2011-11-15 | Medtronic, Inc. | Ventricular event filtering for an implantable medical device |
US7599740B2 (en) | 2000-12-21 | 2009-10-06 | Medtronic, Inc. | Ventricular event filtering for an implantable medical device |
US9931509B2 (en) | 2000-12-21 | 2018-04-03 | Medtronic, Inc. | Fully inhibited dual chamber pacing mode |
US7254441B2 (en) | 2000-12-21 | 2007-08-07 | Medtronic, Inc. | Fully inhibited dual chamber pacing mode |
US7245966B2 (en) | 2000-12-21 | 2007-07-17 | Medtronic, Inc. | Ventricular event filtering for an implantable medical device |
US7738955B2 (en) | 2000-12-21 | 2010-06-15 | Medtronic, Inc. | System and method for ventricular pacing with AV interval modulation |
US7218965B2 (en) | 2000-12-21 | 2007-05-15 | Medtronic, Inc. | Preferred ADI/R: a permanent pacing mode to eliminate ventricular pacing while maintaining backup support |
US20040143299A1 (en) * | 2000-12-21 | 2004-07-22 | Medtronic, Inc. | Preferred ADI/R: a permanent pacing mode to eliminate ventricular pacing while maintaining backup support |
US6772005B2 (en) | 2000-12-21 | 2004-08-03 | Medtronic, Inc. | Preferred ADI/R: a permanent pacing mode to eliminate ventricular pacing while maintaining backup support |
US7130683B2 (en) | 2000-12-21 | 2006-10-31 | Medtronic, Inc. | Preferred ADI/R: a permanent pacing mode to eliminate ventricular pacing while maintaining back support |
US20050267539A1 (en) * | 2000-12-21 | 2005-12-01 | Medtronic, Inc. | System and method for ventricular pacing with AV interval modulation |
US20050177197A1 (en) * | 2000-12-21 | 2005-08-11 | Medtronic, Inc. | System and method for ventricular pacing with progressive conduction check interval |
WO2002051499A1 (en) | 2000-12-21 | 2002-07-04 | Medtronic, Inc. | Preferred adi/r: a permanent pacing mode to eliminate ventricular pacing while maintaining backup support |
US6760628B2 (en) | 2001-02-20 | 2004-07-06 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US6757566B2 (en) | 2001-02-20 | 2004-06-29 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US6845266B2 (en) | 2001-02-20 | 2005-01-18 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US6850805B2 (en) | 2001-02-20 | 2005-02-01 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US6819958B2 (en) | 2001-02-20 | 2004-11-16 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US20050090886A1 (en) * | 2001-02-20 | 2005-04-28 | Biophan Technologies, Inc. | Medical device with an electrically conductive anti-antenna geometrical shaped member |
US6901290B2 (en) | 2001-02-20 | 2005-05-31 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US6819954B2 (en) | 2001-02-20 | 2004-11-16 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US6799069B2 (en) | 2001-02-20 | 2004-09-28 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US6954674B2 (en) | 2001-02-20 | 2005-10-11 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US6718203B2 (en) | 2001-02-20 | 2004-04-06 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US6795736B2 (en) | 2001-02-20 | 2004-09-21 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US6718207B2 (en) | 2001-02-20 | 2004-04-06 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US6993387B2 (en) | 2001-02-20 | 2006-01-31 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US7010357B2 (en) | 2001-02-20 | 2006-03-07 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US7013174B2 (en) | 2001-02-20 | 2006-03-14 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US7450996B2 (en) | 2001-02-20 | 2008-11-11 | Medtronic, Inc. | Medical device with an electrically conductive anti-antenna geometrical shaped member |
US6829509B1 (en) | 2001-02-20 | 2004-12-07 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US7047074B2 (en) | 2001-02-20 | 2006-05-16 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US6763268B2 (en) | 2001-02-20 | 2004-07-13 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US20070093142A1 (en) * | 2001-02-20 | 2007-04-26 | Biophan Technologies, Inc. | Medical device with a mri-induced signal attenuating member |
US6778856B2 (en) | 2001-02-20 | 2004-08-17 | Biophan Technologies, Inc. | Electromagnetic interference immune tissue invasive system |
US7054686B2 (en) | 2001-08-30 | 2006-05-30 | Biophan Technologies, Inc. | Pulsewidth electrical stimulation |
US6731979B2 (en) | 2001-08-30 | 2004-05-04 | Biophan Technologies Inc. | Pulse width cardiac pacing apparatus |
US6988001B2 (en) | 2001-10-31 | 2006-01-17 | Biophan Technologies, Inc. | Hermetic component housing for photonic catheter |
US7214197B2 (en) | 2001-11-06 | 2007-05-08 | Prass Richard L | Intraoperative neurophysiological monitoring system |
US20030088185A1 (en) * | 2001-11-06 | 2003-05-08 | Prass Richard L. | Intraoperative neurophysiological monitoring system |
US7310546B2 (en) | 2001-11-06 | 2007-12-18 | Prass Richard L | Artifact detection electrode |
US6968236B2 (en) | 2002-01-28 | 2005-11-22 | Biophan Technologies, Inc. | Ceramic cardiac electrodes |
US20030144717A1 (en) * | 2002-01-28 | 2003-07-31 | Hagele Richard J. | Ceramic cardiac electrodes |
US6711440B2 (en) | 2002-04-11 | 2004-03-23 | Biophan Technologies, Inc. | MRI-compatible medical device with passive generation of optical sensing signals |
US6725092B2 (en) | 2002-04-25 | 2004-04-20 | Biophan Technologies, Inc. | Electromagnetic radiation immune medical assist device adapter |
US7389137B2 (en) | 2002-07-25 | 2008-06-17 | Biophan Technologies, Inc. | Optical MRI catheter system |
US9375579B2 (en) | 2002-09-17 | 2016-06-28 | Medtronic, Inc. | Preferred ADI/R: a permanent pacing mode to eliminate ventricular pacing while maintaining backup support |
US20040102816A1 (en) * | 2002-11-26 | 2004-05-27 | Mazar Scott Thomas | Implantable medical device having a controlled diagnostic function |
US7333853B2 (en) | 2002-11-26 | 2008-02-19 | Cardiac Pacemakers, Inc. | Implantable medical device having a controlled diagnostic function |
US10029092B2 (en) | 2004-10-20 | 2018-07-24 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
US8332036B2 (en) | 2004-10-20 | 2012-12-11 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
US7650186B2 (en) | 2004-10-20 | 2010-01-19 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
US9545513B2 (en) | 2004-10-20 | 2017-01-17 | Cardiac Pacemakers, Inc. | Leadless cardiac stimulation systems |
US8478408B2 (en) | 2004-10-20 | 2013-07-02 | Boston Scientific Scimed Inc. | Leadless cardiac stimulation systems |
US9925386B2 (en) | 2004-10-20 | 2018-03-27 | Cardiac Pacemakers, Inc. | Leadless cardiac stimulation systems |
US20070219590A1 (en) * | 2004-10-20 | 2007-09-20 | Scimed Life Systems, Inc. | Leadless Cardiac Stimulation Systems |
US20060085039A1 (en) * | 2004-10-20 | 2006-04-20 | Hastings Roger N | Leadless cardiac stimulation systems |
US8340780B2 (en) | 2004-10-20 | 2012-12-25 | Scimed Life Systems, Inc. | Leadless cardiac stimulation systems |
US9072911B2 (en) | 2004-10-20 | 2015-07-07 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
US10493288B2 (en) | 2004-10-20 | 2019-12-03 | Boston Scientific Scimed Inc. | Leadless cardiac stimulation systems |
US7532933B2 (en) | 2004-10-20 | 2009-05-12 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
US7647109B2 (en) | 2004-10-20 | 2010-01-12 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
US10076658B2 (en) | 2004-10-20 | 2018-09-18 | Cardiac Pacemakers, Inc. | Leadless cardiac stimulation systems |
US10850092B2 (en) | 2004-10-20 | 2020-12-01 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
US20060089677A1 (en) * | 2004-10-25 | 2006-04-27 | Casavant David A | Self limited rate response |
US7904157B2 (en) | 2004-10-25 | 2011-03-08 | Medtronic, Inc. | Self limited rate response |
US7248924B2 (en) | 2004-10-25 | 2007-07-24 | Medtronic, Inc. | Self limited rate response |
US20070299478A1 (en) * | 2004-10-25 | 2007-12-27 | Casavant David A | Self Limited Rate Response |
US7542799B2 (en) | 2005-01-21 | 2009-06-02 | Medtronic, Inc. | Implantable medical device with ventricular pacing protocol |
US20060167506A1 (en) * | 2005-01-21 | 2006-07-27 | Stoop Gustaaf A | Implantable medical device with ventricular pacing protocol |
US20060167508A1 (en) * | 2005-01-21 | 2006-07-27 | Willem Boute | Implantable medical device with ventricular pacing protocol including progressive conduction search |
US7593773B2 (en) | 2005-01-21 | 2009-09-22 | Medtronic, Inc. | Implantable medical device with ventricular pacing protocol including progressive conduction search |
US9855429B2 (en) | 2005-08-01 | 2018-01-02 | Ebr Systems, Inc. | Efficiently delivering acoustic stimulation energy to tissue |
US10576287B2 (en) | 2005-08-01 | 2020-03-03 | Ebr Systems, Inc. | Efficiently delivering acoustic stimulation energy to tissue |
US20070027508A1 (en) * | 2005-08-01 | 2007-02-01 | Ebr Systems, Inc. | Efficiently delivering acoustic stimulation energy to tissue |
US8634908B2 (en) | 2005-08-01 | 2014-01-21 | Ebr Systems, Inc. | Efficiently delivering acoustic stimulation energy to tissue |
US9014803B2 (en) | 2005-08-01 | 2015-04-21 | Ebr Systems, Inc. | Efficiently delivering acoustic stimulation energy to tissue |
US9616235B2 (en) | 2005-08-01 | 2017-04-11 | Ebr Systems, Inc. | Efficiently delivering acoustic stimulation energy to tissue |
US12076164B2 (en) | 2005-12-09 | 2024-09-03 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US7848823B2 (en) | 2005-12-09 | 2010-12-07 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US10022538B2 (en) | 2005-12-09 | 2018-07-17 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US11766219B2 (en) | 2005-12-09 | 2023-09-26 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US11154247B2 (en) | 2005-12-09 | 2021-10-26 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US8050774B2 (en) | 2005-12-22 | 2011-11-01 | Boston Scientific Scimed, Inc. | Electrode apparatus, systems and methods |
US7925344B2 (en) | 2006-01-20 | 2011-04-12 | Medtronic, Inc. | System and method of using AV conduction timing |
US8229560B2 (en) | 2006-01-20 | 2012-07-24 | Medtronic, Inc. | System and method of using AV conduction timing |
US20110184299A1 (en) * | 2006-01-20 | 2011-07-28 | Medtronic, Inc. | System and method of using av conduction timing |
US20070219589A1 (en) * | 2006-01-20 | 2007-09-20 | Condie Catherine R | System and method of using AV conduction timing |
US9415227B2 (en) | 2006-02-28 | 2016-08-16 | Medtronic, Inc. | Implantable medical device with adaptive operation |
US8046063B2 (en) | 2006-02-28 | 2011-10-25 | Medtronic, Inc. | Implantable medical device with adaptive operation |
US20070203523A1 (en) * | 2006-02-28 | 2007-08-30 | Betzold Robert A | Implantable medical device with adaptive operation |
US7937161B2 (en) | 2006-03-31 | 2011-05-03 | Boston Scientific Scimed, Inc. | Cardiac stimulation electrodes, delivery devices, and implantation configurations |
US20070293900A1 (en) * | 2006-06-15 | 2007-12-20 | Sheldon Todd J | System and Method for Promoting Intrinsic Conduction Through Atrial Timing |
US7869872B2 (en) | 2006-06-15 | 2011-01-11 | Medtronic, Inc. | System and method for determining intrinsic AV interval timing |
US20110112596A1 (en) * | 2006-06-15 | 2011-05-12 | Medtronic, Inc. | System and method for determining intrinsic av interval timing |
US8032216B2 (en) | 2006-06-15 | 2011-10-04 | Medtronic, Inc. | System and method for determining intrinsic AV interval timing |
US7783350B2 (en) | 2006-06-15 | 2010-08-24 | Medtronic, Inc. | System and method for promoting intrinsic conduction through atrial timing modification and calculation of timing parameters |
US20070293897A1 (en) * | 2006-06-15 | 2007-12-20 | Sheldon Todd J | System and Method for Promoting Instrinsic Conduction Through Atrial Timing Modification and Calculation of Timing Parameters |
US20070293899A1 (en) * | 2006-06-15 | 2007-12-20 | Sheldon Todd J | System and Method for Ventricular Interval Smoothing Following a Premature Ventricular Contraction |
US7565196B2 (en) | 2006-06-15 | 2009-07-21 | Medtronic, Inc. | System and method for promoting intrinsic conduction through atrial timing |
US20070293898A1 (en) * | 2006-06-15 | 2007-12-20 | Sheldon Todd J | System and Method for Determining Intrinsic AV Interval Timing |
US7894898B2 (en) | 2006-06-15 | 2011-02-22 | Medtronic, Inc. | System and method for ventricular interval smoothing following a premature ventricular contraction |
US12102822B2 (en) | 2006-07-21 | 2024-10-01 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US9662487B2 (en) | 2006-07-21 | 2017-05-30 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US11338130B2 (en) | 2006-07-21 | 2022-05-24 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US7840281B2 (en) | 2006-07-21 | 2010-11-23 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US8290600B2 (en) | 2006-07-21 | 2012-10-16 | Boston Scientific Scimed, Inc. | Electrical stimulation of body tissue using interconnected electrode assemblies |
US9308374B2 (en) | 2006-07-21 | 2016-04-12 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US8185213B2 (en) | 2006-07-21 | 2012-05-22 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US10426952B2 (en) | 2006-07-21 | 2019-10-01 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US20080027490A1 (en) * | 2006-07-31 | 2008-01-31 | Sheldon Todd J | Pacing Mode Event Classification with Rate Smoothing and Increased Ventricular Sensing |
US7856269B2 (en) | 2006-07-31 | 2010-12-21 | Medtronic, Inc. | System and method for determining phsyiologic events during pacing mode operation |
US7720537B2 (en) | 2006-07-31 | 2010-05-18 | Medtronic, Inc. | System and method for providing improved atrial pacing based on physiological need |
US7689281B2 (en) | 2006-07-31 | 2010-03-30 | Medtronic, Inc. | Pacing mode event classification with increased ventricular sensing |
US20100174334A1 (en) * | 2006-07-31 | 2010-07-08 | Medtronic, Inc. | System and method for providing improved atrial pacing based on physiological need |
US7515958B2 (en) | 2006-07-31 | 2009-04-07 | Medtronic, Inc. | System and method for altering pacing modality |
US7715914B2 (en) | 2006-07-31 | 2010-05-11 | Medtronic, Inc. | System and method for improving ventricular sensing |
US8565873B2 (en) | 2006-07-31 | 2013-10-22 | Medtronic, Inc. | System and method for providing improved atrial pacing based on physiological need |
US7502646B2 (en) | 2006-07-31 | 2009-03-10 | Medtronic, Inc. | Pacing mode event classification with rate smoothing and increased ventricular sensing |
US7502647B2 (en) | 2006-07-31 | 2009-03-10 | Medtronic, Inc. | Rate smoothing pacing modality with increased ventricular sensing |
US20080027493A1 (en) * | 2006-07-31 | 2008-01-31 | Sheldon Todd J | System and Method for Improving Ventricular Sensing |
US9956401B2 (en) | 2006-09-13 | 2018-05-01 | Boston Scientific Scimed, Inc. | Cardiac stimulation using intravascularly-deliverable electrode assemblies |
US8644934B2 (en) | 2006-09-13 | 2014-02-04 | Boston Scientific Scimed Inc. | Cardiac stimulation using leadless electrode assemblies |
US10456588B2 (en) | 2007-05-23 | 2019-10-29 | Ebr Systems, Inc. | Optimizing energy transmission in a leadless tissue stimulation system |
US11452879B2 (en) | 2007-05-23 | 2022-09-27 | Ebr Systems, Inc. | Optimizing energy transmission in a leadless tissue stimulation system |
US10080903B2 (en) | 2007-05-23 | 2018-09-25 | Ebr Systems, Inc. | Optimizing energy transmission in a leadless tissue stimulation system |
US9795797B2 (en) | 2008-02-07 | 2017-10-24 | Cardiac Pacemakers, Inc. | Wireless tissue electrostimulation |
US8738147B2 (en) | 2008-02-07 | 2014-05-27 | Cardiac Pacemakers, Inc. | Wireless tissue electrostimulation |
US8204605B2 (en) | 2008-02-07 | 2012-06-19 | Cardiac Pacemakers, Inc. | Multi-site atrial electrostimulation |
US10307604B2 (en) | 2008-02-07 | 2019-06-04 | Cardiac Pacemakers, Inc. | Wireless tissue electrostimulation |
US9393405B2 (en) | 2008-02-07 | 2016-07-19 | Cardiac Pacemakers, Inc. | Wireless tissue electrostimulation |
US10688307B2 (en) | 2008-03-25 | 2020-06-23 | Ebr Systems, Inc. | Temporary electrode connection for wireless pacing systems |
US11752352B2 (en) | 2008-03-25 | 2023-09-12 | Ebr Systems, Inc. | Temporary electrode connection for wireless pacing systems |
US9907968B2 (en) | 2008-03-25 | 2018-03-06 | Ebr Systems, Inc. | Temporary electrode connection for wireless pacing systems |
US9283392B2 (en) | 2008-03-25 | 2016-03-15 | Ebr Systems, Inc. | Temporary electrode connection for wireless pacing systems |
US8244354B2 (en) | 2009-02-27 | 2012-08-14 | Medtronic, Inc. | System and method for conditional biventricular pacing |
US20100222838A1 (en) * | 2009-02-27 | 2010-09-02 | Sweeney Michael O | System and method for conditional biventricular pacing |
US8396553B2 (en) | 2009-02-27 | 2013-03-12 | Medtronic, Inc. | System and method for conditional biventricular pacing |
US8229558B2 (en) | 2009-02-27 | 2012-07-24 | Medtronic, Inc. | System and method for conditional biventricular pacing |
US8265750B2 (en) | 2009-02-27 | 2012-09-11 | Medtronic, Inc. | System and method for conditional biventricular pacing |
US20100222834A1 (en) * | 2009-02-27 | 2010-09-02 | Sweeney Michael O | System and method for conditional biventricular pacing |
US20100222837A1 (en) * | 2009-02-27 | 2010-09-02 | Sweeney Michael O | System and method for conditional biventricular pacing |
US8751015B2 (en) | 2010-11-30 | 2014-06-10 | University Of South Florida | Graphene electrodes on a planar cubic silicon carbide (3C-SiC) long term implantable neuronal prosthetic device |
US11026627B2 (en) | 2013-03-15 | 2021-06-08 | Cadwell Laboratories, Inc. | Surgical instruments for determining a location of a nerve during a procedure |
US12178606B2 (en) | 2013-03-15 | 2024-12-31 | Cadwell Laboratories, Inc. | Neuromonitoring systems and methods |
US11338144B2 (en) | 2013-03-15 | 2022-05-24 | Alfred E. Mann Foundation For Scientific Research | Current sensing multiple output current stimulators |
US10971950B2 (en) | 2013-07-29 | 2021-04-06 | The Alfred E. Mann Foundation For Scientific Research | Microprocessor controlled class E driver |
US11722007B2 (en) | 2013-07-29 | 2023-08-08 | The Alfred E. Mann Foundation For Scientific Rsrch | Microprocessor controlled class E driver |
US11116985B2 (en) | 2014-08-15 | 2021-09-14 | Axonics, Inc. | Clinician programmer for use with an implantable neurostimulation lead |
US11213675B2 (en) | 2014-08-15 | 2022-01-04 | Axonics, Inc. | Implantable lead affixation structure for nerve stimulation to alleviate bladder dysfunction and other indication |
US11730411B2 (en) | 2014-08-15 | 2023-08-22 | Axonics, Inc. | Methods for determining neurostimulation electrode configurations based on neural localization |
US11389659B2 (en) | 2014-08-15 | 2022-07-19 | Axonics, Inc. | External pulse generator device and associated methods for trial nerve stimulation |
US11497916B2 (en) | 2014-08-15 | 2022-11-15 | Axonics, Inc. | Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder |
US11478648B2 (en) | 2015-01-09 | 2022-10-25 | Axonics, Inc. | Antenna and methods of use for an implantable nerve stimulator |
US11484723B2 (en) | 2015-01-09 | 2022-11-01 | Axonics, Inc. | Attachment devices and associated methods of use with a nerve stimulation charging device |
US11123569B2 (en) | 2015-01-09 | 2021-09-21 | Axonics, Inc. | Patient remote and associated methods of use with a nerve stimulation system |
US11766568B2 (en) | 2015-07-10 | 2023-09-26 | Axonics, Inc. | Implantable nerve stimulator having internal electronics without ASIC and methods of use |
US10850104B2 (en) | 2015-07-10 | 2020-12-01 | Axonics Modulation Technologies, Inc. | Implantable nerve stimulator having internal electronics without ASIC and methods of use |
US11083903B2 (en) | 2016-01-29 | 2021-08-10 | Axonics, Inc. | Methods and systems for frequency adjustment to optimize charging of implantable neurostimulator |
US12083349B2 (en) | 2016-01-29 | 2024-09-10 | Axonics, Inc. | Methods and systems for frequency adjustment to optimize charging of implantable neurostimulator |
US11602638B2 (en) | 2016-01-29 | 2023-03-14 | Axonics, Inc. | Methods and systems for frequency adjustment to optimize charging of implantable neurostimulator |
US12226643B2 (en) | 2016-02-12 | 2025-02-18 | Axonics, Inc. | External pulse generator device and affixation device for trial nerve stimulation and methods of use |
US11260236B2 (en) | 2016-02-12 | 2022-03-01 | Axonics, Inc. | External pulse generator device and affixation device for trial nerve stimulation and methods of use |
US10583301B2 (en) | 2016-11-08 | 2020-03-10 | Cardiac Pacemakers, Inc. | Implantable medical device for atrial deployment |
US11949188B2 (en) | 2017-01-23 | 2024-04-02 | Cadwell Laboratories, Inc. | Methods for concurrently forming multiple electrical connections in a neuro-monitoring system |
US11177610B2 (en) | 2017-01-23 | 2021-11-16 | Cadwell Laboratories, ino. | Neuromonitoring connection system |
US11511122B2 (en) | 2018-02-22 | 2022-11-29 | Axonics, Inc. | Neurostimulation leads for trial nerve stimulation and methods of use |
US12042662B2 (en) | 2018-02-22 | 2024-07-23 | Axonics, Inc. | Neurostimulation leads for trial nerve stimulation and methods of use |
US11110283B2 (en) | 2018-02-22 | 2021-09-07 | Axonics, Inc. | Neurostimulation leads for trial nerve stimulation and methods of use |
US11253182B2 (en) | 2018-05-04 | 2022-02-22 | Cadwell Laboratories, Inc. | Apparatus and method for polyphasic multi-output constant-current and constant-voltage neurophysiological stimulation |
US11992339B2 (en) | 2018-05-04 | 2024-05-28 | Cadwell Laboratories, Inc. | Systems and methods for dynamic neurophysiological stimulation |
US11998338B2 (en) | 2018-05-04 | 2024-06-04 | Cadwell Laboratories, Inc. | Systems and methods for dynamically switching output port cathode and anode designations |
US11978360B2 (en) | 2018-06-29 | 2024-05-07 | Cadwell Laboratories, Inc. | Systems and methods for neurophysiological simulation |
US11443649B2 (en) | 2018-06-29 | 2022-09-13 | Cadwell Laboratories, Inc. | Neurophysiological monitoring training simulator |
US11484721B2 (en) * | 2018-12-13 | 2022-11-01 | Heraeus Deutschland GmbH & Co. KG | Contacting method and system |
US11642537B2 (en) | 2019-03-11 | 2023-05-09 | Axonics, Inc. | Charging device with off-center coil |
US11848090B2 (en) | 2019-05-24 | 2023-12-19 | Axonics, Inc. | Trainer for a neurostimulator programmer and associated methods of use with a neurostimulation system |
US11439829B2 (en) | 2019-05-24 | 2022-09-13 | Axonics, Inc. | Clinician programmer methods and systems for maintaining target operating temperatures |
US20220273956A1 (en) * | 2021-02-26 | 2022-09-01 | Medtronic, Inc. | Polymeric enclosure for implantable medical device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3057356A (en) | Medical cardiac pacemaker | |
Spickler et al. | Totally self-contained intracardiac pacemaker | |
US3788329A (en) | Body implantable lead | |
Nathan et al. | An implantable synchronous pacemaker for the long term correction of complete heart block | |
US5314451A (en) | Replaceable battery for implantable medical device | |
US3253595A (en) | Cardiac pacer electrode system | |
Aquilina | A brief history of cardiac pacing | |
US3522811A (en) | Implantable nerve stimulator and method of use | |
JP4312830B2 (en) | Implantable pulse generator and implantable body tissue stimulator | |
US3926198A (en) | Cardiac pacer | |
US7310556B2 (en) | Implantable medical stimulation apparatus with intra-conductor capacitive energy storage | |
US4125116A (en) | Human tissue stimulation electrode structure | |
US3367339A (en) | Implantable nerve stimulating electrode and lead | |
US3683932A (en) | Implantable tissue stimulator | |
US3693627A (en) | Stimulator for treatment of tachycardia with a burst of stimuli having a continuously variable rate | |
US5312440A (en) | Implantable defibrillator arrangement | |
US20160166837A1 (en) | Battery and electronics integration in an implantable medical device | |
US3405715A (en) | Implantable electrode | |
US4010755A (en) | Unipolar pacing catheter with plural distal electrodes | |
US3698398A (en) | Rate-scanning pacer for treatment of tachycardia | |
UA66384C2 (en) | Device for biphasic stimulation of muscle tissue | |
US4119103A (en) | Detachable power source with low current leakage | |
US3738371A (en) | Cardiac pacers with source condition-responsive rate | |
GB1405185A (en) | Electrically operated devices for implantation into the body | |
Senning | Cardiac pacing in retrospect |