US2551711A - Manganese zinc ferrite core - Google Patents
Manganese zinc ferrite core Download PDFInfo
- Publication number
- US2551711A US2551711A US660420A US66042046A US2551711A US 2551711 A US2551711 A US 2551711A US 660420 A US660420 A US 660420A US 66042046 A US66042046 A US 66042046A US 2551711 A US2551711 A US 2551711A
- Authority
- US
- United States
- Prior art keywords
- ferrite
- manganese
- mol
- zinc ferrite
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2658—Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/008—Details of transformers or inductances, in general with temperature compensation
Definitions
- This invention relates to a magnetic core containing a cubic ferrite as magnetic material and to the manufacture of such a material.
- a mixed crystal of manganese ferrite and zinc ferrite hereinafter called manganese zinc ferrite, is used to constitute the magnetic ferrite material.
- a manganese zinc ferrite according to the invention has the advantage that it can be manufactured with a high value for the initial permeability.
- manganese zinc ferrite permits the manufacture of magnetic material whose temperature coeflicient of the reciprocal initial permeability, in other words the temperature coefficient of the magnetic reluctance, in a temperature range in the proximity of room temperature, say of from 10 to 40 C., has a substantially constant negative value.
- a temperature coefficient of ferrites other than manganese zinc ferrite solely a positive value could hitherto be obtained, but now it is possible, by combining such a ferrite having a positive temperature coefficient with a manganese zinc ferrite according to the invention having a negative temperature coefficient, to design a magnetic circuit having a temperature coefficient of zero or practically zero.
- Such a magnetic circuit has the advantage that the inductance of a coil cooperating with this circuit does practically not change in the event of temperature variations.
- Another advantage resulting from the use of manganese zinc ferrites isthe possibility of obtaining a magnetic material which, in the presence of low inductions in an extensive range of frequencies, up to 100 or even 1000 kilocycles/sec. and higher, has low total losses (eddy current losses, hysteresis losses and other losses), which is of importance for use for radio, telegraphy, and telephony purposes, electro-acoustic devices and so on.
- manganese zinc ferrites permits a material to be obtained having particularly low hysteresis losses, which is of importance in telegraphy and telephony for transformers, Pupin coils and so on.
- an intimate mixture of the pure metal oxides building up the ferrite is obtained either by mixing the separate oxides or by precipitating, with a base, a solution containing manganese, zinc and iron; in the lastmentioned case the precipitated oxyhydrate mixture may partly have the ferrite structure already.
- An alternative method of preparing the ferrite is to heat the carbonates of the metals which upon heating convert into the oxides thereof. The starting mixture is preferably compressed and subsequently sintered until it passes over into ferrite.
- sintering for instance by a. sufficient temperature or a sufficient heating time, or by a sufficient reactivity of the ferrite forming starting mixture, or by grinding the first sintering product and by sintering anew, or by a combination of these steps, that the formation of ferrite from the starting constituents should take place as thoroughly as possible i. e. that the mixture thoroughly reacts.
- a thorough reaction use is preferably made of a mixture having a great fineness in preparing a manganese zinc ferrite.
- the starting mixture may be ground for a long time and very intensively, and preferably to such a degree as to attain an average size of the particles of less than 1 Mixtures of oxides or oxyhydrates, obtained by wet process, by precipitating a solution of the metals in question with a base have a great fineness.
- the ratio of the constitutents of the starting mixture which may either be stoichiometric or depart therefrom, is chosen in such a manner that at the sintering temperature the mixture can pass over into a practically single homogeneous ferrite mixed crystal phase, the contents of iron oxide usually amounting of from 40 to mol. per cent.
- the mixing ratio of manganese and zinc is preferably so chosen as to form a mixed crystal having a Curie-point between 3 about 40 and 250 0. Such a Curie-point is advantageous in View of attaining a high initial permeability. It is pointed out that. also the iron content and the heat treatment of the ferrite acts upon the Curie-point.
- the expression Curie-point is to be understood to mean the temperature at which a magnetic material passes over into a state which in regard to the permeability may be conceived to be nonmagnetic for practical purposes. It is still to be noted that without departing from the principle underlying the invention it is also possible to combine oxides, other than manganese oxide and zinc oxide, with iron oxide and the expression manganese zinc-ferrite also includes the ferrites thus obtained.
- a judicious choice of the conditions, according to the invention, permits the obtai'nment of magnetic material having a loss factor we which in the case of low inductions over a wide frequency range, up to 100 or even 1000 kilocycles/ sec.' has a very low value, for instance smaller than 0.06.
- the characteristics tgo corresponds to where It represents the loss: resistance, measured whilst avoiding. the occurrence of dielectric losses and after deduction of the direct current resistance, and L represents the inductance of a coil which is wound on an annular core consisting of the ferrite material, a: being the circle frequency.
- a material having such low losses is very suitable for radio, telegraphy and telephony purposes.
- manganese zinc ferrite particularly suitable for magnetic cores, but. it is probable that they are related with the fact that. manganese may occur in diiferent valency stages and on the occurrence of temperature variations may pass over into a different. valency stage whilst absorbing, or giving off oxygen.
- magnetic core in the present specification includes not only a core within a coil, but generally parts of electro-magnetic constructions used in view of their magnetic properties, for instance also magnetic shielding parts.
- Examples 1 A mixture of technical zinc oxide, manganese dioxide and iron oxide in a mol. ratio of 23.5:23.5:53 reckoned in regard to the pure oxides, ZnO, Mn3O4 and F8203, is ground for 12 hours in an iron ball mill.
- the mixture contained about 0.7% silicium dioxide as main impurity. Good results were also obtained with a content of about 2.5%.
- the mixture is moulded to form a ring having an internal diameter of 2.5 cms. and a cross section of 5 to 5 mms. at a pressure of 4000 kg./cm. with water as a plastification agent and binder. This ring is sintered for two hours at 1300 C. in an electric furnace in oxygen.
- the obtained manganese Zinc ferrite had a Curie point of 116 C. and an initial permeability 415, measured at 20.
- the temperature dependency of the initial permeability is small so that the inductance of a coil made from the material, with an effective permeability of 15, from 20 to 50 C. is constant with an accuracy of less than 0.15%. At 20 C.
- the temperature coefiicient was positive.
- the values of are stated for various frequencies in column 2 of the followng table. At a frequency of 2000 cycles/sec. and a maximum induction of 7.5 Gauss the hysteresis factor amounted to 11, Rh representing the hysteresis resistance of a coil wound on the annular core and Z representing its inductance thereof.
- Example 2 Similarly to Example 1 a core is made from technical oxides with a manganese zinc ferrite containing 51 -mol. per cent of iron oxide and equal percentages of manganese and zinc. The initial permeability amounted to 335 and the Curie point to 82 C. The temperature dependency was low; at 20 C. it was negative. The values of are stated in column 3 of the table.
- a mixture of pure manganese dioxide, obtained by roasting manganese nitrate, pure zinc oxide and pure iron oxide in a mol. ratio of 25:21:54. is ground for 12 hours in an iron ball mill and after than moulded to form a ring and sintered in the manner set out in the first example.
- the obtained initial permeability amounted to 470 and the Curie point to 124 C.
- the temperature coefficient had the same value as in the first example but at 20 C. it is negative.
- the values for are stated in column 4 of the table. At 2000 cycles/sec. and a peak induction of 7.5 Gauss amounted to 3.0.
- a ferrite is a crystalline material which is a compound of the reaction product of a metal oxide and iron oxide having the empirical formula MF204 wherein M represents a bivalent metal.
- This material may also be defined as a metallic salt of the hypothetical acid H2F2O4.
- a mixed crystal ferrite is a ferrite material comprising two or more ferrites as hereinbefore defined which are chemically combined together to form a single homogeneous crystalline compound.
- soft magnetic material means magnetic material having a low remanence and a low coercivity when the applied inductive field is removed from the material.
- a method of manufacturing a soft ferromagnetic material comprising the steps of forming a mixture consisting of about 40 to 57 mol. per cent of F6203, about 23 to 32 mol. per cent of MnOz, and the balance ZnO in an amount of at least 20 mol. per cent, the said oxide being in the proportions producing at the sintering temperature a practically single. homogeneous, ferrite phase, sintering the mixture in an atmosphere containing a substantial amount of oxygen and at a temperature greater than 1000 C. to form mixed crystals of manganese-zinc ferrite and cooling the manganese-zinc ferrite in the order of about 5 C. per minute in the said atmosphere.
- a method of manufacturing a soft ferromagnetic core material comprising the steps of forming a mixture of powdered manganese dioxide, powdered zinc oxide and powdered ferric oxide, the amounts of said oxides being in the relative proportions producing at the sintering temperature a practically single homogeneous ferrite mixed crystal phase and lying within the limits of about 24.5 to 32 mol. per cent manganese dioxide, about 20 to 24.5 mol. per cent zinc oxide and about 48 to 54 mol. per cent iron oxide, sintering the mixture in an atmosphere containing a substantial amount of oxygen and having a temperature greater than about 1000 C. to form mixed crystals of manganese zinc ferrite and cooling the manganese-zinc ferrite in an atmosphere containing a substantial portion of oxygen at a rate of about 5 C. per minute.
- a method of manufacturing a soft ferro magnetic material comprising the steps of forming a mixture of powdered manganese dioxide, powdered zinc oxide, and powdered ferric oxide, the amounts of manganese dioxide and zinc oxide being in equi-molecular proportions and the ferric oxide comprising between about 51 and 53 mol. per cent of the mixture, sintering the mixture in an atmosphere containing a substantial amount of oxygen and having a temperature. greater than about 1000 C. to form homogeneous mixed crystals of manganesezin.c ferrite and cooling the mixed crystals of manganese-zinc ferrite in an atmosphere containing a substantial portion of oxygen at a rate of about 5 C. per minute.
- a method of manufacturing a soft ferromagnetic material comprising the steps of forming a mixture of about 21.0 mol. per cent of powdered zinc oxide, about 25.0 mol. per cent of powdered manganese dioxide and about 54 mol. per cent of powdered iron oxide, sintering the mixture in an atmosphere containing a substantial amount of oxygen and having a temperature greater than about 1000 C. to form homogeneous mixed crystals of manganese zinc ferrite and cooling the mixed crystals of manganese zinc ferrite thus obtained in an atmosphere containing a substantial portion of oxygen at a rate of about 5 C. per minute.
- a method of manufacturing a soft ferromag- 8 netic material comprising the steps of forming :a mixture of about 20.0 mol. per cent of powdered zinc oxide, about 32 mol. per cent of powdered manganese dioxide and about 48 mol. percent of powdered iron oxide, sintering the mixture in an atmosphere containing a substantial amount of oxygen and having a temperature greater than about 1000 C. to form homogeneous mixed crystals of manganese zinc ferrite and cooling the mixed crystals of manganese zinc ferrite in an atmosphere containing a substantial portion of oxygen at a rate of about 5 C. per minute.
- a soft ferromagnetic material consisting of substantially homogeneous mixed crystals of manganesazine ferrite having a Curie point between about 40 and 250 0. prepared in accordance with the method claimed in claim 1.
- a soft ferromagnetic material consisting of substantially homogeneous crystals of manga-. nese-zinc ferrite having a Curie point between about 40 and 250 C. and a loss factor tan cless than 0.06 below kc./sec. prepared in accordance with the method claimed in claim .2.
- a soft ferromagnetic core material consisting of substantially homogeneous mixed crystals of manganese-zinc ferrite having a Curie point between about 40 and 250 C. and a quotient tan 5 ,a being the initial. permeability and tan 6 being the loss factor, of less than 0.0001 below 100 kc./sec. prepared in accordance with the method as claimed in claim 3.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Soft Magnetic Materials (AREA)
- Magnetic Ceramics (AREA)
- Compounds Of Iron (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL112041 | 1943-07-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2551711A true US2551711A (en) | 1951-05-08 |
Family
ID=19750358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US660420A Expired - Lifetime US2551711A (en) | 1943-07-01 | 1946-04-08 | Manganese zinc ferrite core |
Country Status (8)
Country | Link |
---|---|
US (1) | US2551711A (de) |
BE (1) | BE456575A (de) |
CH (1) | CH254931A (de) |
DE (1) | DE975802C (de) |
ES (2) | ES166680A1 (de) |
FR (1) | FR906784A (de) |
GB (1) | GB655666A (de) |
NL (1) | NL63875C (de) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2751354A (en) * | 1953-04-10 | 1956-06-19 | Philips Corp | Method of manufacturing a magnetic ferrite core |
US2760168A (en) * | 1952-08-16 | 1956-08-21 | Collins Radio Co | Temperature compensation for a magnetostrictive transducer |
US2764552A (en) * | 1952-02-22 | 1956-09-25 | Int Standard Electric Corp | Ferromagnetic materials |
DE973358C (de) * | 1952-04-04 | 1960-02-04 | Steatit Magnesia Ag | Verfahren zur Verbesserung der magnetischen Eigenschaften von Ferriten |
US2929787A (en) * | 1955-10-20 | 1960-03-22 | Steatit Magnesia Ag | Ferrite with constricted magnetic hysteresis loop |
US2947890A (en) * | 1957-03-25 | 1960-08-02 | Harris Transducer Corp | Transducer |
US2950251A (en) * | 1955-09-19 | 1960-08-23 | Rca Corp | Magnetic materials having rectangular hysteresis characteristics |
US2962444A (en) * | 1956-01-19 | 1960-11-29 | Centre Nat Rech Scient | Ferromagnetic ceramic materials |
US2970112A (en) * | 1955-05-03 | 1961-01-31 | Lignes Telegraphiques And Tele | Ferromagnetic materials with rectangular hysteresis cycle and method for their manufacture |
US2980617A (en) * | 1956-03-13 | 1961-04-18 | Indiana General Corp | Ferrite compositions and method of making same |
US2981690A (en) * | 1957-06-18 | 1961-04-25 | Steatite Res Corp | Ferrites with square hysteresis loops |
US2985591A (en) * | 1956-10-30 | 1961-05-23 | Philips Nv | Ferrite core and method of making |
US2985939A (en) * | 1952-07-10 | 1961-05-30 | Philips Lab Inc | Process of making a ferromagnetic core having a predetermined permeability |
US2992990A (en) * | 1956-01-05 | 1961-07-18 | Richard G Parker | Soft magnetic material |
US3027327A (en) * | 1957-10-08 | 1962-03-27 | Gen Electric | Preparation of ferromagnetic ferrite materials |
US3031405A (en) * | 1956-12-14 | 1962-04-24 | Lignes Telegraph Telephon | Ferromagnetic materials having a rectangular hysteresis cycle |
US3046228A (en) * | 1959-06-08 | 1962-07-24 | Allen Bradley Co | Method of preparing a zinc manganese ferrite |
US3065181A (en) * | 1956-09-24 | 1962-11-20 | Sprague Electric Co | Inductor materials |
US3154493A (en) * | 1960-07-11 | 1964-10-27 | Itt | Magnetic materials |
DE977105C (de) * | 1950-09-19 | 1965-02-11 | Philips Nv | Verwendung von Polyoxyden auf Eisenoxydbasis als dauermagnetisches Material |
US3440169A (en) * | 1965-12-03 | 1969-04-22 | Gen Telephone & Elect | Cadmium-substituted ferrite materials |
US4472369A (en) * | 1982-02-10 | 1984-09-18 | Japan Metals And Chemicals Co., Ltd. | Process for producing ferrites |
EP1137051A1 (de) * | 2000-03-13 | 2001-09-26 | Matsushita Electric Industrial Co., Ltd. | Induktionsspulenkern, Beleuchtungseinheit und polykristallines Ferrit |
CN109485398A (zh) * | 2018-12-17 | 2019-03-19 | 安徽华林磁电科技有限公司 | 一种电磁吸收体材料 |
CN114315336A (zh) * | 2021-12-28 | 2022-04-12 | 南通华兴磁性材料有限公司 | 一种高磁性能锰锌铁氧体的制备方法 |
CN117894542A (zh) * | 2024-02-02 | 2024-04-16 | 南通华兴磁性材料有限公司 | 一种宽频高导锰锌铁氧体材料及其制备方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE975757C (de) * | 1948-10-02 | 1962-08-09 | Siemens Ag | Verfahren zur Herstellung gesinterter ferromagnetischer Ferritkoerper |
DE975729C (de) * | 1948-12-22 | 1962-07-05 | Siemens Ag | Verfahren zur Herstellung von Ferritkernen |
FR1110334A (fr) * | 1954-07-13 | 1956-02-10 | Perfectionnements aux matériaux ferromagnétiques du genre | |
FR1121088A (fr) * | 1955-02-03 | 1956-07-20 | Lignes Telegraph Telephon | Matériaux ferromagnétiques à cycle d'hystérésis rectangulaire |
US3002930A (en) * | 1956-12-03 | 1961-10-03 | Philips Corp | Process of making a ferromagnetic body |
DE1057003B (de) * | 1957-01-21 | 1959-05-06 | Bayer Ag | Verfahren zur Herstellung von Ferriten |
US2956024A (en) * | 1957-04-01 | 1960-10-11 | Western Electric Co | Method of making magnetic cores |
DE1152345B (de) * | 1958-03-25 | 1963-08-01 | Siemens Ag | Verfahren zur Herstellung eines weichmagnetischen Ferrits mit Perminvarcharakter |
DE1170304B (de) * | 1959-07-24 | 1964-05-14 | Itt | Verfahren zur Herstellung eines ferro-magnetischen Materials |
JPS565046B1 (de) * | 1969-05-09 | 1981-02-03 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US383942A (en) * | 1888-06-05 | Chaeles e | ||
US1651955A (en) * | 1926-01-16 | 1927-12-06 | Lester H Hopewell | Apparatus for preventing grade-crossing accidents |
US1946964A (en) * | 1933-07-11 | 1934-02-13 | Boonton Res Corp | Magnetic material and process of making the same |
US2388664A (en) * | 1942-11-05 | 1945-11-13 | Western Electric Co | Magnetic material |
US2452531A (en) * | 1943-05-31 | 1948-10-26 | Hartford Nat Bank & Trust Co | Process of manufacturing a magnetic material and magnetic core |
US2452530A (en) * | 1943-05-15 | 1948-10-26 | Hartford Nat Bank & Trust Co | Magnetic core |
US2452529A (en) * | 1941-10-24 | 1948-10-26 | Hartford Nat Bank & Trust Co | Magnet core |
-
0
- BE BE456575D patent/BE456575A/xx unknown
- NL NL63875D patent/NL63875C/xx active
-
1944
- 1944-06-27 DE DEN2334D patent/DE975802C/de not_active Expired
- 1944-06-28 ES ES0166680A patent/ES166680A1/es not_active Expired
- 1944-06-30 CH CH254931D patent/CH254931A/de unknown
- 1944-08-16 FR FR906784D patent/FR906784A/fr not_active Expired
-
1946
- 1946-04-08 US US660420A patent/US2551711A/en not_active Expired - Lifetime
-
1947
- 1947-01-07 GB GB508/47A patent/GB655666A/en not_active Expired
- 1947-10-09 ES ES0180068A patent/ES180068A1/es not_active Expired
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US383942A (en) * | 1888-06-05 | Chaeles e | ||
US1651955A (en) * | 1926-01-16 | 1927-12-06 | Lester H Hopewell | Apparatus for preventing grade-crossing accidents |
US1946964A (en) * | 1933-07-11 | 1934-02-13 | Boonton Res Corp | Magnetic material and process of making the same |
US2452529A (en) * | 1941-10-24 | 1948-10-26 | Hartford Nat Bank & Trust Co | Magnet core |
US2388664A (en) * | 1942-11-05 | 1945-11-13 | Western Electric Co | Magnetic material |
US2452530A (en) * | 1943-05-15 | 1948-10-26 | Hartford Nat Bank & Trust Co | Magnetic core |
US2452531A (en) * | 1943-05-31 | 1948-10-26 | Hartford Nat Bank & Trust Co | Process of manufacturing a magnetic material and magnetic core |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE977105C (de) * | 1950-09-19 | 1965-02-11 | Philips Nv | Verwendung von Polyoxyden auf Eisenoxydbasis als dauermagnetisches Material |
US2764552A (en) * | 1952-02-22 | 1956-09-25 | Int Standard Electric Corp | Ferromagnetic materials |
DE973358C (de) * | 1952-04-04 | 1960-02-04 | Steatit Magnesia Ag | Verfahren zur Verbesserung der magnetischen Eigenschaften von Ferriten |
US2985939A (en) * | 1952-07-10 | 1961-05-30 | Philips Lab Inc | Process of making a ferromagnetic core having a predetermined permeability |
US2760168A (en) * | 1952-08-16 | 1956-08-21 | Collins Radio Co | Temperature compensation for a magnetostrictive transducer |
US2751354A (en) * | 1953-04-10 | 1956-06-19 | Philips Corp | Method of manufacturing a magnetic ferrite core |
US2970112A (en) * | 1955-05-03 | 1961-01-31 | Lignes Telegraphiques And Tele | Ferromagnetic materials with rectangular hysteresis cycle and method for their manufacture |
US2950251A (en) * | 1955-09-19 | 1960-08-23 | Rca Corp | Magnetic materials having rectangular hysteresis characteristics |
US2929787A (en) * | 1955-10-20 | 1960-03-22 | Steatit Magnesia Ag | Ferrite with constricted magnetic hysteresis loop |
US2992990A (en) * | 1956-01-05 | 1961-07-18 | Richard G Parker | Soft magnetic material |
US2962444A (en) * | 1956-01-19 | 1960-11-29 | Centre Nat Rech Scient | Ferromagnetic ceramic materials |
US2980617A (en) * | 1956-03-13 | 1961-04-18 | Indiana General Corp | Ferrite compositions and method of making same |
US3065181A (en) * | 1956-09-24 | 1962-11-20 | Sprague Electric Co | Inductor materials |
US2985591A (en) * | 1956-10-30 | 1961-05-23 | Philips Nv | Ferrite core and method of making |
US3031405A (en) * | 1956-12-14 | 1962-04-24 | Lignes Telegraph Telephon | Ferromagnetic materials having a rectangular hysteresis cycle |
US2947890A (en) * | 1957-03-25 | 1960-08-02 | Harris Transducer Corp | Transducer |
US2981690A (en) * | 1957-06-18 | 1961-04-25 | Steatite Res Corp | Ferrites with square hysteresis loops |
US3027327A (en) * | 1957-10-08 | 1962-03-27 | Gen Electric | Preparation of ferromagnetic ferrite materials |
US3046228A (en) * | 1959-06-08 | 1962-07-24 | Allen Bradley Co | Method of preparing a zinc manganese ferrite |
US3154493A (en) * | 1960-07-11 | 1964-10-27 | Itt | Magnetic materials |
US3440169A (en) * | 1965-12-03 | 1969-04-22 | Gen Telephone & Elect | Cadmium-substituted ferrite materials |
US4472369A (en) * | 1982-02-10 | 1984-09-18 | Japan Metals And Chemicals Co., Ltd. | Process for producing ferrites |
EP1137051A1 (de) * | 2000-03-13 | 2001-09-26 | Matsushita Electric Industrial Co., Ltd. | Induktionsspulenkern, Beleuchtungseinheit und polykristallines Ferrit |
US6650068B2 (en) | 2000-03-13 | 2003-11-18 | Matsushita Electric Industrial Co., Ltd. | Induction coil core, illumination unit using the same, and polycrystalline ferrite |
CN109485398A (zh) * | 2018-12-17 | 2019-03-19 | 安徽华林磁电科技有限公司 | 一种电磁吸收体材料 |
CN109485398B (zh) * | 2018-12-17 | 2021-10-22 | 安徽华林磁电科技有限公司 | 一种电磁吸收体材料 |
CN114315336A (zh) * | 2021-12-28 | 2022-04-12 | 南通华兴磁性材料有限公司 | 一种高磁性能锰锌铁氧体的制备方法 |
CN117894542A (zh) * | 2024-02-02 | 2024-04-16 | 南通华兴磁性材料有限公司 | 一种宽频高导锰锌铁氧体材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
ES180068A1 (es) | 1947-11-16 |
CH254931A (de) | 1948-05-31 |
ES166680A1 (es) | 1947-11-16 |
GB655666A (en) | 1951-08-01 |
BE456575A (de) | |
NL63875C (de) | |
FR906784A (fr) | 1946-01-18 |
DE975802C (de) | 1962-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2551711A (en) | Manganese zinc ferrite core | |
US2579978A (en) | Soft ferromagnetic material and method of making same | |
US2452529A (en) | Magnet core | |
US2452531A (en) | Process of manufacturing a magnetic material and magnetic core | |
US2640813A (en) | Reaction product of a mixed ferrite and lead titanate | |
US2565111A (en) | Ceramic magnetic material with a small temperature coefficient | |
US2636860A (en) | Magnetic core | |
CN108987062A (zh) | 一种铁氧体-软磁合金复合磁芯及其制备方法 | |
US2751353A (en) | Magnetic material | |
GB820959A (en) | Improvements in or relating to ferromagnetic materials of the ferrite type and methods of manufacturing same | |
US2744873A (en) | Mixed nickel, zinc, vanadium ferrite | |
US2565058A (en) | Ceramic magnetic materials with high saturation-flux density | |
US2929787A (en) | Ferrite with constricted magnetic hysteresis loop | |
US2961407A (en) | Mixed ferrite composition | |
US3415751A (en) | Manganese-zinc ferrites | |
US3492236A (en) | Ferromagnetic core and process for its production | |
GB842005A (en) | Improvements in or relating to ferromagnetic materials | |
GB759245A (en) | Improvements in or relating to methods of manufacturing non-metallic magnetic cores having a substantially rectangular hysteresis loop | |
CN108101527B (zh) | 一种高频细晶粒软磁铁氧体材料及其制备方法 | |
US3609083A (en) | Heat treatment of nickel zinc cobalt ferrite | |
US3450635A (en) | Nickel ferrites containing cobalt,lead and silicon | |
US3057802A (en) | Magnetic materials of the high permeability ferrite type | |
US3065181A (en) | Inductor materials | |
US2992990A (en) | Soft magnetic material | |
US2960472A (en) | Mixed ferrites of manganese, magnesium and zinc and their methods of preparation |