US2142564A - Process for electrodeposition on aluminum and aluminum alloys - Google Patents
Process for electrodeposition on aluminum and aluminum alloys Download PDFInfo
- Publication number
- US2142564A US2142564A US111389D US11138936D US2142564A US 2142564 A US2142564 A US 2142564A US 111389 D US111389 D US 111389D US 11138936 D US11138936 D US 11138936D US 2142564 A US2142564 A US 2142564A
- Authority
- US
- United States
- Prior art keywords
- aluminum
- acid
- solution
- articles
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052782 aluminium Inorganic materials 0.000 title description 35
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title description 35
- 238000000034 method Methods 0.000 title description 33
- 229910000838 Al alloy Inorganic materials 0.000 title description 4
- 238000004070 electrodeposition Methods 0.000 title 1
- 239000000243 solution Substances 0.000 description 47
- 239000002253 acid Substances 0.000 description 19
- 238000007598 dipping method Methods 0.000 description 19
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 12
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 8
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 6
- 235000010338 boric acid Nutrition 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 229910017604 nitric acid Inorganic materials 0.000 description 6
- 238000005554 pickling Methods 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 239000003513 alkali Substances 0.000 description 5
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 5
- 239000004327 boric acid Substances 0.000 description 5
- 150000001879 copper Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000009713 electroplating Methods 0.000 description 4
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- GOBZQAFUBBVPEO-UHFFFAOYSA-N [Cu](C#N)C#N.[K] Chemical compound [Cu](C#N)C#N.[K] GOBZQAFUBBVPEO-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 238000005246 galvanizing Methods 0.000 description 3
- 159000000011 group IA salts Chemical class 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 235000010265 sodium sulphite Nutrition 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
- C25D5/42—Pretreatment of metallic surfaces to be electroplated of light metals
- C25D5/44—Aluminium
Definitions
- the other group of the pickling'solutions for the preparatory treatment of the aluminum or its alloys prior to the galvanizing process include the alkaline pickling solutions of which chiefly zincate dipping solutions are being used.
- the eiiect of the latter principally consists therein, that a firmly adhering coating of zinc is deposited upon the aluminum and subsequently the desired metallic deposit upon said zinc coating in an appropriate manner, whereby a better adhesiveness of the electro-galvanic deposits is ensured than if the latter were applied directly upon the aluminum.
- the alkaline zincate dipping solution is recommended not only for nickelplating aluminum, but also for the galvanic treatment of the aluminum in alkaline or cyanide baths.
- the present application now elucidates a process, by means of which the possibility of obtaining properly adhering deposits, particularly in alkaline baths, will be rendered practically certain.
- this process the aluminum articles are, after the usual degreasing process, treated with a zincate solution or solution to which copper salts have been added.
- composition of the dipping solutions adapted for the present invention for preparatorily treating the aluminum prior to the subsequent galvanization in cyanide baths is not a matter of indifierence.
- the eificiency of the dipping solution rather depends upon its content of free caustic potash, zinc and copper. It has, as a matter of fact, been ascertained, that the indicated aim would best be attained by means of dipping solutions, the content of free alkali of which is about 3 to 15 times normal, whilst the content of zinc should correspond at least to simple normality.
- the copper content of these solutions is then to be kept within the limits of from about 1.5 to 8.0 g. of copper per liter.
- the copper is present wholly or for the greatest part in univalent form. This will be attained, if the copper is added in the form of potassium copper cyanide or other soluble cuprous salts.
- reducing agents such as sodium-sulphite and/or similarly acting substances are added to the dipping solutions.
- the articles preparatorily treated with the dipping solution can be galvanized directly in alkaline or cyanide baths. With certain alloys, par ticularly if they contain copper, and properly burnished articles, it often proves suitable to remove the deposit formed by the dipping solution, by means of oxidizing agents, such as nitric acid or acid mixtures containing nitric acid and to repeat subsequently the treatment with the cuprous zincate dipping solution. This process can, if necessary, be repeated a few times.
- alkali carbonate and/or alkaline salts of fatty acids and/or alkaline salts of inorganic'acids As fatty acids will have to be considered in this case, above all, acid with a low molecular weight, such as formic acid, acetic acid, propionic acid, etc., as inorganic acids, phosphoric acid, boric acid, etc.
- a dipping solution for the preparatory treatment of the aluminum, according to the present invention is composed, e. g. as follows:
- Example 1 To an ordinary copper bath prepared with potassium-copper-cyanide, 10 to 20 g. of pulverized boric acid are added and the copper plating process carried through in known manner.
- the galvanized articles of aluminum are, according to the present invention, after having been copper-plated, brass-plated and the like, treated for some time with weakly acid solutions.
- Aqueous solutions containing 1 to 5% of acid may be used.
- the treatment can consist in boiling the galvanized aluminum articles in a 2-5% solution of boric acid or in a solution of tartaric acid or the like.
- Process according to claim 1 characterized in that the deposit caused to appear on the aluminum on dipping, is removed by means of oxidizing agents of such character as to be capable or removing said deposit and produced anew as a result of a repeated dipping into the zincate solution.
- Process according to claim 1 characterized in that to the alkaline baths used for electroplating purposes, substances acting as acid, are added, the dissociation constant of which does not exceed the value of 110- 9.
- Process according to claim 13 characterized in that the electroplated aluminum articles are subjected to an after-treatment with a solution of an acid, the concentration thereof being such that it does not attack the electroplated articles or only inconsiderably, said after-treatment being conducted at a temperature up to and including the boiling point of said solution.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Electroplating Methods And Accessories (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Description
Patented Jan. 3, i939 UNITED STATES PATENT OFFICE UMINUM Joachim Korpiun, Berlin-Grunewald, Germany, assignor to Schering-Kahlbanm A. G., Berlin, Germany, a corporation of Germany No Drawing. Application November 18, 1936, Serial No. 111,389. In Germany November 19,
1935 14 Claims.
It is known to try to obviate the difliculties met with in the production of electro-galvanic deposits on articles of aluminum and aluminum alloys with the aid of special pickling solutions with which the aluminum or its alloys are treated prior to the galvanization. These pickling solutions are principally divided into two groups. In connection with one of the groups it is intended to obtain adherent electro-galvanic deposits on aluminum by using acids or acid mixtures, with or without admixture of metallic salts, as pickling solutions. These solutions produce an adhesive surface for the deposits to be applied galvanically in most cases by roughing up the aluminum surface to a certain extent, thereby allowing of an improved adhesion of the metallic coating or deposit to the ground metal. These pickling solutions are mostly recommended for the preparatory treatment of the nickel-plating process proper. Also a process has become known in which an intensive preparatory treatment of the aluminum by means of acid mixtures is used as a preliminary step for silver-plating.
These processes do not, in most cases, wholly satisfy, because they roughen up the metal rather excessively and render the bumng process, i. e. providing a brilliant polish on the galvanized articles, more difiicult.
Moreover, this process of roughing up is not adapted for subsequent plating in cyanide baths.
The other group of the pickling'solutions for the preparatory treatment of the aluminum or its alloys prior to the galvanizing process, include the alkaline pickling solutions of which chiefly zincate dipping solutions are being used. The eiiect of the latter principally consists therein, that a firmly adhering coating of zinc is deposited upon the aluminum and subsequently the desired metallic deposit upon said zinc coating in an appropriate manner, whereby a better adhesiveness of the electro-galvanic deposits is ensured than if the latter were applied directly upon the aluminum. The alkaline zincate dipping solution is recommended not only for nickelplating aluminum, but also for the galvanic treatment of the aluminum in alkaline or cyanide baths. Whilst in connection with nickelplating aluminum, preparatorily treated with zincate dipping solution, difliculties are met with, for the obviation of which remedies have been indicated latterly, no method has become known yet, according to which the difliculties could be removed, which are met with in connection with the galvanization of aluminum goods, preparatorily treated with zincate dipping solution, in
alkaline, particularly in cyanide baths. It has been ascertained in practical work, that the attempts to obtain firmly adhering deposits, are characterized by a considerable amount of uncertainty. If, for instance, the aluminum has been preparatorily treated with zincate solutions, it will be altogether impossible to silver-plate the former.
The present application, now elucidates a process, by means of which the possibility of obtaining properly adhering deposits, particularly in alkaline baths, will be rendered practically certain. According to, this process the aluminum articles are, after the usual degreasing process, treated with a zincate solution or solution to which copper salts have been added.
It has, it is true, already been suggested to add copper salts to zincate solutions for the purpose of preparatorily treating aluminum prior to galvanizing the latter, but the coatings produced on the aluminum by means of this dipping process, according to said process are removed again by means of nitric acid before electro-plating takes place. Aluminum thus preparatorily treated, may be adapted for being nickel-plated, but not for galvanization in alkaline plating baths.
The composition of the dipping solutions adapted for the present invention for preparatorily treating the aluminum prior to the subsequent galvanization in cyanide baths is not a matter of indifierence. The eificiency of the dipping solution rather depends upon its content of free caustic potash, zinc and copper. It has, as a matter of fact, been ascertained, that the indicated aim would best be attained by means of dipping solutions, the content of free alkali of which is about 3 to 15 times normal, whilst the content of zinc should correspond at least to simple normality. The copper content of these solutions is then to be kept within the limits of from about 1.5 to 8.0 g. of copper per liter. In connection herewith it is of advantage, if the copper is present wholly or for the greatest part in univalent form. This will be attained, if the copper is added in the form of potassium copper cyanide or other soluble cuprous salts. In order to retard the oxidation of the univalent copper salt by the atmospheric oxygen, reducing agents, such as sodium-sulphite and/or similarly acting substances are added to the dipping solutions.
The articles preparatorily treated with the dipping solution can be galvanized directly in alkaline or cyanide baths. With certain alloys, par ticularly if they contain copper, and properly burnished articles, it often proves suitable to remove the deposit formed by the dipping solution, by means of oxidizing agents, such as nitric acid or acid mixtures containing nitric acid and to repeat subsequently the treatment with the cuprous zincate dipping solution. This process can, if necessary, be repeated a few times.
It has further proved advantageous to add to the baths, instead for the galvanization of .the aluminum articles treated according to the present invention, alkali carbonate and/or alkaline salts of fatty acids and/or alkaline salts of inorganic'acids. As fatty acids will have to be considered in this case, above all, acid with a low molecular weight, such as formic acid, acetic acid, propionic acid, etc., as inorganic acids, phosphoric acid, boric acid, etc.
A dipping solution for the preparatory treatment of the aluminum, according to the present invention, is composed, e. g. as follows:
Water liter 1 Caustic soda g 400 Zinc oxide g 80 Copper (e. g. in form of potassium-copper cyanide) g Sodium sulphite g 25 Depending upon the kind of article or of the alloy, the article is immersed in this solution for 7$ to 5 minutes subsequently rinsed and placed into the galvanic bath. If necessary, the removal of the deposit, described in the foregoing, by means of nitric acid, can be effected and the treatment by means of the clipping solution repeated.
According to the described process ,it will be possible to obtain perfectly adhering deposits at temperatures up to about 120 in copper, brass. cadmium, silver, gold baths and the like. The deposits allow of being polished by means of the bufllng wheel or also with the aid of the steel, without causing the well-known blisters. They also resist any deformation of the aluminum as e. g. by sharp bends, hammering and the like without causing thereby a detachment of the deposit. I
If the articles, treated in accordance with the present invention, should be subjected to temperatures above 120 C., it may happen, that the adhesive resistance of the electro-galvanic deposits, such as coatings of brass, copper or silver, decreases, which is rendered obvious by blistering and scaling.
In this case it is advisable, to add to the cyanide baths serving for galvanizing the preparatorily treated aluminum parts, substances, acting as acid, the dissociation constant of which does not exceed l.0-10- For this purpose boric acid, phenols, substituted phenols or the like will have to be considered. In this case it concerns such substances, the degree of acidity of which differs only very little from that of hydrocyanic acid, if at all. 1
Example To an ordinary copper bath prepared with potassium-copper-cyanide, 10 to 20 g. of pulverized boric acid are added and the copper plating process carried through in known manner.
For the purpose of improving the adhesive resistance of the deposits at higher temperatures, the galvanized articles of aluminum are, according to the present invention, after having been copper-plated, brass-plated and the like, treated for some time with weakly acid solutions. Aqueous solutions containing 1 to 5% of acid may be used. The treatment can consist in boiling the galvanized aluminum articles in a 2-5% solution of boric acid or in a solution of tartaric acid or the like.
It will generally be sumcient, if the duration of the subsequent t eatment extends over 5 to 10 minutes. The tre tmcnt in heated or boiling solutions is, however, not absolutely required. The same satisfactory effect can, however, be ensured by using said solutions at room temperatur'e in connection with which the duration of treatment should be suitably prolonged. It has been ascertained that in these circumstances a treatment extending over 10 to 30 minutes, will produce the desired eflect.
The nature and concentration of the acid solutions used for the after-treatment is not of a decisive importance with regard to the effect of this treatment, as long as the galvanized articles are not beingattacked thereby or otherwise deleteriously influenced.
By an examination of the articles of aluminum or aluminum alloy, which were preparatorily treated according to the described process and galvanized in due consideration of the detailed measures and subjected to the after-treatment, it has been ascertained, that these articles sustain a temperature of 350-400 for a prolonged period. With nickel deposits, applied to such copperor brass-plated sheet aluminum, the heating could be continued until the aluminum began to melt, without causing the nickel deposit to peel oil.
It has also been ascertained, that in many cases faultless articles are obtained. if they are subjected either to the after-treatment in baths only, or if they are galvanized in baths, to which the weakly acid substances have been added. A combination of both processes has, however, proved to represent the most advantageous method.
Of course, various modifications and changes in the reaction conditions, etc., may be made by those skilled in the art in accordance with the principles set forth herein and in the claims annexed hereto.
What I claim is:-
1. Process for the production of electroplated deposits on articles of aluminum or aluminum alloys after currentless preparatory treatment by means of zincate dipping solution containing caustic alkali, characterized in that for the preparatory treatment a zincate dipping solution is used which contains univalent copper salts and that the produced intermediate coating remains on the aluminum after the preparatory treatment, whereupon the electroplating is effected.
2. Process according to claim 1, characterized in that the zincate solution contains an amount of caustic alkali such that the solution is about 3-45 times normal.
3. Process according to claim 1, characterized in that the content of zinc of the zincate solution is at least 1/1 normal.
4. Process according to claim 1, characterized in that the content of copper of the zincate solution amounts to about 1.5-8.0 g. per liter.
5. Process according to claim 1, characterized in that reducing agents are added to the zincate solution, said agents acting to retard oxidation of said copper salts by atmospheric oxygen.
6. Process according to claim 1, characterized in that the deposit caused to appear on the aluminum on dipping, is removed by means of oxidizing agents of such character as to be capable or removing said deposit and produced anew as a result of a repeated dipping into the zincate solution.
'7. Process according to claim 1, characterized in that the deposit produced on the aluminum as a result of the dipping, is removed by means of an oxidizing agent taken from the class consisting of nitric acid and acid mixtures containing nitric acid and produced anew by repeating the dipping operation into the zincate solution.
8. Process according to claim 1, characterized in that to the alkaline baths used for electroplating purposes, substances acting as acid, are added, the dissociation constant of which does not exceed the value of 110- 9. Process according to claim 1, characterized in that said electroplating is accomplished in cyanide baths and to the cyanide baths alkali carbonates are added.
10. Process according to claim 1, characterized in that the electroplated aluminum articles are subjected to an after-treatment with a weak acid solution, the concentration thereof being such that it does not attack the electroplated articles or only inconsiderably.
11. Process according to claim 1, characterized in that to the alkaline baths, at least one alkaline salt of an acid selected from the class consisting of phosphoric acid, boric acid and fatty acid containing at most three carbon atoms is added.
12. Process according to claim 1, characterized in that the electroplated aluminum articles are subjected to an after-treatment with a solution of an acid taken from the class consisting of boric and tartaric acids. I
13. Process according to claim 1, characterized in that the electroplated aluminum articles are subjected to an after-treatment with a solution of an acid, the concentration thereof being such that it does not attack the electroplated articles or only inconsiderably, said after-treatment being conducted at a temperature up to and including the boiling point of said solution.
14. Process according to claim 1, characterized in that the electroplated aluminum articles are subjected to an after-treatment with a solution of an acid, the concentration thereof being such that it does not attack the electroplated articles or only inconsiderably, said solution containing 1-5% oi said acid in aqueous medium.
JOACHIM KORPIUN.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE466949X | 1935-11-19 | ||
DESCH108506D DE663979C (en) | 1935-11-19 | 1935-11-20 | Production of galvanic deposits on aluminum and aluminum alloys |
Publications (1)
Publication Number | Publication Date |
---|---|
US2142564A true US2142564A (en) | 1939-01-03 |
Family
ID=25944075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US111389D Expired - Lifetime US2142564A (en) | 1935-11-19 | 1936-11-18 | Process for electrodeposition on aluminum and aluminum alloys |
Country Status (4)
Country | Link |
---|---|
US (1) | US2142564A (en) |
DE (1) | DE663979C (en) |
FR (1) | FR813761A (en) |
GB (1) | GB466949A (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2506164A (en) * | 1947-10-15 | 1950-05-02 | John E Morse | Method for the production of metallic printing members |
US2650901A (en) * | 1949-06-08 | 1953-09-01 | Horst Corp Of America V D | Electroplating on aluminum |
US2650886A (en) * | 1951-01-19 | 1953-09-01 | Aluminum Co Of America | Procedure and bath for plating on aluminum |
US2654701A (en) * | 1950-06-08 | 1953-10-06 | Edwin R Calderon | Plating aluminum |
US2662054A (en) * | 1950-09-08 | 1953-12-08 | United Chromium Inc | Method of electrodepositing chromium directly on aluminum |
US2676916A (en) * | 1949-09-23 | 1954-04-27 | Aluminum Co Of America | Electroplating on aluminum |
US2745799A (en) * | 1951-03-16 | 1956-05-15 | Pechiney Prod Chimiques Sa | Processes for coating aluminum and alloys thereof |
US2752302A (en) * | 1950-07-28 | 1956-06-26 | Warren Alloy | Process of treating aluminum work pieces |
US2891309A (en) * | 1956-12-17 | 1959-06-23 | American Leonic Mfg Company | Electroplating on aluminum wire |
US3075894A (en) * | 1959-01-23 | 1963-01-29 | Westinghouse Electric Corp | Method of electroplating on aluminum surfaces |
US3202529A (en) * | 1962-08-08 | 1965-08-24 | Sperry Rand Corp | Disposition of nickel-cobalt alloy on aluminum substrates |
US3455014A (en) * | 1968-01-11 | 1969-07-15 | M & T Chemicals Inc | Method of joining by plating aluminum and alloys thereof |
US3505181A (en) * | 1963-05-29 | 1970-04-07 | Secr Defence Brit | Treatment of titanium surfaces |
US3909209A (en) * | 1973-11-05 | 1975-09-30 | Gould Inc | Method of treating aluminum and aluminum alloys and article produced thereby |
US3920413A (en) * | 1974-04-05 | 1975-11-18 | Nasa | Panel for selectively absorbing solar thermal energy and the method of producing said panel |
US3989606A (en) * | 1975-09-26 | 1976-11-02 | Aluminum Company Of America | Metal plating on aluminum |
US4192722A (en) * | 1978-07-25 | 1980-03-11 | Reynolds Metals Company | Composition and method for stannate plating of large aluminum parts |
US5882802A (en) * | 1988-08-29 | 1999-03-16 | Ostolski; Marian J. | Noble metal coated, seeded bimetallic non-noble metal powders |
US20030155409A1 (en) * | 2001-11-21 | 2003-08-21 | Dockus Kostas F. | Fluxless brazing |
US6656606B1 (en) | 2000-08-17 | 2003-12-02 | The Westaim Corporation | Electroplated aluminum parts and process of production |
US20040038070A1 (en) * | 2001-11-21 | 2004-02-26 | Dockus Kostas F. | Fluxless brazing |
US20040035910A1 (en) * | 2001-11-21 | 2004-02-26 | Dockus Kostas F. | Low temperature fluxless brazing |
US20040035911A1 (en) * | 2001-11-21 | 2004-02-26 | Dockus Kostas F. | Fluxless brazing |
US20060027625A1 (en) * | 2001-11-21 | 2006-02-09 | Dana Canada Corporation | Products for use in low temperature fluxless brazing |
US20060102696A1 (en) * | 2001-11-21 | 2006-05-18 | Graham Michael E | Layered products for fluxless brazing of substrates |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE963658C (en) * | 1941-06-19 | 1957-05-09 | Rudolf Zuleger | Process for the production of protective layers on aluminum or aluminum alloys using alkaline chromate baths |
US2739932A (en) * | 1952-09-05 | 1956-03-27 | Clarence W Forestek | Electrodepositing chromium on aluminum |
US3108006A (en) * | 1959-07-13 | 1963-10-22 | M & T Chemicals Inc | Plating on aluminum |
-
1935
- 1935-11-20 DE DESCH108506D patent/DE663979C/en not_active Expired
-
1936
- 1936-11-18 US US111389D patent/US2142564A/en not_active Expired - Lifetime
- 1936-11-19 GB GB31735/36A patent/GB466949A/en not_active Expired
- 1936-11-19 FR FR813761D patent/FR813761A/en not_active Expired
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2506164A (en) * | 1947-10-15 | 1950-05-02 | John E Morse | Method for the production of metallic printing members |
US2650901A (en) * | 1949-06-08 | 1953-09-01 | Horst Corp Of America V D | Electroplating on aluminum |
US2676916A (en) * | 1949-09-23 | 1954-04-27 | Aluminum Co Of America | Electroplating on aluminum |
US2654701A (en) * | 1950-06-08 | 1953-10-06 | Edwin R Calderon | Plating aluminum |
US2752302A (en) * | 1950-07-28 | 1956-06-26 | Warren Alloy | Process of treating aluminum work pieces |
US2662054A (en) * | 1950-09-08 | 1953-12-08 | United Chromium Inc | Method of electrodepositing chromium directly on aluminum |
US2650886A (en) * | 1951-01-19 | 1953-09-01 | Aluminum Co Of America | Procedure and bath for plating on aluminum |
US2745799A (en) * | 1951-03-16 | 1956-05-15 | Pechiney Prod Chimiques Sa | Processes for coating aluminum and alloys thereof |
US2891309A (en) * | 1956-12-17 | 1959-06-23 | American Leonic Mfg Company | Electroplating on aluminum wire |
US3075894A (en) * | 1959-01-23 | 1963-01-29 | Westinghouse Electric Corp | Method of electroplating on aluminum surfaces |
US3202529A (en) * | 1962-08-08 | 1965-08-24 | Sperry Rand Corp | Disposition of nickel-cobalt alloy on aluminum substrates |
US3505181A (en) * | 1963-05-29 | 1970-04-07 | Secr Defence Brit | Treatment of titanium surfaces |
US3455014A (en) * | 1968-01-11 | 1969-07-15 | M & T Chemicals Inc | Method of joining by plating aluminum and alloys thereof |
US3909209A (en) * | 1973-11-05 | 1975-09-30 | Gould Inc | Method of treating aluminum and aluminum alloys and article produced thereby |
US3920413A (en) * | 1974-04-05 | 1975-11-18 | Nasa | Panel for selectively absorbing solar thermal energy and the method of producing said panel |
US3989606A (en) * | 1975-09-26 | 1976-11-02 | Aluminum Company Of America | Metal plating on aluminum |
US4192722A (en) * | 1978-07-25 | 1980-03-11 | Reynolds Metals Company | Composition and method for stannate plating of large aluminum parts |
US5882802A (en) * | 1988-08-29 | 1999-03-16 | Ostolski; Marian J. | Noble metal coated, seeded bimetallic non-noble metal powders |
US6656606B1 (en) | 2000-08-17 | 2003-12-02 | The Westaim Corporation | Electroplated aluminum parts and process of production |
US6692630B2 (en) | 2000-08-17 | 2004-02-17 | The Westaim Corporation | Electroplated aluminum parts and process for production |
US6815086B2 (en) | 2001-11-21 | 2004-11-09 | Dana Canada Corporation | Methods for fluxless brazing |
US20030197050A1 (en) * | 2001-11-21 | 2003-10-23 | Graham Michael E. | Fluxless brazing method and compositions of layered material systems for brazing aluminum or dissimilar metals |
US20040038070A1 (en) * | 2001-11-21 | 2004-02-26 | Dockus Kostas F. | Fluxless brazing |
US20040035910A1 (en) * | 2001-11-21 | 2004-02-26 | Dockus Kostas F. | Low temperature fluxless brazing |
US20040035911A1 (en) * | 2001-11-21 | 2004-02-26 | Dockus Kostas F. | Fluxless brazing |
US20030155409A1 (en) * | 2001-11-21 | 2003-08-21 | Dockus Kostas F. | Fluxless brazing |
US6913184B2 (en) | 2001-11-21 | 2005-07-05 | Dana Canada Corporation | Alloy composition and method for low temperature fluxless brazing |
US6959853B2 (en) | 2001-11-21 | 2005-11-01 | Dana Canada Corporation | Fluxless brazing method and method for manufacturing layered material systems for fluxless brazing |
US20060027625A1 (en) * | 2001-11-21 | 2006-02-09 | Dana Canada Corporation | Products for use in low temperature fluxless brazing |
US7000823B2 (en) | 2001-11-21 | 2006-02-21 | Dana Canada Corporation | Fluxless brazing |
US20060102696A1 (en) * | 2001-11-21 | 2006-05-18 | Graham Michael E | Layered products for fluxless brazing of substrates |
US7451906B2 (en) | 2001-11-21 | 2008-11-18 | Dana Canada Corporation | Products for use in low temperature fluxless brazing |
US7735718B2 (en) | 2001-11-21 | 2010-06-15 | Dana Canada Corporation | Layered products for fluxless brazing of substrates |
Also Published As
Publication number | Publication date |
---|---|
FR813761A (en) | 1937-06-08 |
DE663979C (en) | 1938-09-03 |
GB466949A (en) | 1937-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2142564A (en) | Process for electrodeposition on aluminum and aluminum alloys | |
US5843538A (en) | Method for electroless nickel plating of metal substrates | |
US2915444A (en) | Process for cleaning and plating ferrous metals | |
US3654099A (en) | Cathodic activation of stainless steel | |
US4169770A (en) | Electroplating aluminum articles | |
US4659438A (en) | Process for the treatment of stainless steel for a direct galvanic gold plating | |
US3666529A (en) | Method of conditioning aluminous surfaces for the reception of electroless nickel plating | |
CN101243211A (en) | Pretreatment of Magnesium Substrates for Electroplating | |
US2654701A (en) | Plating aluminum | |
US3620949A (en) | Metal pretreatment and coating process | |
US2526544A (en) | Method of producing a metallic coating on magnesium and its alloys | |
CH638568A5 (en) | METHOD FOR GALVANICALLY DEPOSITING A BRONZE COVER ON ALUMINUM. | |
US4349390A (en) | Method for the electrolytical metal coating of magnesium articles | |
US2457059A (en) | Method for bonding a nickel electrodeposit to a nickel surface | |
US2811484A (en) | Electrodeposition of zinc on magnesium and its alloys | |
US2548419A (en) | Method for production of lustrous zinc | |
US3284323A (en) | Electroplating of aluminum and its alloys | |
US2092130A (en) | Anodic cleaning process | |
US4196061A (en) | Direct nickel-plating of aluminum | |
US2791553A (en) | Method of electroplating aluminum | |
US2662054A (en) | Method of electrodepositing chromium directly on aluminum | |
CA1153978A (en) | Coating aluminium alloy with cyanide-borate before electroplating with bronze | |
US2966448A (en) | Methods of electroplating aluminum and alloys thereof | |
US3915812A (en) | Method of manufacturing tinned plates having high corrosion resistant property | |
US2706171A (en) | Stripping chromium plating from zinc electrolytically |