US20200155593A1 - Polymalic acid-based nanobiopolymer compositions - Google Patents
Polymalic acid-based nanobiopolymer compositions Download PDFInfo
- Publication number
- US20200155593A1 US20200155593A1 US16/773,769 US202016773769A US2020155593A1 US 20200155593 A1 US20200155593 A1 US 20200155593A1 US 202016773769 A US202016773769 A US 202016773769A US 2020155593 A1 US2020155593 A1 US 2020155593A1
- Authority
- US
- United States
- Prior art keywords
- her2
- cancer
- composition
- neu
- tumor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims description 126
- 239000002253 acid Substances 0.000 title claims description 17
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 235
- 239000000074 antisense oligonucleotide Substances 0.000 claims abstract description 133
- 238000012230 antisense oligonucleotides Methods 0.000 claims abstract description 133
- 201000011510 cancer Diseases 0.000 claims abstract description 128
- 238000000034 method Methods 0.000 claims abstract description 27
- 229940116298 l- malic acid Drugs 0.000 claims abstract description 15
- 108020004459 Small interfering RNA Proteins 0.000 claims abstract description 13
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 claims abstract description 13
- 208000026310 Breast neoplasm Diseases 0.000 claims description 84
- 206010006187 Breast cancer Diseases 0.000 claims description 74
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 claims description 70
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 claims description 61
- 230000000694 effects Effects 0.000 claims description 41
- 239000003112 inhibitor Substances 0.000 claims description 23
- 210000000130 stem cell Anatomy 0.000 claims description 23
- 230000015572 biosynthetic process Effects 0.000 claims description 22
- 238000003786 synthesis reaction Methods 0.000 claims description 20
- 229920001223 polyethylene glycol Polymers 0.000 claims description 18
- 239000002202 Polyethylene glycol Substances 0.000 claims description 17
- 108091034117 Oligonucleotide Proteins 0.000 claims description 12
- 230000002401 inhibitory effect Effects 0.000 claims description 12
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 claims description 12
- 239000005483 tyrosine kinase inhibitor Substances 0.000 claims description 12
- 239000008194 pharmaceutical composition Substances 0.000 claims description 10
- 150000004917 tyrosine kinase inhibitor derivatives Chemical class 0.000 claims description 10
- 239000005411 L01XE02 - Gefitinib Substances 0.000 claims description 9
- 239000003937 drug carrier Substances 0.000 claims description 9
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 claims description 9
- 239000002771 cell marker Substances 0.000 claims description 8
- 229960002584 gefitinib Drugs 0.000 claims description 8
- 102100032912 CD44 antigen Human genes 0.000 claims description 7
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 claims description 7
- 238000001990 intravenous administration Methods 0.000 claims description 5
- 101000610551 Homo sapiens Prominin-1 Proteins 0.000 claims description 4
- 102000001759 Notch1 Receptor Human genes 0.000 claims description 4
- 108010029755 Notch1 Receptor Proteins 0.000 claims description 4
- 102100040120 Prominin-1 Human genes 0.000 claims description 4
- 102000008730 Nestin Human genes 0.000 claims description 3
- 108010088225 Nestin Proteins 0.000 claims description 3
- 239000002773 nucleotide Substances 0.000 claims description 3
- 125000003729 nucleotide group Chemical group 0.000 claims description 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 2
- 108010087705 Proto-Oncogene Proteins c-myc Proteins 0.000 claims description 2
- 102000009092 Proto-Oncogene Proteins c-myc Human genes 0.000 claims description 2
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 claims 2
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 claims 2
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 claims 2
- 108020000948 Antisense Oligonucleotides Proteins 0.000 abstract description 131
- 102000007238 Transferrin Receptors Human genes 0.000 abstract description 73
- 108010033576 Transferrin Receptors Proteins 0.000 abstract description 73
- 231100000252 nontoxic Toxicity 0.000 abstract description 6
- 230000003000 nontoxic effect Effects 0.000 abstract description 6
- 102000027450 oncoproteins Human genes 0.000 abstract description 5
- 108091008819 oncoproteins Proteins 0.000 abstract description 5
- 230000002163 immunogen Effects 0.000 abstract description 4
- 210000004027 cell Anatomy 0.000 description 120
- 229940022353 herceptin Drugs 0.000 description 115
- 101150029707 ERBB2 gene Proteins 0.000 description 112
- 239000003814 drug Substances 0.000 description 110
- 229940079593 drug Drugs 0.000 description 104
- 238000011282 treatment Methods 0.000 description 85
- 238000012377 drug delivery Methods 0.000 description 72
- 229920001427 mPEG Polymers 0.000 description 68
- 102000001301 EGF receptor Human genes 0.000 description 49
- 108090000623 proteins and genes Proteins 0.000 description 49
- 229960000575 trastuzumab Drugs 0.000 description 43
- 102000004169 proteins and genes Human genes 0.000 description 40
- 230000014509 gene expression Effects 0.000 description 39
- 108060006698 EGF receptor Proteins 0.000 description 38
- 230000005764 inhibitory process Effects 0.000 description 37
- 230000008685 targeting Effects 0.000 description 35
- 210000004881 tumor cell Anatomy 0.000 description 29
- 150000001875 compounds Chemical class 0.000 description 27
- 230000004614 tumor growth Effects 0.000 description 27
- 108091008611 Protein Kinase B Proteins 0.000 description 25
- 241000699670 Mus sp. Species 0.000 description 23
- 238000012384 transportation and delivery Methods 0.000 description 23
- 230000006907 apoptotic process Effects 0.000 description 20
- 241001465754 Metazoa Species 0.000 description 19
- 150000002611 lead compounds Chemical class 0.000 description 19
- 239000003795 chemical substances by application Substances 0.000 description 18
- 238000000338 in vitro Methods 0.000 description 18
- 238000001727 in vivo Methods 0.000 description 17
- 101000851181 Homo sapiens Epidermal growth factor receptor Proteins 0.000 description 15
- 230000000692 anti-sense effect Effects 0.000 description 15
- 210000001163 endosome Anatomy 0.000 description 15
- 102000005962 receptors Human genes 0.000 description 15
- 108020003175 receptors Proteins 0.000 description 15
- 108091007960 PI3Ks Proteins 0.000 description 14
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 14
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 14
- BCFGMOOMADDAQU-UHFFFAOYSA-N lapatinib Chemical compound O1C(CNCCS(=O)(=O)C)=CC=C1C1=CC=C(N=CN=C2NC=3C=C(Cl)C(OCC=4C=C(F)C=CC=4)=CC=3)C2=C1 BCFGMOOMADDAQU-UHFFFAOYSA-N 0.000 description 14
- 230000011664 signaling Effects 0.000 description 14
- ZBNZXTGUTAYRHI-UHFFFAOYSA-N Dasatinib Chemical compound C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1Cl ZBNZXTGUTAYRHI-UHFFFAOYSA-N 0.000 description 13
- 239000002136 L01XE07 - Lapatinib Substances 0.000 description 13
- 229960004891 lapatinib Drugs 0.000 description 13
- 210000001519 tissue Anatomy 0.000 description 13
- 239000002067 L01XE06 - Dasatinib Substances 0.000 description 12
- 230000000295 complement effect Effects 0.000 description 12
- 230000001086 cytosolic effect Effects 0.000 description 12
- 229960002448 dasatinib Drugs 0.000 description 12
- -1 poly(malic acid) Polymers 0.000 description 12
- 101100067974 Arabidopsis thaliana POP2 gene Proteins 0.000 description 11
- 101100118549 Homo sapiens EGFR gene Proteins 0.000 description 11
- 101100123851 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HER1 gene Proteins 0.000 description 11
- 230000000259 anti-tumor effect Effects 0.000 description 11
- 230000037361 pathway Effects 0.000 description 11
- 230000026731 phosphorylation Effects 0.000 description 11
- 238000006366 phosphorylation reaction Methods 0.000 description 11
- 231100000588 tumorigenic Toxicity 0.000 description 11
- 230000000381 tumorigenic effect Effects 0.000 description 11
- 210000005166 vasculature Anatomy 0.000 description 11
- 102000012338 Poly(ADP-ribose) Polymerases Human genes 0.000 description 10
- 108010061844 Poly(ADP-ribose) Polymerases Proteins 0.000 description 10
- 229920000776 Poly(Adenosine diphosphate-ribose) polymerase Polymers 0.000 description 10
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 10
- 210000000805 cytoplasm Anatomy 0.000 description 10
- 238000011161 development Methods 0.000 description 10
- 201000010099 disease Diseases 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 230000004083 survival effect Effects 0.000 description 10
- 206010027476 Metastases Diseases 0.000 description 9
- 208000003721 Triple Negative Breast Neoplasms Diseases 0.000 description 9
- 210000004556 brain Anatomy 0.000 description 9
- 102000051957 human ERBB2 Human genes 0.000 description 9
- 108020004999 messenger RNA Proteins 0.000 description 9
- 229960002087 pertuzumab Drugs 0.000 description 9
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 9
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- 230000035508 accumulation Effects 0.000 description 8
- 238000009825 accumulation Methods 0.000 description 8
- 239000002246 antineoplastic agent Substances 0.000 description 8
- 230000009401 metastasis Effects 0.000 description 8
- 239000002062 molecular scaffold Substances 0.000 description 8
- 239000002105 nanoparticle Substances 0.000 description 8
- 210000000056 organ Anatomy 0.000 description 8
- 238000001262 western blot Methods 0.000 description 8
- 239000012116 Alexa Fluor 680 Substances 0.000 description 7
- 108010023378 Endo-Porter Proteins 0.000 description 7
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 7
- 239000013543 active substance Substances 0.000 description 7
- 239000000427 antigen Substances 0.000 description 7
- 108091007433 antigens Proteins 0.000 description 7
- 102000036639 antigens Human genes 0.000 description 7
- 230000010261 cell growth Effects 0.000 description 7
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 7
- 229950008579 ertumaxomab Drugs 0.000 description 7
- QIGLJVBIRIXQRN-ZETCQYMHSA-N ethyl (2s)-2-amino-4-methylpentanoate Chemical compound CCOC(=O)[C@@H](N)CC(C)C QIGLJVBIRIXQRN-ZETCQYMHSA-N 0.000 description 7
- 230000012010 growth Effects 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 230000001404 mediated effect Effects 0.000 description 7
- 239000000546 pharmaceutical excipient Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 238000002560 therapeutic procedure Methods 0.000 description 7
- 206010055113 Breast cancer metastatic Diseases 0.000 description 6
- QIGLJVBIRIXQRN-UHFFFAOYSA-N DL-leucine ethyl ester Natural products CCOC(=O)C(N)CC(C)C QIGLJVBIRIXQRN-UHFFFAOYSA-N 0.000 description 6
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 6
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 6
- 241000124008 Mammalia Species 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 6
- 108700020796 Oncogene Proteins 0.000 description 6
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 6
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 210000000481 breast Anatomy 0.000 description 6
- 230000004663 cell proliferation Effects 0.000 description 6
- 238000003776 cleavage reaction Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000000890 drug combination Substances 0.000 description 6
- 229960001433 erlotinib Drugs 0.000 description 6
- 239000003446 ligand Substances 0.000 description 6
- 239000013642 negative control Substances 0.000 description 6
- 238000011580 nude mouse model Methods 0.000 description 6
- 230000002611 ovarian Effects 0.000 description 6
- 230000002018 overexpression Effects 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 230000007017 scission Effects 0.000 description 6
- 208000022679 triple-negative breast carcinoma Diseases 0.000 description 6
- 230000036326 tumor accumulation Effects 0.000 description 6
- 230000033616 DNA repair Effects 0.000 description 5
- 206010059866 Drug resistance Diseases 0.000 description 5
- 108060003951 Immunoglobulin Proteins 0.000 description 5
- 102100039688 Insulin-like growth factor 1 receptor Human genes 0.000 description 5
- 101710184277 Insulin-like growth factor 1 receptor Proteins 0.000 description 5
- 241000699660 Mus musculus Species 0.000 description 5
- 108010065917 TOR Serine-Threonine Kinases Proteins 0.000 description 5
- 102000013530 TOR Serine-Threonine Kinases Human genes 0.000 description 5
- 238000010171 animal model Methods 0.000 description 5
- 238000004624 confocal microscopy Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 102000018358 immunoglobulin Human genes 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 210000004072 lung Anatomy 0.000 description 5
- 208000020816 lung neoplasm Diseases 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 230000035755 proliferation Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000009885 systemic effect Effects 0.000 description 5
- 229960001603 tamoxifen Drugs 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229940124597 therapeutic agent Drugs 0.000 description 5
- 229960001612 trastuzumab emtansine Drugs 0.000 description 5
- 108010076667 Caspases Proteins 0.000 description 4
- 102000011727 Caspases Human genes 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- 101001010819 Homo sapiens Receptor tyrosine-protein kinase erbB-3 Proteins 0.000 description 4
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 4
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 4
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 4
- 206010061535 Ovarian neoplasm Diseases 0.000 description 4
- 229930012538 Paclitaxel Natural products 0.000 description 4
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 230000005754 cellular signaling Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 230000002357 endometrial effect Effects 0.000 description 4
- 102000015694 estrogen receptors Human genes 0.000 description 4
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 4
- 102000057750 human ERBB3 Human genes 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 210000004379 membrane Anatomy 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 230000001394 metastastic effect Effects 0.000 description 4
- 206010061289 metastatic neoplasm Diseases 0.000 description 4
- 238000010172 mouse model Methods 0.000 description 4
- 229960001592 paclitaxel Drugs 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000002062 proliferating effect Effects 0.000 description 4
- 238000007920 subcutaneous administration Methods 0.000 description 4
- 239000000829 suppository Substances 0.000 description 4
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 4
- 229960005486 vaccine Drugs 0.000 description 4
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 201000009030 Carcinoma Diseases 0.000 description 3
- 206010009944 Colon cancer Diseases 0.000 description 3
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 3
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 3
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 3
- 206010025323 Lymphomas Diseases 0.000 description 3
- 108091054455 MAP kinase family Proteins 0.000 description 3
- 102400000058 Neuregulin-1 Human genes 0.000 description 3
- 108090000556 Neuregulin-1 Proteins 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 108091000080 Phosphotransferase Proteins 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 102100033810 RAC-alpha serine/threonine-protein kinase Human genes 0.000 description 3
- 101710100969 Receptor tyrosine-protein kinase erbB-3 Proteins 0.000 description 3
- 102100029986 Receptor tyrosine-protein kinase erbB-3 Human genes 0.000 description 3
- 210000001744 T-lymphocyte Anatomy 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- 229940034982 antineoplastic agent Drugs 0.000 description 3
- 239000012620 biological material Substances 0.000 description 3
- 231100000504 carcinogenesis Toxicity 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000006471 dimerization reaction Methods 0.000 description 3
- 229960003668 docetaxel Drugs 0.000 description 3
- 230000003828 downregulation Effects 0.000 description 3
- 238000001647 drug administration Methods 0.000 description 3
- 230000003511 endothelial effect Effects 0.000 description 3
- 229940011871 estrogen Drugs 0.000 description 3
- 239000000262 estrogen Substances 0.000 description 3
- 108010038795 estrogen receptors Proteins 0.000 description 3
- 230000002496 gastric effect Effects 0.000 description 3
- 230000009422 growth inhibiting effect Effects 0.000 description 3
- 230000009036 growth inhibition Effects 0.000 description 3
- 239000000833 heterodimer Substances 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 229960003136 leucine Drugs 0.000 description 3
- 208000032839 leukemia Diseases 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 208000014018 liver neoplasm Diseases 0.000 description 3
- 201000005202 lung cancer Diseases 0.000 description 3
- 210000003712 lysosome Anatomy 0.000 description 3
- 230000001868 lysosomic effect Effects 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 239000002674 ointment Substances 0.000 description 3
- 231100000590 oncogenic Toxicity 0.000 description 3
- 230000002246 oncogenic effect Effects 0.000 description 3
- 230000020477 pH reduction Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 102000020233 phosphotransferase Human genes 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 102000003998 progesterone receptors Human genes 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 210000002307 prostate Anatomy 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 210000003079 salivary gland Anatomy 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- 235000012222 talc Nutrition 0.000 description 3
- 125000003396 thiol group Chemical group [H]S* 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 2
- 230000007730 Akt signaling Effects 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- 108010069682 CSK Tyrosine-Protein Kinase Proteins 0.000 description 2
- 101100314454 Caenorhabditis elegans tra-1 gene Proteins 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 208000005623 Carcinogenesis Diseases 0.000 description 2
- 102000000844 Cell Surface Receptors Human genes 0.000 description 2
- 108010001857 Cell Surface Receptors Proteins 0.000 description 2
- 206010008342 Cervix carcinoma Diseases 0.000 description 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 2
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 206010014759 Endometrial neoplasm Diseases 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 2
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 2
- 102000003972 Fibroblast growth factor 7 Human genes 0.000 description 2
- 108090000385 Fibroblast growth factor 7 Proteins 0.000 description 2
- 108010024636 Glutathione Proteins 0.000 description 2
- 208000017891 HER2 positive breast carcinoma Diseases 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 102000003745 Hepatocyte Growth Factor Human genes 0.000 description 2
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 description 2
- 101000589668 Homo sapiens Nuclear apoptosis-inducing factor 1 Proteins 0.000 description 2
- 101000605639 Homo sapiens Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform Proteins 0.000 description 2
- 101001010823 Homo sapiens Receptor tyrosine-protein kinase erbB-4 Proteins 0.000 description 2
- 101000971144 Homo sapiens Tyrosine-protein kinase BAZ1B Proteins 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 2
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 108090001090 Lectins Proteins 0.000 description 2
- 102000004856 Lectins Human genes 0.000 description 2
- 102000019149 MAP kinase activity proteins Human genes 0.000 description 2
- 108040008097 MAP kinase activity proteins Proteins 0.000 description 2
- 102000043136 MAP kinase family Human genes 0.000 description 2
- 102000048850 Neoplasm Genes Human genes 0.000 description 2
- 108700019961 Neoplasm Genes Proteins 0.000 description 2
- 102100032221 Nuclear apoptosis-inducing factor 1 Human genes 0.000 description 2
- 108010038807 Oligopeptides Proteins 0.000 description 2
- 102000015636 Oligopeptides Human genes 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 108091008606 PDGF receptors Proteins 0.000 description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 102100038332 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform Human genes 0.000 description 2
- 241000224486 Physarum polycephalum Species 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- 102000011653 Platelet-Derived Growth Factor Receptors Human genes 0.000 description 2
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 102000001253 Protein Kinase Human genes 0.000 description 2
- 102000005765 Proto-Oncogene Proteins c-akt Human genes 0.000 description 2
- 108010014608 Proto-Oncogene Proteins c-kit Proteins 0.000 description 2
- 102000016971 Proto-Oncogene Proteins c-kit Human genes 0.000 description 2
- 102000002490 Rad51 Recombinase Human genes 0.000 description 2
- 108010068097 Rad51 Recombinase Proteins 0.000 description 2
- 101710100968 Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 2
- 206010038389 Renal cancer Diseases 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 102000013275 Somatomedins Human genes 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 206010043276 Teratoma Diseases 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- 102000009618 Transforming Growth Factors Human genes 0.000 description 2
- 108010009583 Transforming Growth Factors Proteins 0.000 description 2
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 2
- 102100021575 Tyrosine-protein kinase BAZ1B Human genes 0.000 description 2
- 102100031167 Tyrosine-protein kinase CSK Human genes 0.000 description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229920003232 aliphatic polyester Polymers 0.000 description 2
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 229940041181 antineoplastic drug Drugs 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 229920001222 biopolymer Polymers 0.000 description 2
- 239000002981 blocking agent Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 230000008499 blood brain barrier function Effects 0.000 description 2
- 210000001218 blood-brain barrier Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 230000036952 cancer formation Effects 0.000 description 2
- 230000005907 cancer growth Effects 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 201000010881 cervical cancer Diseases 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 229940110456 cocoa butter Drugs 0.000 description 2
- 235000019868 cocoa butter Nutrition 0.000 description 2
- 208000029742 colonic neoplasm Diseases 0.000 description 2
- 238000011284 combination treatment Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- UFULAYFCSOUIOV-UHFFFAOYSA-N cysteamine Chemical compound NCCS UFULAYFCSOUIOV-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000000412 dendrimer Substances 0.000 description 2
- 229920000736 dendritic polymer Polymers 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000007783 downstream signaling Effects 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 210000003038 endothelium Anatomy 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000000328 estrogen antagonist Substances 0.000 description 2
- MMXKVMNBHPAILY-UHFFFAOYSA-N ethyl laurate Chemical compound CCCCCCCCCCCC(=O)OCC MMXKVMNBHPAILY-UHFFFAOYSA-N 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 229940126864 fibroblast growth factor Drugs 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 208000005017 glioblastoma Diseases 0.000 description 2
- 229960003180 glutathione Drugs 0.000 description 2
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- 201000010536 head and neck cancer Diseases 0.000 description 2
- 208000014829 head and neck neoplasm Diseases 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000007489 histopathology method Methods 0.000 description 2
- 102000053810 human ERBB4 Human genes 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000011503 in vivo imaging Methods 0.000 description 2
- 239000007972 injectable composition Substances 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 208000030776 invasive breast carcinoma Diseases 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000002523 lectin Substances 0.000 description 2
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 201000007270 liver cancer Diseases 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229940099690 malic acid Drugs 0.000 description 2
- 239000001630 malic acid Substances 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229960003151 mercaptamine Drugs 0.000 description 2
- 208000037819 metastatic cancer Diseases 0.000 description 2
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000009456 molecular mechanism Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000001338 necrotic effect Effects 0.000 description 2
- 231100000344 non-irritating Toxicity 0.000 description 2
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 2
- 231100001221 nontumorigenic Toxicity 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 201000002628 peritoneum cancer Diseases 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000009521 phase II clinical trial Methods 0.000 description 2
- 238000010837 poor prognosis Methods 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 108090000468 progesterone receptors Proteins 0.000 description 2
- 238000004393 prognosis Methods 0.000 description 2
- 239000003380 propellant Substances 0.000 description 2
- 108060006633 protein kinase Proteins 0.000 description 2
- 238000001243 protein synthesis Methods 0.000 description 2
- 208000016691 refractory malignant neoplasm Diseases 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 206010041823 squamous cell carcinoma Diseases 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000002381 testicular Effects 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 239000000196 tragacanth Substances 0.000 description 2
- 235000010487 tragacanth Nutrition 0.000 description 2
- 229940116362 tragacanth Drugs 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 230000004565 tumor cell growth Effects 0.000 description 2
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- CUKWUWBLQQDQAC-VEQWQPCFSA-N (3s)-3-amino-4-[[(2s)-1-[[(2s)-1-[[(2s)-1-[[(2s,3s)-1-[[(2s)-1-[(2s)-2-[[(1s)-1-carboxyethyl]carbamoyl]pyrrolidin-1-yl]-3-(1h-imidazol-5-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-3-methyl-1-ox Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C1=CC=C(O)C=C1 CUKWUWBLQQDQAC-VEQWQPCFSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- MQLACMBJVPINKE-UHFFFAOYSA-N 10-[(3-hydroxy-4-methoxyphenyl)methylidene]anthracen-9-one Chemical compound C1=C(O)C(OC)=CC=C1C=C1C2=CC=CC=C2C(=O)C2=CC=CC=C21 MQLACMBJVPINKE-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- DJBRKGZFUXKLKO-UHFFFAOYSA-N 3-(pyridin-2-yldisulfanyl)propanoic acid Chemical class OC(=O)CCSSC1=CC=CC=N1 DJBRKGZFUXKLKO-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 229940126638 Akt inhibitor Drugs 0.000 description 1
- 239000012099 Alexa Fluor family Substances 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- QMMRCKSBBNJCMR-KMZPNFOHSA-N Angiotensin III Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CCCN=C(N)N)C(C)C)C1=CC=C(O)C=C1 QMMRCKSBBNJCMR-KMZPNFOHSA-N 0.000 description 1
- 102400000345 Angiotensin-2 Human genes 0.000 description 1
- 101800000733 Angiotensin-2 Proteins 0.000 description 1
- 102400000348 Angiotensin-3 Human genes 0.000 description 1
- 101800000738 Angiotensin-3 Proteins 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 102100029968 Calreticulin Human genes 0.000 description 1
- 108090000549 Calreticulin Proteins 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 206010061819 Disease recurrence Diseases 0.000 description 1
- 101100015729 Drosophila melanogaster drk gene Proteins 0.000 description 1
- 206010013801 Duchenne Muscular Dystrophy Diseases 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 102000001039 Dystrophin Human genes 0.000 description 1
- 108010069091 Dystrophin Proteins 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- HKVAMNSJSFKALM-GKUWKFKPSA-N Everolimus Chemical compound C1C[C@@H](OCCO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 HKVAMNSJSFKALM-GKUWKFKPSA-N 0.000 description 1
- 206010015866 Extravasation Diseases 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 102100034533 Histone H2AX Human genes 0.000 description 1
- 101000882584 Homo sapiens Estrogen receptor Proteins 0.000 description 1
- 101000913074 Homo sapiens High affinity immunoglobulin gamma Fc receptor I Proteins 0.000 description 1
- 101001067891 Homo sapiens Histone H2AX Proteins 0.000 description 1
- 101001008874 Homo sapiens Mast/stem cell growth factor receptor Kit Proteins 0.000 description 1
- 101000574060 Homo sapiens Progesterone receptor Proteins 0.000 description 1
- 101001059454 Homo sapiens Serine/threonine-protein kinase MARK2 Proteins 0.000 description 1
- 101000835093 Homo sapiens Transferrin receptor protein 1 Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 102100027754 Mast/stem cell growth factor receptor Kit Human genes 0.000 description 1
- 229930126263 Maytansine Natural products 0.000 description 1
- 108090000744 Mitogen-Activated Protein Kinase Kinases Proteins 0.000 description 1
- 102000004232 Mitogen-Activated Protein Kinase Kinases Human genes 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 102000015728 Mucins Human genes 0.000 description 1
- 108010063954 Mucins Proteins 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101000835089 Mus musculus Transferrin receptor protein 1 Proteins 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- CXQHYVUVSFXTMY-UHFFFAOYSA-N N1'-[3-fluoro-4-[[6-methoxy-7-[3-(4-morpholinyl)propoxy]-4-quinolinyl]oxy]phenyl]-N1-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide Chemical compound C1=CN=C2C=C(OCCCN3CCOCC3)C(OC)=CC2=C1OC(C(=C1)F)=CC=C1NC(=O)C1(C(=O)NC=2C=CC(F)=CC=2)CC1 CXQHYVUVSFXTMY-UHFFFAOYSA-N 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 108010011536 PTEN Phosphohydrolase Proteins 0.000 description 1
- 102000014160 PTEN Phosphohydrolase Human genes 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102000008022 Proto-Oncogene Proteins c-met Human genes 0.000 description 1
- 108010089836 Proto-Oncogene Proteins c-met Proteins 0.000 description 1
- 101710100963 Receptor tyrosine-protein kinase erbB-4 Proteins 0.000 description 1
- 102100029981 Receptor tyrosine-protein kinase erbB-4 Human genes 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 208000004337 Salivary Gland Neoplasms Diseases 0.000 description 1
- 206010061934 Salivary gland cancer Diseases 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 102100028904 Serine/threonine-protein kinase MARK2 Human genes 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- CBPNZQVSJQDFBE-FUXHJELOSA-N Temsirolimus Chemical compound C1C[C@@H](OC(=O)C(C)(CO)CO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 CBPNZQVSJQDFBE-FUXHJELOSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 102000002938 Thrombospondin Human genes 0.000 description 1
- 108060008245 Thrombospondin Proteins 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 108091008605 VEGF receptors Proteins 0.000 description 1
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 1
- 206010047741 Vulval cancer Diseases 0.000 description 1
- 206010049644 Williams syndrome Diseases 0.000 description 1
- 201000001305 Williams-Beuren syndrome Diseases 0.000 description 1
- 241000021375 Xenogenes Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 102000035181 adaptor proteins Human genes 0.000 description 1
- 108091005764 adaptor proteins Proteins 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000009098 adjuvant therapy Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229950006323 angiotensin ii Drugs 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 229940046836 anti-estrogen Drugs 0.000 description 1
- 230000001833 anti-estrogenic effect Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 238000009175 antibody therapy Methods 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 125000003289 ascorbyl group Chemical class [H]O[C@@]([H])(C([H])([H])O*)[C@@]1([H])OC(=O)C(O*)=C1O* 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 235000012216 bentonite Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 201000000053 blastoma Diseases 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 201000007983 brain glioma Diseases 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 208000035269 cancer or benign tumor Diseases 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000025084 cell cycle arrest Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 238000003570 cell viability assay Methods 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 150000005827 chlorofluoro hydrocarbons Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000002442 collagenase inhibitor Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 238000004163 cytometry Methods 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- JOGKUKXHTYWRGZ-UHFFFAOYSA-N dactolisib Chemical compound O=C1N(C)C2=CN=C3C=CC(C=4C=C5C=CC=CC5=NC=4)=CC3=C2N1C1=CC=C(C(C)(C)C#N)C=C1 JOGKUKXHTYWRGZ-UHFFFAOYSA-N 0.000 description 1
- 229950006418 dactolisib Drugs 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 229940124447 delivery agent Drugs 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 230000034431 double-strand break repair via homologous recombination Effects 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 238000009513 drug distribution Methods 0.000 description 1
- 230000000857 drug effect Effects 0.000 description 1
- 239000003596 drug target Substances 0.000 description 1
- 229940125436 dual inhibitor Drugs 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 229940121647 egfr inhibitor Drugs 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 201000008184 embryoma Diseases 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000002121 endocytic effect Effects 0.000 description 1
- 201000003914 endometrial carcinoma Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 229940125532 enzyme inhibitor Drugs 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 230000004076 epigenetic alteration Effects 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 229960005167 everolimus Drugs 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 230000036251 extravasation Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229950008692 foretinib Drugs 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 210000004392 genitalia Anatomy 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 101150098203 grb2 gene Proteins 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000005934 immune activation Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 229940127121 immunoconjugate Drugs 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 229940102213 injectable suspension Drugs 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 229940084651 iressa Drugs 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 210000000738 kidney tubule Anatomy 0.000 description 1
- 229940043355 kinase inhibitor Drugs 0.000 description 1
- 108010057717 laminin 8 Proteins 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 201000005249 lung adenocarcinoma Diseases 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 108010082117 matrigel Proteins 0.000 description 1
- 239000003771 matrix metalloproteinase inhibitor Substances 0.000 description 1
- 229940121386 matrix metalloproteinase inhibitor Drugs 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- WKPWGQKGSOKKOO-RSFHAFMBSA-N maytansine Chemical compound CO[C@@H]([C@@]1(O)C[C@](OC(=O)N1)([C@H]([C@@H]1O[C@@]1(C)[C@@H](OC(=O)[C@H](C)N(C)C(C)=O)CC(=O)N1C)C)[H])\C=C\C=C(C)\CC2=CC(OC)=C(Cl)C1=C2 WKPWGQKGSOKKOO-RSFHAFMBSA-N 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 229940051875 mucins Drugs 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 239000002836 nanoconjugate Substances 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 230000017066 negative regulation of growth Effects 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 230000010309 neoplastic transformation Effects 0.000 description 1
- 210000005055 nestin Anatomy 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000013631 noncovalent dimer Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 238000012803 optimization experiment Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229960003552 other antineoplastic agent in atc Drugs 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229940023041 peptide vaccine Drugs 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000001485 positron annihilation lifetime spectroscopy Methods 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000007757 pro-survival signaling Effects 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 239000003197 protein kinase B inhibitor Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 108010077182 raf Kinases Proteins 0.000 description 1
- 102000009929 raf Kinases Human genes 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 201000010174 renal carcinoma Diseases 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000028617 response to DNA damage stimulus Effects 0.000 description 1
- 230000034408 response to ionizing radiation Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 201000003804 salivary gland carcinoma Diseases 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 238000009097 single-agent therapy Methods 0.000 description 1
- 238000003998 size exclusion chromatography high performance liquid chromatography Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 208000017572 squamous cell neoplasm Diseases 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000003206 sterilizing agent Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000012385 systemic delivery Methods 0.000 description 1
- 229940120982 tarceva Drugs 0.000 description 1
- 229940063683 taxotere Drugs 0.000 description 1
- 229960000235 temsirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-UHFFFAOYSA-N temsirolimus Natural products C1CC(O)C(OC)CC1CC(C)C1OC(=O)C2CCCCN2C(=O)C(=O)C(O)(O2)C(C)CCC2CC(OC)C(C)=CC=CC=CC(C)CC(C)C(=O)C(OC)C(O)C(C)=CC(C)C(=O)C1 QFJCIRLUMZQUOT-UHFFFAOYSA-N 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229940040944 tetracyclines Drugs 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 230000003868 tissue accumulation Effects 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000031998 transcytosis Effects 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 102000027257 transmembrane receptors Human genes 0.000 description 1
- 108091008578 transmembrane receptors Proteins 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000005747 tumor angiogenesis Effects 0.000 description 1
- 239000000439 tumor marker Substances 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 210000003708 urethra Anatomy 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 208000012991 uterine carcinoma Diseases 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 239000005526 vasoconstrictor agent Substances 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 208000037911 visceral disease Diseases 0.000 description 1
- 201000005102 vulva cancer Diseases 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 235000014692 zinc oxide Nutrition 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2881—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD71
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/32—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
Definitions
- the invention was made in part with support from grants RO1CA123495 and RO1CACA1136841 from the National Institutes of Health. The government has certain rights in the invention.
- the present invention generally relates to compositions and methods for treating patients having cell proliferative disorders with polymalic acid-based nanobiopolymeric compositions that inhibit synthesis and activity of an oncogenic protein.
- Breast cancer is a disease affecting a significant population of women around the world. About 1 in 8 women in the United States (between 12 and 13%) will develop invasive breast cancer over the course of her lifetime. Prognosis and survival rate varies greatly depending on cancer type and staging. Breast cancers expressing genetic characteristics such as human epidermal growth factor receptor-2 (HER2) are associated with a poor prognosis.
- HER2 human epidermal growth factor receptor-2
- This 185-kDa growth factor receptor is encoded by the her-2 proto-oncogene, also referred to as neu and c-erbB-2 (Slamon et al. 1987 Science 235:177).
- the her-2 gene is closely related to the gene encoding epidermal growth factor receptor (EGFR). Amplification of the her-2 gene has been linked to neoplastic transformation in human breast cancer cells (Slamon et al. 1987 Science 235:177).
- Overexpression of the HER2 protein has been identified in 20-30% of breast cancer patients, and has been correlated with regionally advanced disease, increased probability of tumor recurrence, and reduced patient survival. As many as 30-40% of patients having gastric, endometrial, salivary gland, non-small cell lung, pancreatic, ovarian, peritoneal, prostate, or colorectal cancers may also exhibit overexpression of this protein.
- HER2-negative breast cancer A more difficult-to-treat form of HER2-negative breast cancer known as “triple-negative,” affects some patients. This form tests negative for three primary receptors: HER2, estrogen receptor and progesterone receptor. However, it is positive for epidermal growth factor receptor (EGFR, HER1).
- EGFR epidermal growth factor receptor
- trastuzumab Humanized anti-HER2/neu monoclonal antibody trastuzumab (Herceptin®, Genentech Inc., San Francisco, Calif.) is used alone or combined with chemotherapy for treatment of patients with advanced breast cancer overexpressing HER2/neu (Baselga J. 2006 Science 312:1175; Baselga J et al. 1999 Semin Oncol 26:78; Slamon D J et al. 2009 J Natl Cancer Inst 101:615), with significant anti-tumor effect. However, serious adverse effects on normal organs have been reported (Keef D L. 2002 Cancer 95:1592; Vahid B et al, 2008 Chest 133:528).
- the invention relates to a drug delivery composition for treating a cancer in a subject.
- the drug delivery composition includes a plurality of biologically active molecular modules comprising at least one module that targets a tumorigenic cell or a cancer cell, at least one module that inhibits synthesis or activity of a human epidermal growth factor receptor (HER) protein in the cell, and at least one module for cytoplasmic delivery.
- the drug delivery composition also includes a polymalic acid-based molecular scaffold. The molecular modules are covalently linked to the scaffold.
- the invention relates to a kit for treating a patient having a cancer.
- the kit includes a drug delivery composition comprising a nanobiopolymeric conjugate of a scaffold that includes a PMLA and molecular modules.
- the molecular modules includes an antisense molecule that substantially inhibits synthesis or activity of a HER protein, a molecular module to facilitate delivery of the antisense molecule to cytoplasm, at least one targeting antibody specific for the HER protein, at least one antibody specific for a tumor vasculature protein, and a molecular module that prolongs circulation of the composition.
- the PMLA is covalently linked to the molecular modules, in a container.
- the invention relates to a method for treating a cancer in a subject.
- the method includes contacting the subject with a drug delivery composition.
- the drug delivery composition includes a PMLA covalently linked to a plurality of molecular modules.
- the molecular modules include at least one module that targets a tumorigenic cell or a cancer cell, at least one module that inhibits synthesis or activity of a HER protein in the cell, and at least one module for cytoplasmic delivery.
- the drug delivery composition is effective for inhibiting at least one of tumor growth, tumor regression and eliminating of cancer in a subject.
- FIG. 1 illustrates a chemical structure and schematic drawings of a nanobiopolymeric conjugate designed to inhibit HER2/neu expression by antisense oligonucleotides (AON) and to attenuate HER2/neu-mediated cell signaling by Herceptin®.
- AON antisense oligonucleotides
- FIG. 2 illustrates data obtained from an in vitro cell viability assay.
- FIGS. 3A-3C illustrate photographs of immunoblots showing changes observed in HER2/neu expression, Akt phosphorylation, and apoptosis resulting from various treatments of breast cancer cells in vitro.
- FIG. 3A illustrates a comparison of HER2/neu and TfR expression in various cell lines.
- FIG. 3B illustrates expression analysis of various markers in cell line SKBR-3.
- FIG. 3C illustrates expression of the markers in cell line BT-474.
- FIG. 4 illustrates distribution of various compounds herein labeled with Alexa Fluor 680 in live mice with BT-474 breast tumors and in tumors in isolated organs.
- FIG. 5 illustrates distribution of various compounds in BT-474 breast tumor cells.
- FIGS. 6A-6C illustrate mouse tumor inhibition, pathology, signaling and apoptosis marker expression.
- FIG. 6A illustrates data of histopathological analysis of respective tumors from two representative animals for each group administered with different drugs.
- FIG. 6B illustrates extent of tumor growth inhibition in mice.
- FIG. 6C illustrates expression of select markers after treatment of HER2/neu positive tumors in vivo.
- FIG. 7 illustrates extent of tumor growth inhibition by compositions herein in subjects bearing triple-negative breast tumors.
- FIGS. 8A-8B illustrate distribution of two cancer stem cell markers, CD44 and c-Myc, in human BT-474 breast tumor cells grown in the brain of nude mice as a model of breast cancer metastasis to the brain, and their inhibition by compositions herein.
- FIG. 8A illustrates treatment with PBS as a negative control.
- FIG. 8B illustrates treatment with P/mPEG/LOEt/AON/Herceptin®/TfR(M).
- molecular scaffold refers to a molecule having at least two or more modules that transport a covalently conjugated drug to a targeted tissue; bind to cell surface receptors of the tissue; internalize into endosomes; escape the endosomes into the cytoplasm; and release reactive free drug in the cytoplasm by chemical reaction with glutathione and other sulfhydryl groups of the cytoplasmic content.
- the specificity of high molecular mass drug vehicles and particles rests primarily on the tumor tissue targeting by tumor-specific conjugated targeting molecules and their enhanced permeability and retention in tumors that originates from high molecular mass such as greater than 20000 (Duncan R. 1999 Research Focus 2:441; Seymour L W et al., 1995 Eur J Cancer Res 31A:766).
- polymalic acid refers to a polymer, e.g., a homopolymer that contains a main chain ester linkage, is biodegradable and of a high molecular flexibility, soluble in water (when ionized) and organic solvents (in its acid form), non-toxic, and non-immunogenic (Lee B et al., Water-soluble aliphatic polyesters: poly(malic acid)s, in: Biopolymers, vol. 3a (Doi Y, Steinbuchel A eds., pp 75-103, Wiley-VCH, New York 2002).
- Drug carrying PMLA is synthesized by ring-opening polymerization of derivatized malic acid lactones.
- Doxorubicin-poly-malic acid has been synthesized from synthetic poly- ⁇ -D, L-malic acid (Abdellaoui K et al., 1998 Eur J Pharmaceutical Sciences 6:61).
- the carrier consists of poly( ⁇ -L-malic acid), herein referred to as poly- ⁇ -L-malic acid or PMLA, representing the molecular backbone or scaffold that is chemically conjugated at its carboxylic groups at defined ratios with a variety of modules each of which performs at least one of the following functions: delivery of a pro-drug via a releasable functional module that becomes effective in the cytoplasm; directing the carrier towards a specific tissue by binding to the surfaces of cells, e.g., a monoclonal antibody (mAB); internalization into the targeted cell through endosomes (usually via internalization of a targeted surface receptor); promoting escape from endosomes into the cytoplasm by virtue of hydrophobic functional units that integrate into and finally disrupt endosomal membranes; increasing effectiveness during acidification of endosomes en route to lysosomes; and protection by polyethylene glycol (PEG) against degradative enzyme activities, e.g., peptidases, proteases, etc.
- module refers to a biologically active molecular structure that forms a part of a composition herein, for example, a small drug molecule or a chromophore molecule; a protein molecule such as an antibody or lectin; or a portion thereof that are covalently joined to PMLA in constructing the composition.
- a biologically active module is exemplified by morpholino antisense oligonucleotides (AON) that are specific to HER2/neu receptor protein.
- Tissue targeting is exemplified by use of a monoclonal antibody (mAB) module that specifically recognizes and binds a transferrin receptor protein.
- mAB monoclonal antibody
- transferrin receptor protein refers to the receptor expressed on endothelium cell surfaces, and at elevated levels on certain tumors (Lee J H et al. 2001 Eur J Biochem 268:2004; Kovar M K et al., 2003 J Drug Targeting 10:23). Transferrin receptors are used as a target for a drug delivery system in compositions herein, to chemically bind to transferring, for example using a monoclonal antibody that binds the transferrin receptor and thereby achieves transcytosis through endothelium associated with blood brain barrier. Antibody binding to transferrin receptor and internalization into endosomes has been demonstrated (Broadwell R D et al., 1996 Exp Neurol 142:47).
- transferrin receptor any appropriate antibody monoclonal antibody, for example, a humanized or chimeric antibody, or a lectin or another ligand specific to the transferrin receptor can be used.
- Other appropriate ligands to any number of cell surface receptors or antigens can be used as targets in the compositions herein and transferrin receptor is merely examplary.
- endosomal escape unit refers to a carrier module attached to the PMLA scaffold that becomes active by acidification during maturation of the endosomal vesicles towards lysosomes (Bulmus V et al., 2001 Cancer Research 61:5601; Lackey C A et al., 2002 Bioconjugate Chem 13:996).
- the carrier module includes a plurality of leucine or valine residues, or a leucine ethylester linked to the PMLA scaffold by amide bonds. During acidification of the endosomes en route to lysosomes, these stretches of the carrier molecule become charge-neutralized and hydrophobic, and capable of disrupting membranes. Other molecules that become charge neutralized at lysomal pH's may be used in place of leucine or valine residues, or a leucine ethylester in construction of the compositions containing PMLA and an endosomal escape unit module.
- PEGylation is generally used in drug design to increase the in vivo half-life of conjugated proteins, to prolong the circulation time, and enhance extravasation into targeted solid tumors (Arpicco S et al. 2002 Bioconjugate Chem 13:757; Maruyama K et al., 1997 FEBS Letters 413:1771).
- Other molecules known to increase half-life may be used in design of compositions herein.
- cancer and “cancerous” refer to the physiological condition in mammals in which a population of cells are characterized by unregulated cell growth.
- cancers include, without limitation, carcinoma, lymphoma, blastoma, sarcoma, and leukemia.
- cancers include squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma and various types of head and neck cancers.
- proliferative disorder and “proliferative disease” refer to disorders associated with abnormal cell proliferation such as cancer.
- tumor and “neoplasm” as used herein refer to any mass of tissue that result from excessive cell growth or proliferation, either benign (noncancerous) or malignant (cancerous) including pre-cancerous lesions.
- primary cancer refers to the original site at which a cancer originates.
- a cancer originating in the breast is called a primary breast cancer. If it metastasizes, i.e., spreads to the brain, the cancer is referred to as a primary breast cancer metastatic to the brain.
- metalastasis refers to the process by which a cancer spreads or transfers from the site of origin to other regions of the body with the development of a similar cancerous lesion, i.e., having the same or substantially the same biochemical markers at the new location.
- a “metastatic” or “metastasizing” cell is one that has a reduced activity for adhesive contacts with neighboring cells and migrates by the bloodstream or within lymph from the primary site of disease to additional distal sites, for example, to invade neighboring body structures or distal structures.
- cancer cell refers to a cell derived from a tumor or a pre-cancerous lesion including both a non-tumorigenic cell and a tumorigenic cell, i.e., cancer stem cell.
- tumorigenic refers to the functional features of a solid tumor stem cell including the properties of self-renewal i.e., giving rise to additional tumorigenic cancer cells, and proliferation to generate other tumor cells i.e., giving rise to differentiated and thus non-tumorigenic tumor cells, such that cancer cells form a tumor.
- target a tumorigenic cell or a cancer cell refers to delivery of a composition to a population of tumor-forming cells within tumors, i.e., tumorigenic cells.
- the preferential delivery of the composition to the tumorigenic population of cancer cells in comparison to other populations of cells within tumors is referred herein as targeting to eliminate cancer cells, a property that improves specificity and efficacy of the composition.
- antibody is used herein to mean an immunoglobulin molecule that is a functional module included in compositions herein for ability to recognize and specifically bind to a target, such as a protein, polypeptide, peptide, carbohydrate, polynucleotide, lipid, or combinations of the foregoing through at least one antigen recognition site within the variable region of the immunoglobulin molecule.
- a target such as a protein, polypeptide, peptide, carbohydrate, polynucleotide, lipid, or combinations of the foregoing through at least one antigen recognition site within the variable region of the immunoglobulin molecule.
- antibodies included as functional modules of compositions herein include a class described as antagonist antibodies, which specifically bind to a cancer stem cell marker protein and interfere with, for example, ligand binding, receptor dimerization, expression of a cancer stem cell marker protein, and/or downstream signaling of a cancer stem cell marker protein.
- antibodies as functional modules in compositions herein include agonist antibodies that specifically bind to a cancer stem cell marker protein and promote, for example, ligand binding, receptor dimerization, and/or signaling by a cancer stem cell marker protein.
- antibodies that do not interfere with or promote the biological activity of a cancer stem cell marker protein instead function to inhibit tumor growth by, for example, antibody internalization and/or recognition by the immune system.
- antibody encompasses intact polyclonal antibodies, intact monoclonal antibodies, antibody fragments (such as Fab, Fab′, F(ab′)2, and Fv fragments), single chain Fv (scFv) mutants, multispecific antibodies such as bispecific antibodies generated from at least two intact antibodies, chimeric antibodies, humanized antibodies, human antibodies, fusion proteins comprising an antigen determination portion of an antibody, and any other modified immunoglobulin molecule comprising an antigen recognition site so long as the antibodies exhibit the desired biological activity.
- An antibody includes any the five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, or subclasses (isotypes) thereof (e.g.
- IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) based on the identity of their heavy-chain constant domains referred to as alpha, delta, epsilon, gamma, and mu, respectively.
- Antibodies can be naked or conjugated to other molecules such as toxins, radioisotopes, etc. In other embodiments an antibody is a fusion antibody.
- antibody fragment refers to a portion of an intact antibody and refers to the antigenic determining variable regions of an intact antibody.
- antibody fragments include, but are not limited to Fab, Fab′, F(ab′)2, and Fv fragments, linear antibodies, single chain antibodies, and multispecific antibodies formed from antibody fragments.
- an “Fv antibody” refers to the minimal antibody fragment that contains a complete antigen-recognition and -binding site either as two-chains, in which one heavy and one light chain variable domain form a non-covalent dimer, or as a single-chain (scFv), in which one heavy and one light chain variable domain are covalently linked by a flexible peptide linker so that the two chains associate in a similar dimeric structure.
- scFv single-chain
- the complementarity determining regions (CDRs) of each variable domain interact to define the antigen-binding specificity of the Fv dimer.
- a single variable domain or half of an Fv can be used to recognize and bind antigen, although generally with lower affinity.
- a “monoclonal antibody” as used herein refers to homogenous antibody population involved in specific recognition and binding of a single antigenic determinant, or epitope.
- Polyclonal antibodies include a population of antibody species each directed to a different antigenic determinant.
- the term “monoclonal antibody” encompasses both and full-length monoclonal antibodies and antibody fragments (such as Fab, Fab′, F(ab′)2, Fv), single chain (scFv) mutants, fusion proteins comprising an antibody portion, and any other modified immunoglobulin molecule comprising an antigen recognition site.
- “monoclonal antibody” refers to those obtained without limitation by methods including and not limited to hybridoma expression, phage selection, recombinant expression, and by transgenic animals.
- a drug delivery composition for treating a cancer in a subject may include a plurality of biologically active molecular modules.
- the plurality of the biologically active molecular modules may include at least one module that targets a tumorigenic cell or a cancer cell.
- the drug delivery composition may include at least one module that inhibits synthesis or activity of a human epidermal growth factor receptor (HER) protein in the cell.
- the drug delivery composition may include at least one module for cytoplasmic delivery.
- the drug delivery composition may include a polymalic acid-based molecular scaffold.
- the molecular modules may be covalently linked to the polymalic acid-based molecular scaffold.
- the HER protein may be at least one protein selected from the group consisting of: HER1, HER2, HER3 and HER4.
- the at least one module that inhibits synthesis or activity of the protein may be selected from the group consisting of: an antisense oligonucleotide (AON), an siRNA oligonucleotide, an antibody, a polypeptide, an oligopeptide and a low molecular weight drug.
- AON antisense oligonucleotide
- siRNA oligonucleotide an antibody
- a polypeptide an oligopeptide
- the scaffold in a related embodiment includes a poly- ⁇ -L-malic acid (PMLA).
- the PMLA may be also denoted as poly(- ⁇ -L-malic acid).
- the AON may be a Morpholino AON.
- the Morpholino AON may include a sequence complementary to a sequence contained in an mRNA transcript of HER2/neu protein.
- the AON may be selected from: 5′-AGGGAGCCGCAGCTTCATGTCTGTG-3′ (SEQ ID NO: 1), and 5′-CATGGTGCTCACTGCGGCTCCGGC-3′ (SEQ ID NO:2).
- the at least one module that targets the cell may include an antibody that binds specifically to a vasculature protein in the cell.
- the vasculature protein may include a transferrin receptor protein.
- the antibody may be selected from at least one of: anti-human, rat anti-mouse, rat anti-human, rabbit anti-human and goat anti-human.
- the at least one module that inhibits activity of the protein includes an antibody binding specifically to a HER2/neu protein.
- the antibody may be Herceptin®.
- the drug delivery composition may include a Morpholino AON that include sequence complementary to a sequence contained in an mRNA transcript of an epidermal growth factor receptor (EGFR) or HER1 protein.
- the sequence of the Morpholino AON may include 5′-TCGCTCCGGCTCTCCCGATCAATAC-3′ (SEQ ID NO:3).
- the drug delivery composition may include a Morpholino AON that includes a sequence complementary to a sequence contained in an mRNA transcript of at least one subunit of laminin-411.
- the subunit may be at least one of an ⁇ 4 subunit and a ⁇ 1 subunit.
- the sequence complimentary to the transcript of the ⁇ 4 subunit may include the following sequence:
- 5′-AGCTCAAAGCCATTTCTCCGCTGAC-3′ (SEQ ID NO:4).
- the sequence complimentary to the transcript of the ⁇ 1 subunit may include the following sequence: 5′-CTAGCAACTGGAGAAGCCCCATGCC-3′ (SEQ ID NO:5).
- the drug delivery composition may include the siRNA oligonucleotide.
- the siRNA oligonucleotide may include a sequence complementary to a gene encoding an EGFR/HER1 protein.
- the sequence may include a sense sequence as follows: 5′-CCUAUAAUGCUACGAAUAUtt-3′ (SEQ ID NO:6).
- the sequence may include an antisense sequence as follows: 5′-AUAUUCGUAGCAUUUAUGGag-3′ (SEQ ID NO:7).
- the siRNA oligonucleotide may include a sequence complementary to a gene encoding a HER2 protein.
- the sequence may include a sense sequence as follows: 5′-GUUGGAUGAUUGACUCUGAtt-3′ (SEQ ID NO:8).
- the sequence may include an antisense sequence as follows: 5′-UCAGAGUCAAUCAUCCAACat-3′ (SEQ ID NO:9).
- the at least one module for cytoplasmic delivery may include an endosome escape unit.
- the endosome escape unit may be but is not limited to leucine residues, valine residues, or a leucine ethylester.
- the endosome escape unit may be a plurality of leucine or valine residues, or a single or a plurality of leucine residues, or mixture of any of these.
- the leucine ethylester may be included in the drug delivery composition in a concentration of about 40% of the drug delivery composition.
- the plurality of modules of the drug delivery composition may further include a polyethylene glycol (PEG).
- PEG polyethylene glycol
- the PEG may have a molecular weight of about 1,000 Da, about 5,000 Da, about 10,000 Da, about 15,000 Da, about 20,000 Da, about 25,000 Da, or about 30,000 Da.
- the drug delivery composition may be provided in a unit dose effective for treatment of the cancer in the patient.
- the unit dose may be at least one selected from: 1 ⁇ g/kg, 50 ⁇ g/kg, 100 ⁇ g/kg, 500 ⁇ g/kg, 1 mg/kg, 5 mg/kg, 10 mg/kg, 50 mg/kg, and 100 mg/kg.
- the unit dose may be at least 1 mg/kg.
- the unit dose may be less than about 10 mg/kg.
- the cancer is at least one selected from the list of: gastric, endometrial, salivary gland, lung, non-small cell lung, pancreatic, ovarian, peritoneal, prostate, colorectal, breast, cervical, uterine, ovarian, brain, head and neck, testicular and teratoma cancers.
- the breast cancer may be a triple-negative breast cancer.
- the cancer may be either a primary cancer or a metastatic cancer, or both.
- the cancer may include cells overexpressing a HER2/neu receptor protein.
- a drug delivery composition for treating a cancer in a subject may include: a polymerized carboxylic acid molecular scaffold and a plurality of biologically active molecular modules.
- the polymerized carboxylic acid molecular scaffold may include a poly- ⁇ -L-malic acid (PMLA).
- the plurality of biologically active molecular modules may include an antisense molecule that substantially inhibits synthesis of a HER2/neu receptor protein, a molecular module to facilitate delivery of the antisense molecule to cytoplasm, at least one antibody specific for the receptor protein that inhibits activity of the receptor protein, at least one antibody targeting a tumor vasculature protein, and a molecular module that prolongs circulation of the composition.
- the molecular modules may be covalently linked to the scaffold.
- a drug delivery composition for treating a cancer in a subject including: a polymerized carboxylic acid molecular scaffold and a plurality of biologically active molecular modules.
- the polymerized carboxylic acid molecular scaffold may be a poly- ⁇ -L-malic acid (PMLA).
- the plurality of biologically active molecular modules may include an antisense molecule that substantially inhibits synthesis of an epidermal growth factor receptor (EGFR/HER1) protein, an antisense molecule that substantially inhibits at least one subunit of laminin-411, a molecular module to facilitate delivery of the antisense molecule to cytoplasm, at least one antibody targeting a tumor vasculature protein, and a molecular module that prolongs circulation of the composition.
- the molecular modules may be covalently linked to the scaffold.
- a pharmaceutical composition in an embodiment, includes a nanobiopolymeric conjugate of poly( ⁇ -L-malic acid) referred to as poly- ⁇ -L-malic acid or PMLA herein.
- PMLA may be covalently linked to an antisense molecule.
- the antisense molecule may be a functional module that inhibits expression of an oncogenic protein.
- the PMLA may be covalently linked to at least one module that is an antibody specific for the protein.
- the PMLA may optionally further comprise a module that is an antibody specific for an oncogenic vascular protein.
- the pharmaceutical composition may include a pharmaceutically acceptable carrier.
- the pharmaceutical composition may optionally further include one or more additional modules that are additional therapeutic agents.
- the additional therapeutic agent or agents may be selected from the group consisting of growth factors, anti-inflammatory agents, vasopressor agents, collagenase inhibitors, topical steroids, matrix metalloproteinase inhibitors, ascorbates, angiotensin II, angiotensin III, calreticulin, tetracyclines, fibronectin, collagen, thrombospondin, transforming growth factors (TGF), keratinocyte growth factor (KGF), fibroblast growth factor (FGF), insulin-like growth factors (IGF), epidermal growth factor (EGF), platelet derived growth factor (PDGF), neu differentiation factor (NDF), hepatocyte growth factor (HGF), and hyaluronic acid.
- TGF transforming growth factors
- KGF keratinocyte growth factor
- FGF fibroblast growth factor
- IGF insulin-like growth factors
- EGF epidermal growth factor
- PDGF platelet
- the term “pharmaceutically acceptable carrier” includes any and all solvents, diluents, or other liquid vehicle, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired.
- Remington's Pharmaceutical Sciences Ed. by Gennaro, Mack Publishing, Easton, Pa., 1995 discloses various carriers used in formulating pharmaceutical compositions and known techniques for the preparation thereof.
- Materials which can serve as pharmaceutically acceptable carriers may include, but are not limited to, sugars, lactose, glucose, and sucrose; starches, corn starch and potato starch; cellulose and its derivatives, sodium carboxymethyl cellulose, ethyl cellulose, and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients, cocoa butter and suppository waxes; oils, peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil, and soybean oil; glycols, a propylene glycol; esters, ethyl oleate and ethyl laurate; agar; buffering agents, magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol, or phosphate buffer solutions.
- Pharmaceutically acceptable carriers may include non-toxic compatible lubricants, sodium lauryl sulfate and magnesium stearate. Pharmaceutically acceptable carriers may include coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants.
- a kit for treating a patient having a cancer may include a drug delivery composition.
- the drug delivery composition may include a nanobiopolymeric conjugate of a scaffold and molecular modules.
- the scaffold may be a poly- ⁇ -L-malic acid (PMLA).
- the molecular modules may include an antisense molecule that substantially inhibits synthesis or activity of a human epidermal growth factor receptor (HER) protein.
- the molecular modules may include a molecular module to facilitate delivery of the antisense molecule to cytoplasm.
- the molecular modules may include at least one targeting antibody specific for the HER protein.
- the molecular modules may include at least one antibody specific for a tumor vasculature protein.
- the molecular modules may include a molecular module that prolongs circulation of the composition.
- the PMLA may be covalently linked to the molecular modules.
- the drug delivery composition may be included in a container.
- the kit may further include a pharmaceutically acceptable buffer and instructions for use.
- a method for treating a cancer in a subject may include contacting the subject with a drug delivery composition.
- the drug delivery composition may include a poly- ⁇ -L-malic acid (PMLA) covalently linked to a plurality of molecular modules.
- the plurality of molecular modules may include at least one module that targets a tumorigenic cell or a cancer cell.
- the plurality of molecular modules may include at least one module that inhibits synthesis or activity of a human epidermal growth factor receptor (HER) protein in the cell.
- the HER protein may be selected from a group consisting of: HER1, HER2, HER3, and HER4.
- the plurality of molecular modules may include at least one module for cytoplasmic delivery.
- the drug delivery composition may be effective for inhibiting at least one of tumor growth, tumor regression and eliminating of cancer in a subject.
- the drug delivery composition may be further effective for inhibiting expression of cancer stem cell markers in the subject.
- the cancer stem cell markers may include at least one marker selected from the group consisting of: CD133 protein, c-myc protein, CD44 protein, Notch1 protein, and nestin protein.
- the inhibition of expression of cancer stem cell markers may indicate inhibition of growth of drug resistant tumors.
- the method may also include analyzing at least one of: inhibition of tumor growth, tumor regression and elimination of cancer in the subject, thereby treating the cancer in the subject.
- the module that inhibits synthesis or activity of the HER protein may be at least one selected from the group consisting of: an antisense oligonucleotide (AON), an siRNA oligonucleotide, an antibody, a polypeptide, an oligopeptide and a low molecular weight drug.
- the AON may include a sequence complementary to an mRNA transcript of at least one protein selected from the group consisting of: HER2, an epidermal growth factor receptor (EGFR/HER1) protein, and a subunit of laminin-411.
- the sequence complementary to the HER2 mRNA transcript may include the following sequence: 5′AGGGAGCCGCAGCTTCATGTCTGTG-3′ (SEQ ID NO: 1).
- sequence complementary to the HER2 mRNA transcript may include the following sequence 5′-CATGGTGCTCACTGCGGCTCCGGC-3′ (SEQ ID NO:2).
- sequence complementary to the EGFR/HER1 mRNA transcript may include the following sequence: 5′-TCGCTCCGGCTCTCCCGATCAATAC-3′ (SEQ ID NO:3).
- the subunit of laminin-411 may be selected at least one of ⁇ 4 and ⁇ 1 subunits.
- the ⁇ 4 transcript sequence may include the following sequence: 5′-AGCTCAAAGCCATTTCTCCGCTGAC-3′ (SEQ ID NO:4).
- the ⁇ 1 transcript sequence may include the following sequence: 5′-CTAGCAACTGGAGAAGCCCCATGCC-3′ (SEQ ID NO:5).
- the siRNA oligonucleotide may include a sequence complementary to a gene encoding at least one of an epidermal growth factor receptor (EGFR/HER1) protein and HER2.
- the sequence complementary to a gene encoding EGFR/HER1 sequence may be selected from the group consisting of: 5′-CCUAUAAUGCUACGAAUAUtt-3′ (SEQ ID NO:6), and 5′ -AUAUUCGUAGCAUUUAUGGag-3′ (SEQ ID NO:7).
- sequence complementary to a gene encoding HER2 may be selected from: 5′-GUUGGAUGAUUGACUCUGAtt-3′ (SEQ ID NO:8), and 5′-UCAGAGUCAAUCAUCCAACat-3′ (SEQ ID NO:9).
- the antibody may bind specifically to HER2/neu protein.
- the antibody may be Trastuzumab Herceptin®.
- the at least one module that targets the cell may include an antibody that binds specifically to a transferrin receptor protein.
- the antibody may be selected from at least one of: anti-human, rat anti-mouse, rat anti-human, rabbit anti-human and goat anti-human.
- the at least one module for cytoplasmic delivery may include an endosome escape unit.
- the endosome escape unit may be a leucine ethylester.
- the plurality of modules may further include a polyethylene glycol (PEG).
- PEG polyethylene glycol
- the PEG may have a molecular weight of about 1,000 Da.
- the PEG may have a molecular weight of about 5,000 Da.
- the method may include analyzing inhibition of tumor growth.
- the step of analyzing may include observing more than about 60%, 70%, 80% or about 90% inhibition of tumor growth in the subject.
- the step of analyzing may include observing the inhibition of HER2/neu receptor signaling by suppression of Akt phosphorylation.
- the subject may be a mammal.
- The may be but is not limited to a human, a simian, an equine, a bovine, or a high value agricultural or zoo animal.
- the mammal may be a rodent.
- the rodent may be an experimental human-breast tumor-bearing nude mouse.
- the step of contacting may include administering the drug delivery to the subject.
- the drug delivery compositions may be formulated with an appropriate pharmaceutically acceptable carrier in a desired dosage.
- the drug delivery compositions may be administered to humans and other mammals topically.
- Topical administration may include drug delivery compositions formulated as powders, ointments, or drops.
- the drug delivery compositions may be administered orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, or intravenously, depending on the severity and location of the cancer or other condition being treated.
- Intravenous administration may include injection as a bolus, or as a drip.
- dosage forms for topical or transdermal administration of the drug delivery compositions may include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants, or patches.
- the drug delivery composition may be admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Administration may be therapeutic or it may be prophylactic. Prophylactic formulations may be present or applied to the site of potential tumors, or to sources of tumors.
- the ointments, pastes, creams, and gels may contain, in addition to the drug delivery compositions, excipients.
- Excipients may be but are not limited to animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc, zinc oxide, or mixtures thereof.
- Powders and sprays may contain, in addition to the drug delivery compositions, excipients.
- Excipients may include lactose, talc, silicic acid, aluminum hydroxide, calcium silicates, polyamide powder, or mixtures of these substances.
- Sprays may additionally contain customary propellants.
- Customary propellants may include chlorofluorohydrocarbons.
- the drug delivery composition may be administered using transdermal patches.
- the transdermal patches may have the added advantage of providing controlled delivery of the active ingredients to the body. Controlled delivery may be achieved using dosage forms. Dosage forms may be made by dissolving or dispensing the compound in the proper medium. Absorption enhancers may also be used to increase the flux of the drug delivery composition across the skin. The rate of delivery may be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.
- the step of administering may include administering injectable preparations.
- the injectable preparations may include sterile injectable aqueous solutions or oleaginous suspensions formulated according to the known art using suitable dispersing or wetting agents and suspending agents.
- the sterile injectable preparation may be formulated as a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent.
- the sterile injectable preparation may be formulated as a solution in 1,3-butanediol.
- the acceptable vehicles and solvents may include water, Ringer's solution, U.S.P. or isotonic sodium chloride solution.
- sterile, fixed oils may be employed as a solvent or suspending medium.
- any bland fixed oil may be employed including synthetic mono- or diglycerides.
- fatty acids such as oleic acid may be used in the preparation of injectables.
- the injectable formulations may be sterilized.
- the injectable preparations may be sterilized by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
- the absorption of the drug from subcutaneous or intramuscular injection may be slowed. Delayed absorption of a parenterally administered active agent may be accomplished by dissolving or suspending the drug delivery composition in an oil vehicle.
- Injectable depot forms may be made by forming microencapsule matrices of the drugs in biodegradable polymers such as polylactide-polyglycolide as described herein, and in Ljubimova et al., U.S. Pat. No. 7,547,511 issued Jun. 16, 2009, Ljubimova et al., U.S. patent application Ser. No. 12/473,992 published Oct. 22, 2009, Ljubimova et al., U.S. patent application Ser. No. 10/580,999 published Nov. 8, 2007, and Ding et al., International patent application PCT/US2009/40252 filed Apr. 10, 2009.
- biodegradable polymers such as polylactide-polyglycolide as described herein
- the rate of active agent release is controlled by the ratio of active agent to polymer and the nature of the particular polymer employed.
- biodegradable polymers include poly(orthoesters) and poly(anhydrides).
- Depot injectable formulations may also be prepared by entrapping the agent in liposomes or microemulsions which are compatible with body tissues.
- the drug delivery compositions may be used for rectal or vaginal administration.
- the drug delivery compositions may be administered as suppositories.
- Suppositories may be prepared by mixing the drug delivery compositions with suitable non-irritating excipients or carriers.
- the non-irritating excipients or carriers may include cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the drug delivery compositions.
- the drug delivery composition may be administered for the treatment of a cancer associated with a particular receptor.
- the drug deliver composition may be administered in a therapeutically effective amount.
- the therapeutically effective amount may inhibit expression of at least one ligand of the receptor to a subject in need thereof. It will be appreciated that this encompasses administering an inventive pharmaceutical as a therapeutic measure to promote regression of a cancer or prevent further development or metastasis, or as a prophylactic measure to minimize complications associated with development of a tumor or cancer.
- the “therapeutically effective amount” of the pharmaceutical composition is that amount effective for preventing further development of a cancer or transformed growth, and even to effect regression of the cancer.
- the drug delivery compositions may be administered using any amount and any route of administration effective for prevention of development of a cancer.
- the expression “amount effective for inhibiting expression or activity of the oncogenic protein”, as used herein, refers to a sufficient amount of composition to prevent or retard development of a cancer, and even cause regression of a cancer or solid tumor.
- the cancer need not be limited to a solid tumor, and includes various types of lymphomas and leukemias.
- the exact dosage may be chosen by the individual physician with regard to the need of the patient to be treated. Dosage and administration may be adjusted to provide sufficient levels of the active agent(s) or to maintain the desired effect. Additional factors which may be taken into account include the severity of the disease state, e.g., cancer size and location; age, weight and gender of the patient; diet, time and frequency of administration; drug combinations; reaction sensitivities; and tolerance/response to therapy. Long acting pharmaceutical compositions might be administered every 3 to 4 days, every week, or once every two weeks depending on half-life and clearance rate of the particular composition.
- the drug delivery compositions may be formulated in dosage unit form for ease of administration and uniformity of dosage.
- dosage unit form refers to a physically discrete unit of active agent appropriate for the patient to be treated.
- the total daily usage of the compositions of the present invention may be decided by the attending physician within the scope of sound medical judgment.
- the therapeutically effective dose may be estimated initially either in cell culture assays or in animal models. Animal models may be mice, rabbits, dogs, or pigs as shown in Examples herein. The animal model may also be used to achieve a desirable concentration range and route of administration. Such information may then be used to determine useful doses and routes for administration in humans.
- a therapeutically effective dose refers to that amount of active agent, which ameliorates the symptoms or condition.
- Therapeutic efficacy and toxicity of active agents may be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., ED50 (the dose is therapeutically effective in 50% of the population) and LD50 (the dose is lethal to 50% of the population).
- the dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD50/ED50.
- Pharmaceutical compositions herein exhibit large therapeutic indices. The data obtained from the animal studies herein is used in formulating a range of dosage for human use.
- an initial dose of Herceptin® for human treatment accepted by the FDA may be 4 mg/kg followed by 2 mg/kg weekly for a total of 52 doses.
- An efficient dose of the composition herein for treatment of a mouse was 100 ⁇ l of observed 40 ⁇ g/ml, which may be equivalent to about 3.2 mg/kg for human use.
- the method may further include administering an additional therapeutic agent.
- the additional therapeutic agent may be selected from the group consisting of: an antibody, an enzyme inhibitor, an antibacterial agent, an antiviral agent, a steroid, a non-steroid-inflammatory agent, an antimetabolite, a cytokine, a cytokine blocking agent, an adhesion molecule blocking agent, and a soluble cytokine receptor.
- the method may include further administering antineoplastic agents.
- the antineoplastic agents may include agents for overcoming trastuzumab resistance.
- agents including monoclonal antibodies, recombinant proteins, and drugs, are known to have activity in treating breast cancer, and are here contemplated to be useful agents in combination with compositions described herein.
- the step of administering drug delivery composition including Herceptin® may include combining the drug delivery composition with other agents.
- the drug delivery composition may be administered with paclitaxel (taxol, Bristol-Myers Squibb) and docetaxel (taxotere, Sanofi-Aventis).
- the method may yield increases in response rates, time to disease recurrence, and overall survival (Esteva F J et al. 2002 J Clin Oncol. 20:1800; Slamon D J et al. 2001 N Engl J Med. 344:783; Wardley A M et al. 2009. J Clin Oncol 49:976).
- the step of administering may include combining targeting of HER2 and other tyrosine kinases.
- Tyrosine kinases are associated with breast cancer tumorigenesis and are of substantial interest as potential drug targets (Ocana A et al. 2008 Clin Cancer Res 14:961).
- IGF-1R insulinlike growth factor 1 receptor
- RTK receptor tyrosine kinase
- Cotargeting or simultaneous targeting of IGF-1R and 1-HER2 may offer an advantage compared to targeting of the individual RTKs in breast cancer cells (Esparis-Ogando A et al. 2008 Ann Oncol 19:1860).
- the v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (c-KIT) RTK is overexpressed in triple-negative breast cancers (those that do not express estrogen receptor, progesterone receptor; and HER2) (Nielsen T O et al. 2004 Clin Res 10:5367).
- c-abl oncogene 1 ABL1
- c-SRC tyrosine kinase CSK
- the step of administering may include combining the drug delivery composition with Dasatinib, (Sprycel®, Bristol-Myers Squibb) a small-molecule tyrosine kinase inhibitor.
- Dasatinib targets the cytosolic c-SRC and ABL1 kinases, and RTKs c-KIT and platelet-derived growth factor receptors alpha and beta (Finn R S et al. 2007 Breast Cancer Res Treat 105:319; Rix U et al. 2007 Blood 110:4055; Huang F. et al. 2007 Cancer Res 67: 2226; Huang F. et al. 2007 Cancer Res 67:2226).
- the drug delivery composition may be administered in combination with other drugs and may lead to decreased levels of phosphorylated HER2 and phosphorylated. HER3, and a decrease observed in the total amount of these receptors.
- the combined treatment may affect downstream signaling routes, such as the ERK1 or AKT pathways that regulate cell proliferation and survival (Garcia-Echeverria C et al. 2008 Oncogene 27:5511; Roberts P J et al. 2007 Oncogene 26:3291).
- Dasatinib alone was as inhibitory for phosphorylated levels of ERK1 as the combined drug treatment. Treatment with Dasatinib also inhibited SRC or FAK phosphorylation to the same degree as the combined drug treatment.
- the step of administering may include providing drug combination that may also induce caspase-independent apoptosis as determined by the lack of an effect of caspase inhibitors on apoptosis induced by the drug combination.
- One of the possible mediators in caspase-independent apoptosis is NAIF1 a protein that may be released from the mitochondrial intermembrane space by certain apoptotic stimuli. The release of NAIF1 from mitochondria to the cytosol, by treatment with the drug combination, may indicate that this mechanism could be responsible for caspase-independent apoptosis.
- the drug combination may also affect DNA repair machinery and lead to accumulation of double-stranded breaks (DSBs) which indicate control of DNA repair machinery by tyrosine kinases and potential clinical implications.
- DSBs double-stranded breaks
- the chug delivery composition may be administered in combination with Erlotinib (Tarceva, Roche), an inhibitor of EGFR.
- Erlotinib may block homologous recombination repair of the DSBs in breast cancer cells through reduction of RAD51 foci formation (Li L et al 2008 Cancer Res 68:9141).
- RTKs may regulate DNA repair (Tanaka T et al, 2008 Clin Cancer Res 14:1266; Ganapathipillai S S et al. 2008 Cancer Res 68:5769).
- the drug delivery composition may be administered in combination with Gefitinib (Iressa, Astra Zeneca and Teva) is an EGFR inhibitor.
- Gefitinib may impede DNA repair in response to ionizing radiations in macrocytic lung cancer cells (Tanaka T et al, 2008 Clin Cancer Res 14:1266).
- Mutated forms of MET protein, an RTK implicated in several oncogenic processes such as invasion and metastasis (Benvenuti S et al. 2007 J Cell Physiol 213:316) or drug resistance (Engelman J A et al. 2007 Science 316:1039), have been reported to bind to and phosphorylate RAD51, facilitating DNA repair in tumor cells (Ganapathipillai S S et al. 2008 Cancer Res 68:5769).
- a drug delivery composition may be administered with other drugs or agents.
- the agents may affect a transcription factor associated with Williams-Beuren syndrome (WSTF; also known as BAZ1B), a tyrosine kinase component of the WICH complex (WSTF-ISWI ATP-dependent chromatin-remodeling complex), that regulates the DNA damage response through phosphorylation of Tyr142 of H2AX (Xiao A et al. 2009 Nature 457:57).
- drugs such as dasatinib in combination with other antineoplastic agents such as gefitinib and erlotinib (Koppikar P et al. 2008 Clin Cancer Res 14:4284), are further combined with drug delivery compositions described herein.
- the drug delivery composition may be administered in combination with Lapatinib (Tyverb®, GSK) is a dual EGFR/HER2 tyrosine kinase inhibitor (Rusnak D W et al. 2001 Mol Cancer Ther 1:85) which is highly selective to EGFR and HER2 (Karaman M W et al. 2008 Nat Biotechnol 26:127).
- Lapatinib In preclinical models of trastuzumab resistance, lapatinib inhibited phosphorylation of HER2 and overall growth in HER2 overexpressing breast cancer cell lines specifically chosen for extent of in vitro resistance to trastuzumab (Konechny G E et al. 2006 Cancer Res 66:1630).
- treatment with lapatinib may be combined with trastuzumab and may result in a greater degree of survival and greater apoptosis induction than either agent alone (Xia et al. 2005 Oncogene 24: 6213).
- a substantial number of HER2-positive metastatic breast cancer patients treated with trastuzumab experience symptomatic central nervous system (CNS) metastasis, which unlike visceral diseases, are not well controlled by trastuzumab.
- CNS central nervous system
- Lapatinib and not trasuzumab has been shown to cross the blood-brain barrier, providing rationale for testing lapatinib in patients with CNS metastases (Nielsen D L et al. 2009 Cancer Treat Rev 35:121).
- Trastuzumab in combination with lapatinib may be to be superior to lapatinib alone in HER2-positive metastatic breast cancer patients (Blackwell K L et al. 2010 J Clin Oncol 28:1124).
- the drug delivery composition may be administered in combination with Pertuzumab (2c4, omnitarg, Genentech).
- Pertuzumab is a monoclonal antibody specific for the extracellular domain of HER2 protein. Pertuzumab may attach to a different epitope of HER2 compared to trastuzumab. Pertuzumab was observed to inhibit heterodimer formation between HER2 and EGFR or HER3 (Agus D B et al. 2002 Cancer Cell 2:127).
- the heregulin-dependent HER2/HER3 heterodimer may be disrupted by pertuzumab and may not be disrupted by trastuzumab (Jitunttila et al. 2009 Cancer Cell 15:429).
- trastuzumab Jitunttila et al. 2009 Cancer Cell 15:429.
- treatment produced a response rate of 24.2%, and disease control rate of 50% (Baselga J et al. 2010 J Clin Oncol 28: 1138).
- the drug delivery composition may be administered in combination with Trastuzumab-DM1 comprised of trastuzumab and DM1, an agent that is an inhibitor of tubulin polymerization derived from maytansine.
- a stable MCC linker conjugates the DM1 to the trastuzumab.
- the compound may be designed to deliver DM1 to HER2-overexpressing cancer cells. Preclinical studies have indicated the growth-inhibitory effect of trastuzumab-DM1 in HER2-overexpressing and trastuzumab resistant cells (Lewis Phillips G D et al. 2008 Cancer Res 68:9280).
- the drug delivery compositions may be administered in combination with PI3K pathway inhibitors.
- the PI3K pathway inhibitors may be used for treating HER2 expressing tumors.
- HER2-overexpressing breast cancer cells are believed to be dependent on the PI3K signaling pathway, and a number of genetic or epigenetic alterations in PI3K signaling molecules have been shown to cause resistance to trastuzumab or small-molecule HER2 kinase inhibitors.
- HER2-overexpression and PIK3CA mutations frequently occur simultaneously in breast cancer cells (Oda K et al. 2008 Cancer Res 68:8127), and cell lines with either HER2 amplification or PIK3CA mutation are equally Akt-dependent (She Q B et al.
- PI3K pathway inhibitors may therefore be useful in overcoming resistance to anti-HER2 agents.
- PI3K/mTOR dual inhibitor and Akt inhibitor were shown to effectively inhibit cellular growth in trastuzumab-and lapatinib resistant cells.
- Akt inhibitors are in clinical development, and their roles in overcoming trastuzumab resistance will be tested in the future. These inhibitors may be used in combination with the drug delivery compositions herein.
- the drug delivery compositions may be administered in combination with inhibitors of alternative signaling molecules.
- the inhibitors of alternative signaling molecules may be used to treat trasuzumab resistant cancer cells.
- Alternative signaling from IGF-1R or MET may be associated with trastuzumab resistance.
- Small-molecular weight inhibitors of IGF-1R or MET receptor tyrosine kinase, and anti-IGF-1 antibody and anti-HGF antibody are in clinical development at present. Monotherapy or combination therapy with these agents and the drug delivery composition that includes trastuzumab may be therefore an attractive therapeutic strategy.
- the drug delivery compositions may be administered in combination with HER2 vaccines and adoptive immunotherapy targeting the HER2 extracellular domain tested in clinical trials. Results of these tests showed that significant levels of durable T-cell HER2 immunity may be generated with active immunization without significant consequences with regard to autoimmunity against normal tissues (Bernhard H et al 2002 Endoctr Relat Cancer 9:33). Early data from clinical trials testing the potential use of HER2-specific vaccines in adjuvant therapy for high-risk breast cancer patients show promising results (Peoples G E et al. 2008 Clin Cancer Res 14:797).
- the drug delivery composition may be administered in combination with Ertumaxomab (Rexomum, Fresenius Biotech GmbH, phase II study).
- Ertumaxomab is an intact bispecific antibody targeting HER2 and CD3 on T cells with preferential binding to activating Fcc type I/III receptors and redirecting T cells, macrophages, dendritic cells, and natural killer cells to HER2 expressing tumor sites (Kiewe P et al. 2008 Expert Opin Investig Drugs 17: 1553).
- ertumaxomab treatment was associated with one complete response, two partial responses, and two stable diseases in patients with metastatic breast cancer who had received extensive prior treatment (Kiewe P et al. 2006 Clin Cancer Res 12:3085). The effects of ertumaxomab are being evaluated in phase II studies.
- the drug delivery compositions may be administered using defucosylated trastuzumab.
- Defucosylated trastuzumab may be used to treat trastuzumab resistant cancer cells. Removal of fucose from antibody oligosaccharides attached to the heavy chain of Asn 297 (defucosylation) has been shown to significantly enhance antibody-dependent cellular cytotoxicity (ADCC) compared to the activity of regular antibodies. In addition, defucosylation of trastuzumab was also found to enhance ADCC in an in vitro assay as compared to regular trastuzumab (Suzuki E et al. 2007 Clin Cancer Res 13:1875).
- trastuzumab more than doubled the median progression-free survival compared with conventional trastuzumab in preclinical models of HER2-amplified breast cancer (Juntilla et al. 2010 Cancer Res 70:4481).
- any of the above agents including paclitaxel, docetaxel, dasatinib, erlotinib, gefitinib, lapatinib, pertuzumab, trastuzumab, ertumaxomab, trasuzumab-DM1, defucosylated trastuzumab, PI3K pathway inhibitors and HER2 vaccines are here envisioned to be useful in combination with nanobiopolymer conjugate compositions herein to treat breast cancers by methods described herein.
- the drug delivery composition may include at least one module that targets a tumorigenic or a cancer cell to be selected from the group of agents consisting of: paclitaxel, docetaxel, dasatinib, erlotinib, gefitinib, lapatinib, pertuzumab, trastuzumab, ertumaxomab, trasuzumab-DM1, defucosylated trastuzumab, PI3K pathway inhibitors and HER2 vaccines.
- a tumorigenic or a cancer cell to be selected from the group of agents consisting of: paclitaxel, docetaxel, dasatinib, erlotinib, gefitinib, lapatinib, pertuzumab, trastuzumab, ertumaxomab, trasuzumab-DM1, defucosylated trastuzumab, PI3K pathway inhibitors and HER2 vaccines.
- the step of contacting the subject with the composition may further include providing the composition in a unit dose effective for treatment the cancer in the subject.
- the effective dose may be at least one dose selected from the group consisting of: 1 ⁇ g/kg, 50 ⁇ g/kg, 100 ⁇ g/kg, 200 ⁇ g/kg, 300 ⁇ g/kg, 400 ⁇ g/kg, 500 ⁇ g/kg, 600 ⁇ g/kg, 700 ⁇ g/kg, 800 ⁇ g/kg, 900 ⁇ g/kg, 1 mg/kg, 50 mg/kg, 100 mg/kg, 200 mg/kg, 300 mg/kg, 400 mg/kg, 500 mg/kg, 600 mg/kg, 700 mg/kg, 800 mg/kg, 900 mg/kg, and 1 g/kg
- cancer may be selected from the list consisting of: gastric, endometrial, salivary gland, lung, non-small cell lung, pancreatic, ovarian, peritoneal, prostate, colorectal, breast, cervical, uterine, ovarian, brain, head and neck, testicular and teratoma cancers.
- the cancer may be either a primary cancer, or a metastatic cancer, or both.
- inhibition of expression or activity of an oncogenic protein may be useful to prevent development or metastasis of a cancer conditions.
- These inhibitors may be clinically useful in preventing further growth of a particular cancer type, including but not limited to the breast cancer; skin cancer; ovarian cancer; cervical cancer; the retinoblastoma; colon cancer and other conditions, e.g., those arising from the lining of the gastrointestinal tract; lung cancer and cancers of the respiratory tract; renal carcinoma and other tumors arising from the inner surface of kidney tubules; leukemias and lymphomas and disorder of blood; and other types of genital cancer including those associated with various strains of papilloma virus; brain tumors; and cancers of the uterus, of the vagina, of the urethra.
- the diagnostic, prognostic and therapeutic methods described herein may not be limited to treating conditions in humans, but may be used to treat similar conditions in any mammal.
- the mammal may be but not limited to bovine, canine, feline, caprine, ovine, porcine, murine, or equine species.
- the antisense oligonucleotides have a nucleotide sequence that is substantially identical in base sequence to that as it occurs naturally in the species.
- compositions and methods of the present invention provide a nanobiopolymeric drugs based on poly- ⁇ -L-malic acid (PMLA) platform specifically designed for delivery into HER2/neu-positive tumors.
- PMLA poly- ⁇ -L-malic acid
- Targeted nanobiopolymeric conjugates based on poly- ⁇ -L-malic acid (PMLA) are biodegradable, non-toxic, and non-immunogenic.
- the PMLA nanoplatform was synthesized for repetitive systemic treatments of HER2/neu-positive human breast tumors in a xenogeneic mouse model.
- Various moieties were covalently attached to PMLA, including a combination of morpholino antisense oligonucleotides (AON) directed against HER2/neu mRNA, to block HER2/neu synthesis; anti-HER2/neu antibody trastuzumab (Herceptin®), to target breast cancer cells and inhibit receptor activity simultaneously; and transferrin receptor antibody, to target the tumor vasculature and mediate delivery of the nanobiopolymer through the host endothelial system.
- AON morpholino antisense oligonucleotides
- Herceptin® anti-HER2/neu antibody trastuzumab
- transferrin receptor antibody to target the tumor vasculature and mediate delivery of the nanobiopolymer through the host endothelial system.
- the Examples herein include tests of the lead compound, and data show that this compound significantly inhibited growth of HER2/neu-positive breast cancer cells in vitro and in vivo, and enhanced apoptosis and inhibition of HER2/neu receptor signaling with suppression of Akt phosphorylation was observed in treated cells and animals.
- In vivo imaging analysis and confocal microscopy demonstrated selective accumulation of the nanodrug in tumor cells as a result of an active delivery mechanism resulting from design of the lead compound.
- Systemic treatment of human breast tumor-bearing nude mice resulted in more than 90% inhibition of tumor growth and tumor regression, compared to partial (50%) tumor growth inhibition in mice treated with control trastuzumab alone or control AON alone, either free or attached to PMLA.
- Data from Examples herein offer a preclinical demonstration of use of the PMLA nanoplatform for combination cancer therapy.
- the epidermal growth factor receptor or ErbB family of receptor tyrosine kinases is exemplified by an epidermal growth factor receptor (also called HER1 or ErbB1), HER2 (ErbB2 or neu), HER3 (ErbB3), and HER4 (ErbB4).
- an epidermal growth factor receptor also called HER1 or ErbB1
- HER2 ErbB2 or neu
- HER3 ErbB3
- HER4 HER4
- phosphotyrosylated sites in Src-homology 2 (SH2) domains in these proteins serve as docking sites for adaptor proteins such as Shc, Grb2, and Sos resulting in the activation of the of Ras/Raf/mitogen-activated protein kinase (MAPK) kinase (MEK)/MAPK and PI3K/protein kinase B (PKB) pathways and promotion of proliferation and mitogenesis (Yarden et al. 2001 Nat Rev Mol Cel Biol 2:127).
- MAPK Ras/Raf/mitogen-activated protein kinase
- MEK mitogen-activated protein kinase
- PBB protein kinase B
- the HER2/neu proto-oncogene also known as erbB-2, encodes a 185-kDa type I transmembrane receptor tyrosine kinase that is member of the epidermal growth factor receptor family (Hynes N E et al., 2005 Nat Rev Cancer 5:341; Bargmann C I et al. 1986. Nature 319:226; Coussens L et al. 1985 Science 230:1132).
- Early studies have identified HER2/neu protein overexpression in several human carcinomas, including subsets of ovarian and breast cancers (Hynes N E et al. 1994. Biochim Biophys Acta 1198:165; D'Emilia J et al.
- the ErbB2 gene is amplified and overexpressed in up to 30% of primary breast cancers and this is associated with poor patient prognosis (Slamon D J et al., 1989 Science 244:707). ErbB1 is also overexpressed in up to 30% of primary invasive breast cancers and this is correlated with reduced overall survival, proliferation, and higher metastatic potential (Tsutsui S et al. 2002 Breast Cancer Res Treat 71:67). Inhibition of ErbB1 signaling reduces both ErbB1 and ErbB2 activity and delays tumorigenesis in MMTV/Neu mice (Lenferink A E G et al. 2000 Proc Natl Acad Sci 97:9609). The cooperative activation of proliferative pathways by these two receptors has stimulated the development of a number of small molecule inhibitors of members of the ErbB family for use as anticancer agents.
- Newly diagnosed estrogen positive breast cancers are commonly treated with the antiestrogen agent tamoxifen.
- overexpression of both Erb1 and Erb 2 is associated with resistance to tamoxifen therapy. It was shown that administration of such anticancer agents as lapatinib (GW572016) and tamoxifen together was advantageous and restored tamoxifen-mediated cell cycle arrest and inhivited tamoxifen-resistant breast tumor growth (Chu I et al. 2005 Cancer Res 65: 18).
- HER2/neu an attractive candidate for antibody therapy.
- Metastatic breast cancer patients are currently being treated with Trastuzumab (also known as Herceptin; Genentech, Inc., San Francisco, Calif.), a Food and Drug Administration-approved humanized monoclonal anti-HER2/neu (Kaptain S et al. 2001 Diagn Mol Pathol 10:139).
- Trastuzumab also known as Herceptin; Genentech, Inc., San Francisco, Calif.
- HER2/neu a Food and Drug Administration-approved humanized monoclonal anti-HER2/neu
- HER2/neu-overexpressing tumors demonstrate primary resistance to Herceptin® (Baselga J et al. 1999 Semin Oncol 26:78; Nahta R et al. 2004 Cancer Res. 64:398). This resistance may be due to epitope masking by overexpressed mucins, loss of receptor ability to influence pro-survival signaling through PI3K-Akt axis, or loss of protein phosphatase PTEN leading to the activation of PI3K-Akt signaling (Tseng P H et al. 2006 Mol Pharmacol. 70:1534-41; Nagy P et al 1998 Cytometry 32:120; Tanner M et al. 2004 Cancer Ther. 3:1585-92).
- Nanobiopolymers as a Platform for Carrying Multiple Drugs for Treatment of HER2/neu Cancers
- Advantages of drug combinations can be offered in a single molecular entity such as a nanobiopolymeric conjugate.
- These compounds offer enhanced cancer cell specificity because of the presence of tumor targeting antibodies, bypass drug resistance by delivering polymer-bound drugs into cancer cell cytoplasm, and can carry multiple drugs on a single platform (Wu K et al. 2010 Angew Chem Int Ed Engl. 9:1451).
- Efficient delivery of nanobiopolymer-attached drugs to tumors is increased by passive targeting through enhanced permeability and retention (EPR) effect typical for tumors (Maeda H et al. 2009 Eur J Pharm Biopharm 71:409), and additionally, by active targeting using antibodies, such as anti-TfR (Maeda H et al.
- a general problem with anti-cancer drugs is lack of specific tumor targeting, resulting in an extent of random tissue accumulation and significant side effects for normal tissues (Shukla R et al. 2008 Nanotech 19:1; Shukla R et al. 2006 Bioconjug Chem 17:1109).
- tumor-targeting antibodies have been used as drug carriers or directly as therapeutics (e.g., Herceptin®).
- Dendrimer nanoconjugates with attached Herceptin® displayed enhanced accumulation in breast cancer cells in animal models (Shukla R et al. 2006 Bioconjug Chem 17:1109).
- Methotrexate-loaded dendrimers produced a cytotoxic effect in tumor cells in vitro resulting from Herceptin®-mediated complex internalization (Shukla R et al. 2008 Nanotech 19:1).
- the efficacy of these nanodrugs was limited because of lack of efficient endosome release unit (Shukla R et al. 2008 Nanotech 19:1).
- Drugs were specifically delivered to cancer cells and tumor growth was inhibited as was angiogenesis in brain glioma-bearing animals (Fujita M et al. 2006 Angiogenesis 9:183; Ljubimova J Y et al. 2008 Chem Biol Interact. 171:195).
- the efficiency of the polymers was associated with properties of tumor targeting, use of AON drugs to more than one tumor marker at the same time, and the presence of endosome disruption moiety ensuring drug release inside the target cell (Gasslmaier B et al. 2000 Eur J Biochem267: 5101).
- Table 1 summarizes nanobiopolymer drugs synthesized for use in Examples herein.
- PMLA is a natural polymer obtained from the slime mold Physarum polycephalum (Lee B S et al. 2006 Bioconjug Chem 17:317; Lee B S et al. 2002 Water-soluble aliphatic polyesters:poly(malic acid)s, in: Doi YSA, eds, Biopolymers, Weinheim: Wiley-VCH, 2002 pp. 75-103).
- PMLA is non-toxic, non-immunogenic, and biodegradable in vitro and in vivo, stable in the bloodstream, and highly water-soluble (Gasslmaier B et al. 1997 Eur J Biochem 250:308; Gsslmeier B et al.
- morpholino AONs having nucleotide sequences specific to ⁇ 4 and ⁇ 1 chains of a tumor vasculature-specific protein, laminin-411 (formerly, laminin-8), to intracranial glioblastoma was shown to result in marked inhibition of tumor angiogenesis and growth (Ljubimova J Y et al. 2008 Nanomedicine 3:247; Ding H et al. 2010 Proc Natl Acad Sci online publication). Further, to target tumor vasculature, a mAb to transferrin receptor (TfR) was attached to the same nanoplatform.
- TfR transferrin receptor
- the nanobiopolymer composition carrying each of anti-HER2/neu antibody (Herceptin®), anti-TfR antibody, and AON to HER2/neu is shown herein to enhance the specificity and anti-tumor effect towards HER2/neu positive breast cancer.
- the lead compound tested herein is a nanoplatform designed to work on several molecular levels, to inhibit the synthesis of new HER2/neu receptors with AON, and to block the activity of existing HER2/neu on the tumor cell membrane with Herceptin®.
- Antisense oligonucleotides that bind specifically to mRNA and block protein synthesis are tools specific for silencing gene expression. Efficient delivery of AONs and siRNAs in systemic treatment of tumors however still presents significant problems (Patil S D et al. 2005 AAPS 7:E61; Thierry et al., 2003 Curr Opin Mol Ther 5:133). Preclinical studies of AON for cancer treatment showed promising results, and stability of AON in plasma renders these molecules feasible for systemic treatment (Busch R K et al. 1994 Cancer Lett 86:151; Sekhon H S et al. 2008 Lung Cancer 60:347; Garbuzenko O B et al.
- Nanoparticles are used in drug delivery as carriers for small and large molecules. Nanoparticles are defined as particulate dispersions or solid particles with a size in the range of 10-1000 nm. The drug is dissolved, entrapped, encapsulated or attached to a nanoparticle matrix (Langer R. 2000 Acc Chem Res 33:94). Nanobiopolymers of the present invention differ from nanoparticles in that nanoparticles have no covalent bonds between the particle and drug cargo, generally merely leak the drug, and accordingly cannot directly transport cargo to and release the cargo inside tumor cells.
- nanobiopolymer compositions comprise a single unitary molecular entity having functional modules including a plurality of the following: tumor cell-targeting antibodies, two or more anti-tumor drugs, an endosomal disruption moiety, and a glutathione-cleavable bond to release the drug inside tumor cell cytoplasm, covalently attached.
- Such a construct functions to eliminate leakiness, suppresses non-tumor accumulation thereby minimizing side effects, and increase drug half-life dwell time of the composition in plasma.
- tumor uptake and drug specificity were observed in examples herein to be enhanced, leading to a significant reduction of tumor growth and volume.
- the combined drug action through inhibiting Akt activation and increase of tumor cell apoptosis was also observed in examples herein.
- Nanobiopolymers of the present invention offer a great potential in cancer therapy.
- Morpholino TM- 3′-NH2 antisense oligonucleotides used in Examples herein were custom made by Gene Tools (Philomath, Oreg.).
- AONs specific for HER2/neu included two sequences:
- version 1 (SEQ ID NO: 1) 5′-AGGGAGCCGCAGCTTCATGTCTGTG-3′
- version 2 (SEQ ID NO: 2) 5′-CATGGTGCTCACTGCGGCTCCGGC-3′.
- AONs specific for an epidermal growth factor receptor included:
- ⁇ 4 subunit (SEQ ID NO: 4) 5′-AGCTCAAAGCCATTTCTCCGCTGAC-3′, ⁇ 1 subunit: (SEQ ID NO: 5) 5′-CTAGCAACTGGAGAAGCCCCATGCC-3′.
- siRNA specific for EGFR included sequences as follows:
- siRNA specific for HER2 receptor protein included:
- the nanobiopolymers contain five to six components: PMLA as the backbone; functional modules include: morpholino AON to inhibit HER2/neu protein synthesis; targeting anti-TfR mAb; anti-tumor Herceptin®; 40% leucine ethyl ester (LOEt) as endosome escape unit to achieve cytoplasmic AON delivery, and 5% PEG 5000 to increase stability in the bloodstream.
- FIG. 1 illustrates a chemical structure and schematic drawings showing a nanobiopolymeric conjugate designed to inhibit HER2/neu expression by antisense oligonucleotides (AON) and to attenuate HER2/neu-mediated cell signaling by Herceptin®.
- the modules are HER2/neu morpholino AON (indicated 1 in Figure) conjugated to the PMLA scaffold by disulfide bonds (S—S) that are cleaved by cytoplasmic glutathione to release the free drugs; targeting and/or effector antibodies that include antibody specific to a transferrin receptor protein (TfR) either alone or in combination with monoclonal antibodies (mAbs) to mouse TfR (indicated 2a in Figure), human TfR (indicated 2b) and Herceptin® (indicated 2c) for tumor endothelial and cancer cell targeting, receptor-mediated endocytosis, and anti-tumor effect, polyethylene glycol (PEG) for drug protection (indicated 3), stretches of conjugated L-leucine ethyl ester (LOEt) for endosomal escape of the drug (indicated 4), and optional fluorescent reporter dye (Alexa Fluor 680) for imaging (indicated 5).
- TfR transferrin receptor protein
- the nanopolymer also contained free unsubstituted pendant carboxyl groups for enhancing solubility and nonfunctional disulfides originating from chemical masking of excess sulfhydryls with 3-(2-pyridyldithio)-propionates.
- anti-mouse TfR mAb on Herceptin®-containing conjugate was used to target tumor vasculature.
- the conjugate with AON without Herceptin® included an anti-human TfR mAb attached to it to promote drug binding to human tumor cells and its internalization.
- the preconjugate containing 40% LOEt, 5% PEG 5000 and 10% of cysteamine (% referring to the total amount of pendant carboxyl groups in polymalic acid) was synthesized by the methods described previously (Lee B S et al. 2006 Bioconjug Chem 17:317).
- the antibodies conjugated with the preconjugate were qualitatively and quantitatively assayed by size exclusion HPLC.
- ELISA with purified TfR and HER2/neu was used to assess functional reactivity of attached antibodies as described (Fujita M et al. 2007 J Control Release. 122:356).
- Conjugates for imaging were fluorescently labeled with Alexa Fluor® 680 C2-maleimide (Invitrogen, Carlsbad, Calif.) by forming thioether with sulfhydryl groups. Antibody conjugates were then reacted with HER2/neu AON ( FIG. 1 ). A control conjugate contained Herceptin® ( FIG. 1 ) and not HER2/neu-specific AON.
- the nanobiopolymer variants were characterized by their size (hydrodynamic diameter) on the basis of noninvasive back-scattering (NIBS), and ⁇ potential from electrophoretic mobility based on the Helmholtz-Smoluchowski formula, using electrophoresis M3-PALS (Gasslaier B et a. 1997 Eur J Biochem 250:308). Both measurements were performed in a Zetasizer Nano System ZS90 (Malvern Instruments, Malvern, UK). Data on molecular size and ⁇ potential represent mean ⁇ standard deviation obtained from three independent measurements.
- BT-474, SKBR-3, MDA-MB-231, MDA-MB-435, MDA-MB-468, and MCF-7 were obtained from American Type Culture Collection (Manassas, Va.).
- BT-474, MDA-MB-231, MDA-MB-435, MDA-MB-468, and MCF-7 were cultured in DMEM with 10% fetal bovine serum and antibiotics.
- SKBR-3 was cultured in McCoy's 5A medium with 10% fetal bovine serum and antibiotics.
- nanobiopolymer denotes a drug delivery system with PMLA as a nanoplatform and functional module groups covalently attached to the PMLA, including an AON, a rat anti-mouse or a mouse anti-human targeting TfR mAbs (M and H, respectively), and LOEt as the endosomal escape unit module.
- the nanobiopolymer drugs ( FIG. 1 and Table 1) described herein to treat HER2/neu-positive breast cancer contained either a drug HER2/neu AON or drug Herceptin® or both HER2/neu AON+Herceptin®.
- HER2/neu-overexpressing breast cancer cells each of BT-474 or SKBR-3 were seeded into six-well plates at 3 ⁇ 10 5 cells/well. The next day, cells were treated with one of Endoporter (4 ⁇ M; control); Herceptin (40 ⁇ g/ml); P/mPEG/LOEt/Herceptin® (40 ⁇ g/ml); Endoporter (4 ⁇ M) and AON (4 ⁇ M); P/mPEG/LOEt/AON/TfR(H/M); P/mPEG/LOEt/AON/Herceptin®/TfR(M); and PBS control. Seventy-two hours after treatment, the cells were stained with Trypan Blue. Cell viability was determined by calculating the mean of cell counts for each treatment group (in triplicate) and was expressed as a percentage of the total number of cells treated normalized to the number of cells treated with PBS.
- BT-474 and SKBR-3 breast cancer cells were treated with Herceptin® (40 ⁇ g/ml P/mPEG/LOEt/Herceptin® (40 ⁇ g/ml equivalent to Herceptin®); Endoporter (4 ⁇ M) and AON (4 ⁇ M); P/mPEG/LOEt/AON/TfR(H/M); P/mPEG/LOEt/AON/Herceptin®/TfR(M); PBS control, or 4 ⁇ M Endoporter.
- Cell lysates were collected after 72 hours and were analyzed by western blotting as described previously (Inoue S et al. 2005 Mol Ther. 12:707-15).
- Lysates of excised breast tumors after various treatments were analyzed by these methods.
- the following anti-human primary antibodies were used: HER2/neu, Akt, phosphorylated Akt (p-Akt), glyceraldehyde 3-phosphate dehydrogenase (GAPDH, to normalize gel load) (all from Cell Signaling Technology, Beverly, Mass.), and poly(ADP ribose) polymerase (PARP; BD Biosciences, San Jose, Calif.).
- mice (CrTac: NCr-Foxn1nu Homozygous; Taconic, Hudson, N.Y.) were used.
- a 0.72-mg, 90-day release, 17 ⁇ -estradiol pellet (Innovative Research of America, Sarasota, Fla.) was inserted subcutaneously into the back of each mouse seven days prior to injection.
- mice were divided into five treatment groups and each group was administered either of: sterile PBS (control); Herceptin® (40 ⁇ g/ml); P/mPEG/LOEt/Herceptin® (40 ⁇ g/ml equivalent to Herceptin®); P/mPEG/LOEt/AON/TfR(H/M); or P/mPEG/LOEt/AON/Herceptin®/TfR(M); into the tail vein twice a week. Treatments were performed six times during a period of three weeks.
- Tumor xenografts were measured with calipers twice a week, and tumor volumes were determined using the formula: (length ⁇ width 2 ) ⁇ ( ⁇ /6).
- Alexa Fluor 680-labeled nanobiopolymers (P/mPEG/LOEt/IgG, control); P/mPEG/LOEt/Herceptin®, 40 ⁇ g/ml; or P/mPEG/LOEt/AON/Herceptin®/TfR(M)) was each injected into the tail vein of mice. Twenty-four hours after drug administration, mice were euthanized; the tumors were harvested to detect the fluorescent signal, snap-frozen in liquid nitrogen and embedded in OCT compound for confocal microscopy (TCS SP5 ⁇ microscope; Leica Microsystems, Mannheim, Germany).
- BT-474 human breast cancer cells were implanted into the right thigh of mice as described.
- tumor size attained 120 mm 3
- 160 ⁇ l of Alexa Fluor 680 labeled nanobiopolymers was injected intravenously (4 ⁇ M).
- P/mPEG/LOEt/IgG was used as a negative control.
- Drug distribution and localization was assessed in tumor-bearing mice using Xenogen IVIS 200 imager (Caliper Life Sciences, Hopkinton, Mass.), at different time points before drug administration, 1 h, 3 h, 6 h, and 24 h after the drug injection). Twenty-four hours after drug administration, mice were euthanized and the circulating drugs eliminated by intraarterial PBS perfusion. The tumor and major organs were harvested to detect the fluorescent signal.
- the absolute molecular weight of the lead version of nanobiopolymer ( FIG. 1 ) was 1,300 kDa by light scattering and close to the calculated value based on design. Hydrodynamic diameters (nano sizes) and ⁇ potentials of the nanobiopolymers in FIG. 1 are summarized in Table 1. Parameters for ⁇ potentials in the range of ⁇ 4.1 to ⁇ 5.7 mV have been reported for other nanoparticles as compatible with cell membrane attachment and nanoparticle internalization (Lorenz M R et al. 2006. Biomaterials 27:2820; Wilhelm C et al. 2003 Biomaterials. 24:1001).
- Example 14 The Lead Nanobiopolymer Carrying Both Herceptin® and HER2/neu AON (P/mPEG/LOEt/AON/Herceptin®/TfR(M)) Inhibited Growth of Breast Cancer Cells In Vitro
- Percentage of cell growth was calculated as average cell counts for each group and expressed relative to parallel samples treated with PBS (control) set to 100%. Growth of tumor cells treated with lead compound P/mPEG/LOEt/AON/Herceptin®/TfR(M) was observed to be significantly inhibited compared with other treatments in both cell lines. In cell lines expressing low amounts of HER2/neu ( FIG. 3A ), the data showed that the lead compound had greatest ability to inhibit cell growth (bottom row). One asterisk indicates that P ⁇ 0.05; two asterisks indicate that P ⁇ 0.01; three asterisks indicate that P ⁇ 0.003 compared to PBS control treatment.
- the lead compound also showed significant differences at P ⁇ 0.005 when compared to all treatment groups (top row), and at P ⁇ 0.02 when compared to Herceptin® (bottom row). At the concentrations used, it was observed that each of free AON and Herceptin® resulted in some growth inhibition in HER2/neu high-expressing cells. Low-expressing cell lines were observed to be significantly less responsive to these treatments.
- nanobiopolymeric conjugates (a two-drug compound and single-drug compounds shown in FIG. 1 ) were then tested for tumor cell growth inhibitory effect.
- the nanobiopolymers, Herceptin®, and free AON caused significant growth inhibition compared to PBS control in HER2/neu high-expressing cells ( FIG. 2 top, P ⁇ 0.01).
- the lead two-drug compound produced the strongest inhibitory effect that was significantly higher than that of the other nanobiopolymers tested and higher than Herceptin® (P ⁇ 0.005 compared to all groups).
- HER2/neu low-expressing cells only the lead compound with AON, Herceptin® and TfR(M) was able to induce statistically significant inhibition of tumor growth compared to PBS ( FIG. 2 bottom, P ⁇ 0.02).
- Example 15 The Lead Compound Inhibits HER2/neu and p-Akt Expression and Induces Apoptosis of HER2/neu-Overexpressing Breast Cancer Cells In Vitro
- PI3K phosphatidylinositol-3 kinase
- Akt serine/threonine kinase
- HER2/neu signaling can activate the PI3K/Akt/mTOR cascade, and activated Akt stimulates increases in cell size, metabolism and survival (Plas D R et al. 2005 Oncogene 24:7435).
- HER2/neu high-expressing cell lines BT-474 and SKBR-3 were used ( FIG. 3A ).
- PARP cleavage was examined by western blot analysis. Breast cancer cell lines used in Examples herein were observed to express high levels of TfR.
- HER2/neu expression was inhibited to different extents by each of Herceptin®, AON, and the single-drug versions of the nanobiopolymer [P/mPEG/LOEt/Herceptin and P/mPEG/LOEt/AON/TfR(H/M)] in comparison with controls.
- the strongest inhibition of HER2/neu expression was observed upon treatment with the lead nanobiopolymer having AON and Herceptin® attached to the PMLA carrier molecule.
- p-Akt a key downstream mediator of HER2/neu signaling (Tseng P H et al, 2006 Mol Pharmacol. 70:1534), was inhibited to different extents in tumor cells treated with Herceptin®, AON, or single-drug versions of nanobiopolymer compared to control cells treated with PBS or AON transduction reagent Endoporter.
- the p-Akt signal upon treatment of both breast cancer cell lines with the lead drug carrying both Herceptin® and HER2/neu AON was observed to be markedly lower in comparison to treatment with any other agent ( FIG. 3B ).
- the amount of total Akt on western blots remained unchanged by each of the treatment.
- Apoptosis assessed by PARP cleavage was induced to some extent by each of Herceptin®, AON, and single-drug nanobiopolymers in HER2/neu high-expressing cells, for example in BT-474 cell line.
- the lead compound, P/mPEG/LOEt/AON/Herceptin®/TfR(M) triggered apoptosis to a greater extent than the other agents in both cell lines, as shown by increased PARP cleavage compared to the other agents ( FIG. 3B ).
- Assay of generation of cleaved poly(ADP-ribose) polymerase (PARP) as a measure of apoptosis was observed at highest levels in P/mPEG/LOEt/AON/Herceptin®/TfR(M)-treated cells.
- Glyceraldehyde 3-phosphate dehydrogenase(GAPDH) was used as an internal loading control.
- Example 16 The Lead Compound P/mPEG/LOEt/AON/Herceptin®/TfR(M) Specifically Accumulates in HER2/neu-Overexpressing Breast Tumors In Vivo
- FIG. 4 shows distribution of various compounds herein labeled with Alexa Fluor 680 in live mice with BT-474 breast tumors and in tumors in isolated organs.
- liver mice were injected with each of the lead drug P/mPEG/LOEt/AON/Herceptin®/TfR(M) (bottom row), positive control P/mPEG/LOEt with Herceptin® (middle row) and control conjugate P/mPEG/LOEt/IgG (top row).
- Control mice top row had little BT-474 tumor accumulation, and most of the control polymer accumulated in drug clearing organs, liver and kidneys.
- Polymer P/mPEG/LOEt with Herceptin® alone had a moderate tumor accumulation (middle row). The highest accumulation in breast tumor cells was observed in mice treated with the lead compound P/mPEG/LOEt/AON/Herceptin®/TfR(M). Arrows mark tumor implantation site.
- the nanobiopolymer with only Herceptin® accumulated to a lesser extent in tumors than the version with Herceptin®, AON and anti-TfR mAb (the lead drug). These data show the enhanced targeting of tumor vasculature with anti-TfR mAb compared to Herceptin®. Control nanobiopolymer with IgG showed only a small amount of tumor accumulation ( FIG. 4 ).
- FIG. 5 shows distribution of various compounds in BT-474 breast tumor cells.
- animals were administered compounds intravenously as shown in FIG. 4 , were sacrificed 24 hours after drug injection, tumors were excised, and sections were analyzed by confocal microscopy. Nuclei were counterstained with DAPI (grey area).
- Example 17 The Lead Compound P/mPEG/LOEt/AON/Herceptin®/TfR(M) Significantly Inhibits HER2/neu Positive Breast Tumor Growth In Vivo
- compositions herein following intravenous administration in subcutaneous mouse models of human breast tumor xenografts was investigated.
- Cell line BT-474 was selected for in vivo analysis because of its high HER2/neu expression and tumorigenicity.
- Treatment of BT-474 tumor-bearing mice with Herceptin®, single-drug nanobiopolymers and the lead compound P/mPEG/LOEt/AON/Herceptin®/TfR(M) was performed and compared to negative control PBS. No decreases in body weight or morbidity, or death was observed, indicating that each treatment was well tolerated.
- FIG. 6A-6C show mouse tumor inhibition, pathology, signaling and apoptosis marker expression.
- FIG. 6A shows data obtained and histopathological analysis of respective tumors from two representative animals for each group administered with different drugs. Variable amounts of dead tissue were observed to be present in all treated groups. Tumor size reduction data and pronounced disappearance of tumor cells were observed following treatment with the lead drug P/mPEG/LOEt/AON/Herceptin®/TfR(M), and mostly necrotic areas were observed to be present.
- FIG. 6B shows extent of tumor growth inhibition in mice.
- animals treated with each of unconjugated Herceptin® squares and with positive control P/mPEG/LOEt/Herceptin® (triangles), or with P/mPEG/LOEt/AON/TfR(H/M) (circles) showed significant inhibition compared with PBS control (diamonds) (P ⁇ 0.03).
- P/mPEG/LOEt/AON/Herceptin®/TfR(M) treatment (large squares) was observed to produce the greatest inhibition of tumor growth compared to other treatment groups, resulting in 80 to 95% tumor regression observed during the follow-up period (P ⁇ 0.02 vs. Herceptin® and other drugs; P ⁇ 0.001 vs. PBS). Error bars denote standard error of the mean (SEM).
- FIG. 6C shows expression of select markers after treatment of HER2/neu positive tumors in vivo.
- Western blot analysis data showed a decrease in HER2/neu and p-Akt (but not total Akt) expression in each of Herceptin®-, P/mPEG/LOEt/Herceptin®-, or P/mPEG/LOEt/AON/TfR(H/M)-treated mice and not in control PBS-treated ones.
- P/mPEG/LOEt/AON/Herceptin®/TfR(M) further inhibited HER2/neu expression, with near disappearance of a p-Akt band.
- PARP cleavage as a measure of apoptosis was observed also to be substantially greater in P/mPEG/LOEt/AON/Herceptin®/TfR(M)-treated mice than that in other groups.
- GAPDH was an internal control to normalize gel loading.
- Apoptosis assessed by PARP cleavage was induced to some extent by each of the compounds in HER2/neu high-expressing tumors compared to PBS treatment.
- lead P/mPEG/LOEt/AON/Herceptin®/TfR(M) markedly increased PARP cleavage compared to the other treatments indicating that this nanobiopolymer induced apoptosis to a greater extent than the other used drugs ( FIG. 6C ).
- Example 18 Nanobiopolymer Conjugates Significantly Inhibited Triple Negative Breast Cancer Growth In Vivo
- TNBC triple-negative breast cancer
- TNBC tumor-bearing mice Treatment of TNBC tumor-bearing mice was performed with a single-drug nanobiopolymer containing AONs specific for ⁇ 4 and ⁇ 1 subunits of laminin-411; or with a single-drug nanobiopolymer containing AONs specific for an epidermal growth factor receptor (EGFR) protein; or with a two-drug nanobiopolymer conjugate combing AONs specific for EGFR protein with AONs specific for ⁇ 4 and ⁇ 1 subunits of laminin-411, in comparison with negative control PBS using the treatment protocol schedule shown in Table 2.
- EGFR epidermal growth factor receptor
- FIG. 7 shows extent of tumor growth inhibition by compositions herein in subjects bearing triple-negative breast tumors.
- animals treated with each of P/mPEG/LOEt/AON-EGFR/TfR(H/M; squares), or with P/mPEG/LOEt/AON-EGFR/ ⁇ 4 ⁇ 1/TfR(H/M; triangles) showed significant inhibition compared with PBS negative control (diamonds).
- Cancer stem cells represent a population of malignant cells that give rise to the tumor.
- stem cell markers such as CD133, CD44, Notch1 or C-myc
- FIGS. 8A-8B show distribution of two cancer stem cell markers, CD44 and c-Myc, in human BT-474 breast tumor cells grown in the brain of nude mice as a model of breast cancer metastasis to the brain. Referring to these figures, seven days after tumor inoculation, animals were administered the compounds intravenously as shown in FIG. 4 , and treated 6 times over three days with each PBS as a negative control ( FIG.
- a set of nanobiopolymeric conjugates specifically tailored for HER2/neu-expressing breast cancer treatment was designed and tested in vitro and in vivo.
- the drug was based on HER2/neu inhibition by simultaneously blocking the synthesis of HER2/neu with specific AON and internalizing the receptor by binding to Herceptin®.
- the lead drug P/mPEG/LOEt/AON/Herceptin®/TfR(M) was thus designed to more efficiently inhibit HER2/neu expression and function.
- the lead drug P/mPEG/LOEt/AON/Herceptin®/TfR(M)
- the lead nanobiopolymer was effective for both HER2/neu high- and low-expressing HER2/neu breast cancer cell lines.
- the lead drug was also superior to previously used HER2/neu AON, which did not inhibit their growth in vitro (Roh H et al. 2000 Cancer Res.
- Herceptin® mediates anti-proliferative effects in HER2/neu-positive cells by facilitating either HER2/neu degradation or endocytic destruction of the HER2/neu receptor or downregulation of PI3K-Akt signaling (Clark A S et al. 2002. Mol Cancer Ther 1:707-17) by inhibiting HER2/neu receptor dimerization, and also by inducing immune activation (Hudis C A 2007 N Engl J Med 357:39).
- Examples herein show that the in vitro growth-inhibiting effect of the lead drug carrying both Herceptin® and HER2/neu AON on tumor cells was enhanced by simultaneous AON-mediated inhibition of HER2/neu synthesis and by downregulation of surface HER2/neu through its binding to Herceptin®.
- the stronger inhibition of Akt phosphorylation in this case could result from a significant attenuation of HER2/neu signaling.
- the lead drug P/mPEG/LOEt/AON/Herceptin®/TfR(M) was observed in examples herein to readily accumulate in breast tumors and dramatically inhibit human breast cancer growth in nude mice ( FIG. 6 ).
- the magnitude of anti-tumor effect of this lead drug indicates synergy between HER2/neu AON and Herceptin® in vivo ( FIG. 6 ).
- the in vitro effect showed about 50% growth inhibition in high HER2/neu-expressing cells, in contrast to nearly complete in vivo inhibition.
- the synergistic anti-tumor action in vivo could result from a combination of several effects: enhanced reduction in HER2/neu-mediated tumor growth by AON together with Herceptin®, preferential tumor accumulation mediated by combined EPR effect (Maeda H et al. 2009 Eur J Pharm Biopharm 71:409) and active targeting with antibodies (Ljubimova J Y et al. 2008 Chem Biol Interact 171:195), and maintenance of effective drug concentration due to multiple treatments.
- the nanobiopolymeric conjugate herein is envisioned as free of side effects because of absence of toxic doxorubicin and of its efficient tumor targeting via Herceptin® and anti-TfR.
- Examples herein confirmed that the lead nanobiopolymer P/mPEG/LOEt/AON/Herceptin®/TfR(M) efficiently blocked HER2/neu positive breast tumor growth through dual inhibition of HER2/neu and Akt phosphorylation, and as a result promoted enhanced tumor cell apoptosis.
- the combination of features of the nanobiopolymer resulted in highly specific drug accumulation in the tumor tissue and inside tumor cells.
- Example 21 Nanobiopolymer Platforms for Combinations of Drugs to Treat Breast Cancers
- Nanobiopolymer compositions herein can be engineered to include any of at least one of functional modules: an antibody, drug, or AON, alone or in combination.
- the nanobiopolymer conjugates herein are nanodrugs that are tailored to target simultaneously different molecular tumor markers typical of particular tumor cells and therefore are highly efficient against various tumors.
- nanobiopolymer conjugates of the present invention are covalently linked to one or more antineoplastic agents selected from the following group: a tyrosine kinase inhibitor lapatinib targeting EGFR and HER2 receptor proteins; pertuzumab, a monoclonal antibody (mAb) specific for HER2 receptor; ertumaxomab, a bispecific antibody specific for HER2 and Fc ⁇ RI/III; trastuzumab-DM1, mAb-toxin specific for HER2; CP-751,871, mAb specific for IFG-1R; foretinib (GSK136089), a tyrosine kinase inhibitor targeting MET and VEGFRs; BEZ235 targeting proteins of mTOR/PI3K pathway; perifistone targeting Akt pathway; temsirolimus targeting mTOR; everolimus targeting mTOR; HER2 peptide-based vaccines; defucosylated tras
- the nanobiopolymer-based therapy used for treatment of HER2/neu expressing cancer cells and/or triple-negative cancer cells should make a significant clinical impact.
- references cited throughout this application are incorporated for all purposes apparent herein and in the references themselves as if each reference was fully set forth. For the sake of presentation, specific ones of these references are cited at particular locations herein. A citation of a reference at a particular location indicates a manner(s) in which the teachings of the reference are incorporated. However, a citation of a reference at a particular location does not limit the manner in which all of the teachings of the cited reference are incorporated for all purposes.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Oncology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Preparation (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Mycology (AREA)
Abstract
Nanobiopolymeric conjugates based on biodegradable, non-toxic and non-immunogenic poly (β-L-malic acid) PMLA covalently linked to molecular modules that include morpholino antisense oligonucleotides (AONa), an siRNA or an antibody specific for an oncogenic protein in a cancer cell, and an antibody specific for a transferrin receptor protein, are provided. Methods for treating a cancer in subject with nanobiopolymeric conjugates are described.
Description
- This application is a continuation application which claims the benefit of U.S. application Ser. No. 15/447,439 filed Mar. 2, 2017, which is a continuation of U.S. application Ser. No. 13/930,533 filed Jun. 28, 2013, now issued as U.S. Pat No. 9,623,041 on Apr. 18, 2017, which claims the benefit and is a continuation-in-part of PCT Patent Application Serial No. PCT/US2010/062515, filed Dec. 30, 2010, which is incorporated by reference as if fully set forth.
- The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jan. 27, 2020, is named 50585-707_302SL.txt and is 2,710 bytes in size.
- The invention was made in part with support from grants RO1CA123495 and RO1CACA1136841 from the National Institutes of Health. The government has certain rights in the invention.
- The present invention generally relates to compositions and methods for treating patients having cell proliferative disorders with polymalic acid-based nanobiopolymeric compositions that inhibit synthesis and activity of an oncogenic protein.
- Breast cancer is a disease affecting a significant population of women around the world. About 1 in 8 women in the United States (between 12 and 13%) will develop invasive breast cancer over the course of her lifetime. Prognosis and survival rate varies greatly depending on cancer type and staging. Breast cancers expressing genetic characteristics such as human epidermal growth factor receptor-2 (HER2) are associated with a poor prognosis.
- Research has focused on the use of recombinant humanized monoclonal antibodies for the treatment of cancers with cells that overexpress protein p185HER2. This 185-kDa growth factor receptor is encoded by the her-2 proto-oncogene, also referred to as neu and c-erbB-2 (Slamon et al. 1987 Science 235:177). The her-2 gene is closely related to the gene encoding epidermal growth factor receptor (EGFR). Amplification of the her-2 gene has been linked to neoplastic transformation in human breast cancer cells (Slamon et al. 1987 Science 235:177). Overexpression of the HER2 protein has been identified in 20-30% of breast cancer patients, and has been correlated with regionally advanced disease, increased probability of tumor recurrence, and reduced patient survival. As many as 30-40% of patients having gastric, endometrial, salivary gland, non-small cell lung, pancreatic, ovarian, peritoneal, prostate, or colorectal cancers may also exhibit overexpression of this protein.
- A more difficult-to-treat form of HER2-negative breast cancer known as “triple-negative,” affects some patients. This form tests negative for three primary receptors: HER2, estrogen receptor and progesterone receptor. However, it is positive for epidermal growth factor receptor (EGFR, HER1).
- Humanized anti-HER2/neu monoclonal antibody trastuzumab (Herceptin®, Genentech Inc., San Francisco, Calif.) is used alone or combined with chemotherapy for treatment of patients with advanced breast cancer overexpressing HER2/neu (Baselga J. 2006 Science 312:1175; Baselga J et al. 1999 Semin Oncol 26:78; Slamon D J et al. 2009 J Natl Cancer Inst 101:615), with significant anti-tumor effect. However, serious adverse effects on normal organs have been reported (Keef D L. 2002 Cancer 95:1592; Vahid B et al, 2008 Chest 133:528). Moreover, many patients develop resistance to Herceptin® within one year of treatment, which renders this treatment ineffective (Tseng PH et al. 2006 Mol Pharmacol 70:1534). Therefore, new drugs with minimal side effects for non-tumor tissues are urgently needed to improve HER2/neu-positive tumor therapy.
- In an aspect, the invention relates to a drug delivery composition for treating a cancer in a subject. The drug delivery composition includes a plurality of biologically active molecular modules comprising at least one module that targets a tumorigenic cell or a cancer cell, at least one module that inhibits synthesis or activity of a human epidermal growth factor receptor (HER) protein in the cell, and at least one module for cytoplasmic delivery. The drug delivery composition also includes a polymalic acid-based molecular scaffold. The molecular modules are covalently linked to the scaffold.
- In an aspect, the invention relates to a kit for treating a patient having a cancer. The kit includes a drug delivery composition comprising a nanobiopolymeric conjugate of a scaffold that includes a PMLA and molecular modules. The molecular modules includes an antisense molecule that substantially inhibits synthesis or activity of a HER protein, a molecular module to facilitate delivery of the antisense molecule to cytoplasm, at least one targeting antibody specific for the HER protein, at least one antibody specific for a tumor vasculature protein, and a molecular module that prolongs circulation of the composition. The PMLA is covalently linked to the molecular modules, in a container.
- In an aspect, the invention relates to a method for treating a cancer in a subject. The method includes contacting the subject with a drug delivery composition. The drug delivery composition includes a PMLA covalently linked to a plurality of molecular modules. The molecular modules include at least one module that targets a tumorigenic cell or a cancer cell, at least one module that inhibits synthesis or activity of a HER protein in the cell, and at least one module for cytoplasmic delivery. The drug delivery composition is effective for inhibiting at least one of tumor growth, tumor regression and eliminating of cancer in a subject.
- The following detailed description of the preferred embodiments will be better understood when read in conjunction with the appended drawings. For the purpose of illustration, there are shown in the drawings embodiments which are presently preferred. It is understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:
-
FIG. 1 illustrates a chemical structure and schematic drawings of a nanobiopolymeric conjugate designed to inhibit HER2/neu expression by antisense oligonucleotides (AON) and to attenuate HER2/neu-mediated cell signaling by Herceptin®. -
FIG. 2 illustrates data obtained from an in vitro cell viability assay. -
FIGS. 3A-3C illustrate photographs of immunoblots showing changes observed in HER2/neu expression, Akt phosphorylation, and apoptosis resulting from various treatments of breast cancer cells in vitro.FIG. 3A illustrates a comparison of HER2/neu and TfR expression in various cell lines.FIG. 3B illustrates expression analysis of various markers in cell line SKBR-3.FIG. 3C illustrates expression of the markers in cell line BT-474. HER2/neu overexpressing breast cancer cells shown inFIG. 3A treated with various compounds. -
FIG. 4 illustrates distribution of various compounds herein labeled with Alexa Fluor 680 in live mice with BT-474 breast tumors and in tumors in isolated organs. -
FIG. 5 illustrates distribution of various compounds in BT-474 breast tumor cells. -
FIGS. 6A-6C illustrate mouse tumor inhibition, pathology, signaling and apoptosis marker expression.FIG. 6A illustrates data of histopathological analysis of respective tumors from two representative animals for each group administered with different drugs.FIG. 6B illustrates extent of tumor growth inhibition in mice.FIG. 6C illustrates expression of select markers after treatment of HER2/neu positive tumors in vivo. -
FIG. 7 illustrates extent of tumor growth inhibition by compositions herein in subjects bearing triple-negative breast tumors. -
FIGS. 8A-8B illustrate distribution of two cancer stem cell markers, CD44 and c-Myc, in human BT-474 breast tumor cells grown in the brain of nude mice as a model of breast cancer metastasis to the brain, and their inhibition by compositions herein.FIG. 8A illustrates treatment with PBS as a negative control.FIG. 8B illustrates treatment with P/mPEG/LOEt/AON/Herceptin®/TfR(M). - Certain terminology is used in the following description for convenience only and is not limiting. The words “right,” “left,” “top,” and “bottom” designate directions in the drawings to which reference is made. The words “a” and “one,” as used in the claims and in the corresponding portions of the specification, are defined as including one or more of the referenced item unless specifically stated otherwise. This terminology includes the words above specifically mentioned, derivatives thereof, and words of similar import. The phrase “at least one” followed by a list of two or more items, such as “A, B, or C,” means any individual one of A, B or C as well as any combination thereof.
- As used herein the term “molecular scaffold” refers to a molecule having at least two or more modules that transport a covalently conjugated drug to a targeted tissue; bind to cell surface receptors of the tissue; internalize into endosomes; escape the endosomes into the cytoplasm; and release reactive free drug in the cytoplasm by chemical reaction with glutathione and other sulfhydryl groups of the cytoplasmic content. The specificity of high molecular mass drug vehicles and particles rests primarily on the tumor tissue targeting by tumor-specific conjugated targeting molecules and their enhanced permeability and retention in tumors that originates from high molecular mass such as greater than 20000 (Duncan R. 1999 Research Focus 2:441; Seymour L W et al., 1995 Eur J Cancer Res 31A:766).
- The term “polymalic acid” or PMLA as used herein refers to a polymer, e.g., a homopolymer that contains a main chain ester linkage, is biodegradable and of a high molecular flexibility, soluble in water (when ionized) and organic solvents (in its acid form), non-toxic, and non-immunogenic (Lee B et al., Water-soluble aliphatic polyesters: poly(malic acid)s, in: Biopolymers, vol. 3a (Doi Y, Steinbuchel A eds., pp 75-103, Wiley-VCH, New York 2002). Drug carrying PMLA is synthesized by ring-opening polymerization of derivatized malic acid lactones. Doxorubicin-poly-malic acid has been synthesized from synthetic poly-β-D, L-malic acid (Abdellaoui K et al., 1998 Eur J Pharmaceutical Sciences 6:61). The carrier consists of poly(β-L-malic acid), herein referred to as poly-β-L-malic acid or PMLA, representing the molecular backbone or scaffold that is chemically conjugated at its carboxylic groups at defined ratios with a variety of modules each of which performs at least one of the following functions: delivery of a pro-drug via a releasable functional module that becomes effective in the cytoplasm; directing the carrier towards a specific tissue by binding to the surfaces of cells, e.g., a monoclonal antibody (mAB); internalization into the targeted cell through endosomes (usually via internalization of a targeted surface receptor); promoting escape from endosomes into the cytoplasm by virtue of hydrophobic functional units that integrate into and finally disrupt endosomal membranes; increasing effectiveness during acidification of endosomes en route to lysosomes; and protection by polyethylene glycol (PEG) against degradative enzyme activities, e.g., peptidases, proteases, etc.
- The term “module” as used herein refers to a biologically active molecular structure that forms a part of a composition herein, for example, a small drug molecule or a chromophore molecule; a protein molecule such as an antibody or lectin; or a portion thereof that are covalently joined to PMLA in constructing the composition. In the examples herein a biologically active module is exemplified by morpholino antisense oligonucleotides (AON) that are specific to HER2/neu receptor protein. Tissue targeting is exemplified by use of a monoclonal antibody (mAB) module that specifically recognizes and binds a transferrin receptor protein.
- The term “transferrin receptor protein” as used herein refers to the receptor expressed on endothelium cell surfaces, and at elevated levels on certain tumors (Lee J H et al. 2001 Eur J Biochem 268:2004; Kovar M K et al., 2003 J Drug Targeting 10:23). Transferrin receptors are used as a target for a drug delivery system in compositions herein, to chemically bind to transferring, for example using a monoclonal antibody that binds the transferrin receptor and thereby achieves transcytosis through endothelium associated with blood brain barrier. Antibody binding to transferrin receptor and internalization into endosomes has been demonstrated (Broadwell R D et al., 1996 Exp Neurol 142:47). It will be appreciated that in the case of the transferrin receptor any appropriate antibody monoclonal antibody, for example, a humanized or chimeric antibody, or a lectin or another ligand specific to the transferrin receptor can be used. Other appropriate ligands to any number of cell surface receptors or antigens can be used as targets in the compositions herein and transferrin receptor is merely examplary.
- The phrase “endosomal escape unit” as used herein refers to a carrier module attached to the PMLA scaffold that becomes active by acidification during maturation of the endosomal vesicles towards lysosomes (Bulmus V et al., 2001 Cancer Research 61:5601; Lackey C A et al., 2002 Bioconjugate Chem 13:996). The carrier module includes a plurality of leucine or valine residues, or a leucine ethylester linked to the PMLA scaffold by amide bonds. During acidification of the endosomes en route to lysosomes, these stretches of the carrier molecule become charge-neutralized and hydrophobic, and capable of disrupting membranes. Other molecules that become charge neutralized at lysomal pH's may be used in place of leucine or valine residues, or a leucine ethylester in construction of the compositions containing PMLA and an endosomal escape unit module.
- PEGylation is generally used in drug design to increase the in vivo half-life of conjugated proteins, to prolong the circulation time, and enhance extravasation into targeted solid tumors (Arpicco S et al. 2002 Bioconjugate Chem 13:757; Maruyama K et al., 1997 FEBS Letters 413:1771). Other molecules known to increase half-life may be used in design of compositions herein.
- As used herein, the terms “cancer” and “cancerous” refer to the physiological condition in mammals in which a population of cells are characterized by unregulated cell growth. Examples of cancers include, without limitation, carcinoma, lymphoma, blastoma, sarcoma, and leukemia. More particular examples of such cancers include squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma and various types of head and neck cancers.
- The terms “proliferative disorder” and “proliferative disease” refer to disorders associated with abnormal cell proliferation such as cancer.
- The terms “tumor” and “neoplasm” as used herein refer to any mass of tissue that result from excessive cell growth or proliferation, either benign (noncancerous) or malignant (cancerous) including pre-cancerous lesions.
- The term “primary cancer” refers to the original site at which a cancer originates. For example, a cancer originating in the breast is called a primary breast cancer. If it metastasizes, i.e., spreads to the brain, the cancer is referred to as a primary breast cancer metastatic to the brain.
- The term “metastasis” as used herein refers to the process by which a cancer spreads or transfers from the site of origin to other regions of the body with the development of a similar cancerous lesion, i.e., having the same or substantially the same biochemical markers at the new location. A “metastatic” or “metastasizing” cell is one that has a reduced activity for adhesive contacts with neighboring cells and migrates by the bloodstream or within lymph from the primary site of disease to additional distal sites, for example, to invade neighboring body structures or distal structures.
- The terms “cancer cell”, “tumor cell” and grammatical equivalents refer to a cell derived from a tumor or a pre-cancerous lesion including both a non-tumorigenic cell and a tumorigenic cell, i.e., cancer stem cell.
- As used herein “tumorigenic” refers to the functional features of a solid tumor stem cell including the properties of self-renewal i.e., giving rise to additional tumorigenic cancer cells, and proliferation to generate other tumor cells i.e., giving rise to differentiated and thus non-tumorigenic tumor cells, such that cancer cells form a tumor.
- The phrase “target a tumorigenic cell or a cancer cell” as used herein refers to delivery of a composition to a population of tumor-forming cells within tumors, i.e., tumorigenic cells. The preferential delivery of the composition to the tumorigenic population of cancer cells in comparison to other populations of cells within tumors is referred herein as targeting to eliminate cancer cells, a property that improves specificity and efficacy of the composition.
- The term “antibody” is used herein to mean an immunoglobulin molecule that is a functional module included in compositions herein for ability to recognize and specifically bind to a target, such as a protein, polypeptide, peptide, carbohydrate, polynucleotide, lipid, or combinations of the foregoing through at least one antigen recognition site within the variable region of the immunoglobulin molecule. In certain embodiments, antibodies included as functional modules of compositions herein include a class described as antagonist antibodies, which specifically bind to a cancer stem cell marker protein and interfere with, for example, ligand binding, receptor dimerization, expression of a cancer stem cell marker protein, and/or downstream signaling of a cancer stem cell marker protein. In alternative embodiments, antibodies as functional modules in compositions herein include agonist antibodies that specifically bind to a cancer stem cell marker protein and promote, for example, ligand binding, receptor dimerization, and/or signaling by a cancer stem cell marker protein. In alternative embodiments, antibodies that do not interfere with or promote the biological activity of a cancer stem cell marker protein instead function to inhibit tumor growth by, for example, antibody internalization and/or recognition by the immune system.
- As used herein, the term “antibody” encompasses intact polyclonal antibodies, intact monoclonal antibodies, antibody fragments (such as Fab, Fab′, F(ab′)2, and Fv fragments), single chain Fv (scFv) mutants, multispecific antibodies such as bispecific antibodies generated from at least two intact antibodies, chimeric antibodies, humanized antibodies, human antibodies, fusion proteins comprising an antigen determination portion of an antibody, and any other modified immunoglobulin molecule comprising an antigen recognition site so long as the antibodies exhibit the desired biological activity. An antibody includes any the five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, or subclasses (isotypes) thereof (e.g. IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2), based on the identity of their heavy-chain constant domains referred to as alpha, delta, epsilon, gamma, and mu, respectively. Antibodies can be naked or conjugated to other molecules such as toxins, radioisotopes, etc. In other embodiments an antibody is a fusion antibody.
- As used herein, the term “antibody fragment” refers to a portion of an intact antibody and refers to the antigenic determining variable regions of an intact antibody. Examples of antibody fragments include, but are not limited to Fab, Fab′, F(ab′)2, and Fv fragments, linear antibodies, single chain antibodies, and multispecific antibodies formed from antibody fragments.
- An “Fv antibody” refers to the minimal antibody fragment that contains a complete antigen-recognition and -binding site either as two-chains, in which one heavy and one light chain variable domain form a non-covalent dimer, or as a single-chain (scFv), in which one heavy and one light chain variable domain are covalently linked by a flexible peptide linker so that the two chains associate in a similar dimeric structure. In this configuration the complementarity determining regions (CDRs) of each variable domain interact to define the antigen-binding specificity of the Fv dimer. Alternatively a single variable domain (or half of an Fv) can be used to recognize and bind antigen, although generally with lower affinity.
- A “monoclonal antibody” as used herein refers to homogenous antibody population involved in specific recognition and binding of a single antigenic determinant, or epitope. Polyclonal antibodies include a population of antibody species each directed to a different antigenic determinant. The term “monoclonal antibody” encompasses both and full-length monoclonal antibodies and antibody fragments (such as Fab, Fab′, F(ab′)2, Fv), single chain (scFv) mutants, fusion proteins comprising an antibody portion, and any other modified immunoglobulin molecule comprising an antigen recognition site. Furthermore, “monoclonal antibody” refers to those obtained without limitation by methods including and not limited to hybridoma expression, phage selection, recombinant expression, and by transgenic animals.
- In an embodiment, a drug delivery composition for treating a cancer in a subject is provided. The drug delivery composition may include a plurality of biologically active molecular modules. The plurality of the biologically active molecular modules may include at least one module that targets a tumorigenic cell or a cancer cell. The drug delivery composition may include at least one module that inhibits synthesis or activity of a human epidermal growth factor receptor (HER) protein in the cell. The drug delivery composition may include at least one module for cytoplasmic delivery. The drug delivery composition may include a polymalic acid-based molecular scaffold. The molecular modules may be covalently linked to the polymalic acid-based molecular scaffold. The HER protein may be at least one protein selected from the group consisting of: HER1, HER2, HER3 and HER4. The at least one module that inhibits synthesis or activity of the protein may be selected from the group consisting of: an antisense oligonucleotide (AON), an siRNA oligonucleotide, an antibody, a polypeptide, an oligopeptide and a low molecular weight drug. The scaffold in a related embodiment includes a poly-β-L-malic acid (PMLA). The PMLA may be also denoted as poly(-β-L-malic acid).
- In an embodiment, the AON may be a Morpholino AON. The Morpholino AON may include a sequence complementary to a sequence contained in an mRNA transcript of HER2/neu protein. For example, the AON may be selected from: 5′-AGGGAGCCGCAGCTTCATGTCTGTG-3′ (SEQ ID NO: 1), and 5′-CATGGTGCTCACTGCGGCTCCGGC-3′ (SEQ ID NO:2).
- In an embodiment, the at least one module that targets the cell may include an antibody that binds specifically to a vasculature protein in the cell. The vasculature protein may include a transferrin receptor protein. The antibody may be selected from at least one of: anti-human, rat anti-mouse, rat anti-human, rabbit anti-human and goat anti-human.
- In an embodiment, the at least one module that inhibits activity of the protein includes an antibody binding specifically to a HER2/neu protein. The antibody may be Herceptin®.
- In an embodiment, the drug delivery composition may include a Morpholino AON that include sequence complementary to a sequence contained in an mRNA transcript of an epidermal growth factor receptor (EGFR) or HER1 protein. The sequence of the Morpholino AON may include 5′-TCGCTCCGGCTCTCCCGATCAATAC-3′ (SEQ ID NO:3).
- In an embodiment, the drug delivery composition may include a Morpholino AON that includes a sequence complementary to a sequence contained in an mRNA transcript of at least one subunit of laminin-411. The subunit may be at least one of an α4 subunit and a β1 subunit. The sequence complimentary to the transcript of the α4 subunit may include the following sequence:
- 5′-AGCTCAAAGCCATTTCTCCGCTGAC-3′ (SEQ ID NO:4). The sequence complimentary to the transcript of the β1 subunit may include the following sequence: 5′-CTAGCAACTGGAGAAGCCCCATGCC-3′ (SEQ ID NO:5).
- In an embodiment, the drug delivery composition may include the siRNA oligonucleotide. The siRNA oligonucleotide may include a sequence complementary to a gene encoding an EGFR/HER1 protein. The sequence may include a sense sequence as follows: 5′-CCUAUAAUGCUACGAAUAUtt-3′ (SEQ ID NO:6). The sequence may include an antisense sequence as follows: 5′-AUAUUCGUAGCAUUUAUGGag-3′ (SEQ ID NO:7).
- In an embodiment, the siRNA oligonucleotide may include a sequence complementary to a gene encoding a HER2 protein. The sequence may include a sense sequence as follows: 5′-GUUGGAUGAUUGACUCUGAtt-3′ (SEQ ID NO:8). The sequence may include an antisense sequence as follows: 5′-UCAGAGUCAAUCAUCCAACat-3′ (SEQ ID NO:9).
- In an embodiment, the at least one module for cytoplasmic delivery may include an endosome escape unit. The endosome escape unit may be but is not limited to leucine residues, valine residues, or a leucine ethylester. The endosome escape unit may be a plurality of leucine or valine residues, or a single or a plurality of leucine residues, or mixture of any of these. The leucine ethylester may be included in the drug delivery composition in a concentration of about 40% of the drug delivery composition.
- In an embodiment, the plurality of modules of the drug delivery composition may further include a polyethylene glycol (PEG). The PEG may have a molecular weight of about 1,000 Da, about 5,000 Da, about 10,000 Da, about 15,000 Da, about 20,000 Da, about 25,000 Da, or about 30,000 Da.
- In an embodiment, the drug delivery composition may be provided in a unit dose effective for treatment of the cancer in the patient. The unit dose may be at least one selected from: 1 μg/kg, 50 μg/kg, 100 μg/kg, 500 μg/kg, 1 mg/kg, 5 mg/kg, 10 mg/kg, 50 mg/kg, and 100 mg/kg. The unit dose may be at least 1 mg/kg. The unit dose may be less than about 10 mg/kg.
- In an embodiment, the cancer is at least one selected from the list of: gastric, endometrial, salivary gland, lung, non-small cell lung, pancreatic, ovarian, peritoneal, prostate, colorectal, breast, cervical, uterine, ovarian, brain, head and neck, testicular and teratoma cancers. The breast cancer may be a triple-negative breast cancer. The cancer may be either a primary cancer or a metastatic cancer, or both. The cancer may include cells overexpressing a HER2/neu receptor protein.
- In an embodiment, a drug delivery composition for treating a cancer in a subject may include: a polymerized carboxylic acid molecular scaffold and a plurality of biologically active molecular modules. The polymerized carboxylic acid molecular scaffold may include a poly-β-L-malic acid (PMLA). The plurality of biologically active molecular modules may include an antisense molecule that substantially inhibits synthesis of a HER2/neu receptor protein, a molecular module to facilitate delivery of the antisense molecule to cytoplasm, at least one antibody specific for the receptor protein that inhibits activity of the receptor protein, at least one antibody targeting a tumor vasculature protein, and a molecular module that prolongs circulation of the composition. The molecular modules may be covalently linked to the scaffold.
- In an embodiment, a drug delivery composition for treating a cancer in a subject including: a polymerized carboxylic acid molecular scaffold and a plurality of biologically active molecular modules. The polymerized carboxylic acid molecular scaffold may be a poly-β-L-malic acid (PMLA). The plurality of biologically active molecular modules may include an antisense molecule that substantially inhibits synthesis of an epidermal growth factor receptor (EGFR/HER1) protein, an antisense molecule that substantially inhibits at least one subunit of laminin-411, a molecular module to facilitate delivery of the antisense molecule to cytoplasm, at least one antibody targeting a tumor vasculature protein, and a molecular module that prolongs circulation of the composition. The molecular modules may be covalently linked to the scaffold.
- In an embodiment, a pharmaceutical composition is provided that includes a nanobiopolymeric conjugate of poly(β-L-malic acid) referred to as poly-β-L-malic acid or PMLA herein. PMLA may be covalently linked to an antisense molecule. The antisense molecule may be a functional module that inhibits expression of an oncogenic protein. The PMLA may be covalently linked to at least one module that is an antibody specific for the protein. The PMLA may optionally further comprise a module that is an antibody specific for an oncogenic vascular protein. The pharmaceutical composition may include a pharmaceutically acceptable carrier.
- In an embodiment, the pharmaceutical composition may optionally further include one or more additional modules that are additional therapeutic agents. The additional therapeutic agent or agents may be selected from the group consisting of growth factors, anti-inflammatory agents, vasopressor agents, collagenase inhibitors, topical steroids, matrix metalloproteinase inhibitors, ascorbates, angiotensin II, angiotensin III, calreticulin, tetracyclines, fibronectin, collagen, thrombospondin, transforming growth factors (TGF), keratinocyte growth factor (KGF), fibroblast growth factor (FGF), insulin-like growth factors (IGF), epidermal growth factor (EGF), platelet derived growth factor (PDGF), neu differentiation factor (NDF), hepatocyte growth factor (HGF), and hyaluronic acid.
- As used herein, the term “pharmaceutically acceptable carrier” includes any and all solvents, diluents, or other liquid vehicle, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired. Remington's Pharmaceutical Sciences Ed. by Gennaro, Mack Publishing, Easton, Pa., 1995 discloses various carriers used in formulating pharmaceutical compositions and known techniques for the preparation thereof. Materials which can serve as pharmaceutically acceptable carriers may include, but are not limited to, sugars, lactose, glucose, and sucrose; starches, corn starch and potato starch; cellulose and its derivatives, sodium carboxymethyl cellulose, ethyl cellulose, and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients, cocoa butter and suppository waxes; oils, peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil, and soybean oil; glycols, a propylene glycol; esters, ethyl oleate and ethyl laurate; agar; buffering agents, magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol, or phosphate buffer solutions. Pharmaceutically acceptable carriers may include non-toxic compatible lubricants, sodium lauryl sulfate and magnesium stearate. Pharmaceutically acceptable carriers may include coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants.
- In an embodiment, a kit for treating a patient having a cancer is provided. The kit may include a drug delivery composition. The drug delivery composition may include a nanobiopolymeric conjugate of a scaffold and molecular modules. The scaffold may be a poly-β-L-malic acid (PMLA). The molecular modules may include an antisense molecule that substantially inhibits synthesis or activity of a human epidermal growth factor receptor (HER) protein. The molecular modules may include a molecular module to facilitate delivery of the antisense molecule to cytoplasm. The molecular modules may include at least one targeting antibody specific for the HER protein. The molecular modules may include at least one antibody specific for a tumor vasculature protein. The molecular modules may include a molecular module that prolongs circulation of the composition. The PMLA may be covalently linked to the molecular modules. The drug delivery composition may be included in a container.
- In an embodiment, the kit may further include a pharmaceutically acceptable buffer and instructions for use.
- In an embodiment, a method for treating a cancer in a subject is provided. The method may include contacting the subject with a drug delivery composition. The drug delivery composition may include a poly-β-L-malic acid (PMLA) covalently linked to a plurality of molecular modules. The plurality of molecular modules may include at least one module that targets a tumorigenic cell or a cancer cell. The plurality of molecular modules may include at least one module that inhibits synthesis or activity of a human epidermal growth factor receptor (HER) protein in the cell. The HER protein may be selected from a group consisting of: HER1, HER2, HER3, and HER4. The plurality of molecular modules may include at least one module for cytoplasmic delivery. The drug delivery composition may be effective for inhibiting at least one of tumor growth, tumor regression and eliminating of cancer in a subject.
- In an embodiment, the drug delivery composition may be further effective for inhibiting expression of cancer stem cell markers in the subject. The cancer stem cell markers may include at least one marker selected from the group consisting of: CD133 protein, c-myc protein, CD44 protein, Notch1 protein, and nestin protein. The inhibition of expression of cancer stem cell markers may indicate inhibition of growth of drug resistant tumors.
- The method may also include analyzing at least one of: inhibition of tumor growth, tumor regression and elimination of cancer in the subject, thereby treating the cancer in the subject.
- In an embodiment, the module that inhibits synthesis or activity of the HER protein may be at least one selected from the group consisting of: an antisense oligonucleotide (AON), an siRNA oligonucleotide, an antibody, a polypeptide, an oligopeptide and a low molecular weight drug. The AON may include a sequence complementary to an mRNA transcript of at least one protein selected from the group consisting of: HER2, an epidermal growth factor receptor (EGFR/HER1) protein, and a subunit of laminin-411. The sequence complementary to the HER2 mRNA transcript may include the following sequence: 5′AGGGAGCCGCAGCTTCATGTCTGTG-3′ (SEQ ID NO: 1). The sequence complementary to the HER2 mRNA transcript may include the
following sequence 5′-CATGGTGCTCACTGCGGCTCCGGC-3′ (SEQ ID NO:2). The sequence complementary to the EGFR/HER1 mRNA transcript may include the following sequence: 5′-TCGCTCCGGCTCTCCCGATCAATAC-3′ (SEQ ID NO:3). - In an embodiment, the subunit of laminin-411 may be selected at least one of α4 and β1 subunits. The α4 transcript sequence may include the following sequence: 5′-AGCTCAAAGCCATTTCTCCGCTGAC-3′ (SEQ ID NO:4). The β1 transcript sequence may include the following sequence: 5′-CTAGCAACTGGAGAAGCCCCATGCC-3′ (SEQ ID NO:5).
- In an embodiment, the siRNA oligonucleotide may include a sequence complementary to a gene encoding at least one of an epidermal growth factor receptor (EGFR/HER1) protein and HER2. The sequence complementary to a gene encoding EGFR/HER1 sequence may be selected from the group consisting of: 5′-CCUAUAAUGCUACGAAUAUtt-3′ (SEQ ID NO:6), and 5′ -AUAUUCGUAGCAUUUAUGGag-3′ (SEQ ID NO:7). The sequence complementary to a gene encoding HER2 may be selected from: 5′-GUUGGAUGAUUGACUCUGAtt-3′ (SEQ ID NO:8), and 5′-UCAGAGUCAAUCAUCCAACat-3′ (SEQ ID NO:9).
- In an embodiment, the antibody may bind specifically to HER2/neu protein. The antibody may be Trastuzumab Herceptin®. The at least one module that targets the cell may include an antibody that binds specifically to a transferrin receptor protein. The antibody may be selected from at least one of: anti-human, rat anti-mouse, rat anti-human, rabbit anti-human and goat anti-human. The at least one module for cytoplasmic delivery may include an endosome escape unit. The endosome escape unit may be a leucine ethylester.
- In an embodiment, the plurality of modules may further include a polyethylene glycol (PEG). The PEG may have a molecular weight of about 1,000 Da. The PEG may have a molecular weight of about 5,000 Da.
- In an embodiment, the method may include analyzing inhibition of tumor growth. The step of analyzing may include observing more than about 60%, 70%, 80% or about 90% inhibition of tumor growth in the subject. The step of analyzing may include observing the inhibition of HER2/neu receptor signaling by suppression of Akt phosphorylation.
- In an embodiment, the subject may be a mammal. The may be but is not limited to a human, a simian, an equine, a bovine, or a high value agricultural or zoo animal. The mammal may be a rodent. The rodent may be an experimental human-breast tumor-bearing nude mouse.
- In an embodiment, the step of contacting may include administering the drug delivery to the subject. The drug delivery compositions may be formulated with an appropriate pharmaceutically acceptable carrier in a desired dosage. The drug delivery compositions may be administered to humans and other mammals topically. Topical administration may include drug delivery compositions formulated as powders, ointments, or drops. The drug delivery compositions may be administered orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, or intravenously, depending on the severity and location of the cancer or other condition being treated. Intravenous administration may include injection as a bolus, or as a drip.
- In an embodiment, dosage forms for topical or transdermal administration of the drug delivery compositions may include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants, or patches. The drug delivery composition may be admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Administration may be therapeutic or it may be prophylactic. Prophylactic formulations may be present or applied to the site of potential tumors, or to sources of tumors. The ointments, pastes, creams, and gels may contain, in addition to the drug delivery compositions, excipients. Excipients may be but are not limited to animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc, zinc oxide, or mixtures thereof. Powders and sprays may contain, in addition to the drug delivery compositions, excipients. Excipients may include lactose, talc, silicic acid, aluminum hydroxide, calcium silicates, polyamide powder, or mixtures of these substances. Sprays may additionally contain customary propellants. Customary propellants may include chlorofluorohydrocarbons.
- In an embodiment, the drug delivery composition may be administered using transdermal patches. The transdermal patches may have the added advantage of providing controlled delivery of the active ingredients to the body. Controlled delivery may be achieved using dosage forms. Dosage forms may be made by dissolving or dispensing the compound in the proper medium. Absorption enhancers may also be used to increase the flux of the drug delivery composition across the skin. The rate of delivery may be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.
- In an embodiment, the step of administering may include administering injectable preparations. The injectable preparations may include sterile injectable aqueous solutions or oleaginous suspensions formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may be formulated as a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent. The sterile injectable preparation may be formulated as a solution in 1,3-butanediol. The acceptable vehicles and solvents may include water, Ringer's solution, U.S.P. or isotonic sodium chloride solution. In addition, sterile, fixed oils may be employed as a solvent or suspending medium. Any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid may be used in the preparation of injectables. The injectable formulations may be sterilized. The injectable preparations may be sterilized by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use. To prolong the effect of a drug delivery composition, the absorption of the drug from subcutaneous or intramuscular injection may be slowed. Delayed absorption of a parenterally administered active agent may be accomplished by dissolving or suspending the drug delivery composition in an oil vehicle. Injectable depot forms may be made by forming microencapsule matrices of the drugs in biodegradable polymers such as polylactide-polyglycolide as described herein, and in Ljubimova et al., U.S. Pat. No. 7,547,511 issued Jun. 16, 2009, Ljubimova et al., U.S. patent application Ser. No. 12/473,992 published Oct. 22, 2009, Ljubimova et al., U.S. patent application Ser. No. 10/580,999 published Nov. 8, 2007, and Ding et al., International patent application PCT/US2009/40252 filed Apr. 10, 2009. The rate of active agent release is controlled by the ratio of active agent to polymer and the nature of the particular polymer employed. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations may also be prepared by entrapping the agent in liposomes or microemulsions which are compatible with body tissues.
- In an embodiment, the drug delivery compositions may be used for rectal or vaginal administration. The drug delivery compositions may be administered as suppositories. Suppositories may be prepared by mixing the drug delivery compositions with suitable non-irritating excipients or carriers. The non-irritating excipients or carriers may include cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the drug delivery compositions.
- In an embodiment, the drug delivery composition may be administered for the treatment of a cancer associated with a particular receptor. The drug deliver composition may be administered in a therapeutically effective amount. The therapeutically effective amount may inhibit expression of at least one ligand of the receptor to a subject in need thereof. It will be appreciated that this encompasses administering an inventive pharmaceutical as a therapeutic measure to promote regression of a cancer or prevent further development or metastasis, or as a prophylactic measure to minimize complications associated with development of a tumor or cancer. As used herein, the “therapeutically effective amount” of the pharmaceutical composition is that amount effective for preventing further development of a cancer or transformed growth, and even to effect regression of the cancer. The drug delivery compositions may be administered using any amount and any route of administration effective for prevention of development of a cancer. Thus, the expression “amount effective for inhibiting expression or activity of the oncogenic protein”, as used herein, refers to a sufficient amount of composition to prevent or retard development of a cancer, and even cause regression of a cancer or solid tumor. The cancer need not be limited to a solid tumor, and includes various types of lymphomas and leukemias.
- In an embodiment, the exact dosage may be chosen by the individual physician with regard to the need of the patient to be treated. Dosage and administration may be adjusted to provide sufficient levels of the active agent(s) or to maintain the desired effect. Additional factors which may be taken into account include the severity of the disease state, e.g., cancer size and location; age, weight and gender of the patient; diet, time and frequency of administration; drug combinations; reaction sensitivities; and tolerance/response to therapy. Long acting pharmaceutical compositions might be administered every 3 to 4 days, every week, or once every two weeks depending on half-life and clearance rate of the particular composition.
- In an embodiment, the drug delivery compositions may be formulated in dosage unit form for ease of administration and uniformity of dosage. The expression “dosage unit form” as used herein refers to a physically discrete unit of active agent appropriate for the patient to be treated. The total daily usage of the compositions of the present invention may be decided by the attending physician within the scope of sound medical judgment. For any drug delivery composition described herein, the therapeutically effective dose may be estimated initially either in cell culture assays or in animal models. Animal models may be mice, rabbits, dogs, or pigs as shown in Examples herein. The animal model may also be used to achieve a desirable concentration range and route of administration. Such information may then be used to determine useful doses and routes for administration in humans. A therapeutically effective dose refers to that amount of active agent, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity of active agents may be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., ED50 (the dose is therapeutically effective in 50% of the population) and LD50 (the dose is lethal to 50% of the population). The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD50/ED50. Pharmaceutical compositions herein exhibit large therapeutic indices. The data obtained from the animal studies herein is used in formulating a range of dosage for human use.
- In an embodiment, an initial dose of Herceptin® for human treatment accepted by the FDA may be 4 mg/kg followed by 2 mg/kg weekly for a total of 52 doses. An efficient dose of the composition herein for treatment of a mouse was 100 μl of observed 40 μg/ml, which may be equivalent to about 3.2 mg/kg for human use.
- In an embodiment, the method may further include administering an additional therapeutic agent. The additional therapeutic agent may be selected from the group consisting of: an antibody, an enzyme inhibitor, an antibacterial agent, an antiviral agent, a steroid, a non-steroid-inflammatory agent, an antimetabolite, a cytokine, a cytokine blocking agent, an adhesion molecule blocking agent, and a soluble cytokine receptor.
- In an embodiment, the method may include further administering antineoplastic agents. The antineoplastic agents may include agents for overcoming trastuzumab resistance. A variety of agents including monoclonal antibodies, recombinant proteins, and drugs, are known to have activity in treating breast cancer, and are here contemplated to be useful agents in combination with compositions described herein.
- In an embodiment, the step of administering drug delivery composition including Herceptin® may include combining the drug delivery composition with other agents. The drug delivery composition may be administered with paclitaxel (taxol, Bristol-Myers Squibb) and docetaxel (taxotere, Sanofi-Aventis). The method may yield increases in response rates, time to disease recurrence, and overall survival (Esteva F J et al. 2002 J Clin Oncol. 20:1800; Slamon D J et al. 2001 N Engl J Med. 344:783; Wardley A M et al. 2009. J Clin Oncol 49:976).
- In an embodiment, the step of administering may include combining targeting of HER2 and other tyrosine kinases. Tyrosine kinases are associated with breast cancer tumorigenesis and are of substantial interest as potential drug targets (Ocana A et al. 2008 Clin Cancer Res 14:961). The
insulinlike growth factor 1 receptor (IGF-1R), a receptor tyrosine kinase (RTK), has been shown to increase the growth of breast cancer cells and is also implicated in developing resistance to trastuzumab (Nahta R et al. 2006 Nat Clin Pract Oiled 3:269). Cotargeting or simultaneous targeting of IGF-1R and 1-HER2 may offer an advantage compared to targeting of the individual RTKs in breast cancer cells (Esparis-Ogando A et al. 2008 Ann Oncol 19:1860). The v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (c-KIT) RTK is overexpressed in triple-negative breast cancers (those that do not express estrogen receptor, progesterone receptor; and HER2) (Nielsen T O et al. 2004 Clin Res 10:5367). The activation of two nonreceptor cytosolic tyrosine kinases, c-abl oncogene 1 (ABL1) and c-SRC tyrosine kinase (CSK), is associated with the aggressiveness of breast cancer (Finn R S. 2008 Ann Oncol 19:1379) and proliferation of triple-negative breast cancers (Finn R S. 2008 Ann Oncol 19:1379; Finn R S et al. 2007 Breast Cancer Res Treat 105:319), respectively. Moreover, c-SRC has also been associated with antiestrogen resistance in estrogen receptor-positive breast tumors (van Agthoven T et al. 2009 J Clin Oncol 27:542). The step of administering may include combining the drug delivery composition with Dasatinib, (Sprycel®, Bristol-Myers Squibb) a small-molecule tyrosine kinase inhibitor. Dasatinib targets the cytosolic c-SRC and ABL1 kinases, and RTKs c-KIT and platelet-derived growth factor receptors alpha and beta (Finn R S et al. 2007 Breast Cancer Res Treat 105:319; Rix U et al. 2007 Blood 110:4055; Huang F. et al. 2007 Cancer Res 67: 2226; Huang F. et al. 2007 Cancer Res 67:2226). The activity of Dasatinib for treatment of triple-negative breast cancer not expressing estrogen receptor, progesterone receptor, or HER2/neu (Finn R S et al. 2007 Breast Cancer Res Treat 105:319; Huang F. et al. 2007 Cancer Res 67: 2226), and favorable antitumoral activity in head and neck cancer in combination with gefitinib (Koppikar P et al. 2008 Clin Cancer Res 14:4284), led to combining trastuzumab and dasatinib for treatment of HER2 -positive breast cancers. This combination was found to be highly effective against breast cancer cells overexpressing HER2 receptors. Both drugs individually inhibited cell proliferation in vitro and exhibited antitumoral action, and the combination resulted in a more potent effect on HER2-overexpressing cells. - In an embodiment, the drug delivery composition may be administered in combination with other drugs and may lead to decreased levels of phosphorylated HER2 and phosphorylated. HER3, and a decrease observed in the total amount of these receptors. The combined treatment may affect downstream signaling routes, such as the ERK1 or AKT pathways that regulate cell proliferation and survival (Garcia-Echeverria C et al. 2008 Oncogene 27:5511; Roberts P J et al. 2007 Oncogene 26:3291). Dasatinib alone was as inhibitory for phosphorylated levels of ERK1 as the combined drug treatment. Treatment with Dasatinib also inhibited SRC or FAK phosphorylation to the same degree as the combined drug treatment. These two kinases are known targets of Dasatinib (Huang F. et al. 2007 Cancer Res 67: 2226) and participate in several oncogenic processes (Kim L C et al. 2009 Nat Rev Clin Oncol 6:587). Combined treatment and not the individual drugs was observed to decrease the level of phosphorylated AKT. Downstream targets of AKT such as p70S6K and BAD were also affected by the combined drug treatment, and not by the individual drugs, as the resting phosphorylated levels of these proteins were reduced by treatment with trastuzumab and dasatinib.
- In an embodiment, the step of administering may include providing drug combination that may also induce caspase-independent apoptosis as determined by the lack of an effect of caspase inhibitors on apoptosis induced by the drug combination. One of the possible mediators in caspase-independent apoptosis is NAIF1 a protein that may be released from the mitochondrial intermembrane space by certain apoptotic stimuli. The release of NAIF1 from mitochondria to the cytosol, by treatment with the drug combination, may indicate that this mechanism could be responsible for caspase-independent apoptosis.
- In an embodiment, the drug combination may also affect DNA repair machinery and lead to accumulation of double-stranded breaks (DSBs) which indicate control of DNA repair machinery by tyrosine kinases and potential clinical implications.
- In an embodiment, the chug delivery composition may be administered in combination with Erlotinib (Tarceva, Roche), an inhibitor of EGFR. Erlotinib may block homologous recombination repair of the DSBs in breast cancer cells through reduction of RAD51 foci formation (Li L et al 2008 Cancer Res 68:9141). Previous studies have indicated that RTKs may regulate DNA repair (Tanaka T et al, 2008 Clin Cancer Res 14:1266; Ganapathipillai S S et al. 2008 Cancer Res 68:5769).
- In an embodiment, the drug delivery composition may be administered in combination with Gefitinib (Iressa, Astra Zeneca and Teva) is an EGFR inhibitor. Gefitinib may impede DNA repair in response to ionizing radiations in macrocytic lung cancer cells (Tanaka T et al, 2008 Clin Cancer Res 14:1266). Mutated forms of MET protein, an RTK implicated in several oncogenic processes such as invasion and metastasis (Benvenuti S et al. 2007 J Cell Physiol 213:316) or drug resistance (Engelman J A et al. 2007 Science 316:1039), have been reported to bind to and phosphorylate RAD51, facilitating DNA repair in tumor cells (Ganapathipillai S S et al. 2008 Cancer Res 68:5769).
- In an embodiment, a drug delivery composition may be administered with other drugs or agents. The agents may affect a transcription factor associated with Williams-Beuren syndrome (WSTF; also known as BAZ1B), a tyrosine kinase component of the WICH complex (WSTF-ISWI ATP-dependent chromatin-remodeling complex), that regulates the DNA damage response through phosphorylation of Tyr142 of H2AX (Xiao A et al. 2009 Nature 457:57).
- It is here envisioned that drugs such as dasatinib in combination with other antineoplastic agents such as gefitinib and erlotinib (Koppikar P et al. 2008 Clin Cancer Res 14:4284), are further combined with drug delivery compositions described herein.
- In an embodiment, the drug delivery composition may be administered in combination with Lapatinib (Tyverb®, GSK) is a dual EGFR/HER2 tyrosine kinase inhibitor (Rusnak D W et al. 2001 Mol Cancer Ther 1:85) which is highly selective to EGFR and HER2 (Karaman M W et al. 2008 Nat Biotechnol 26:127). In preclinical models of trastuzumab resistance, lapatinib inhibited phosphorylation of HER2 and overall growth in HER2 overexpressing breast cancer cell lines specifically chosen for extent of in vitro resistance to trastuzumab (Konechny G E et al. 2006 Cancer Res 66:1630). Further, treatment with lapatinib may be combined with trastuzumab and may result in a greater degree of survival and greater apoptosis induction than either agent alone (Xia et al. 2005 Oncogene 24: 6213). A substantial number of HER2-positive metastatic breast cancer patients treated with trastuzumab experience symptomatic central nervous system (CNS) metastasis, which unlike visceral diseases, are not well controlled by trastuzumab. Lapatinib and not trasuzumab has been shown to cross the blood-brain barrier, providing rationale for testing lapatinib in patients with CNS metastases (Nielsen D L et al. 2009 Cancer Treat Rev 35:121). Trastuzumab in combination with lapatinib may be to be superior to lapatinib alone in HER2-positive metastatic breast cancer patients (Blackwell K L et al. 2010 J Clin Oncol 28:1124).
- In an embodiment, the drug delivery composition may be administered in combination with Pertuzumab (2c4, omnitarg, Genentech). Pertuzumab is a monoclonal antibody specific for the extracellular domain of HER2 protein. Pertuzumab may attach to a different epitope of HER2 compared to trastuzumab. Pertuzumab was observed to inhibit heterodimer formation between HER2 and EGFR or HER3 (Agus D B et al. 2002 Cancer Cell 2:127). Although the HER2/HER3 heterodimer may be important in HER2-driven cell signaling, the heregulin-dependent HER2/HER3 heterodimer may be disrupted by pertuzumab and may not be disrupted by trastuzumab (Jitunttila et al. 2009 Cancer Cell 15:429). In a phase II clinical trial involving combination treatment with pertuzumab and trastuzumab in HER2-positive breast cancer patients, treatment produced a response rate of 24.2%, and disease control rate of 50% (Baselga J et al. 2010 J Clin Oncol 28: 1138).
- In an embodiment, the drug delivery composition may be administered in combination with Trastuzumab-DM1 comprised of trastuzumab and DM1, an agent that is an inhibitor of tubulin polymerization derived from maytansine. A stable MCC linker conjugates the DM1 to the trastuzumab. The compound may be designed to deliver DM1 to HER2-overexpressing cancer cells. Preclinical studies have indicated the growth-inhibitory effect of trastuzumab-DM1 in HER2-overexpressing and trastuzumab resistant cells (Lewis Phillips G D et al. 2008 Cancer Res 68:9280). In a phase II clinical trial involving HER2-positive metastatic breast cancer patients with disease progression despite trastuzumab-based therapy, trastuzumab-DM1 yielded an independently reviewed response rate and progression-free survival of 26.9% and 4.6 months, respectively (Vogel C L et al. 2009 J Clin Oncol 27: 15s (suppl; abstr 1017). Trastuzumab-DM1 had similar antitumor activity and an independently reviewed response rate of 24.2% even in patients previously treated with lapatinib and trastuzumab (n=66).
- In an embodiment, the drug delivery compositions may be administered in combination with PI3K pathway inhibitors. The PI3K pathway inhibitors may be used for treating HER2 expressing tumors. HER2-overexpressing breast cancer cells are believed to be dependent on the PI3K signaling pathway, and a number of genetic or epigenetic alterations in PI3K signaling molecules have been shown to cause resistance to trastuzumab or small-molecule HER2 kinase inhibitors. HER2-overexpression and PIK3CA mutations frequently occur simultaneously in breast cancer cells (Oda K et al. 2008 Cancer Res 68:8127), and cell lines with either HER2 amplification or PIK3CA mutation are equally Akt-dependent (She Q B et al. 2008 PLoS ONE 3:e3065). PI3K pathway inhibitors may therefore be useful in overcoming resistance to anti-HER2 agents. PI3K/mTOR dual inhibitor and Akt inhibitor were shown to effectively inhibit cellular growth in trastuzumab-and lapatinib resistant cells. At present, many classes of PI3K pathway inhibitors are in clinical development, and their roles in overcoming trastuzumab resistance will be tested in the future. These inhibitors may be used in combination with the drug delivery compositions herein.
- In an embodiment, the drug delivery compositions may be administered in combination with inhibitors of alternative signaling molecules. The inhibitors of alternative signaling molecules may be used to treat trasuzumab resistant cancer cells. Alternative signaling from IGF-1R or MET may be associated with trastuzumab resistance. Small-molecular weight inhibitors of IGF-1R or MET receptor tyrosine kinase, and anti-IGF-1 antibody and anti-HGF antibody are in clinical development at present. Monotherapy or combination therapy with these agents and the drug delivery composition that includes trastuzumab may be therefore an attractive therapeutic strategy.
- In an embodiment, the drug delivery compositions may be administered in combination with HER2 vaccines and adoptive immunotherapy targeting the HER2 extracellular domain tested in clinical trials. Results of these tests showed that significant levels of durable T-cell HER2 immunity may be generated with active immunization without significant consequences with regard to autoimmunity against normal tissues (Bernhard H et al 2002 Endoctr Relat Cancer 9:33). Early data from clinical trials testing the potential use of HER2-specific vaccines in adjuvant therapy for high-risk breast cancer patients show promising results (Peoples G E et al. 2008 Clin Cancer Res 14:797).
- In an embodiment, the drug delivery composition may be administered in combination with Ertumaxomab (Rexomum, Fresenius Biotech GmbH, phase II study). Ertumaxomab is an intact bispecific antibody targeting HER2 and CD3 on T cells with preferential binding to activating Fcc type I/III receptors and redirecting T cells, macrophages, dendritic cells, and natural killer cells to HER2 expressing tumor sites (Kiewe P et al. 2008 Expert Opin Investig Drugs 17: 1553). In a phase I trial, ertumaxomab treatment was associated with one complete response, two partial responses, and two stable diseases in patients with metastatic breast cancer who had received extensive prior treatment (Kiewe P et al. 2006 Clin Cancer Res 12:3085). The effects of ertumaxomab are being evaluated in phase II studies.
- In an embodiment, the drug delivery compositions may be administered using defucosylated trastuzumab. Defucosylated trastuzumab may be used to treat trastuzumab resistant cancer cells. Removal of fucose from antibody oligosaccharides attached to the heavy chain of Asn297 (defucosylation) has been shown to significantly enhance antibody-dependent cellular cytotoxicity (ADCC) compared to the activity of regular antibodies. In addition, defucosylation of trastuzumab was also found to enhance ADCC in an in vitro assay as compared to regular trastuzumab (Suzuki E et al. 2007 Clin Cancer Res 13:1875). Defucosylated trastuzumab more than doubled the median progression-free survival compared with conventional trastuzumab in preclinical models of HER2-amplified breast cancer (Juntilla et al. 2010 Cancer Res 70:4481).
- Any of the above agents including paclitaxel, docetaxel, dasatinib, erlotinib, gefitinib, lapatinib, pertuzumab, trastuzumab, ertumaxomab, trasuzumab-DM1, defucosylated trastuzumab, PI3K pathway inhibitors and HER2 vaccines are here envisioned to be useful in combination with nanobiopolymer conjugate compositions herein to treat breast cancers by methods described herein.
- In an embodiment, the drug delivery composition may include at least one module that targets a tumorigenic or a cancer cell to be selected from the group of agents consisting of: paclitaxel, docetaxel, dasatinib, erlotinib, gefitinib, lapatinib, pertuzumab, trastuzumab, ertumaxomab, trasuzumab-DM1, defucosylated trastuzumab, PI3K pathway inhibitors and HER2 vaccines.
- In an embodiment, the step of contacting the subject with the composition may further include providing the composition in a unit dose effective for treatment the cancer in the subject. For example, the effective dose may be at least one dose selected from the group consisting of: 1 μg/kg, 50 μg/kg, 100 μg/kg, 200 μg/kg, 300 μg/kg, 400 μg/kg, 500 μg/kg, 600 μg/kg, 700 μg/kg, 800 μg/kg, 900 μg/kg, 1 mg/kg, 50 mg/kg, 100 mg/kg, 200 mg/kg, 300 mg/kg, 400 mg/kg, 500 mg/kg, 600 mg/kg, 700 mg/kg, 800 mg/kg, 900 mg/kg, and 1 g/kg
- In an embodiment, of the cancer may be selected from the list consisting of: gastric, endometrial, salivary gland, lung, non-small cell lung, pancreatic, ovarian, peritoneal, prostate, colorectal, breast, cervical, uterine, ovarian, brain, head and neck, testicular and teratoma cancers.
- The cancer may be either a primary cancer, or a metastatic cancer, or both.
- As discussed above and described in greater detail in the Examples, inhibition of expression or activity of an oncogenic protein may be useful to prevent development or metastasis of a cancer conditions. These inhibitors may be clinically useful in preventing further growth of a particular cancer type, including but not limited to the breast cancer; skin cancer; ovarian cancer; cervical cancer; the retinoblastoma; colon cancer and other conditions, e.g., those arising from the lining of the gastrointestinal tract; lung cancer and cancers of the respiratory tract; renal carcinoma and other tumors arising from the inner surface of kidney tubules; leukemias and lymphomas and disorder of blood; and other types of genital cancer including those associated with various strains of papilloma virus; brain tumors; and cancers of the uterus, of the vagina, of the urethra.
- In an embodiment, the diagnostic, prognostic and therapeutic methods described herein may not be limited to treating conditions in humans, but may be used to treat similar conditions in any mammal. The mammal may be but not limited to bovine, canine, feline, caprine, ovine, porcine, murine, or equine species. When treating tumors in a given species, it is preferred, but not required, that the antisense oligonucleotides have a nucleotide sequence that is substantially identical in base sequence to that as it occurs naturally in the species.
- The invention having been fully described is it further exemplified in a research paper by Satoshi Inoue et al. entitled “Polymalic acid-based nanobiopolymer provides efficient systemic breast cancer treatment by inhibiting both HER2/neu receptor synthesis and activity”, which was published Feb. 15, 2011 in Cancer Research 71(4): 1454-1464, and is incorporated herein by reference as if fully set forth. A skilled person will recognize that many suitable variations of the methods may be substituted for or used in addition to those described above and in the claims. It should be understood that the implementation of other variations and modifications of the embodiments of the invention and its various aspects will be apparent to one skilled in the art, and that the invention is not limited by the specific embodiments described herein and in the claims. The present application mentions various patents, scientific articles, and other publications, each of which is hereby incorporated in its entirety by reference.
- Further embodiments herein may be formed by supplementing an embodiment with one or more element from any one or more other embodiment herein, and/or substituting one or more element from one embodiment with one or more element from one or more other embodiment herein. Further embodiments herein may be described by reference to any one of the appended
claims following claim 1 and reading the chosen claim to depend from any one or more preceding claim. - The following non-limiting examples are provided to illustrate particular embodiments. The embodiments throughout may be supplemented with one or more detail from one or more example below, and/or one or more element from an embodiment may be substituted with one or more detail from one or more example below
- Compositions and methods of the present invention provide a nanobiopolymeric drugs based on poly-β-L-malic acid (PMLA) platform specifically designed for delivery into HER2/neu-positive tumors. Targeted nanobiopolymeric conjugates based on poly-β-L-malic acid (PMLA) are biodegradable, non-toxic, and non-immunogenic. The PMLA nanoplatform was synthesized for repetitive systemic treatments of HER2/neu-positive human breast tumors in a xenogeneic mouse model. Various moieties were covalently attached to PMLA, including a combination of morpholino antisense oligonucleotides (AON) directed against HER2/neu mRNA, to block HER2/neu synthesis; anti-HER2/neu antibody trastuzumab (Herceptin®), to target breast cancer cells and inhibit receptor activity simultaneously; and transferrin receptor antibody, to target the tumor vasculature and mediate delivery of the nanobiopolymer through the host endothelial system.
- The Examples herein include tests of the lead compound, and data show that this compound significantly inhibited growth of HER2/neu-positive breast cancer cells in vitro and in vivo, and enhanced apoptosis and inhibition of HER2/neu receptor signaling with suppression of Akt phosphorylation was observed in treated cells and animals. In vivo imaging analysis and confocal microscopy demonstrated selective accumulation of the nanodrug in tumor cells as a result of an active delivery mechanism resulting from design of the lead compound. Systemic treatment of human breast tumor-bearing nude mice resulted in more than 90% inhibition of tumor growth and tumor regression, compared to partial (50%) tumor growth inhibition in mice treated with control trastuzumab alone or control AON alone, either free or attached to PMLA. Data from Examples herein offer a preclinical demonstration of use of the PMLA nanoplatform for combination cancer therapy.
- The epidermal growth factor receptor or ErbB family of receptor tyrosine kinases is exemplified by an epidermal growth factor receptor (also called HER1 or ErbB1), HER2 (ErbB2 or neu), HER3 (ErbB3), and HER4 (ErbB4). Upon ligand binding, ErbB family members form homodimers and heterodimers followed by the phosphorylation within intracellular kinase domains (Yarden et al. 2001 Nat Rev Mol Cel Biol 2:127). Upon ErbB1 and ErbB2 activation, phosphotyrosylated sites in Src-homology 2 (SH2) domains in these proteins serve as docking sites for adaptor proteins such as Shc, Grb2, and Sos resulting in the activation of the of Ras/Raf/mitogen-activated protein kinase (MAPK) kinase (MEK)/MAPK and PI3K/protein kinase B (PKB) pathways and promotion of proliferation and mitogenesis (Yarden et al. 2001 Nat Rev Mol Cel Biol 2:127).
- The HER2/neu proto-oncogene, also known as erbB-2, encodes a 185-kDa type I transmembrane receptor tyrosine kinase that is member of the epidermal growth factor receptor family (Hynes N E et al., 2005 Nat Rev Cancer 5:341; Bargmann C I et al. 1986. Nature 319:226; Coussens L et al. 1985 Science 230:1132). Early studies have identified HER2/neu protein overexpression in several human carcinomas, including subsets of ovarian and breast cancers (Hynes N E et al. 1994. Biochim Biophys Acta 1198:165; D'Emilia J et al. 1989 Oncogene 4:1233; Slamon D J et al. 1989 Science 244:707). HER2/neu overexpression has been linked to a short relapse time and poor survival of breast cancer patients (Slamon D J et al. 1987 Science 235:177), as this protein plays a role in the molecular mechanisms of human cancers.
- The ErbB2 gene is amplified and overexpressed in up to 30% of primary breast cancers and this is associated with poor patient prognosis (Slamon D J et al., 1989 Science 244:707). ErbB1 is also overexpressed in up to 30% of primary invasive breast cancers and this is correlated with reduced overall survival, proliferation, and higher metastatic potential (Tsutsui S et al. 2002 Breast Cancer Res Treat 71:67). Inhibition of ErbB1 signaling reduces both ErbB1 and ErbB2 activity and delays tumorigenesis in MMTV/Neu mice (Lenferink A E G et al. 2000 Proc Natl Acad Sci 97:9609). The cooperative activation of proliferative pathways by these two receptors has stimulated the development of a number of small molecule inhibitors of members of the ErbB family for use as anticancer agents.
- Newly diagnosed estrogen positive breast cancers are commonly treated with the antiestrogen agent tamoxifen. In estrogen-positive breast cancers, overexpression of both Erb1 and
Erb 2 is associated with resistance to tamoxifen therapy. It was shown that administration of such anticancer agents as lapatinib (GW572016) and tamoxifen together was advantageous and restored tamoxifen-mediated cell cycle arrest and inhivited tamoxifen-resistant breast tumor growth (Chu I et al. 2005 Cancer Res 65: 18). - Characteristics such as extracellular accessibility, high expression, and association with poor prognosis make HER2/neu an attractive candidate for antibody therapy. Metastatic breast cancer patients are currently being treated with Trastuzumab (also known as Herceptin; Genentech, Inc., San Francisco, Calif.), a Food and Drug Administration-approved humanized monoclonal anti-HER2/neu (Kaptain S et al. 2001 Diagn Mol Pathol 10:139). Breast cancer clinical trials for patients with advanced disease expressing high levels of HER2/neu showed that use of Trastuzumab as a single immunotherapeutic agent resulted in an objective response rate of 12% to 26% (Cobleigh M A et al. 1999 J Clin Oncol 17:2639; Baselga J et al. 1996 J Clin Oncol 14:737; Vogel C L et al. 2002 J Clin Oncol 20:719). Subsequent clinical trials in patients with advanced disease have also shown that targeting metastatic breast cancer with Trastuzumab in combination with chemotherapy resulted in a 50% objective response, but disease relapse still affected most cases (Slamon D J et al. 2001 N Engl J Med 344:783). In addition, Trastuzumab lacks considerable activity against tumors expressing HER2/neu that are not of breast origin (Burstein H J 2005 N Engl J Med 353:1652). Furthermore, resistance to Trastuzumab is a growing problem in patients with breast tumors. Novel treatments for patients with HER2/neu-expressing tumors are still needed.
- In 66% to 88% of cases, HER2/neu-overexpressing tumors demonstrate primary resistance to Herceptin® (Baselga J et al. 1999 Semin Oncol 26:78; Nahta R et al. 2004 Cancer Res. 64:398). This resistance may be due to epitope masking by overexpressed mucins, loss of receptor ability to influence pro-survival signaling through PI3K-Akt axis, or loss of protein phosphatase PTEN leading to the activation of PI3K-Akt signaling (Tseng P H et al. 2006 Mol Pharmacol. 70:1534-41; Nagy P et al 1998 Cytometry 32:120; Tanner M et al. 2004 Cancer Ther. 3:1585-92).
- Advantages of drug combinations can be offered in a single molecular entity such as a nanobiopolymeric conjugate. These compounds offer enhanced cancer cell specificity because of the presence of tumor targeting antibodies, bypass drug resistance by delivering polymer-bound drugs into cancer cell cytoplasm, and can carry multiple drugs on a single platform (Wu K et al. 2010 Angew Chem Int Ed Engl. 9:1451). Efficient delivery of nanobiopolymer-attached drugs to tumors is increased by passive targeting through enhanced permeability and retention (EPR) effect typical for tumors (Maeda H et al. 2009 Eur J Pharm Biopharm 71:409), and additionally, by active targeting using antibodies, such as anti-TfR (Maeda H et al. 2009 Eur J Pharm Biopharm 71:409; Liu X, et al. 2008 Cancer Gene Ther. 15:126; Peterson C M et al. 2003 Adv Exp Med Biol. 519:101). Table 1 shows the size (smaller than 30 nm) of conjugates used in Examples herein.
- The slightly negative ζ potentials promote interaction of the conjugate with the cell membrane and enhance intracellular internalization (Wilhelm C et al. 2003 Biomaterials 24:1001-11).
- A general problem with anti-cancer drugs is lack of specific tumor targeting, resulting in an extent of random tissue accumulation and significant side effects for normal tissues (Shukla R et al. 2008 Nanotech 19:1; Shukla R et al. 2006 Bioconjug Chem 17:1109). To circumvent this drawback, tumor-targeting antibodies have been used as drug carriers or directly as therapeutics (e.g., Herceptin®). Dendrimer nanoconjugates with attached Herceptin® displayed enhanced accumulation in breast cancer cells in animal models (Shukla R et al. 2006 Bioconjug Chem 17:1109). Methotrexate-loaded dendrimers produced a cytotoxic effect in tumor cells in vitro resulting from Herceptin®-mediated complex internalization (Shukla R et al. 2008 Nanotech 19:1). However, the efficacy of these nanodrugs was limited because of lack of efficient endosome release unit (Shukla R et al. 2008 Nanotech 19:1). Drugs were specifically delivered to cancer cells and tumor growth was inhibited as was angiogenesis in brain glioma-bearing animals (Fujita M et al. 2006 Angiogenesis 9:183; Ljubimova J Y et al. 2008 Chem Biol Interact. 171:195). The efficiency of the polymers was associated with properties of tumor targeting, use of AON drugs to more than one tumor marker at the same time, and the presence of endosome disruption moiety ensuring drug release inside the target cell (Gasslmaier B et al. 2000 Eur J Biochem267: 5101).
- Table 1 summarizes nanobiopolymer drugs synthesized for use in Examples herein.
-
TABLE 1 Nanobiopolymer drugs and controls for treatment of cancers overexpressing HER2/neu, molecular sizes, and ζ potentials ζ potential Nanobiopolymer variant Version Size (nm) (mV) P/mPEG/LOEt/AON/ Lead drug 22.1 (±2.3) −5.2 ± (0.4) Herceptin ®/TfR(M) with AON, Herceptin ® and TfR(M) P/mPEG/LOEt/AON/ with AON and 20.1 (±2.4) −5.7 (±0.6) TfR(H/M) TfR (Human/ Mouse) P/mPEG/LOEt/ with 15.1 (±1.2) −4.1 (±0.4) Herceptin ® Herceptin ® alone P/mPEG/LOEt/IgG Control version N/A N/A for imaging study with IgG - PMLA is a natural polymer obtained from the slime mold Physarum polycephalum (Lee B S et al. 2006 Bioconjug Chem 17:317; Lee B S et al. 2002 Water-soluble aliphatic polyesters:poly(malic acid)s, in: Doi YSA, eds, Biopolymers, Weinheim: Wiley-VCH, 2002 pp. 75-103). PMLA is non-toxic, non-immunogenic, and biodegradable in vitro and in vivo, stable in the bloodstream, and highly water-soluble (Gasslmaier B et al. 1997 Eur J Biochem 250:308; Gsslmeier B et al. 2000 Eur J Biochem 267:5101). Systemic delivery of morpholino AONs having nucleotide sequences specific to α4 and β1 chains of a tumor vasculature-specific protein, laminin-411 (formerly, laminin-8), to intracranial glioblastoma was shown to result in marked inhibition of tumor angiogenesis and growth (Ljubimova J Y et al. 2008 Nanomedicine 3:247; Ding H et al. 2010 Proc Natl Acad Sci online publication). Further, to target tumor vasculature, a mAb to transferrin receptor (TfR) was attached to the same nanoplatform. The nanobiopolymer composition carrying each of anti-HER2/neu antibody (Herceptin®), anti-TfR antibody, and AON to HER2/neu is shown herein to enhance the specificity and anti-tumor effect towards HER2/neu positive breast cancer. Without being limited by any specific theory or molecular mechanism, the lead compound tested herein is a nanoplatform designed to work on several molecular levels, to inhibit the synthesis of new HER2/neu receptors with AON, and to block the activity of existing HER2/neu on the tumor cell membrane with Herceptin®.
- Antisense oligonucleotides (AONs) that bind specifically to mRNA and block protein synthesis are tools specific for silencing gene expression. Efficient delivery of AONs and siRNAs in systemic treatment of tumors however still presents significant problems (Patil S D et al. 2005 AAPS 7:E61; Thierry et al., 2003 Curr Opin Mol Ther 5:133). Preclinical studies of AON for cancer treatment showed promising results, and stability of AON in plasma renders these molecules feasible for systemic treatment (Busch R K et al. 1994 Cancer Lett 86:151; Sekhon H S et al. 2008 Lung Cancer 60:347; Garbuzenko O B et al. 2010 Proc Natl Acad Sci 107:10737). Further, Morpholino AONs specific for dystrophin have been delivered to dystrophic muscle cells in vivo in a Duchenne muscular dystrophy mouse model and to patients (Wu B et al. 2010 Gene Ther 17:132; Kinali M et al 2009 Lancet Neurol 8:918). An AON specific for HER2/neu was observed to be more potent for inhibiting neoplastic cell proliferation in vitro than mAb inhibition of HER2/neu receptor (Roh H et al. 2000 Cancer Res 60:560). Combination treatment of HER2/neu-positive breast cancer cells in vitro with HER2/neu AON and conventional chemotherapeutic agents results in synergistic inhibition of tumor cell growth by activation of apoptosis (Rait A S et al. 2001 Cancer Gene Ther 8:728; Lewis P G D 2008 Cancer Res 68:9280).
- Nanoparticles are used in drug delivery as carriers for small and large molecules. Nanoparticles are defined as particulate dispersions or solid particles with a size in the range of 10-1000 nm. The drug is dissolved, entrapped, encapsulated or attached to a nanoparticle matrix (Langer R. 2000 Acc Chem Res 33:94). Nanobiopolymers of the present invention differ from nanoparticles in that nanoparticles have no covalent bonds between the particle and drug cargo, generally merely leak the drug, and accordingly cannot directly transport cargo to and release the cargo inside tumor cells.
- Contrary to nanoparticles, nanobiopolymer compositions provided herein comprise a single unitary molecular entity having functional modules including a plurality of the following: tumor cell-targeting antibodies, two or more anti-tumor drugs, an endosomal disruption moiety, and a glutathione-cleavable bond to release the drug inside tumor cell cytoplasm, covalently attached. Such a construct functions to eliminate leakiness, suppresses non-tumor accumulation thereby minimizing side effects, and increase drug half-life dwell time of the composition in plasma. As a result, tumor uptake and drug specificity were observed in examples herein to be enhanced, leading to a significant reduction of tumor growth and volume. Moreover, the combined drug action through inhibiting Akt activation and increase of tumor cell apoptosis was also observed in examples herein.
- Nanobiopolymers of the present invention offer a great potential in cancer therapy.
-
Morpholino ™-3′-NH2 antisense oligonucleotides (AONs) used in Examples herein were custom made by Gene Tools (Philomath, Oreg.). - AONs specific for HER2/neu included two sequences:
-
version 1: (SEQ ID NO: 1) 5′-AGGGAGCCGCAGCTTCATGTCTGTG-3′, version 2: (SEQ ID NO: 2) 5′-CATGGTGCTCACTGCGGCTCCGGC-3′.
and - AONs specific for an epidermal growth factor receptor (EGFR) included:
-
(SEQ ID NO: 3) 5′-TCGCTCCGGCTCTCCCGATCAATAC-3′. - AONs specific for α4 and β1 subunits of laminin-411 included:
-
α4 subunit: (SEQ ID NO: 4) 5′-AGCTCAAAGCCATTTCTCCGCTGAC-3′, β1 subunit: (SEQ ID NO: 5) 5′-CTAGCAACTGGAGAAGCCCCATGCC-3′.
and - siRNA specific for EGFR included sequences as follows:
-
sense: (SEQ ID NO: 6) 5′-CCUAUAAUGCUACGAAUAUtt-3′, and antisense: (SEQ ID NO: 7) 5′-AUAUUCGUAGCAUUUAUGGag-3′. - siRNA specific for HER2 receptor protein included:
-
sense: (SEQ ID NO: 8) 5′-GUUGGAUGAUUGACUCUGAtt-3′, and antisense: (SEQ ID NO: 9) 5′-UCAGAGUCAAUCAUCCAACat-3′. - Small letters “tt”, “ag” and “at” at the 3′-terminus of the siRNA sequence denote DNA oligonucleotides that are synthesized to anneal siRNA to a DNA molecule.
- Highly purified, endotoxin-free poly-β-L-malic acid, Mw (weight-averaged) =100 kDa, polydispersity=1.1, was obtained from the culture broth of Physarum polycephalum. Rat anti-mouse TfR mAb R17217 (mTfR) was purchased from Southern Biotech (Birmingham, Ala.). Cysteamine (2 -mercaptoethyl-1-amine hydrochloride), N-hydroxysuccinimide, other reagents and solvents were of highest available purity and purchased from Sigma-Aldrich (St. Louis, Mo.).
- The nanobiopolymers contain five to six components: PMLA as the backbone; functional modules include: morpholino AON to inhibit HER2/neu protein synthesis; targeting anti-TfR mAb; anti-tumor Herceptin®; 40% leucine ethyl ester (LOEt) as endosome escape unit to achieve cytoplasmic AON delivery, and 5% PEG5000 to increase stability in the bloodstream.
FIG. 1 illustrates a chemical structure and schematic drawings showing a nanobiopolymeric conjugate designed to inhibit HER2/neu expression by antisense oligonucleotides (AON) and to attenuate HER2/neu-mediated cell signaling by Herceptin®. The modules are HER2/neu morpholino AON (indicated 1 in Figure) conjugated to the PMLA scaffold by disulfide bonds (S—S) that are cleaved by cytoplasmic glutathione to release the free drugs; targeting and/or effector antibodies that include antibody specific to a transferrin receptor protein (TfR) either alone or in combination with monoclonal antibodies (mAbs) to mouse TfR (indicated 2a in Figure), human TfR (indicated 2b) and Herceptin® (indicated 2c) for tumor endothelial and cancer cell targeting, receptor-mediated endocytosis, and anti-tumor effect, polyethylene glycol (PEG) for drug protection (indicated 3), stretches of conjugated L-leucine ethyl ester (LOEt) for endosomal escape of the drug (indicated 4), and optional fluorescent reporter dye (Alexa Fluor 680) for imaging (indicated 5). The nanopolymer also contained free unsubstituted pendant carboxyl groups for enhancing solubility and nonfunctional disulfides originating from chemical masking of excess sulfhydryls with 3-(2-pyridyldithio)-propionates. - Referring to
FIG. 1 , anti-mouse TfR mAb on Herceptin®-containing conjugate was used to target tumor vasculature. The conjugate with AON without Herceptin® included an anti-human TfR mAb attached to it to promote drug binding to human tumor cells and its internalization. The preconjugate containing 40% LOEt, 5% PEG5000 and 10% of cysteamine (% referring to the total amount of pendant carboxyl groups in polymalic acid) was synthesized by the methods described previously (Lee B S et al. 2006 Bioconjug Chem 17:317). The antibodies conjugated with the preconjugate were qualitatively and quantitatively assayed by size exclusion HPLC. ELISA with purified TfR and HER2/neu was used to assess functional reactivity of attached antibodies as described (Fujita M et al. 2007 J Control Release. 122:356). - Conjugates for imaging were fluorescently labeled with
Alexa Fluor® 680 C2-maleimide (Invitrogen, Carlsbad, Calif.) by forming thioether with sulfhydryl groups. Antibody conjugates were then reacted with HER2/neu AON (FIG. 1 ). A control conjugate contained Herceptin® (FIG. 1 ) and not HER2/neu-specific AON. - Chemical and physical characterization of polymeric nanobioconjugate was performed by various methods including L-malate dehydrogenase assay after nanobiopolymer hydrolysis at 100° C. in the presence of 6 M HCl, PEG colorimetric determination and protein quantification, size and ζ potential, HPLC, and ELISA. HPLC was performed on a Hitachi analytical Elite LaChrom HPLC-UV system (Hitachi, Pleasanton, Calif.) and size exclusion, on a BioSep-SEC-S 3000 column (Phenomenex, Torrance, Calif.). The nanobiopolymer variants were characterized by their size (hydrodynamic diameter) on the basis of noninvasive back-scattering (NIBS), and ζ potential from electrophoretic mobility based on the Helmholtz-Smoluchowski formula, using electrophoresis M3-PALS (Gasslaier B et a. 1997 Eur J Biochem 250:308). Both measurements were performed in a Zetasizer Nano System ZS90 (Malvern Instruments, Malvern, UK). Data on molecular size and ζ potential represent mean±standard deviation obtained from three independent measurements.
- Human breast cancer cell lines BT-474, SKBR-3, MDA-MB-231, MDA-MB-435, MDA-MB-468, and MCF-7 were obtained from American Type Culture Collection (Manassas, Va.). BT-474, MDA-MB-231, MDA-MB-435, MDA-MB-468, and MCF-7 were cultured in DMEM with 10% fetal bovine serum and antibiotics. SKBR-3 was cultured in McCoy's 5A medium with 10% fetal bovine serum and antibiotics.
- The term “nanobiopolymer” denotes a drug delivery system with PMLA as a nanoplatform and functional module groups covalently attached to the PMLA, including an AON, a rat anti-mouse or a mouse anti-human targeting TfR mAbs (M and H, respectively), and LOEt as the endosomal escape unit module. The nanobiopolymer drugs (
FIG. 1 and Table 1) described herein to treat HER2/neu-positive breast cancer contained either a drug HER2/neu AON or drug Herceptin® or both HER2/neu AON+Herceptin®. - HER2/neu-overexpressing breast cancer cells each of BT-474 or SKBR-3 were seeded into six-well plates at 3×105 cells/well. The next day, cells were treated with one of Endoporter (4 μM; control); Herceptin (40 μg/ml); P/mPEG/LOEt/Herceptin® (40 μg/ml); Endoporter (4 μM) and AON (4 μM); P/mPEG/LOEt/AON/TfR(H/M); P/mPEG/LOEt/AON/Herceptin®/TfR(M); and PBS control. Seventy-two hours after treatment, the cells were stained with Trypan Blue. Cell viability was determined by calculating the mean of cell counts for each treatment group (in triplicate) and was expressed as a percentage of the total number of cells treated normalized to the number of cells treated with PBS.
- BT-474 and SKBR-3 breast cancer cells were treated with Herceptin® (40 μg/ml P/mPEG/LOEt/Herceptin® (40 μg/ml equivalent to Herceptin®); Endoporter (4 μM) and AON (4 μM); P/mPEG/LOEt/AON/TfR(H/M); P/mPEG/LOEt/AON/Herceptin®/TfR(M); PBS control, or 4 μM Endoporter. Cell lysates were collected after 72 hours and were analyzed by western blotting as described previously (Inoue S et al. 2005 Mol Ther. 12:707-15). Lysates of excised breast tumors after various treatments were analyzed by these methods. The following anti-human primary antibodies were used: HER2/neu, Akt, phosphorylated Akt (p-Akt), glyceraldehyde 3-phosphate dehydrogenase (GAPDH, to normalize gel load) (all from Cell Signaling Technology, Beverly, Mass.), and poly(ADP ribose) polymerase (PARP; BD Biosciences, San Jose, Calif.).
- Animal experiments were performed in accordance with the protocols approved by the Cedars-Sinai Medical Center Institutional Animal Care and Use Committee. Athymic mice (CrTac: NCr-Foxn1nu Homozygous; Taconic, Hudson, N.Y.) were used. A 0.72-mg, 90-day release, 17β-estradiol pellet (Innovative Research of America, Sarasota, Fla.) was inserted subcutaneously into the back of each mouse seven days prior to injection. An amount of 1×107 BT-474 cells suspended in 150 μl of Matrigel (BD Biosciences, Bedford, Mass.) were injected into the right flank of each of 35 mice (5 mice per group), and treatment was initiated when tumors achieved an average size of >120 mm3 (21 days after injection). Mice were divided into five treatment groups and each group was administered either of: sterile PBS (control); Herceptin® (40 μg/ml); P/mPEG/LOEt/Herceptin® (40 μg/ml equivalent to Herceptin®); P/mPEG/LOEt/AON/TfR(H/M); or P/mPEG/LOEt/AON/Herceptin®/TfR(M); into the tail vein twice a week. Treatments were performed six times during a period of three weeks.
- Tumor xenografts were measured with calipers twice a week, and tumor volumes were determined using the formula: (length×width2)×(π/6).
- Eighteen days after the last treatment, the animals were anesthetized with 3% isoflurane-air mixture and were euthanized. Tumor samples were stained with hematoxylin and eosin for morphological observation. The data are the average of two independent examples.
- Alexa Fluor 680-labeled nanobiopolymers (P/mPEG/LOEt/IgG, control); P/mPEG/LOEt/Herceptin®, 40 μg/ml; or P/mPEG/LOEt/AON/Herceptin®/TfR(M)) was each injected into the tail vein of mice. Twenty-four hours after drug administration, mice were euthanized; the tumors were harvested to detect the fluorescent signal, snap-frozen in liquid nitrogen and embedded in OCT compound for confocal microscopy (TCS SP5× microscope; Leica Microsystems, Mannheim, Germany).
- BT-474 human breast cancer cells were implanted into the right thigh of mice as described. When tumor size attained 120 mm3, 160 μl of
Alexa Fluor 680 labeled nanobiopolymers was injected intravenously (4 μM). P/mPEG/LOEt/IgG was used as a negative control. Drug distribution and localization was assessed in tumor-bearing mice usingXenogen IVIS 200 imager (Caliper Life Sciences, Hopkinton, Mass.), at different time points before drug administration, 1 h, 3 h, 6 h, and 24 h after the drug injection). Twenty-four hours after drug administration, mice were euthanized and the circulating drugs eliminated by intraarterial PBS perfusion. The tumor and major organs were harvested to detect the fluorescent signal. - Student's t-test (for two groups) and analysis of variance (ANOVA, for three and more groups) were used to calculate significance of the experimental results. GraphPad Prism4 program (GraphPad Software, statistical San Diego, Calif.) was utilized for all calculations. Data are presented as mean±standard error of mean (SEM). The significance level was set at P<0.05.
- Of the HER2/neu-specific AON sequences, a version that did not inhibit HER2/neu expression well in comparison with another version was observed; therefore, only the effective version was conjugated to the polymer platform. The absolute molecular weight of the lead version of nanobiopolymer (
FIG. 1 ) was 1,300 kDa by light scattering and close to the calculated value based on design. Hydrodynamic diameters (nano sizes) and ζ potentials of the nanobiopolymers inFIG. 1 are summarized in Table 1. Parameters for ζ potentials in the range of −4.1 to −5.7 mV have been reported for other nanoparticles as compatible with cell membrane attachment and nanoparticle internalization (Lorenz M R et al. 2006. Biomaterials 27:2820; Wilhelm C et al. 2003 Biomaterials. 24:1001). - Breast cancer cell growth inhibition following administration of anti-HER2/neu AON and Herceptin® was first examined. Based on optimization experiments, each of AON at 4 μM with 4 μM Endoporter (in vitro AON delivery agent, GeneTools), and Herceptin®, at 40 μg/ml was analyzed. Results in
FIG. 2 are shown for HER2/neu high-expressing cells BT474 and SKBR-3, as well as for low-expressing cells, MDA-MB-231 and MDA-MB-435. Referring to this figure, HER2/neu overexpressing breast cancer cells (BT-474 and SKBR-3; also shown inFIG. 3A ) were treated with various drugs as indicated (top row). After 72 hours, cell viability was determined using a Trypan Blue exclusion assay. Percentage of cell growth was calculated as average cell counts for each group and expressed relative to parallel samples treated with PBS (control) set to 100%. Growth of tumor cells treated with lead compound P/mPEG/LOEt/AON/Herceptin®/TfR(M) was observed to be significantly inhibited compared with other treatments in both cell lines. In cell lines expressing low amounts of HER2/neu (FIG. 3A ), the data showed that the lead compound had greatest ability to inhibit cell growth (bottom row). One asterisk indicates that P<0.05; two asterisks indicate that P<0.01; three asterisks indicate that P<0.003 compared to PBS control treatment. The lead compound also showed significant differences at P<0.005 when compared to all treatment groups (top row), and at P<0.02 when compared to Herceptin® (bottom row). At the concentrations used, it was observed that each of free AON and Herceptin® resulted in some growth inhibition in HER2/neu high-expressing cells. Low-expressing cell lines were observed to be significantly less responsive to these treatments. - These nanobiopolymeric conjugates (a two-drug compound and single-drug compounds shown in
FIG. 1 ) were then tested for tumor cell growth inhibitory effect. The nanobiopolymers, Herceptin®, and free AON caused significant growth inhibition compared to PBS control in HER2/neu high-expressing cells (FIG. 2 top, P<0.01). The lead two-drug compound produced the strongest inhibitory effect that was significantly higher than that of the other nanobiopolymers tested and higher than Herceptin® (P<0.005 compared to all groups). In HER2/neu low-expressing cells, only the lead compound with AON, Herceptin® and TfR(M) was able to induce statistically significant inhibition of tumor growth compared to PBS (FIG. 2 bottom, P<0.02). - A phosphatidylinositol-3 kinase (PI3K) and its downstream target, the serine/threonine kinase Akt, play an important role in HER2/neu positive breast cancer cell growth and proliferation, as well as in anti-tumor effect of Herceptin® (Tseng P H et al, 2006 Mol Pharmacol. 70:1534; Yakes F M et al. 2002 Cancer Res. 62:4132). HER2/neu signaling can activate the PI3K/Akt/mTOR cascade, and activated Akt stimulates increases in cell size, metabolism and survival (Plas D R et al. 2005 Oncogene 24:7435).
- Therefore, to examine the mechanism responsible for the enhanced growth inhibitory effect of the lead nanobiopolymer, drug effects on the expression and phosphorylation of pertinent signaling markers HER2/neu, Akt, and p-Akt were assessed.
- HER2/neu high-expressing cell lines BT-474 and SKBR-3 were used (
FIG. 3A ). To determine whether the nanobiopolymer carrying both HER2/neu AON and Herceptin® induces apoptosis, PARP cleavage was examined by western blot analysis. Breast cancer cell lines used in Examples herein were observed to express high levels of TfR. - In HER2/neu high-expressing cell lines, HER2/neu expression was inhibited to different extents by each of Herceptin®, AON, and the single-drug versions of the nanobiopolymer [P/mPEG/LOEt/Herceptin and P/mPEG/LOEt/AON/TfR(H/M)] in comparison with controls. The strongest inhibition of HER2/neu expression was observed upon treatment with the lead nanobiopolymer having AON and Herceptin® attached to the PMLA carrier molecule.
- Expression of p-Akt, a key downstream mediator of HER2/neu signaling (Tseng P H et al, 2006 Mol Pharmacol. 70:1534), was inhibited to different extents in tumor cells treated with Herceptin®, AON, or single-drug versions of nanobiopolymer compared to control cells treated with PBS or AON transduction reagent Endoporter. The p-Akt signal upon treatment of both breast cancer cell lines with the lead drug carrying both Herceptin® and HER2/neu AON was observed to be markedly lower in comparison to treatment with any other agent (
FIG. 3B ). The amount of total Akt on western blots remained unchanged by each of the treatment. - Apoptosis assessed by PARP cleavage was induced to some extent by each of Herceptin®, AON, and single-drug nanobiopolymers in HER2/neu high-expressing cells, for example in BT-474 cell line. Significantly, the lead compound, P/mPEG/LOEt/AON/Herceptin®/TfR(M), triggered apoptosis to a greater extent than the other agents in both cell lines, as shown by increased PARP cleavage compared to the other agents (
FIG. 3B ). - Western blot analyses showed decreased HER2/neu and phosphorylated Akt after treatment with each of Herceptin®, P/mPEG/LOEt/Herceptin®, AON or P/mPEG/LOEt/AON/TfR(H/M)-treated tumor cells, and not with control treatment PBS or Endoporter in both cell lines. Treatment with lead compound P/mPEG/LOEVAON/Herceptin®/TfR(M) further reduced both HER2/neu and p-Akt. Assay of generation of cleaved poly(ADP-ribose) polymerase (PARP) as a measure of apoptosis was observed at highest levels in P/mPEG/LOEt/AON/Herceptin®/TfR(M)-treated cells. Glyceraldehyde 3-phosphate dehydrogenase(GAPDH) was used as an internal loading control.
- Imaging studies in vivo showed that the lead compound P/mPEG/LOEt/AON/Herceptin®/TfR(M) having anti-mouse TfR and anti-human HER2/neu combined on the same PMLA molecule provided tumor-specific drug delivery through host endothelial system into subcutaneous human breast tumors. Twenty-four hours after injection of drugs, the compounds were observed to accumulate mostly in the tumor and draining organs, kidney and liver (
FIG. 4 ).FIG. 4 shows distribution of various compounds herein labeled withAlexa Fluor 680 in live mice with BT-474 breast tumors and in tumors in isolated organs. Referring to this figure, major organ analysis compared breast tumors and organs before injection (left panel) with those twenty-four hours after intravenous injection (right panels). Live mice herein were injected with each of the lead drug P/mPEG/LOEt/AON/Herceptin®/TfR(M) (bottom row), positive control P/mPEG/LOEt with Herceptin® (middle row) and control conjugate P/mPEG/LOEt/IgG (top row). Control mice (top row) had little BT-474 tumor accumulation, and most of the control polymer accumulated in drug clearing organs, liver and kidneys. Polymer P/mPEG/LOEt with Herceptin® alone had a moderate tumor accumulation (middle row). The highest accumulation in breast tumor cells was observed in mice treated with the lead compound P/mPEG/LOEt/AON/Herceptin®/TfR(M). Arrows mark tumor implantation site. - The nanobiopolymer with only Herceptin® accumulated to a lesser extent in tumors than the version with Herceptin®, AON and anti-TfR mAb (the lead drug). These data show the enhanced targeting of tumor vasculature with anti-TfR mAb compared to Herceptin®. Control nanobiopolymer with IgG showed only a small amount of tumor accumulation (
FIG. 4 ). - Confocal microscopy was performed on sections of brain tumors removed 24 hours after intravenous injection of Alexa Fluor 680-labeled drugs. A significantly stronger signal in tumor cells for P/mPEG/LOEt/Herceptin® was observed than for the control conjugate P/mPEG/LOEt/IgG, and the highest tumor accumulation was observed with the lead compound compared to other nanobiopolymers (
FIG. 5 ).FIG. 5 shows distribution of various compounds in BT-474 breast tumor cells. Referring toFIG. 5 , animals were administered compounds intravenously as shown inFIG. 4 , were sacrificed 24 hours after drug injection, tumors were excised, and sections were analyzed by confocal microscopy. Nuclei were counterstained with DAPI (grey area). Animals injected with control conjugate P/mPEG/LOEt/IgG with attachedAlexa Fluor 680 tracking dye (grey) showed little if any tumor cell accumulation (top row). Animals injected with P/mPEG/LOEt/Herceptin® displayed considerable accumulation in tumor cells, and the highest accumulation was observed in animals injected with the lead drug P/mPEG/LOEt/AON/Herceptin®/TfR(M), consistent with live animal imaging data shown inFIG. 4 . Scale bar=50 μm. - The therapeutic effect of compositions herein following intravenous administration in subcutaneous mouse models of human breast tumor xenografts was investigated. Cell line BT-474 was selected for in vivo analysis because of its high HER2/neu expression and tumorigenicity. Treatment of BT-474 tumor-bearing mice with Herceptin®, single-drug nanobiopolymers and the lead compound P/mPEG/LOEt/AON/Herceptin®/TfR(M) was performed and compared to negative control PBS. No decreases in body weight or morbidity, or death was observed, indicating that each treatment was well tolerated.
-
FIG. 6A-6C show mouse tumor inhibition, pathology, signaling and apoptosis marker expression. -
FIG. 6A shows data obtained and histopathological analysis of respective tumors from two representative animals for each group administered with different drugs. Variable amounts of dead tissue were observed to be present in all treated groups. Tumor size reduction data and pronounced disappearance of tumor cells were observed following treatment with the lead drug P/mPEG/LOEt/AON/Herceptin®/TfR(M), and mostly necrotic areas were observed to be present. -
FIG. 6B shows extent of tumor growth inhibition in mice. Referring to this figure, animals treated with each of unconjugated Herceptin® (squares) and with positive control P/mPEG/LOEt/Herceptin® (triangles), or with P/mPEG/LOEt/AON/TfR(H/M) (circles) showed significant inhibition compared with PBS control (diamonds) (P<0.03). P/mPEG/LOEt/AON/Herceptin®/TfR(M) treatment (large squares) was observed to produce the greatest inhibition of tumor growth compared to other treatment groups, resulting in 80 to 95% tumor regression observed during the follow-up period (P<0.02 vs. Herceptin® and other drugs; P<0.001 vs. PBS). Error bars denote standard error of the mean (SEM). -
FIG. 6C shows expression of select markers after treatment of HER2/neu positive tumors in vivo. Referring to this figure, Western blot analysis data showed a decrease in HER2/neu and p-Akt (but not total Akt) expression in each of Herceptin®-, P/mPEG/LOEt/Herceptin®-, or P/mPEG/LOEt/AON/TfR(H/M)-treated mice and not in control PBS-treated ones. P/mPEG/LOEt/AON/Herceptin®/TfR(M) further inhibited HER2/neu expression, with near disappearance of a p-Akt band. PARP cleavage as a measure of apoptosis was observed also to be substantially greater in P/mPEG/LOEt/AON/Herceptin®/TfR(M)-treated mice than that in other groups. GAPDH was an internal control to normalize gel loading. - Each the compounds inhibited tumor growth after six treatments (from days 21-38 post tumor implantation) and during follow-up to 56 days (
FIG. 6B ). Control unconjugated Herceptin® showed a similar tumor growth inhibition as a function of time as PMLA-bound Herceptin®. Both these drugs produced a somewhat stronger effect than HER2/neu AON bound to PMLA (FIG. 6B ). This effect was significant for all three of these single drug compounds (P<0.03 vs. PBS). The compound having both Herceptin® and HER2/neu AON combined on one nanobiopolymer showed the highest degree of inhibition of tumor growth, with a clear synergistic effect compared to single-drug treatments (FIG. 6B ; P<0.001 vs. PBS; P<0.03 vs. other treatment groups). The observed tumor regression following treatment with P/mPEG/LOEt/AON/Herceptin®/TfR(M) was 80% at the start of follow-up to 95% at the end of this period (day 56;FIG. 6B ). Moreover, tumors in the group treated with this lead compound started to regress within the two weeks after the initial treatment, and tumors in this group remained suppressed for an additional 20 days, at which time the treatment was terminated. - Hematoxylin and eosin staining revealed that the tumors treated with each of Herceptin®, P/mPEG/LOEt/Herceptin®, or P/mPEG/LOEt/AON/TfR(H/M) showed some areas of cell death compared with PBS (control) treated tumor. Significantly, treatment with the lead compound led to the appearance of massive morphologically necrotic areas with little unaffected tumor tissue remaining (
FIG. 6A ). - The mechanism of this antitumor effect was further investigated by western blot analysis using lysates of subcutaneous BT-474 breast tumors after different treatments. Tumor HER2/neu expression was partially inhibited by each of Herceptin®, AON, and single-drug versions of the PMLA nanobiopolymer [P/mPEG/LOEt/Herceptin® and P/mPEG/LOEt/AON/TfR(H/M)] in comparison with PBS controls (
FIG. 6C ). The lead compound P/mPEG/LOEt/AON/Herceptin®/TfR(M) produced the highest inhibition of HER2/neu tumor expression, consistent with the in vitro western blot analysis. Phosphorylated Akt was also reduced after drug treatments. Again, lead drug P/mPEG/LOEt/AON/Herceptin®/TfR(M) resulted in the most pronounced decrease, with little p-Akt signal observed remaining (FIG. 6C ). Total Akt remained unchanged upon treatments, as in the in vitro experiments. - Apoptosis assessed by PARP cleavage was induced to some extent by each of the compounds in HER2/neu high-expressing tumors compared to PBS treatment. Significantly, lead P/mPEG/LOEt/AON/Herceptin®/TfR(M) markedly increased PARP cleavage compared to the other treatments indicating that this nanobiopolymer induced apoptosis to a greater extent than the other used drugs (
FIG. 6C ). - Potential therapeutic effects of each of the compounds in Table 2 following intravenous administration using subcutaneous mouse models of human triple-negative breast cancer (TNBC) xenografts were investigated. Cell line MDA-MB-468 was selected for in vivo analysis because it lacked expression of estrogen and progesterone, and the HER2 protein in these cells is expressed normally. Treatment of TNBC tumor-bearing mice was performed with a single-drug nanobiopolymer containing AONs specific for α4 and β1 subunits of laminin-411; or with a single-drug nanobiopolymer containing AONs specific for an epidermal growth factor receptor (EGFR) protein; or with a two-drug nanobiopolymer conjugate combing AONs specific for EGFR protein with AONs specific for α4 and β1 subunits of laminin-411, in comparison with negative control PBS using the treatment protocol schedule shown in Table 2.
-
TABLE 2 Nanobiopolymer drugs and controls for treatment of triple-negative breast cancers. Group 1Group 2Group 3Group 4 (n = 6) (n = 6) (n = 6) (n = 6) PBS P/PEG(5%)/ P/PEG(5%)/ P/PEG(5%)/ LOEt(40%)/ LOEt(40%)/ LOEt(40%)/ EGFR(2.1%)/ α4β1(2.0%)/ EGFR, α4B1(2.0)/ HuTfR(0.12%)/ HuTfR(0.12%)/ HuTfR(0.12%)/ MsTfR(0.12) MsTfR(0.12) MsTfR(0.12) IV twice a week IV twice a week IV twice a week Amount 12.5 mg/kg (drug) 25 mg/kg (drug) 37.5 mg/kg (drug) of drug 2.5 mg/kg of each 2.5 mg/kg of each 2.5 mg/kg of each AON AON AON - It was observed that single-drug compound carrying AONs specific for EGFR and the two-drug compound carrying both AONs specific for EGFR and AONs specific a4β-subunits of laminin-411 inhibited tumor growth after six treatments that were administered during days 19-52 after implantation of tumor cells (
FIG. 7 ). -
FIG. 7 shows extent of tumor growth inhibition by compositions herein in subjects bearing triple-negative breast tumors. Referring to this figure, animals treated with each of P/mPEG/LOEt/AON-EGFR/TfR(H/M; squares), or with P/mPEG/LOEt/AON-EGFR/α4β1/TfR(H/M; triangles) showed significant inhibition compared with PBS negative control (diamonds). P=0.002 vs. α4β1; P=0.0001 vs. PBS. P/mPEG/LOEt/AON-α4β1/TfR(H/M) treatment inhibited tumor growth compared to control PBS treatment, and was observed to be less effective compared to data obtained with other nanobiopolymers, shown in the figure. (P=0.01 vs. PBS). Error bars denote SEM. - The two-drug compound was observed to have produced a stronger therapeutic effect than the single-drug compound carrying AONs specific for EGFR alone, and the data were statistically significant for each single drug compound and the two-drug compound (P=0.1 vs. PBS). Further, administration on a schedule of the eight treatments was observed to be more effective than six treatments for greater regression of tumors.
- Cancer stem cells represent a population of malignant cells that give rise to the tumor. There are a number of reports describing overexpression of stem cell markers, such as CD133, CD44, Notch1 or C-myc, in human tumors, which coincides with tumor drug resistance (Fan et al. 2004 Cancer Res. 2004; 64:7787-7793; Estrach et al. 2011 Circ Res 109:172-182; Zhang et al. 2008 J Exp Clin Cancer Res 27:85; Wang et al. 2008 PLoS One. 3:e3769; Herschkowitz et al. 2012 Proc Natl Acad Sci USA 109:2778-2783). At the same time, the inhibition of stem cells assessed by marker expression leads to diminishing drug resistance. Therefore, for therapy success it is important to eliminate cancer stem cells expressing markers such as CD133, c-Myc, Nestin, CD44 and Notch1. Using PMLA conjugates to inhibit laminin-411, a number of stem cell markers, such as the ones listed above, were suppressed.
FIGS. 8A-8B show distribution of two cancer stem cell markers, CD44 and c-Myc, in human BT-474 breast tumor cells grown in the brain of nude mice as a model of breast cancer metastasis to the brain. Referring to these figures, seven days after tumor inoculation, animals were administered the compounds intravenously as shown inFIG. 4 , and treated 6 times over three days with each PBS as a negative control (FIG. 8A ) or with P/mPEG/LOEt/AON/Herceptin®/TfR(M) (FIG. 8B ). It was observed that immunostaining for both CD44 and c-Myc in tumors treated with P/mPEG/LOEt/AON/Herceptin®/TfR(M) was dramatically reduced compared to tumors treated with control PBS. The expression of cancer stem cell markers was down-regulated after inhibition of synthesis of laminin-411 protein/stem cell marker. Thus, using a nanotechnology approach to treat cancer, such as brain, breast and metastasis from breast and lung cancers, with blockade of laminin-411 with specific cancer targeting, drug resistance may be overcome. Moreover, in HER-2/neu overexpressing primary and metastatic breast tumors, dramatic down-regulation of cancer stem cell markers after multiple intravenous administrations of nanobiopolymer blocking the expression of HER-2 was observed. - A set of nanobiopolymeric conjugates specifically tailored for HER2/neu-expressing breast cancer treatment was designed and tested in vitro and in vivo. The drug was based on HER2/neu inhibition by simultaneously blocking the synthesis of HER2/neu with specific AON and internalizing the receptor by binding to Herceptin®. The lead drug P/mPEG/LOEt/AON/Herceptin®/TfR(M) was thus designed to more efficiently inhibit HER2/neu expression and function. In vitro data showed that indeed, the lead drug, P/mPEG/LOEt/AON/Herceptin®/TfR(M), suppressed proliferation of HER2/neu-positive breast cancer cell lines significantly more than Herceptin®, P/mPEG/LOEt/Herceptin® or P/mPEG/LOEt/AON/TfR(H/M) (
FIG. 2 ). Surprisingly, the lead nanobiopolymer was effective for both HER2/neu high- and low-expressing HER2/neu breast cancer cell lines. With regard to HER2/neu low-expressing cells, the lead drug was also superior to previously used HER2/neu AON, which did not inhibit their growth in vitro (Roh H et al. 2000 Cancer Res. 60:560). Moreover, the lead drug carrying both Herceptin® and HER2/neu AON produced the highest inhibition of both HER2/neu expression and Akt phosphorylation, as well as enhanced tumor cell apoptosis, compared to other treatments. Herceptin® mediates anti-proliferative effects in HER2/neu-positive cells by facilitating either HER2/neu degradation or endocytic destruction of the HER2/neu receptor or downregulation of PI3K-Akt signaling (Clark A S et al. 2002. Mol Cancer Ther 1:707-17) by inhibiting HER2/neu receptor dimerization, and also by inducing immune activation (Hudis C A 2007 N Engl J Med 357:39). - Examples herein show that the in vitro growth-inhibiting effect of the lead drug carrying both Herceptin® and HER2/neu AON on tumor cells was enhanced by simultaneous AON-mediated inhibition of HER2/neu synthesis and by downregulation of surface HER2/neu through its binding to Herceptin®. The stronger inhibition of Akt phosphorylation in this case could result from a significant attenuation of HER2/neu signaling.
- The lead drug P/mPEG/LOEt/AON/Herceptin®/TfR(M) was observed in examples herein to readily accumulate in breast tumors and dramatically inhibit human breast cancer growth in nude mice (
FIG. 6 ). Importantly, the magnitude of anti-tumor effect of this lead drug indicates synergy between HER2/neu AON and Herceptin® in vivo (FIG. 6 ). In comparison, the in vitro effect showed about 50% growth inhibition in high HER2/neu-expressing cells, in contrast to nearly complete in vivo inhibition. Without being limited by any particular theory or mechanism of action, the synergistic anti-tumor action in vivo could result from a combination of several effects: enhanced reduction in HER2/neu-mediated tumor growth by AON together with Herceptin®, preferential tumor accumulation mediated by combined EPR effect (Maeda H et al. 2009 Eur J Pharm Biopharm 71:409) and active targeting with antibodies (Ljubimova J Y et al. 2008 Chem Biol Interact 171:195), and maintenance of effective drug concentration due to multiple treatments. Compared to the previously used combination of HER2/neu AON with doxorubicin that was similarly effective against xenogeneic BT-474 tumors (Roh H et al. 2000 Cancer Res. 60:560), the nanobiopolymeric conjugate herein is envisioned as free of side effects because of absence of toxic doxorubicin and of its efficient tumor targeting via Herceptin® and anti-TfR. - Examples herein confirmed that the lead nanobiopolymer P/mPEG/LOEt/AON/Herceptin®/TfR(M) efficiently blocked HER2/neu positive breast tumor growth through dual inhibition of HER2/neu and Akt phosphorylation, and as a result promoted enhanced tumor cell apoptosis. The combination of features of the nanobiopolymer resulted in highly specific drug accumulation in the tumor tissue and inside tumor cells.
- Nanobiopolymer compositions herein can be engineered to include any of at least one of functional modules: an antibody, drug, or AON, alone or in combination. By this characteristic, the nanobiopolymer conjugates herein are nanodrugs that are tailored to target simultaneously different molecular tumor markers typical of particular tumor cells and therefore are highly efficient against various tumors.
- For more efficient cancer treatment, nanobiopolymer conjugates of the present invention are covalently linked to one or more antineoplastic agents selected from the following group: a tyrosine kinase inhibitor lapatinib targeting EGFR and HER2 receptor proteins; pertuzumab, a monoclonal antibody (mAb) specific for HER2 receptor; ertumaxomab, a bispecific antibody specific for HER2 and FcγRI/III; trastuzumab-DM1, mAb-toxin specific for HER2; CP-751,871, mAb specific for IFG-1R; foretinib (GSK136089), a tyrosine kinase inhibitor targeting MET and VEGFRs; BEZ235 targeting proteins of mTOR/PI3K pathway; perifistone targeting Akt pathway; temsirolimus targeting mTOR; everolimus targeting mTOR; HER2 peptide-based vaccines; defucosylated trastuzumab, mAb specific for HER2; dasatinib, a small-molecule tyrosine kinase inhibitor targeting the cytosolic c-SRC and ABL1 kinases, as well as the RTKs c-KIT and platelet-derived growth factor receptors, alpha and beta; and gefitinib and erlotinib, inhibitors of EGFR. It is envisioned that these nanodrugs and nanodrug combinations are effective for treatment of cancer cells in vivo in subjects including human patients.
- The nanobiopolymer-based therapy used for treatment of HER2/neu expressing cancer cells and/or triple-negative cancer cells should make a significant clinical impact.
- The references cited throughout this application are incorporated for all purposes apparent herein and in the references themselves as if each reference was fully set forth. For the sake of presentation, specific ones of these references are cited at particular locations herein. A citation of a reference at a particular location indicates a manner(s) in which the teachings of the reference are incorporated. However, a citation of a reference at a particular location does not limit the manner in which all of the teachings of the cited reference are incorporated for all purposes.
- It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but is intended to cover all modifications which are within the spirit and scope of the invention as defined by the appended claims; the above description; and/or shown in the attached drawings.
Claims (20)
1. A composition comprising:
a polymalic acid-based scaffold;
a tyrosine kinase inhibitor covalently attached to the polymalic acid-based scaffold; and
a laminin-411 inhibitor covalently attached to the polymalic acid-based scaffold.
2. The composition of claim 1 , wherein the polymalic acid-based scaffold comprises poly(β-L-malic acid).
3. The composition of claim 1 , further comprising an endosomal escape unit.
4. The composition of claim 1 , further comprising an anti-TfR antibody.
5. The composition of claim 1 , further comprising polyethylene glycol.
6. The composition of claim 1 , wherein the tyrosine kinase inhibitor and the laminin-411 inhibitor are covalently attached to the polymalic acid-based scaffold via a glutathione-cleavable bond or via a disulfide bond.
7. The composition of claim 1 , wherein the laminin-411 inhibitor targets an α4 or β1 subunit of laminin-411.
8. The composition of claim 1 , wherein the laminin-411 inhibitor targets an α4 subunit of laminin-411, and wherein the composition further comprises a second laminin-411 inhibitor that targets a β1 subunit of laminin-411 and is covalently attached to the polymalic acid-based scaffold.
9. The composition of claim 1 , wherein the tyrosine kinase inhibitor targets HER2 or EGFR.
10. The composition of claim 9 , wherein the tyrosine kinase inhibitor comprises an antibody.
11. The composition of claim 1 , wherein the tyrosine kinase inhibitor comprises gefitinib.
12. The composition of claim 9 , wherein the tyrosine kinase inhibitor or the laminin-411 inhibitor comprises an oligonucleotide.
13. The composition of claim 12 , wherein the oligonucleotide comprises a morpholino antisense oligonucleotide or an siRNA.
14. The composition of claim 1 , wherein the tyrosine kinase inhibitor comprises a nucleotide sequence comprising 5′-AGGGAGCCGCAGCTTCATGTCTGTG-3′ (SEQ ID NO: 1), 5′-CATGGTGCTCACTGCGGCTCCGGC-3′ (SEQ ID NO: 2), 5′-TCGCTCCGGCTCTCCCGATCAATAC-3′ (SEQ ID NO: 3), 5′-CCUAUAAUGCUACGAAUAUtt-3′ (SEQ ID NO: 6), 5′-AUAUUCGUAGCAUUUAUGGag-3′ (SEQ ID NO: 7), 5′-GUUGGAUGAUUGACUCUGAtt-3′ (SEQ ID NO: 8), or 5′-UCAGAGUCAAUCAUCCAACat-3′ (SEQ ID NO: 9).
15. The composition of claim 1 , wherein the laminin-411 inhibitor comprises a nucleotide sequence comprising 5′-AGCTCAAAGCCATTTCTCCGCTGAC-3′ (SEQ ID NO:4) or 5′-CTAGCAACTGGAGAAGCCCCATGCC-3′ (SEQ ID NO:5).
16. A pharmaceutical composition comprising a therapeutically effective amount of the polymalic acid-based scaffold of claim 1 and a pharmaceutically acceptable carrier.
17. The pharmaceutical composition of claim 16 , formulated for intravenous administration.
18. A method of treating a cancer in a subject, by inhibiting the synthesis or activity of laminin-411 and HER2 or EGFR, the method comprising administering to a subject in need thereof the pharmaceutical composition of claim 16 .
19. The method of claim 18 , wherein the cancer is breast cancer.
20. The method of claim 18 , wherein the administration inhibits a cancer stem cell marker comprising CD133 protein, c-myc protein, CD44 protein, Notch1 protein, or nestin protein.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/773,769 US20200155593A1 (en) | 2010-12-30 | 2020-01-27 | Polymalic acid-based nanobiopolymer compositions |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2010/062515 WO2012091718A1 (en) | 2010-12-30 | 2010-12-30 | Polymalic acid-based nanobiopolymer compositions and methods for treating cancer |
US13/930,533 US9623041B2 (en) | 2010-12-30 | 2013-06-28 | Polymalic acid-based nanobiopolymer compositions |
US15/447,439 US10583151B2 (en) | 2010-12-30 | 2017-03-02 | Polymalic acid-based nanobiopolymer compositions |
US16/773,769 US20200155593A1 (en) | 2010-12-30 | 2020-01-27 | Polymalic acid-based nanobiopolymer compositions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/447,439 Continuation US10583151B2 (en) | 2010-12-30 | 2017-03-02 | Polymalic acid-based nanobiopolymer compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200155593A1 true US20200155593A1 (en) | 2020-05-21 |
Family
ID=51061113
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/930,533 Active 2031-04-23 US9623041B2 (en) | 2010-12-30 | 2013-06-28 | Polymalic acid-based nanobiopolymer compositions |
US15/447,439 Expired - Fee Related US10583151B2 (en) | 2010-12-30 | 2017-03-02 | Polymalic acid-based nanobiopolymer compositions |
US16/773,769 Abandoned US20200155593A1 (en) | 2010-12-30 | 2020-01-27 | Polymalic acid-based nanobiopolymer compositions |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/930,533 Active 2031-04-23 US9623041B2 (en) | 2010-12-30 | 2013-06-28 | Polymalic acid-based nanobiopolymer compositions |
US15/447,439 Expired - Fee Related US10583151B2 (en) | 2010-12-30 | 2017-03-02 | Polymalic acid-based nanobiopolymer compositions |
Country Status (1)
Country | Link |
---|---|
US (3) | US9623041B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8785371B2 (en) | 2009-12-10 | 2014-07-22 | Cedars-Sinai Medical Center | Drug delivery of temozolomide for systemic based treatment of cancer |
US9623041B2 (en) | 2010-12-30 | 2017-04-18 | Cedars-Sinai Medical Center | Polymalic acid-based nanobiopolymer compositions |
CN107102141A (en) * | 2016-02-23 | 2017-08-29 | 中国科学院生物物理研究所 | Molecular marked compound CD71 and Endometrial Carcinomas diagnosis, the application by stages and in prognosis |
EP3423096A4 (en) * | 2016-03-04 | 2019-10-30 | Cedars-Sinai Medical Center | NANOIMMUNOCONJUGUES BASED ON POLYMALIC ACID AND USES THEREOF |
EP3691670A4 (en) * | 2017-10-02 | 2021-08-04 | Cedars-Sinai Medical Center | PROCEDURES AND COMPOSITIONS FOR EFFICIENT DELIVERY BY MULTIPLE BIOS LOCKERS |
CN107814922A (en) * | 2017-11-15 | 2018-03-20 | 成都测迪森生物科技有限公司 | A kind of medical multi-monomer grafting is modified the preparation method of polymalic acid |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7056532B1 (en) | 1997-06-13 | 2006-06-06 | Univ. Nebraska Bd. of Regents | Compositions for delivery of biological agents and methods for the preparation thereof |
EP1019429A4 (en) * | 1997-08-20 | 2001-08-08 | Somagenics Inc | Antisense and antigene therapeutics with improved binding properties and methods for their use |
US6472512B1 (en) | 1998-07-21 | 2002-10-29 | Human Genome Sciences, Inc. | Keratinocyte derived interferon |
US20020076736A1 (en) | 2000-05-12 | 2002-06-20 | Findell Paul R. | Methods of affecting laminin 5 processing |
MXPA03004836A (en) | 2000-12-01 | 2005-09-08 | Max Planck Gesellschaft | SMALL RNA MOLECULES THAT MEDIATE RNA INTERFERENCE. |
US20020155440A1 (en) | 2000-12-19 | 2002-10-24 | Ljubimova Julia Y. | Using overexpression of laminin alpha 4 subunit as a diagnostic and prognostic indicator of malignant tumors |
US7332585B2 (en) | 2002-04-05 | 2008-02-19 | The Regents Of The California University | Bispecific single chain Fv antibody molecules and methods of use thereof |
JP4567683B2 (en) | 2003-09-12 | 2010-10-20 | セダーズ−シナイ メディカル センター | Antisense inhibition of laminin-8 expression to inhibit human glioma |
US8911717B2 (en) | 2003-12-05 | 2014-12-16 | Cedars-Sinai Medical Center | Polymalic acid-based multifunctional drug delivery system |
WO2005055980A2 (en) | 2003-12-05 | 2005-06-23 | Arrogene, Inc. | Polymalic acid-based multifunctional drug delivery system |
EP1706407A2 (en) | 2003-12-30 | 2006-10-04 | Chemagis Ltd. | Novel crystalline forms of temozolomide |
CN101014365B (en) | 2004-07-16 | 2011-04-13 | 辉瑞产品公司 | Combination treatment for non-hematologic malignancies using an anti-igf-1r antibody |
CN1615855A (en) | 2004-09-29 | 2005-05-18 | 赵世光 | Temozolomide-polymer local slow release chemotherapy medicine for treating malignant brain tumor |
US8557290B2 (en) | 2008-03-14 | 2013-10-15 | Northwestern University | Multifunction nanoconjugates for imaging applications and targeted treatment |
EP2271368B1 (en) | 2008-04-11 | 2018-12-05 | Cedars-Sinai Medical Center | Poly(beta malic acid) with pendant leu-leu-leu tripeptide for effective cytoplasmic drug delivery |
US8785371B2 (en) | 2009-12-10 | 2014-07-22 | Cedars-Sinai Medical Center | Drug delivery of temozolomide for systemic based treatment of cancer |
US9623041B2 (en) | 2010-12-30 | 2017-04-18 | Cedars-Sinai Medical Center | Polymalic acid-based nanobiopolymer compositions |
-
2013
- 2013-06-28 US US13/930,533 patent/US9623041B2/en active Active
-
2017
- 2017-03-02 US US15/447,439 patent/US10583151B2/en not_active Expired - Fee Related
-
2020
- 2020-01-27 US US16/773,769 patent/US20200155593A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20140193398A1 (en) | 2014-07-10 |
US20170340659A1 (en) | 2017-11-30 |
US10583151B2 (en) | 2020-03-10 |
US9623041B2 (en) | 2017-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10583151B2 (en) | Polymalic acid-based nanobiopolymer compositions | |
JP7458981B2 (en) | Combination of antibody-drug conjugate and tubulin inhibitor | |
JP6880006B2 (en) | A therapeutic combination that includes an anti-FOLR1 immune complex | |
Inoue et al. | Polymalic acid–based nanobiopolymer provides efficient systemic breast cancer treatment by inhibiting both HER2/neu receptor synthesis and activity | |
Socinski et al. | Phase 1/2 study of the CD56-targeting antibody-drug conjugate lorvotuzumab mertansine (IMGN901) in combination with carboplatin/etoposide in small-cell lung cancer patients with extensive-stage disease | |
JP6224268B2 (en) | Duocarmycin ADC for use in the treatment of endometrial cancer | |
Mair et al. | Understanding the activity of antibody–drug conjugates in primary and secondary brain tumours | |
JP7473474B2 (en) | Treatment of metastatic brain tumors by administration of antibody-drug conjugates | |
Ding et al. | Polymalic acid nanobioconjugate for simultaneous immunostimulation and inhibition of tumor growth in HER2/neu-positive breast cancer | |
Bogani et al. | Tisotumab vedotin in recurrent or metastatic cervical cancer | |
US11213540B2 (en) | Compositions and methods for inducing apoptosis | |
WO2012091718A1 (en) | Polymalic acid-based nanobiopolymer compositions and methods for treating cancer | |
US12220604B2 (en) | Treatment of metastatic brain tumor by administration of an antibody-drug conjugate | |
TW202440169A (en) | Combination of antibody-drug conjugates and dnmt inhibitors | |
WO2023218378A1 (en) | Combination of an antibody specific for a tumor antigen and a cd47 inhibitor | |
EA046932B1 (en) | TREATMENT OF METASTATIC BRAIN TUMOR BY ADMINISTRATION OF ANTIBODY-DRUG CONJUGATE | |
EP3609907A1 (en) | A method of sensitizing cancer cells to anti-cancer treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: CEDARS-SINAI MEDICAL CENTER, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:INOUE, SATOSHI;DING, HUI;HOLLER, EGGEHARD;AND OTHERS;SIGNING DATES FROM 20130813 TO 20130823;REEL/FRAME:056249/0577 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |