US20200080767A1 - Polyurethane foam and process for producing same - Google Patents
Polyurethane foam and process for producing same Download PDFInfo
- Publication number
- US20200080767A1 US20200080767A1 US16/490,745 US201816490745A US2020080767A1 US 20200080767 A1 US20200080767 A1 US 20200080767A1 US 201816490745 A US201816490745 A US 201816490745A US 2020080767 A1 US2020080767 A1 US 2020080767A1
- Authority
- US
- United States
- Prior art keywords
- component
- foam
- polyol
- polyols
- isocyanate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 229920005830 Polyurethane Foam Polymers 0.000 title abstract description 16
- 239000011496 polyurethane foam Substances 0.000 title abstract description 16
- 239000006260 foam Substances 0.000 claims abstract description 72
- 239000004814 polyurethane Substances 0.000 claims abstract description 41
- 229920005862 polyol Polymers 0.000 claims description 127
- 150000003077 polyols Chemical class 0.000 claims description 113
- 239000000203 mixture Substances 0.000 claims description 71
- 239000004604 Blowing Agent Substances 0.000 claims description 59
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 56
- 229920000570 polyether Polymers 0.000 claims description 45
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 42
- -1 ester polyols Chemical class 0.000 claims description 34
- 150000001875 compounds Chemical class 0.000 claims description 31
- 239000011541 reaction mixture Substances 0.000 claims description 31
- 235000019253 formic acid Nutrition 0.000 claims description 28
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 27
- 239000003054 catalyst Substances 0.000 claims description 26
- 238000009472 formulation Methods 0.000 claims description 24
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 20
- 239000000126 substance Substances 0.000 claims description 18
- 229920000515 polycarbonate Polymers 0.000 claims description 17
- 239000004417 polycarbonate Substances 0.000 claims description 17
- 239000005056 polyisocyanate Substances 0.000 claims description 16
- 229920001228 polyisocyanate Polymers 0.000 claims description 16
- 239000000654 additive Substances 0.000 claims description 10
- 229920005906 polyester polyol Polymers 0.000 claims description 10
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 9
- 230000000996 additive effect Effects 0.000 claims description 8
- 238000005187 foaming Methods 0.000 claims description 8
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 abstract description 10
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical group OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 abstract description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 42
- 210000004027 cell Anatomy 0.000 description 42
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 33
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 32
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 26
- 229910002092 carbon dioxide Inorganic materials 0.000 description 25
- 239000012948 isocyanate Substances 0.000 description 23
- 150000002513 isocyanates Chemical class 0.000 description 23
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 21
- 238000004519 manufacturing process Methods 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 13
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 12
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 12
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 11
- 235000014113 dietary fatty acids Nutrition 0.000 description 11
- 229930195729 fatty acid Natural products 0.000 description 11
- 239000000194 fatty acid Substances 0.000 description 11
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 10
- 150000002009 diols Chemical class 0.000 description 10
- 229920002635 polyurethane Polymers 0.000 description 10
- 239000007858 starting material Substances 0.000 description 10
- 150000004665 fatty acids Chemical class 0.000 description 9
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 8
- 239000001569 carbon dioxide Substances 0.000 description 8
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 8
- 238000009413 insulation Methods 0.000 description 8
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 8
- 239000003381 stabilizer Substances 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 150000001298 alcohols Chemical class 0.000 description 7
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 6
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 6
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 6
- 150000007513 acids Chemical class 0.000 description 6
- 150000002148 esters Chemical class 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 235000019198 oils Nutrition 0.000 description 6
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 6
- 235000011056 potassium acetate Nutrition 0.000 description 6
- 235000013772 propylene glycol Nutrition 0.000 description 6
- IIVBUJGYWCCLNG-UHFFFAOYSA-N 3-(dimethylamino)propylurea Chemical compound CN(C)CCCNC(N)=O IIVBUJGYWCCLNG-UHFFFAOYSA-N 0.000 description 5
- 125000002947 alkylene group Chemical group 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 5
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 150000008064 anhydrides Chemical class 0.000 description 4
- 150000001991 dicarboxylic acids Chemical class 0.000 description 4
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 4
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 3
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 3
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 3
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 3
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 3
- 229960003656 ricinoleic acid Drugs 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 2
- YWWVWXASSLXJHU-AATRIKPKSA-N (9E)-tetradecenoic acid Chemical compound CCCC\C=C\CCCCCCCC(O)=O YWWVWXASSLXJHU-AATRIKPKSA-N 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- DTOSIQBPPRVQHS-PDBXOOCHSA-N (Z,Z,Z)-Octadeca-9,12,15-trienoic acid Natural products CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 2
- RTTZISZSHSCFRH-UHFFFAOYSA-N 1,3-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC(CN=C=O)=C1 RTTZISZSHSCFRH-UHFFFAOYSA-N 0.000 description 2
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 2
- GXVUZYLYWKWJIM-UHFFFAOYSA-N 2-(2-aminoethoxy)ethanamine Chemical compound NCCOCCN GXVUZYLYWKWJIM-UHFFFAOYSA-N 0.000 description 2
- GHPVDCPCKSNJDR-UHFFFAOYSA-N 2-hydroxydecanoic acid Chemical compound CCCCCCCCC(O)C(O)=O GHPVDCPCKSNJDR-UHFFFAOYSA-N 0.000 description 2
- WXUAQHNMJWJLTG-UHFFFAOYSA-N 2-methylbutanedioic acid Chemical compound OC(=O)C(C)CC(O)=O WXUAQHNMJWJLTG-UHFFFAOYSA-N 0.000 description 2
- QWGRWMMWNDWRQN-UHFFFAOYSA-N 2-methylpropane-1,3-diol Chemical compound OCC(C)CO QWGRWMMWNDWRQN-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- OWCRARVHWCCRAG-UHFFFAOYSA-N 9-methoxycanthin-6-one Chemical compound C1=CC(=O)N2C3=CC(OC)=CC=C3C3=CC=NC1=C32 OWCRARVHWCCRAG-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- MBMBGCFOFBJSGT-KUBAVDMBSA-N all-cis-docosa-4,7,10,13,16,19-hexaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O MBMBGCFOFBJSGT-KUBAVDMBSA-N 0.000 description 2
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 239000002666 chemical blowing agent Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002191 fatty alcohols Chemical class 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 150000002596 lactones Chemical class 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 235000021313 oleic acid Nutrition 0.000 description 2
- SECPZKHBENQXJG-FPLPWBNLSA-N palmitoleic acid Chemical compound CCCCCC\C=C/CCCCCCCC(O)=O SECPZKHBENQXJG-FPLPWBNLSA-N 0.000 description 2
- MSSNHSVIGIHOJA-UHFFFAOYSA-N pentafluoropropane Chemical compound FC(F)CC(F)(F)F MSSNHSVIGIHOJA-UHFFFAOYSA-N 0.000 description 2
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 229960004793 sucrose Drugs 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- GWHCXVQVJPWHRF-KTKRTIGZSA-N (15Z)-tetracosenoic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCCCC(O)=O GWHCXVQVJPWHRF-KTKRTIGZSA-N 0.000 description 1
- NIDNOXCRFUCAKQ-UMRXKNAASA-N (1s,2r,3s,4r)-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1[C@H]2C=C[C@@H]1[C@H](C(=O)O)[C@@H]2C(O)=O NIDNOXCRFUCAKQ-UMRXKNAASA-N 0.000 description 1
- SZCWBURCISJFEZ-UHFFFAOYSA-N (3-hydroxy-2,2-dimethylpropyl) 3-hydroxy-2,2-dimethylpropanoate Chemical compound OCC(C)(C)COC(=O)C(C)(C)CO SZCWBURCISJFEZ-UHFFFAOYSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- SAPOZTRFWJZUFT-OWOJBTEDSA-N (e)-1,1,1,2,3,4,5,5,5-nonafluoro-4-(trifluoromethyl)pent-2-ene Chemical compound FC(F)(F)C(/F)=C(\F)C(F)(C(F)(F)F)C(F)(F)F SAPOZTRFWJZUFT-OWOJBTEDSA-N 0.000 description 1
- LDTMPQQAWUMPKS-OWOJBTEDSA-N (e)-1-chloro-3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)\C=C\Cl LDTMPQQAWUMPKS-OWOJBTEDSA-N 0.000 description 1
- NLOLSXYRJFEOTA-UPHRSURJSA-N (z)-1,1,1,4,4,4-hexafluorobut-2-ene Chemical compound FC(F)(F)\C=C/C(F)(F)F NLOLSXYRJFEOTA-UPHRSURJSA-N 0.000 description 1
- ORTVZLZNOYNASJ-UPHRSURJSA-N (z)-but-2-ene-1,4-diol Chemical compound OC\C=C/CO ORTVZLZNOYNASJ-UPHRSURJSA-N 0.000 description 1
- ZBBLRPRYYSJUCZ-GRHBHMESSA-L (z)-but-2-enedioate;dibutyltin(2+) Chemical compound [O-]C(=O)\C=C/C([O-])=O.CCCC[Sn+2]CCCC ZBBLRPRYYSJUCZ-GRHBHMESSA-L 0.000 description 1
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 1
- WZLFPVPRZGTCKP-UHFFFAOYSA-N 1,1,1,3,3-pentafluorobutane Chemical compound CC(F)(F)CC(F)(F)F WZLFPVPRZGTCKP-UHFFFAOYSA-N 0.000 description 1
- AZYRZNIYJDKRHO-UHFFFAOYSA-N 1,3-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=CC(C(C)(C)N=C=O)=C1 AZYRZNIYJDKRHO-UHFFFAOYSA-N 0.000 description 1
- JGVZJRHAZOBPMW-UHFFFAOYSA-N 1,3-bis(dimethylamino)propan-2-ol Chemical compound CN(C)CC(O)CN(C)C JGVZJRHAZOBPMW-UHFFFAOYSA-N 0.000 description 1
- FCQPNTOQFPJCMF-UHFFFAOYSA-N 1,3-bis[3-(dimethylamino)propyl]urea Chemical compound CN(C)CCCNC(=O)NCCCN(C)C FCQPNTOQFPJCMF-UHFFFAOYSA-N 0.000 description 1
- PCHXZXKMYCGVFA-UHFFFAOYSA-N 1,3-diazetidine-2,4-dione Chemical compound O=C1NC(=O)N1 PCHXZXKMYCGVFA-UHFFFAOYSA-N 0.000 description 1
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 1
- AGJCSCSSMFRMFQ-UHFFFAOYSA-N 1,4-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=C(C(C)(C)N=C=O)C=C1 AGJCSCSSMFRMFQ-UHFFFAOYSA-N 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- CDMDQYCEEKCBGR-UHFFFAOYSA-N 1,4-diisocyanatocyclohexane Chemical compound O=C=NC1CCC(N=C=O)CC1 CDMDQYCEEKCBGR-UHFFFAOYSA-N 0.000 description 1
- SBJCUZQNHOLYMD-UHFFFAOYSA-N 1,5-Naphthalene diisocyanate Chemical compound C1=CC=C2C(N=C=O)=CC=CC2=C1N=C=O SBJCUZQNHOLYMD-UHFFFAOYSA-N 0.000 description 1
- DFPJRUKWEPYFJT-UHFFFAOYSA-N 1,5-diisocyanatopentane Chemical compound O=C=NCCCCCN=C=O DFPJRUKWEPYFJT-UHFFFAOYSA-N 0.000 description 1
- QGLRLXLDMZCFBP-UHFFFAOYSA-N 1,6-diisocyanato-2,4,4-trimethylhexane Chemical compound O=C=NCC(C)CC(C)(C)CCN=C=O QGLRLXLDMZCFBP-UHFFFAOYSA-N 0.000 description 1
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 description 1
- QFGCFKJIPBRJGM-UHFFFAOYSA-N 12-[(2-methylpropan-2-yl)oxy]-12-oxododecanoic acid Chemical compound CC(C)(C)OC(=O)CCCCCCCCCCC(O)=O QFGCFKJIPBRJGM-UHFFFAOYSA-N 0.000 description 1
- ULQISTXYYBZJSJ-UHFFFAOYSA-N 12-hydroxyoctadecanoic acid Chemical compound CCCCCCC(O)CCCCCCCCCCC(O)=O ULQISTXYYBZJSJ-UHFFFAOYSA-N 0.000 description 1
- JCTXKRPTIMZBJT-UHFFFAOYSA-N 2,2,4-trimethylpentane-1,3-diol Chemical compound CC(C)C(O)C(C)(C)CO JCTXKRPTIMZBJT-UHFFFAOYSA-N 0.000 description 1
- GOHPTLYPQCTZSE-UHFFFAOYSA-N 2,2-dimethylsuccinic acid Chemical compound OC(=O)C(C)(C)CC(O)=O GOHPTLYPQCTZSE-UHFFFAOYSA-N 0.000 description 1
- VOZKAJLKRJDJLL-UHFFFAOYSA-N 2,4-diaminotoluene Chemical compound CC1=CC=C(N)C=C1N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- KIHBGTRZFAVZRV-UHFFFAOYSA-N 2-Hydroxyoctadecanoic acid Natural products CCCCCCCCCCCCCCCCC(O)C(O)=O KIHBGTRZFAVZRV-UHFFFAOYSA-N 0.000 description 1
- JZRJVXYQKBRUMY-UHFFFAOYSA-N 2-[bis[3-(dimethylamino)propyl]amino]ethanol Chemical compound CN(C)CCCN(CCO)CCCN(C)C JZRJVXYQKBRUMY-UHFFFAOYSA-N 0.000 description 1
- DSKYSDCYIODJPC-UHFFFAOYSA-N 2-butyl-2-ethylpropane-1,3-diol Chemical compound CCCCC(CC)(CO)CO DSKYSDCYIODJPC-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- NYHNVHGFPZAZGA-UHFFFAOYSA-N 2-hydroxyhexanoic acid Chemical compound CCCCC(O)C(O)=O NYHNVHGFPZAZGA-UHFFFAOYSA-N 0.000 description 1
- RNWKAIFTTVGWLK-UHFFFAOYSA-N 3,3-diethylpentanedioic acid Chemical compound OC(=O)CC(CC)(CC)CC(O)=O RNWKAIFTTVGWLK-UHFFFAOYSA-N 0.000 description 1
- WZHHYIOUKQNLQM-UHFFFAOYSA-N 3,4,5,6-tetrachlorophthalic acid Chemical compound OC(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C(O)=O WZHHYIOUKQNLQM-UHFFFAOYSA-N 0.000 description 1
- KRPRVQWGKLEFKN-UHFFFAOYSA-N 3-(3-aminopropoxy)propan-1-amine Chemical compound NCCCOCCCN KRPRVQWGKLEFKN-UHFFFAOYSA-N 0.000 description 1
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- PIFPCDRPHCQLSJ-WYIJOVFWSA-N 4,8,12,15,19-Docosapentaenoic acid Chemical compound CC\C=C\CC\C=C\C\C=C\CC\C=C\CC\C=C\CCC(O)=O PIFPCDRPHCQLSJ-WYIJOVFWSA-N 0.000 description 1
- SJZRECIVHVDYJC-UHFFFAOYSA-N 4-hydroxybutyric acid Chemical compound OCCCC(O)=O SJZRECIVHVDYJC-UHFFFAOYSA-N 0.000 description 1
- PJMDLNIAGSYXLA-UHFFFAOYSA-N 6-iminooxadiazine-4,5-dione Chemical compound N=C1ON=NC(=O)C1=O PJMDLNIAGSYXLA-UHFFFAOYSA-N 0.000 description 1
- YWWVWXASSLXJHU-UHFFFAOYSA-N 9E-tetradecenoic acid Natural products CCCCC=CCCCCCCCC(O)=O YWWVWXASSLXJHU-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- 235000000832 Ayote Nutrition 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- ZHESOIPTRUDICE-UHFFFAOYSA-N CCCCCCCCC.N=C=O.N=C=O.N=C=O Chemical compound CCCCCCCCC.N=C=O.N=C=O.N=C=O ZHESOIPTRUDICE-UHFFFAOYSA-N 0.000 description 1
- XOMVITRPGORDSN-UHFFFAOYSA-N CN(C)CCOCCN(C(O)=O)CCOCCN(C)C Chemical compound CN(C)CCOCCN(C(O)=O)CCOCCN(C)C XOMVITRPGORDSN-UHFFFAOYSA-N 0.000 description 1
- 239000004970 Chain extender Substances 0.000 description 1
- PIFPCDRPHCQLSJ-UHFFFAOYSA-N Clupanodonic acid Natural products CCC=CCCC=CCC=CCCC=CCCC=CCCC(O)=O PIFPCDRPHCQLSJ-UHFFFAOYSA-N 0.000 description 1
- 240000004244 Cucurbita moschata Species 0.000 description 1
- 235000009854 Cucurbita moschata Nutrition 0.000 description 1
- 235000009804 Cucurbita pepo subsp pepo Nutrition 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- OPGOLNDOMSBSCW-CLNHMMGSSA-N Fursultiamine hydrochloride Chemical compound Cl.C1CCOC1CSSC(\CCO)=C(/C)N(C=O)CC1=CN=C(C)N=C1N OPGOLNDOMSBSCW-CLNHMMGSSA-N 0.000 description 1
- 235000019487 Hazelnut oil Nutrition 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 240000000950 Hippophae rhamnoides Species 0.000 description 1
- 235000003145 Hippophae rhamnoides Nutrition 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 235000018330 Macadamia integrifolia Nutrition 0.000 description 1
- 240000000912 Macadamia tetraphylla Species 0.000 description 1
- 235000003800 Macadamia tetraphylla Nutrition 0.000 description 1
- XJXROGWVRIJYMO-SJDLZYGOSA-N Nervonic acid Natural products O=C(O)[C@@H](/C=C/CCCCCCCC)CCCCCCCCCCCC XJXROGWVRIJYMO-SJDLZYGOSA-N 0.000 description 1
- 244000090896 Nigella sativa Species 0.000 description 1
- 235000016698 Nigella sativa Nutrition 0.000 description 1
- 235000021319 Palmitoleic acid Nutrition 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 235000019497 Pistachio oil Nutrition 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 235000000497 Primula Nutrition 0.000 description 1
- 241000245063 Primula Species 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 235000005066 Rosa arkansana Nutrition 0.000 description 1
- 241000109365 Rosa arkansana Species 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- HXWJFEZDFPRLBG-UHFFFAOYSA-N Timnodonic acid Natural products CCCC=CC=CCC=CCC=CCC=CCCCC(O)=O HXWJFEZDFPRLBG-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- UWHZIFQPPBDJPM-FPLPWBNLSA-M Vaccenic acid Natural products CCCCCC\C=C/CCCCCCCCCC([O-])=O UWHZIFQPPBDJPM-FPLPWBNLSA-M 0.000 description 1
- 235000021322 Vaccenic acid Nutrition 0.000 description 1
- 235000019498 Walnut oil Nutrition 0.000 description 1
- DQJJXEZXOYPSNJ-UHFFFAOYSA-N [2,3-bis(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=CC(CO)=C1CO DQJJXEZXOYPSNJ-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- CQQXCSFSYHAZOO-UHFFFAOYSA-L [acetyloxy(dioctyl)stannyl] acetate Chemical compound CCCCCCCC[Sn](OC(C)=O)(OC(C)=O)CCCCCCCC CQQXCSFSYHAZOO-UHFFFAOYSA-L 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- LNWBFIVSTXCJJG-UHFFFAOYSA-N [diisocyanato(phenyl)methyl]benzene Chemical compound C=1C=CC=CC=1C(N=C=O)(N=C=O)C1=CC=CC=C1 LNWBFIVSTXCJJG-UHFFFAOYSA-N 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- JAZBEHYOTPTENJ-JLNKQSITSA-N all-cis-5,8,11,14,17-icosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O JAZBEHYOTPTENJ-JLNKQSITSA-N 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000000655 anti-hydrolysis Effects 0.000 description 1
- 229940053200 antiepileptics fatty acid derivative Drugs 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000021302 avocado oil Nutrition 0.000 description 1
- 239000008163 avocado oil Substances 0.000 description 1
- 239000000022 bacteriostatic agent Substances 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 235000021324 borage oil Nutrition 0.000 description 1
- 239000010474 borage seed oil Substances 0.000 description 1
- DLDJFQGPPSQZKI-UHFFFAOYSA-N but-2-yne-1,4-diol Chemical compound OCC#CCO DLDJFQGPPSQZKI-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 description 1
- GWHCXVQVJPWHRF-UHFFFAOYSA-N cis-tetracosenoic acid Natural products CCCCCCCCC=CCCCCCCCCCCCCCC(O)=O GWHCXVQVJPWHRF-UHFFFAOYSA-N 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- IFDVQVHZEKPUSC-UHFFFAOYSA-N cyclohex-3-ene-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCC=CC1C(O)=O IFDVQVHZEKPUSC-UHFFFAOYSA-N 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- JQZRVMZHTADUSY-UHFFFAOYSA-L di(octanoyloxy)tin Chemical compound [Sn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O JQZRVMZHTADUSY-UHFFFAOYSA-L 0.000 description 1
- PNOXNTGLSKTMQO-UHFFFAOYSA-L diacetyloxytin Chemical compound CC(=O)O[Sn]OC(C)=O PNOXNTGLSKTMQO-UHFFFAOYSA-L 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- NKDDWNXOKDWJAK-UHFFFAOYSA-N dimethoxymethane Chemical compound COCOC NKDDWNXOKDWJAK-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 235000020669 docosahexaenoic acid Nutrition 0.000 description 1
- 229940090949 docosahexaenoic acid Drugs 0.000 description 1
- PYBNTRWJKQJDRE-UHFFFAOYSA-L dodecanoate;tin(2+) Chemical compound [Sn+2].CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O PYBNTRWJKQJDRE-UHFFFAOYSA-L 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 235000020673 eicosapentaenoic acid Nutrition 0.000 description 1
- 229960005135 eicosapentaenoic acid Drugs 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 238000007046 ethoxylation reaction Methods 0.000 description 1
- SHZIWNPUGXLXDT-UHFFFAOYSA-N ethyl hexanoate Chemical compound CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 210000000497 foam cell Anatomy 0.000 description 1
- 239000004872 foam stabilizing agent Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000001408 fungistatic effect Effects 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-QXMHVHEDSA-N gadoleic acid Chemical compound CCCCCCCCCC\C=C/CCCCCCCC(O)=O LQJBNNIYVWPHFW-QXMHVHEDSA-N 0.000 description 1
- VZCCETWTMQHEPK-UHFFFAOYSA-N gamma-Linolensaeure Natural products CCCCCC=CCC=CCC=CCCCCC(O)=O VZCCETWTMQHEPK-UHFFFAOYSA-N 0.000 description 1
- VZCCETWTMQHEPK-QNEBEIHSSA-N gamma-linolenic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/CCCCC(O)=O VZCCETWTMQHEPK-QNEBEIHSSA-N 0.000 description 1
- 235000020664 gamma-linolenic acid Nutrition 0.000 description 1
- 229960002733 gamolenic acid Drugs 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000034659 glycolysis Effects 0.000 description 1
- 239000008169 grapeseed oil Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000010468 hazelnut oil Substances 0.000 description 1
- 239000010460 hemp oil Substances 0.000 description 1
- SXCBDZAEHILGLM-UHFFFAOYSA-N heptane-1,7-diol Chemical compound OCCCCCCCO SXCBDZAEHILGLM-UHFFFAOYSA-N 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 150000005828 hydrofluoroalkanes Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- LMHJFKYQYDSOQO-UHFFFAOYSA-N hydroxydecanoic acid Natural products CCCCCC(O)CCCC(O)=O LMHJFKYQYDSOQO-UHFFFAOYSA-N 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 229940102253 isopropanolamine Drugs 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 235000021290 n-3 DPA Nutrition 0.000 description 1
- BXYVQNNEFZOBOZ-UHFFFAOYSA-N n-[3-(dimethylamino)propyl]-n',n'-dimethylpropane-1,3-diamine Chemical compound CN(C)CCCNCCCN(C)C BXYVQNNEFZOBOZ-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 239000010466 nut oil Substances 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- HXSACZWWBYWLIS-UHFFFAOYSA-N oxadiazine-4,5,6-trione Chemical group O=C1ON=NC(=O)C1=O HXSACZWWBYWLIS-UHFFFAOYSA-N 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- MTMMGZCTRGFZAH-UHFFFAOYSA-N pent-1-ene-1,5-diol Chemical compound OCCCC=CO MTMMGZCTRGFZAH-UHFFFAOYSA-N 0.000 description 1
- 229960004624 perflexane Drugs 0.000 description 1
- ZJIJAJXFLBMLCK-UHFFFAOYSA-N perfluorohexane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F ZJIJAJXFLBMLCK-UHFFFAOYSA-N 0.000 description 1
- CNVZJPUDSLNTQU-SEYXRHQNSA-N petroselinic acid Chemical compound CCCCCCCCCCC\C=C/CCCCC(O)=O CNVZJPUDSLNTQU-SEYXRHQNSA-N 0.000 description 1
- 229940067626 phosphatidylinositols Drugs 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 150000003022 phthalic acids Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000010471 pistachio oil Substances 0.000 description 1
- 229940082415 pistachio oil Drugs 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 229920006295 polythiol Polymers 0.000 description 1
- ZUFQCVZBBNZMKD-UHFFFAOYSA-M potassium 2-ethylhexanoate Chemical compound [K+].CCCCC(CC)C([O-])=O ZUFQCVZBBNZMKD-UHFFFAOYSA-M 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000001944 prunus armeniaca kernel oil Substances 0.000 description 1
- 235000015136 pumpkin Nutrition 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 239000010666 rose oil Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- BYKRNSHANADUFY-UHFFFAOYSA-M sodium octanoate Chemical compound [Na+].CCCCCCCC([O-])=O BYKRNSHANADUFY-UHFFFAOYSA-M 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- JIWBIWFOSCKQMA-UHFFFAOYSA-N stearidonic acid Natural products CCC=CCC=CCC=CCC=CCCCCC(O)=O JIWBIWFOSCKQMA-UHFFFAOYSA-N 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- 150000000000 tetracarboxylic acids Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- UFDHBDMSHIXOKF-UHFFFAOYSA-N tetrahydrophthalic acid Natural products OC(=O)C1=C(C(O)=O)CCCC1 UFDHBDMSHIXOKF-UHFFFAOYSA-N 0.000 description 1
- IUTCEZPPWBHGIX-UHFFFAOYSA-N tin(2+) Chemical compound [Sn+2] IUTCEZPPWBHGIX-UHFFFAOYSA-N 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- UWHZIFQPPBDJPM-BQYQJAHWSA-N trans-vaccenic acid Chemical compound CCCCCC\C=C\CCCCCCCCCC(O)=O UWHZIFQPPBDJPM-BQYQJAHWSA-N 0.000 description 1
- 150000003628 tricarboxylic acids Chemical class 0.000 description 1
- 150000004072 triols Chemical class 0.000 description 1
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical compound NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 1
- 239000008170 walnut oil Substances 0.000 description 1
- 239000010497 wheat germ oil Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4825—Polyethers containing two hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/18—Catalysts containing secondary or tertiary amines or salts thereof
- C08G18/1841—Catalysts containing secondary or tertiary amines or salts thereof having carbonyl groups which may be linked to one or more nitrogen or oxygen atoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C41/00—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
- B29C41/003—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/02—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
- B29C44/10—Applying counter-pressure during expanding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/0001—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/18—Catalysts containing secondary or tertiary amines or salts thereof
- C08G18/1825—Catalysts containing secondary or tertiary amines or salts thereof having hydroxy or primary amino groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/32—Polyhydroxy compounds; Polyamines; Hydroxyamines
- C08G18/3203—Polyhydroxy compounds
- C08G18/3206—Polyhydroxy compounds aliphatic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4804—Two or more polyethers of different physical or chemical nature
- C08G18/4816—Two or more polyethers of different physical or chemical nature mixtures of two or more polyetherpolyols having at least three hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4829—Polyethers containing at least three hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4833—Polyethers containing oxyethylene units
- C08G18/4837—Polyethers containing oxyethylene units and other oxyalkylene units
- C08G18/4841—Polyethers containing oxyethylene units and other oxyalkylene units containing oxyethylene end groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4833—Polyethers containing oxyethylene units
- C08G18/4837—Polyethers containing oxyethylene units and other oxyalkylene units
- C08G18/4845—Polyethers containing oxyethylene units and other oxyalkylene units containing oxypropylene or higher oxyalkylene end groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4833—Polyethers containing oxyethylene units
- C08G18/4837—Polyethers containing oxyethylene units and other oxyalkylene units
- C08G18/485—Polyethers containing oxyethylene units and other oxyalkylene units containing mixed oxyethylene-oxypropylene or oxyethylene-higher oxyalkylene end groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4854—Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6666—Compounds of group C08G18/48 or C08G18/52
- C08G18/667—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
- C08G18/6674—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
- C08G18/6677—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203 having at least three hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
- C08G18/7664—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0004—Use of compounding ingredients, the chemical constitution of which is unknown, broadly defined, or irrelevant
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/122—Hydrogen, oxygen, CO2, nitrogen or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/141—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/142—Compounds containing oxygen but no halogen atom
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/02—Shape or form of insulating materials, with or without coverings integral with the insulating materials
- F16L59/028—Compositions for or methods of fixing a thermally insulating material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/06—Walls
- F25D23/062—Walls defining a cabinet
- F25D23/064—Walls defining a cabinet formed by moulding, e.g. moulding in situ
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/06—Walls
- F25D23/065—Details
- F25D23/066—Liners
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2075/00—Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0005—Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0005—Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
- B29K2105/0014—Catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/04—Condition, form or state of moulded material or of the material to be shaped cellular or porous
- B29K2105/041—Microporous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/04—Condition, form or state of moulded material or of the material to be shaped cellular or porous
- B29K2105/045—Condition, form or state of moulded material or of the material to be shaped cellular or porous with open cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0063—Density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/762—Household appliances
- B29L2031/7622—Refrigerators
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2101/00—Manufacture of cellular products
-
- C08G2101/0025—
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0025—Foam properties rigid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0041—Foam properties having specified density
- C08G2110/005—< 50kg/m3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0041—Foam properties having specified density
- C08G2110/0058—≥50 and <150kg/m3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0041—Foam properties having specified density
- C08G2110/0066—≥ 150kg/m3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2330/00—Thermal insulation material
- C08G2330/50—Evacuated open-celled polymer material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/022—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments premixing or pre-blending a part of the components of a foamable composition, e.g. premixing the polyol with the blowing agent, surfactant and catalyst and only adding the isocyanate at the time of foaming
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/06—CO2, N2 or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/08—Supercritical fluid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/12—Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
- C08J2205/044—Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
- C08J2205/05—Open cells, i.e. more than 50% of the pores are open
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/10—Rigid foams
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2207/00—Foams characterised by their intended use
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
- C08J2375/08—Polyurethanes from polyethers
Definitions
- the present invention relates to a process for producing a rigid open-celled polyurethane foam.
- the foams may also contain isocyanurate groups (PIR).
- PUR/PIR foam is to be understood as meaning not only rigid foams comprising substantially urethane groups but also rigid foams containing both urethane groups and isocyanurate groups.
- VIP vacuum insulation panels
- Foam quality has a decisive influence on the insulation properties of foams used for vacuum insulation: on the one hand a very small cell size and very homogeneous cell sizes are advantageous and on the other hand a high proportion of open cells is advantageous to allow the foam to be readily evacuated.
- EP-A 498 628 A discloses the production of rigid open-celled foams by way of a thermally activated blowing agent. This process has the disadvantage that the foam cells are opened merely where a minimum temperature is exceeded in the course of the foam process and the obtained foams therefore do not exhibit a uniformly high open-cell content over the entire foam-filled volume.
- DE-A 43 03 809 describes a process for producing rigid foams having an elevated open-cell content where the cell-opening effect of a liquid polyolefin addition is utilized. This process has the disadvantage of a narrow scope of application and also that inexact metering of the polyolefin addition rapidly leads to cell coarsening.
- U.S. Pat. Nos. 5,250,579 and 5,312,846 disclose the cell-opening effect of substances having a surface tension of less than 23 mJ/m 2 .
- these substances have the disadvantage that they contain organically bonded halogen.
- U.S. Pat. No. 5,889,067 discloses a process for producing an open-celled rigid polyurethane foam which comprises the production of the rigid polyurethane foam from polyol with a liquid blowing agent selected from the group consisting of hydrocarbons, hydrofluoroalkanes, perfluoroalkanes, mixtures of these blowing agents with one another or with water by addition of a monohydric fatty alcohol which has a good solubility in the hydrocarbons and serves as a cell-opener and of a foam stabilizer which forms a very small cell in the presence of an isocyanate trimer catalyst and an organic isocyanate.
- the resulting open-celled rigid polyurethane foam has a cell size of less than about 95 ⁇ m and is suitable for example for use as a core material in a vacuum insulation panel.
- EP 905 159 A and EP 905 158 A disclose processes for producing open-celled rigid polyurethane foams which preferably employ water in combination with hydrocarbons or hydrofluorocarbons as a blowing agent.
- the polyol formulations are said to contain 0.1-80% by weight of polyester alcohols which are preferably reaction products of ricinoleic acid and/or castor oil and/or tall oil fatty acid with polyfunctional alcohols. These components are said to act as emulsifiers for non-halogenated blowing agents.
- the claimed polyols are used to produce both open-celled and closed-celled foams, wherein the open-cell content is dependent on the presence of additives known as cell openers.
- EP 2 072 548 A describes a process for producing open-celled rigid PUR/PIR foams having an isocyanate index in the range between 150-400 by reaction of polyisocyanates with polyols having a functionality in the range from 2.5 to 5.5 and a hydroxyl number in the range of 200-400 mg KOH/g in the presence of a blowing agent mixture of water and at least one physical blowing agent is.
- the open-cell content of the foams in the examples is obtained primarily with high proportions of cell-opening substances.
- a polyol component also containing a blowing agent is reacted with an isocyanate.
- the reaction of isocyanate with water forms carbon dioxide, which also acts as a blowing agent. It is also known to add CO 2 to the polyol component or to the reaction mixture as a blowing agent.
- This patent application relates to a process for producing slabstock polyurethane foam, wherein a carbon dioxide-containing polyurethane reactive mixture is suddenly decompressed from a pressure above the equilibrium solution pressure of the carbon dioxide to standard pressure.
- the liquid polyurethane reactive mixture is foamed by the liberation of dissolved carbon dioxide and the foamed mixture is applied to a substrate and subsequently cured to afford slabstock foam.
- the carbon dioxide is initially fully dissolved in the reactive mixture or at least one of the components polyol and isocyanate at a pressure substantially above the equilibrium solution pressure.
- the pressure is reduced to a pressure close to the equilibrium solution pressure, wherein the pressure is temporarily reduced below the equilibrium solution pressure to liberate small amounts of the carbon dioxide by forming a bubble microdispersion, the components are optionally mixed and the sudden pressure reduction to standard pressure is performed before the liberated carbon dioxide fully redissolves.
- the sudden pressure reduction to standard pressure is performed before the liberated carbon dioxide fully redissolves.
- WO 2011/054868 A and WO 2011/054873 A disclose production processes for fine-celled urethane-containing foams using CO 2 as a supercritical blowing agent.
- the production of a microemulsion from the polyol phase and supercritical CO 2 is decisive for the success of the process in both cases.
- Said microemulsion is to be established through the use of suitable surfactant components.
- surfactant components there is no indication of how this process is used to produce foams having predominantly open cells.
- WO 2015/109488 A likewise describes a production process for urethane-containing foams using CO 2 as a supercritical blowing agent.
- the production process is a multistage process, wherein the polyol component must initially be saturated with CO 2 under supercritical conditions before the reaction mixture is subsequently subjected to pressures of at least 100 bar.
- the produced foams are said to have small cell sizes and a high porosity.
- foams having a high open-cell content are found only when using propylene oxide-based polyethers and when using two very specific cell-opening surfactants in a particular ratio.
- the process provides foams having densities >>100 kg/m 3 .
- the total duration for the multistage process (saturation, reaction, curing) in the reactor is >>1 h during which time supercritical conditions must be maintained.
- the present invention has for its object to provide a polyol formulation for a reaction mixture with which a very fine-celled, open-celled urethane-containing rigid foam (rigid PUR/PIR foam) may be produced in a simple process.
- a process for producing very fine-celled, urethane-containing rigid foams having a high open-cell content which overcomes the disadvantages of the prior art shall also be provided.
- a very high open-cell content combined with a small cell size is of interest for certain applications where this foam property makes it possible to reduce the thermal conductivity of the foam by application of negative pressure.
- the present invention provides a polyol formulation P) suitable for producing open-celled rigid PUR/PIR foams having an apparent density of 25-300 kg/m 3 , preferably 30-200 kg/m 3 , particularly preferably 40-130 kg/m 3 , an open-cell content of >70%, in particular >90%, very particularly preferably ⁇ 94%, and having an average cell diameter of ⁇ 180 ⁇ m, in particular ⁇ 160 ⁇ m and very particularly preferably ⁇ 100 ⁇ m containing
- the present invention also provides the foam-forming reaction mixture R) produced with the polyol formulation P) according to the invention and further comprising at least one polyisocyanate component B).
- the invention further provides a process for producing rigid PUR/PIR foams having an apparent density of 25-300 kg/m 3 , preferably 30-200 kg/m 3 , particularly preferably 40-130 kg/m 3 , an open-cell content of >70%, in particular >90%, very particularly preferably ⁇ 94%, and having an average cell diameter of 180 ⁇ m, in particular ⁇ 160 ⁇ m and very particularly preferably ⁇ 100 ⁇ m comprising the steps of
- the isocyanate index (also known as the index) is to be understood as meaning the quotient of the actually employed amount of substance [mol] of isocyanate groups and the actually employed amount of substance [mol] of isocyanate-reactive groups, multiplied by 100:
- the “functionality” or “f” of a component mixture is to be understood as meaning the respective number-average functionality of the mixture to which the indication refers.
- the functionality of the polyol component A1) is to be understood as meaning the number-average functionality of the mixture of the polyols present in the component A1 based on all isocyanate-reactive functions present.
- molar weight or “molar mass” or “M n ” is in each case to be understood as meaning the number-weighted average molar mass.
- the OH number (also known as hydroxyl number) specifies the OH number of said polyol.
- Reported OH numbers for mixtures relate to the number-average OH number of the mixture calculated from the OH numbers of the individual components in their respective molar proportions.
- the OH number specifies the amount of potassium hydroxide in milligrams which is equivalent in an acetylation to the acetic acid quantity bound by one gram of substance. In the context of the present invention said number is determined according to the standard DIN 53240-2 (as at November 2007).
- the isocyanate-reactive component A) contains at least one polyol component A1) selected from the group consisting of polyether polyols, polyester polyols, polyether ester polyols, polycarbonate polyols and polyether polycarbonate polyols.
- the proportion of primary OH functions based on the total number of terminal OH functions of all polyols employed in the component A) is at least 30%, preferably at least 35%, especially preferably at least 38%.
- the polyol component A1) has the further feature that it has a functionality f of >2.5, preferably ⁇ 2.6- ⁇ 6.5 and particularly preferably ⁇ 2.8- ⁇ 6.1. Polyol formulations in which the polyol component A1) has a functionality in these ranges provide an optimal viscosity increase until decompression of the counterpressure during injection and allow faster demolding of the foams.
- the polyol component A1) preferably has a hydroxyl number of 280-600 mg KOH/g, particularly preferably of 300-580 mg KOH/g and especially preferably of 350-540 mg KOH/g. This has a particularly advantageous effect on the mechanical properties of the foams.
- a polyether polyol may also be a mixture of different polyether polyols, this also applying analogously to the other polyols recited here.
- polyether polyols employable according to the invention are the polyether polyols employable in polyurethane synthesis and known to those skilled in the art.
- polyether polyols are for example polytetramethylene glycol polyethers such as are obtainable by polymerization of tetrahydrofuran by cationic ring opening.
- suitable polyether polyols are addition products of styrene oxide, ethylene oxide, propylene oxide, butylene oxide and/or epichlorohydrin onto di- or polyfunctional starter molecules.
- the addition of ethylene oxide and propylene oxide is especially preferred.
- Suitable starter molecules are for example water, ethylene glycol, diethylene glycol, butyl diglycol, glycerol, diethylene glycol, trimethylolpropane, propylene glycol, pentaerythritol, sorbitol, sucrose, ethylenediamine, toluenediamine, triethanolamine, bisphenols, in particular 4,4′-methylenebisphenol, 4,4′-(1-methylethylidene)bisphenol, 1,4-butanediol, 1,6-hexanediol and low molecular weight hydroxyl-containing esters of such polyols with dicarboxylic acids and oligoethers of such polyols.
- the isocyanate-reactive component A) contains at least 50% by weight, preferably at least 60% by weight, especially preferably at least 70% by weight, of polyether polyol.
- the component A1) consists of polyether polyol to an extent of 100% by weight.
- Employable polyether ester polyols are compounds containing ether groups, ester groups and OH groups.
- Organic dicarboxylic acids having up to 12 carbon atoms are suitable for producing the polyether ester polyols, preferably aliphatic dicarboxylic acids having ⁇ 4 to ⁇ 6 carbon atoms or aromatic dicarboxylic acids used singly or in admixture. Examples include suberic acid, azelaic acid, decanedicarboxylic acid, maleic acid, malonic acid, phthalic acid, pimelic acid and sebacic acid and in particular glutaric acid, fumaric acid, succinic acid, adipic acid, phthalic acid, terephthalic acid and isoterephthalic acid.
- organic dicarboxylic acids are derivatives of these acids, for example their anhydrides and also their esters and monoesters with low molecular weight monofunctional alcohols having ⁇ 1 to ⁇ 4 carbon atoms.
- the use of proportions of the abovementioned bio-based starting materials, in particular of fatty acids/fatty acid derivatives (oleic acid, soybean oil etc.), is likewise possible and can have advantages, for example in respect of storage stability of the polyol formulation, dimensional stability, fire characteristics and compressive strength of the foams.
- Polyether polyols obtained by alkoxylation of starter molecules such as polyhydric alcohols are a further component used for producing polyether ester polyols.
- the starter molecules are at least difunctional, but may optionally also contain proportions of higher-functional, in particular trifunctional, starter molecules.
- Starter molecules include for example diols having number-average molecular weights Mn of preferably ⁇ 18 g/mol to ⁇ 400 g/mol, preferably of ⁇ 62 g/mol to ⁇ 200 g/mol, such as 1,2-ethanediol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,5-pentenediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,10-decanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2-butyl-2-ethyl-1,3-propanediol, 2-butene-1
- diols compounds having >2 Zerewitinoff-active hydrogens in particular having number-average functionalities of >2 to ⁇ 8, in particular of ⁇ 3 to ⁇ 6, may also be co-used as starter molecules for producing the polyethers, for example 1,1,1-trimethylolpropane, triethanolamine, glycerol, sorbitan and pentaerythritol and also triol- or tetraol-started polyethylene oxide polyols having average molar masses Mn of preferably ⁇ 62 g/mol to ⁇ 400 g/mol, in particular of ⁇ 92 g/mol to ⁇ 200 g/mol.
- Polyether ester polyols may also be produced by alkoxylation, in particular by ethoxylation and/or propoxylation, of reaction products obtained by the reaction of organic dicarboxylic acids and their derivatives and components with Zerewitinoff-active hydrogens, in particular diols and polyols.
- Derivatives of these acids include, for example, their anhydrides, for example phthalic anhydride.
- Suitable polyester polyols are inter alia polycondensates of di- and also tri- and tetraols and di- and also tri- and tetracarboxylic acids or hydroxycarboxylic acids or lactones. Also employable instead of the free polycarboxylic acids are the corresponding polycarboxylic anhydrides or corresponding polycarboxylic esters of lower alcohols to prepare the polyesters.
- diols examples include ethylene glycol, butylene glycol, diethylene glycol, triethylene glycol, polyalkylene glycols such as polyethylene glycols and also 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol and isomers, neopentyl glycol or neopentyl glycol hydroxypivalate.
- polyalkylene glycols such as polyethylene glycols and also 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol and isomers, neopentyl glycol or neopentyl glycol hydroxypivalate.
- polyols such as trimethylolpropane, glycerol, erythritol, pentaerythritol, trimethylolbenzene or trishydroxyethyl isocyanurate.
- polycarboxylic acids examples include phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, cyclohexanedicarboxylic acid, adipic acid, azelaic acid, sebacic acid, glutaric acid, tetrachlorophthalic acid, maleic acid, fumaric acid, itaconic acid, malonic acid, suberic acid, succinic acid, 2-methylsuccinic acid, 3,3-diethylglutaric acid, 2,2-dimethylsuccinic acid, dodecanedioic acid, endomethylenetetrahydrophthalic acid, dimer fatty acid, trimer fatty acid, citric acid, or trimellitic acid. It is also possible to use the corresponding anhydrides as an acid source.
- Hydroxycarboxylic acids that may be co-used as co-reactants in the production of a polyester polyol having terminal hydroxyl groups include for example hydroxycaproic acid, hydroxybutyric acid, hydroxydecanoic acid, hydroxystearic acid and the like.
- Suitable lactones include caprolactone, butyrolactone and homologs.
- Suitable compounds for producing the polyester polyols also include in particular bio-based starting materials and/or derivatives thereof, for example castor oil, polyhydroxy fatty acids, ricinoleic acid, hydroxyl-modified oils, grapeseed oil, black cumin oil, pumpkin kernel oil, borage seed oil, soybean oil, wheat germ oil, rapeseed oil, sunflower kernel oil, peanut oil, apricot kernel oil, pistachio oil, almond oil, olive oil, macadamia nut oil, avocado oil, sea buckthorn oil, sesame oil, hemp oil, hazelnut oil, primula oil, wild rose oil, safflower oil, walnut oil, fatty acids, hydroxyl-modified fatty acids and epoxidized fatty acids and fatty acid esters, for example based on myristoleic acid, palmitoleic acid, oleic acid, vaccenic acid, petroselic acid, gadoleic acid, erucic acid, nervonic acid, linoleic
- Polycarbonate polyols that may be used are hydroxyl-containing polycarbonates, for example polycarbonate diols. These are obtainable by reaction of carbonic acid derivatives, such as diphenyl carbonate, dimethyl carbonate or phosgene, with polyols, preferably diols, or by copolymerization of alkylene oxides, for example propylene oxide, with CO 2 .
- carbonic acid derivatives such as diphenyl carbonate, dimethyl carbonate or phosgene
- diols examples include ethylene glycol, 1,2- and 1,3-propanediol, 1,3- and 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, neopentyl glycol, 1,4-bishydroxymethylcyclohexane, 2-methyl-1,3-propanediol, 2,2,4-trimethylpentane-1,3-diol, dipropylene glycol, polypropylene glycols, dibutylene glycol, polybutylene glycols, bisphenol A, and lactone-modified diols of the abovementioned type.
- polyether-polycarbonate diols obtainable for example by copolymerization of alkylene oxides, such as for example propylene oxide, with CO 2 .
- polyester and polyether polyols by glycolysis of suitable polymer recyclates.
- Suitable polyether-polycarbonate polyols and the production thereof are described for example in EP 2910585 A, [0024]-[0041]. Examples of polycarbonate polyols and production thereof may be found inter alia in EP 1359177 A. Production of suitable polyether ester polyols is described inter alia in WO 2010/043624 A and in EP 1 923 417 A.
- Polyether polyols, polyethercarbonate polyols and polyether ester polyols having a high proportion of primary OH functions are obtained when the alkylene oxides used for alkoxylation comprise a high proportion of ethylene oxide.
- the molar proportion of ethylene oxide structures based on the entirety of the alkylene oxide structures present in the polyols of the component A1 is at least 50 mol %.
- the use of 100 mol % of ethylene oxide is likewise a preferred embodiment.
- the isocyanate-reactive component A) may further contain low molecular weight isocyanate-reactive compounds A2), in particular di- or trifunctional amines and alcohols, particularly preferably diols and/or triols having molar masses M n of less than 400 g/mol, preferably of 60 to 300 g/mol, for example triethanolamine, diethylene glycol, ethylene glycol, glycerol, may be employed.
- low molecular weight isocyanate-reactive compounds A2 in particular di- or trifunctional amines and alcohols, particularly preferably diols and/or triols having molar masses M n of less than 400 g/mol, preferably of 60 to 300 g/mol, for example triethanolamine, diethylene glycol, ethylene glycol, glycerol, may be employed.
- low molecular weight isocyanate-reactive compounds are used for producing the rigid polyurethane foams, for example as chain extenders and/or crosslinking agents, and these do not also fall under the definition of component A1), they are advantageously employed in an amount of up to 5% by weight based on the total weight of the component A).
- component A) may contain further isocyanate-reactive compounds A3), for example graft polyols, polyamines, polyamino alcohols and polythiols. It will be appreciated that the described isocyanate-reactive components also comprise compounds having mixed functionalities.
- a preferred isocyanate-reactive component A) consists to an extent of at least 65% by weight, in particular at least 80% by weight and very particularly preferably to an extent of at least 90% by weight of the polyol component A 1 ) which has a hydroxyl number between 280 to 600 mg KOH/g and a functionality of ⁇ 2.8 to ⁇ 6.0, and the proportion of primary OH functions in the component A) is at least 35% (based on all terminal OH functions in the component A).
- the polyol formulation P) optionally contains assistant and additive substances E).
- the assistant and additive substances contain no cell-opening compounds.
- the reaction mixture contains no cell-opening compounds, in particular no cell-opening compounds based on polybutadiene.
- Further assistant and additive substances E) that may be employed in the process according to the invention are the customary assistant and additive substances known from the prior art and to the person skilled in the art. These include for example surface-active substances, stabilizers, in particular foam stabilizers, cell regulators, fillers, dyes, pigments, flame retardants, antistats, antihydrolysis agents and/or fungistatic and bacteriostatic substances.
- Employable stabilizers are saturated and unsaturated hydrocarbons such as paraffins, fatty alcohols and esters, for example esters of carboxylic acids.
- the component A) preferably contains in total not more than 3% by weight of stabilizers.
- surfactants for example alkoxylated alkanols such as ethers of linear or branched alkanols having ⁇ 6 to ⁇ 30 carbon atoms with polyalkylene glycols having >5 to ⁇ 100 alkylene oxide units, alkoxylated alkylphenols, alkoxylated fatty acids, carboxylic esters of an alkoxylated sorbitan (especially Polysorbate 80), fatty acid esters, polyalkyleneamines, alkyl sulfates, phosphatidylinositols, fluorinated surfactants, surfactants comprising polysiloxane groups and/or bis(2-ethyl-1-hexyl) sulfosuccinate.
- Fluorinated surfactants may be perfluorinated or partially fluorinated. Examples thereof are partially fluorinated ethoxylated alkanols or carboxylic acids.
- the component A) preferably contains a total of not more than 5% by weight of surfactants, especially preferably not more than 3% by weight, more preferably less than 2% by weight and especially preferably not more than 1.6% by weight of surfactants based on the total weight of the component A).
- Catalysts D are employed for the production of the rigid PUR/PIR foam.
- catalysts D) are compounds which accelerate the reaction of hydroxyl group-containing/isocyanate-reactive group-containing compounds of the components with the isocyanate groups of the component B.
- the catalysts D) contain D1) at least one catalytically active amine compound having functional groups which comprise Zerewitinoff-active hydrogens and can therefore react with isocyanate (so-called “incorporable catalysts”).
- employable incorporable catalysts are bis(dimethylaminopropyl)urea, bis(N,N-dimethylaminoethoxyethyl)carbamate, dimethylaminopropylurea, N,N,N-trimethyl-N-hydroxyethylbis(aminopropyl ether), N,N,N-trimethyl-N-hydroxyethylbis(aminoethyl ether), diethylethanolamine, bis(N,N-dimethyl-3-aminopropyl)amine, dimethylaminopropylamine, 3-dimethyaminopropyl-N,N-dimethylpropane-1,3-diamine, dimethyl-2-(2-aminoethoxyethanol) and (1,3
- the catalysts D1) are employed in an amount of ⁇ 0.01% to ⁇ 2% by weight based on the total weight of the component A).
- salts such as for example tin (II) acetate, tin (II) octoate, tin (II) ethy
- the catalysts D) are generally employed in an amount from 0.001 to 5% by weight, in particular from 0.05 to 2.5% by weight, based on the weight of the component A. It is particularly preferable when the catalysts D) contain both incorporable catalysts D1) and non-incorporable catalysts D2). It is especially preferable when incorporable amine compounds and catalytically active salts are employed in combination.
- the catalysts D1) and D2) are preferably employed in a molar ratio D1/D2 of 0.1 to 16.3, particularly preferably of 0.3 to 10 and very particularly preferably of 0.8 to 6.0. It is preferable when the catalyst component D) contains as the catalytically active compound D1) an amine compound incorporable into the polyurethane and also the non-catalytically active compound D2) which is a catalytically active salt not incorporable into the polyurethane and the molar ratio of D1/D2 is 0.1 to 16.3, particularly preferably from 0.3 to 10 and very particularly preferably from 0.8 to 6.0.
- 3-(dimethylamino)propylurea and potassium acetate are employed in a molar ratio D1/D2 of 0.1 to 6.0, particularly preferably of 0.3 to 10 and very particularly preferably of 0.8 to 6.0.
- the preferred catalyst ratios/catalysts particularly advantageously bring about a defined viscosity increase.
- Blowing agents may be distinguished into chemical and physical blowing agents.
- At least formic acid which belongs to the group of chemical blowing agents is employed as blowing agent C). It is preferable when the formic acid is employed in an amount of 0.5-6% by weight, particularly preferably of 0.5% to 4% by weight, based on the total amount of compounds having isocyanate-reactive hydrogen atoms in the foam-forming reaction mixture R).
- Formic acid is often employed in common in a mixture with water. If a formic acid/water mixture is employed a ratio of formic acid:water ⁇ 0.5 is particularly preferred.
- other chemical blowing agents can also be added.
- blowing agent component C) may further comprise physical blowing agents.
- physical blowing agents are to be understood as meaning compounds which on account of their physical properties are volatile and unreactive toward the isocyanate component.
- the physical blowing agents are selected from hydrocarbons (for example n-pentane, isopentane, cyclopentane, butane, isobutane, propane), ethers (for example methylal), halogenated ethers, perfluorinated and partially fluorinated hydrocarbons having 1 to 8 carbon atoms, for example perfluorohexane, HFC 245fa (1,1,1,3,3-pentafluoropropane), HFC 365mfc (1,1,1,3,3-pentafluorobutane), HFC 134a or mixtures thereof are used, and also (hydro)fluorinated olefins, for example HFO 1233zd(E) (trans-1-chloro-3,3,3-trifluoro-1-propene) or HFO 1336mzz(Z) (cis-1,1,1,4,4,4-hexafluoro-2-butene) or additives such as FA 188 from hydrocarbons (
- a preferred embodiment employs as blowing agent component C) formic acid and a pentane isomer or a mixture of different pentane isomers, in particular a mixture of cyclopentane and isopentane, as blowing agent component C).
- the formic acid or the formic acid/water mixture is mixed with the further components (A, D, E) of the polyol formulation P) before the optional addition of physical blowing agents and the reaction with the isocyanate component. It is preferable to establish a concentration of 0.5-6 parts of formic acid in 100 parts of polyol formulation P).
- the blowing agent component C) is altogether employed in an amount sufficient to achieve a dimensionally stable foam matrix and the desired apparent density. This is generally 0.5-30 parts by weight of blowing agent based on 100 parts by weight of the component A.
- the proportion of formic acid in the total blowing agent component C) preferably contains 20-100% by weight, particularly preferably 60-100% by weight and very particularly preferably 80-95% by weight based on the total weight of the blowing agent component C).
- a further preferred embodiment employs not only the formic acid and optionally water but also as a further blowing agent component a physical blowing agent which is in the supercritical or near critical state.
- This physical blowing agent may be selected from the group comprising linear, branched or cyclic C1- to C6-hydrocarbons, linear, branched or cyclic C1- to C6-hydrofluorocarbons, N 2 , O 2 , argon and/or CO 2 .
- CO 2 in the supercritical or near critical state is especially preferred.
- Conditions are near-critical in the context of the present invention when the following condition is satisfied: (T c ⁇ T)/T ⁇ 0.4 and/or (p c ⁇ p)/p ⁇ 0.4.
- T is the temperature prevailing in the process
- T c is the critical temperature of the blowing agent or blowing agent mixture
- p is the pressure prevailing in the process
- pc is the critical pressure for the blowing agent or blowing agent mixture.
- Conditions are preferably near-critical when: (T c ⁇ T)/T ⁇ 0.3 and/or (p c ⁇ p)/p ⁇ 0.3 and particularly preferably (T c ⁇ T)/T ⁇ 0.2 and/or (p c ⁇ p)/p ⁇ 0.2.
- Particularly suitable conditions for performing the process according to the invention when using CO 2 are pressures and temperatures above the critical point of CO 2 , i.e. ⁇ 73.7 bar and ⁇ 30.9° C., preferably between 74 bar and 350 bar and between 31° C. and 100° C., particularly preferably between 75 bar and 200 bar and between 32° C. and 60° C.
- the content of blowing agent component C) is for example ⁇ 2% by weight to ⁇ 20% by weight based on the total weight of the mixture.
- Preferred proportions are ⁇ 5% by weight to ⁇ 15% by weight and particularly preferred proportions are ⁇ 6% by weight to ⁇ 11% by weight.
- blowing agents in particular selected from the blowing agents specified as preferred hereinabove.
- these preferably contain more than 60% by weight of carbon dioxide, particularly preferably more than 75% by weight, in one embodiment.
- the proportion of blowing agent component C) at least containing formic acid in the mixture of the components A), C), D) and E) is generally ⁇ 1% by weight to ⁇ 30% by weight, preferably ⁇ 10% by weight to ⁇ 20% by weight; the proportion of the blowing agent in the foam-forming reaction mixture R) is 0.5% by weight to 15% by weight, preferably 5% by weight to 10% by weight.
- the component B) is a polyisocyanate, i.e. an isocyanate having an NCO functionality of ⁇ 2.
- suitable polyisocyanates include 1,4-butylene diisocyanate, 1,5-pentane diisocyanate, 1,6-hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), 2,2,4- and/or 2,4,4-trimethylhexamethylene diisocyanate, the isomeric bis(4,4′-isocyanatocyclohexyl)methanes or their mixtures of any desired isomer content, 1,4-cyclohexylene diisocyanate, 1,4-phenylene diisocyanate, 2,4- and/or 2,6-tolylene diisocyanate (TDI), 1,5-naphthylene diisocyanate, 2,2′-and/or 2,4′- and/or 4,4′-diphenylmethane diisocyanate (MDI) and
- isocyanate component B Preferably employed as the isocyanate component B) are mixtures of the isomers of diphenylmethane diisocyanate (“monomeric MDI”, “mMDI” for short) and oligomers thereof (“oligomeric MDI”). Mixtures of monomeric MDI and oligomeric MDI are generally described as “polymeric MDI” (pMDI).
- the oligomers of MDI are higher-nuclear polyphenylpolymethylene polyisocyanates, i.e.
- isocyanate component B are mixtures of mMDI and/or pMDI comprising at most up to 20% by weight, more preferably at most 10% by weight, of further aliphatic, cycloaliphatic and especially aromatic polyisocyanates known for the production of polyurethanes, very particularly TDI.
- modified diisocyanates having a uretdione, isocyanurate, urethane, carbodiimide, uretonimine, allophanate, biuret, amide, iminooxadiazinedione and/or oxadiazinetrione structure and also unmodified polyisocyanate having more than 2 NCO groups per molecule, for example 4-isocyanatomethyl-1,8-octane diisocyanate (nonane triisocyanate) or triphenylmethane 4,4′,4′′-triisocyanate.
- NCO prepolymers are also employable instead of or in addition to the abovementioned polyisocyanates as the organic isocyanate component B).
- the prepolymers are producible by reaction of one or more polyisocyanates with one or more polyols corresponding to the polyols described under the components A1) and A2).
- the isocyanate may be a prepolymer obtainable by reacting an isocyanate having an NCO functionality of ⁇ 2 and polyols having a molecular weight of ⁇ 62 g/mol to ⁇ 8000 g/mol and OH functionalities of ⁇ 1.5 to ⁇ 6.
- the NCO content is preferably from ⁇ 29.0% by weight to ⁇ 32.0% by weight and preferably has a viscosity at 25° C. of ⁇ 80 mPas to ⁇ 2000 mPas, particularly preferably of ⁇ 100 mPas to ⁇ 800 mPas (dynamic viscosity determined according to DIN 53019 at 25° C.).
- the number of NCO groups in the polyisocyanate component B) and the number of isocyanate-reactive groups in the component A) may be in a numerical ratio to one another of ⁇ 50:100 to ⁇ 500:100 for example.
- the rigid polyurethane foams are produced generally by reacting the components A) and B) in amounts such that the isocyanate index in the formulation is 80-150, preferably 90-130, particularly preferably 95-110. In this range urethane groups are preferably formed. In another preferred embodiment the isocyanate index is 150-400. In this range the foams comprise a high proportion of isocyanurate functions which bring about for example an inherent flame retardancy of the foams.
- the invention further provides a process for producing rigid PUR/PIR foams having an apparent density of 25-300 kg/m 3 , preferably 30-200 kg/m 3 , particularly preferably 40-130 kg/m 3 , an open-cell content of >70%, in particular >90%, very particularly preferably ⁇ 94%, and having an average cell diameter of 180 ⁇ m, in particular ⁇ 160 ⁇ m and very particularly preferably ⁇ 100 comprising the steps of
- step i) of the process according to the invention the foam-forming reaction mixture R) is produced from the components A)-E).
- the mixture comprising the components A), D), E) may be initially charged for example in a vessel together with the formic acid or the formic acid/water mixture, then optionally mixed with the further blowing agent components C) and admixed with the polyisocyanate B).
- the mixing of the components may also be effected in a mixing head.
- the mixing, in particular with optionally present physical blowing agent components C) and with B) may be effected under pressure.
- the components A), D), E) and C) are mixed with the component B) in a high-pressure mixing head.
- the reaction of the components is preferably carried out under conditions supercritical for CO 2 .
- suitable pressures in the mixing head and/or in the discharge conduit/the discharge conduits for producing the polyurethane foam are for example in the range from ⁇ 73.7 bar to ⁇ 350 bar and preferably in the range from ⁇ 75 bar to ⁇ 200 bar.
- Suitable temperatures are for example ⁇ 30.9° C. to ⁇ 100° C. and preferably ⁇ 32° C. to ⁇ 60° C. At such pressures supercritical conditions for the employed blowing agent may be maintained.
- the residence time of the mixture in the mixing head under supercritical conditions for the blowing agent is ⁇ 0 seconds to ⁇ 20 seconds, preferably from ⁇ 0.1 seconds to ⁇ 10 seconds and particularly preferably from ⁇ 0.5 seconds to ⁇ 5 seconds. This has the result that the mixture can polymerize under supercritical conditions.
- step ii) of the process according to the invention the inventive foam-forming reaction mixture R) composed of the components A)-E) is introduced into a mold.
- the mold is a closed mold, wherein the counterpressure in the mold during injection is 2-90 bar, preferably 2-80 bar, particularly preferably 5 - 40 bar.
- the counterpressure is achieved by pressurizing the mold with gas (compressed air or nitrogen) either directly and/or via a floating seal, which divides the pressurized space into a gas space and a reaction space, and is established, held and finally decompressed via a proportional valve.
- gas compressed air or nitrogen
- step iii) of the process the reaction mixture is foamed.
- step iii) is as follows:
- step ii) the pressure in the mold is kept constant for a period 1 which is preferably 1-40 seconds, particularly preferably 5-20 seconds and very particularly preferably 8-17 seconds, wherein the viscosity of the reaction mixture initially increases without foaming It has been found that holding the pressure for the preferred period results in particularly advantageous viscosity ranges of the mixture for this reaction section.
- the mold is decompressed.
- the releasing of the pressure from the mold is carried out over a period 2 at a pressure release rate of 1-90 bar/s, preferably 1-80 bar/s, particularly preferably 2-70 bar/s.
- the releasing may be effected in particular via a proportional valve.
- the reaction mixture is foamed over period 2. An excessively fast releasing has a negative effect on cell stability and excessively slow releasing has a negative effect on the foaming reaction.
- step iv) of the process the rigid PUR/PIR foam is demolded.
- the proportion of all primary OH functions present in the isocyanate-reactive component A) based on the total number of terminal OH functions in the component A) is at least 30% and the blowing agent component C) contains formic acid,
- step iii) holding the pressure in the mold for a period 1 of 1-40 s after termination of step ii) and subsequently releasing the pressure from the mold over a period 2 at a pressure release rate of 1-90 bar/s,
- the present invention further provides a rigid PUR/PIR foam obtainable or obtained by the process according to the invention.
- the process according to the invention makes it possible to obtain rigid PUR/PIR foams having an apparent density of 25-300 kg/m 3 , preferably 30-200 kg/m 3 , particularly preferably 40-130 kg/m 3 , which simultaneously have many open and particularly small cells. It is thus possible to produce rigid foams having an open-cell content of >70%, in particular >90%, very particularly preferably ⁇ 94%, where the cells exhibit an average diameter of 180 ⁇ m, in particular ⁇ 160 ⁇ m and very particularly preferably ⁇ 100 ⁇ m. In a particularly preferred embodiment the cells have an average cell size ⁇ 90 ⁇ m and an open-cell content of >94%.
- the foams have good mechanical properties, for example good compressive strengths.
- the PUR/PIR foams according to the invention make it possible in preferable fashion to produce foamed moldings and composite systems containing these moldings.
- the composite systems are often delimited both on the top surface and on the bottom surface by decorative layers.
- Suitable decorative layers include inter alia metals, plastics, wood and paper.
- Suitable fields of application of such discontinuously produced PUR/PIR composite systems include in particular industrial insulation of appliances such as refrigerators, chest freezers, fridge-freezers and boilers, cool containers and coolboxes and also of pipes.
- PUR/PIR foams in these fields is known per se to those skilled in the art and has already been described on many occasions.
- the PUR/PIR foams according to the invention are exceptionally suitable for these purposes since on account of their fine-cell content they feature low coefficients of thermal conductivity which can be still further enhanced by application of a vacuum.
- the invention further relates to a refrigerator, a freezer or a fridge-freezer comprising a rigid PUR/PIR foam obtainable according to the invention, wherein the provided mold is in particular a housing part of the refrigerator, the freezer or the fridge-freezer.
- the invention shall be more particularly elucidated with reference to the examples and comparative examples which follow.
- Determination of open-cell content Determination of the volume fraction of open and closed cells (ISO 4590:2002); German version EN ISO 4590:2003
- Determination of cell size Optical microscopy evaluation via VHX 5000 optical microscope; the test specimen to be measured is analyzed at 3 different points in each case over a circular region having a diameter of 5 mm. The resolution is chosen such that the selected region captures around 100 cells. 100 cells are then measured and the smallest and largest cell diameter as well as the average cell diameter are calculated.
- the specified proportion of primary OH functions in [%] in table 1 relates to the proportion of primary OH functions based on the total number of OH functions in the mixture of the polyols present in the formulation.
- Polyol 1 Polyether polyol based on trimethylolpropane and propylene oxide having a hydroxyl number of 800 mg KOH/g, a functionality of 3 and a viscosity of 6100 mPas at 25° C.
- Polyol 2 Polyether polyol based on trimethylolpropane and ethylene oxide having a hydroxyl number of 550 mg KOH/g, a functionality of 3 and a viscosity of 505 mPas at 25° C.
- Polyol 3 Polyether polyol based on trimethylolpropane and propylene oxide having a hydroxyl number of 550 mg KOH/g, a functionality of 3 and a viscosity of 1800 mPas at 25° C.
- Polyol 4 Polyether polyol based on 1,2-propanediol and propylene oxide having a hydroxyl number of 56 mg KOH/g, a functionality of 2 and a viscosity of 310 mPas at 25° C.
- Polyol 5 Polyether polyol based on 1,2-propanediol and propylene oxide having a hydroxyl number of 112 mg KOH/g, a functionality of 2 and a viscosity of 140 mPas at 25° C.
- Polyol 6 Polyether polyol based on glycerol and propylene oxide having a hydroxyl number of 231 mg KOH/g, a functionality of 3 and a viscosity of 350 mPas at 20° C.
- Polyol 7 Polyether polyol based on glycerol and saccharose and propylene oxide having a hydroxyl number of 470 mg KOH/g and a functionality of 4.9
- Polyol 8 Polyether polyol based on propylene glycol and propylene oxide having a hydroxyl number of 260 mg KOH/g and a functionality of 2
- Potassium acetate/DEG Catalyst, 25% potassium acetate in diethylene glycol (Covestro)
- Dabco NE1070 Catalyst, about 60% 3-(dimethylamino)propylurea in diethylene glycol (Air Products)
- Polycat 58 Catalyst (Air Products)
- Potassium acetate/EG Catalyst, 25% potassium acetate in ethylene glycol c-/i-Pentane mixture: Mixture of cyclopentane and isopentane in a 70:30 weight ratio, physical blowing agent
- Formic acid Blowing agent, 95% formic acid
- Isocyanate 1 Mixture of monomeric and polymeric MDI having a viscosity of about 290 m Pa*s at 20° C. (Desmodur 44V20L, Covestro)
- Isocyanate 2 Mixture of monomeric and polymeric MDI having a viscosity of about 1070 m Pa*s at 20° C. (Desmodur 44V70L, Covestro)
- Example 1 shows that the specified formulation makes it possible to produce very fine-celled rigid foams having a high proportion of open cells.
- the average cell sizes of the inventive example are markedly smaller than in the comparative examples where no formic acid was used.
- Example 1 further shows that even with a polyol formulation without cell-opening substances (Ortegol) foams having a higher open-cell content and a finer cell structure are obtainable when formic acid is employed as a blowing agent.
- a polyol formulation without cell-opening substances Ortegol
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
The present invention relates to a process for producing an open-cell rigid polyurethane foam. Said foams can contain, besides urethane groups (PUR), also isocyanurate groups (PIR).
Description
- The present invention relates to a process for producing a rigid open-celled polyurethane foam. In addition to urethane groups (PUR) the foams may also contain isocyanurate groups (PIR). In the present application unless otherwise stated the description rigid PUR/PIR foam is to be understood as meaning not only rigid foams comprising substantially urethane groups but also rigid foams containing both urethane groups and isocyanurate groups.
- Rigid PUR/PIR foams have long been known. Thermal insulation is a substantial area of application. The use of vacuum insulation panels (VIP) containing rigid PUR/PIR foams for insulation is increasing in importance. Foam quality has a decisive influence on the insulation properties of foams used for vacuum insulation: on the one hand a very small cell size and very homogeneous cell sizes are advantageous and on the other hand a high proportion of open cells is advantageous to allow the foam to be readily evacuated.
- The production of open-celled rigid PUR/PIR foams is likewise known in principle. Certain cell-opening substances are generally added to the reaction mixture to bring about an opening of the cells during the foaming process.
- Thus U.S. Pat. No. 5,350,777 describes the use of alkaline earth metal salts of long-chain fatty acids as cell openers.
- EP-A 498 628 A discloses the production of rigid open-celled foams by way of a thermally activated blowing agent. This process has the disadvantage that the foam cells are opened merely where a minimum temperature is exceeded in the course of the foam process and the obtained foams therefore do not exhibit a uniformly high open-cell content over the entire foam-filled volume.
- DE-A 43 03 809 describes a process for producing rigid foams having an elevated open-cell content where the cell-opening effect of a liquid polyolefin addition is utilized. This process has the disadvantage of a narrow scope of application and also that inexact metering of the polyolefin addition rapidly leads to cell coarsening.
- U.S. Pat. Nos. 5,250,579 and 5,312,846 disclose the cell-opening effect of substances having a surface tension of less than 23 mJ/m2. However, these substances have the disadvantage that they contain organically bonded halogen.
- U.S. Pat. No. 5,889,067 discloses a process for producing an open-celled rigid polyurethane foam which comprises the production of the rigid polyurethane foam from polyol with a liquid blowing agent selected from the group consisting of hydrocarbons, hydrofluoroalkanes, perfluoroalkanes, mixtures of these blowing agents with one another or with water by addition of a monohydric fatty alcohol which has a good solubility in the hydrocarbons and serves as a cell-opener and of a foam stabilizer which forms a very small cell in the presence of an isocyanate trimer catalyst and an organic isocyanate. The resulting open-celled rigid polyurethane foam has a cell size of less than about 95 μm and is suitable for example for use as a core material in a vacuum insulation panel.
- EP 905 159 A and EP 905 158 A disclose processes for producing open-celled rigid polyurethane foams which preferably employ water in combination with hydrocarbons or hydrofluorocarbons as a blowing agent. The polyol formulations are said to contain 0.1-80% by weight of polyester alcohols which are preferably reaction products of ricinoleic acid and/or castor oil and/or tall oil fatty acid with polyfunctional alcohols. These components are said to act as emulsifiers for non-halogenated blowing agents. In the examples the claimed polyols are used to produce both open-celled and closed-celled foams, wherein the open-cell content is dependent on the presence of additives known as cell openers. While the cells of the obtained foams are described as fine-celled, according to the legend “very fine-celled” is to be understood as meaning a cell size range of 180-250 μm. In addition, nothing is said about the homogeneity of the cell size distribution.
- EP 2 072 548 A describes a process for producing open-celled rigid PUR/PIR foams having an isocyanate index in the range between 150-400 by reaction of polyisocyanates with polyols having a functionality in the range from 2.5 to 5.5 and a hydroxyl number in the range of 200-400 mg KOH/g in the presence of a blowing agent mixture of water and at least one physical blowing agent is. However, the open-cell content of the foams in the examples is obtained primarily with high proportions of cell-opening substances.
- In the production of rigid PUR/PIR foams a polyol component also containing a blowing agent is reacted with an isocyanate. The reaction of isocyanate with water forms carbon dioxide, which also acts as a blowing agent. It is also known to add CO2 to the polyol component or to the reaction mixture as a blowing agent.
- An effect on fine-cell content and open-cell content was also found for the use of supercritical CO2 in combination with certain process steps and components:
- The abrupt decompression of CO2-containing reaction mixtures is described in WO 2001/98389 A1. This patent application relates to a process for producing slabstock polyurethane foam, wherein a carbon dioxide-containing polyurethane reactive mixture is suddenly decompressed from a pressure above the equilibrium solution pressure of the carbon dioxide to standard pressure. The liquid polyurethane reactive mixture is foamed by the liberation of dissolved carbon dioxide and the foamed mixture is applied to a substrate and subsequently cured to afford slabstock foam. The carbon dioxide is initially fully dissolved in the reactive mixture or at least one of the components polyol and isocyanate at a pressure substantially above the equilibrium solution pressure. Subsequently the pressure is reduced to a pressure close to the equilibrium solution pressure, wherein the pressure is temporarily reduced below the equilibrium solution pressure to liberate small amounts of the carbon dioxide by forming a bubble microdispersion, the components are optionally mixed and the sudden pressure reduction to standard pressure is performed before the liberated carbon dioxide fully redissolves. However, no information about nanocellular foams or supercritical conditions for the blowing agent may be found here.
- WO 2011/054868 A and WO 2011/054873 A disclose production processes for fine-celled urethane-containing foams using CO2 as a supercritical blowing agent. The production of a microemulsion from the polyol phase and supercritical CO2 is decisive for the success of the process in both cases. Said microemulsion is to be established through the use of suitable surfactant components. However, there is no indication of how this process is used to produce foams having predominantly open cells.
- WO 2015/109488 A likewise describes a production process for urethane-containing foams using CO2 as a supercritical blowing agent. The production process is a multistage process, wherein the polyol component must initially be saturated with CO2 under supercritical conditions before the reaction mixture is subsequently subjected to pressures of at least 100 bar. The produced foams are said to have small cell sizes and a high porosity. However, foams having a high open-cell content are found only when using propylene oxide-based polyethers and when using two very specific cell-opening surfactants in a particular ratio. The process provides foams having densities >>100 kg/m3. The total duration for the multistage process (saturation, reaction, curing) in the reactor is >>1 h during which time supercritical conditions must be maintained.
- Proceeding from the present prior art the present invention has for its object to provide a polyol formulation for a reaction mixture with which a very fine-celled, open-celled urethane-containing rigid foam (rigid PUR/PIR foam) may be produced in a simple process. A process for producing very fine-celled, urethane-containing rigid foams having a high open-cell content which overcomes the disadvantages of the prior art shall also be provided. A very high open-cell content combined with a small cell size is of interest for certain applications where this foam property makes it possible to reduce the thermal conductivity of the foam by application of negative pressure.
- To be provided in particular are a polyol formulation and a process with which it is possible to produce rigid polyurethane foams having an apparent density of 25-300 kg/m3 and an open-cell content of >70% and where the cells have an average diameter of <180 μm.
- The present invention provides a polyol formulation P) suitable for producing open-celled rigid PUR/PIR foams having an apparent density of 25-300 kg/m3, preferably 30-200 kg/m3, particularly preferably 40-130 kg/m3, an open-cell content of >70%, in particular >90%, very particularly preferably ≥94%, and having an average cell diameter of <180 μm, in particular <160 μm and very particularly preferably <100 μm containing
-
- an isocyanate-reactive component A) comprising
- at least one polyol component A1) having a functionality f of >2.5 which is selected from the group consisting of polyether polyols, polyester polyols, polycarbonate polyols, polyether polycarbonate polyols and polyether ester polyols,
- a catalyst component D) at least containing a catalytically active compound D1) having Zerewitinoff-active hydrogens,
- assistant and additive substances E) comprising no cell-opening compound,
and
- a blowing agent component C),
characterized in that the proportion of all primary OH functions present in the isocyanate-reactive component A) based on the total number of terminal OH functions in the component A) is at least 30% and in that the blowing agent component C) contains formic acid.
- an isocyanate-reactive component A) comprising
- The present invention also provides the foam-forming reaction mixture R) produced with the polyol formulation P) according to the invention and further comprising at least one polyisocyanate component B).
- The invention further provides a process for producing rigid PUR/PIR foams having an apparent density of 25-300 kg/m3, preferably 30-200 kg/m3, particularly preferably 40-130 kg/m3, an open-cell content of >70%, in particular >90%, very particularly preferably ≥94%, and having an average cell diameter of 180 μm, in particular <160 μm and very particularly preferably <100 μm comprising the steps of
- i) producing the inventive foam-forming reaction mixture R) containing the polyol formulation P) and at least one polyisocyanate component B),
- ii) introducing the foam-forming reaction mixture R) into a mold,
- iii) foaming the reaction mixture R) and
- iv) demolding the rigid PUR/PIR foam.
- Terms used in the present application are defined as follows:
- The isocyanate index (also known as the index) is to be understood as meaning the quotient of the actually employed amount of substance [mol] of isocyanate groups and the actually employed amount of substance [mol] of isocyanate-reactive groups, multiplied by 100:
-
Index=(mols of isocyanate groups/mols of isocyanate-reactive groups)*100. - In the context of the present application the “functionality” or “f” of a component mixture is to be understood as meaning the respective number-average functionality of the mixture to which the indication refers. Thus for example the functionality of the polyol component A1) is to be understood as meaning the number-average functionality of the mixture of the polyols present in the component A1 based on all isocyanate-reactive functions present.
- In the context of the present application “molar weight” or “molar mass” or “Mn” is in each case to be understood as meaning the number-weighted average molar mass.
- In the case of a single added polyol the OH number (also known as hydroxyl number) specifies the OH number of said polyol. Reported OH numbers for mixtures relate to the number-average OH number of the mixture calculated from the OH numbers of the individual components in their respective molar proportions. The OH number specifies the amount of potassium hydroxide in milligrams which is equivalent in an acetylation to the acetic acid quantity bound by one gram of substance. In the context of the present invention said number is determined according to the standard DIN 53240-2 (as at November 2007).
- The isocyanate-reactive component A) contains at least one polyol component A1) selected from the group consisting of polyether polyols, polyester polyols, polyether ester polyols, polycarbonate polyols and polyether polycarbonate polyols.
- The proportion of primary OH functions based on the total number of terminal OH functions of all polyols employed in the component A) is at least 30%, preferably at least 35%, especially preferably at least 38%.
- The polyol component A1) has the further feature that it has a functionality f of >2.5, preferably ≥2.6-≤6.5 and particularly preferably ≥2.8-≤6.1. Polyol formulations in which the polyol component A1) has a functionality in these ranges provide an optimal viscosity increase until decompression of the counterpressure during injection and allow faster demolding of the foams.
- The polyol component A1) preferably has a hydroxyl number of 280-600 mg KOH/g, particularly preferably of 300-580 mg KOH/g and especially preferably of 350-540 mg KOH/g. This has a particularly advantageous effect on the mechanical properties of the foams.
- In the context of the present application “a polyether polyol” may also be a mixture of different polyether polyols, this also applying analogously to the other polyols recited here.
- The polyether polyols employable according to the invention are the polyether polyols employable in polyurethane synthesis and known to those skilled in the art.
- Employable polyether polyols are for example polytetramethylene glycol polyethers such as are obtainable by polymerization of tetrahydrofuran by cationic ring opening.
- Likewise suitable polyether polyols are addition products of styrene oxide, ethylene oxide, propylene oxide, butylene oxide and/or epichlorohydrin onto di- or polyfunctional starter molecules. The addition of ethylene oxide and propylene oxide is especially preferred. Suitable starter molecules are for example water, ethylene glycol, diethylene glycol, butyl diglycol, glycerol, diethylene glycol, trimethylolpropane, propylene glycol, pentaerythritol, sorbitol, sucrose, ethylenediamine, toluenediamine, triethanolamine, bisphenols, in particular 4,4′-methylenebisphenol, 4,4′-(1-methylethylidene)bisphenol, 1,4-butanediol, 1,6-hexanediol and low molecular weight hydroxyl-containing esters of such polyols with dicarboxylic acids and oligoethers of such polyols.
- It is preferable when based on its total weight the isocyanate-reactive component A) contains at least 50% by weight, preferably at least 60% by weight, especially preferably at least 70% by weight, of polyether polyol. In a preferred embodiment the component A1) consists of polyether polyol to an extent of 100% by weight. These preferred embodiments feature particularly good hydrolysis stability.
- Employable polyether ester polyols are compounds containing ether groups, ester groups and OH groups. Organic dicarboxylic acids having up to 12 carbon atoms are suitable for producing the polyether ester polyols, preferably aliphatic dicarboxylic acids having ≥4 to ≤6 carbon atoms or aromatic dicarboxylic acids used singly or in admixture. Examples include suberic acid, azelaic acid, decanedicarboxylic acid, maleic acid, malonic acid, phthalic acid, pimelic acid and sebacic acid and in particular glutaric acid, fumaric acid, succinic acid, adipic acid, phthalic acid, terephthalic acid and isoterephthalic acid. Also employable in addition to organic dicarboxylic acids are derivatives of these acids, for example their anhydrides and also their esters and monoesters with low molecular weight monofunctional alcohols having ≥1 to ≤4 carbon atoms. The use of proportions of the abovementioned bio-based starting materials, in particular of fatty acids/fatty acid derivatives (oleic acid, soybean oil etc.), is likewise possible and can have advantages, for example in respect of storage stability of the polyol formulation, dimensional stability, fire characteristics and compressive strength of the foams.
- Polyether polyols obtained by alkoxylation of starter molecules such as polyhydric alcohols are a further component used for producing polyether ester polyols. The starter molecules are at least difunctional, but may optionally also contain proportions of higher-functional, in particular trifunctional, starter molecules.
- Starter molecules include for example diols having number-average molecular weights Mn of preferably ≥18 g/mol to ≤400 g/mol, preferably of ≥62 g/mol to ≤200 g/mol, such as 1,2-ethanediol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,5-pentenediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,10-decanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2-butyl-2-ethyl-1,3-propanediol, 2-butene-1,4-diol and 2-butyne-1,4-diol, ether diols such as diethylene glycol, triethylene glycol, tetraethylene glycol, dibutylene glycol, tributylene glycol, tetrabutylene glycol, dihexylene glycol, trihexylene glycol, tetrahexylene glycol and oligomeric mixtures of alkylene glycols, such as diethylene glycol. Starter molecules having functionalities distinct from OH may also be employed alone or in admixture.
- In addition to the diols compounds having >2 Zerewitinoff-active hydrogens, in particular having number-average functionalities of >2 to ≤8, in particular of ≥3 to ≤6, may also be co-used as starter molecules for producing the polyethers, for example 1,1,1-trimethylolpropane, triethanolamine, glycerol, sorbitan and pentaerythritol and also triol- or tetraol-started polyethylene oxide polyols having average molar masses Mn of preferably ≥62 g/mol to ≤400 g/mol, in particular of ≥92 g/mol to ≤200 g/mol.
- Polyether ester polyols may also be produced by alkoxylation, in particular by ethoxylation and/or propoxylation, of reaction products obtained by the reaction of organic dicarboxylic acids and their derivatives and components with Zerewitinoff-active hydrogens, in particular diols and polyols. Derivatives of these acids that may be used include, for example, their anhydrides, for example phthalic anhydride.
- Suitable polyester polyols are inter alia polycondensates of di- and also tri- and tetraols and di- and also tri- and tetracarboxylic acids or hydroxycarboxylic acids or lactones. Also employable instead of the free polycarboxylic acids are the corresponding polycarboxylic anhydrides or corresponding polycarboxylic esters of lower alcohols to prepare the polyesters.
- Examples of suitable diols are ethylene glycol, butylene glycol, diethylene glycol, triethylene glycol, polyalkylene glycols such as polyethylene glycols and also 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol and isomers, neopentyl glycol or neopentyl glycol hydroxypivalate. Also employable in addition are polyols such as trimethylolpropane, glycerol, erythritol, pentaerythritol, trimethylolbenzene or trishydroxyethyl isocyanurate.
- Additional co-use of monohydric alkanols is also possible.
- Examples of polycarboxylic acids that may be used include phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, cyclohexanedicarboxylic acid, adipic acid, azelaic acid, sebacic acid, glutaric acid, tetrachlorophthalic acid, maleic acid, fumaric acid, itaconic acid, malonic acid, suberic acid, succinic acid, 2-methylsuccinic acid, 3,3-diethylglutaric acid, 2,2-dimethylsuccinic acid, dodecanedioic acid, endomethylenetetrahydrophthalic acid, dimer fatty acid, trimer fatty acid, citric acid, or trimellitic acid. It is also possible to use the corresponding anhydrides as an acid source.
- Additional co-use of monocarboxylic acids such as benzoic acid and alkanecarboxylic acids is also possible.
- Hydroxycarboxylic acids that may be co-used as co-reactants in the production of a polyester polyol having terminal hydroxyl groups include for example hydroxycaproic acid, hydroxybutyric acid, hydroxydecanoic acid, hydroxystearic acid and the like. Suitable lactones include caprolactone, butyrolactone and homologs.
- Suitable compounds for producing the polyester polyols also include in particular bio-based starting materials and/or derivatives thereof, for example castor oil, polyhydroxy fatty acids, ricinoleic acid, hydroxyl-modified oils, grapeseed oil, black cumin oil, pumpkin kernel oil, borage seed oil, soybean oil, wheat germ oil, rapeseed oil, sunflower kernel oil, peanut oil, apricot kernel oil, pistachio oil, almond oil, olive oil, macadamia nut oil, avocado oil, sea buckthorn oil, sesame oil, hemp oil, hazelnut oil, primula oil, wild rose oil, safflower oil, walnut oil, fatty acids, hydroxyl-modified fatty acids and epoxidized fatty acids and fatty acid esters, for example based on myristoleic acid, palmitoleic acid, oleic acid, vaccenic acid, petroselic acid, gadoleic acid, erucic acid, nervonic acid, linoleic acid, alpha- and gamma-linolenic acid, stearidonic acid, arachidonic acid, timnodonic acid, clupanodonic acid and cervonic acid. Especially preferred are esters of ricinoleic acid with polyfunctional alcohols, for example glycerol. Also preferred is the use of mixtures of such bio-based acids with other carboxylic acids, for example phthalic acids.
- Polycarbonate polyols that may be used are hydroxyl-containing polycarbonates, for example polycarbonate diols. These are obtainable by reaction of carbonic acid derivatives, such as diphenyl carbonate, dimethyl carbonate or phosgene, with polyols, preferably diols, or by copolymerization of alkylene oxides, for example propylene oxide, with CO2.
- Examples of such diols include ethylene glycol, 1,2- and 1,3-propanediol, 1,3- and 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, neopentyl glycol, 1,4-bishydroxymethylcyclohexane, 2-methyl-1,3-propanediol, 2,2,4-trimethylpentane-1,3-diol, dipropylene glycol, polypropylene glycols, dibutylene glycol, polybutylene glycols, bisphenol A, and lactone-modified diols of the abovementioned type.
- Also employable instead of or in addition to pure polycarbonate diols are polyether-polycarbonate diols obtainable for example by copolymerization of alkylene oxides, such as for example propylene oxide, with CO2.
- Production processes of the polyols are described for example by Ionescu in “Chemistry and Technology of Polyols for Polyurethanes”, Rapra Technology Limited, Shawbury 2005, p. 55 et seq. (chapt. 4: Oligo-polyols for Elastic Polyurethanes), p. 263 et seq. (chapt. 8: Polyester Polyols for Elastic Polyurethanes) and in particular to p. 321 et seq. (chapt. 13: Polyether Polyols for Rigid Polyurethane Foams) and p. 419 et seq. (chapt. 16: Polyester Polyols for Rigid Polyurethane Foams). It is also possible to obtain polyester and polyether polyols by glycolysis of suitable polymer recyclates. Suitable polyether-polycarbonate polyols and the production thereof are described for example in EP 2910585 A, [0024]-[0041]. Examples of polycarbonate polyols and production thereof may be found inter alia in EP 1359177 A. Production of suitable polyether ester polyols is described inter alia in WO 2010/043624 A and in EP 1 923 417 A.
- Polyether polyols, polyethercarbonate polyols and polyether ester polyols having a high proportion of primary OH functions are obtained when the alkylene oxides used for alkoxylation comprise a high proportion of ethylene oxide. The molar proportion of ethylene oxide structures based on the entirety of the alkylene oxide structures present in the polyols of the component A1 is at least 50 mol %. The use of 100 mol % of ethylene oxide is likewise a preferred embodiment.
- The isocyanate-reactive component A) may further contain low molecular weight isocyanate-reactive compounds A2), in particular di- or trifunctional amines and alcohols, particularly preferably diols and/or triols having molar masses Mn of less than 400 g/mol, preferably of 60 to 300 g/mol, for example triethanolamine, diethylene glycol, ethylene glycol, glycerol, may be employed. Provided such low molecular weight isocyanate-reactive compounds are used for producing the rigid polyurethane foams, for example as chain extenders and/or crosslinking agents, and these do not also fall under the definition of component A1), they are advantageously employed in an amount of up to 5% by weight based on the total weight of the component A).
- In addition to the above-described polyols and isocyanate-reactive compounds the component A) may contain further isocyanate-reactive compounds A3), for example graft polyols, polyamines, polyamino alcohols and polythiols. It will be appreciated that the described isocyanate-reactive components also comprise compounds having mixed functionalities.
- A preferred isocyanate-reactive component A) consists to an extent of at least 65% by weight, in particular at least 80% by weight and very particularly preferably to an extent of at least 90% by weight of the polyol component A1) which has a hydroxyl number between 280 to 600 mg KOH/g and a functionality of ≥2.8 to ≤6.0, and the proportion of primary OH functions in the component A) is at least 35% (based on all terminal OH functions in the component A).
- The polyol formulation P) optionally contains assistant and additive substances E). The assistant and additive substances contain no cell-opening compounds.
- Cell-opening compounds are described for example in Kunststoff-Handbuch, volume 7, Polyurethane, Carl Hanser Verlag, Munich/Vienna, 3rd edition, 1993, pages 104-127.
- The reaction mixture contains no cell-opening compounds, in particular no cell-opening compounds based on polybutadiene.
- Further assistant and additive substances E) that may be employed in the process according to the invention are the customary assistant and additive substances known from the prior art and to the person skilled in the art. These include for example surface-active substances, stabilizers, in particular foam stabilizers, cell regulators, fillers, dyes, pigments, flame retardants, antistats, antihydrolysis agents and/or fungistatic and bacteriostatic substances.
- Employable stabilizers are saturated and unsaturated hydrocarbons such as paraffins, fatty alcohols and esters, for example esters of carboxylic acids.
- The component A) preferably contains in total not more than 3% by weight of stabilizers.
- Also employable as stabilizers are surfactants, for example alkoxylated alkanols such as ethers of linear or branched alkanols having ≥6 to ≤30 carbon atoms with polyalkylene glycols having >5 to ≤100 alkylene oxide units, alkoxylated alkylphenols, alkoxylated fatty acids, carboxylic esters of an alkoxylated sorbitan (especially Polysorbate 80), fatty acid esters, polyalkyleneamines, alkyl sulfates, phosphatidylinositols, fluorinated surfactants, surfactants comprising polysiloxane groups and/or bis(2-ethyl-1-hexyl) sulfosuccinate. Fluorinated surfactants may be perfluorinated or partially fluorinated. Examples thereof are partially fluorinated ethoxylated alkanols or carboxylic acids.
- The component A) preferably contains a total of not more than 5% by weight of surfactants, especially preferably not more than 3% by weight, more preferably less than 2% by weight and especially preferably not more than 1.6% by weight of surfactants based on the total weight of the component A).
- Catalysts D) are employed for the production of the rigid PUR/PIR foam. Typically employed as catalysts D) are compounds which accelerate the reaction of hydroxyl group-containing/isocyanate-reactive group-containing compounds of the components with the isocyanate groups of the component B.
- The catalysts D) contain D1) at least one catalytically active amine compound having functional groups which comprise Zerewitinoff-active hydrogens and can therefore react with isocyanate (so-called “incorporable catalysts”). Examples of employable incorporable catalysts are bis(dimethylaminopropyl)urea, bis(N,N-dimethylaminoethoxyethyl)carbamate, dimethylaminopropylurea, N,N,N-trimethyl-N-hydroxyethylbis(aminopropyl ether), N,N,N-trimethyl-N-hydroxyethylbis(aminoethyl ether), diethylethanolamine, bis(N,N-dimethyl-3-aminopropyl)amine, dimethylaminopropylamine, 3-dimethyaminopropyl-N,N-dimethylpropane-1,3-diamine, dimethyl-2-(2-aminoethoxyethanol) and (1,3-bis(dimethylamino)propan-2-ol), N,N-bis(3-dimethylaminopropyl)-N-isopropanolamine, bis(dimethylaminopropyl)-2-hydroxyethylamine, N,N,N-trimethyl-N-3-aminopropylbis(aminoethyl ether), 3-dimethylaminoisopropyldiisopropanolamine or mixtures thereof.
- In a preferred embodiment the catalysts D1) are employed in an amount of ≥0.01% to <2% by weight based on the total weight of the component A).
- Also employable are one or more further catalyst compounds D2), especially the catalytically active compounds known for PUR/PIR chemistry, including not only further amine compounds but also salts such as for example tin (II) acetate, tin (II) octoate, tin (II) ethylhexoate, tin (II) laurate, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin maleate, dioctyltin diacetate, tris(N,N-dimethylaminopropyl)-s-hexahydrotriazine, tetramethylammonium hydroxide, sodium acetate, sodium octoate, potassium acetate, potassium octoate, sodium hydroxide.
- The catalysts D) are generally employed in an amount from 0.001 to 5% by weight, in particular from 0.05 to 2.5% by weight, based on the weight of the component A. It is particularly preferable when the catalysts D) contain both incorporable catalysts D1) and non-incorporable catalysts D2). It is especially preferable when incorporable amine compounds and catalytically active salts are employed in combination.
- The catalysts D1) and D2) are preferably employed in a molar ratio D1/D2 of 0.1 to 16.3, particularly preferably of 0.3 to 10 and very particularly preferably of 0.8 to 6.0. It is preferable when the catalyst component D) contains as the catalytically active compound D1) an amine compound incorporable into the polyurethane and also the non-catalytically active compound D2) which is a catalytically active salt not incorporable into the polyurethane and the molar ratio of D1/D2 is 0.1 to 16.3, particularly preferably from 0.3 to 10 and very particularly preferably from 0.8 to 6.0. In a particularly preferred embodiment 3-(dimethylamino)propylurea and potassium acetate are employed in a molar ratio D1/D2 of 0.1 to 6.0, particularly preferably of 0.3 to 10 and very particularly preferably of 0.8 to 6.0. The preferred catalyst ratios/catalysts particularly advantageously bring about a defined viscosity increase.
- Production of the rigid PUR/PIR foam employs a blowing agent component C). Blowing agents may be distinguished into chemical and physical blowing agents.
- At least formic acid which belongs to the group of chemical blowing agents is employed as blowing agent C). It is preferable when the formic acid is employed in an amount of 0.5-6% by weight, particularly preferably of 0.5% to 4% by weight, based on the total amount of compounds having isocyanate-reactive hydrogen atoms in the foam-forming reaction mixture R). Formic acid is often employed in common in a mixture with water. If a formic acid/water mixture is employed a ratio of formic acid:water ≥0.5 is particularly preferred. In addition to formic acid and optionally water, other chemical blowing agents can also be added.
- In addition, the blowing agent component C) may further comprise physical blowing agents. In the context of the present invention “physical blowing agents” are to be understood as meaning compounds which on account of their physical properties are volatile and unreactive toward the isocyanate component.
- It is preferable when the physical blowing agents are selected from hydrocarbons (for example n-pentane, isopentane, cyclopentane, butane, isobutane, propane), ethers (for example methylal), halogenated ethers, perfluorinated and partially fluorinated hydrocarbons having 1 to 8 carbon atoms, for example perfluorohexane, HFC 245fa (1,1,1,3,3-pentafluoropropane), HFC 365mfc (1,1,1,3,3-pentafluorobutane), HFC 134a or mixtures thereof are used, and also (hydro)fluorinated olefins, for example HFO 1233zd(E) (trans-1-chloro-3,3,3-trifluoro-1-propene) or HFO 1336mzz(Z) (cis-1,1,1,4,4,4-hexafluoro-2-butene) or additives such as FA 188 from 3M (1,1,1,2,3,4,5,5,5-nonafluoro-4-(trifluoromethyl)pent-2-ene), and also mixtures thereof with one another.
- A preferred embodiment employs as blowing agent component C) formic acid and a pentane isomer or a mixture of different pentane isomers, in particular a mixture of cyclopentane and isopentane, as blowing agent component C).
- In a preferred embodiment the formic acid or the formic acid/water mixture is mixed with the further components (A, D, E) of the polyol formulation P) before the optional addition of physical blowing agents and the reaction with the isocyanate component. It is preferable to establish a concentration of 0.5-6 parts of formic acid in 100 parts of polyol formulation P).
- The blowing agent component C) is altogether employed in an amount sufficient to achieve a dimensionally stable foam matrix and the desired apparent density. This is generally 0.5-30 parts by weight of blowing agent based on 100 parts by weight of the component A.
- The proportion of formic acid in the total blowing agent component C) preferably contains 20-100% by weight, particularly preferably 60-100% by weight and very particularly preferably 80-95% by weight based on the total weight of the blowing agent component C).
- A further preferred embodiment employs not only the formic acid and optionally water but also as a further blowing agent component a physical blowing agent which is in the supercritical or near critical state.
- This physical blowing agent may be selected from the group comprising linear, branched or cyclic C1- to C6-hydrocarbons, linear, branched or cyclic C1- to C6-hydrofluorocarbons, N2, O2, argon and/or CO2. CO2 in the supercritical or near critical state is especially preferred. Conditions are near-critical in the context of the present invention when the following condition is satisfied: (Tc−T)/T≤0.4 and/or (pc−p)/p≤0.4. Here, T is the temperature prevailing in the process, Tc is the critical temperature of the blowing agent or blowing agent mixture, p is the pressure prevailing in the process and pc is the critical pressure for the blowing agent or blowing agent mixture.
- Conditions are preferably near-critical when: (Tc−T)/T≤0.3 and/or (pc−p)/p≤0.3 and particularly preferably (Tc−T)/T≤0.2 and/or (pc−p)/p≤0.2.
- Particularly suitable conditions for performing the process according to the invention when using CO2 are pressures and temperatures above the critical point of CO2, i.e. ≥73.7 bar and ≥30.9° C., preferably between 74 bar and 350 bar and between 31° C. and 100° C., particularly preferably between 75 bar and 200 bar and between 32° C. and 60° C. When supercritical CO2 is employed the content of blowing agent component C) is for example ≥2% by weight to ≤20% by weight based on the total weight of the mixture. Preferred proportions are ≥5% by weight to ≤15% by weight and particularly preferred proportions are ≥6% by weight to ≤11% by weight.
- It is also possible to employ a mixture of supercritical CO2 and other physical blowing agents, in particular selected from the blowing agents specified as preferred hereinabove. When further physical blowing agents are added these preferably contain more than 60% by weight of carbon dioxide, particularly preferably more than 75% by weight, in one embodiment.
- The proportion of blowing agent component C) at least containing formic acid in the mixture of the components A), C), D) and E) is generally ≥1% by weight to ≤30% by weight, preferably ≥10% by weight to ≥20% by weight; the proportion of the blowing agent in the foam-forming reaction mixture R) is 0.5% by weight to 15% by weight, preferably 5% by weight to 10% by weight.
- The component B) is a polyisocyanate, i.e. an isocyanate having an NCO functionality of ≥2. Examples of such suitable polyisocyanates include 1,4-butylene diisocyanate, 1,5-pentane diisocyanate, 1,6-hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), 2,2,4- and/or 2,4,4-trimethylhexamethylene diisocyanate, the isomeric bis(4,4′-isocyanatocyclohexyl)methanes or their mixtures of any desired isomer content, 1,4-cyclohexylene diisocyanate, 1,4-phenylene diisocyanate, 2,4- and/or 2,6-tolylene diisocyanate (TDI), 1,5-naphthylene diisocyanate, 2,2′-and/or 2,4′- and/or 4,4′-diphenylmethane diisocyanate (MDI) and/or higher homologs, 1,3- and/or 1,4-bis(2-isocyanatoprop-2-yl)benzene (TMXDI), 1,3-bis(isocyanatomethyl)benzene (XDI) and also alkyl 2,6-diisocyanatohexanoates (lysine diisocyanates) having C1 to C6-alkyl groups.
- Preferably employed as the isocyanate component B) are mixtures of the isomers of diphenylmethane diisocyanate (“monomeric MDI”, “mMDI” for short) and oligomers thereof (“oligomeric MDI”). Mixtures of monomeric MDI and oligomeric MDI are generally described as “polymeric MDI” (pMDI). The oligomers of MDI are higher-nuclear polyphenylpolymethylene polyisocyanates, i.e. mixtures of the higher-nuclear homologs of diphenylmethylene diisocyanate which have an NCO functionality f>2 and have the following structural formula: C15H10N2O2 [C8H5NO]n, wherein n=integer>0, preferably n=1, 2, 3 and 4. Higher-nuclear homologs C15H10N2O2 [C8H5NO]m, m=integer≥4) may likewise be present in the mixture of organic polyisocyanates a). Likewise preferred as the isocyanate component B) are mixtures of mMDI and/or pMDI comprising at most up to 20% by weight, more preferably at most 10% by weight, of further aliphatic, cycloaliphatic and especially aromatic polyisocyanates known for the production of polyurethanes, very particularly TDI.
- In addition to the abovementioned polyisocyanates it is also possible to co-use proportions of modified diisocyanates having a uretdione, isocyanurate, urethane, carbodiimide, uretonimine, allophanate, biuret, amide, iminooxadiazinedione and/or oxadiazinetrione structure and also unmodified polyisocyanate having more than 2 NCO groups per molecule, for example 4-isocyanatomethyl-1,8-octane diisocyanate (nonane triisocyanate) or triphenylmethane 4,4′,4″-triisocyanate.
- Also employable instead of or in addition to the abovementioned polyisocyanates as the organic isocyanate component B) are suitable NCO prepolymers. The prepolymers are producible by reaction of one or more polyisocyanates with one or more polyols corresponding to the polyols described under the components A1) and A2).
- The isocyanate may be a prepolymer obtainable by reacting an isocyanate having an NCO functionality of ≥2 and polyols having a molecular weight of ≥62 g/mol to ≤8000 g/mol and OH functionalities of ≥1.5 to ≤6.
- The NCO content is preferably from ≥29.0% by weight to ≤32.0% by weight and preferably has a viscosity at 25° C. of ≥80 mPas to ≤2000 mPas, particularly preferably of ≥100 mPas to ≤800 mPas (dynamic viscosity determined according to DIN 53019 at 25° C.).
- The number of NCO groups in the polyisocyanate component B) and the number of isocyanate-reactive groups in the component A) may be in a numerical ratio to one another of ≥50:100 to ≤500:100 for example. The rigid polyurethane foams are produced generally by reacting the components A) and B) in amounts such that the isocyanate index in the formulation is 80-150, preferably 90-130, particularly preferably 95-110. In this range urethane groups are preferably formed. In another preferred embodiment the isocyanate index is 150-400. In this range the foams comprise a high proportion of isocyanurate functions which bring about for example an inherent flame retardancy of the foams.
- The invention further provides a process for producing rigid PUR/PIR foams having an apparent density of 25-300 kg/m3, preferably 30-200 kg/m3, particularly preferably 40-130 kg/m3, an open-cell content of >70%, in particular >90%, very particularly preferably ≥94%, and having an average cell diameter of 180 μm, in particular <160 μm and very particularly preferably <100 comprising the steps of
- i) producing the inventive foam-forming reaction mixture R),
- ii) introducing the reaction mixture R) into a mold,
- iii) foaming the reaction mixture R) and
- iv) demolding the rigid PUR/PIR foam.
- In step i) of the process according to the invention the foam-forming reaction mixture R) is produced from the components A)-E).
- To this end the mixture comprising the components A), D), E) may be initially charged for example in a vessel together with the formic acid or the formic acid/water mixture, then optionally mixed with the further blowing agent components C) and admixed with the polyisocyanate B). The mixing of the components may also be effected in a mixing head.
- The mixing, in particular with optionally present physical blowing agent components C) and with B) may be effected under pressure. In a preferred embodiment the components A), D), E) and C) are mixed with the component B) in a high-pressure mixing head.
- When in addition to the formic acid or the formic acid/water mixture CO2 in the supercritical state is employed as a further blowing agent component the reaction of the components is preferably carried out under conditions supercritical for CO2. In this case suitable pressures in the mixing head and/or in the discharge conduit/the discharge conduits for producing the polyurethane foam are for example in the range from ≥73.7 bar to ≤350 bar and preferably in the range from ≥75 bar to ≤200 bar. Suitable temperatures are for example ≤30.9° C. to ≤100° C. and preferably ≤32° C. to ≤60° C. At such pressures supercritical conditions for the employed blowing agent may be maintained.
- In a further embodiment the residence time of the mixture in the mixing head under supercritical conditions for the blowing agent is ≥0 seconds to ≤20 seconds, preferably from ≥0.1 seconds to ≤10 seconds and particularly preferably from ≤0.5 seconds to ≤5 seconds. This has the result that the mixture can polymerize under supercritical conditions. The residence time may be determined by the volume of the reaction chamber (=mixing chamber and/or conduits) in which supercritical conditions prevail divided by the volume of the mixture conveyed in a particular unit time.
- In step ii) of the process according to the invention the inventive foam-forming reaction mixture R) composed of the components A)-E) is introduced into a mold.
- In a preferred embodiment the mold is a closed mold, wherein the counterpressure in the mold during injection is 2-90 bar, preferably 2-80 bar, particularly preferably 5 - 40 bar.
- Possible embodiments therefor are as follows: The counterpressure is achieved by pressurizing the mold with gas (compressed air or nitrogen) either directly and/or via a floating seal, which divides the pressurized space into a gas space and a reaction space, and is established, held and finally decompressed via a proportional valve.
- In step iii) of the process the reaction mixture is foamed.
- In the case where the reaction mixture was injected into a mold under counterpressure a preferred embodiment of step iii) is as follows:
- After termination of step ii) the pressure in the mold is kept constant for a period 1 which is preferably 1-40 seconds, particularly preferably 5-20 seconds and very particularly preferably 8-17 seconds, wherein the viscosity of the reaction mixture initially increases without foaming It has been found that holding the pressure for the preferred period results in particularly advantageous viscosity ranges of the mixture for this reaction section. Once the period 1 has elapsed the mold is decompressed. The releasing of the pressure from the mold is carried out over a period 2 at a pressure release rate of 1-90 bar/s, preferably 1-80 bar/s, particularly preferably 2-70 bar/s. The releasing may be effected in particular via a proportional valve. The reaction mixture is foamed over period 2. An excessively fast releasing has a negative effect on cell stability and excessively slow releasing has a negative effect on the foaming reaction.
- In step iv) of the process the rigid PUR/PIR foam is demolded.
- One particularly preferred embodiment of the process according to the invention comprises the steps of:
- i) producing a foaming reaction mixture R) from
- an isocyanate-reactive component A) containing at least one polyol component Al) selected from the group consisting of polyether polyols, polyester polyols, polycarbonate polyols, polyether polycarbonate polyols and polyether ester polyols which has an OH functionality F of >2.5,
- at least one polyisocyanate component B),
- a blowing agent component C),
- a catalyst component D) at least containing a catalytically active compound D1) having Zerewitinoff-active hydrogens,
- assistant and additive substances E) comprising no cell-opening compound or at least one cell-opening compound,
- wherein the proportion of all primary OH functions present in the isocyanate-reactive component A) based on the total number of terminal OH functions in the component A) is at least 30% and the blowing agent component C) contains formic acid,
- ii) introducing the foaming reaction mixture R) into a closed mold, wherein the counterpressure in the mold during injection is 2-90 bar,
- iii) holding the pressure in the mold for a period 1 of 1-40 s after termination of step ii) and subsequently releasing the pressure from the mold over a period 2 at a pressure release rate of 1-90 bar/s,
- iv) demolding the rigid PUR/PIR foam.
- The present invention further provides a rigid PUR/PIR foam obtainable or obtained by the process according to the invention.
- The process according to the invention makes it possible to obtain rigid PUR/PIR foams having an apparent density of 25-300 kg/m3, preferably 30-200 kg/m3, particularly preferably 40-130 kg/m3, which simultaneously have many open and particularly small cells. It is thus possible to produce rigid foams having an open-cell content of >70%, in particular >90%, very particularly preferably ≥94%, where the cells exhibit an average diameter of 180 μm, in particular <160 μm and very particularly preferably <100 μm. In a particularly preferred embodiment the cells have an average cell size <90 μm and an open-cell content of >94%. The foams have good mechanical properties, for example good compressive strengths.
- The PUR/PIR foams according to the invention make it possible in preferable fashion to produce foamed moldings and composite systems containing these moldings. The composite systems are often delimited both on the top surface and on the bottom surface by decorative layers. Suitable decorative layers include inter alia metals, plastics, wood and paper. Suitable fields of application of such discontinuously produced PUR/PIR composite systems include in particular industrial insulation of appliances such as refrigerators, chest freezers, fridge-freezers and boilers, cool containers and coolboxes and also of pipes.
- The use of PUR/PIR foams in these fields is known per se to those skilled in the art and has already been described on many occasions. The PUR/PIR foams according to the invention are exceptionally suitable for these purposes since on account of their fine-cell content they feature low coefficients of thermal conductivity which can be still further enhanced by application of a vacuum.
- The invention further relates to a refrigerator, a freezer or a fridge-freezer comprising a rigid PUR/PIR foam obtainable according to the invention, wherein the provided mold is in particular a housing part of the refrigerator, the freezer or the fridge-freezer. The invention shall be more particularly elucidated with reference to the examples and comparative examples which follow.
- The comparative examples and examples which follow are intended to more particularly elucidate the invention without limiting it.
- Determination of apparent density: Foams composed of rubber and plastics—determination of apparent density (ISO 845:2006); German version EN ISO 845:2009
- Determination of open-cell content: Determination of the volume fraction of open and closed cells (ISO 4590:2002); German version EN ISO 4590:2003
- Determination of compressive strength: Rigid foams—determination of pressure properties (ISO 844:2014); German version EN ISO 844:2014
- Determination of OH number: Determination of hydroxyl number—part 2: Method with catalyst according to DIN 53240-2, as at November 2007
- Determination of cell size: Optical microscopy evaluation via VHX 5000 optical microscope; the test specimen to be measured is analyzed at 3 different points in each case over a circular region having a diameter of 5 mm. The resolution is chosen such that the selected region captures around 100 cells. 100 cells are then measured and the smallest and largest cell diameter as well as the average cell diameter are calculated.
- The specified proportion of primary OH functions in [%] in table 1 relates to the proportion of primary OH functions based on the total number of OH functions in the mixture of the polyols present in the formulation.
- Production of the foams according to examples 1 (inventive) and examples 2-4 (comparative) employed the following substances:
- Polyol 1: Polyether polyol based on trimethylolpropane and propylene oxide having a hydroxyl number of 800 mg KOH/g, a functionality of 3 and a viscosity of 6100 mPas at 25° C.
- Polyol 2: Polyether polyol based on trimethylolpropane and ethylene oxide having a hydroxyl number of 550 mg KOH/g, a functionality of 3 and a viscosity of 505 mPas at 25° C.
- Polyol 3: Polyether polyol based on trimethylolpropane and propylene oxide having a hydroxyl number of 550 mg KOH/g, a functionality of 3 and a viscosity of 1800 mPas at 25° C.
- Polyol 4: Polyether polyol based on 1,2-propanediol and propylene oxide having a hydroxyl number of 56 mg KOH/g, a functionality of 2 and a viscosity of 310 mPas at 25° C.
- Polyol 5: Polyether polyol based on 1,2-propanediol and propylene oxide having a hydroxyl number of 112 mg KOH/g, a functionality of 2 and a viscosity of 140 mPas at 25° C.
- Polyol 6: Polyether polyol based on glycerol and propylene oxide having a hydroxyl number of 231 mg KOH/g, a functionality of 3 and a viscosity of 350 mPas at 20° C.
- Polyol 7: Polyether polyol based on glycerol and saccharose and propylene oxide having a hydroxyl number of 470 mg KOH/g and a functionality of 4.9
- Polyol 8: Polyether polyol based on propylene glycol and propylene oxide having a hydroxyl number of 260 mg KOH/g and a functionality of 2
- B 8443: Foam stabilizer (Evonik)
- B 8870: Foam stabilizer (Evonik)
- Ortegol 500: Cell opener (Evonik)
- Ortegol 501: Cell opener (Evonik)
- Potassium acetate/DEG: Catalyst, 25% potassium acetate in diethylene glycol (Covestro)
- Dabco NE1070: Catalyst, about 60% 3-(dimethylamino)propylurea in diethylene glycol (Air Products)
- Polycat 58: Catalyst (Air Products)
- Potassium acetate/EG: Catalyst, 25% potassium acetate in ethylene glycol c-/i-Pentane mixture: Mixture of cyclopentane and isopentane in a 70:30 weight ratio, physical blowing agent
- Water: Blowing agent
- Formic acid: Blowing agent, 95% formic acid
- Isocyanate 1: Mixture of monomeric and polymeric MDI having a viscosity of about 290 m Pa*s at 20° C. (Desmodur 44V20L, Covestro)
- Isocyanate 2: Mixture of monomeric and polymeric MDI having a viscosity of about 1070 m Pa*s at 20° C. (Desmodur 44V70L, Covestro)
- To produce free-rise polyurethane foams in the laboratory 200 g of the respective polyol formulation composed of the isocyanate-reactive compounds, stabilizers, catalysts, formic acid or physical blowing agents, listed in table 1 below, were weighed in and homogenized using a stirrer. The thus-obtained isocyanate-reactive composition was mixed with the appropriate amount of isocyanate using a Pendraulik stirrer for 10 seconds at 23° C. and poured into an open-top mold (20 cm×20 cm×18 cm). The precise formulations including the results of appropriate physical tests are summarized in table 1.
-
TABLE 1 Example 1 2* 3* 4* Formulation Polyol 1 13.00 — 13.00 13.00 Polyol 2 32.50 — 32.50 — Polyol 3 — — — 32.50 Polyol 4 13.50 44.1 13.50 13.50 Polyol 5 9.50 — 9.50 9.50 Polyol 6 27.00 — 27.00 27.00 Polyol 7 — 44.1 — — Polyol 8 — 9.15 — — Water — 0.55 — — B 8443 1.50 — 1.50 1.50 B 8870 — 0.9 — — Ortegol 500 — — 0.50 0.50 Ortegol 501 — 1.8 0.50 — Potassium — — 1.00 1.00 acetate/DEG Dabco NE1070 0.65 — 0.65 0.65 Potassium — 0.7 — — acetate/EG Polycat 58 — 0.5 — — Formic acid 2.5 — — — Polyol functionality 2.9 3.87 — — Proportion of [%] 46.0 0.0 46.0 0.0 primary OH Isocyanate 1 107.2 — 92.60 92.60 Isocyanate 2 — 197 — — n-Pentane — 6.70 6.70 c-/i-Pentane mixture — 244 — — Index NCO/OH 100 244 100 100 Free-rise foam reaction times Cream time [s] 15 120 34 50 Fiber time [s] 60 270 45 87 Rise time [s] 80 360 55 90 Tack-free time [s] 95 420 55 95 *Comparison - The obtained free-rise foams were subsequently characterized with the abovementioned methods of measurement. Their properties are summarized in table 2.
-
TABLE 2 Example 1 2* 3* 4* Apparent density kg/m3 70 63 63 63 Compressive strength at MPa 0.42 0.41 0.41 0.41 10% compression (parallel) Compressive strength at MPa 0.37 0.36 0.29 0.36 10% compression (transverse) Open-cell content % 96 93 95.6 25.6 Average cell size μm 67 137 150 126 Cell size of smallest cell μm 25 21 43 73 Cell size of largest cell μm 129 299 217 174 - Example 1 shows that the specified formulation makes it possible to produce very fine-celled rigid foams having a high proportion of open cells.
- The average cell sizes of the inventive example are markedly smaller than in the comparative examples where no formic acid was used. A comparison of example 1 and comparative example 2, the latter corresponding to example 1 from EP 2 072 548, shows that the cell size of example 1 is about 51% smaller with an average cell size of 67 μm. This is a distinct advantage in respect of the use of the foams as a core material for vacuum insulation applications since this makes it possible to achieve a lower lambda value at identical pressure.
- Example 1 further shows that even with a polyol formulation without cell-opening substances (Ortegol) foams having a higher open-cell content and a finer cell structure are obtainable when formic acid is employed as a blowing agent.
Claims (13)
1. A polyol formulation P) suitable for producing open-celled rigid PUR/PIR foams comprising
an isocyanate-reactive component A) comprising
at least one polyol component A1) having a functionality of >2.5 comprising at least one of polyether polyols, polyester polyols, polycarbonate polyols, polyether polycarbonate polyols and polyether ester polyols,
a catalyst component D) comprising a catalytically active compound D1) having Zerewitinoff-active hydrogens,
an assistant or additive substance E) excluding a cell-opening compound,
and
a blowing agent component C),
wherein the proportion of all primary OH functions present in the isocyanate-reactive component A) based on the total number of terminal OH functions in the component A) is at least 30% and
wherein the blowing agent component C) comprises formic acid.
2. The polyol formulation as claimed in claim 1 , wherein the polyol component A1) has a hydroxyl number of 280-600 mg KOH/g as determined by DIN 53240-2 (2007).
3. The polyol formulation P) as claimed in claim 1 , wherein the isocyanate-reactive component A) comprises at least 65% by weight of the polyol component A1) which has a hydroxyl number between 280 to 600 mg KOH/g and a functionality of ≥2.8 to ≤6.0 and the proportion of primary OH functions in the component A) is at least 35% based on all terminal OH functions in the component A).
4. The polyol formulation P) as claimed in claim 1 , wherein the isocyanate-reactive component A) comprises polyether polyol in an amount of at least 60% by weight.
5. The polyol formulation P) as claimed in claim 1 , wherein the polyol formulation comprises the catalytically active compound D1) in an amount of ≥0.01% to <2% by weight based on the total weight of the component A).
6. A foam-forming reaction mixture R), comprising
an isocyanate-reactive component A) comprising at least one polyol component A1) comprising at least one of polyether polyols, polyester polyols, polycarbonate polyols, polyether polycarbonate polyols and polyether ester polyols which has an OH functionality of >2.5,
at least one polyisocyanate component B),
a blowing agent component C),
a catalyst component D) comprising a catalytically active compound D1) having Zerewitinoff-active hydrogens,
an assistant or additive substance E) excluding a cell-opening compound,
wherein the proportion of all primary OH functions present in the isocyanate-reactive component A) based on the total number of terminal OH functions in the component A) is at least 30% and
wherein the blowing agent component C) comprises formic acid.
7. The foam-forming reaction mixture R) as claimed in claim 8 , wherein the content of formic acid is 0.5-6% by weight based on the total amount of compounds having isocyanate-reactive hydrogen atoms in the foam-forming reaction mixture R).
8. A process for producing rigid PUR/PIR foams having an apparent density of 25-300 kg/m3, an open-cell content of >70%, and having an average cell diameter of ≤180 μm, comprising the steps of
i) producing a foam-forming reaction mixture R) as claimed in claim 6 ,
ii) introducing the foam-forming reaction mixture R) into a mold,
iii) foaming the foam-forming reaction mixture R) and
iv) demolding a rigid PUR/PIR foam formed from the foam-forming reaction mixture R).
9. The process as claimed in claim 8 , wherein step i) is performed in a mixing head or high-pressure mixing head.
10. The process as claimed in claim 8 , wherein in step ii) the foam-forming reaction mixture R) is introduced into a closed mold, wherein a counterpressure in the mold during injection is 2-90 bar.
11. The process as claimed in claim 10 ,
wherein
in step iii) the counterpressure in the mold is held for a period 1 of 1-40 s after termination of step ii) and subsequently the counterpressure from the mold is released over a period 2 at a pressure release rate of 1-90 bar/s.
12. An open-celled rigid PUR/PIR foam obtainable by the process as claimed in claim 8 .
13. A refrigerator, freezer or a fridge-freezer comprising a rigid PUR/PIR foam as claimed in claim 12 .
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17159555.6 | 2017-03-07 | ||
EP17159555 | 2017-03-07 | ||
EP17170955.3A EP3372625A1 (en) | 2017-03-07 | 2017-05-14 | Polyurethane foam and method for its production |
EP17170955.3 | 2017-05-14 | ||
PCT/EP2018/055302 WO2018162387A1 (en) | 2017-03-07 | 2018-03-05 | Polyurethane foam and process for producing same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200080767A1 true US20200080767A1 (en) | 2020-03-12 |
Family
ID=58261577
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/490,732 Active 2038-06-20 US11168172B2 (en) | 2017-03-07 | 2018-03-05 | Polyurethane foam and process for producing same |
US16/490,745 Abandoned US20200080767A1 (en) | 2017-03-07 | 2018-03-05 | Polyurethane foam and process for producing same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/490,732 Active 2038-06-20 US11168172B2 (en) | 2017-03-07 | 2018-03-05 | Polyurethane foam and process for producing same |
Country Status (7)
Country | Link |
---|---|
US (2) | US11168172B2 (en) |
EP (3) | EP3372625A1 (en) |
JP (1) | JP7110221B2 (en) |
CN (2) | CN110382582B (en) |
HU (1) | HUE060122T2 (en) |
PL (1) | PL3592791T3 (en) |
WO (2) | WO2018162372A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11753516B2 (en) | 2021-10-08 | 2023-09-12 | Covestro Llc | HFO-containing compositions and methods of producing foams |
US11945141B2 (en) | 2020-01-17 | 2024-04-02 | Covestro Deutschland Ag | Method for producing foamed flat moldings and mold for carrying out said method |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3789417A1 (en) | 2019-09-06 | 2021-03-10 | Covestro Deutschland AG | Polyurethane-based insulation body and method for producing the same |
CN111546558A (en) * | 2020-05-19 | 2020-08-18 | 肖彩屏 | Preparation process of light multi-layer foam material |
DE102020126004A1 (en) * | 2020-10-05 | 2022-04-07 | Voith Patent Gmbh | Press jacket for a shoe press or conveyor belt with improved hydrophobicity |
CN114573787A (en) * | 2020-11-30 | 2022-06-03 | 纳米及先进材料研发院有限公司 | Porous materials for energy management |
EP4269463A1 (en) | 2022-04-26 | 2023-11-01 | Covestro Deutschland AG | Dimensionally stable, open-cell, fine-celled rigid polyurethane foams |
EP4275857A1 (en) | 2022-05-12 | 2023-11-15 | Covestro Deutschland AG | Tool for producing foams |
EP4286438A1 (en) | 2022-05-31 | 2023-12-06 | Covestro Deutschland AG | Compressed, open-cell, fine-celled pur/pir solid pu foam |
CN114940738B (en) * | 2022-06-02 | 2024-02-27 | 万华化学(宁波)容威聚氨酯有限公司 | Polyurethane composition, polyurethane foam, and preparation method and application thereof |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1189249A (en) * | 1981-07-09 | 1985-06-18 | Bernhard Liessem | Foam manufacture |
US4699932A (en) * | 1986-09-12 | 1987-10-13 | Olin Corporation | Halogenated-hydrocarbon blown, open-cell, polyurethane foam and a composition and method for the fabrication thereof |
US4910230A (en) * | 1987-12-25 | 1990-03-20 | Tosoh Corporation | Preparation of fine-cell rigid polyurethane foam using amine catalyst |
US4906672A (en) * | 1988-07-29 | 1990-03-06 | Pmc, Inc. | Blowing agents for polyurethane foam |
GB9102362D0 (en) | 1991-02-04 | 1991-03-20 | Ici Plc | Polymeric foams |
TW293827B (en) * | 1992-04-20 | 1996-12-21 | Takeda Pharm Industry Co Ltd | |
TW293022B (en) | 1992-07-27 | 1996-12-11 | Takeda Pharm Industry Co Ltd | |
US5250579A (en) | 1992-09-28 | 1993-10-05 | The Dow Chemical Company | Cellular polymer containing perforated cell windows and a process for the preparation thereof |
DE4303809C2 (en) | 1993-02-10 | 1996-03-14 | Goldschmidt Ag Th | Process for the production of largely open-cell urethane and / or isocyanurate rigid foams |
GB9324511D0 (en) * | 1993-11-30 | 1994-01-19 | Ici Plc | Process for rigid polyurethane foams |
KR100224595B1 (en) | 1997-04-26 | 1999-10-15 | 윤종용 | Open cell rigid polyurethane foam and method for producing the same and method for making vacuum insulation panel using the same |
DE19742013A1 (en) | 1997-09-24 | 1999-03-25 | Basf Ag | Open-cell rigid foams based on isocyanate |
DE19742010A1 (en) | 1997-09-24 | 1999-03-25 | Basf Ag | Storage-stable emulsions for the production of fine-celled rigid foams based on isocyanate |
DE19742568A1 (en) * | 1997-09-26 | 1999-04-01 | Basf Ag | Process for the production of fine-celled rigid foams based on isocyanate |
US5852065A (en) * | 1998-01-15 | 1998-12-22 | Air Products And Chemicals, Inc. | Low emission, cell opening surfactants for polyurethane flexible and rigid foams |
CA2323054A1 (en) * | 1998-04-02 | 1999-10-14 | Huntsman Ici Chemicals Llc | Process for rigid polyurethane foams |
JP3885225B2 (en) | 2000-05-23 | 2007-02-21 | 日本ポリウレタン工業株式会社 | Manufacturing method of rigid urethane spray foam for building insulation |
DE10030384A1 (en) | 2000-06-21 | 2002-01-03 | Hennecke Gmbh | Process for the production of block foam |
DE10145439A1 (en) * | 2001-09-14 | 2003-04-03 | Basf Ag | Process for the production of delayed reaction rigid polyurethane foams |
DE10219028A1 (en) | 2002-04-29 | 2003-11-06 | Bayer Ag | Production and use of high molecular weight aliphatic polycarbonates |
DK1435366T3 (en) * | 2003-01-03 | 2008-11-24 | Dow Global Technologies Inc | Polyisocyanurate foam and process for its preparation |
JP4337655B2 (en) * | 2003-06-30 | 2009-09-30 | 株式会社ブリヂストン | Rigid polyurethane foam |
JP2006342305A (en) | 2005-06-10 | 2006-12-21 | Inoac Corp | Method for producing rigid polyurethane foam |
US9284401B2 (en) | 2006-11-13 | 2016-03-15 | Bayer Materialscience Llc | Process for the preparation of polyether-ester polyols |
ES2625883T3 (en) | 2007-12-19 | 2017-07-20 | Basf Se | Procedure for the preparation of rigid foams containing urethane groups and isocyanurate groups |
DE102007061883A1 (en) * | 2007-12-20 | 2009-06-25 | Bayer Materialscience Ag | Viscoelastic polyurethane foam |
CN102245668B (en) | 2008-10-15 | 2014-04-09 | 巴斯夫欧洲公司 | Terephthalic acid-based polyester polyols |
DE102009053224A1 (en) | 2009-11-06 | 2011-07-14 | Bayer MaterialScience AG, 51373 | Process for producing a polyurethane foam and polyurethane foam obtainable therefrom |
DE102009053218A1 (en) | 2009-11-06 | 2011-07-14 | Bayer MaterialScience AG, 51373 | Process for producing a polyurethane foam by means of supercritical or near-critical blowing agent |
ES2530865T3 (en) * | 2009-12-18 | 2015-03-06 | Asahi Glass Co Ltd | Process for the production of rigid open cell foam |
CN102140159A (en) * | 2010-11-26 | 2011-08-03 | 山东东大一诺威聚氨酯有限公司 | Environmental-friendly combination material for cold curing slow rebound polyurethane foam and preparation method thereof |
DE102011050013A1 (en) * | 2011-04-29 | 2012-10-31 | Bayer Materialscience Aktiengesellschaft | Polyurethane foam and process for its preparation |
DE102011050014A1 (en) * | 2011-04-29 | 2012-10-31 | Bayer Materialscience Aktiengesellschaft | Polyurethane foam and process for its preparation |
EP2744839B1 (en) * | 2011-08-16 | 2016-02-24 | Covestro Deutschland AG | Method for manufacturing a polyurethane polyisocyanurate rigid foam |
WO2013033383A2 (en) * | 2011-08-31 | 2013-03-07 | The Trustees Of Dartmouth College | Molecularly imprinted polymers for detection of contaminants |
CN103012711A (en) * | 2011-09-21 | 2013-04-03 | 绍兴市恒丰聚氨酯实业有限公司 | Hard polyurethane molding foam negative pressure foaming raw material formula and hard polyurethane molding foam negative pressure foaming production method |
EP2597107A1 (en) * | 2011-11-28 | 2013-05-29 | Basf Se | Composite parts containing plastic deformable polyurethane rigid foam, adhesive and covering material |
KR20140127856A (en) * | 2012-02-08 | 2014-11-04 | 바이엘 인텔렉쳐 프로퍼티 게엠베하 | Method for producing a hard polyurethane-polyisocyanurate foamed material |
FR3007427B1 (en) * | 2013-06-20 | 2016-07-01 | Ifp Energies Now | ACTIVE METAL-BASED PARTICLE LAYER ON POROUS CONDUCTIVE SUPPORT, METHOD OF MANUFACTURE AND USE AS A CATHODE FOR CARBON DIOXIDE ELECTRODEEDUCTION. |
LT3036267T (en) * | 2013-08-20 | 2017-12-27 | Basf Se | Improved rigid polyurethane and polyisocyanurate foams based on fatty acid modified polyether polyols |
CN105940032B (en) * | 2014-01-22 | 2019-09-13 | 亨茨曼国际有限公司 | Process for the preparation of rigid polyurethane or urethane-modified polyisocyanurate foams |
EP3097146B1 (en) | 2014-01-23 | 2019-12-25 | Dow Global Technologies LLC | Rigid polyurethane foam having a small cell size |
EP2910585B1 (en) | 2014-02-21 | 2018-07-04 | Covestro Deutschland AG | Ballast layer and method for production of ballast layers |
-
2017
- 2017-05-14 EP EP17170955.3A patent/EP3372625A1/en not_active Ceased
-
2018
- 2018-03-05 US US16/490,732 patent/US11168172B2/en active Active
- 2018-03-05 JP JP2019548735A patent/JP7110221B2/en active Active
- 2018-03-05 CN CN201880016566.XA patent/CN110382582B/en active Active
- 2018-03-05 PL PL18707727.6T patent/PL3592791T3/en unknown
- 2018-03-05 WO PCT/EP2018/055271 patent/WO2018162372A1/en unknown
- 2018-03-05 US US16/490,745 patent/US20200080767A1/en not_active Abandoned
- 2018-03-05 WO PCT/EP2018/055302 patent/WO2018162387A1/en unknown
- 2018-03-05 EP EP18707386.1A patent/EP3592790A1/en not_active Withdrawn
- 2018-03-05 CN CN201880016564.0A patent/CN110382581A/en active Pending
- 2018-03-05 HU HUE18707727A patent/HUE060122T2/en unknown
- 2018-03-05 EP EP18707727.6A patent/EP3592791B1/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11945141B2 (en) | 2020-01-17 | 2024-04-02 | Covestro Deutschland Ag | Method for producing foamed flat moldings and mold for carrying out said method |
US11753516B2 (en) | 2021-10-08 | 2023-09-12 | Covestro Llc | HFO-containing compositions and methods of producing foams |
Also Published As
Publication number | Publication date |
---|---|
US11168172B2 (en) | 2021-11-09 |
WO2018162372A1 (en) | 2018-09-13 |
EP3372625A1 (en) | 2018-09-12 |
CN110382582B (en) | 2025-02-28 |
PL3592791T3 (en) | 2022-12-19 |
CN110382582A (en) | 2019-10-25 |
EP3592791B1 (en) | 2022-08-17 |
JP7110221B2 (en) | 2022-08-01 |
US20200017624A1 (en) | 2020-01-16 |
JP2020509145A (en) | 2020-03-26 |
CN110382581A (en) | 2019-10-25 |
EP3592791A1 (en) | 2020-01-15 |
WO2018162387A1 (en) | 2018-09-13 |
EP3592790A1 (en) | 2020-01-15 |
HUE060122T2 (en) | 2023-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11168172B2 (en) | Polyurethane foam and process for producing same | |
JP3993638B2 (en) | Method for producing polyurethane rigid foam having low thermal conductivity | |
US20140045960A1 (en) | Polyurethane foam and method for producing same | |
US6472449B1 (en) | Compressed, rigid polyurethane foams | |
CA2834325C (en) | Polyurethane foam and method for producing same | |
CN112020526A (en) | Process for producing rigid polyurethane/polyisocyanurate (PUR/PIR) foams | |
US20150232630A1 (en) | Reaction system for producing pur and pir hard foam materials containing layer silicates | |
CN112105663A (en) | Process for producing rigid polyurethane/polyisocyanurate (PUR/PIR) foams | |
US12060471B2 (en) | Polyurethane-based insulation body and method for producing same | |
US11001665B1 (en) | Open-cell rigid polyurethane foam and the use thereof | |
CA2428344C (en) | Activators for the production of polyurethane foamed materials | |
CN119301172A (en) | Compressed open-cell and fine-cell PUR/PIR rigid foam | |
WO2020157063A1 (en) | Method for preparing polyurethane foams | |
KR20190061010A (en) | Polyol composition | |
WO2020072221A1 (en) | Methods for producing polyurethane foams | |
EP4514871A1 (en) | Dimensionally stable open-cell fine-cell polyurethane rigid foams | |
MXPA98007182A (en) | Procedure for the manufacture of expanded polyurethane hard foams with hidrocarbu |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: COVESTRO DEUTSCHLAND AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHORNSTEIN, MARCEL;NORDMANN, PETER;REEL/FRAME:050351/0966 Effective date: 20190808 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |