[go: up one dir, main page]

US20180312515A1 - New bicyclic compounds as atx inhibitors - Google Patents

New bicyclic compounds as atx inhibitors Download PDF

Info

Publication number
US20180312515A1
US20180312515A1 US15/933,731 US201815933731A US2018312515A1 US 20180312515 A1 US20180312515 A1 US 20180312515A1 US 201815933731 A US201815933731 A US 201815933731A US 2018312515 A1 US2018312515 A1 US 2018312515A1
Authority
US
United States
Prior art keywords
alkyl
substituted
carbonyl
tetrahydropyrrolo
alkoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/933,731
Other languages
English (en)
Inventor
Patrizio Mattei
Jerome Hert
Daniel Hunziker
Markus Rudolph
Petra Schmitz
Patrick Di Giorgio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoffmann La Roche Inc
Original Assignee
Hoffmann La Roche Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoffmann La Roche Inc filed Critical Hoffmann La Roche Inc
Publication of US20180312515A1 publication Critical patent/US20180312515A1/en
Priority to US16/380,909 priority Critical patent/US10800786B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/407Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with other heterocyclic ring systems, e.g. ketorolac, physostigmine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • A61K31/55131,4-Benzodiazepines, e.g. diazepam or clozapine
    • A61K31/55171,4-Benzodiazepines, e.g. diazepam or clozapine condensed with five-membered rings having nitrogen as a ring hetero atom, e.g. imidazobenzodiazepines, triazolam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Definitions

  • the present invention relates to organic compounds useful for therapy or prophylaxis in a mammal, and in particular to autotaxin (ATX) inhibitors which are inhibitors of lysophosphatidic acid (LPA) production and thus modulators of LPA levels and associated signaling, for the treatment or prophylaxis of renal conditions, liver conditions, inflammatory conditions, conditions of the nervous system, conditions of the respiratory system, vascular and cardiovascular conditions, fibrotic diseases, cancer, ocular conditions, metabolic conditions, cholestatic and other forms of chronic pruritus and acute and chronic organ transplant rejection.
  • ATX autotaxin
  • LPA lysophosphatidic acid
  • the present invention provides novel compounds of formula (I)
  • ATX Autotaxin
  • LPC lysophosphatidyl choline
  • LPA bioactive signaling molecule lysophosphatidic acid
  • LPA can elicit a wide range of cellular responses; including smooth muscle cell contraction, platelet activation, cell proliferation, chemotaxis and others.
  • LPA mediates its effects via signaling to several G protein coupled receptors (GPCRs); the first members were originally denoted Edg (endothelial cell differentiation gene) receptors or ventricular zone gene-1(vzg-1) but are now called LPA receptors.
  • GPCRs G protein coupled receptors
  • Edg endothelial cell differentiation gene
  • ventricular zone gene-1(vzg-1) ventricular zone gene-1(vzg-1) but are now called LPA receptors.
  • the prototypic group now consists of LPA1/Edg-2/VZG-1, LPA2/Edg-4, and LPA3/Edg-7.
  • the ATX-LPA signaling axis is involved in a large range of physiological and pathophysiological functions, including, for example, nervous system function, vascular development, cardiovascular physiology, reproduction, immune system function, chronic inflammation, tumor metastasis and progression, organ fibrosis as well as obesity and/or other metabolic diseases such as diabetes mellitus. Therefore, increased activity of ATX and/or increased levels of LPA, altered LPA receptor expression and altered responses to LPA may contribute to the initiation, progression and/or outcome of a number of different pathophysiological conditions related to the ATX/LPA axis.
  • the compounds of formula (I) or their pharmaceutically acceptable salts and esters can be used for the treatment or prophylaxis of diseases, disorders or conditions that are associated with the activity of autotaxin and/or the biological activity of lysophosphatidic acid (LPA).
  • LPA lysophosphatidic acid
  • the compounds of formula (I) or their pharmaceutically acceptable salts and esters herein inhibit autotaxin activity and therefore inhibit LPA production and modulate LPA levels and associated signaling.
  • Autotaxin inhibitors described herein are useful as agents for the treatment or prevention of diseases or conditions in which ATX activity and/or LPA signaling participates, is involved in the etiology or pathology of the disease, or is otherwise associated with at least one symptom of the disease.
  • the ATX-LPA axis has been implicated for example in angiogenesis, chronic inflammation, autoimmune diseases, fibrotic diseases, cancer and tumor metastasis and progression, ocular conditions, metabolic conditions such as obesity and/or diabetes mellitus, conditions such as cholestatic or other forms of chronic pruritus as well as acute and chronic organ transplant rejection.
  • Objects of the present invention are the compounds of formula (I) and their aforementioned salts and esters and their use as therapeutically active substances, a process for the manufacture of the said compounds, intermediates, pharmaceutical compositions, medicaments containing the said compounds, their pharmaceutically acceptable salts or esters, the use of the said compounds, salts or esters for the treatment or prophylaxis of disorders or conditions that are associated with the activity of ATX and/or the biological activity of lysophosphatidic acid (LPA), particularly in the treatment or prophylaxis of renal conditions, liver conditions, inflammatory conditions, conditions of the nervous system, conditions of the respiratory system, vascular and cardiovascular conditions, fibrotic diseases, cancer, ocular conditions, metabolic conditions, cholestatic and other forms of chronic pruritus and acute and- chronic organ transplant rejection, and the use of the said compounds, salts or esters for the production of medicaments for the treatment or prophylaxis of renal conditions, liver conditions, inflammatory conditions, conditions of the nervous system, conditions of the respiratory system, vascular and cardiovascular
  • the compounds of formula (I) and their aforementioned salts and esters and their use as therapeutically active substances a process for the manufacture of the said compounds, intermediates, pharmaceutical compositions, medicaments containing the said compounds, their pharmaceutically acceptable salts or esters, the use of the said compounds, salts or esters for the treatment or prophylaxis of ocular conditions, furthermore particularly glaucoma.
  • C 1-6 -alkoxy denotes a group of the formula —O—R′, wherein R′ is an C 1-6 -alkyl group.
  • Examples of C 1-6 -alkoxy group include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy and tert-butoxy. Particular example is methoxy.
  • C 2-6 -alkenyl denotes a monovalent linear or branched hydrocarbon group of 2 to 6 carbon atoms with at least one double bond. Particular example is ethylenyl.
  • C 1-6 -alkoxy-C 1-6 -alkyl denotes a C 1-6 -alkyl group wherein at least one of the hydrogen atoms of the C 1-6 -alkyl group is replaced by a C 1-6 -alkoxy group.
  • Particular examples are methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, iso-propoxymethyl and iso-propoxyethyl.
  • C 1-6 -alkyl denotes a monovalent linear or branched saturated hydrocarbon group of 1 to 6 carbon atoms.
  • Examples of C 1-6 -alkyl include methyl, ethyl, propyl, isopropyl, n-butyl, iso-butyl, sec-butyl, tert-butyl and pentyl.
  • Particular alkyl groups include methyl, ethyl, isopropyl, n-butyl and sec-butyl.
  • C 1-6 -alkylamino a group of the formula —NH—R′, wherein R′ is an C 1-6 -alkyl group.
  • Particular C 1-6 -alkylamino is a group of the formula —NH— R′, wherein R′ is ter-butyl.
  • C 1-6 -alkylcarbonylamino denotes a group of the formula —NH—C(O)—R′, wherein R′ is an C 1-6 -alkyl group.
  • Particular C 1-6 -alkylcarbonylamino is a group of the formula —NH—C(O)—R′, wherein R′ is ter-butyl.
  • C 1-6 -alkyltetrazolyl denotes tetrazolyl group substituted with one C 1-6 -alkyl group. Particular C 1-6 -alkyltetrazolyl is methyltetrazolyl.
  • C 1-6 -alkyltetrazolyl-C 1-6 -alkyl denotes C 1-6 -alkyl group wherein one of the hydrogen atoms of the C 1-6 -alkyl group is replaced by a C 1-6 -alkyltetrazolyl group. Particular example is methyltetrazolylmethyl.
  • C 2-6 -alkynyl denotes a monovalent linear or branched hydrocarbon group of 2 to 6 carbon atoms with at least one triple bond.
  • amino denotes the —NH 2 group.
  • aminosulfonyl denotes —S(O) 2 —NH 2 group.
  • cyano denotes a —C ⁇ N group.
  • C 3-8 -cycloalkoxy denotes a group of the formula —O—R′, wherein R′ is a C 3-8 -cycloalkyl.
  • C 3-8 -cycloalkoxy-C 1-6 -alkyl denotes a C 1-6 -alkyl group wherein at least one of the hydrogen atoms of the alkyl group is replaced by a C 3-8 -cycloalkoxy group.
  • C 3-8 -cycloalkyl denotes a monovalent saturated monocyclic or bicyclic hydrocarbon group of 3 to 8 ring carbon atoms.
  • Bicyclic means a ring system consisting of two saturated carbocycles having two carbon atoms in common.
  • Examples for monocyclic cycloalkyl are cyclopropyl, cyclobutanyl, cyclopentyl, cyclohexyl or cycloheptyl.
  • Examples for bicyclic C 3-8 -cycloalkyl are bicyclo[2.2.1]heptanyl or bicyclo[2.2.2]octanyl.
  • Particular C 3-8 -cycloalkyl group is cyclopropyl.
  • C 3-8 -cycloalkyl-C 1-6 -alkoxy denotes a C 1-6 -alkoxy group wherein at least one of the hydrogen atoms of the alkyl group is replaced by a C 3-8 -cycloalkyl group.
  • C 3-8 -cycloalkyl-C 1-6 -alkyl denotes a C 1-6 -alkyl group wherein at least one of the hydrogen atoms of the alkyl group is replaced by a C 3-8 -cycloalkyl group.
  • C 3-8 -cycloalkylcarbonylamino denotes a group of the formula —NH—C(O)—R′, wherein R′ is a C 3-8 -cycloalkyl group.
  • halo-C 1-6 -alkoxy denotes a C 1-6 -alkoxy group wherein at least one of the hydrogen atoms of the alkoxy group has been replaced by the same or different halogen atoms. Particular examples are trifluoromethoxy.
  • halogen and “halo” are used interchangeably herein and denote fluoro, chloro, bromo or iodo. Particular halogens are chloro and fluoro.
  • halo-C 1-6 -alkyl denotes a C 1-6 -alkyl group wherein at least one of the hydrogen atoms of the C 1-6 -alkyl group has been replaced by the same or different halogen atoms. Particular examples are trifluoromethyl.
  • heterocycloalkyl denotes a monovalent saturated or partly unsaturated mono- or bicyclic ring system of 4 to 9 ring atoms, comprising 1, 2, or 3 ring heteroatoms selected from N, O and S, the remaining ring atoms being carbon.
  • Bicyclic means consisting of two cycles having two ring atoms in common, i.e. the bridge separating the two rings is either a single bond or a chain of one or two ring atoms.
  • Examples for monocyclic saturated heterocycloalkyl are 4,5-dihydro-oxazolyl, oxetanyl, azetidinyl, pyrrolidinyl, 2-oxo-pyrrolidin-3-yl, tetrahydrofuranyl, tetrahydro-thienyl, pyrazolidinyl, imidazolidinyl, oxazolidinyl, isoxazolidinyl, thiazolidinyl, piperidinyl, tetrahydropyranyl, tetrahydrothiopyranyl, piperazinyl, morpholinyl, thiomorpholinyl, 1,1-dioxo-thiomorpholin-4-yl, azepanyl, diazepanyl, homopiperazinyl, or oxazepanyl.
  • bicyclic saturated heterocycloalkyl examples include 8-aza-bicyclo[3.2.1]octyl, quinuclidinyl, 8-oxa-3-aza-bicyclo[3.2.1]octyl, 9-aza-bicyclo[3.3.1]nonyl, 3-oxa-9-aza-bicyclo[3.3.1]nonyl, or 3-thia-9-aza-bicyclo[3.3.1]nonyl.
  • Examples for partly unsaturated heterocycloalkyl are dihydrofuryl, imidazolinyl, dihydro-oxazolyl, tetrahydro-pyridinyl, or dihydropyranyl. Particular example of heterocycloalkyl group is tetrahydropyranyl.
  • heterocycloalkyl-C 1-6 -alkoxy denotes a C 1-6 -alkoxy group wherein at least one of the hydrogen atoms of the alkyl group is replaced by a heterocycloalkyl group.
  • heterocycloalkyl-C 1-6 -alkoxy is tetrahydropyranyl-C 1-6 -alkoxy, more particularly tetrahydropyranylmethoxy.
  • hydroxy denotes a —OH group.
  • hydroxy-C 1-6 -alkyl denotes a C 1-6 -alkyl group wherein one of the hydrogen atoms of the alkyl group is replaced by a hydroxy group. Particular examples are hydroxymethyl and hydroxyethyl.
  • phenoxy denotes a group of the formula —O—R′, wherein R′ is a phenyl group.
  • phenoxy-C 1-6 -alkyl denotes a C 1-6 -alkyl group wherein one of the hydrogen atoms of the alkyl group is replaced by a phenoxy group.
  • phenyl-C 2-6 -alkenyl denotes a C 2-6 -alkenyl group wherein one of the hydrogen atoms of the alkyl group is replaced by a phenyl group.
  • Particular example of phenyl-C 2-6 -alkenyl is phenyl ethenyl.
  • phenyl-C 1-6 -alkyl denotes a C 1-6 -alkyl group wherein one of the hydrogen atoms of the alkyl group is replaced by a phenyl group.
  • Particular examples of phenyl-C 1-6 -alkyl are phenylmethyl and phenylethyl.
  • phenyl-C 2-6 -alkynyl denotes a C 2-6 -alkynyl group wherein one of the hydrogen atoms of the alkyl group is replaced by a phenyl group.
  • pyridinyl-C 2-6 -alkenyl denotes a C 2-6 -alkenyl group wherein one of the hydrogen atoms of the alkyl group is replaced by a pyridinyl group.
  • pyridinyl-C 1-6 -alkyl denotes a C 1-6 -alkyl group wherein one of the hydrogen atoms of the alkyl group is replaced by a pyridinyl group.
  • pyridinyl-C 1-6 -alkyl is pyridinylmethyl, more particularly 2-pyridinylmethyl.
  • pyridinyl-C 2-6 -alkynyl denotes a C 2-6 -alkynyl group wherein one of the hydrogen atoms of the alkyl group is replaced by a pyridinyl group.
  • thiophenyl-C 2-6 -alkenyl denotes a C 2-6 -alkenyl group wherein one of the hydrogen atoms of the alkyl group is replaced by a thiophenyl group.
  • thiophenyl-C 1-6 -alkyl denotes a C 1-6 -alkyl group wherein one of the hydrogen atoms of the alkyl group is replaced by a thiophenyl group.
  • thiophenyl-C 2-6 -alkynyl denotes a C 2-6 -alkynyl group wherein one of the hydrogen atoms of the alkyl group is replaced by a thiophenyl group.
  • salts refers to those salts which retain the biological effectiveness and properties of the free bases or free acids, which are not biologically or otherwise undesirable.
  • the salts are formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, in particular hydrochloric acid, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, N-acetylcystein and the like.
  • salts may be prepared by addition of an inorganic base or an organic base to the free acid.
  • Salts derived from an inorganic base include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium salts and the like.
  • Salts derived from organic bases include, but are not limited to salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, lysine, arginine, N-ethylpiperidine, piperidine, polyimine resins and the like.
  • Particular pharmaceutically acceptable salts of compounds of formula (I) are the hydrochloride salts, methanesulfonic acid salts and citric acid salts.
  • “Pharmaceutically acceptable esters” means that compounds of general formula (I) may be derivatised at functional groups to provide derivatives which are capable of conversion back to the parent compounds in vivo. Examples of such compounds include physiologically acceptable and metabolically labile ester derivatives, such as methoxymethyl esters, methylthiomethyl esters and pivaloyloxymethyl esters. Additionally, any physiologically acceptable equivalents of the compounds of general formula (I), similar to the metabolically labile esters, which are capable of producing the parent compounds of general formula (I) in vivo, are within the scope of this invention.
  • protecting group denotes a group which selectively blocks a reactive site in a multifunctional compound such that a chemical reaction can be carried out selectively at another unprotected reactive site in the meaning conventionally associated with it in synthetic chemistry.
  • Protecting groups can be removed at the appropriate point.
  • Exemplary protecting groups are amino-protecting groups, carboxy-protecting groups or hydroxy-protecting groups.
  • Particular protecting groups are the tert-butoxycarbonyl (Boc), benzyloxycarbonyl (Cbz), fluorenylmethoxycarbonyl (Fmoc) and benzyl (Bn) groups.
  • Further particular protecting groups are the tert-butoxycarbonyl (Boc) and the fluorenylmethoxycarbonyl (Fmoc) groups. More particular protecting group is the tert-butoxycarbonyl (Boc) group.
  • uM means microMolar and is equivalent to the symbol ⁇ M.
  • the abbreviation uL means microliter and is equivalent to the symbol ⁇ L.
  • the abbreviation ug means microgram and is equivalent to the symbol ⁇ g.
  • the compounds of formula (I) can contain several asymmetric centers and can be present in the form of optically pure enantiomers, mixtures of enantiomers such as, for example, racemates, optically pure diastereoisomers, mixtures of diastereoisomers, diastereoisomeric racemates or mixtures of diastereoisomeric racemates.
  • the asymmetric carbon atom can be of the “R” or “S” configuration.
  • an embodiment of the present invention are compounds according to formula (I) as described herein and pharmaceutically acceptable salts or esters thereof, in particular compounds according to formula (I) as described herein and pharmaceutically acceptable salts thereof, more particularly compounds according to formula (I) as described herein.
  • a particular embodiment of the present invention provides compounds according to formula (I) as described herein, wherein
  • a particular embodiment of the present invention provides compounds according to formula (I) as described herein, wherein
  • a particular embodiment of the present invention provides compounds according to formula (I) as described herein, wherein
  • R 4 is H, halogen, halo-C 1-6 -alkyl or C 3-8 -cycloalkyl
  • Another embodiment of the present invention provides compounds according to formula (I) as described herein, wherein R 1 substituted phenyl-C 1-6 -alkyl, substituted pyridinyl or substituted pyridinyl-C 1-6 -alkyl, wherein substituted phenyl-C 1-6 -alkyl, substituted pyridinyl and substituted pyridinyl-C 1-6 -alkyl are substituted by R 3 , R 4 and R 5 .
  • a particular embodiment of the present invention provides compounds according to formula (I) as described herein, wherein R 1 is pyridinyl or pyridinyl-C 1-6 -alkyl substituted by R 3 , R 4 and R 5 .
  • a particular embodiment of the present invention provides compounds according to formula (I) as described herein, wherein Y is —OC(O)—.
  • R 2 is selected from the ring systems M, O, Z, AJ, AN, AO, AP, AW, AX, AY, AZ, B, BA, BB, BC and BD
  • R 2 is selected from the ring systems M, O, Z, AJ, AN and AO.
  • a particular embodiment of the present invention provides compounds according to formula (I) as described herein, wherein R 2 is selected from the ring systems M, AJ and AO.
  • R 3 is halo-C 1-6 -alkoxy, C 3-8 -cycloalkyl-C 1-6 -alkoxy, C 1-6 -alkylcarbonylamino, C 1-6 -alkyltetrazolyl-C 1-6 -alkyl or tetrahydropyranyl-C 1-6 -alkoxy.
  • R 3 is halo-C 1-6 -alkoxy, C 1-6 -alkylcarbonylamino, C 1-6 -alkyltetrazolyl-C 1-6 -alkyl or tetrahydropyranyl-C 1-6 -alkoxy.
  • a particular embodiment of the present invention provides compounds according to formula (I) as described herein, wherein R 3 is C 1-6 -alkylcarbonylamino, or tetrahydropyranyl-C 1-6 -alkoxy.
  • R 4 is H, halogen, halo-C 1-6 -alkyl or C 3-8 -cycloalkyl.
  • a particular embodiment of the present invention provides compounds according to formula (I) as described herein, wherein R 4 is halo-C 1-6 -alkyl or C 3-8 -cycloalkyl.
  • Another embodiment of the present invention provides compounds according to formula (I) as described herein, wherein R 5 is H or halogen.
  • Another embodiment of the present invention provides compounds according to formula (I) as described herein, wherein R 5 is H.
  • Another embodiment of the present invention provides compounds according to formula (I) as described herein, wherein R 6 is H or C 1-6 -alkyl.
  • Another embodiment of the present invention provides compounds according to formula (I) as described herein, wherein R 6 is C 1-6 -alkyl.
  • Another embodiment of the present invention provides compounds according to formula (I) as described herein, wherein R 7 is H.
  • Another embodiment of the present invention provides compounds according to formula (I) as described herein, wherein m, n, p and q are 1.
  • Another embodiment of the present invention provides compounds according to formula (I) as described herein, wherein r is 1.
  • a particular embodiment of the present invention provides compounds according to formula (I) as described herein, wherein
  • R 1 is pyridinyl or pyridinyl-C 1-6 -alkyl substituted by R 3 , R 4 and R 5 ;
  • Y is —OC(O)—
  • W is —C(O)—
  • R 2 is selected from the ring systems M, AJ and AO;
  • R 3 is C 1-6 -alkylcarbonylamino, or tetrahydropyranyl-C 1-6 -alkoxy;
  • R 4 is halo-C 1-6 -alkyl or C 3-8 -cycloalkyl
  • R 5 is H
  • R 7 is H
  • the preparation of compounds of formula (I) of the present invention may be carried out in sequential or convergent synthetic routes. Syntheses of the invention are shown in the following general schemes. The skills required for carrying out the reactions and purifications of the resulting products are known to those persons skilled in the art. In case a mixture of enantiomers or diastereoisomers is produced during a reaction, these enantiomers or diastereoisomers can be separated by methods described herein or known to the man skilled in the art such as e.g. (chiral) chromatography or crystallization. The substituents and indices used in the following description of the processes have the significance given herein.
  • the preparation of compounds of formula (I) of the present invention may be carried out in sequential or convergent synthetic routes. Syntheses of the invention are shown in the following general schemes. The skills required for carrying out the reactions and purifications of the resulting products are known to those persons skilled in the art. In case a mixture of enantiomers or diastereoisomers is produced during a reaction, these enantiomers or diastereoisomers can be separated by methods described herein or known to the man skilled in the art such as e.g. (chiral) chromatography or crystallization. The substituents and indices used in the following description of the processes have the significance given herein.
  • the present invention provides novel compounds of formula (I)
  • amine 1 is reacted with a suitable carboxylic acid of formula R 1 —COOH (2) leading to a compound of formula (I), wherein Y is —C(O)—.
  • the reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethane
  • Amine 1 can also be reacted with suitable acylating reagents such as acyl chlorides of formula R 1 —COCl (3) to lead to compounds of formula (I), wherein Y is —C(O)—.
  • suitable acylating reagents such as acyl chlorides of formula R 1 —COCl (3) to lead to compounds of formula (I), wherein Y is —C(O)—.
  • the reaction is performed in a solvent such as dichloromethane, tetrahydrofuran, or N,N-dimethylformamide, in the presence of a base such as triethylamine or 4-methylmorpholine, at temperatures between 0° C. and 80° C.
  • amine 1 is reacted with a suitable chloroformate ester of formula R 1 —O—C(O)—Cl (4), or with an imidazole-1-carboxylate ester of formula (3), leading to a compound of formula (I) wherein Y is —OC(O)—.
  • the reaction is performed in a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence of a base, e. g., triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof
  • a base e. g., triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • Chloroformate esters 4 are commercially available or can be synthesised from the corresponding alcohol of formula R 1 —OH, by reaction with phosgene or a phosgene equivalent (e. g., diphosgene, triphosgene), as described in the literature.
  • phosgene or a phosgene equivalent e. g., diphosgene, triphosgene
  • Imidazole-1-carboxylate esters 5 are synthesised from the corresponding alcohols of formula R 1 —OH, by reaction with 1,1′-carbonyldiimidazole. The reaction is performed at room temperature, in a solvent such as dichloromethane, tetrahydrofuran or acetonitrile. The imidazole-1-carboxylate esters 5 are typically not isolated but directly reacted with amines 1 as described above.
  • Alcohols of formula R 1 —O H are commercially available or can be produced by methods described herein or known in the art.
  • Carboxylic acids (2) and acyl halides (3) are commercially available or can be prepared as described herein or in the literature.
  • Amines of general formula 1 are synthesised from suitably protected precursors 6.
  • Suitable protective groups are tert-butoxycarbonyl or benzyloxycarbonyl.
  • the deprotection of intermediates 6 can be performed using methods and reagents known in the art.
  • the deprotection may be performed by hydrogenation at pressures between 1 bar and 100 bar, in the presence of a suitable catalyst such as palladium on activated charcoal, at temperatures between 20° C. and 150° C. in solvents such as methanol or ethanol.
  • a suitable catalyst such as palladium on activated charcoal
  • the deprotection may be performed in the presence of a suitable acid, e. g, hydrochloric acid or trifluoroacetic acid, in a solvent such as water, 2-propanol, dichloromethane, or 1,4-dioxane at temperatures between 0° C. and 30° C.
  • a suitable acid e. g, hydrochloric acid or trifluoroacetic acid
  • a solvent such as water, 2-propanol, dichloromethane, or 1,4-dioxane at temperatures between 0° C. and 30° C.
  • PG is a suitable protective group, e. g., tert-butoxycarbonyl or benzyloxycarbonyl.
  • Intermediates 6A can be produced from amine precursors of general formula 7 by reaction with appropriate reagents, using methods known in the art.
  • This reaction is performed in a solvent such as tetrahydrofuran or N,N-dimethylformamide, in the presence of a base, e. g. triethylamine or potassium carbonate, at temperatures between 0° C. and 100° C.
  • amine 7 is reacted with aldehydes or ketones of general formula R 6 —C(O)—R 2 (9) in a reductive amination reaction, leading to 6A.
  • This reaction is performed in the presence of a suitable reducing agent, e. g., sodium borohydride or sodium triacetoxyborohydride, in a solvent such as methanol, acetic acid, tetrahydrofuran, 1,2-dichloroethane or mixtures thereof, at temperatures between 0° C. and 50° C.
  • amine 7 is reacted with a suitable carboxylic acid of formula R 2 —COOH (10), leading to compounds of formula 6A, wherein W is —C(O)—.
  • the reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide, 1-(3-dimethyl aminopropyl)-3-ethyl-carbodiimide hydrochloride, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethane, te
  • amine 7 is reacted with a suitable sulfonyl chloride of formula R 2 —SO 2 Cl (11), leading to compounds of formula 6A, wherein W is —S(O 2 )—.
  • a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence of a base, e. g. triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • amine 7 is reacted with a suitable N-(chlorocarbonyl)amine of formula R 2 —N(R 10 )—C(O)—Cl (12) leading to compounds of formula 6A, wherein W is —C(O)—NR 10 —, or with an isocyanate of formula R 2 —NCO (13), leading to compounds of formula 6A, wherein W is —C(O)—NR 10 — and R 10 is H.
  • amine 7 is reacted with phosgene or phosgene equivalent (diphosgene, triphosgene) in the presence of a base (e. g., pyridine, triethylamine) in a solvent such as dichloromethane or tetrahydrofuran, to provide the corresponding N-(chlorocarbonyl)amine of formula 14, which is then reacted with amine of formula HN(R 10 )R 2 (15), in the presence of a base such as triethylamine or diisopropylethylamine, in a solvent such as dichloromethane, tetrahydrofuran, or N,N-dimethylformamide, leading to compounds of formula 6A, wherein W is —C(O)—NR 10 —.
  • a base e. pyridine, triethylamine
  • a solvent such as dichloromethane or tetrahydrofuran
  • amine 7 is reacted with phosgene or a phosgene equivalent (diphosgene, triphosgene) in the presence of a base (e. g., pyridine, triethylamine), in a solvent such as dichloromethane or tetrahydrofuran, to the corresponding N-(chlorocarbonyl)amine of formula 14, which is then reacted with amines of formula H-O, H-AO, H-AX, H-AY, H-AZ, H-BA, H-BB, H-BC or H-BD, in the presence of a base such as triethylamine or diisopropylethylamine, in a solvent such as dichloromethane, tetrahydrofuran, or N,N-dimethylformamide, leading to compounds of formula 6A, wherein W is —C(O)— and R 2 is O, AO, AX, AY, AZ, BA, BB, BC or BD.
  • amine 7 is reacted with a suitable chloroformate of formula R 2 —O—C(O)—Cl (16) or with an imidazole-1-carboxylate ester (17), leading to compounds of formula 6A, wherein W is —C(O)—O—.
  • the reaction is performed in a suitable solvent, e. g., acetonitrile or N,N-dimethylformamide, optionally in the presence of a base, e. g., diisopropylethylamine or triethylamine, at temperatures between 0° C. and 100° C.
  • Chloroformates 16 are commercially available or can be prepared from the corresponding alcohols of formula R 2 —OH, by reaction with phosgene or a phosgene equivalent (e. g., diphosgene, triphosgene) as described herein or in the literature.
  • phosgene or a phosgene equivalent e. g., diphosgene, triphosgene
  • Imidazole-1-carboxylate esters 17 can be prepared from the corresponding alcohols of formula R 2 —OH, by reaction with 1,1′-carbonyldiimidazole as described herein or in the literature.
  • N-(Chlorocarbonyl)amines 12 are synthesised from the corresponding amines 15 by reaction with phosgene or a phosgene equivalent (diphosgene, triphosgene, 1,1′-carbonyldiimidazole) as described in the literature.
  • Isocyanates 13 are commercially available or can be prepared from the corresponding amines of formula R 2 —NH 2 , by reaction with phosgene or a phosgene equivalent (e. g., diphosgene, triphosgene, 1,1′-carbonyldiimidazole) as described in the literature.
  • phosgene or a phosgene equivalent e. g., diphosgene, triphosgene, 1,1′-carbonyldiimidazole
  • Amines 7, alkylating agents 8, aldehydes/ketones 9, carboxylic acids 10, sulfonyl chlorides 11, and amines 15 are commercially available or can be synthesised as described herein or in the literature.
  • Carbamates 6 wherein A is CH, and W is —C(O)—N(R 10 ), are represented by general formula 6B, wherein R 14 is N(R 10 )R 2 .
  • Carbamates 6 wherein A is CH, W is —C(O)— and R 2 is O or AO are also represented by general formula 6B, wherein R 14 is O, AO, AX, AY, AZ, BA, BB, BC or BD.
  • Amide 6B is produced from carboxylic acid 18 by coupling reaction with an amine of formula HN(R 10 )R 2 (15), H—O, H-AO, H-AX, H-AY, H-AZ, H-BA, H—BB, H—BC or H-BD.
  • the reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, N-methylpyrrolidinone and mixtures thereof at temperatures between ⁇ 40° C. and 80° C. in the presence
  • Carboxylic acids 18 are commercially available or can be produced as described in the literature.
  • Compounds of formula (I), wherein A is N can be produced from amine precursors of general formula 19 by reaction with appropriate reagents, using methods known in the art.
  • an amine of formula 19 is reacted with alkylating agents of general formula X—CR 6 R 7 —R 2 (8) where X is a leaving group such as Cl, Br, I, or OSO 2 CH 3 , leading to compounds of formula (I), wherein A is N and W is —CR 6 R 7 —.
  • This reaction is performed in a solvent such as tetrahydrofuran or N,N-dimethylformamide, in the presence of a base, e. g., triethylamine or potassium carbonate, at temperatures between 0° C. and 100° C.
  • an amine of formula 19 is reacted with aldehydes or ketones of general formula R 6 —C(O)—R 2 (9) in a reductive amination reaction, leading to compounds of formula (I) wherein A is N, W is —CR 6 R 7 —, R 6 is hydrogen, alkyl or cycloalkyl, and R 7 is H.
  • This reaction is performed in the presence of a suitable reducing agent, e. g. sodium borohydride or sodium triacetoxyborohydride, in a solvent such as methanol, acetic acid, tetrahydrofuran, 1,2-dichloroethane or mixtures thereof, at temperatures between 0° C. and 50° C.
  • amine 19 is reacted with a suitable carboxylic acid of formula R 2 —COOH (10), leading to compounds of formula (I) wherein A is N and W is —C(O)—.
  • the reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichlorome
  • amine 19 is reacted with a suitable sulfonyl chloride of formula R 2 —SO 2 Cl (11), leading to (I) wherein A is N and W is —S(O 2 )—.
  • a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence of a base, e. g. triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • amine 19 is reacted with a suitable N-(chlorocarbonyl)amine of formula R 2 —N(R 10 )—C(O)—Cl (12) leading to compounds of formula (I), wherein W is —C(O)—NR 10 —, or with an isocyanate of formula R 2 —NCO (13), leading to compounds of formula (I), wherein W is —C(O)—NR 10— and R 10 is H.
  • the reaction is performed in a suitable solvent, e. g., acetonitrile or N,N-dimethylformamide, optionally in the presence of a base, e. g., diisopropylethylamine or triethylamine, at temperatures between 0° C. and 100° C.
  • amine 19 is reacted with a suitable chloroformate of formula R 2 —O—C(O)—Cl (16) or with an imidazole-1-carboxylate ester (17), leading to compounds of formula (I), wherein W is —C(O)—O—.
  • the reaction is performed in a suitable solvent, e. g., acetonitrile or N,N-dimethylformamide, optionally in the presence of a base, e. g., diisopropylethylamine or triethylamine, at temperatures between 0° C. and 100° C.
  • amine 19 is reacted with phosgene or phosgene equivalent (diphosgene, triphosgene) in the presence of a base (e. g., pyridine, triethylamine) in a solvent such as dichloromethane or tetrahydrofuran, to provide the corresponding N-(chlorocarbonyl)amine of formula 20, which is then reacted with amine of formula HN(R 10 )R 2 (15), in the presence of a base such as triethylamine or diisopropylethylamine, in a solvent such as dichloromethane, tetrahydrofuran, or N,N-dimethylformamide, leading to compounds of formula (I), wherein W is —C(O)—NR 10 —.
  • a base e. pyridine, triethylamine
  • a solvent such as dichloromethane or tetrahydrofuran
  • amine 19 is reacted with phosgene or a phosgene equivalent (diphosgene, triphosgene) in the presence of a base (e. g., pyridine, triethylamine), in a solvent such as dichloromethane or tetrahydrofuran, to the corresponding N-(chlorocarbonyl)amine of formula 20, which is then reacted with amines of formula H—O, H-AO, H-AX, H-AY, H-AZ, H-BA, H—BB, H—BC or H-BD, in the presence of a base such as triethylamine or diisopropylethylamine, in a solvent such as dichloromethane, tetrahydrofuran, or N,N-dimethylformamide, leading to compounds of formula (I), wherein W is —C(O)— and R 2 is O, AO, AX, AY, AZ, BA, BB, BC or BD.
  • Amines 19 can be synthesised from their tert-butyl carbamate derivatives of formula 21 by carbamate deprotection.
  • the deprotection may be performed in the presence of a suitable acid, e. g., hydrochloric acid or trifluoroacetic acid, in a solvent such as water, 2-propanol, dichloromethane, or 1,4-dioxane, at temperatures between 0° C. and 30° C.
  • tert-Butyl carbamates 21 can be synthesised from amine precursors of formula 22 and appropriate reagents, using methods well known in the art.
  • amine 22 is reacted with a suitable carboxylic acid of formula R 1 —COOH (2) leading to compounds of formula 21, wherein Y is —C(O)—.
  • the reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide, 1-(3-dimethyl aminopropyl)-3-ethyl-carbodiimide hydrochloride, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethane, tetrahydr
  • Amine 22 can also be reacted with suitable acylating reagents, such as acyl chlorides of formula R 1 —COCl (3) to provide compounds of formula 21, wherein Y is —C(O)—.
  • suitable acylating reagents such as acyl chlorides of formula R 1 —COCl (3) to provide compounds of formula 21, wherein Y is —C(O)—.
  • the reaction is performed in a solvent such as dichloromethane, tetrahydrofuran, or N,N-dimethylformamide, in the presence of a base such as triethylamine or 4-methylmorpholine, at temperatures between 0° C. and 80° C.
  • amine 22 is reacted with a suitable chloroformate ester of formula R 1 —O—C(O)—Cl (4), or with an imidazole-1-carboxylate ester of formula 5, leading to a compound of formula 21, wherein Y is —OC(O)—.
  • the reaction is performed in a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence of a base, e. g., triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • a base e. g., triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or
  • amine 22 can be reacted with a phosgene or a phosgene equivalent (e. g., triphosgene) to the corresponding N-chlorocarbonylamine 22A, in the presence of a base (e. g., pyridine) in a suitable solvent, e. g., dichloromethane, at temperatures between ⁇ 78° C. and +20° C.
  • a base e. g., pyridine
  • a suitable solvent e. g., dichloromethane
  • acetonitrile of dichloromethane in the presence of a suitable base (e. g., sodium hydride, pyridine or polystyrene-bound 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine), at temperatures between 20° C. and the boiling point of the solvent.
  • a suitable base e. g., sodium hydride, pyridine or polystyrene-bound 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine
  • Amines of formula 22 are commercially available or can be produced as described herein or in the literature.
  • Compounds of formula (I), wherein A is CH and W is-C(O)—NR 10 — can be produced from carboxylic acid precursors of general formula 23 by reaction with appropriate amine reagents of general formula HN(R 10 )R 2 (15).
  • compounds of formula (I), wherein A is CH, W is C(O), and R 2 is O, AO, AX, AY, AZ, BA, BB, BC or BD can be produced from carboxylic acid precursors of general formula 19 by reaction with appropriate amine reagents of general formula H—O, H-AO, H-AX, H-AY, H-AZ, H-BA, H—BB, H—BC or H-BD, using methods known in the art.
  • this reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, N-methylpyrrolidinone and mixtures thereof at temperatures between ⁇ 40° C. and 80° C. in
  • Compounds of formula (I), wherein A is CH and W is-C(O)—O— can be produced from carboxylic acid precursors of general formula 23 by reaction with appropriate alcohols of general formula R 2 —OH, using methods known in the art.
  • this reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, N-methylpyrrolidinone and mixtures thereof at temperatures between ⁇ 40° C. and 80° C. in
  • reaction is performed in two steps wherein carboxylic acid 19 is first converted to acid chloride 24, using methods and reagents known in the art, e. g., thionyl chloride or oxalyl chloride.
  • Acid chloride 24 is then reacted with alcohol R 2 —OH in a suitable solvent, e. g., dichloromethane or acetonitrile, optionally in the presence of a catalyst, e. g., pyridine or 4-(dimethylamino)pyridine, at temperatures between ⁇ 40° C. and +100° C.
  • a suitable solvent e. g., dichloromethane or acetonitrile
  • a catalyst e. g., pyridine or 4-(dimethylamino)pyridine
  • Carboxylic acids 23 can be produced from the corresponding ester precursors 25, wherein R a is lower alkyl, e. g. methyl or ethyl, using methods and reagents known in the art. For instance, the reaction is performed in the presence of a base, e. g., potassium hydroxide, sodium hydroxide, or lithium hydroxide, in solvents such as water, methanol, ethanol, tetrahydrofuran, or mixtures thereof, at temperatures between 20° C. and 100° C.
  • a base e. g., potassium hydroxide, sodium hydroxide, or lithium hydroxide
  • Compounds of formula 25 can be synthesised from amine precursors of formula 26 and appropriate reagents, using methods well known in the art.
  • amine 21 is reacted with a suitable carboxylic acid of formula R 1 —COOH (2) leading to compounds of formula 25, wherein Y is —C(O)—.
  • the reaction is performed in the presence of a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide, 1-(3-dimethyl aminopropyl)-3-ethyl-carbodiimide hydrochloride, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, in aprotic solvents such as dichloromethane, tetrahydr
  • Amine 25 can also be reacted with suitable acylating reagents, such as acyl chlorides of formula R 1 —COCl (3) to lead to compounds of formula 26, wherein Y is —C(O)—.
  • suitable acylating reagents such as acyl chlorides of formula R 1 —COCl (3) to lead to compounds of formula 26, wherein Y is —C(O)—.
  • the reaction is performed in a solvent such as dichloromethane, tetrahydrofuran, or N,N-dimethylformamide, in the presence of a base such as triethylamine or 4-methylmorpholine, at temperatures between 0° C. and 80° C.
  • amine 26 is reacted with a suitable chloroformate ester of formula R 1 —O—C(O)—Cl (4), or with an imidazole-1-carboxylate ester of formula 5, leading to a compound of formula 25, wherein Y is —OC(O)—.
  • the reaction is performed in a suitable solvent such as dichloromethane, tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone, water, or mixtures thereof, in the presence of a base, e. g., triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or solvent mixture.
  • a base e. g., triethylamine, diisopropylethylamine, pyridine, potassium hydrogencarbonate, potassium carbonate, at temperatures between 0° C. and the boiling point of the solvent or
  • amine 26 can be reacted with a phosgene or a phosgene equivalent (e. g., triphosgene) to the corresponding N-chlorocarbonylamine 26A, in the presence of a base (e. g., pyridine) in a suitable solvent, e. g., dichloromethane, at temperatures between ⁇ 78° C. and +20° C.
  • a base e. g., pyridine
  • a suitable solvent e. g., dichloromethane
  • acetonitrile of dichloromethane in the presence of a suitable base (e. g., sodium hydride, pyridine or polystyrene-bound 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine), at temperatures between 20° C. and the boiling point of the solvent.
  • a suitable base e. g., sodium hydride, pyridine or polystyrene-bound 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine
  • Amines of general formula 26 are synthesised from suitably protected precursors 27.
  • Suitable protective groups are tert-butoxycarbonyl or benzyloxycarbonyl.
  • the deprotection of intermediates 27 can be performed using methods and reagents known in the art.
  • the deprotection may be performed by hydrogenation at pressures between 1 bar and 100 bar, in the presence of a suitable catalyst such as palladium on activated charcoal, at temperatures between 20° C. and 150° C., in solvents such as methanol or ethanol.
  • a suitable catalyst such as palladium on activated charcoal
  • the deprotection may be performed in the presence of a suitable acid, e. g, hydrochloric acid or trifluoroacetic acid, in a solvent such as water, 2-propanol, dichloromethane, or 1,4-dioxane, at temperatures between 0° C. and 30° C.
  • a suitable acid e. g, hydrochloric acid or trifluoroacetic acid
  • a solvent such as water, 2-propanol, dichloromethane, or 1,4-dioxane
  • Esters 27, wherein R a is methyl or ethyl are produced from carboxylic acids 18, using methods and reagents known in the art. For instance, 18 alkylated with methyl iodide or ethyl bromide, in the presence of a base, e. g., potassium carbonate, in a solvent such as N,N-dimethylformamide, at ⁇ 20° C. and +30° C., leading to the methyl or ethyl ester 27, respectively.
  • a base e. g., potassium carbonate
  • an embodiment of the present invention is a process to prepare a compound of formula (I) as defined above comprising the reaction of a compound of formula (II) in the presence of a compound of formula (III);
  • R 1 , R 2 , m, n, p and q are as defined above and W is —C(O)—.
  • a coupling agent such as 1,1′-carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide, 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride, 0-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate or bromo-tris-pyrrolidino-phosphonium hexafluorophosphate, particularly O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate, in an aprotic solvent such as dichloromethane, tetra
  • an object of the present invention is a compound according to formula (I) as described herein for use as a therapeutically active substance.
  • an object of the present invention is a pharmaceutical composition
  • a pharmaceutical composition comprising a compound according to formula (I) as described herein and a therapeutically inert carrier.
  • a particular embodiment of the present invention is a compound according to formula (I) as described herein for the treatment or prophylaxis of ocular conditions, particularly glaucoma.
  • the present invention also relates to the use of a compound according to formula (I) as described herein for the preparation of a medicament for the treatment or prophylaxis of ocular conditions, particularly glaucoma.
  • an object of the invention is a method for the treatment or prophylaxis of ocular conditions, particularly glaucoma, which method comprises administering an effective amount of a compound according to formula (I) as described herein.
  • Renal conditions include, but are not limited to, acute kidney injury and chronic renal disease with and without proteinuria including end-stage renal disease (ESRD).
  • ESRD end-stage renal disease
  • this includes decreased creatinine clearance and decreased glomerular filtration rate, micro-albuminuria, albuminuria and proteinuria, glomerulosclerosis with expansion of reticulated mesangial matrix with or without significant hypercellularity (particularly diabetic nephropathy and amyloidosis), focal thrombosis of glomerular capillaries (particularly thrombotic microangiopathies), global fibrinoid necrosis, ischemic lesions, malignant nephrosclerosis (such as ischemic retraction, reduced renal blood flow and renal arteriopathy), swelling and proliferation of intracapillary (endothelial and mesangial) and/or extracapillary cells (crescents) like in glomerular nephritis entities, focal segmental glomerular sclerosis, IgA
  • Liver conditions include, but are not limited to, liver cirrhosis, hepatic congestion, cholestatic liver disease including pruritus, nonalcoholic steatohepatitis and acute and chronic liver transplant rejection.
  • Inflammatory conditions include, but are not limited to, arthritis, osteoarthritis, multiple sclerosis, systemic lupus erythematodes, inflammatory bowel disease, abnormal evacuation disorder and the like as well as inflammatory airways diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) or chronic asthma bronchiale.
  • IPF idiopathic pulmonary fibrosis
  • COPD chronic obstructive pulmonary disease
  • chronic asthma bronchiale chronic asthma bronchiale.
  • Further conditions of the respiratory system include, but are not limited to, other diffuse parenchymal lung diseases of different etiologies including iatrogenic drug-induced fibrosis, occupational and/or environmental induced fibrosis, systemic diseases and vasculitides, granulomatous diseases (sarcoidosis, hypersensitivity pneumonia), collagen vascular disease, alveolar proteinosis, Langerhans cell granulomatosis, lymphangioleiomyomatosis, inherited diseases (Hermansky-Pudlak Syndrome, tuberous sclerosis, neurofibromatosis, metabolic storage disorders, familial interstitial lung disease), radiation induced fibrosis, silicosis, asbestos induced pulmonary fibrosis or acute respiratory distress syndrome (ARDS).
  • iatrogenic drug-induced fibrosis etiologies including iatrogenic drug-induced fibrosis, occupational and/or environmental induced fibrosis, systemic diseases and vasculitides, granulomatous diseases (s
  • Conditions of the nervous system include, but are not limited to, neuropathic pain, schizophrenia, neuro-inflammation (e.g. astrogliosis), peripheral and/or autonomic (diabetic) neuropathies and the like.
  • Vascular conditions include, but are not limited to, atherosclerosis, thrombotic vascular disease as well as thrombotic microangiopathies, proliferative arteriopathy (such as swollen myointimal cells surrounded by mucinous extracellular matrix and nodular thickening), atherosclerosis, decreased vascular compliance (such as stiffness, reduced ventricular compliance and reduced vascular compliance), endothelial dysfunction and the like.
  • Cardiovascular conditions include, but are not limited to, acute coronary syndrome, coronary heart disease, myocardial infarction, arterial and pulmonary hypertension, cardiac arrhythmia such as atrial fibrillation, stroke and other vascular damage.
  • Fibrotic diseases include, but are not limited to myocardial and vascular fibrosis, renal fibrosis, liver fibrosis, pulmonary fibrosis, skin fibrosis, scleroderma and encapsulating peritonitis.
  • Cancer and cancer metastasis include, but are not limited to, breast cancer, ovarian cancer, lung cancer, prostate cancer, mesothelioma, glioma, hepatic carcinoma, gastrointestinal cancers and progression and metastatic aggressiveness thereof.
  • Ocular conditions include, but are not limited to, proliferative and non-proliferative (diabetic) retinopathy, dry and wet age-related macular degeneration (AMD), macular edema, central arterial/venous occlusion, traumatic injury, glaucoma and the like. Particularly, the ocular condition is glaucoma.
  • Metabolic conditions include, but are not limited to, obesity and diabetes.
  • cDNA was prepared from commercial human hematopoietic cells total RNA and used as template in overlapping PCR to generate a full length human ENPP2 ORF with or without a 3′-6 ⁇ His tag. These full length inserts were cloned into the pcDNA3.1V5-His TOPO (Invitrogen) vector. The DNA sequences of several single clones were verified. The DNA from a correct full length clone was used to transfect Hek293 cells for verification of protein expression. The sequence of the encoded ENPP2 conforms to Swissprot entry Q13822, with or without the additional C-terminal 6 ⁇ His tag.
  • Recombinant protein was produced by large-scale transient transfection in 20 L controlled stirred tank bioreactors (Sartorius). During cell growth and transfection, temperature, stirrer speed, pH and dissolved oxygen concentration were maintained at 37° C., 120 rpm, 7.1 and 30% DO, respectively.
  • FreeStyle 293-F cells (Invitrogen) were cultivated in suspension in FreeStyle 293 medium (Invitrogen) and transfected at ca. 1-1.5 ⁇ 10E6 cells/mL with above plasmid DNAs using X-tremeGENE Ro-1539 (commercial product, Roche Diagnostics) as complexing agent.
  • the cleared supernatant was then applied to a HisTrap column (GE Healthcare) previously equilibrated in 50 mM Na 2 HPO 4 pH 7.0, 0.5 M NaCl, 10% glycerol, 0.3% CHAPS, 0.02% NaN 3 .
  • the column was washed stepwise with the same buffer containing 20 mM, 40 mM and 50 mM imidazole, respectively.
  • the protein was subsequently eluted using a linear gradient to 0.5 M imidazole in 15 column volumes.
  • ATX containing fractions were pooled and concentrated using an Amicon cell equipped with a 30 kDa PES filter membrane.
  • the protein was further purified by size exclusion chromatography on Superdex S-200 prep grade (XK 26/100) (GE Healthcare) in 20 mM BICINE pH 8.5, 0.15 M NaCl, 10% glycerol, 0.3% CHAPS, 0.02% NaN 3 . Final yield of protein after purification was 5-10 mg ATX per liter of culture supernatant. The protein was stored at ⁇ 80° C.
  • ATX inhibition was measured by a fluorescence quenching assay using a specifically labeled substrate analogue (MR121 substrate).
  • MR121 substrate a specifically labeled substrate analogue
  • BOC and TBS protected 6-amino-hexanoic acid (R)-3-( ⁇ 2-[3-(2- ⁇ 2-[2-(2-amino-ethoxy)-ethoxy]-ethoxy ⁇ -ethoxy)-propionylamino]-ethoxy ⁇ -hydroxy-phosphoryloxy)-2-hydroxy-propyl ester (Ferguson et al., Org Lett 2006, 8 (10), 2023) was labeled with MR121 fluorophore (CAS 185308-24-1, 1-(3-carboxypropyl)-11-ethyl-1,2,3,4,8,9,10,11-octahydro-dipyrido[3,2-b:2′,3′-i]phenoxazin-13-ium) on the free amine of the ethanolamine
  • Assay working solutions were made as follows: Assay buffer (50 mM Tris-HCl, 140 mM NaCl, 5 mM KCl, 1 mM CaCl 2 , 1 mM MgCl 2 , 0.01% Triton-X-100, pH 8.0; ATX solution: ATX (human His-tagged) stock solution (1.08 mg/mL in 20 mM bicine, pH 8.5, 0.15 M NaCl, 10% glycerol, 0.3% CHAPS, 0.02% NaN 3 ), diluted to 1.4-2.5 ⁇ final concentration in assay buffer; MR121 substrate solution: MR121 substrate stock solution (800 M MR121 substrate in DMSO), diluted to 2-5 ⁇ final concentration in assay buffer.
  • Assay buffer 50 mM Tris-HCl, 140 mM NaCl, 5 mM KCl, 1 mM CaCl 2 , 1 mM MgCl 2 , 0.01% Triton-X-100, pH 8.0
  • Test compounds (10 mM stock in DMSO, 8 ⁇ L) were obtained in 384 well sample plates (Corning Costar #3655) and diluted with 8 ⁇ L DMSO. Row-wise serial dilutions were made by transferring 8 ⁇ L cpd solution to the next row up to row O. The compound and control solutions were mixed five times and 2 ⁇ L were transferred to 384 well assay plates (Corning Costar #3702). Then, 15 ⁇ L of 41.7 nM ATX solution was added (30 nM final concentration), mixed five times and then incubated for 15 minutes at 30° C. 10 L of MR121 substrate solution was added (1 M final concentration), mixed 30 times and then incubated for 15 minutes at 30° C.
  • ATX IC50 Ex ( ⁇ M) 1.00 0.007 1.01 0.008 1.02 0.005 1.03 0.005 1.04 0.008 1.05 0.003 1.06 0.011 1.07 0.017 2.00 0.005 2.01 0.001 2.02 0.006 2.03 0.128 1.08 0.007 1.09 0.004 1.10 0.013 2.04 0.0055 2.05 0.007 2.06 0.005 2.07 0.005 2.08 0.01 2.09 0.01 2.10 0.009 2.11 0.012 2.12 0.441 2.13 0.097 2.14 0.122 2.15 0.001 4.00 0.011 4.01 0.01 5.00 0.001 6.00 0.003 7.00 0.005 3.00 0.036
  • the compounds of formula (I) and their pharmaceutically acceptable salts can be used as medicaments (e.g. in the form of pharmaceutical preparations).
  • the pharmaceutical preparations can be administered internally, such as orally (e.g. in the form of tablets, coated tablets, dragees, hard and soft gelatin capsules, solutions, emulsions or suspensions), nasally (e.g. in the form of nasal sprays), rectally (e.g. in the form of suppositories) or topical ocularly (e.g. in the form of solutions, ointments, gels or water soluble polymeric inserts).
  • the administration can also be effected parenterally, such as intramuscularly, intravenously, or intraocularly (e.g. in the form of sterile injection solutions).
  • the compounds of formula (I) and their pharmaceutically acceptable salts can be processed with pharmaceutically inert, inorganic or organic adjuvants for the production of tablets, coated tablets, dragées, hard gelatin capsules, injection solutions or topical formulations Lactose, corn starch or derivatives thereof, talc, stearic acid or its salts etc. can be used, for example, as such adjuvants for tablets, dragees and hard gelatin capsules.
  • Suitable adjuvants for soft gelatin capsules are, for example, vegetable oils, waxes, fats, semi-solid substances and liquid polyols, etc.
  • Suitable adjuvants for the production of solutions and syrups are, for example, water, polyols, saccharose, invert sugar, glucose, etc.
  • Suitable adjuvants for injection solutions are, for example, water, alcohols, polyols, glycerol, vegetable oils, etc.
  • Suitable adjuvants for suppositories are, for example, natural or hardened oils, waxes, fats, semi-solid or liquid polyols, etc.
  • Suitable adjuvants for topical ocular formulations are, for example, cyclodextrins, mannitol or many other carriers and excipients known in the art.
  • the pharmaceutical preparations can contain preservatives, solubilizers, viscosity-increasing substances, stabilizers, wetting agents, emulsifiers, sweeteners, colorants, flavorants, salts for varying the osmotic pressure, buffers, masking agents or antioxidants. They can also contain still other therapeutically valuable substances.
  • the dosage can vary in wide limits and will, of course, be fitted to the individual requirements in each particular case.
  • the formulation can contain 0.001% to 15% by weight of medicament and the required dose, which can be between 0.1 and 25 mg in can be administered either by single dose per day or per week, or by multiple doses (2 to 4) per day, or by multiple doses per week It will, however, be clear that the upper or lower limit given herein can be exceeded when this is shown to be indicated.
  • the pure enantiomers can be obtained by methods described herein or by methods known to those skilled in the art, such as e.g. chiral chromatography or crystallization.
  • reaction mixture was stirred at room temperature, then after 2 h the reaction mixture was partitioned between 1 M aq. sodium hydrogen carbonate solution and ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered and evaporated. Chromatography (silica gel; gradient dichloromethane to dichloromethane/methanol/25% aq. ammonia solution 90:10:0.25) afforded the title compound (39 mg, 62%). Off-white solid, MS: 517.3 (M+H) + .
  • Step 1 1-[2-[2-Cyclopropyl-6-(tetrahydropyran-4-ylmethoxy)pyridine-4-carbonyl]-1,3,4,6-tetrahydropyrrolo[3,4-c]pyrrole-5-carbonyl]-4-fluoro-N,N-bis[(4-methoxyphenyl)methyl]piperidine-4-sulfonamide
  • Step 2 1-[2-[2-Cyclopropyl-6-(oxan-4-ylmethoxy)pyridine-4-carbonyl]-1,3,4,6-tetrahydropyrrolo[3,4-c]pyrrole-5-carbonyl]-4-fluoropiperidine-4-sulfonamide
  • Trifluoroacetic acid (1.54 g, 13.5 mmol) was added at room temperature to a solution of 1-[2-[2-cyclopropyl-6-(tetrahydropyran-4-ylmethoxy)pyridine-4-carbonyl]-1,3,4,6-tetrahydropyrrolo[3,4-c]pyrrole-5-carbonyl]-4-fluoro-N,N-bis[(4-methoxyphenyl)methyl]piperidine-4-sulfonamide (138 mg, 169 ⁇ mol) in dichloromethane (2 mL), then after stirring for 6 h at 50° C. the mixture was concentrated in vacuo. The residue was taken up in dichloromethane, washed with sat.
  • Oxalyl chloride (37.3 mg, 288 ⁇ mol) was added to a stirring solution of 2-cyclopropyl-6-(oxan-4-ylmethoxy)pyridine-4-carboxylic acid (CAS-RN 1810776-23-8; 53.2 mg, 192 ⁇ mol) in dichloromethane (2 mL) at 0° C.
  • a catalytic amount of N,N-dimethylformamide (701 Gg, 9.59 mol) was added. Stirring at room temperature for 1 h afforded the crude carbonyl chloride, which was used in example 7.
  • Step 1 2-tert-Butyl 5-(4-(trifluoromethoxy)benzyl) 4,6-dihydropyrrolo[3,4-c]pyrrole-2,5(1H,3H)-dicarboxylate
  • reaction mixture was partitioned between ethyl acetate and aq. sat. ammonium chloride solution.
  • the organic layer was washed with sat. aq. sodium hydrogen carbonate solution and brine, dried over magnesium sulfate, filtered, and evaporated.
  • Step 1 tert-butyl 5-(6-cyclopropyl-2-oxo-1,2-dihydropyridine-4-carbonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • Step 2 tert-Butyl 5-(2-cyclopropyl-6-((tetrahydro-2H-pyran-4-yl)methoxy)isonicotinoyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • Trifluoroacetic acid (1.41 g, 12.3 mmol) was added at room temperature to a solution of tert-butyl 5-(2-cyclopropyl-6-((tetrahydro-2H-pyran-4-yl)methoxy)isonicotinoyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (386 mg, 822 ⁇ mol) in dichloromethane (8 mL), then after 5 h the solution was concentrated and the residue partitioned between dichloromethane and 2 M aq. sodium hydroxide solution. The organic phase was washed with brine, dried over magnesium sulfate, filtered and evaporated to produce the title compound (298 mg, 98%). Off-white foam, MS: 370.2 (M+H) + .
  • Step 1 tert-Butyl 5-(3-(2-((5-methyl-2H-tetrazol-2-yl)methyl)-4-(trifluoromethyl)phenyl)propanoyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • Step 2 3-[2-[(5-Methyltetrazol-2-yl)methyl]-4-(trifluoromethyl)phenyl]-1-(2,3,4,6-tetrahydro-1H-pyrrolo[3,4-c]pyrrol-5-yl)propan-1-one
  • Trifluoroacetic acid (1.84 g, 16.1 mmol) was added at room temperature to a solution of tert-butyl 5-(3-(2-((5-methyl-2H-tetrazol-2-yl)methyl)-4-(trifluoromethyl)phenyl)propanoyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (573 mg, 1.07 mmol) in dichloromethane (5 mL), then after 4 h the reaction mixture was concentrated in vacuo. The residue was taken up in dichloromethane, washed with 2 M aq. sodium hydroxide solution, dried over magnesium sulfate, filtered and evaporated.
  • Step 1 tert-Butyl 5-(chlorocarbonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate
  • Step 2 2-tert-Butyl 5-((3-pivalamido-5-(trifluoromethyl)pyridin-2-yl)methyl) 4,6-dihydropyrrolo[3,4-c]pyrrole-2,5(1H,3H)-dicarboxylate
  • PS-Trisamine (CAS-RN 1226492-10-9; 860 mg, 2.35 mmol) was added to the filtrate and the reaction mixture was stirred at room temperature for 4 h, then insoluble material was removed by filtration and the filtrate evaporated. Chromatography (silica gel; gradient dichloromethane to dichloromethane/methanol/25% aq. ammonia solution 95:5:0.25 afforded the title compound (935 mg, 78%). Light yellow foam, MS: 513.2 (M+H)+.
  • Step 1 tert-Butyl 5-(4-sulfamoylpiperidine-1-carbonyl)-3,4,5,6-tetrahydro-1H-cyclopenta[c]pyrrole-2-carboxylate
  • Step 1 tert-butyl 4-[bis[(4-methoxyphenyl)methyl]sulfamoyl]piperidine-1-carboxylate
  • Step 2 tert-Butyl 4-[bis[(4-methoxyphenyl)methyl]sulfamoyl]-4-fluoro-piperidine-1-carboxylate
  • Oxalyl chloride (72.9 mg, 563 ⁇ mol) was added to a solution of 2-tert-butoxycarbonyl-3,4,5,6-tetrahydro-1H-cyclopenta[c]pyrrole-5-carboxylic acid (CAS-RN 1049874-41-0; 100 mg, 375 ⁇ mol) in dichloromethane (2 mL) at 0° C. Then a catalytic amount of N,N-dimethylformamide (1.3 mg, 18 ⁇ mol) was added and the ice-bath was removed. The reaction mixture was stirred for 1 h at room temperature.
  • a compound of formula (I) can be used in a manner known per se as the active ingredient for the production of tablets of the following composition:
  • a compound of formula (I) can be used in a manner known per se as the active ingredient for the production of capsules of the following composition:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ophthalmology & Optometry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Plural Heterocyclic Compounds (AREA)
US15/933,731 2015-09-24 2018-03-23 New bicyclic compounds as atx inhibitors Abandoned US20180312515A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/380,909 US10800786B2 (en) 2015-09-24 2019-04-10 Bicyclic compounds as ATX inhibitors

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15186684.5 2015-09-24
EP15186684 2015-09-24
PCT/EP2016/072349 WO2017050792A1 (fr) 2015-09-24 2016-09-21 Composés bicycliques utilisés en tant qu'inhibiteurs d'atx

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/072349 Continuation WO2017050792A1 (fr) 2015-09-24 2016-09-21 Composés bicycliques utilisés en tant qu'inhibiteurs d'atx

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/380,909 Continuation US10800786B2 (en) 2015-09-24 2019-04-10 Bicyclic compounds as ATX inhibitors

Publications (1)

Publication Number Publication Date
US20180312515A1 true US20180312515A1 (en) 2018-11-01

Family

ID=54199050

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/933,731 Abandoned US20180312515A1 (en) 2015-09-24 2018-03-23 New bicyclic compounds as atx inhibitors
US16/380,909 Expired - Fee Related US10800786B2 (en) 2015-09-24 2019-04-10 Bicyclic compounds as ATX inhibitors

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/380,909 Expired - Fee Related US10800786B2 (en) 2015-09-24 2019-04-10 Bicyclic compounds as ATX inhibitors

Country Status (20)

Country Link
US (2) US20180312515A1 (fr)
EP (1) EP3353176B1 (fr)
JP (1) JP6876685B2 (fr)
KR (1) KR20180054635A (fr)
CN (1) CN107922412B (fr)
AR (1) AR106118A1 (fr)
AU (1) AU2016328437A1 (fr)
BR (1) BR112018006034A2 (fr)
CA (1) CA2991615A1 (fr)
CL (1) CL2018000687A1 (fr)
CO (1) CO2018000631A2 (fr)
CR (1) CR20180072A (fr)
IL (1) IL256661A (fr)
MA (1) MA42919A (fr)
MX (1) MX2018001890A (fr)
PE (1) PE20180451A1 (fr)
RU (1) RU2018112230A (fr)
TW (1) TW201722947A (fr)
WO (1) WO2017050792A1 (fr)
ZA (1) ZA201801032B (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10738053B2 (en) * 2015-09-24 2020-08-11 Hoffmann-La Roche Inc. Bicyclic compounds as dual ATX/CA inhibitors
US10787459B2 (en) 2015-09-24 2020-09-29 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10800786B2 (en) 2015-09-24 2020-10-13 Hoffman-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10849881B2 (en) 2013-11-26 2020-12-01 Hoffmann-La Roche Inc. Octahydro-cyclobuta[1,2-c;3,4-c′]dipyrrol-2-yl
US10882857B2 (en) 2017-03-16 2021-01-05 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10913745B2 (en) 2013-03-12 2021-02-09 Hoffmann-La Roche Inc. Octahydro-pyrrolo[3,4-c]-pyrrole derivatives and analogs thereof as autotaxin inhibitors
US11059794B2 (en) 2017-03-16 2021-07-13 Hoffmann-La Roche Inc. Heterocyclic compounds useful as dual ATX/CA inhibitors
US11098048B2 (en) 2014-03-26 2021-08-24 Hoffmann-La Roche Inc. Bicyclic compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US11352330B2 (en) 2015-09-04 2022-06-07 Hoffmann-La Roche Inc. Phenoxymethyl derivatives

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2861566T3 (en) 2012-06-13 2017-02-27 Hoffmann La Roche NEW DIAZASPIROCYCLOALKANES AND AZASPIROCYCLOALKANES
CN104684915B (zh) 2012-09-25 2017-10-31 霍夫曼-拉罗奇有限公司 新型双环衍生物
EP3122751B1 (fr) 2014-03-26 2019-10-30 F.Hoffmann-La Roche Ag Composés condensés de [1,4]diazépine en tant qu'inhibiteurs d'autotaxine (atx) et de production d'acide lysophosphatidique (lpa)
MA41898A (fr) 2015-04-10 2018-02-13 Hoffmann La Roche Dérivés de quinazolinone bicyclique
WO2017050791A1 (fr) * 2015-09-24 2017-03-30 F. Hoffmann-La Roche Ag Nouveaux composés bicycliques utilisés en tant qu'inhibiteurs doubles d'atx/ca
SMT201900517T1 (it) 2017-03-20 2019-11-13 Forma Therapeutics Inc Composizioni di pirrolopirrolo come attivatori di piruvato chinasi (pkr)
CN113166060B (zh) 2018-09-19 2024-01-09 诺沃挪第克健康护理股份公司 用丙酮酸激酶激活化合物治疗镰状细胞病
EP3852791B1 (fr) 2018-09-19 2024-07-03 Novo Nordisk Health Care AG Activation de la pyruvate kinase r
KR20220066058A (ko) 2019-09-19 2022-05-23 포르마 세라퓨틱스 인크. 피루베이트 키나제 r(pkr) 활성화 조성물
US12128035B2 (en) 2021-03-19 2024-10-29 Novo Nordisk Health Care Ag Activating pyruvate kinase R
WO2024112764A1 (fr) 2022-11-21 2024-05-30 Novo Nordisk Health Care Ag Synthèse de pyrrolo [3,4-c] pyrroles

Family Cites Families (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1252898B (de) 1965-06-12 1967-10-26 Bayer Ag Verfahren zur Herstellung von Copolymerisaten des Trioxans
US5240928A (en) 1989-07-03 1993-08-31 Merck & Co., Inc. Substituted quinazolinones as angiotensin II antagonists
DE3930262A1 (de) 1989-09-11 1991-03-21 Thomae Gmbh Dr K Kondensierte diazepinone, verfahren zu ihrer herstellung und diese verbindungen enthaltende arzneimittel
CA2037630C (fr) 1990-03-07 2001-07-03 Akira Morimoto Composes heterocycliques renfermant de l'azote, methode de production et applications correspondantes
US5470975A (en) 1990-10-16 1995-11-28 E.R. Squibb & Sons, Inc. Dihydropyrimidine derivatives
US5290780A (en) 1991-01-30 1994-03-01 American Cyanamid Co. Angiotensin II receptor blocking 2,3,6 substituted quinazolinones
US5238942A (en) 1991-05-10 1993-08-24 Merck & Co., Inc. Substituted quinazolinones bearing acidic functional groups as angiotensin ii antagonists
US5202322A (en) 1991-09-25 1993-04-13 Merck & Co., Inc. Quinazolinone and pyridopyrimidine a-II antagonists
US5532243A (en) 1992-02-14 1996-07-02 The Dupont Merck Pharmaceutical Company Antipsychotic nitrogen-containing bicyclic compounds
US5358951A (en) 1993-04-23 1994-10-25 American Cyanamid Company Angiotensin II receptor blocking 2, 3, 6 substituted quinazolinones
DE4407047A1 (de) 1994-03-03 1995-09-07 Merck Patent Gmbh Acetamide
US20010016657A1 (en) 1997-03-18 2001-08-23 Smithkline Beecham P.L.C. Substituted isoquinoline derivatives and their use as anticonvulsants
IL137166A0 (en) 1998-02-04 2001-07-24 Banyu Pharma Co Ltd N-acyl cyclic amine derivatives
JP2001039950A (ja) 1999-07-30 2001-02-13 Banyu Pharmaceut Co Ltd N−アシル環状アミン誘導体
CA2389034A1 (fr) 1999-10-27 2001-05-03 Cor Therapeutics, Inc. Composes spirocycliques pyridiles inhibiteurs de l'agregation plaquettaire dependant des fibrinogenes
EP1368354A1 (fr) 2001-03-07 2003-12-10 Pfizer Products Inc. Modulateurs de l'activite du recepteur de la chimiokine
AU2003223510B2 (en) 2002-04-12 2008-05-08 Merck Sharp & Dohme Corp. Bicyclic amides
GB0303852D0 (en) 2003-02-19 2003-03-26 Pfizer Ltd Triazole compounds useful in therapy
WO2005023762A1 (fr) 2003-09-04 2005-03-17 Abbott Laboratories Derives de pyrrolidine-2-carbonitrile et leur utilisation comme inhibiteurs de la dipeptidyle peptidase-iv (dpp-iv)
SE0302811D0 (sv) 2003-10-23 2003-10-23 Astrazeneca Ab Novel compounds
GB0324790D0 (en) 2003-10-24 2003-11-26 Astrazeneca Ab Amide derivatives
US7226951B2 (en) 2003-12-17 2007-06-05 Allergan, Inc. Compounds having selective cytochrome P450RAI-1 or selective cytochrome P450RAI-2 inhibitory activity and methods of obtaining the same
KR100610731B1 (ko) 2004-02-24 2006-08-09 한국과학기술연구원 T-형 칼슘 채널 차단제로서 유용한 3,4-디히드로퀴나졸린유도체 및 그의 제조 방법
AU2005219438B2 (en) 2004-03-03 2011-02-17 Chemocentryx, Inc. Bicyclic and bridged nitrogen heterocycles
ATE382623T1 (de) 2004-06-09 2008-01-15 Hoffmann La Roche Octahydropyrrolo(3,4-c)pyrrolderivate und deren verwendung als antivirale mitteln
ES2442857T3 (es) 2004-08-10 2014-02-13 Janssen Pharmaceutica Nv Derivados de 1,2,4-triazin-6-ona inhibidores de VIH
US7410949B2 (en) 2005-01-18 2008-08-12 Hoffmann-La Roche Inc. Neuropeptide-2 receptor (Y-2R) agonists and uses thereof
GB0504019D0 (en) 2005-02-26 2005-04-06 Astrazeneca Ab Amide derivatives
BRPI0610433A2 (pt) 2005-04-28 2010-11-23 Wyeth Corp forma polimórfica ii de tanaproget, processos para preparar a mesma, e para preparar forma micronizada de um composto, composição farmacêutica, método de preparação de uma composição farmacêutica, e, uso da forma polimórfica ii de tanaproget ou da forma micronizada
US7737279B2 (en) 2005-05-10 2010-06-15 Bristol-Myers Squibb Company 1,6-dihydro-1,3,5,6-tetraaza-as-indacene based tricyclic compounds and pharmaceutical compositions comprising same
TW200800999A (en) 2005-09-06 2008-01-01 Astrazeneca Ab Novel compounds
JP5251127B2 (ja) 2005-10-28 2013-07-31 小野薬品工業株式会社 塩基性基を含有する化合物およびその用途
WO2007058322A1 (fr) 2005-11-18 2007-05-24 Ono Pharmaceutical Co., Ltd. Composé contenant un groupe basique et son utilisation
JP2007176809A (ja) 2005-12-27 2007-07-12 Hideaki Natsukari 複素環置換アミド化合物、その製造法および医薬組成物
US20070208001A1 (en) 2006-03-03 2007-09-06 Jincong Zhuo Modulators of 11- beta hydroxyl steroid dehydrogenase type 1, pharmaceutical compositions thereof, and methods of using the same
JP2008031064A (ja) 2006-07-27 2008-02-14 Astellas Pharma Inc ジアシルピペラジン誘導体
MX2009002686A (es) 2006-09-11 2009-10-13 Organon Nv Derivados de acetamida de quinazolinona e isoquinolinona.
MX2009002923A (es) 2006-09-15 2009-03-31 Schering Corp Derivados de azetidina espiro condensados utiles en el tratamiento del dolor, diabetes y trastornos del metabolismo de los lipidos.
US8735411B2 (en) 2006-10-02 2014-05-27 Abbvie Inc. Macrocyclic benzofused pyrimidine derivatives
TWI454262B (zh) 2006-11-02 2014-10-01 Targacept Inc 菸鹼乙醯膽鹼受體亞型選擇性之二氮雜雙環烷類醯胺
EP2097388B1 (fr) 2006-11-15 2011-09-07 High Point Pharmaceuticals, LLC Nouveaux 2-(2-hydroxyphényl)benzimidazoles utilisés pour traiter l'obésité et le diabète
TW200831085A (en) 2006-12-13 2008-08-01 Merck & Co Inc Non-nucleoside reverse transcriptase inhibitors
EP1975165A1 (fr) 2007-03-27 2008-10-01 Boehringer Ingelheim Pharma GmbH & Co. KG Pyrrolidinamide substituée, sa fabrication et son utilisation en tant que médicament
WO2008119662A1 (fr) 2007-03-29 2008-10-09 F. Hoffmann-La Roche Ag Inhibiteurs non nucléosidiques de la transcriptase inverse
CL2008001002A1 (es) 2007-04-11 2008-10-17 Actelion Pharmaceuticals Ltd Compuestos derivados de oxazolidinona; composicion farmaceutica que comprende a dichos compuestos; y su uso para preparar un medicamento para tratar una infeccion bacteriana.
CN101663306A (zh) 2007-04-27 2010-03-03 塞诺菲-安万特股份有限公司 2-杂芳基-吡咯并[3,4-c]吡咯衍生物及其作为scd抑制剂的用途
UA99626C2 (ru) 2007-08-07 2012-09-10 Эбботт Гмбх Унд Ко. Кг Соединения хинолина, пригодные для лечения нарушений, реагирующих на модуляцию рецептора 5-нт6 серотонина
DE102007047737A1 (de) 2007-10-05 2009-04-30 Merck Patent Gmbh Piperidin- und Piperazinderivate
US20090155176A1 (en) 2007-10-19 2009-06-18 Sarcode Corporation Compositions and methods for treatment of diabetic retinopathy
US7935725B2 (en) 2007-10-31 2011-05-03 Janssen Pharmaceutica Nv Aryl-substituted bridged or fused diamines as modulators of leukotriene A4 hydrolase
JP2009161449A (ja) 2007-12-28 2009-07-23 Lion Corp Ppar活性促進剤並びに美容用飲食品、皮膚外用剤及び医薬
AU2009261248A1 (en) 2008-06-19 2009-12-23 Banyu Pharmaceutical Co., Ltd. Spirodiamine-diarylketoxime derivative
WO2010028761A1 (fr) 2008-09-09 2010-03-18 Sanofi-Aventis Dérivés de 2-hétéro-aryl-pyrrolo[3, 4-c]pyrrol et leur utilisation en tant qu'inhibiteurs de scd
TW201020247A (en) 2008-11-06 2010-06-01 Gruenenthal Gmbh Substituierte disulfonamide
JP5373104B2 (ja) 2008-11-17 2013-12-18 エフ.ホフマン−ラ ロシュ アーゲー Crth2アンタゴニスト又は部分アゴニストとして使用されるナフチル酢酸
DE102008059578A1 (de) 2008-11-28 2010-06-10 Merck Patent Gmbh Benzo-Naphtyridin Verbindungen
EP2352732B1 (fr) 2008-12-01 2013-02-20 Merck Patent GmbH PYRIDO[4,3-d]PYRIMIDINES 2,5-DIAMINO-SUBSTITUÉES EN TANT QU'INHIBITEURS D'AUTOTAXINE CONTRE LE CANCER
TW201035102A (en) 2009-03-04 2010-10-01 Gruenethal Gmbh Sulfonylated tetrahydroazolopyrazines and their use as medicinal products
ES2617191T3 (es) 2009-03-05 2017-06-15 Daiichi Sankyo Company, Limited Derivado de piridina como inhibidor de PPARY
TW201038572A (en) 2009-03-25 2010-11-01 Gruenenthal Gmbh Substituted spiro-amide compounds
EA201101396A1 (ru) 2009-04-02 2012-09-28 Мерк Патент Гмбх Ингибиторы аутотаксина
CN102365271B (zh) 2009-04-02 2014-05-14 默克专利有限公司 作为自分泌运动因子抑制剂的杂环化合物
MX2011010203A (es) 2009-04-02 2011-10-14 Merck Patent Gmbh Derivados de piperidina y piperazina como inhibidores de autotaxina.
FR2945534B1 (fr) 2009-05-12 2012-11-16 Sanofi Aventis DERIVES DE CYCLOPENTAL[c]PYRROLE-2-CARBOXYLATES, LEUR PREPARATION ET LEUR APPLICATION EN THERAPEUTIQUE
BRPI1010974A2 (pt) 2009-05-22 2019-09-24 Exelixis Inc benzoxazepinas baseada em inibidores p13k/ m tor contra doenças proliferativas
WO2010141817A1 (fr) 2009-06-05 2010-12-09 Janssen Pharmaceutica Nv Modulateurs d'amide d'acide gras hydrolase de type diamine urée spirocyclique substituée par un groupe hétéroaryle
DE102009033392A1 (de) 2009-07-16 2011-01-20 Merck Patent Gmbh Heterocyclische Verbindungen als Autotaxin-Inhibitoren II
CN102574822A (zh) 2009-08-04 2012-07-11 阿米拉制药公司 作为溶血磷脂酸受体拮抗剂的化合物
UA107360C2 (en) 2009-08-05 2014-12-25 Biogen Idec Inc Bicyclic aryl sphingosine 1-phosphate analogs
AR079022A1 (es) 2009-11-02 2011-12-21 Sanofi Aventis Derivados de acido carboxilico ciclico sustituidos con acilamino, su uso como productos farmaceuticos, composicion farmaceutica y metodo de preparacion
EP2521450B1 (fr) 2010-01-07 2015-02-25 E.I. Du Pont De Nemours And Company Composés hétérocycliques fongicides
US8815869B2 (en) 2010-03-18 2014-08-26 Abbvie Inc. Lactam acetamides as calcium channel blockers
MX2012010772A (es) 2010-03-19 2012-11-06 Pfizer Derivados de 2,3-dihidro-1h-inden-1-il-2,7-diazaspiro[3,5]nonano y su uso como antagonistas o agonistas inversos del receptor de grelina.
WO2011116867A1 (fr) 2010-03-26 2011-09-29 Merck Patent Gmbh Benzonaphthyridinamines en tant qu'inhibiteurs d'autotaxine
GB201008005D0 (en) 2010-05-13 2010-06-30 Sentinel Oncology Ltd Pharmaceutical compounds
EP2575794A2 (fr) 2010-06-04 2013-04-10 B.S.R.C. "Alexander Fleming" Modulation de la voie autotaxine et utilisations correspondantes
AR082590A1 (es) 2010-08-12 2012-12-19 Hoffmann La Roche Inhibidores de la tirosina-quinasa de bruton
WO2012024620A2 (fr) 2010-08-20 2012-02-23 Amira Pharmaceuticals, Inc. Inhibiteurs de l'autotaxine et leurs utilisations
US8859775B2 (en) 2010-09-02 2014-10-14 Merck Patent Gmbh Pyrazolopyridinone derivatives as LPA receptor antagonists
EP2651404B1 (fr) 2010-12-14 2015-10-14 Electrophoretics Limited Inhibiteurs de caséine kinase 1 delta (ck1delta)
US9260416B2 (en) 2011-05-27 2016-02-16 Amira Pharmaceuticals, Inc. Heterocyclic autotaxin inhibitors and uses thereof
US8664213B2 (en) 2011-08-29 2014-03-04 Bristol-Myers Squibb Company Spiro bicyclic diamine derivatives as HIV attachment inhibitors
WO2013054185A1 (fr) 2011-10-13 2013-04-18 Pfizer, Inc. Dérivés de pyrimidine et de pyridine utiles en thérapie
JPWO2013065712A1 (ja) 2011-10-31 2015-04-02 東レ株式会社 ジアザスピロウレア誘導体及びその医薬用途
US8809552B2 (en) 2011-11-01 2014-08-19 Hoffmann-La Roche Inc. Azetidine compounds, compositions and methods of use
EP2800745B1 (fr) 2011-12-02 2020-02-12 Phenex Pharmaceuticals AG Pyrroloarboxamides comme modulateurs de l'activité de récepteur-gamma orphelin (rory, nr1f3) associé au rar de récepteur nucléaire orphelin et pour le traitement des maladies inflammatoires et de maladies auto-immunes chroniques
TWI638802B (zh) 2012-05-24 2018-10-21 芬蘭商奧利安公司 兒茶酚o-甲基轉移酶活性抑制化合物
DK2861595T5 (en) 2012-06-13 2018-01-15 Incyte Holdings Corp Substituted tricyclic compounds as FGFR inhibitors
DK2861566T3 (en) 2012-06-13 2017-02-27 Hoffmann La Roche NEW DIAZASPIROCYCLOALKANES AND AZASPIROCYCLOALKANES
CN104428299B (zh) * 2012-06-27 2018-05-11 霍夫曼-拉罗奇有限公司 5-氮杂吲唑化合物及其使用方法
WO2014018891A1 (fr) 2012-07-27 2014-01-30 Biogen Idec Ma Inc. Composés étant des agents de modulation de s1p et/ou des agents de modulation d'atx
MX363388B (es) 2012-07-27 2019-03-20 Biogen Ma Inc Agentes moduladores de autotaxina.
AR092211A1 (es) 2012-09-24 2015-04-08 Merck Patent Ges Mit Beschränkter Haftung Derivados de hidropirrolopirrol
EP2711523A1 (fr) 2012-09-24 2014-03-26 FPT Motorenforschung AG Procédé de commande d'une turbine de puissance d'un appareil à moteur hybride
HK1214169A1 (zh) 2012-09-25 2016-07-22 Bayer Pharma Aktiengesellschaft 用於治疗癌症的瑞戈非尼和乙酰水杨酸的组合
CN104684915B (zh) * 2012-09-25 2017-10-31 霍夫曼-拉罗奇有限公司 新型双环衍生物
AR092742A1 (es) 2012-10-02 2015-04-29 Intermune Inc Piridinonas antifibroticas
NZ705881A (en) 2012-10-25 2018-04-27 Tetra Discovery Partners Llc Heteroaryl inhibitors of pde4
MX2015006780A (es) * 2012-12-31 2015-08-06 Cadila Healthcare Ltd Derivados de ftalazin-1-(2h)-ona sustituida.
JPWO2014133112A1 (ja) 2013-03-01 2017-02-02 国立大学法人 東京大学 オートタキシン阻害活性を有する8−置換イミダゾピリミジノン誘導体
TWI593692B (zh) 2013-03-12 2017-08-01 美國禮來大藥廠 四氫吡咯并噻嗪化合物
BR112015022041A2 (pt) 2013-03-12 2017-07-18 Acucela Inc derivados substituídos de 3-fenilpropilamina para o tratamento de doenças e distúrbios oftálmicas
WO2014139324A1 (fr) 2013-03-12 2014-09-18 Abbvie Inc. Inhibiteurs de bromodomaines tétracycliques
AR095079A1 (es) 2013-03-12 2015-09-16 Hoffmann La Roche Derivados de octahidro-pirrolo[3,4-c]-pirrol y piridina-fenilo
WO2014152725A1 (fr) 2013-03-15 2014-09-25 Biogen Idec Ma Inc. Modulateurs de s1p et/ou de l'atx
MX368059B (es) 2013-07-18 2019-09-18 Novartis Ag Inhibidores de autotaxina que comprenden un núcleo de anillo heteroaromático de bencil-amida cíclica.
BR112016008423B1 (pt) 2013-10-17 2022-02-22 Vertex Pharmaceuticals Incorporated Composto, composição farmacêutica compreendendo o mesmo e seu uso
KR102367876B1 (ko) 2013-11-22 2022-02-24 사브레 테라퓨틱스 엘엘씨 오토탁신 억제제 화합물
CA2923523A1 (fr) 2013-11-26 2015-06-04 F. Hoffmann-La Roche Ag Nouvel octahydro-cyclobuta [1,2-c; 3,4-c'] dipyrrol-2-yl
AR098475A1 (es) 2013-11-26 2016-06-01 Bayer Cropscience Ag Compuestos pesticidas y usos
WO2015144480A1 (fr) 2014-03-26 2015-10-01 Basf Se Composés d'imidazole et de [1,2,4]-triazole substitués utilisés comme fongicides
EP3122751B1 (fr) 2014-03-26 2019-10-30 F.Hoffmann-La Roche Ag Composés condensés de [1,4]diazépine en tant qu'inhibiteurs d'autotaxine (atx) et de production d'acide lysophosphatidique (lpa)
JO3512B1 (ar) 2014-03-26 2020-07-05 Astex Therapeutics Ltd مشتقات كينوكسالين مفيدة كمعدلات لإنزيم fgfr كيناز
EP3590939A1 (fr) 2014-03-26 2020-01-08 F. Hoffmann-La Roche AG Nouveaux composés bicycliques comme inhibiteurs de la production d'autotaxin (atx) et de l'acide lysophosphatidique
PE20170206A1 (es) 2014-04-04 2017-04-09 X-Rx Inc Inhibidores espirociclicos sustituidos de la autotaxina
WO2016031987A1 (fr) 2014-08-29 2016-03-03 国立大学法人東京大学 Dérivé de pyrimidone ayant une activité inhibitrice de l'autotaxine
CA2963140A1 (fr) 2014-10-14 2016-04-21 Vitae Pharmaceuticals, Inc. Inhibiteurs de ror-gamma a base de dihydropyrrolopyridine
HK1251815A1 (zh) 2015-02-15 2019-03-29 豪夫迈‧罗氏有限公司 1-(杂)芳基磺酰基-(吡咯烷或哌啶)-2-甲酰胺衍生物及其作为trpa1拮抗剂的用途
MA41898A (fr) 2015-04-10 2018-02-13 Hoffmann La Roche Dérivés de quinazolinone bicyclique
CN104927727B (zh) 2015-07-06 2017-01-11 香山红叶建设有限公司 一种玻璃幕墙用结构密封胶及其制备方法
PL415078A1 (pl) 2015-09-04 2017-03-13 Oncoarendi Therapeutics Spółka Z Ograniczoną Odpowiedzialnością Podstawione aminotriazole przydatne jako inhibitory kwaśnej chitynazy ssaków
KR20180043837A (ko) 2015-09-04 2018-04-30 에프. 호프만-라 로슈 아게 페녹시메틸 유도체
WO2017050791A1 (fr) 2015-09-24 2017-03-30 F. Hoffmann-La Roche Ag Nouveaux composés bicycliques utilisés en tant qu'inhibiteurs doubles d'atx/ca
EP3353176B1 (fr) 2015-09-24 2022-01-19 F. Hoffmann-La Roche AG Composes bicycliques utiles comme inhibiteurs atx
CA2983782A1 (fr) 2015-09-24 2017-03-30 F. Hoffmann-La Roche Ag Composes bicycliques utilises en tant qu'inhibiteurs d'atx
JP6845230B2 (ja) 2015-09-24 2021-03-17 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft デュアルatx/ca阻害剤としての新規な二環式化合物
BR112018004620A2 (pt) 2015-09-24 2018-09-25 Ionis Pharmaceuticals, Inc. moduladores da expressão de kras
WO2017087863A1 (fr) 2015-11-20 2017-05-26 Abide Therapeutics, Inc. Composés de pyrazole, procédés de production et utilisation
WO2017087858A1 (fr) 2015-11-20 2017-05-26 Abide Therapeutics, Inc. Composés de pyrazole, procédés de production et utilisation
SG11201803210YA (en) 2015-11-25 2018-05-30 Dana Farber Cancer Inst Inc Bivalent bromodomain inhibitors and uses thereof
KR102070746B1 (ko) 2015-12-01 2020-01-29 니혼노야쿠가부시키가이샤 3h-피롤로피리딘 화합물 또는 그의 n-옥사이드, 또는 그들의 염류 및 상기 화합물을 함유하는 농원예용 살충제 및 그의 사용 방법
WO2017139978A1 (fr) 2016-02-19 2017-08-24 吴伟东 Procédé et système d'actualisation d'application de téléphone mobile
EP3596059B1 (fr) 2017-03-16 2024-04-24 F. Hoffmann-La Roche AG Composés hétérocycliques utiles en tant qu'inhibiteurs doubles d'atx/ca
CN110382484B (zh) 2017-03-16 2022-12-06 豪夫迈·罗氏有限公司 新的作为atx抑制剂的二环化合物
SMT201900517T1 (it) 2017-03-20 2019-11-13 Forma Therapeutics Inc Composizioni di pirrolopirrolo come attivatori di piruvato chinasi (pkr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10913745B2 (en) 2013-03-12 2021-02-09 Hoffmann-La Roche Inc. Octahydro-pyrrolo[3,4-c]-pyrrole derivatives and analogs thereof as autotaxin inhibitors
US10849881B2 (en) 2013-11-26 2020-12-01 Hoffmann-La Roche Inc. Octahydro-cyclobuta[1,2-c;3,4-c′]dipyrrol-2-yl
US11098048B2 (en) 2014-03-26 2021-08-24 Hoffmann-La Roche Inc. Bicyclic compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US11352330B2 (en) 2015-09-04 2022-06-07 Hoffmann-La Roche Inc. Phenoxymethyl derivatives
US10738053B2 (en) * 2015-09-24 2020-08-11 Hoffmann-La Roche Inc. Bicyclic compounds as dual ATX/CA inhibitors
US10787459B2 (en) 2015-09-24 2020-09-29 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10800786B2 (en) 2015-09-24 2020-10-13 Hoffman-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10889588B2 (en) * 2015-09-24 2021-01-12 Hoffmann-La Roche Inc. Bicyclic compounds as dual ATX/CA inhibitors
US10882857B2 (en) 2017-03-16 2021-01-05 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors
US11059794B2 (en) 2017-03-16 2021-07-13 Hoffmann-La Roche Inc. Heterocyclic compounds useful as dual ATX/CA inhibitors
US11673888B2 (en) 2017-03-16 2023-06-13 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors

Also Published As

Publication number Publication date
RU2018112230A (ru) 2019-10-30
CO2018000631A2 (es) 2018-04-19
KR20180054635A (ko) 2018-05-24
JP6876685B2 (ja) 2021-05-26
IL256661A (en) 2018-02-28
ZA201801032B (en) 2018-12-19
MA42919A (fr) 2018-08-01
CR20180072A (es) 2018-02-26
AR106118A1 (es) 2017-12-13
PE20180451A1 (es) 2018-03-05
CN107922412A (zh) 2018-04-17
CN107922412B (zh) 2021-02-23
BR112018006034A2 (pt) 2018-10-09
US20200087307A1 (en) 2020-03-19
HK1251876A1 (zh) 2019-04-26
MX2018001890A (es) 2018-06-20
WO2017050792A1 (fr) 2017-03-30
CL2018000687A1 (es) 2018-08-03
CA2991615A1 (fr) 2017-03-30
EP3353176A1 (fr) 2018-08-01
EP3353176B1 (fr) 2022-01-19
JP2018528245A (ja) 2018-09-27
TW201722947A (zh) 2017-07-01
US10800786B2 (en) 2020-10-13
AU2016328437A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
US10800786B2 (en) Bicyclic compounds as ATX inhibitors
US11673888B2 (en) Bicyclic compounds as ATX inhibitors
US11098048B2 (en) Bicyclic compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US10787459B2 (en) Bicyclic compounds as ATX inhibitors
US10647719B2 (en) Bicyclic compounds as dual ATX/CA inhibitors
US10669285B2 (en) Condensed [1,4] diazepine compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US10633384B2 (en) Diazaspirocycloalkane and azaspirocycloalkane
US20180258095A1 (en) NEW OCTAHYDRO-PYRROLO[3,4-c]-PYRROLE DERIVATIVES AND ANALOGS THEREOF AS AUTOTAXIN INHIBITORS
US20180208601A1 (en) Bicyclic compounds as dual atx/ca inhibitors
HK1251876B (zh) 作為atx抑制劑的二環化合物

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION