[go: up one dir, main page]

US20160195664A1 - Multibeam diffraction grating-based backlighting - Google Patents

Multibeam diffraction grating-based backlighting Download PDF

Info

Publication number
US20160195664A1
US20160195664A1 US14/908,523 US201314908523A US2016195664A1 US 20160195664 A1 US20160195664 A1 US 20160195664A1 US 201314908523 A US201314908523 A US 201314908523A US 2016195664 A1 US2016195664 A1 US 2016195664A1
Authority
US
United States
Prior art keywords
light
diffraction grating
multibeam diffraction
electronic display
light guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/908,523
Inventor
David A. Fattal
Zhen Peng
Charles M. Santori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leia Inc
Original Assignee
Leia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leia Inc filed Critical Leia Inc
Publication of US20160195664A1 publication Critical patent/US20160195664A1/en
Assigned to HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. reassignment HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PENG, Zhen, FATTAL, DAVID A., SANTORI, CHARLES M.
Assigned to LEIA INC. reassignment LEIA INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., HEWLETT-PACKARD COMPANY
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/33Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving directional light or back-light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1861Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials

Definitions

  • Electronic displays are a nearly ubiquitous medium for communicating information to users of a wide variety of devices and products.
  • electronic displays are the cathode ray tube (CRT), plasma display panels (PDP), liquid crystal displays (LCD), electroluminescent displays (EL), organic light emitting diode (OLED) and active matrix OLEDs (AMOLED) displays, electrophoretic displays (EP) and various displays that employ electromechanical or electrofluidic light modulation (e.g., digital micromirror devices, electrowetting displays, etc.).
  • CTR cathode ray tube
  • PDP plasma display panels
  • LCD liquid crystal displays
  • EL electroluminescent displays
  • OLED organic light emitting diode
  • AMOLED active matrix OLEDs
  • electrophoretic displays EP
  • electrophoretic displays e.g., digital micromirror devices, electrowetting displays, etc.
  • electronic displays may be categorized as either active displays (i.e., displays that emit light) or passive displays (i.e., displays that modulate light provided
  • Displays that are typically classified as passive when considering emitted light are LCDs and EP displays.
  • Passive displays while often exhibiting attractive performance characteristics including, but not limited to, inherently low power consumption, may find somewhat limited use in many practical applications given the lack of an ability to emit light.
  • the coupled light source may allow these otherwise passive displays to emit light and function substantially as an active display.
  • Examples of such coupled light sources are backlights.
  • Backlights are light sources (often panel light sources) that are placed behind an otherwise passive display to illuminate the passive display.
  • a backlight may be coupled to an LCD or an EP display.
  • the backlight emits light that passes through the LCD or the EP display.
  • the light emitted is modulated by the LCD or the EP display and the modulated light is then emitted, in turn, from the LCD or the EP display.
  • Often backlights are configured to emit white light.
  • Color filters are then used to transform the white light into various colors used in the display.
  • the color filters may be placed at an output of the LCD or the EP display (less common) or between the backlight and the LCD or the EP display, for example.
  • FIG. 1 illustrates graphical view of angular components ⁇ , ⁇ of a light beam having a particular principal angular direction, according to an example of the principles describe herein.
  • FIG. 2A illustrates a perspective view of a multibeam diffraction grating-based backlight, according to an example consistent with the principles described herein.
  • FIG. 2B illustrates a cross sectional view of the multibeam diffraction grating-based backlight illustrated in FIG. 2A , according to an example consistent with the principles described herein.
  • FIG. 2C illustrates a cross sectional view of a multibeam diffraction grating-based backlight, according to another example consistent with the principles described herein.
  • FIG. 3 illustrates a plan view of a multibeam diffraction grating, according to another example consistent with the principles described herein.
  • FIG. 4 illustrates a block diagram of an electronic display, according to an example consistent with the principles described herein.
  • FIG. 5 illustrates a flow chart of a method of electronic display operation, according to an example consistent with the principles described herein.
  • Examples in accordance with the principles described herein provide electronic display backlighting using multibeam diffractive coupling.
  • backlighting of an electronic display described herein employs a multibeam diffraction grating.
  • the multibeam diffraction grating is used to couple light out of a light guide and to direct the coupled out light in a viewing direction of the electronic display.
  • the coupled out light directed in the viewing direction by the multibeam diffraction grating includes a plurality of light beams that have different principal angular directions from one another, according to various examples of the principles described herein.
  • the light beams having the different principal angular directions also referred to as ‘the differently directed light beams’
  • the differently directed light beams produced by the multibeam diffraction grating may be modulated and serve as pixels of a ‘glasses free’ 3-D electronic display, for example.
  • the multibeam diffraction grating produces the plurality of light beams having a corresponding plurality of different, spatially separated angles (i.e., different principal angular directions).
  • each light beam produced by the multibeam diffraction grating has a principal angular direction given by angular components ⁇ , ⁇ .
  • the angular component ⁇ is referred to herein as the ‘elevation component’ or ‘elevation angle’ of the light beam.
  • the angular component ⁇ is referred to as the ‘aziumuth component’ or ‘azimuth angle’ of the light beam, herein.
  • FIG. 1 illustrates the angular components ⁇ , ⁇ of a light beam 10 having a particular principal angular direction, according to an example of the principles describe herein.
  • each light beam is emitted or emanates from a particular point, by definition herein. That is, by definition, each light beam has a central ray associated with a particular point of origin within the multibeam diffraction grating.
  • FIG. 1 also illustrates the light beam point of origin P.
  • the elevation component ⁇ of the light beam is related to, and in some examples determined by, a diffraction angle ⁇ m of the multibeam diffraction grating.
  • the elevation component ⁇ may be determined by the diffraction angle ⁇ m local to or at the point of origin P of the light beam, according to some examples.
  • the azimuth component ⁇ of the light beam may be determined by an orientation or rotation of features of the multibeam diffraction grating, according to various examples.
  • An example propagation direction of incident light is illustrated in FIG. 1 using a bold arrow.
  • characteristics of the multibeam diffraction grating and the features thereof may be used to control one or both of the angular directionality of the light beams and a wavelength or color selectivity of the multibeam diffraction grating with respect to one or more of the light beams.
  • the characteristics that may be used to control the angular directionality and wavelength selectivity include, but are not limited to, a grating length, a grating pitch (feature spacing), a shape of the features, a size of the features (e.g., groove or ridge width), and an orientation of the grating.
  • the various characteristics used for control may be characteristics that are local to a vicinity of the point of origin of a light beam.
  • a ‘diffraction grating’ is generally defined as a plurality of features (i.e., diffractive features) arranged to provide diffraction of light incident on the diffraction grating.
  • the plurality of features may be arranged in a periodic or quasi-periodic manner.
  • the diffraction grating may include a plurality of features (e.g., a plurality of grooves in a material surface) arranged in a one-dimensional (1-D) array.
  • the diffraction grating may be a two-dimensional (2-D) array of features.
  • the diffraction grating may be a 2-D array of bumps on a material surface.
  • the diffraction grating is a structure that provides diffraction of light incident on the diffraction grating. If the light is incident on the diffraction grating from a light guide, the provided diffraction may result in, and thus be referred to as, ‘diffractive coupling’ in that the diffraction grating may couple light out of the light guide by diffraction.
  • the diffraction grating also redirects or changes an angle of the light by diffraction (i.e., a diffractive angle).
  • the diffraction grating may be understood to be a structure including diffractive features that diffractively redirects light incident on the diffraction grating and, if the light is incident from a light guide, the diffraction grating may also diffractively couple out the light from light guide.
  • diffractive coupling is defined as coupling of an electromagnetic wave (e.g., light) across a boundary between two materials as a result of diffraction (e.g., by a diffraction grating).
  • a diffraction grating may be used to couple out light propagating in a light guide by diffractive coupling across a boundary of the light guide.
  • the diffractive coupling substantially overcomes total internal reflection that guides the light within the light guide to couple out the light, for example.
  • ‘diffractive redirection’ is the redirection or change in propagation direction of light as a result of diffraction, by definition. Diffractive redirection may occur at the boundary between two materials if the diffraction occurs at that boundary (e.g., the diffraction grating is located at the boundary).
  • the features of a diffraction grating are referred to as ‘diffractive features’ and may be one or more of at, in and on a surface (e.g., a boundary between two materials).
  • the surface may be a surface of a light guide, for example.
  • the diffractive features may include any of a variety of structures that diffract light including, but not limited to, grooves, ridges, holes and bumps at, in or on the surface.
  • the multibeam diffraction grating may include a plurality of parallel grooves in the material surface.
  • the diffraction grating may include a plurality of parallel ridges rising out of the material surface.
  • the diffractive features may have any of a variety of cross sectional shapes or profiles that provide diffraction including, but not limited to, one or more of a rectangular profile, a triangular profile and a saw tooth profile.
  • a ‘multibeam diffraction grating’ is a diffraction grating that produces a plurality of light beams.
  • the multibeam diffraction grating may be or include a ‘chirped’ diffraction grating.
  • the light beams of the plurality produced by the multibeam diffraction grating may have different principle angular directions denoted by the angular components ⁇ , ⁇ , as described above.
  • each of the light beams may have a predetermined principal angular direction as a result of diffractive coupling and diffractive redirection of incident light by the multibeam diffraction grating.
  • the multibeam diffraction grating may produce eight (8) light beams in eight different principal directions.
  • the elevation angle ⁇ of the light beam may be determined by a diffraction angle ⁇ m of the multibeam diffraction grating, while the azimuth angle ⁇ may be associated with an orientation or rotation of features of the multibeam diffraction grating at a point of origin of the light beam relative to a propagation direction of light incident on the multibeam diffraction grating, as described above.
  • a diffraction angle ⁇ m provided by a locally periodic, transmissive diffraction grating may be given by equation (1) as:
  • ⁇ m sin - 1 ⁇ ( m ⁇ ⁇ ⁇ d - n ⁇ sin ⁇ ⁇ ⁇ i ) ( 1 )
  • is a wavelength of the light
  • m is a diffraction order
  • d is a distance between features of the diffraction grating
  • ⁇ i is an angle of incidence of the light on the diffraction grating
  • n is a refractive index of a material (e.g., a liquid crystal) on a side of the diffraction grating from which light is incident on the diffraction grating (i.e., ‘light-incident’ side).
  • Equation (1) assumes that a refractive index on a side of the diffraction grating opposite the light-incident side has a refractive index of one.
  • equation (1) may be modified accordingly.
  • the plurality of light beams produced by the multibeam diffraction grating may all have the same diffractive order m, according to various examples.
  • a ‘light guide’ is defined as a structure that guides light within the structure using total internal reflection.
  • the light guide may include a core that is substantially transparent at an operational wavelength of the light guide.
  • the term ‘light guide’ generally refers to a dielectric optical waveguide that provides total internal reflection to guide light at an interface between a dielectric material of the light guide and a material or medium that surrounds that light guide.
  • a condition for total internal reflection is that a refractive index of the light guide is greater than a refractive index of a surrounding medium adjacent to a surface of the light guide material.
  • the light guide may include a coating in addition to or instead of the aforementioned refractive index difference to further facilitate the total internal reflection.
  • the coating may be a reflective coating, for example.
  • the light guide may be any of several light guides including, but not limited to, one or both of a plate or slab guide and a strip guide.
  • a plate light guide when applied to a light guide as in a ‘plate light guide’ is defined as a piecewise or differentially planar layer or sheet.
  • a plate light guide is defined as a light guide configured to guide light in two substantially orthogonal directions bounded by a top surface and a bottom surface of the light guide.
  • the top and bottom surfaces are both separated from one another and substantially parallel to one another in a differential sense. That is, within any differentially small region of the plate light guide, the top and bottom surfaces are substantially parallel or co-planar.
  • a plate light guide may be substantially flat (e.g., confined to a plane) and so the plate light guide is a planar light guide.
  • the plate light guide may be curved in one or two orthogonal dimensions.
  • the plate light guide may be curved in a single dimension to form a cylindrical shaped plate light guide.
  • any curvature has a radius of curvature sufficiently large to insure that total internal reflection is maintained within the plate light guide to guide light.
  • the article ‘a’ is intended to have its ordinary meaning in the patent arts, namely ‘one or more’.
  • ‘a grating’ means one or more gratings and as such, ‘the grating’ means ‘the grating(s)’ herein.
  • any reference herein to ‘top’, ‘bottom’, ‘upper’, ‘lower’, ‘up’, ‘down’, ‘front’, back′, ‘left’ or ‘right’ is not intended to be a limitation herein.
  • the term ‘about’ when applied to a value generally means within the tolerance range of the equipment used to produce the value, or in some examples, means plus or minus 10%, or plus or minus 5%, or plus or minus 1%, unless otherwise expressly specified.
  • examples herein are intended to be illustrative only and are presented for discussion purposes and not by way of limitation.
  • FIG. 2A illustrates a perspective view of a multibeam diffraction grating-based backlight 100 , according to an example consistent with the principles described herein.
  • FIG. 2B illustrates a cross sectional view of the multibeam diffraction grating-based backlight 100 illustrated in FIG. 2A , according to an example consistent with the principles described herein.
  • FIG. 2C illustrates a cross sectional view of a multibeam diffraction grating-based backlight 100 , according to another example consistent with the principles described herein.
  • the multibeam diffraction grating-based backlight 100 is configured to provide a plurality of light beams 102 directed away from the multibeam diffraction grating-based backlight 100 .
  • the plurality of light beams 102 forms a plurality of pixels of an electronic display.
  • the electronic display is a so-called ‘glasses free’ three-dimensional (3-D) display (e.g., a multiview display).
  • a light beam 102 of the plurality of light beams provided by the multibeam diffraction grating-based backlight 100 is configured to have a different principal angular direction from other light beams 102 of the plurality (e.g., see FIGS. 2B and 2C ). Further, the light beam 102 may have both a predetermined direction (principal angular direction) and a relatively narrow angular spread. In some examples, the light beams 102 may be individually modulated (e.g., by a light valve as described below). The individual modulation of the light beams 102 directed in different directions away from the multibeam diffraction grating-based backlight 100 may be particularly useful for 3-D electronic display applications that employ relatively thick light valves, for example.
  • the directional grating-based backlight 100 includes a light guide 110 .
  • the light guide 110 is configured to guide light 104 (e.g., from a light source 130 ).
  • the light guide 110 guides the guided light 104 using total internal reflection.
  • the light guide 110 may include a dielectric material configured as an optical waveguide.
  • the dielectric material may have a first refractive index that is greater than a second refractive index of a medium surrounding the dielectric optical waveguide.
  • the difference in refractive indices is configured to facilitate total internal reflection of the guided light 104 according to one or more guided modes of the light guide 110 , for example.
  • the light guide 110 may be a slab or plate optical waveguide that is an extended, substantially planar sheet of optically transparent material (e.g., as illustrated in cross section in FIGS. 2B and 2C and from the top in FIG. 2A ).
  • the substantially planar sheet of dielectric material is configured to guide the light 104 through total internal reflection.
  • the light guide 110 may include a cladding layer on at least a portion of a surface of the light guide 110 (not illustrated). The cladding layer may be used to further facilitate total internal reflection, for example.
  • the light 104 may be coupled into an end of the light guide 110 to propagate and be guided along a length of the light guide 110 .
  • One or more of a lens, a mirror and a prism may facilitate the coupling of the light into the end or an edge of the light guide 110 .
  • the optically transparent material of the light guide 110 may include or be made up of any of a variety of dielectric materials including, but not limited to, various types of glass (e.g., silica glass, alkali-aluminosilicate glass, borosilicate glass, etc.) and substantially optically transparent plastics or polymers (e.g., poly(methyl methacrylate) or ‘acrylic glass’, polycarbonate, etc.).
  • the guided light 104 may propagate along the light guide 110 in a generally horizontal direction. Propagation of the guided light 104 is illustrated from left to right in FIG. 2B as several bold horizontal arrows representing various propagating optical beams within the light guide 110 .
  • FIG. 2 C illustrates propagation of the guided light 104 from right to left, also as several horizontal arrows.
  • the propagating optical beams may represent plane waves of propagating light associated with one or more of the optical modes of the light guide 110 , for example.
  • the propagating optical beams of the guided light 104 may propagate by ‘bouncing’ or reflecting off of walls of the light guide 110 at an interface between the material (e.g., dielectric) of the light guide 110 and the surrounding medium due to total internal reflection, for example.
  • the multibeam diffraction grating-based backlight 100 further includes a multibeam diffraction grating 120 .
  • the multibeam diffraction grating 120 is located at a surface of the light guide 110 and is configured to couple out a portion or portions of the guided light 104 from the light guide 110 by or using diffractive coupling.
  • the coupled out portion of the guided light 104 is diffractively redirected away from the light guide surface as the plurality of light beams 102 .
  • each of the light beams 102 of the plurality have a different principal angular direction, according to various examples.
  • FIG. 2B illustrates the plurality of light beams 102 as diverging while FIG. 2C illustrates the light beams 102 of the plurality as converging.
  • Whether the light beams 102 are diverging ( FIG. 2B ) or converging ( FIG. 2C ) may be determined by a direction of the guided light 104 , for example.
  • the diverging light beams 102 may appear to be diverging from a ‘virtual’ point (not illustrated) located some distance below or behind the multibeam diffraction grating 120 .
  • the converging light beams 102 may converge to a point (not illustrated) above or in front of the multibeam diffraction grating 120 , according to some examples.
  • the multibeam diffraction grating 120 includes a plurality of diffractive features 122 that provide diffraction.
  • the provided diffraction is responsible for the diffractive coupling of the guided light 104 out of the light guide 110 .
  • the multibeam diffraction grating 120 may include one or both of grooves in a surface of the light guide 110 and ridges protruding from the light guide surface 110 that serve as the diffractive features 122 .
  • the grooves and ridges may be arranged parallel to one another and, at least at some point, perpendicular to a propagation direction of the guided light 104 that is to be coupled out by the multibeam diffraction grating 120 .
  • the grooves and ridges may be etched, milled or molded into the surface or applied on the surface.
  • a material of the multibeam diffraction grating 120 may include a material of the light guide 110 .
  • the multibeam diffraction grating 120 includes substantially parallel grooves that penetrate the surface of the light guide 110 .
  • the multibeam diffraction grating 120 may be a film or layer applied or affixed to the light guide surface. The diffraction grating 120 may be deposited on the light guide surface, for example.
  • the multibeam diffraction grating 120 may be arranged in a variety of configurations at, on or in the surface of the light guide 110 , according to various examples.
  • the multibeam diffraction grating 120 may be a member of a plurality of gratings (e.g., multibeam diffraction gratings) arranged in columns and rows across the light guide surface.
  • a plurality of multibeam diffraction gratings 120 may be arranged in groups (e.g., a group of three gratings, each grating in the group being associated with a different color of light) and the groups may be arranged in rows and columns.
  • the plurality of multibeam diffraction gratings 120 may be distributed substantially randomly across the surface of the light guide 110 .
  • the multibeam diffraction grating 120 may include a chirped diffraction grating 120 .
  • the chirped diffraction grating 120 is a diffraction grating exhibiting or having a diffraction spacing d of the diffractive features that varies across an extent or length of the chirped diffraction grating 120 , as illustrated in FIGS. 2A-2C .
  • the varying diffraction spacing d is referred to as a ‘chirp’.
  • guided light 104 that is diffractively coupled out of the light guide 110 exits or is emitted from the chirped diffraction grating 120 as the light beam 102 at different diffraction angles ⁇ m corresponding to different points of origin across the chirped diffraction grating 120 , e.g., see equation (1) above.
  • the chirped diffraction grating 120 may produce the plurality of light beams 102 having different principal angular directions in terms of the elevation component ⁇ of the light beams 102 .
  • the chirped diffraction grating 120 may have or exhibit a chirp of the diffractive spacing d that varies linearly with distance.
  • the chirped diffraction grating 120 may be referred to as a ‘linearly chirped’ diffraction grating.
  • FIGS. 2B and 2C illustrates the multibeam diffraction grating 120 as a linearly chirped diffraction grating, for example.
  • the diffractive features 122 are closer together at a second end 120 ′′ of the multibeam diffraction grating 120 than at a first end 120 ′.
  • the diffractive spacing d of the illustrated diffractive features 122 varies linearly from the first end 120 ′ to the second end 120 ′′.
  • light beams 102 produced by coupling light out of the light guide 110 using the multibeam diffraction grating 120 including the chirped diffraction grating may diverge (i.e., be diverging light beams 102 ) when the guided light 104 propagates in a direction from the first end 120 ′ to the second end 120 ′′ (e.g., as illustrated in FIG. 2B ).
  • converging light beams 102 may be produced when the guided light 104 propagates from the second end 120 ′′ to the first end 120 ′ (e.g., as illustrated in FIG. 2C ), according to other examples.
  • the chirped diffraction grating 120 may exhibit a non-linear chirp of the diffractive spacing d.
  • Various non-linear chirps that may be used to realize the chirped diffraction grating 120 include, but are not limited to, an exponential chirp, a logarithmic chirp and a chirp that varies in another, substantially non-uniform or random but still monotonic manner.
  • Non-montonic chirps such as, but not limited to, a sinusoidal chirp and a triangle or sawtooth chirp, may also be employed.
  • the diffractive features 122 within the multibeam diffraction grating 120 may have varying orientations relative to an incident direction of the guided light 104 .
  • an orientation of the diffractive features 122 at a first point within the multibeam diffraction grating 130 may differ from an orientation of the diffractive features 122 at another point.
  • an azimuthal component ⁇ of the principal angular direction ⁇ , ⁇ of the light beam 102 may be determined by or correspond to the azimuthal orientation angle ⁇ f of the diffractive features 122 at a point of origin of the light beam 102 , according to some examples.
  • the varying orientations of the diffractive features 122 within the multibeam diffraction grating 120 produce different light beams 102 having different principle angular directions ⁇ , ⁇ , at least in terms of their respective azimuthal components ⁇ .
  • the multibeam diffraction grating 120 may include diffractive features 122 that are either curved or arranged in a generally curved configuration.
  • the diffractive features 122 may include one of curved grooves and curved ridges that are spaced apart from one another along radius of the curve.
  • FIG. 2A illustrates curved diffractive features 122 as curved, spaced apart grooves, for example.
  • an ‘underlying diffraction grating’ of the multibeam diffraction grating 120 associated with the curved diffractive features 122 has a different azimuthal orientation angle ⁇ f .
  • the curve has a particular azimuthal orientation angle ⁇ f that generally differs from another point along the curved diffractive feature 122 .
  • the particular azimuthal orientation angle ⁇ f results in a corresponding azimuthal component ⁇ of a principal angular direction ⁇ , ⁇ of a light beam 102 emitted from the given point.
  • the curve of the diffractive feature(s) e.g., groove, ridge, etc.
  • the circle may be coplanar with the light guide surface.
  • the curve may represent a section of an ellipse or another curved shape, e.g., that is coplanar with the light guide surface.
  • the multibeam diffraction grating 120 may include diffractive features 122 that are ‘piecewise’ curved.
  • the diffractive feature may not describe a substantially smooth or continuous curve per se, at different points along the diffractive feature within the multibeam diffraction grating 120 , the diffractive feature still may be oriented at different angles with respect to the incident direction of the guided light 104 .
  • the diffractive feature 122 may be a groove including a plurality of substantially straight segments, each segment having a different orientation than an adjacent segment. Together, the different angles of the segments may approximate a curve (e.g., a segment of a circle), according to various examples. See FIG. 3 , which is described below.
  • the features may merely have different orientations relative to the incident direction of the guided light at different locations within the multibeam diffraction grating 120 without approximating a particular curve (e.g., a circle or an ellipse).
  • the multibeam diffraction grating 120 may include both differently oriented diffractive features 122 and a chirp of the diffractive spacing d.
  • both the orientation and the spacing d between the diffractive features 122 may vary at different points within the multibeam diffraction grating 120 .
  • the multibeam diffraction grating 120 may include a curved and chirped diffraction grating 120 having grooves or ridges that are both curved and vary in spacing d as a function of a radius of the curve.
  • FIG. 2A illustrates the multibeam diffraction grating 120 including diffractive features 122 (e.g., grooves or ridges) that are both curved and chirped (i.e., is a curved, chirped diffraction grating).
  • diffractive features 122 e.g., grooves or ridges
  • An example incident direction of the guided light 104 is illustrated by a bold arrow in FIG. 2A .
  • FIG. 2A also illustrates the plurality of emitted light beams 102 provided by diffractive coupling as arrows pointing away from the surface of the light guide 110 . As illustrated, the light beams 102 are emitted in a plurality of different principal angular directions.
  • different principal angular directions of the emitted light beams 102 are different in both azimuth and elevation, as illustrated.
  • Six separate light beams 102 are illustrated in FIG. 2A , by way of example and not limitation.
  • the chirp of the diffractive features 122 may be substantially responsible for an elevation component of the different principal angular directions, while the curve of the diffractive features 122 may be substantially responsible for the azimuthal component, according to some examples.
  • FIG. 3 illustrates a plan view of a multibeam diffraction grating 120 , according to another example consistent with the principles described herein.
  • the multibeam diffraction grating 120 is on a surface of a light guide 110 and includes diffractive features 122 that are both piece-wise curved and chirped.
  • An example incident direction of guided light 104 is illustrated by a bold arrow in FIG. 3 .
  • the multibeam diffraction grating-based backlight 100 may further include the light source 130 , according to some examples.
  • the light source 130 may be configured to provide light that, when coupled into the light guide 110 , is the guided light 104 .
  • the light source 130 may be substantially any source of light including, but not limited to, one or more of a light emitting diode (LED), a fluorescent light and a laser.
  • the light source 130 may produce a substantially monochromatic light having a narrowband spectrum denoted by a particular color.
  • the color of the monochromatic light may be a primary color of a particular color gamut or color model (e.g., a red-green-blue (RGB) color model).
  • the light source 130 may be a red LED and the monochromatic light 102 is substantially the color red.
  • the light source 30 may be a green LED and the monochromatic light 130 is substantially green in color.
  • the light source 130 may be a blue LED and the monochromatic light 130 is substantially blue in color.
  • the light provided by the light source 130 has a substantially broadband spectrum.
  • the light produced by the light source 130 may be white light.
  • the light source 130 may be a fluorescent light that produces white light.
  • the guided light 104 may be light from the light source 130 that is coupled into an end or an edge of the light guide 110 .
  • a lens (not illustrated) may facilitate coupling of light into the light guide 110 at the end or edge thereof, for example.
  • the multibeam diffraction grating-based backlight 100 is substantially transparent.
  • both of the light guide 110 and the multibeam diffraction grating 120 may be optically transparent in a direction orthogonal to a direction of guided light propagation in the light guide 110 , according to some examples.
  • Optical transparency may allow objects on one side of the directional grating-based backlight 100 to be seen from an opposite side, for example.
  • an electronic display is provided.
  • the electronic display is configured to emit modulated light beams as pixels of the electronic display.
  • the emitted modulated light beams may be preferentially directed toward a viewing direction of the electronic display as a plurality of differently directed light beams.
  • the electronic display is a three-dimensional (3-D) electronic display (e.g., a glasses-free 3-D electronic display).
  • Different ones of the modulated, differently directed light beams may correspond to different ‘views’ associated with the 3-D electronic display, according to various examples.
  • the different ‘views’ may provide a ‘glasses free’ (e.g., autostereoscopic) representation of information being displayed by the 3-D electronic display, for example.
  • FIG. 4 illustrates a block diagram of an electronic display 200 , according to an example consistent with the principles described herein.
  • the electronic display 200 illustrated in FIG. 4 is a 3-D electronic display 200 (e.g., a ‘glasses free’ 3-D electronic display) configured to emit modulated light beams 202 .
  • the emitted, modulated light beams 202 are illustrated as diverging (e.g., as opposed to converging) in FIG. 4 by way of example and not limitation.
  • the 3-D electronic display 200 illustrated in FIG. 4 includes a plate light guide 210 to guide light.
  • the guided light in the plate light guide 210 is a source of the light that becomes the modulated light beams 202 emitted by the 3-D electronic display 200 .
  • the plate light guide 210 may be substantially similar to the light guide 110 described above with respect to multibeam diffraction grating-based backlight 100 .
  • the plate light guide 210 may be a slab optical waveguide that is a planar sheet of dielectric material configured to guide light by total internal reflection.
  • the 3-D electronic display 200 illustrated in FIG. 4 further includes a multibeam diffraction grating 220 .
  • the multibeam diffraction grating 220 may be substantially similar to the multibeam diffraction grating 120 of the multibeam diffraction grating-based backlight 100 , described above.
  • the multibeam diffraction grating 220 is configured to couple out a portion of the guided light as a plurality of light beams 204 .
  • the multibeam diffraction grating 220 is configured to direct the light beams 204 in a corresponding plurality of different principal angular directions.
  • the multibeam diffraction grating 220 includes a chirped diffraction grating.
  • diffractive features e.g., grooves, ridges, etc.
  • the multibeam diffraction grating 220 includes a chirped diffraction grating having curved diffractive features.
  • the curved diffractive features may include a ridge or a groove that is curved (i.e., continuously curved or piece-wise curved) and a spacing between the curved diffractive features that may vary as a function of distance across the multibeam diffraction grating 220 .
  • the 3-D electronic display 200 further includes a light valve array 230 .
  • the light valve array 230 includes a plurality of light valves configured to modulate the differently directed light beams 204 of the plurality, according to various examples.
  • the light valves of the light valve array 230 modulate the differently directed light beams 204 to provide the modulated light beams 202 that are the pixels of the 3-D electronic display 200 .
  • different ones of the modulated, differently directed light beams 202 may correspond to different views of the 3-D electronic display.
  • different types of light valves in the light valve array 230 may be employed including, but not limited to, liquid crystal light valves and electrophoretic light valves. Dashed lines are used in FIG. 4 to emphasize modulation of the light beams 202 .
  • the light valve array 230 employed in the 3-D display may be relatively thick or equivalently may be spaced apart from the multibeam diffraction grating 220 by a relatively large distance.
  • the light valve array 230 (e.g., using the liquid crystal light valves) may be spaced apart from the multibeam diffraction grating 220 or equivalently have a thickness that is greater than about 50 micrometers.
  • the light valve array 230 may be spaced apart from the multibeam diffraction grating 220 or include a thickness that is greater than about 100 micrometers. In yet other examples, the thickness or spacing may be greater than about 200 micrometers.
  • a relatively thick light valve array 230 or a light valve array 230 that is spaced apart from the multibeam diffraction grating 220 may be employed since the multibeam diffraction grating 220 provides light beams 204 directed in a plurality of different principal angular directions, according to various examples of the principles described herein.
  • the relatively thick light valve array 230 may be commercially available (e.g., a commercially available liquid crystal light valve array).
  • the 3-D electronic display 200 further includes a light source 240 .
  • the light source 240 is configured to provide light that propagates in the plate light guide 210 as the guided light.
  • the guided light is light from the light source 240 that is coupled into the edge of the plate light guide 210 , according to some examples.
  • the light source 240 is substantially similar to the light source 130 described above with respect to the multibeam diffraction grating-based backlight 100 .
  • the light source 240 may include an LED of a particular color (e.g., red, green, blue) to provide monochromatic light or a broadband light source such as, but not limited to, a fluorescent light to provide broadband light (e.g., white light).
  • a particular color e.g., red, green, blue
  • a broadband light source such as, but not limited to, a fluorescent light to provide broadband light (e.g., white light).
  • FIG. 5 illustrates a flow chart of a method 300 of electronic display operation, according to an example consistent with the principles described herein.
  • the method 300 of electronic display operation includes guiding 310 light in a light guide.
  • the light guide and the guided light may be substantially similar to the light guide 110 and guided light 104 , described above with respect to the multibeam diffraction grating-based backlight 100 .
  • the light guide may guide 310 the guided light according to total internal reflection.
  • the light guide may be a substantially planar dielectric optical waveguide (e.g., a plate light guide), in some examples.
  • the method 300 of electronic display operation further includes diffractively coupling out 320 a portion of the guided light using a multibeam diffraction grating.
  • the multibeam diffraction grating is located at a surface of the light guide.
  • the multibeam diffraction grating may be formed in the surface of the light guide as grooves, ridges, etc.
  • the multibeam diffraction grating may include a film on the light guide surface.
  • the multibeam diffraction grating is substantially similar to the multibeam diffraction grating 120 described above with respect to the multibeam directional grating-based backlight 100 .
  • the multibeam diffraction grating produces a plurality of light beams from the diffractively coupled out 320 portion of the guided light.
  • the method 300 of electronic display operation further includes diffractively redirecting 330 the light beams of the plurality away from the light guide surface.
  • a light beam of the plurality that is diffractively redirected 330 away from the surface has a different principal angular direction from other light beams of the plurality.
  • each diffractively redirected light beam of the plurality has a different principal angular direction relative to the other light beams of the plurality.
  • Diffractively redirecting 330 the light beams away from the surface further employs the multibeam diffraction grating.
  • diffractively redirecting 330 the light beams of the plurality away from the surface in different principal angular directions using the multibeam diffraction grating may be substantially similar to the operation of the multibeam diffraction grating 120 , described above with respect to the multibeam diffraction grating-based backlight 100 .
  • the multibeam diffraction grating may simultaneously, or substantially simultaneously, diffractively couple out 320 and diffractively redirect 330 the guided light as a plurality of light beams in accordance with the method 300 .
  • the method 300 of electronic display operation further includes modulating 340 the light beams of the plurality of light beams using a corresponding plurality of light valves.
  • the diffractively redirected 330 plurality of light beams is modulated 340 by passing through or otherwise interacting with the corresponding plurality of light valves.
  • the modulated light beams may form pixels of a three-dimensional (3-D) electronic display, according to some examples.
  • the modulated light beams may provide a plurality of views of the 3-D electronic display (e.g., a glasses-free, 3-D electronic display).
  • the plurality of light valves used in modulating 340 the plurality of light beams is substantially similar to the light valve array 230 described above with respect to the 3-D electronic display 200 .
  • the light valves may include liquid crystal light valves.
  • the light valves may be another type of light valve including, but not limited to, an electrowetting light valve and an electrophoretic light valve.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Liquid Crystal (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

Multibeam diffraction grating-based backlighting includes a light guide and a multibeam diffraction grating at a surface of the light guide. The light guide is to guide light from a light source. The multibeam diffraction grating is to couple out a portion of the guided light using diffractive coupling and to direct the coupled out portion away from the light guide as a plurality of light beams with different principal angular directions.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • N/A
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • N/A
  • BACKGROUND
  • Electronic displays are a nearly ubiquitous medium for communicating information to users of a wide variety of devices and products. Among the most commonly found electronic displays are the cathode ray tube (CRT), plasma display panels (PDP), liquid crystal displays (LCD), electroluminescent displays (EL), organic light emitting diode (OLED) and active matrix OLEDs (AMOLED) displays, electrophoretic displays (EP) and various displays that employ electromechanical or electrofluidic light modulation (e.g., digital micromirror devices, electrowetting displays, etc.). In general, electronic displays may be categorized as either active displays (i.e., displays that emit light) or passive displays (i.e., displays that modulate light provided by another source). Among the most obvious examples of active displays are CRTs, PDPs and OLEDs/AMOLEDs. Displays that are typically classified as passive when considering emitted light are LCDs and EP displays. Passive displays, while often exhibiting attractive performance characteristics including, but not limited to, inherently low power consumption, may find somewhat limited use in many practical applications given the lack of an ability to emit light.
  • To overcome the applicability limitations of passive displays associated with emitted light, many passive displays are coupled to an external light source. The coupled light source may allow these otherwise passive displays to emit light and function substantially as an active display. Examples of such coupled light sources are backlights. Backlights are light sources (often panel light sources) that are placed behind an otherwise passive display to illuminate the passive display. For example, a backlight may be coupled to an LCD or an EP display. The backlight emits light that passes through the LCD or the EP display. The light emitted is modulated by the LCD or the EP display and the modulated light is then emitted, in turn, from the LCD or the EP display. Often backlights are configured to emit white light. Color filters are then used to transform the white light into various colors used in the display. The color filters may be placed at an output of the LCD or the EP display (less common) or between the backlight and the LCD or the EP display, for example.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various features of examples in accordance with the principles described herein may be more readily understood with reference to the following detailed description taken in conjunction with the accompanying drawings, where like reference numerals designate like structural elements, and in which:
  • FIG. 1 illustrates graphical view of angular components {θ, φ} of a light beam having a particular principal angular direction, according to an example of the principles describe herein.
  • FIG. 2A illustrates a perspective view of a multibeam diffraction grating-based backlight, according to an example consistent with the principles described herein.
  • FIG. 2B illustrates a cross sectional view of the multibeam diffraction grating-based backlight illustrated in FIG. 2A, according to an example consistent with the principles described herein.
  • FIG. 2C illustrates a cross sectional view of a multibeam diffraction grating-based backlight, according to another example consistent with the principles described herein.
  • FIG. 3 illustrates a plan view of a multibeam diffraction grating, according to another example consistent with the principles described herein.
  • FIG. 4 illustrates a block diagram of an electronic display, according to an example consistent with the principles described herein.
  • FIG. 5 illustrates a flow chart of a method of electronic display operation, according to an example consistent with the principles described herein.
  • Certain examples have other features that are one of in addition to and in lieu of the features illustrated in the above-referenced figures. These and other features are detailed below with reference to the above-referenced figures.
  • DETAILED DESCRIPTION
  • Examples in accordance with the principles described herein provide electronic display backlighting using multibeam diffractive coupling. In particular, backlighting of an electronic display described herein employs a multibeam diffraction grating. The multibeam diffraction grating is used to couple light out of a light guide and to direct the coupled out light in a viewing direction of the electronic display. The coupled out light directed in the viewing direction by the multibeam diffraction grating includes a plurality of light beams that have different principal angular directions from one another, according to various examples of the principles described herein. In some examples, the light beams having the different principal angular directions (also referred to as ‘the differently directed light beams’) may be employed to display three-dimensional (3-D) information. For example, the differently directed light beams produced by the multibeam diffraction grating may be modulated and serve as pixels of a ‘glasses free’ 3-D electronic display, for example.
  • According to various examples, the multibeam diffraction grating produces the plurality of light beams having a corresponding plurality of different, spatially separated angles (i.e., different principal angular directions). In particular, each light beam produced by the multibeam diffraction grating has a principal angular direction given by angular components {θ, φ}. The angular component θ is referred to herein as the ‘elevation component’ or ‘elevation angle’ of the light beam. The angular component θ is referred to as the ‘aziumuth component’ or ‘azimuth angle’ of the light beam, herein. By definition, the elevation angle θ is an angle in a vertical plane (e.g., perpendicular to a plane of the multibeam diffraction grating) while the azimuth angle φ is an angle in a horizontal plane (e.g., parallel to the multibeam diffraction grating plane). FIG. 1 illustrates the angular components {θ, φ} of a light beam 10 having a particular principal angular direction, according to an example of the principles describe herein. In addition, each light beam is emitted or emanates from a particular point, by definition herein. That is, by definition, each light beam has a central ray associated with a particular point of origin within the multibeam diffraction grating. FIG. 1 also illustrates the light beam point of origin P.
  • According to various examples, the elevation component θ of the light beam is related to, and in some examples determined by, a diffraction angle θm of the multibeam diffraction grating. In particular, the elevation component θ may be determined by the diffraction angle θm local to or at the point of origin P of the light beam, according to some examples. The azimuth component φ of the light beam may be determined by an orientation or rotation of features of the multibeam diffraction grating, according to various examples. In particular, an azimuth orientation angle φf of the features in a vicinity of the point of origin and relative to a propagation direction of light incident on the multibeam diffraction grating may determine the azimuth component φ of the light beam (e.g., φ=φf), according to some examples. An example propagation direction of incident light is illustrated in FIG. 1 using a bold arrow.
  • According to various examples, characteristics of the multibeam diffraction grating and the features thereof (i.e., ‘diffractive features’) may be used to control one or both of the angular directionality of the light beams and a wavelength or color selectivity of the multibeam diffraction grating with respect to one or more of the light beams. The characteristics that may be used to control the angular directionality and wavelength selectivity include, but are not limited to, a grating length, a grating pitch (feature spacing), a shape of the features, a size of the features (e.g., groove or ridge width), and an orientation of the grating. In some examples, the various characteristics used for control may be characteristics that are local to a vicinity of the point of origin of a light beam.
  • Herein, a ‘diffraction grating’ is generally defined as a plurality of features (i.e., diffractive features) arranged to provide diffraction of light incident on the diffraction grating. In some examples, the plurality of features may be arranged in a periodic or quasi-periodic manner. For example, the diffraction grating may include a plurality of features (e.g., a plurality of grooves in a material surface) arranged in a one-dimensional (1-D) array. In other examples, the diffraction grating may be a two-dimensional (2-D) array of features. For example, the diffraction grating may be a 2-D array of bumps on a material surface.
  • As such, and by definition herein, the diffraction grating is a structure that provides diffraction of light incident on the diffraction grating. If the light is incident on the diffraction grating from a light guide, the provided diffraction may result in, and thus be referred to as, ‘diffractive coupling’ in that the diffraction grating may couple light out of the light guide by diffraction. The diffraction grating also redirects or changes an angle of the light by diffraction (i.e., a diffractive angle). In particular, as a result of diffraction, light leaving the diffraction grating (i.e., diffracted light) generally has a different propagation direction than a propagation direction of the incident light. The change in the propagation direction of the light by diffraction is referred to as ‘diffractive redirection’ herein. Hence, the diffraction grating may be understood to be a structure including diffractive features that diffractively redirects light incident on the diffraction grating and, if the light is incident from a light guide, the diffraction grating may also diffractively couple out the light from light guide.
  • Specifically herein, ‘diffractive coupling’ is defined as coupling of an electromagnetic wave (e.g., light) across a boundary between two materials as a result of diffraction (e.g., by a diffraction grating). For example, a diffraction grating may be used to couple out light propagating in a light guide by diffractive coupling across a boundary of the light guide. The diffractive coupling substantially overcomes total internal reflection that guides the light within the light guide to couple out the light, for example. Similarly, ‘diffractive redirection’ is the redirection or change in propagation direction of light as a result of diffraction, by definition. Diffractive redirection may occur at the boundary between two materials if the diffraction occurs at that boundary (e.g., the diffraction grating is located at the boundary).
  • Further by definition herein, the features of a diffraction grating are referred to as ‘diffractive features’ and may be one or more of at, in and on a surface (e.g., a boundary between two materials). The surface may be a surface of a light guide, for example. The diffractive features may include any of a variety of structures that diffract light including, but not limited to, grooves, ridges, holes and bumps at, in or on the surface. For example, the multibeam diffraction grating may include a plurality of parallel grooves in the material surface. In another example, the diffraction grating may include a plurality of parallel ridges rising out of the material surface. The diffractive features (e.g., grooves, ridges, holes, bumps, etc.) may have any of a variety of cross sectional shapes or profiles that provide diffraction including, but not limited to, one or more of a rectangular profile, a triangular profile and a saw tooth profile.
  • By definition herein, a ‘multibeam diffraction grating’ is a diffraction grating that produces a plurality of light beams. In some examples, the multibeam diffraction grating may be or include a ‘chirped’ diffraction grating. The light beams of the plurality produced by the multibeam diffraction grating may have different principle angular directions denoted by the angular components {θ, φ}, as described above. In particular, according to various examples, each of the light beams may have a predetermined principal angular direction as a result of diffractive coupling and diffractive redirection of incident light by the multibeam diffraction grating. For example, the multibeam diffraction grating may produce eight (8) light beams in eight different principal directions. According to various examples, the elevation angle θ of the light beam may be determined by a diffraction angle θm of the multibeam diffraction grating, while the azimuth angle φ may be associated with an orientation or rotation of features of the multibeam diffraction grating at a point of origin of the light beam relative to a propagation direction of light incident on the multibeam diffraction grating, as described above.
  • According to various examples, a diffraction angle θm provided by a locally periodic, transmissive diffraction grating may be given by equation (1) as:
  • θ m = sin - 1 ( m λ d - n · sin θ i ) ( 1 )
  • where λ is a wavelength of the light, m is a diffraction order, d is a distance between features of the diffraction grating, θi is an angle of incidence of the light on the diffraction grating, and n is a refractive index of a material (e.g., a liquid crystal) on a side of the diffraction grating from which light is incident on the diffraction grating (i.e., ‘light-incident’ side). Equation (1) assumes that a refractive index on a side of the diffraction grating opposite the light-incident side has a refractive index of one. If the refractive index on the side opposite the light-incident side is not one, then equation (1) may be modified accordingly. Herein, the plurality of light beams produced by the multibeam diffraction grating may all have the same diffractive order m, according to various examples.
  • Further herein, a ‘light guide’ is defined as a structure that guides light within the structure using total internal reflection. In particular, the light guide may include a core that is substantially transparent at an operational wavelength of the light guide. In some examples, the term ‘light guide’ generally refers to a dielectric optical waveguide that provides total internal reflection to guide light at an interface between a dielectric material of the light guide and a material or medium that surrounds that light guide. By definition, a condition for total internal reflection is that a refractive index of the light guide is greater than a refractive index of a surrounding medium adjacent to a surface of the light guide material. In some examples, the light guide may include a coating in addition to or instead of the aforementioned refractive index difference to further facilitate the total internal reflection. The coating may be a reflective coating, for example. According to various examples, the light guide may be any of several light guides including, but not limited to, one or both of a plate or slab guide and a strip guide.
  • Further herein, the term ‘plate’ when applied to a light guide as in a ‘plate light guide’ is defined as a piecewise or differentially planar layer or sheet. In particular, a plate light guide is defined as a light guide configured to guide light in two substantially orthogonal directions bounded by a top surface and a bottom surface of the light guide. Further, by definition herein, the top and bottom surfaces are both separated from one another and substantially parallel to one another in a differential sense. That is, within any differentially small region of the plate light guide, the top and bottom surfaces are substantially parallel or co-planar. In some examples, a plate light guide may be substantially flat (e.g., confined to a plane) and so the plate light guide is a planar light guide. In other examples, the plate light guide may be curved in one or two orthogonal dimensions. For example, the plate light guide may be curved in a single dimension to form a cylindrical shaped plate light guide. In various examples however, any curvature has a radius of curvature sufficiently large to insure that total internal reflection is maintained within the plate light guide to guide light.
  • Further still, as used herein, the article ‘a’ is intended to have its ordinary meaning in the patent arts, namely ‘one or more’. For example, ‘a grating’ means one or more gratings and as such, ‘the grating’ means ‘the grating(s)’ herein. Also, any reference herein to ‘top’, ‘bottom’, ‘upper’, ‘lower’, ‘up’, ‘down’, ‘front’, back′, ‘left’ or ‘right’ is not intended to be a limitation herein. Herein, the term ‘about’ when applied to a value generally means within the tolerance range of the equipment used to produce the value, or in some examples, means plus or minus 10%, or plus or minus 5%, or plus or minus 1%, unless otherwise expressly specified. Moreover, examples herein are intended to be illustrative only and are presented for discussion purposes and not by way of limitation.
  • FIG. 2A illustrates a perspective view of a multibeam diffraction grating-based backlight 100, according to an example consistent with the principles described herein. FIG. 2B illustrates a cross sectional view of the multibeam diffraction grating-based backlight 100 illustrated in FIG. 2A, according to an example consistent with the principles described herein. FIG. 2C illustrates a cross sectional view of a multibeam diffraction grating-based backlight 100, according to another example consistent with the principles described herein. According to various examples, the multibeam diffraction grating-based backlight 100 is configured to provide a plurality of light beams 102 directed away from the multibeam diffraction grating-based backlight 100. In some examples, the plurality of light beams 102 forms a plurality of pixels of an electronic display. In some examples, the electronic display is a so-called ‘glasses free’ three-dimensional (3-D) display (e.g., a multiview display).
  • According to various examples, a light beam 102 of the plurality of light beams provided by the multibeam diffraction grating-based backlight 100 is configured to have a different principal angular direction from other light beams 102 of the plurality (e.g., see FIGS. 2B and 2C). Further, the light beam 102 may have both a predetermined direction (principal angular direction) and a relatively narrow angular spread. In some examples, the light beams 102 may be individually modulated (e.g., by a light valve as described below). The individual modulation of the light beams 102 directed in different directions away from the multibeam diffraction grating-based backlight 100 may be particularly useful for 3-D electronic display applications that employ relatively thick light valves, for example.
  • As illustrated in FIGS. 2A-2C, the directional grating-based backlight 100 includes a light guide 110. The light guide 110 is configured to guide light 104 (e.g., from a light source 130). In some examples, the light guide 110 guides the guided light 104 using total internal reflection. For example, the light guide 110 may include a dielectric material configured as an optical waveguide. The dielectric material may have a first refractive index that is greater than a second refractive index of a medium surrounding the dielectric optical waveguide. The difference in refractive indices is configured to facilitate total internal reflection of the guided light 104 according to one or more guided modes of the light guide 110, for example.
  • For example, the light guide 110 may be a slab or plate optical waveguide that is an extended, substantially planar sheet of optically transparent material (e.g., as illustrated in cross section in FIGS. 2B and 2C and from the top in FIG. 2A). The substantially planar sheet of dielectric material is configured to guide the light 104 through total internal reflection. In some examples, the light guide 110 may include a cladding layer on at least a portion of a surface of the light guide 110 (not illustrated). The cladding layer may be used to further facilitate total internal reflection, for example.
  • In some examples, the light 104 may be coupled into an end of the light guide 110 to propagate and be guided along a length of the light guide 110. One or more of a lens, a mirror and a prism (not illustrated), for example may facilitate the coupling of the light into the end or an edge of the light guide 110. According to various examples, the optically transparent material of the light guide 110 may include or be made up of any of a variety of dielectric materials including, but not limited to, various types of glass (e.g., silica glass, alkali-aluminosilicate glass, borosilicate glass, etc.) and substantially optically transparent plastics or polymers (e.g., poly(methyl methacrylate) or ‘acrylic glass’, polycarbonate, etc.).
  • As further illustrated in FIGS. 2B and 2C, the guided light 104 may propagate along the light guide 110 in a generally horizontal direction. Propagation of the guided light 104 is illustrated from left to right in FIG. 2B as several bold horizontal arrows representing various propagating optical beams within the light guide 110. FIG. 2C illustrates propagation of the guided light 104 from right to left, also as several horizontal arrows. The propagating optical beams may represent plane waves of propagating light associated with one or more of the optical modes of the light guide 110, for example. The propagating optical beams of the guided light 104 may propagate by ‘bouncing’ or reflecting off of walls of the light guide 110 at an interface between the material (e.g., dielectric) of the light guide 110 and the surrounding medium due to total internal reflection, for example.
  • According to various examples, the multibeam diffraction grating-based backlight 100 further includes a multibeam diffraction grating 120. The multibeam diffraction grating 120 is located at a surface of the light guide 110 and is configured to couple out a portion or portions of the guided light 104 from the light guide 110 by or using diffractive coupling. In particular, the coupled out portion of the guided light 104 is diffractively redirected away from the light guide surface as the plurality of light beams 102. As discussed above, each of the light beams 102 of the plurality have a different principal angular direction, according to various examples.
  • In particular, FIG. 2B illustrates the plurality of light beams 102 as diverging while FIG. 2C illustrates the light beams 102 of the plurality as converging. Whether the light beams 102 are diverging (FIG. 2B) or converging (FIG. 2C) may be determined by a direction of the guided light 104, for example. In some examples where the light beams 102 are diverging, the diverging light beams 102 may appear to be diverging from a ‘virtual’ point (not illustrated) located some distance below or behind the multibeam diffraction grating 120. Similarly, the converging light beams 102 may converge to a point (not illustrated) above or in front of the multibeam diffraction grating 120, according to some examples.
  • According to various examples, the multibeam diffraction grating 120 includes a plurality of diffractive features 122 that provide diffraction. The provided diffraction is responsible for the diffractive coupling of the guided light 104 out of the light guide 110. For example, the multibeam diffraction grating 120 may include one or both of grooves in a surface of the light guide 110 and ridges protruding from the light guide surface 110 that serve as the diffractive features 122. The grooves and ridges may be arranged parallel to one another and, at least at some point, perpendicular to a propagation direction of the guided light 104 that is to be coupled out by the multibeam diffraction grating 120.
  • In some examples, the grooves and ridges may be etched, milled or molded into the surface or applied on the surface. As such, a material of the multibeam diffraction grating 120 may include a material of the light guide 110. As illustrated in FIG. 2A, the multibeam diffraction grating 120 includes substantially parallel grooves that penetrate the surface of the light guide 110. In other examples (not illustrated), the multibeam diffraction grating 120 may be a film or layer applied or affixed to the light guide surface. The diffraction grating 120 may be deposited on the light guide surface, for example.
  • The multibeam diffraction grating 120 may be arranged in a variety of configurations at, on or in the surface of the light guide 110, according to various examples. For example, the multibeam diffraction grating 120 may be a member of a plurality of gratings (e.g., multibeam diffraction gratings) arranged in columns and rows across the light guide surface. In another example, a plurality of multibeam diffraction gratings 120 may be arranged in groups (e.g., a group of three gratings, each grating in the group being associated with a different color of light) and the groups may be arranged in rows and columns. In yet another example, the plurality of multibeam diffraction gratings 120 may be distributed substantially randomly across the surface of the light guide 110.
  • According to some examples, the multibeam diffraction grating 120 may include a chirped diffraction grating 120. By definition, the chirped diffraction grating 120 is a diffraction grating exhibiting or having a diffraction spacing d of the diffractive features that varies across an extent or length of the chirped diffraction grating 120, as illustrated in FIGS. 2A-2C. Herein, the varying diffraction spacing d is referred to as a ‘chirp’. As a result, guided light 104 that is diffractively coupled out of the light guide 110 exits or is emitted from the chirped diffraction grating 120 as the light beam 102 at different diffraction angles θm corresponding to different points of origin across the chirped diffraction grating 120, e.g., see equation (1) above. By virtue of the chirp, the chirped diffraction grating 120 may produce the plurality of light beams 102 having different principal angular directions in terms of the elevation component θ of the light beams 102.
  • In some examples, the chirped diffraction grating 120 may have or exhibit a chirp of the diffractive spacing d that varies linearly with distance. As such, the chirped diffraction grating 120 may be referred to as a ‘linearly chirped’ diffraction grating. FIGS. 2B and 2C illustrates the multibeam diffraction grating 120 as a linearly chirped diffraction grating, for example. As illustrated, the diffractive features 122 are closer together at a second end 120″ of the multibeam diffraction grating 120 than at a first end 120′. Further, the diffractive spacing d of the illustrated diffractive features 122 varies linearly from the first end 120′ to the second end 120″.
  • In some examples, light beams 102 produced by coupling light out of the light guide 110 using the multibeam diffraction grating 120 including the chirped diffraction grating may diverge (i.e., be diverging light beams 102) when the guided light 104 propagates in a direction from the first end 120′ to the second end 120″ (e.g., as illustrated in FIG. 2B). Alternatively, converging light beams 102 may be produced when the guided light 104 propagates from the second end 120″ to the first end 120′ (e.g., as illustrated in FIG. 2C), according to other examples.
  • In another example (not illustrated), the chirped diffraction grating 120 may exhibit a non-linear chirp of the diffractive spacing d. Various non-linear chirps that may be used to realize the chirped diffraction grating 120 include, but are not limited to, an exponential chirp, a logarithmic chirp and a chirp that varies in another, substantially non-uniform or random but still monotonic manner. Non-montonic chirps such as, but not limited to, a sinusoidal chirp and a triangle or sawtooth chirp, may also be employed.
  • According to some examples, the diffractive features 122 within the multibeam diffraction grating 120 may have varying orientations relative to an incident direction of the guided light 104. In particular, an orientation of the diffractive features 122 at a first point within the multibeam diffraction grating 130 may differ from an orientation of the diffractive features 122 at another point. As described above, an azimuthal component φ of the principal angular direction {θ, φ} of the light beam 102 may be determined by or correspond to the azimuthal orientation angle φf of the diffractive features 122 at a point of origin of the light beam 102, according to some examples. As such, the varying orientations of the diffractive features 122 within the multibeam diffraction grating 120 produce different light beams 102 having different principle angular directions {θ, φ}, at least in terms of their respective azimuthal components φ.
  • In some examples, the multibeam diffraction grating 120 may include diffractive features 122 that are either curved or arranged in a generally curved configuration. For example, the diffractive features 122 may include one of curved grooves and curved ridges that are spaced apart from one another along radius of the curve. FIG. 2A illustrates curved diffractive features 122 as curved, spaced apart grooves, for example. At different points along the curve of the diffractive feature 122, an ‘underlying diffraction grating’ of the multibeam diffraction grating 120 associated with the curved diffractive features 122 has a different azimuthal orientation angle φf. In particular, at a given point along the curved diffractive features 122 the curve has a particular azimuthal orientation angle φf that generally differs from another point along the curved diffractive feature 122. Further, the particular azimuthal orientation angle φf results in a corresponding azimuthal component φ of a principal angular direction {θ, φ} of a light beam 102 emitted from the given point. In some examples, the curve of the diffractive feature(s) (e.g., groove, ridge, etc.) may represent a section of a circle. The circle may be coplanar with the light guide surface. In other examples, the curve may represent a section of an ellipse or another curved shape, e.g., that is coplanar with the light guide surface.
  • In other examples, the multibeam diffraction grating 120 may include diffractive features 122 that are ‘piecewise’ curved. In particular, while the diffractive feature may not describe a substantially smooth or continuous curve per se, at different points along the diffractive feature within the multibeam diffraction grating 120, the diffractive feature still may be oriented at different angles with respect to the incident direction of the guided light 104. For example, the diffractive feature 122 may be a groove including a plurality of substantially straight segments, each segment having a different orientation than an adjacent segment. Together, the different angles of the segments may approximate a curve (e.g., a segment of a circle), according to various examples. See FIG. 3, which is described below. In yet other examples, the features may merely have different orientations relative to the incident direction of the guided light at different locations within the multibeam diffraction grating 120 without approximating a particular curve (e.g., a circle or an ellipse).
  • In some examples, the multibeam diffraction grating 120 may include both differently oriented diffractive features 122 and a chirp of the diffractive spacing d. In particular, both the orientation and the spacing d between the diffractive features 122 may vary at different points within the multibeam diffraction grating 120. For example, the multibeam diffraction grating 120 may include a curved and chirped diffraction grating 120 having grooves or ridges that are both curved and vary in spacing d as a function of a radius of the curve.
  • FIG. 2A illustrates the multibeam diffraction grating 120 including diffractive features 122 (e.g., grooves or ridges) that are both curved and chirped (i.e., is a curved, chirped diffraction grating). An example incident direction of the guided light 104 is illustrated by a bold arrow in FIG. 2A. FIG. 2A also illustrates the plurality of emitted light beams 102 provided by diffractive coupling as arrows pointing away from the surface of the light guide 110. As illustrated, the light beams 102 are emitted in a plurality of different principal angular directions. In particular, different principal angular directions of the emitted light beams 102 are different in both azimuth and elevation, as illustrated. Six separate light beams 102 are illustrated in FIG. 2A, by way of example and not limitation. As discussed above, the chirp of the diffractive features 122 may be substantially responsible for an elevation component of the different principal angular directions, while the curve of the diffractive features 122 may be substantially responsible for the azimuthal component, according to some examples.
  • FIG. 3 illustrates a plan view of a multibeam diffraction grating 120, according to another example consistent with the principles described herein. As illustrated, the multibeam diffraction grating 120 is on a surface of a light guide 110 and includes diffractive features 122 that are both piece-wise curved and chirped. An example incident direction of guided light 104 is illustrated by a bold arrow in FIG. 3.
  • Referring to again to FIGS. 2B and 2C, the multibeam diffraction grating-based backlight 100 may further include the light source 130, according to some examples. The light source 130 may be configured to provide light that, when coupled into the light guide 110, is the guided light 104. In various examples, the light source 130 may be substantially any source of light including, but not limited to, one or more of a light emitting diode (LED), a fluorescent light and a laser. In some examples, the light source 130 may produce a substantially monochromatic light having a narrowband spectrum denoted by a particular color. In particular, the color of the monochromatic light may be a primary color of a particular color gamut or color model (e.g., a red-green-blue (RGB) color model). The light source 130 may be a red LED and the monochromatic light 102 is substantially the color red. The light source 30 may be a green LED and the monochromatic light 130 is substantially green in color. The light source 130 may be a blue LED and the monochromatic light 130 is substantially blue in color. In other examples, the light provided by the light source 130 has a substantially broadband spectrum. For example, the light produced by the light source 130 may be white light. The light source 130 may be a fluorescent light that produces white light. In some examples, the guided light 104 may be light from the light source 130 that is coupled into an end or an edge of the light guide 110. A lens (not illustrated) may facilitate coupling of light into the light guide 110 at the end or edge thereof, for example.
  • In some examples, the multibeam diffraction grating-based backlight 100 is substantially transparent. In particular, both of the light guide 110 and the multibeam diffraction grating 120 may be optically transparent in a direction orthogonal to a direction of guided light propagation in the light guide 110, according to some examples. Optical transparency may allow objects on one side of the directional grating-based backlight 100 to be seen from an opposite side, for example.
  • According to some examples of the principles described herein, an electronic display is provided. According to various examples, the electronic display is configured to emit modulated light beams as pixels of the electronic display. Further, in various examples, the emitted modulated light beams may be preferentially directed toward a viewing direction of the electronic display as a plurality of differently directed light beams. In some examples, the electronic display is a three-dimensional (3-D) electronic display (e.g., a glasses-free 3-D electronic display). Different ones of the modulated, differently directed light beams may correspond to different ‘views’ associated with the 3-D electronic display, according to various examples. The different ‘views’ may provide a ‘glasses free’ (e.g., autostereoscopic) representation of information being displayed by the 3-D electronic display, for example.
  • FIG. 4 illustrates a block diagram of an electronic display 200, according to an example consistent with the principles described herein. In particular, the electronic display 200 illustrated in FIG. 4 is a 3-D electronic display 200 (e.g., a ‘glasses free’ 3-D electronic display) configured to emit modulated light beams 202. The emitted, modulated light beams 202 are illustrated as diverging (e.g., as opposed to converging) in FIG. 4 by way of example and not limitation.
  • The 3-D electronic display 200 illustrated in FIG. 4 includes a plate light guide 210 to guide light. The guided light in the plate light guide 210 is a source of the light that becomes the modulated light beams 202 emitted by the 3-D electronic display 200. According to some examples, the plate light guide 210 may be substantially similar to the light guide 110 described above with respect to multibeam diffraction grating-based backlight 100. For example, the plate light guide 210 may be a slab optical waveguide that is a planar sheet of dielectric material configured to guide light by total internal reflection.
  • The 3-D electronic display 200 illustrated in FIG. 4 further includes a multibeam diffraction grating 220. In some examples, the multibeam diffraction grating 220 may be substantially similar to the multibeam diffraction grating 120 of the multibeam diffraction grating-based backlight 100, described above. In particular, the multibeam diffraction grating 220 is configured to couple out a portion of the guided light as a plurality of light beams 204. Further, the multibeam diffraction grating 220 is configured to direct the light beams 204 in a corresponding plurality of different principal angular directions. In some examples, the multibeam diffraction grating 220 includes a chirped diffraction grating. In some examples, diffractive features (e.g., grooves, ridges, etc.) of the multibeam diffraction grating 220 are curved diffractive features. In yet other examples, the multibeam diffraction grating 220 includes a chirped diffraction grating having curved diffractive features. For example, the curved diffractive features may include a ridge or a groove that is curved (i.e., continuously curved or piece-wise curved) and a spacing between the curved diffractive features that may vary as a function of distance across the multibeam diffraction grating 220.
  • As illustrated in FIG. 4, the 3-D electronic display 200 further includes a light valve array 230. The light valve array 230 includes a plurality of light valves configured to modulate the differently directed light beams 204 of the plurality, according to various examples. In particular, the light valves of the light valve array 230 modulate the differently directed light beams 204 to provide the modulated light beams 202 that are the pixels of the 3-D electronic display 200. Moreover, different ones of the modulated, differently directed light beams 202 may correspond to different views of the 3-D electronic display. In various examples, different types of light valves in the light valve array 230 may be employed including, but not limited to, liquid crystal light valves and electrophoretic light valves. Dashed lines are used in FIG. 4 to emphasize modulation of the light beams 202.
  • According to various examples, the light valve array 230 employed in the 3-D display may be relatively thick or equivalently may be spaced apart from the multibeam diffraction grating 220 by a relatively large distance. In some examples, the light valve array 230 (e.g., using the liquid crystal light valves) may be spaced apart from the multibeam diffraction grating 220 or equivalently have a thickness that is greater than about 50 micrometers. In some examples, the light valve array 230 may be spaced apart from the multibeam diffraction grating 220 or include a thickness that is greater than about 100 micrometers. In yet other examples, the thickness or spacing may be greater than about 200 micrometers. A relatively thick light valve array 230 or a light valve array 230 that is spaced apart from the multibeam diffraction grating 220 may be employed since the multibeam diffraction grating 220 provides light beams 204 directed in a plurality of different principal angular directions, according to various examples of the principles described herein. In some examples, the relatively thick light valve array 230 may be commercially available (e.g., a commercially available liquid crystal light valve array).
  • In some examples (e.g., as illustrated in FIG. 4), the 3-D electronic display 200 further includes a light source 240. The light source 240 is configured to provide light that propagates in the plate light guide 210 as the guided light. In particular, the guided light is light from the light source 240 that is coupled into the edge of the plate light guide 210, according to some examples. In some examples, the light source 240 is substantially similar to the light source 130 described above with respect to the multibeam diffraction grating-based backlight 100. For example, the light source 240 may include an LED of a particular color (e.g., red, green, blue) to provide monochromatic light or a broadband light source such as, but not limited to, a fluorescent light to provide broadband light (e.g., white light).
  • According to some examples of the principles described herein, a method of electronic display operation is provided. FIG. 5 illustrates a flow chart of a method 300 of electronic display operation, according to an example consistent with the principles described herein. As illustrated, the method 300 of electronic display operation includes guiding 310 light in a light guide. In some examples, the light guide and the guided light may be substantially similar to the light guide 110 and guided light 104, described above with respect to the multibeam diffraction grating-based backlight 100. In particular, in some examples, the light guide may guide 310 the guided light according to total internal reflection. Further, the light guide may be a substantially planar dielectric optical waveguide (e.g., a plate light guide), in some examples.
  • The method 300 of electronic display operation further includes diffractively coupling out 320 a portion of the guided light using a multibeam diffraction grating. According to various examples, the multibeam diffraction grating is located at a surface of the light guide. For example, the multibeam diffraction grating may be formed in the surface of the light guide as grooves, ridges, etc. In other examples, the multibeam diffraction grating may include a film on the light guide surface. In some examples, the multibeam diffraction grating is substantially similar to the multibeam diffraction grating 120 described above with respect to the multibeam directional grating-based backlight 100. In particular, the multibeam diffraction grating produces a plurality of light beams from the diffractively coupled out 320 portion of the guided light.
  • The method 300 of electronic display operation further includes diffractively redirecting 330 the light beams of the plurality away from the light guide surface. In particular, a light beam of the plurality that is diffractively redirected 330 away from the surface has a different principal angular direction from other light beams of the plurality. In some examples, each diffractively redirected light beam of the plurality has a different principal angular direction relative to the other light beams of the plurality. Diffractively redirecting 330 the light beams away from the surface further employs the multibeam diffraction grating. According to various examples, diffractively redirecting 330 the light beams of the plurality away from the surface in different principal angular directions using the multibeam diffraction grating may be substantially similar to the operation of the multibeam diffraction grating 120, described above with respect to the multibeam diffraction grating-based backlight 100. In particular, the multibeam diffraction grating may simultaneously, or substantially simultaneously, diffractively couple out 320 and diffractively redirect 330 the guided light as a plurality of light beams in accordance with the method 300.
  • In some examples, the method 300 of electronic display operation further includes modulating 340 the light beams of the plurality of light beams using a corresponding plurality of light valves. In particular, the diffractively redirected 330 plurality of light beams is modulated 340 by passing through or otherwise interacting with the corresponding plurality of light valves. The modulated light beams may form pixels of a three-dimensional (3-D) electronic display, according to some examples. For example, the modulated light beams may provide a plurality of views of the 3-D electronic display (e.g., a glasses-free, 3-D electronic display).
  • In some examples, the plurality of light valves used in modulating 340 the plurality of light beams is substantially similar to the light valve array 230 described above with respect to the 3-D electronic display 200. For example, the light valves may include liquid crystal light valves. In another example, the light valves may be another type of light valve including, but not limited to, an electrowetting light valve and an electrophoretic light valve.
  • Thus, there have been described examples of a multibeam diffraction grating-based backlight, a 3-D electronic display and a method of electronic display operation that employ a multibeam diffraction grating to provide a plurality of differently directed light beams. It should be understood that the above-described examples are merely illustrative of some of the many specific examples that represent the principles described herein. Clearly, those skilled in the art can readily devise numerous other arrangements without departing from the scope as defined by the following claims.

Claims (15)

What is claimed is:
1. A multibeam diffraction grating-based backlight comprising:
a light guide to guide light from a light source;
a multibeam diffraction grating at a surface of the light guide, the multibeam diffraction grating to couple out a portion of the guided light using diffractive coupling, the coupled out portion of the guided light being directed away from the light guide surface as a plurality of light beams, a light beam of the plurality having a different principal angular direction from other light beams of the plurality.
2. The multibeam diffraction grating-based backlight of claim 1, wherein the multibeam diffraction grating comprises a chirped diffraction grating.
3. The multibeam diffraction grating-based backlight of claim 2, wherein the chirped diffraction grating is a linearly chirped diffraction grating.
4. The multibeam diffraction grating-based backlight of claim 1, wherein the multibeam diffraction grating comprises one of curved grooves and curved ridges that are spaced apart from one another.
5. The multibeam diffraction grating-based backlight of claim 1, further comprising the light source at an edge of the light guide, the guided light being light from the light source that is coupled into the edge of the light guide.
6. The multibeam diffraction grating-based backlight of claim 1, wherein the light guide and the multibeam diffraction grating are substantially transparent in a direction orthogonal to a direction in which the light is to be guided in the light guide.
7. An electronic display comprising the multibeam diffraction grating-based backlight of claim 1, wherein the portion of the guided light to be coupled out by the multibeam diffraction grating is light corresponding to a pixel of the electronic display.
8. The electronic display of claim 7, further comprising a light valve to modulate the light beam of the plurality of light beams, the multibeam diffraction grating being between the light valve and the light guide surface.
9. A three-dimensional (3-D) electronic display comprising:
a plate light guide to guide light from a light source;
a multibeam diffraction grating to couple out a portion of the guided light as a plurality of light beams and to direct the light beams in a corresponding plurality of different principal angular directions; and
a light valve array to modulate the differently directed light beams of the plurality,
wherein the plurality of modulated, differently directed, light beams are a pixel of the electronic display, different ones of the modulated differently directed light beams corresponding to different views of the 3-D electronic display.
10. The 3-D electronic display of claim 9, wherein the multibeam diffraction grating comprises a chirped diffraction grating having curved diffractive features.
11. The 3-D electronic display of claim 9, wherein the light valve array comprises a plurality of liquid crystal light valves.
12. The 3-D electronic display of claim 11, wherein the light valve array has a thickness of greater than about 100 micrometers.
13. The 3-D electronic display of claim 9, further comprising the light source, the guided light being light from the light source that is coupled into the edge of the plate light guide.
14. A method of electronic display operation, the method comprising:
guiding light in a light guide;
diffractively coupling out a portion of the guided light using a multibeam diffraction grating at a surface of the light guide to produce a plurality of light beams; and
directing the plurality of light beams away from the light guide surface, wherein a light beam of the plurality has a different principal angular direction from other light beams of the plurality.
15. The method of electronic display operation of claim 14, further comprising modulating the plurality of light beams using a corresponding plurality of light valves, the modulated light beams forming pixels of a three-dimensional (3-D) electronic display.
US14/908,523 2013-07-30 2013-07-30 Multibeam diffraction grating-based backlighting Abandoned US20160195664A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2013/052774 WO2015016844A1 (en) 2013-07-30 2013-07-30 Multibeam diffraction grating-based backlighting

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/052774 A-371-Of-International WO2015016844A1 (en) 2013-07-30 2013-07-30 Multibeam diffraction grating-based backlighting

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/270,422 Continuation US10830939B2 (en) 2013-07-30 2019-02-07 Multibeam diffraction grating-based backlighting

Publications (1)

Publication Number Publication Date
US20160195664A1 true US20160195664A1 (en) 2016-07-07

Family

ID=52432216

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/908,523 Abandoned US20160195664A1 (en) 2013-07-30 2013-07-30 Multibeam diffraction grating-based backlighting
US14/308,689 Active US9128226B2 (en) 2013-07-30 2014-06-18 Multibeam diffraction grating-based backlighting
US16/270,422 Active US10830939B2 (en) 2013-07-30 2019-02-07 Multibeam diffraction grating-based backlighting

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/308,689 Active US9128226B2 (en) 2013-07-30 2014-06-18 Multibeam diffraction grating-based backlighting
US16/270,422 Active US10830939B2 (en) 2013-07-30 2019-02-07 Multibeam diffraction grating-based backlighting

Country Status (11)

Country Link
US (3) US20160195664A1 (en)
EP (1) EP2938919B1 (en)
JP (1) JP6140838B2 (en)
KR (1) KR101660911B1 (en)
CN (2) CN109100887B (en)
ES (1) ES2704675T3 (en)
HK (1) HK1206091A1 (en)
PL (1) PL2938919T3 (en)
PT (1) PT2938919T (en)
TW (1) TWI531823B (en)
WO (1) WO2015016844A1 (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018067381A1 (en) * 2016-10-05 2018-04-12 Leia Inc. Mode-selectable backlight, method, and display employing directional scattering features
WO2018128657A1 (en) * 2017-01-06 2018-07-12 Leia Inc. Static multiview display and method
US10089516B2 (en) 2013-07-31 2018-10-02 Digilens, Inc. Method and apparatus for contact image sensing
US10145533B2 (en) 2005-11-11 2018-12-04 Digilens, Inc. Compact holographic illumination device
WO2018226235A1 (en) * 2017-06-08 2018-12-13 Leia Inc. Light source and multiview backlight using the same
US10156681B2 (en) 2015-02-12 2018-12-18 Digilens Inc. Waveguide grating device
US10185154B2 (en) 2011-04-07 2019-01-22 Digilens, Inc. Laser despeckler based on angular diversity
US10209517B2 (en) 2013-05-20 2019-02-19 Digilens, Inc. Holographic waveguide eye tracker
US10216061B2 (en) 2012-01-06 2019-02-26 Digilens, Inc. Contact image sensor using switchable bragg gratings
US10234696B2 (en) 2007-07-26 2019-03-19 Digilens, Inc. Optical apparatus for recording a holographic device and method of recording
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US10330777B2 (en) 2015-01-20 2019-06-25 Digilens Inc. Holographic waveguide lidar
US10359736B2 (en) 2014-08-08 2019-07-23 Digilens Inc. Method for holographic mastering and replication
US10423222B2 (en) 2014-09-26 2019-09-24 Digilens Inc. Holographic waveguide optical tracker
US10437064B2 (en) 2015-01-12 2019-10-08 Digilens Inc. Environmentally isolated waveguide display
US10437051B2 (en) 2012-05-11 2019-10-08 Digilens Inc. Apparatus for eye tracking
US10459145B2 (en) 2015-03-16 2019-10-29 Digilens Inc. Waveguide device incorporating a light pipe
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
US10642058B2 (en) 2011-08-24 2020-05-05 Digilens Inc. Wearable data display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US10678053B2 (en) 2009-04-27 2020-06-09 Digilens Inc. Diffractive projection apparatus
US10678094B2 (en) 2016-10-05 2020-06-09 Leia Inc. Polarized backlight and backlit display using the same
US10690851B2 (en) 2018-03-16 2020-06-23 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US10690916B2 (en) 2015-10-05 2020-06-23 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US10728533B2 (en) 2015-10-16 2020-07-28 Leia Inc. Multibeam diffraction grating-based near-eye display
US10732569B2 (en) 2018-01-08 2020-08-04 Digilens Inc. Systems and methods for high-throughput recording of holographic gratings in waveguide cells
US10859768B2 (en) 2016-03-24 2020-12-08 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US10884175B2 (en) 2016-01-30 2021-01-05 Leia Inc. Multibeam element-based backlighting having converging views
US10890707B2 (en) 2016-04-11 2021-01-12 Digilens Inc. Holographic waveguide apparatus for structured light projection
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
US10942430B2 (en) 2017-10-16 2021-03-09 Digilens Inc. Systems and methods for multiplying the image resolution of a pixelated display
US10983340B2 (en) 2016-02-04 2021-04-20 Digilens Inc. Holographic waveguide optical tracker
TWI735157B (en) * 2019-02-16 2021-08-01 美商雷亞有限公司 Horizontal parallax multiview display and method having light control film
US11307432B2 (en) 2014-08-08 2022-04-19 Digilens Inc. Waveguide laser illuminator incorporating a Despeckler
US11314099B2 (en) 2016-10-05 2022-04-26 Leia Inc. Transparent display and method
US11378732B2 (en) 2019-03-12 2022-07-05 DigLens Inc. Holographic waveguide backlight and related methods of manufacturing
US11402801B2 (en) 2018-07-25 2022-08-02 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
US11442222B2 (en) 2019-08-29 2022-09-13 Digilens Inc. Evacuated gratings and methods of manufacturing
US11448937B2 (en) 2012-11-16 2022-09-20 Digilens Inc. Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles
US11460621B2 (en) 2012-04-25 2022-10-04 Rockwell Collins, Inc. Holographic wide angle display
US11480788B2 (en) 2015-01-12 2022-10-25 Digilens Inc. Light field displays incorporating holographic waveguides
US11513350B2 (en) 2016-12-02 2022-11-29 Digilens Inc. Waveguide device with uniform output illumination
US11543594B2 (en) 2019-02-15 2023-01-03 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
US11681143B2 (en) 2019-07-29 2023-06-20 Digilens Inc. Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display
US11686898B2 (en) 2016-01-30 2023-06-27 Leia Inc. Privacy display and dual-mode privacy display system
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US11747568B2 (en) 2019-06-07 2023-09-05 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
US12092914B2 (en) 2018-01-08 2024-09-17 Digilens Inc. Systems and methods for manufacturing waveguide cells
US12140764B2 (en) 2019-02-15 2024-11-12 Digilens Inc. Wide angle waveguide display
US12158612B2 (en) 2021-03-05 2024-12-03 Digilens Inc. Evacuated periodic structures and methods of manufacturing
US12210153B2 (en) 2019-01-14 2025-01-28 Digilens Inc. Holographic waveguide display with light control layer
US12222499B2 (en) 2020-12-21 2025-02-11 Digilens Inc. Eye glow suppression in waveguide based displays

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105700269B (en) * 2016-04-11 2019-05-03 京东方科技集团股份有限公司 A kind of display device
US9389415B2 (en) 2012-04-27 2016-07-12 Leia Inc. Directional pixel for use in a display screen
US9459461B2 (en) 2012-05-31 2016-10-04 Leia Inc. Directional backlight
US9201270B2 (en) 2012-06-01 2015-12-01 Leia Inc. Directional backlight with a modulation layer
US9298168B2 (en) 2013-01-31 2016-03-29 Leia Inc. Multiview 3D wrist watch
EP2938919B1 (en) * 2013-07-30 2018-10-24 LEIA Inc. Multibeam diffraction grating-based backlighting
US9557466B2 (en) 2014-07-30 2017-01-31 Leia, Inc Multibeam diffraction grating-based color backlighting
WO2016107851A1 (en) * 2014-12-29 2016-07-07 Imec Vzw Light coupler
WO2016111706A1 (en) 2015-01-10 2016-07-14 Leia Inc. Polarization-mixing light guide and multibeam grating-based backlighting using same
KR102322340B1 (en) 2015-01-10 2021-11-05 레이아 인코포레이티드 Diffraction grating-based backlighting having controlled diffractive coupling efficiency
KR102411560B1 (en) * 2015-01-10 2022-06-21 레이아 인코포레이티드 Grating coupled light guide
JP6567058B2 (en) 2015-01-10 2019-08-28 レイア、インコーポレイテッドLeia Inc. 2D / 3D (2D / 3D) switchable display backlight and electronic display
ES2803583T3 (en) 2015-01-19 2021-01-28 Leia Inc Unidirectional grating-based backlight employing a reflective island
WO2016122679A1 (en) 2015-01-28 2016-08-04 Leia Inc. Three-dimensional (3d) electronic display
ES2928663T3 (en) * 2015-02-27 2022-11-21 Leia Inc multi view camera
EP3271761B1 (en) * 2015-03-16 2021-04-21 LEIA Inc. Unidirectional grating-based backlighting employing an angularly selective reflective layer
EP3283923B1 (en) * 2015-03-30 2020-05-13 LEIA Inc. 2d/3d mode-switchable electronic display with dual layer backlight
US9800875B2 (en) 2015-04-10 2017-10-24 Red.Com, Llc Video camera with rate control video compression
JP6961491B2 (en) 2015-04-23 2021-11-05 レイア、インコーポレイテッドLeia Inc. Double light-guided grid-based backlight and electronic display with the same backlight
ES2806428T3 (en) * 2015-05-09 2021-02-17 Leia Inc Backlight based on a color scanning grid and electronic display using the same
ES2819239T3 (en) * 2015-05-30 2021-04-15 Leia Inc Vehicle display system
KR102364848B1 (en) * 2015-08-20 2022-02-18 삼성전자주식회사 Curved backlight unit and curved display apparatus including the same
JP6804525B2 (en) * 2015-09-05 2020-12-23 レイア、インコーポレイテッドLeia Inc. Time-multiplexed backlight and multi-view display using it
ES2907502T3 (en) * 2015-09-05 2022-04-25 Leia Inc Multibeam diffraction grating based display with head tracking
US10802212B2 (en) * 2015-09-05 2020-10-13 Leia Inc. Angular subpixel rendering multiview display using shifted multibeam elements
EP3345389B1 (en) * 2015-09-05 2020-12-09 LEIA Inc. Supersampled 3d display with improved angular resolution
JP6709278B2 (en) * 2015-09-05 2020-06-10 レイア、インコーポレイテッドLeia Inc. Backlighting with multicolor grid coupling
CN108139589B (en) * 2015-09-05 2021-01-26 镭亚股份有限公司 Light concentrating backlight and near-to-eye display system using the same
WO2017041079A1 (en) * 2015-09-05 2017-03-09 Leia Inc. Angular subpixel rendering multiview display using shifted multibeam diffraction gratings
JP6698822B2 (en) * 2015-09-05 2020-05-27 レイア、インコーポレイテッドLeia Inc. Bidirectional collimator
US10798371B2 (en) 2015-09-05 2020-10-06 Leia Inc. Multiview display with head tracking
EP3345042B1 (en) * 2015-09-05 2021-12-01 LEIA Inc. Dual surface collimator and 3d electronic display employing grating-based backlighting using same
KR102491853B1 (en) 2015-12-09 2023-01-26 삼성전자주식회사 Directional backlight unit and 3D image display apparatus having the same
MX2018007200A (en) 2015-12-14 2018-09-21 Red Com Llc Modular digital camera and cellular phone.
KR102526752B1 (en) * 2015-12-18 2023-04-27 삼성전자주식회사 Directional backlight unit, 3D image display apparatus having the same, and method of manufacturing the same
CN105372824B (en) * 2015-12-22 2017-12-29 苏州苏大维格光电科技股份有限公司 A kind of bore hole 3D laser display apparatus
CN106959551B (en) * 2016-01-08 2023-12-19 京东方科技集团股份有限公司 Display device and driving method thereof
KR102581465B1 (en) 2016-01-12 2023-09-21 삼성전자주식회사 Three-dimensional image display apparatus including the diffractive color filter
WO2017123259A1 (en) 2016-01-16 2017-07-20 Leia Inc. Multibeam diffraction grating-based head-up display
CN105425409B (en) * 2016-01-19 2017-09-19 苏州苏大维格光电科技股份有限公司 A projection-type naked-eye 3D display device and its colorized display device
KR102526751B1 (en) 2016-01-25 2023-04-27 삼성전자주식회사 Directional backlight unit, three dimensional image display apparatus, and method of displaying three dimensional image display
US10613376B2 (en) 2016-01-28 2020-04-07 Hewlett Packard Enterprise Development Lp Augmented reality see-through display
US10373544B1 (en) 2016-01-29 2019-08-06 Leia, Inc. Transformation from tiled to composite images
CA3007486C (en) * 2016-01-30 2020-07-28 Leia Inc. Multibeam element-based backlight and display using same
US9830755B2 (en) 2016-02-17 2017-11-28 Jvis-Usa, Llc System including a hand-held communication device having low and high power settings for remotely controlling the position of a door of a land vehicle and key fob for use in the system
US10284822B2 (en) 2016-02-17 2019-05-07 Jvis-Usa, Llc System for enhancing the visibility of a ground surface adjacent to a land vehicle
JP6820940B2 (en) * 2016-03-23 2021-01-27 レイア、インコーポレイテッドLeia Inc. Reflective grid Lattice-based backlight with island-like structure
CN105652511B (en) * 2016-04-11 2019-06-07 京东方科技集团股份有限公司 A kind of display device
CA3021958C (en) 2016-05-23 2021-11-16 Leia Inc. Diffractive multibeam element-based backlighting
PT3469409T (en) * 2016-06-08 2022-03-07 Leia Inc Angular subpixel rendering multiview display using shifted multibeam elements
KR20180010791A (en) 2016-07-22 2018-01-31 삼성전자주식회사 Directional backlight unit, its production method, and 3D image display apparatus having the same
CN109477625A (en) * 2016-07-26 2019-03-15 镭亚股份有限公司 Bar shaped collimator, backlight body system and method
CN106094342A (en) * 2016-08-22 2016-11-09 京东方科技集团股份有限公司 A kind of backlight module, display device and display packing
KR102560709B1 (en) 2016-08-30 2023-07-27 삼성전자주식회사 Directional backlight unit, 3D image display apparatus having the same
KR102646789B1 (en) 2016-09-22 2024-03-13 삼성전자주식회사 Directional backlight unit and three-dimensional image display apparatus including the same
KR102608465B1 (en) * 2016-10-05 2023-12-01 삼성전자주식회사 Display apparatus and method for designing display apparatus
KR102736293B1 (en) 2016-10-25 2024-11-29 삼성전자주식회사 Directional backlight unit and three-dimensional image display apparatus including the same
TWI618957B (en) * 2016-11-07 2018-03-21 雷亞有限公司 A dual-direction optical collimator and a method, backlight and three-dimensional(3d) electronic display using same
KR102654863B1 (en) * 2016-11-08 2024-04-05 삼성전자주식회사 Directional backlight unit, image display apparatus having the same
KR102654870B1 (en) 2016-11-09 2024-04-05 삼성전자주식회사 Backlight unit for 3D image display and method of manufacturing the backlight unit
KR20180059205A (en) * 2016-11-25 2018-06-04 삼성전자주식회사 Directional backlight unit, 3D image display apparatus having the same, and method of manufacturing the same
FR3060140B1 (en) * 2016-12-13 2019-07-05 Valeo Comfort And Driving Assistance HIGH HEAD DISPLAY
CA3044193C (en) 2016-12-28 2020-12-22 Leia Inc. Multiview backlighting employing fluorescent multibeam elements
EP3563083B1 (en) * 2016-12-28 2023-06-07 LEIA Inc. Multiview displays having a reflective support structure
EP3574353B1 (en) 2017-01-30 2023-11-01 LEIA Inc. Multiview backlighting employing plasmonic multibeam elements
JP6793261B2 (en) * 2017-02-28 2020-12-02 レイア、インコーポレイテッドLeia Inc. Multi-view backlight with color-adjusted emission pattern
US10244230B2 (en) 2017-03-01 2019-03-26 Avalon Holographics Inc. Directional pixel for multiple view display
CN106707624A (en) * 2017-03-10 2017-05-24 京东方科技集团股份有限公司 Display element, backlight source and display device
AU2018240363B2 (en) 2017-03-22 2023-02-23 Magic Leap, Inc. Wearable display device utilizing a composite field of view
CA3053815C (en) * 2017-03-25 2021-10-19 Leia Inc. Mode-switchable backlight, privacy display, and method
KR102262227B1 (en) 2017-03-25 2021-06-09 레이아 인코포레이티드 Directional backlights, backlight displays and methods
EP3602152A4 (en) 2017-03-31 2020-11-04 LEIA Inc. BACKLIGHT, MULTI-VIEW DISPLAY AND CONICAL COLLIMATOR PROCEDURE
JP6899447B2 (en) 2017-04-02 2021-07-07 レイア、インコーポレイテッドLeia Inc. Dual view zone backlight, dual mode display, and method
EP3607246A4 (en) 2017-04-04 2021-01-13 LEIA Inc. SINGLE SIDED BACKLIGHT, MULTI-VIEW DISPLAY AND METHOD USING SLOPING DIFFUSION GRIDS
JP7153666B2 (en) 2017-04-04 2022-10-14 レイア、インコーポレイテッド Multi-layer multi-view display and method
KR102303654B1 (en) 2017-04-08 2021-09-17 레이아 인코포레이티드 Multi-view backlight, mode-switchable multi-view backlight, and 2D/3D mode-switchable display
JP6888897B2 (en) * 2017-04-28 2021-06-18 深▲セン▼前▲海▼▲達▼▲闥▼▲雲▼端智能科技有限公司Cloudminds (Shenzhen) Robotics Systems Co., Ltd. Directional optical waveguide, directional backlight module and display device
EP3622340B1 (en) 2017-05-11 2023-12-13 LEIA Inc. Microstructured multibeam element backlighting
EP3625503B1 (en) * 2017-05-14 2024-11-06 LEIA Inc. Multiview backlight, display, and method employing active emitter arrays
JP7046987B2 (en) 2017-06-16 2022-04-04 レイア、インコーポレイテッド How to use multi-view backlight, multi-view display and offset multi-beam elements
CA3064724C (en) 2017-06-21 2023-02-28 Leia Inc. Microprism multibeam element backlight and multiview display using same
EP3649783B1 (en) 2017-07-05 2024-12-25 Red.Com, Llc Video image data processing in electronic devices
EP3655697A4 (en) * 2017-07-21 2020-12-23 LEIA Inc. Multibeam element-based backlight with microlens and display using same
US11054627B2 (en) * 2017-08-24 2021-07-06 Yan Feng Four-dimensional multi-plane broadband imaging system based on non-reentry quadratically distorted (NRQD) grating and grism
EP3688370A4 (en) 2017-09-27 2021-04-28 LEIA Inc. MULTI-COLOR STATIC MULTI-VIEW DISPLAY DEVICE AND ASSOCIATED PROCESS
CN111164348A (en) * 2017-09-28 2020-05-15 镭亚股份有限公司 Optical-concentrating grating-coupled light guides, display systems, and methods
CN111183638B (en) 2017-10-02 2022-06-17 镭亚股份有限公司 Multi-view camera array, multi-view system and method having sub-arrays of cameras with shared cameras
US10929667B2 (en) * 2017-10-13 2021-02-23 Corning Incorporated Waveguide-based optical systems and methods for augmented reality systems
CA3075296C (en) 2017-10-27 2022-07-19 Leia Inc. Backlit transparent display, transparent display system, and method
CA3079967C (en) * 2017-11-18 2023-02-28 Leia Inc. Bar collimator, backlight system and method
CN108089253B (en) * 2017-12-15 2019-06-25 京东方科技集团股份有限公司 Light collimator apparatus, backlight module and display device
JP7023381B2 (en) 2017-12-18 2022-02-21 レイア、インコーポレイテッド Mode-switchable backlights, displays, and methods
WO2019125393A1 (en) 2017-12-18 2019-06-27 Leia Inc. Multibeam element-based head-up display, system, and method
CA3085870C (en) * 2017-12-21 2021-12-21 Leia Inc. Mode-selectable backlight, privacy display, and method
FI128882B (en) * 2017-12-22 2021-02-15 Dispelix Oy Optical waveguide and diffractive waveguide display
US10598832B2 (en) 2018-01-09 2020-03-24 Varian Semiconductor Equipment Associates, Inc. System and method for forming diffracted optical element having varied gratings
JP7047132B2 (en) 2018-01-27 2022-04-04 レイア、インコーポレイテッド Polarized Recycled Backlights with Sub-Wavelength Grids, Methods, and Multi-View Display
CN111801526B (en) 2018-03-01 2023-06-02 镭亚股份有限公司 Static multiview display and method employing collimated guided light
TWI657295B (en) * 2018-03-02 2019-04-21 友達光電股份有限公司 Backlight module with light modulation device
WO2019177617A1 (en) * 2018-03-15 2019-09-19 Leia Inc. Horizontal parallax multiview display and method having slanted multibeam columns
CA3101587C (en) 2018-06-29 2023-09-19 Leia Inc. Mixed-format backlight, display, and method
CN112368629B (en) 2018-06-29 2022-10-11 镭亚股份有限公司 Multiview display and method with dynamically reconfigurable multiview pixels
CN108646338B (en) * 2018-07-02 2019-12-31 京东方科技集团股份有限公司 Backlight module and display device
KR102617358B1 (en) 2018-08-13 2023-12-21 레이아 인코포레이티드 Grating collimator, backlight system light method using optical recirculating light source
CN108845460B (en) * 2018-08-15 2021-01-29 京东方科技集团股份有限公司 Backlight module and display device
EP3841451A4 (en) 2018-08-26 2022-04-06 LEIA Inc. MULTIPLE DISPLAY, USER TRACKING SYSTEM AND PROCEDURES
CN112889106B (en) * 2018-10-01 2024-04-16 镭亚股份有限公司 Multi-view display with multi-beam emitters and offset rows of multi-view pixels and method
KR20210052574A (en) 2018-10-01 2021-05-10 레이아 인코포레이티드 Holographic reality system, multi-view display and method
CA3110154C (en) 2018-10-15 2023-09-12 Leia Inc. Backlight, multiview display and method having a grating spreader
KR102535565B1 (en) 2018-10-31 2023-05-26 레이아 인코포레이티드 Multiview backlight with optical mask elements, display and method
WO2020096566A1 (en) 2018-11-05 2020-05-14 Leia Inc. Multiview display and method
US10598938B1 (en) * 2018-11-09 2020-03-24 Facebook Technologies, Llc Angular selective grating coupler for waveguide display
KR102642694B1 (en) 2018-12-08 2024-03-04 레이아 인코포레이티드 Static multi-view display and method using directional light source and horizontal diffuser
KR20210090281A (en) 2018-12-20 2021-07-19 레이아 인코포레이티드 Multiview display, system and method with shiftable converging plane
WO2020139338A1 (en) 2018-12-27 2020-07-02 Leia Inc. Multiview display, system, and method having dynamic color sub-pixels remapping
JP7394139B2 (en) 2019-01-25 2023-12-07 レイア、インコーポレイテッド Multidirectional backlight, multi-user multi-view display, and method
EP3938840A4 (en) * 2019-03-14 2022-12-07 LEIA Inc. SWITCHABLE MODE BACKLIGHT, PRIVACY DISPLAY DEVICE AND METHOD USING TRANSMITTER NETWORKS
EP3942226A4 (en) 2019-03-17 2022-11-30 LEIA Inc. DUAL VISION AREA BACKLIGHT, DUAL MODE DISPLAY DEVICE AND METHOD USING DIRECTIONAL EMITTERS
JP7213370B2 (en) 2019-04-02 2023-01-26 レイア、インコーポレイテッド Multi-view display alignment method and system
CN113711112B (en) 2019-04-22 2023-10-10 镭亚股份有限公司 Multi-zone backlighting, multi-view displays and methods
EP3963390B1 (en) 2019-04-28 2024-01-17 LEIA Inc. Diffractive backlight fabrication method
CA3136919C (en) 2019-04-29 2024-01-23 Leia Inc. Multiview display and method having shifted color sub-pixels
CN110161751A (en) * 2019-05-23 2019-08-23 京东方科技集团股份有限公司 Backlight module and display device
US11137534B2 (en) 2019-06-26 2021-10-05 Synaptics Incorporated Systems and methods for optical imaging based on diffraction gratings
CN114207353A (en) 2019-08-01 2022-03-18 镭亚股份有限公司 Collimating backlight, electronic display and method employing absorbing collimator
CN110426871B (en) * 2019-08-07 2022-06-07 京东方科技集团股份有限公司 Backlight adjusting structure and display device
WO2021040683A1 (en) 2019-08-25 2021-03-04 Leia Inc. Backlight scattering element, multiview display, and method having high-index light guide layer
CA3148748C (en) 2019-08-27 2023-09-19 Leia Inc. Multiview backlight, display, and method employing an optical diffuser
JP7571128B2 (en) 2019-09-12 2024-10-22 レイア、インコーポレイテッド MULTI-VIEW BACKLIGHT, MULTI-VIEW DISPLAY, AND METHODS USING REFLECTIVE MULTI-BEAM ELEMENTS - Patent application
EP4045846A4 (en) 2019-10-15 2023-07-19 LEIA Inc. PRIVACY MODE BACKLIGHT, PRIVACY DISPLAY UNIT, AND METHOD
CN114556017B (en) * 2019-10-15 2024-07-30 镭亚股份有限公司 Multibeam backlight, multiview display and method with diffraction grating fill-factor
CN114641712B (en) 2019-10-31 2024-09-03 镭亚股份有限公司 Multi-beam backlight with tangible edge multi-beam element, multi-view display and method
KR20220116224A (en) 2019-12-30 2022-08-22 루머스 리미티드 Detection and distance measurement systems employing optical waveguides
JP7498288B2 (en) 2020-03-01 2024-06-11 レイア、インコーポレイテッド Multiview style transfer system and method
JP2020187762A (en) * 2020-07-02 2020-11-19 レイア、インコーポレイテッドLeia Inc. Vehicle monitoring system
CN116420108A (en) 2020-11-09 2023-07-11 镭亚股份有限公司 Horizontal parallax multi-view backlight, display and method
JP2024527718A (en) 2021-06-28 2024-07-26 レイア、インコーポレイテッド Multi-view backlight, display and method having reflective sub-elements with different protrusion distances - Patents.com
CN118043727A (en) * 2021-09-25 2024-05-14 镭亚股份有限公司 Static color multiview display and method

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3536497A1 (en) * 1984-10-16 1986-04-17 Mitsubishi Denki K.K., Tokio/Tokyo DEVICE FOR DETECTING FOCUSING ERRORS IN A HEAD ARRANGEMENT FOR OPTICAL DISCS
JP3140046B2 (en) 1989-08-31 2001-03-05 大日本印刷株式会社 Hologram calendar
CA2060057C (en) 1991-01-29 1997-12-16 Susumu Takahashi Display having diffraction grating pattern
GB2269697A (en) 1992-08-11 1994-02-16 Sharp Kk Display device
JP2979951B2 (en) 1994-04-18 1999-11-22 凸版印刷株式会社 Display with diffraction grating pattern
US6014259A (en) 1995-06-07 2000-01-11 Wohlstadter; Jacob N. Three dimensional imaging system
JP3778966B2 (en) 1995-07-31 2006-05-24 凸版印刷株式会社 Full color image display device
JP3336200B2 (en) 1995-12-12 2002-10-21 シャープ株式会社 Three-dimensional image display device having element hologram panel
US5721598A (en) 1995-12-26 1998-02-24 Hughes Electronics High efficiency, high color purity, on-axis holographic color filter and full-color liquid crystal display
US7215451B1 (en) 1996-04-15 2007-05-08 Dai Nippon Printing Co., Ltd. Reflection type diffuse hologram, hologram for reflection hologram color filters, etc., and reflection type display device using such holograms
JPH09284684A (en) * 1996-04-17 1997-10-31 Hitachi Ltd Single-panel color liquid crystal display device
WO1999008257A1 (en) 1997-08-05 1999-02-18 Allan John Davie Liquid crystal controlled display apparatus
JPH11142863A (en) * 1997-11-13 1999-05-28 Nec Corp Liquid crystal display panel and its manufacture
JPH11326545A (en) 1998-05-11 1999-11-26 Koji Ono Three-dimensional clock
US6295104B1 (en) * 1998-05-26 2001-09-25 Minebea Co., Ltd. Front illuminating system with layer between light guide and LCD
US6158884A (en) 1998-06-26 2000-12-12 Motorola, Inc. Integrated communicative watch
CN1213097A (en) 1998-10-29 1999-04-07 厦门大学 Making tomographic combined three-D holograph display device for medical image diagnosis
FI107085B (en) 1999-05-28 2001-05-31 Ics Intelligent Control System Lighting panel
US6919950B2 (en) 2000-08-29 2005-07-19 Roman S. Dabrowski Liquid crystal device and a liquid crystal material
JP2002202389A (en) 2000-10-31 2002-07-19 Sony Corp Clock information distribution processing system, information distribution device, information distribution system, portable terminal device, information recording medium and information processing method
US6490393B1 (en) 2000-11-27 2002-12-03 Advanced Interfaces, Llc Integrated optical multiplexer and demultiplexer for wavelength division transmission of information
US7301591B2 (en) * 2001-09-28 2007-11-27 Citizen Holdings Co., Ltd. Liquid crystal display device wherein the number of light emitting elements activated differs depending on whether display is performed by the first or second liquid crystal panel
GB0210568D0 (en) 2002-05-08 2002-06-19 Screen Technology Ltd Display
JP3742038B2 (en) 2002-08-01 2006-02-01 Nec液晶テクノロジー株式会社 Liquid crystal display device and manufacturing method thereof
KR100624408B1 (en) 2003-01-07 2006-09-18 삼성전자주식회사 Backlight unit
US7184625B2 (en) 2003-02-11 2007-02-27 Luxtera, Inc Optical waveguide grating coupler incorporating reflective optical elements and anti-reflection elements
JP2005062692A (en) 2003-08-19 2005-03-10 Internatl Business Mach Corp <Ibm> Color display device, optical element, and method for manufacturing color display device
GB0326005D0 (en) 2003-11-07 2003-12-10 Koninkl Philips Electronics Nv Waveguide for autostereoscopic display
CN1619373A (en) * 2003-11-17 2005-05-25 鸿富锦精密工业(深圳)有限公司 Light conducting board and back light module
US7369584B2 (en) 2003-12-31 2008-05-06 Symbol Technologies, Inc. Laser projection display
US8723779B2 (en) 2004-01-26 2014-05-13 Mcmaster University Tiled optical fiber display
TWI254166B (en) * 2004-05-25 2006-05-01 Au Optronics Corp 3D display system and method
US7959294B2 (en) 2004-05-26 2011-06-14 Tibor Balogh Method and apparatus for generating 3D images
US7903332B2 (en) 2004-10-13 2011-03-08 Koninklijke Philips Electronics N.V. Stereoscopic display apparatus
US7171080B2 (en) 2004-11-15 2007-01-30 Seagate Technology Llc Coupling grating for focusing light within a waveguide for heat assisted magnetic recording
US7773849B2 (en) 2004-12-14 2010-08-10 Oms Displays Ltd. Device and method for optical resizing and backlighting
CN103927994B (en) 2004-12-23 2017-04-26 杜比实验室特许公司 Wide color gamut displays
JP2007033200A (en) 2005-07-26 2007-02-08 Sony Corp Wrist watch, display method of wrist watch, and program
CN1932602A (en) 2005-09-14 2007-03-21 鸿富锦精密工业(深圳)有限公司 Light-conducting plate
JP2007163294A (en) 2005-12-14 2007-06-28 Sony Corp Wrist watch, display method of wrist watch, and program
JP4600269B2 (en) * 2005-12-21 2010-12-15 カシオ計算機株式会社 Liquid crystal display
US20070236801A1 (en) 2006-03-28 2007-10-11 Deep Light, Llc Time-multiplexed 3D display system with beam splitter
WO2007135960A1 (en) * 2006-05-18 2007-11-29 Panasonic Corporation Planar light source device and liquid crystal display device
US7714368B2 (en) 2006-06-26 2010-05-11 Aptina Imaging Corporation Method and apparatus providing imager pixel array with grating structure and imager device containing the same
EP2076813B1 (en) 2006-09-28 2017-12-20 Nokia Technologies Oy Beam expansion with three-dimensional diffractive elements
CN101568889B (en) 2006-10-26 2013-03-20 视瑞尔技术公司 Holographic display device
EP2089849A1 (en) 2006-10-26 2009-08-19 SeeReal Technologies S.A. 3d content generation system
US20110002143A1 (en) * 2006-12-28 2011-01-06 Nokia Corporation Light guide plate and a method of manufacturing thereof
US20080204873A1 (en) 2007-02-23 2008-08-28 Strategic Patent Acquisitions Llc Techniques for three dimensional displays
US7507012B2 (en) 2007-05-16 2009-03-24 Rohm And Haas Denmark Finance A/S LCD displays with light redirection
JP5010527B2 (en) * 2007-06-04 2012-08-29 住友化学株式会社 Light guide plate unit, surface light source device, and liquid crystal display device
EP2158518B1 (en) 2007-06-14 2015-01-14 Nokia Corporation Displays with integrated backlighting
US20090016168A1 (en) 2007-07-12 2009-01-15 Emily Smith Timepiece Device
JP2009053499A (en) * 2007-08-28 2009-03-12 Fuji Xerox Co Ltd Optical modulator and optical modulation module
US20090290837A1 (en) 2008-05-22 2009-11-26 The Chinese University Of Hong Kong Optical devices for coupling of light
JP2009288718A (en) 2008-05-30 2009-12-10 Kyoto Institute Of Technology Resonance grating coupler
GB2461294B (en) 2008-06-26 2011-04-06 Light Blue Optics Ltd Holographic image display systems
TWI428645B (en) 2008-06-30 2014-03-01 Cpt Technology Group Co Ltd Color light guide panel and liquid crystal display device
WO2010010749A1 (en) * 2008-07-22 2010-01-28 シャープ株式会社 Backlight unit and liquid crystal display device
JP5010549B2 (en) 2008-07-25 2012-08-29 株式会社東芝 Liquid crystal display
WO2010052366A1 (en) 2008-11-10 2010-05-14 Nokia Corporation Diffractive backlight structure
TWI387316B (en) 2008-11-18 2013-02-21 Ind Tech Res Inst Stereoscopic image displaying apparatus and stereoscopic image displaying method
WO2010072065A1 (en) 2008-12-25 2010-07-01 深圳市泛彩溢实业有限公司 Hologram three-dimensional image information collecting device and method, reproduction device and method
US8026997B2 (en) 2009-01-28 2011-09-27 Sharp Laboratories Of America, Inc. Area active backlight with steerable light source
WO2010092583A1 (en) 2009-02-15 2010-08-19 Shiri Avda Means and method for calculating, measuring and displaying a measurable quantity
DE102009003069A1 (en) 2009-05-13 2010-11-25 Seereal Technologies S.A. 3D display with controllable visibility tracker
US8251563B2 (en) * 2009-05-29 2012-08-28 Sharp Kabushiki Kaisha Polarized diffractive backlight
JP2011029161A (en) 2009-06-26 2011-02-10 Sumitomo Chemical Co Ltd Three-dimensional display device
JP2009295598A (en) 2009-09-18 2009-12-17 Toppan Printing Co Ltd Light guide plate, and illuminating device and display using the same
CN102102829A (en) * 2009-12-21 2011-06-22 富准精密工业(深圳)有限公司 LED (Light-Emitting Diode) lamp
TW201126204A (en) 2010-01-25 2011-08-01 J Touch Corp Three-dimensional video imaging device
JP2011258532A (en) 2010-06-11 2011-12-22 Omron Corp Surface light source device and stereoscopic display device
KR101680770B1 (en) 2010-07-09 2016-11-29 삼성전자주식회사 Back light unit and display apparatus employing the same
US8200055B2 (en) 2010-07-19 2012-06-12 Harish Subbaraman Two-dimensional surface normal slow-light photonic crystal waveguide optical phased array
JP4930631B2 (en) 2010-09-27 2012-05-16 ソニー株式会社 3D display device
JP2012108316A (en) 2010-11-17 2012-06-07 Sony Corp Stereoscopic display device
SG190160A1 (en) * 2010-11-19 2013-06-28 Reald Inc Directional flat illuminators
WO2012069071A1 (en) 2010-11-24 2012-05-31 Fraunhofer-Gesellschaft zur Föderung der angewandten Forschung e.V. Method for compensating a misalignment between a subpixel array of a display and an optical grating and autostereoscopic display
KR101807691B1 (en) 2011-01-11 2017-12-12 삼성전자주식회사 Three-dimensional image display apparatus
CN102141707B (en) 2011-03-30 2013-01-23 昆山龙腾光电有限公司 Light transmission mode switching device and two-dimensional/three-dimensional switchable display equipment
TWI476483B (en) 2011-03-31 2015-03-11 Chi Mei Materials Technology Corp Display device and liquid crystal display device
CN202126538U (en) 2011-06-17 2012-01-25 中航华东光电有限公司 High-definition LCD (Liquid Crystal Display) auto-stereoscopic display with cylindrical grating
KR20130025767A (en) 2011-09-02 2013-03-12 엘지디스플레이 주식회사 Barrier panel and three dimensional image display using the same
US9019240B2 (en) 2011-09-29 2015-04-28 Qualcomm Mems Technologies, Inc. Optical touch device with pixilated light-turning features
WO2013162609A1 (en) 2012-04-27 2013-10-31 Hewlett-Packard Development Company, L.P. Directional pixel for use in a display screen
US9389415B2 (en) 2012-04-27 2016-07-12 Leia Inc. Directional pixel for use in a display screen
US9459461B2 (en) 2012-05-31 2016-10-04 Leia Inc. Directional backlight
KR101788776B1 (en) 2012-05-31 2017-10-20 레이아 인코포레이티드 Directional backlight
WO2013180737A1 (en) 2012-06-01 2013-12-05 Hewlett-Packard Development Company, L.P. Directional backlight with a modulation layer
US9201270B2 (en) 2012-06-01 2015-12-01 Leia Inc. Directional backlight with a modulation layer
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
US8681423B1 (en) 2013-01-29 2014-03-25 Hewlett-Packard Development Company, L.P. Light modulation employing fluid movement
US9298168B2 (en) 2013-01-31 2016-03-29 Leia Inc. Multiview 3D wrist watch
CN104272199B (en) 2013-01-31 2018-05-04 镭亚股份有限公司 Multi views 3D watches
US8915635B2 (en) 2013-03-13 2014-12-23 Hewlett-Packard Development Company, L.P. Backlight having dual collimating reflectors
EP2938919B1 (en) * 2013-07-30 2018-10-24 LEIA Inc. Multibeam diffraction grating-based backlighting
US9557466B2 (en) 2014-07-30 2017-01-31 Leia, Inc Multibeam diffraction grating-based color backlighting

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10145533B2 (en) 2005-11-11 2018-12-04 Digilens, Inc. Compact holographic illumination device
US10234696B2 (en) 2007-07-26 2019-03-19 Digilens, Inc. Optical apparatus for recording a holographic device and method of recording
US10725312B2 (en) 2007-07-26 2020-07-28 Digilens Inc. Laser illumination device
US11175512B2 (en) 2009-04-27 2021-11-16 Digilens Inc. Diffractive projection apparatus
US10678053B2 (en) 2009-04-27 2020-06-09 Digilens Inc. Diffractive projection apparatus
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US11487131B2 (en) 2011-04-07 2022-11-01 Digilens Inc. Laser despeckler based on angular diversity
US10185154B2 (en) 2011-04-07 2019-01-22 Digilens, Inc. Laser despeckler based on angular diversity
US11287666B2 (en) 2011-08-24 2022-03-29 Digilens, Inc. Wearable data display
US11874477B2 (en) 2011-08-24 2024-01-16 Digilens Inc. Wearable data display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US10642058B2 (en) 2011-08-24 2020-05-05 Digilens Inc. Wearable data display
US10216061B2 (en) 2012-01-06 2019-02-26 Digilens, Inc. Contact image sensor using switchable bragg gratings
US10459311B2 (en) 2012-01-06 2019-10-29 Digilens Inc. Contact image sensor using switchable Bragg gratings
US11460621B2 (en) 2012-04-25 2022-10-04 Rockwell Collins, Inc. Holographic wide angle display
US11994674B2 (en) 2012-05-11 2024-05-28 Digilens Inc. Apparatus for eye tracking
US10437051B2 (en) 2012-05-11 2019-10-08 Digilens Inc. Apparatus for eye tracking
US20230114549A1 (en) * 2012-11-16 2023-04-13 Rockwell Collins, Inc. Transparent waveguide display
US11815781B2 (en) * 2012-11-16 2023-11-14 Rockwell Collins, Inc. Transparent waveguide display
US11448937B2 (en) 2012-11-16 2022-09-20 Digilens Inc. Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles
US10209517B2 (en) 2013-05-20 2019-02-19 Digilens, Inc. Holographic waveguide eye tracker
US11662590B2 (en) 2013-05-20 2023-05-30 Digilens Inc. Holographic waveguide eye tracker
US10423813B2 (en) 2013-07-31 2019-09-24 Digilens Inc. Method and apparatus for contact image sensing
US10089516B2 (en) 2013-07-31 2018-10-02 Digilens, Inc. Method and apparatus for contact image sensing
US10359736B2 (en) 2014-08-08 2019-07-23 Digilens Inc. Method for holographic mastering and replication
US11307432B2 (en) 2014-08-08 2022-04-19 Digilens Inc. Waveguide laser illuminator incorporating a Despeckler
US11709373B2 (en) 2014-08-08 2023-07-25 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US11726323B2 (en) 2014-09-19 2023-08-15 Digilens Inc. Method and apparatus for generating input images for holographic waveguide displays
US10423222B2 (en) 2014-09-26 2019-09-24 Digilens Inc. Holographic waveguide optical tracker
US11726329B2 (en) 2015-01-12 2023-08-15 Digilens Inc. Environmentally isolated waveguide display
US11740472B2 (en) 2015-01-12 2023-08-29 Digilens Inc. Environmentally isolated waveguide display
US10437064B2 (en) 2015-01-12 2019-10-08 Digilens Inc. Environmentally isolated waveguide display
US11480788B2 (en) 2015-01-12 2022-10-25 Digilens Inc. Light field displays incorporating holographic waveguides
US10330777B2 (en) 2015-01-20 2019-06-25 Digilens Inc. Holographic waveguide lidar
US10527797B2 (en) 2015-02-12 2020-01-07 Digilens Inc. Waveguide grating device
US10156681B2 (en) 2015-02-12 2018-12-18 Digilens Inc. Waveguide grating device
US11703645B2 (en) 2015-02-12 2023-07-18 Digilens Inc. Waveguide grating device
US10459145B2 (en) 2015-03-16 2019-10-29 Digilens Inc. Waveguide device incorporating a light pipe
US12013561B2 (en) 2015-03-16 2024-06-18 Digilens Inc. Waveguide device incorporating a light pipe
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
US11754842B2 (en) 2015-10-05 2023-09-12 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US11281013B2 (en) 2015-10-05 2022-03-22 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US10690916B2 (en) 2015-10-05 2020-06-23 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US10728533B2 (en) 2015-10-16 2020-07-28 Leia Inc. Multibeam diffraction grating-based near-eye display
US11686898B2 (en) 2016-01-30 2023-06-27 Leia Inc. Privacy display and dual-mode privacy display system
US10884175B2 (en) 2016-01-30 2021-01-05 Leia Inc. Multibeam element-based backlighting having converging views
US11231539B2 (en) 2016-01-30 2022-01-25 Leia Inc. Multibeam element-based backlighting having converging views
US10983340B2 (en) 2016-02-04 2021-04-20 Digilens Inc. Holographic waveguide optical tracker
US10859768B2 (en) 2016-03-24 2020-12-08 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US11604314B2 (en) 2016-03-24 2023-03-14 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US10890707B2 (en) 2016-04-11 2021-01-12 Digilens Inc. Holographic waveguide apparatus for structured light projection
WO2018067381A1 (en) * 2016-10-05 2018-04-12 Leia Inc. Mode-selectable backlight, method, and display employing directional scattering features
US11314099B2 (en) 2016-10-05 2022-04-26 Leia Inc. Transparent display and method
CN109790968A (en) * 2016-10-05 2019-05-21 镭亚股份有限公司 Using the optional backlight of the mode of directional scattering function, method and display
US10955704B2 (en) 2016-10-05 2021-03-23 Leia Inc. Polarized backlight and backlit display using the same
US10678094B2 (en) 2016-10-05 2020-06-09 Leia Inc. Polarized backlight and backlit display using the same
EP3523574A4 (en) * 2016-10-05 2020-06-10 LEIA Inc. BACKLIGHT WITH SELECTABLE MODE, METHOD AND DISPLAY WITH DIRECTIONAL SPREADING FUNCTIONS
US10705281B2 (en) 2016-10-05 2020-07-07 Leia Inc. Mode-selectable backlight, method, and display employing directional scattering features
US11513350B2 (en) 2016-12-02 2022-11-29 Digilens Inc. Waveguide device with uniform output illumination
US12248150B2 (en) 2017-01-05 2025-03-11 Digilens Inc. Wearable heads up displays
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
US11586046B2 (en) 2017-01-05 2023-02-21 Digilens Inc. Wearable heads up displays
US11194162B2 (en) 2017-01-05 2021-12-07 Digilens Inc. Wearable heads up displays
WO2018128657A1 (en) * 2017-01-06 2018-07-12 Leia Inc. Static multiview display and method
US12140777B2 (en) 2017-01-06 2024-11-12 Leia Inc. Static multiview display and method
US11016238B2 (en) 2017-06-08 2021-05-25 Leia Inc. Light source and multiview backlight using the same
WO2018226235A1 (en) * 2017-06-08 2018-12-13 Leia Inc. Light source and multiview backlight using the same
US10942430B2 (en) 2017-10-16 2021-03-09 Digilens Inc. Systems and methods for multiplying the image resolution of a pixelated display
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
US10732569B2 (en) 2018-01-08 2020-08-04 Digilens Inc. Systems and methods for high-throughput recording of holographic gratings in waveguide cells
US12092914B2 (en) 2018-01-08 2024-09-17 Digilens Inc. Systems and methods for manufacturing waveguide cells
US11150408B2 (en) 2018-03-16 2021-10-19 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US11726261B2 (en) 2018-03-16 2023-08-15 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US10690851B2 (en) 2018-03-16 2020-06-23 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US11402801B2 (en) 2018-07-25 2022-08-02 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
US12210153B2 (en) 2019-01-14 2025-01-28 Digilens Inc. Holographic waveguide display with light control layer
US12140764B2 (en) 2019-02-15 2024-11-12 Digilens Inc. Wide angle waveguide display
US11543594B2 (en) 2019-02-15 2023-01-03 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
TWI735157B (en) * 2019-02-16 2021-08-01 美商雷亞有限公司 Horizontal parallax multiview display and method having light control film
US12253692B2 (en) 2019-02-16 2025-03-18 Leia Inc. Horizontal parallax multiview display and method having light control film
US11378732B2 (en) 2019-03-12 2022-07-05 DigLens Inc. Holographic waveguide backlight and related methods of manufacturing
US11747568B2 (en) 2019-06-07 2023-09-05 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
US11681143B2 (en) 2019-07-29 2023-06-20 Digilens Inc. Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display
US11899238B2 (en) 2019-08-29 2024-02-13 Digilens Inc. Evacuated gratings and methods of manufacturing
US11442222B2 (en) 2019-08-29 2022-09-13 Digilens Inc. Evacuated gratings and methods of manufacturing
US11592614B2 (en) 2019-08-29 2023-02-28 Digilens Inc. Evacuated gratings and methods of manufacturing
US12222499B2 (en) 2020-12-21 2025-02-11 Digilens Inc. Eye glow suppression in waveguide based displays
US12158612B2 (en) 2021-03-05 2024-12-03 Digilens Inc. Evacuated periodic structures and methods of manufacturing

Also Published As

Publication number Publication date
HK1206091A1 (en) 2015-12-31
US20190170926A1 (en) 2019-06-06
US9128226B2 (en) 2015-09-08
EP2938919A4 (en) 2016-11-02
CN109100887A (en) 2018-12-28
CN109100887B (en) 2021-10-08
KR20150128539A (en) 2015-11-18
TW201506473A (en) 2015-02-16
PL2938919T3 (en) 2019-06-28
TWI531823B (en) 2016-05-01
JP2016505898A (en) 2016-02-25
CN104508353A (en) 2015-04-08
JP6140838B2 (en) 2017-05-31
PT2938919T (en) 2019-01-21
KR101660911B1 (en) 2016-09-28
CN104508353B (en) 2018-08-31
EP2938919A1 (en) 2015-11-04
US20150036068A1 (en) 2015-02-05
US10830939B2 (en) 2020-11-10
WO2015016844A1 (en) 2015-02-05
EP2938919B1 (en) 2018-10-24
ES2704675T3 (en) 2019-03-19

Similar Documents

Publication Publication Date Title
US10830939B2 (en) Multibeam diffraction grating-based backlighting
US11391879B2 (en) Multiview backlighting having a color-tailored emission pattern
US10345505B2 (en) Multibeam diffraction grating-based color backlighting
US10788619B2 (en) Dual light guide grating-based backlight and electronic display using same
US10948647B2 (en) Unidirectional grating-based backlighting employing a reflective island
EP3175267B1 (en) Multibeam diffraction grating-based color backlighting
CA3053760C (en) Backlight, multiview display and method employing tapered collimator
CA3055533A1 (en) Unilateral backlight, multiview display, and method employing slanted diffraction gratings
JP2016505898A5 (en)
JP6346240B2 (en) Multi-beam grating-based backlighting

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: LEIA INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.;HEWLETT-PACKARD COMPANY;SIGNING DATES FROM 20140124 TO 20140128;REEL/FRAME:049560/0098

Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FATTAL, DAVID A.;PENG, ZHEN;SANTORI, CHARLES M.;SIGNING DATES FROM 20130729 TO 20130730;REEL/FRAME:049560/0095