US20150230465A1 - Bioflavonoid impregnated materials - Google Patents
Bioflavonoid impregnated materials Download PDFInfo
- Publication number
- US20150230465A1 US20150230465A1 US14/422,759 US201314422759A US2015230465A1 US 20150230465 A1 US20150230465 A1 US 20150230465A1 US 201314422759 A US201314422759 A US 201314422759A US 2015230465 A1 US2015230465 A1 US 2015230465A1
- Authority
- US
- United States
- Prior art keywords
- bioflavonoid
- product
- composition
- paper
- bamboo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 title claims abstract description 71
- IKGXIBQEEMLURG-NVPNHPEKSA-N rutin Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@H](OC=2C(C3=C(O)C=C(O)C=C3OC=2C=2C=C(O)C(O)=CC=2)=O)O1 IKGXIBQEEMLURG-NVPNHPEKSA-N 0.000 title claims abstract description 55
- 239000000203 mixture Substances 0.000 claims abstract description 66
- 239000000123 paper Substances 0.000 claims abstract description 52
- 235000017166 Bambusa arundinacea Nutrition 0.000 claims abstract description 29
- 235000017491 Bambusa tulda Nutrition 0.000 claims abstract description 29
- 241001330002 Bambuseae Species 0.000 claims abstract description 29
- 235000015334 Phyllostachys viridis Nutrition 0.000 claims abstract description 29
- 239000011425 bamboo Substances 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 28
- ARGKVCXINMKCAZ-UHFFFAOYSA-N neohesperidine Natural products C1=C(O)C(OC)=CC=C1C1OC2=CC(OC3C(C(O)C(O)C(CO)O3)OC3C(C(O)C(O)C(C)O3)O)=CC(O)=C2C(=O)C1 ARGKVCXINMKCAZ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000002657 fibrous material Substances 0.000 claims abstract description 13
- 239000001606 7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)chroman-4-one Substances 0.000 claims abstract description 12
- DFPMSGMNTNDNHN-ZPHOTFPESA-N naringin Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](OC=2C=C3O[C@@H](CC(=O)C3=C(O)C=2)C=2C=CC(O)=CC=2)O[C@H](CO)[C@@H](O)[C@@H]1O DFPMSGMNTNDNHN-ZPHOTFPESA-N 0.000 claims abstract description 12
- 229930019673 naringin Natural products 0.000 claims abstract description 12
- 229940052490 naringin Drugs 0.000 claims abstract description 12
- ARGKVCXINMKCAZ-UZRWAPQLSA-N neohesperidin Chemical compound C1=C(O)C(OC)=CC=C1[C@H]1OC2=CC(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O[C@H]3[C@@H]([C@H](O)[C@@H](O)[C@H](C)O3)O)=CC(O)=C2C(=O)C1 ARGKVCXINMKCAZ-UZRWAPQLSA-N 0.000 claims abstract description 12
- 239000011111 cardboard Substances 0.000 claims abstract description 10
- 230000008569 process Effects 0.000 claims abstract description 9
- 241000894006 Bacteria Species 0.000 claims description 18
- 235000013305 food Nutrition 0.000 claims description 18
- 239000004744 fabric Substances 0.000 claims description 11
- 235000014469 Bacillus subtilis Nutrition 0.000 claims description 10
- 230000001580 bacterial effect Effects 0.000 claims description 10
- 239000000835 fiber Substances 0.000 claims description 10
- 241000588724 Escherichia coli Species 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 9
- 239000001100 (2S)-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one Substances 0.000 claims description 4
- NLAWPKPYBMEWIR-SKYQDXIQSA-N (2S)-poncirin Chemical compound C1=CC(OC)=CC=C1[C@H]1OC2=CC(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O[C@H]3[C@@H]([C@H](O)[C@@H](O)[C@H](C)O3)O)=CC(O)=C2C(=O)C1 NLAWPKPYBMEWIR-SKYQDXIQSA-N 0.000 claims description 4
- FTVWIRXFELQLPI-ZDUSSCGKSA-N (S)-naringenin Chemical compound C1=CC(O)=CC=C1[C@H]1OC2=CC(O)=CC(O)=C2C(=O)C1 FTVWIRXFELQLPI-ZDUSSCGKSA-N 0.000 claims description 4
- VCCNKWWXYVWTLT-CYZBKYQRSA-N 7-[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-one Chemical compound C1=C(O)C(OC)=CC=C1C(OC1=C2)=CC(=O)C1=C(O)C=C2O[C@H]1[C@H](O[C@H]2[C@@H]([C@H](O)[C@@H](O)[C@H](C)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 VCCNKWWXYVWTLT-CYZBKYQRSA-N 0.000 claims description 4
- VCCNKWWXYVWTLT-DGQSHKQTSA-N Diosmetin 7-neohesperidoside Natural products O([C@@H]1[C@@H](O)[C@H](O)[C@H](CO)O[C@H]1Oc1cc(O)c2C(=O)C=C(c3cc(O)c(OC)cc3)Oc2c1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](C)O1 VCCNKWWXYVWTLT-DGQSHKQTSA-N 0.000 claims description 4
- QUQPHWDTPGMPEX-UHFFFAOYSA-N Hesperidine Natural products C1=C(O)C(OC)=CC=C1C1OC2=CC(OC3C(C(O)C(O)C(COC4C(C(O)C(O)C(C)O4)O)O3)O)=CC(O)=C2C(=O)C1 QUQPHWDTPGMPEX-UHFFFAOYSA-N 0.000 claims description 4
- OBKKEZLIABHSGY-DOYQYKRZSA-N Neoeriocitrin Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](OC=2C=C3O[C@@H](CC(=O)C3=C(O)C=2)C=2C=C(O)C(O)=CC=2)O[C@H](CO)[C@@H](O)[C@@H]1O OBKKEZLIABHSGY-DOYQYKRZSA-N 0.000 claims description 4
- NLAWPKPYBMEWIR-VGQRFNKBSA-N Poncirin Natural products O([C@H]1[C@@H](O)[C@H](O)[C@H](CO)O[C@H]1Oc1cc(O)c2C(=O)C[C@@H](c3ccc(OC)cc3)Oc2c1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](C)O1 NLAWPKPYBMEWIR-VGQRFNKBSA-N 0.000 claims description 4
- QUQPHWDTPGMPEX-UTWYECKDSA-N aurantiamarin Natural products COc1ccc(cc1O)[C@H]1CC(=O)c2c(O)cc(O[C@@H]3O[C@H](CO[C@@H]4O[C@@H](C)[C@H](O)[C@@H](O)[C@H]4O)[C@@H](O)[C@H](O)[C@H]3O)cc2O1 QUQPHWDTPGMPEX-UTWYECKDSA-N 0.000 claims description 4
- APSNPMVGBGZYAJ-GLOOOPAXSA-N clematine Natural products COc1cc(ccc1O)[C@@H]2CC(=O)c3c(O)cc(O[C@@H]4O[C@H](CO[C@H]5O[C@@H](C)[C@H](O)[C@@H](O)[C@H]5O)[C@@H](O)[C@H](O)[C@H]4O)cc3O2 APSNPMVGBGZYAJ-GLOOOPAXSA-N 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 229940025878 hesperidin Drugs 0.000 claims description 4
- VUYDGVRIQRPHFX-UHFFFAOYSA-N hesperidin Natural products COc1cc(ccc1O)C2CC(=O)c3c(O)cc(OC4OC(COC5OC(O)C(O)C(O)C5O)C(O)C(O)C4O)cc3O2 VUYDGVRIQRPHFX-UHFFFAOYSA-N 0.000 claims description 4
- QUQPHWDTPGMPEX-QJBIFVCTSA-N hesperidin Chemical compound C1=C(O)C(OC)=CC=C1[C@H]1OC2=CC(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@@H](CO[C@H]4[C@@H]([C@H](O)[C@@H](O)[C@H](C)O4)O)O3)O)=CC(O)=C2C(=O)C1 QUQPHWDTPGMPEX-QJBIFVCTSA-N 0.000 claims description 4
- WGEYAGZBLYNDFV-UHFFFAOYSA-N naringenin Natural products C1(=O)C2=C(O)C=C(O)C=C2OC(C1)C1=CC=C(CC1)O WGEYAGZBLYNDFV-UHFFFAOYSA-N 0.000 claims description 4
- 229940117954 naringenin Drugs 0.000 claims description 4
- 235000007625 naringenin Nutrition 0.000 claims description 4
- HXTFHSYLYXVTHC-ZPHOTFPESA-N narirutin Natural products C[C@@H]1O[C@H](OC[C@H]2O[C@@H](Oc3cc(O)c4C(=O)C[C@H](Oc4c3)c5ccc(O)cc5)[C@H](O)[C@@H](O)[C@@H]2O)[C@H](O)[C@H](O)[C@H]1O HXTFHSYLYXVTHC-ZPHOTFPESA-N 0.000 claims description 4
- HXTFHSYLYXVTHC-AJHDJQPGSA-N narirutin Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@H](OC=2C=C3O[C@@H](CC(=O)C3=C(O)C=2)C=2C=CC(O)=CC=2)O1 HXTFHSYLYXVTHC-AJHDJQPGSA-N 0.000 claims description 4
- VCCNKWWXYVWTLT-UHFFFAOYSA-N neodiosmin Natural products C1=C(O)C(OC)=CC=C1C(OC1=C2)=CC(=O)C1=C(O)C=C2OC1C(OC2C(C(O)C(O)C(C)O2)O)C(O)C(O)C(CO)O1 VCCNKWWXYVWTLT-UHFFFAOYSA-N 0.000 claims description 4
- 229930146541 neoeriocitrin Natural products 0.000 claims description 4
- 241000607142 Salmonella Species 0.000 claims description 3
- 230000000241 respiratory effect Effects 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- 238000009736 wetting Methods 0.000 claims description 3
- 206010041925 Staphylococcal infections Diseases 0.000 claims 1
- 208000015688 methicillin-resistant staphylococcus aureus infectious disease Diseases 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 27
- 230000000694 effects Effects 0.000 description 12
- 230000009467 reduction Effects 0.000 description 12
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 12
- 238000010790 dilution Methods 0.000 description 11
- 239000012895 dilution Substances 0.000 description 11
- 230000000845 anti-microbial effect Effects 0.000 description 10
- 239000004599 antimicrobial Substances 0.000 description 10
- 229940093797 bioflavonoids Drugs 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 244000183685 Citrus aurantium Species 0.000 description 8
- 235000007716 Citrus aurantium Nutrition 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 150000007524 organic acids Chemical class 0.000 description 8
- 244000005700 microbiome Species 0.000 description 7
- 238000004806 packaging method and process Methods 0.000 description 7
- 239000002028 Biomass Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000000284 extract Substances 0.000 description 6
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 6
- 229960004889 salicylic acid Drugs 0.000 description 6
- 210000004215 spore Anatomy 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 230000000844 anti-bacterial effect Effects 0.000 description 5
- 235000013399 edible fruits Nutrition 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 230000003115 biocidal effect Effects 0.000 description 4
- 235000015165 citric acid Nutrition 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 4
- 150000002016 disaccharides Chemical class 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 229940093915 gynecological organic acid Drugs 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 235000013372 meat Nutrition 0.000 description 4
- 230000000813 microbial effect Effects 0.000 description 4
- 235000005985 organic acids Nutrition 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- RFWGABANNQMHMZ-UHFFFAOYSA-N 8-acetoxy-7-acetyl-6,7,7a,8-tetrahydro-5H-benzo[g][1,3]dioxolo[4',5':4,5]benzo[1,2,3-de]quinoline Natural products CC=C1C(CC(=O)OCCC=2C=C(O)C(O)=CC=2)C(C(=O)OC)=COC1OC1OC(CO)C(O)C(O)C1O RFWGABANNQMHMZ-UHFFFAOYSA-N 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- 229920003043 Cellulose fiber Polymers 0.000 description 3
- HKVGJQVJNQRJPO-UHFFFAOYSA-N Demethyloleuropein Natural products O1C=C(C(O)=O)C(CC(=O)OCCC=2C=C(O)C(O)=CC=2)C(=CC)C1OC1OC(CO)C(O)C(O)C1O HKVGJQVJNQRJPO-UHFFFAOYSA-N 0.000 description 3
- RFWGABANNQMHMZ-HYYSZPHDSA-N Oleuropein Chemical compound O([C@@H]1OC=C([C@H](C1=CC)CC(=O)OCCC=1C=C(O)C(O)=CC=1)C(=O)OC)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O RFWGABANNQMHMZ-HYYSZPHDSA-N 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000002599 biostatic effect Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 235000011090 malic acid Nutrition 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000003158 microbiostatic effect Effects 0.000 description 3
- RFWGABANNQMHMZ-CARRXEGNSA-N oleuropein Natural products COC(=O)C1=CO[C@@H](O[C@H]2O[C@@H](CO)[C@H](O)[C@@H](O)[C@@H]2O)C(=CC)[C@H]1CC(=O)OCCc3ccc(O)c(O)c3 RFWGABANNQMHMZ-CARRXEGNSA-N 0.000 description 3
- 235000011576 oleuropein Nutrition 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 244000063299 Bacillus subtilis Species 0.000 description 2
- 0 COC1=CC2=C(C(=O)CC(C3=CC=CC=C3)O2)C(O)=C1.[1*]C.[2*]C Chemical compound COC1=CC2=C(C(=O)CC(C3=CC=CC=C3)O2)C(O)=C1.[1*]C.[2*]C 0.000 description 2
- 229920000858 Cyclodextrin Polymers 0.000 description 2
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- PNNNRSAQSRJVSB-UHFFFAOYSA-N L-rhamnose Natural products CC(O)C(O)C(O)C(O)C=O PNNNRSAQSRJVSB-UHFFFAOYSA-N 0.000 description 2
- 240000007817 Olea europaea Species 0.000 description 2
- OVVGHDNPYGTYIT-VHBGUFLRSA-N Robinobiose Natural products O(C[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@H](O)O1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](C)O1 OVVGHDNPYGTYIT-VHBGUFLRSA-N 0.000 description 2
- 241000191967 Staphylococcus aureus Species 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 125000003289 ascorbyl group Chemical class [H]O[C@@]([H])(C([H])([H])O*)[C@@]1([H])OC(=O)C(O*)=C1O* 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 150000001720 carbohydrates Chemical group 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- -1 cleaning wipes Substances 0.000 description 2
- 239000000645 desinfectant Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 235000019425 dextrin Nutrition 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229960001031 glucose Drugs 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000001630 malic acid Substances 0.000 description 2
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical group [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 2
- 230000002906 microbiologic effect Effects 0.000 description 2
- 239000011087 paperboard Substances 0.000 description 2
- 239000001814 pectin Substances 0.000 description 2
- 229920001277 pectin Polymers 0.000 description 2
- 235000010987 pectin Nutrition 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000003330 sporicidal effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- FSJVVVCZSRCTBM-RXSVEWSESA-N (2S)-2-[(2R)-3,4-dihydroxy-5-oxo-2H-furan-2-yl]-2-hydroxyethanolate 2-hydroxyethyl(trimethyl)azanium Chemical compound C[N+](C)(C)CCO.O[C@@H](C[O-])[C@H]1OC(=O)C(O)=C1O FSJVVVCZSRCTBM-RXSVEWSESA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- ZZJFIXMCLZTHQV-UHFFFAOYSA-O 2-carboxyoxyethyl(trimethyl)azanium Chemical compound C[N+](C)(C)CCOC(O)=O ZZJFIXMCLZTHQV-UHFFFAOYSA-O 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 239000004135 Bone phosphate Substances 0.000 description 1
- 238000009631 Broth culture Methods 0.000 description 1
- 241000589876 Campylobacter Species 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 235000000228 Citrus myrtifolia Nutrition 0.000 description 1
- 235000005976 Citrus sinensis Nutrition 0.000 description 1
- 235000016646 Citrus taiwanica Nutrition 0.000 description 1
- 241000193163 Clostridioides difficile Species 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 241000238557 Decapoda Species 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 241000305071 Enterobacterales Species 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 240000009088 Fragaria x ananassa Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 241000590002 Helicobacter pylori Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- SHZGCJCMOBCMKK-JFNONXLTSA-N L-rhamnopyranose Chemical compound C[C@@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O SHZGCJCMOBCMKK-JFNONXLTSA-N 0.000 description 1
- 235000019687 Lamb Nutrition 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- 241001263478 Norovirus Species 0.000 description 1
- 235000002725 Olea europaea Nutrition 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 244000172730 Rubus fruticosus Species 0.000 description 1
- 244000235659 Rubus idaeus Species 0.000 description 1
- 241000124033 Salix Species 0.000 description 1
- RGDJCYRXKJVXKD-UHFFFAOYSA-N Saponin 3 Natural products COC(=O)C1(C)CCC2(CCC3(C)C(=CCC4C5(C)CCC(OC6OC(CO)C(O)C(O)C6OC7OC(CO)C(O)C(O)C7O)C(C)(C)C5CCC34C)C2C1)C(=O)O RGDJCYRXKJVXKD-UHFFFAOYSA-N 0.000 description 1
- 206010039792 Seborrhoea Diseases 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 239000004752 air-laid paper Substances 0.000 description 1
- PNNNRSAQSRJVSB-BXKVDMCESA-N aldehydo-L-rhamnose Chemical compound C[C@H](O)[C@H](O)[C@@H](O)[C@@H](O)C=O PNNNRSAQSRJVSB-BXKVDMCESA-N 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 210000004666 bacterial spore Anatomy 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 229960002246 beta-d-glucopyranose Drugs 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 235000021029 blackberry Nutrition 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000000476 body water Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000007728 cost analysis Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 125000000600 disaccharide group Chemical group 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002550 fecal effect Effects 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 235000021022 fresh fruits Nutrition 0.000 description 1
- 235000015203 fruit juice Nutrition 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229940037467 helicobacter pylori Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- 230000003641 microbiacidal effect Effects 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000017066 negative regulation of growth Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000037312 oily skin Effects 0.000 description 1
- 244000039328 opportunistic pathogen Species 0.000 description 1
- 238000000643 oven drying Methods 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 239000008104 plant cellulose Substances 0.000 description 1
- 244000000003 plant pathogen Species 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 150000003215 pyranoses Chemical class 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 235000021013 raspberries Nutrition 0.000 description 1
- OVVGHDNPYGTYIT-BNXXONSGSA-N rutinose Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@H](O)O1 OVVGHDNPYGTYIT-BNXXONSGSA-N 0.000 description 1
- 125000000953 rutinose group Chemical group 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 235000021012 strawberries Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-O vancomycin(1+) Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C([O-])=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)[NH2+]C)[C@H]1C[C@](C)([NH3+])[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-O 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/02—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
- A01N43/04—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
- A01N43/14—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
- A01N43/16—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with oxygen as the ring hetero atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/04—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
- C07D311/22—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
- C07D311/26—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
- C07D311/28—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only
- C07D311/32—2,3-Dihydro derivatives, e.g. flavanones
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
- A01N25/08—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
- A01N25/10—Macromolecular compounds
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23B—PRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
- A23B4/00—Preservation of meat, sausages, fish or fish products
- A23B4/10—Coating with a protective layer; Compositions or apparatus therefor
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41B—SHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
- A41B11/00—Hosiery; Panti-hose
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D13/00—Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
- A41D13/12—Surgeons' or patients' gowns or dresses
- A41D13/1236—Patients' garments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/02—Processes for applying liquids or other fluent materials performed by spraying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/18—Processes for applying liquids or other fluent materials performed by dipping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D65/00—Wrappers or flexible covers; Packaging materials of special type or form
- B65D65/38—Packaging materials of special type or form
- B65D65/42—Applications of coated or impregnated materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D81/00—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
- B65D81/24—Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
- B65D81/28—Applications of food preservatives, fungicides, pesticides or animal repellants
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/06—Coating with compositions not containing macromolecular substances
- C08J7/065—Low-molecular-weight organic substances, e.g. absorption of additives in the surface of the article
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/14—Paints containing biocides, e.g. fungicides, insecticides or pesticides
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M10/00—Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
- D06M10/02—Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
- D06M10/025—Corona discharge or low temperature plasma
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/10—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/10—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
- D06M13/12—Aldehydes; Ketones
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/10—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
- D06M13/165—Ethers
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/01—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
- D06M15/03—Polysaccharides or derivatives thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M16/00—Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/123—Treatment by wave energy or particle radiation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
- Y10T428/3179—Next to cellulosic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/3188—Next to cellulosic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31971—Of carbohydrate
Definitions
- the present invention relates to bioflavonoid impregnated cellulosic fibrous materials, processes for impregnating the materials and their uses.
- the invention relates to bioflavonoid impregnated cellulosic fibrous materials such as paper, paper towels, bamboo fibre and cardboard and articles formed from such materials.
- Cellulosic fibrous materials such as paper are used in a wide variety of applications, ranging from domestic use to commercial use in, for example, hospitals, schools, kitchens and laboratories in the form of, for example, paper towels or face masks or even garments such as bamboo fibre socks.
- Some materials would benefit from having antimicrobial properties. These include for example, cardboard, paper, cleaning wipes, paper towels or face masks or even garments.
- GB2468836 discloses compositions comprising bioflavonoid compounds and their antibacterial, antifungal and antiviral activity but no suggestion was made that they could be used in impregnating fibres and materials.
- the present invention relates to cellulosic materials impregnated with a bioflavonoid composition.
- a material impregnated with a bioflavonoid composition the bioflavonoid content of the composition comprising at least naringin and neohesperidin.
- the major part of the bioflavonoid content of the composition comprises naringin and neohesperidin.
- naringin and neohesperidin together form at least 50% wt/wt, more preferably at least 70% wt/wt, for example at least 75% wt/wt, for example 75%-80% wt/wt of the bioflavonoid content of the composition (excluding other biomass).
- the bioflavonoid content of the composition may further comprise one or more compounds of Formula (I):
- R 1 is a hydroxyl or methoxyl and R 2 is hydrogen, hydroxyl or methoxyl and X is hydrogen or a saccharide.
- R 2 is hydrogen and R 1 is in the 3- or 4-position.
- R 1 is 3-hydroxy and R 2 is 4-methoxyl.
- X is H. More preferably, X is a saccharide.
- X is a disaccharide.
- Suitable disaccharides include combinations of two monosaccharides, preferably pyranoses, linked by a glycosidic bond, for example rhamnose and glucose, for example L-rhamnose and D-glucose.
- Suitable disaccharides can have the structure:
- R 3 and R 4 are H and the other OH or both are H or both are OH.
- R 3 is H and R 4 is OH so that the disaccharide is rutinose.
- Favoured aglycones of bioflavonoids for use in this invention are the disaccharides 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranose, also known as rutinose, and 2-O-(alpha-L-rhamnopyra-nosyl)-beta-D-glucopyra-rose.
- Suitable compounds of Formula (I) include neoeriocitrin, isonaringin, hesperidin, neodiosmin, naringenin, poncirin and rhiofolin, in addition to naringin and neohesperidin.
- One of these compounds may be present in addition to naringin and neohesperidin, although a mixture of two or more of these compounds is particularly preferred.
- Such mixtures can be obtained by extraction from bitter oranges and the end product is called citrus aurantium amara extract. Particularly preferred are the mixtures of bioflavonoid obtained from the extract of crushed whole immature bitter oranges.
- the mixtures can also be derived from the starting material comprised of the pith of immature, bitter (blood/red) oranges such as Seville oranges that are classed as ‘inedible’ and from which the pips, flesh and oily skin have been substantially removed or remain undeveloped.
- Suitable mixtures can include 2, 3, 4, 5, 6, 7, 8, 9 or more compounds of Formula (I).
- a mixture comprising 2, 3, 4, 5, 6, 7, 8, or 9 of the above named bioflavonoids is preferable, for example containing 3, or containing 4, or containing 5, or containing 6, or containing 7, or containing 8, or containing 9 of said bioflavonoids.
- extract of bitter oranges is employed without the need for isolating individual bioflavonoids.
- biomass may be associated with up to 40-60% wt/wt, preferably about 55% wt/wt based on the weight of the bioflavonoid content of the composition.
- the biomass comprises pectins and other sugar derived materials. If it is desired to avoid biomass, other solubilising agents such as dextrines, for example cyclodextrin, may be employed if desired.
- compositions described herein may employ compounds of natural origin.
- compounds of Formula (I) from bitter oranges.
- synthetically or semi-synthetically obtained compounds may be employed if desired instead of the ones directly extracted from natural sources although this tends to be less favourable in view of cost.
- compositions may further comprise oleuropein.
- oleuropein Preferably this is obtained from extraction from the leaf of the olive, for example Olea europaea .
- Such extracts typically contain 5% to 80% wt/wt, more preferably 10% to 70%, for example 20% wt/wt of oleuropein.
- the wt/wt ratio of bioflavonoids to oleuropein can be 5:1 to 1:4, preferably 2:1 to 1:2, more preferably 1:2 to 1:1 and even more preferably 3:2.
- the composition may further comprise one or more fruit acids, for example citric acid, malic acid, and ascorbic acid.
- One or more of the acids are preferably neutralized with a suitable base, such as a quaternary ammonium base, for example a choline base, such as choline carbonate, bicarbonate or, preferably, hydroxide.
- a suitable base such as a quaternary ammonium base
- a choline base such as choline carbonate, bicarbonate or, preferably, hydroxide.
- citric, malic and ascorbic acids are all used in the preparation of the composition, and especially preferred is when these are fully neutralized to provide citrate, malate and/or ascorbate salts.
- choline ascorbate is especially preferred.
- composition described herein is particularly effective in the presence of one or more organic acids.
- the composition further comprises one or more organic acids.
- a surprisingly effective organic acid is salicylic acid or its pharmaceutically acceptable salt optionally together with a further organic acid or pharmaceutically acceptable salt.
- the salicylic acid may be obtained from willow bark extract. Alternatively, methods for synthesising salicylic acid are known to those skilled in the art.
- the salicylic acid is in the form of the acid rather than its salt.
- a further organic acid if present is similarly in the form of the acid rather than its salt.
- Suitable further organic acids include acids of up to 8 carbon atoms which are monobasic (i.e. one CO 2 H group), di-basic or tri-basic acid which optionally contain 1, 2 or 3 hydroxyl groups.
- Such further organic acid may be one or more of citric acid, malic acid, latic acid, tartaric acid, fumaric acid and the like.
- compositions can provide an approximately neutral or acid pH, when used, for example from 3 to 8, more aptly 3.5 to 7, for example 4 to 5.
- compositions may include a solubilising agent, for example, salicylic acid such as a dextrin such as cyclodextrin.
- a solubilising agent for example, salicylic acid such as a dextrin such as cyclodextrin.
- compositions described herein have an extremely favourable safety and environmental profile. As well as showing extremely effective antimicrobial activity, the compositions are also non-toxic, non-corrosive, renewable and completely biodegradable.
- compositions disclosed in WO 2012/017186 (herein incorporated by reference) are the preferred compositions of the present invention.
- the cellulosic fibrous materials of the invention may be composed of paper or cardboard or bamboo fibres.
- Paper is defined as a material produced from a cellulose pulp which may be derived from wood, rags or grasses.
- the paper may be in the form of a paper towel, towelette, cloth, wipe or pad.
- Paper towels have a variety of applications, for example, paper towels are used to dry a person's hands after washing, also known as hand towels.
- Paper towels or wipes are also used for cleaning purposes to wipe down surfaces in a hospital, laboratory or a kitchen, for example, and can also be known as kitchen roll, kitchen paper or kitchen wipes.
- Pads are cellulosic fibre sponges and have application in personal hygiene and in medical kits. Wipes are produced as air-laid paper where the fibres are carried and formed to the structure of paper by air.
- the paper may be treated with softeners, lotions or added perfume to create a desirable “feel” or texture.
- bamboo materials may be formed of bamboo fibre which is a cellulose fibre extracted or fabricated from natural bamboo.
- bamboo is a sustainable crop and, as a natural product derived entirely from plant cellulose, bamboo fibre is biodegradable by microorganisms in soil and also by sunlight.
- the bamboo materials of the present invention are formed of 100% bamboo fibres although mixtures with other cellulose fibres are also contemplated.
- the bamboo may also be in the form of a paper towel, towelette, wipe or pad which may have the same applications as paper towels.
- the bamboo fibres may also be used as a clothing fabric, optionally in combination with other known fibres, to make garments, such as socks and hospital gowns.
- socks made from bamboo fibres impregnated with the bioflavonoid compositions described herein can help reduce foot odour.
- the bioflavonoid impregnated bamboo fibres are activated when they come into contact with moisture from the foot.
- the bioflavonoid composition is activated when the gowns come into contact with, for example, blood or urine.
- bamboo fabrics made from bamboo fibres which are impregnated with the bioflavonoid compositions described herein are very useful in hospital or care home environments.
- the bamboo fabric can be used for bedding sheets, surgical drapes, curtains and the like where it is desirable to use a material with antimicrobial properties.
- Paper fibre fabrics can be used instead of the bamboo fibre fabrics described herein; however, the bamboo fibre fabrics are preferred as these fabrics are more durable than paper fibre fabrics.
- Paper towels, bamboo towels and the like may be heated, for example by using a microwave, in order to provide a hot towel.
- These hot towels may be disposable and/or re-heatable and can be used in restaurants, hotels and on planes.
- the bioflavonoid impregnated paper and/or bamboo fibres of the invention can also be provided in the form of a face mask, such as a respiratory mask or surgical mask, to provide the user with enhanced protection against inhaling bacteria and viruses or to prevent or reduce the spread of bacteria and viruses.
- a face mask such as a respiratory mask or surgical mask
- the face masks may be reusable or disposable. Methods of manufacturing face masks are well known in the art.
- Bioflavonoid impregnated bamboo and/or paper fibres can be used in the form of single or multi-ply food pads. Such food pads are often found in the bottom of food packaging and can also be referred to as napkins or blankets. The use of these food pads is particularly desirable in food packaging containing food with a short shelf life, for example meat or fruit. The food product, for example, the meat or fruit generally sit on top of the food pad within the packaging.
- the bioflavonoid impregnated food pad provides a dramatic reduction in the number of bacteria such as Salmonella, E. coli and Campylobacter which cause foods such as meat and fresh fruit to decay, reducing their shelf life.
- the bioflavonoid impregnated food pads are particularly suitable in the packaging of meats, including poultry (e.g. chicken or turkey), lamb, beef and pork; fish, including salmon and prawns; and fruits including soft fruits such as blackberries, raspberries, loganberries, strawberries and the like.
- poultry e.g. chicken or turkey
- lamb e.g. beef and pork
- fish including salmon and prawns
- fruits including soft fruits such as blackberries, raspberries, loganberries, strawberries and the like.
- Cardboard is heavy duty paper and may include a single thick sheet of paper or more complex configurations such as multiple corrugated and uncorrugated layers which tend to by more durable than regular paper.
- the cardboard of the present invention will generally be of a depth of less than about 1 cm.
- the impregnated cardboard can be used in packaging, for example food packaging.
- the cellulosic fibrous materials of the present invention are provided in a dry form and are activated when they are wetted, i.e. when the material comes into contact with moisture, such as a liquid.
- the liquid may be, for example, water, body fluids, for example sweat, blood or urine, fruit juice, cooking juices and the like.
- the materials can be wetted before being applied to a surface to be cleaned, for example, by applying water to the material before using on a surface.
- the materials are activated during use, for example, when drying hands moisture is transferred onto the material or when using the material to wipe down a wet surface.
- the materials are provided in a substantially dry form and are preferably dried by heating to constant mass.
- the amount of bioflavonoid coating impregnated in the material is uniform throughout the material.
- bioflavonoid compositions described herein are biodegradable and can be impregnated into biodegradable materials such as biodegradable paper, bamboo fibres and the like to provide environmentally friendly products.
- the bioflavonoid compositions described herein show activity against a wide range of organisms including gram positive bacteria, gram negative bacteria, fungi, virus, protazoans and insect parasites.
- the compositions may be employed against difficult bacteria such as methicillin resistant Staphylococcus aureus (MRSA), Clostridium difficile ( C. diff ), Helicobacter pylori ( H. pylori ), and vancomycin resistant enterobacteria.
- MRSA methicillin resistant Staphylococcus aureus
- C. diff Clostridium difficile
- H. pylori Helicobacter pylori
- vancomycin resistant enterobacteria The compositions may also be used against norovirus and other pathogens whereby transmission is by contact on air.
- the compositions described herein show activity against E. coli, S. aureus, Salmonella, B. subtilis and P. aeruginosa.
- Impregnation is the partial or total saturation of a material, although total saturation is preferred.
- the material is a thin material.
- a thin material is defined as having a depth of less than about 1 cm. Impregnation may be after manufacture of the thin material or it may occur during manufacture of the thin material, for example, impregnation of the cellulose fibres before being formed into the material.
- the process involves immersing the material, in the bioflavonoid composition to totally or partially saturate the material with the composition.
- the material may then be rolled, squeezed or wrung to remove any excess of the composition.
- the material is then dried, either by air drying naturally, oven drying or by mechanical drying.
- the equipment used to mechanically dry materials will be known to those skilled in the art as will alternative drying methods.
- the process results in a dry material which can then be packaged as desired and later activated by wetting.
- the cellulosic fibres used to produce the material may first be immersed in the bioflavonoid composition to totally or partially saturate the fibres with the composition which are then dried either before or after being formed into materials such as paper or cardboard by methods known in the art.
- the materials may be impregnated by spraying the bioflavonoid composition onto the materials so that the composition impregnates the outer surface region of the material to achieve at least partial impregnation. Spraying may also be used to impregnate the fibres during manufacture or extraction, before being formed into the materials of the invention.
- Example 3 A particular method for impregnating paper towels is disclosed in Example 3. Fibrous bamboo products may also be impregnated in the same way as disclosed in Example 3.
- the processes described above provide uniform bioflavonoid impregnation throughout the cellulosic fibrous material.
- a concentration of between 0.005 and 0.75%, preferably between 0.005 and 0.5%, more preferably between 0.025% and 0.5%, even more preferably between 0.025 and 0.1% of the bioflavonoid composition is used.
- the compositions described herein are water soluble and water can be used to dilute the bioflavonoid composition to the desired concentration.
- a method of reducing the bacterial load on a surface is provided by two mechanisms. Firstly, the kill is achieved by the action of the bioflavonoid compositions and then secondly the contaminants are mechanically removed by the material itself via the action of placing on and wiping the surface, i.e. mechanical wiping.
- the surface may be any bioactive surface and could be either a human or non-human surface.
- a human surface may include the skin on the hands, feet or face.
- a non-human surface may include any surface of sanitary importance which may carry a contaminant, for example, the surfaces found in schools, bathrooms, kitchens, factories, for example food factories, laboratories, hospitals and the like.
- the Environmental Protection Agency For food contact the Environmental Protection Agency (EPA) requires the active to effect a 5 log reduction of the challenge organism in 30 seconds.
- the materials of the present invention effect at least a 5 log reduction of the bacteria load on a surface in 30 seconds.
- a packaged product wherein the product is formed of a dry cellulosic fibrous material impregnated with a bioflavonoid composition.
- the product and the bioflavonoid composition are as described in the first aspect of the invention.
- the cellulosic product may be individually packaged. Alternatively, the product may be packaged as part of a multi-pack.
- Known packaging methods and materials may be used to package the products of the present invention, for example conventional filmic agents or cardboard boxes.
- FIG. 1 is a graph showing the results of the effects of different dilutions of the Citrox BC active dried onto Bounty® brand paper towels on S. aureus activity.
- FIG. 2 is a graph showing the results of the effects of different dilutions of the Citrox BC active dried onto Bounty® brand paper towels on E. coli activity.
- the bioflavonoid content may comprise 40-50%, for example about 45% wt/wt of the bioflavonoid composition.
- a suitable source of a bioflavonoid composition is herein referred to as “HPLC 45” or “Citrox BC” of which about 45% (of the total composition of HPLC 45/Citrox BC) comprises bioflavonoids.
- the bioflavonoids are in admixture with biomass residues of extraction from bitter oranges, such as pectins, sugars and minor organic acids, which make up the remaining 55%.
- HPLC 45 is available from Exquim (a company of Grupo Ferrer) as Citrus Bioflavonoid Complex 45% HPLC.
- Staphylococcus aureus was chosen as a representative gram positive organism. This organism is found on mammalian skin and is, therefore, shed into the surrounding environment. E. coli was chosen as the representative of the gram negative enteric bacteria. This organism is found in the digestive tract of birds, mammals and reptiles. Its presence in the environment signals fecal contamination. Pseudomonas aeruginosa was chosen to represent the non-enteric gram-negative bacteria. This genera of bacteria is present in water with related species representing major plant pathogens and human opportunistic pathogens. Bacillus subtilis was chosen as the representative gram positive spore-formers. This bacterium is found in soil and water but is also ubiquitous in the environment.
- Endospores form endospores as a survival mechanism. Bacterial endospores are the most resistant form of life on Earth and, therefore, represent an ongoing concern for sanitation, disinfection and sterilisation processes. Endospores represent the “ultimate” challenge for any antimicrobial agent.
- MIC Minimum Inhibitory Concentration
- MCC Minimum Bactericidal Concentration
- a pure culture of a single microorganism is grown in an appropriate broth.
- the culture is standardized using standard microbiological techniques to have a concentration of very near 1 million cells per millilitre. The more standard the microbial culture, the more reproducible the test results.
- the antimicrobial agent is diluted a number of times, 1:1, using sterile diluents. After the antimicrobial agent has been diluted, a volume of the standardised inoculums equal to the volume of the diluted antimicrobial agent is added to each dilution vessel, bringing the microbial concentration to approximately 500,000 cells per millilitre.
- the inoculated, serially diluted antimicrobial agent is incubated at an appropriate temperature for the test organism for a pre-set period, usually 18 hours.
- the series of dilution vessels is observed for microbial growth, usually indicated by turbidity and/or a pellet of microorganisms in the bottom of the vessel.
- the last tube in the dilution series that does not demonstrate growth corresponds with the minimum inhibitory concentration (MIC) of the antimicrobial agent.
- microbiostatic agent bacteria are not killed just inhibited
- bacteria bacteria are killed
- an MBC test is performed. When a microbiostatic agent is removed or neutralized, previously inhibited bacteria begin to grow again. Each well showing no growth/turbidity in the MIC test is sub-cultured on media that contains no biocide. Any microbial growth resulting from this test indicates that, at that concentration, the active is microbiostatic. If the subculture results in no bacterial regrowth, then, at that concentration, the active is microbiosidal.
- the range of concentration of Citrox BC active tested was 0.075-0.75%.
- the MIC test is an established “screen” for the biostatic (and possibly also biocidal) activity of liquid antimicrobials. It is often used to find the appropriate concentrations of an antimicrobial active to use for further efficacy testing. Performing both the MIC and MBC test will enable one to differentiate between a biocidal or biostatic mode of action. Depending on the concentration of active used and the contact time an active will often demonstrate both biostatic and biocidal modes of action.
- Citrox BC active tested was 0.075%-0.75%.
- P. aeruginosa no MIC value was obtained as all concentrations of the Citrox BC active tested showed no turbidity (Table 2).
- MCB testing showed that all concentrations were also bactericidal for B. subtilis , there was also no MIC value obtained demonstrating that inhibition of growth took place at all concentrations tested.
- the MBC value obtained for B. subtilis was 0.315% Citrox BC active. This means that concentrations ranging from 0.075% to 0.315% are bacteristatic and all concentrations of the Citrox BC active greater than or equal to 0.315% are bactericidal.
- a timed kill test assesses the amount of time it takes to kill a defined population of microorganisms.
- a wide variety of microorganisms are killed by the Citrox BC active.
- An important first step in characterising this active for use in an antimicrobial towel is to verify the kill claims. Claims for efficacy are based on the number of bacterial killed within a defined time frame. The most rigorous claims are those made for food contact where the active must affect a 5 log reduction of the challenge organism in 30 seconds.
- the ultimate test for any antimicrobial active is the ability to kill spores. Any chemical or process that kills a bacterial spore is, by definition, a sterilant.
- a kill test was performed on an actual spore suspension. Citrox BC, over a range 0.5% to 1.5%, was tested over a 1 hour time period. There were some limitations to this test.
- the spore suspension ( B. subtilis , ATCC 6633, 6.4 ⁇ 10 4 CFU/pellet, Microbiologics) in the test was only at ⁇ 2 ⁇ 10 4 CFU/ml, limiting the log reduction calculation.
- the lyophilized pellets were found to contain charcoal, a substance known to neutralise the bioflavonoid component of the Citrox BC active. With those limitations, approximately a 2 log reduction in spores was demonstrated. This indicates that the Citrox BC active has definite activity against spores. Spore suspensions at a higher titer without a charcoal additive should be used to investigate this activity further.
- Bounty® (“Bounty” is a registered trademark of Procter & Gamble) brand paper towels were used to make the dry antimicrobial towels.
- Bounty® paper towels are a conventional, commercially available paper towel product.
- Citrox BC active concentrate was diluted to desired concentrations.
- One paper towel was immersed completely into the diluted active and then wrung out by hand. The towel was dried overnight.
- a RODAC plate is used to touch the surface to be sampled after which the plate is incubated at an appropriate temperature.
- nutrients in the media that promote the growth of a variety of microbes.
- Lecithin and Polysorbate 80 are incorporated in the agar and function as disinfectant/sanitizer neutralisers. The type and number of microorganisms is detected by the appearance of colonies on the surface of the agar medium. Collection of samples from the same area before and after cleaning and treatment with a disinfectant permits the evaluation of sanitary procedures.
- Paper towels wetted with water and containing no Citrox BC active were assessed for the ability to remove bacteria from a contaminated hard surface.
- the results for this control i.e. unimpregnated paper towels
- FIGS. 1 and 2 show the results for both S. aureus and E. coli .
- Paper towels containing dilutions of the Citrox BC active greater than 1:200 were able to reduce the levels of S. aureus from >50 CFU/cm 2 to ⁇ 1 CFU/cm 2 .
- the paper towels containing dilutions of the Citrox BC active greater than 1:200 were able to reduce the levels of E. coli from >7 CFU/cm 2 to ⁇ 1 CFU/cm 2 .
- RODAC plates are recommended for the detection and enumeration of microorganisms present on surfaces of sanitary importance.
- RODAC plates are specially constructed so that an agar medium can be overfilled producing a dome-shaped surface that can be pressed on a surface for sampling its microbial content.
- RODAC plates are used in a variety of programs to establish and monitor cleaning techniques and schedules.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Food Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Agronomy & Crop Science (AREA)
- Environmental Sciences (AREA)
- Dentistry (AREA)
- Mechanical Engineering (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Materials Engineering (AREA)
- Toxicology (AREA)
- Physical Education & Sports Medicine (AREA)
- Medicinal Chemistry (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Materials For Medical Uses (AREA)
- Paper (AREA)
- Wrappers (AREA)
- Professional, Industrial, Or Sporting Protective Garments (AREA)
- Socks And Pantyhose (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Laminated Bodies (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Paints Or Removers (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
Abstract
Description
- The present invention relates to bioflavonoid impregnated cellulosic fibrous materials, processes for impregnating the materials and their uses. In particular, the invention relates to bioflavonoid impregnated cellulosic fibrous materials such as paper, paper towels, bamboo fibre and cardboard and articles formed from such materials.
- Cellulosic fibrous materials such as paper are used in a wide variety of applications, ranging from domestic use to commercial use in, for example, hospitals, schools, kitchens and laboratories in the form of, for example, paper towels or face masks or even garments such as bamboo fibre socks.
- Some materials would benefit from having antimicrobial properties. These include for example, cardboard, paper, cleaning wipes, paper towels or face masks or even garments.
- GB2468836 discloses compositions comprising bioflavonoid compounds and their antibacterial, antifungal and antiviral activity but no suggestion was made that they could be used in impregnating fibres and materials.
- The present invention relates to cellulosic materials impregnated with a bioflavonoid composition.
- According to a first aspect of the invention there is provided a material impregnated with a bioflavonoid composition, the bioflavonoid content of the composition comprising at least naringin and neohesperidin.
- Especially preferred is when the major part of the bioflavonoid content of the composition comprises naringin and neohesperidin. Preferably, naringin and neohesperidin together form at least 50% wt/wt, more preferably at least 70% wt/wt, for example at least 75% wt/wt, for example 75%-80% wt/wt of the bioflavonoid content of the composition (excluding other biomass).
- The bioflavonoid content of the composition may further comprise one or more compounds of Formula (I):
- wherein R1 is a hydroxyl or methoxyl and R2 is hydrogen, hydroxyl or methoxyl and X is hydrogen or a saccharide.
- A preferred option is when R2 is hydrogen and R1 is in the 3- or 4-position. Another option is when R1 is 3-hydroxy and R2 is 4-methoxyl. Preferably, X is H. More preferably, X is a saccharide.
- In preferred embodiments, X is a disaccharide. Suitable disaccharides include combinations of two monosaccharides, preferably pyranoses, linked by a glycosidic bond, for example rhamnose and glucose, for example L-rhamnose and D-glucose.
- Suitable disaccharides can have the structure:
- wherein one of R3 and R4 is H and the other OH or both are H or both are OH. Preferably R3 is H and R4 is OH so that the disaccharide is rutinose.
- Favoured aglycones of bioflavonoids for use in this invention are the disaccharides 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranose, also known as rutinose, and 2-O-(alpha-L-rhamnopyra-nosyl)-beta-D-glucopyra-rose.
- Suitable compounds of Formula (I) include neoeriocitrin, isonaringin, hesperidin, neodiosmin, naringenin, poncirin and rhiofolin, in addition to naringin and neohesperidin. One of these compounds may be present in addition to naringin and neohesperidin, although a mixture of two or more of these compounds is particularly preferred.
- Such mixtures can be obtained by extraction from bitter oranges and the end product is called citrus aurantium amara extract. Particularly preferred are the mixtures of bioflavonoid obtained from the extract of crushed whole immature bitter oranges. The mixtures can also be derived from the starting material comprised of the pith of immature, bitter (blood/red) oranges such as Seville oranges that are classed as ‘inedible’ and from which the pips, flesh and oily skin have been substantially removed or remain undeveloped.
- Suitable mixtures can include 2, 3, 4, 5, 6, 7, 8, 9 or more compounds of Formula (I). A mixture comprising 2, 3, 4, 5, 6, 7, 8, or 9 of the above named bioflavonoids is preferable, for example containing 3, or containing 4, or containing 5, or containing 6, or containing 7, or containing 8, or containing 9 of said bioflavonoids.
- It is presently believed that mixtures of such bioflavonoids have advantages over the use of a single bioflavonoid. It is particularly advantageous that extract of bitter oranges is employed without the need for isolating individual bioflavonoids. In an extract from bitter oranges biomass may be associated with up to 40-60% wt/wt, preferably about 55% wt/wt based on the weight of the bioflavonoid content of the composition. The biomass comprises pectins and other sugar derived materials. If it is desired to avoid biomass, other solubilising agents such as dextrines, for example cyclodextrin, may be employed if desired.
- A particular advantage of many compositions described herein is that they may employ compounds of natural origin. Thus, for example, it is preferred to employ compounds of Formula (I) from bitter oranges. However synthetically or semi-synthetically obtained compounds may be employed if desired instead of the ones directly extracted from natural sources although this tends to be less favourable in view of cost.
- The compositions may further comprise oleuropein. Preferably this is obtained from extraction from the leaf of the olive, for example Olea europaea. Such extracts typically contain 5% to 80% wt/wt, more preferably 10% to 70%, for example 20% wt/wt of oleuropein.
- The wt/wt ratio of bioflavonoids to oleuropein can be 5:1 to 1:4, preferably 2:1 to 1:2, more preferably 1:2 to 1:1 and even more preferably 3:2. In addition to the bioflavonoid content of the composition, the composition may further comprise one or more fruit acids, for example citric acid, malic acid, and ascorbic acid. One or more of the acids are preferably neutralized with a suitable base, such as a quaternary ammonium base, for example a choline base, such as choline carbonate, bicarbonate or, preferably, hydroxide. More preferably, citric, malic and ascorbic acids are all used in the preparation of the composition, and especially preferred is when these are fully neutralized to provide citrate, malate and/or ascorbate salts. Especially preferred is choline ascorbate.
- It has been found that the composition described herein is particularly effective in the presence of one or more organic acids. In one embodiment, the composition further comprises one or more organic acids.
- A surprisingly effective organic acid is salicylic acid or its pharmaceutically acceptable salt optionally together with a further organic acid or pharmaceutically acceptable salt.
- The salicylic acid may be obtained from willow bark extract. Alternatively, methods for synthesising salicylic acid are known to those skilled in the art.
- Sometimes it is preferred that the salicylic acid is in the form of the acid rather than its salt.
- Similarly, a further organic acid if present is similarly in the form of the acid rather than its salt. Suitable further organic acids include acids of up to 8 carbon atoms which are monobasic (i.e. one CO2H group), di-basic or tri-basic acid which optionally contain 1, 2 or 3 hydroxyl groups. Such further organic acid may be one or more of citric acid, malic acid, latic acid, tartaric acid, fumaric acid and the like.
- Such compositions can provide an approximately neutral or acid pH, when used, for example from 3 to 8, more aptly 3.5 to 7, for example 4 to 5.
- At present it is preferred to employ salicylic acid and citric acid in the compositions.
- Such compositions may include a solubilising agent, for example, salicylic acid such as a dextrin such as cyclodextrin.
- The compositions described herein have an extremely favourable safety and environmental profile. As well as showing extremely effective antimicrobial activity, the compositions are also non-toxic, non-corrosive, renewable and completely biodegradable. The compositions disclosed in WO 2012/017186 (herein incorporated by reference) are the preferred compositions of the present invention.
- The cellulosic fibrous materials of the invention may be composed of paper or cardboard or bamboo fibres. Paper is defined as a material produced from a cellulose pulp which may be derived from wood, rags or grasses. The paper may be in the form of a paper towel, towelette, cloth, wipe or pad. Paper towels have a variety of applications, for example, paper towels are used to dry a person's hands after washing, also known as hand towels. Paper towels or wipes are also used for cleaning purposes to wipe down surfaces in a hospital, laboratory or a kitchen, for example, and can also be known as kitchen roll, kitchen paper or kitchen wipes. Pads are cellulosic fibre sponges and have application in personal hygiene and in medical kits. Wipes are produced as air-laid paper where the fibres are carried and formed to the structure of paper by air.
- The paper may be treated with softeners, lotions or added perfume to create a desirable “feel” or texture.
- Bamboo materials may be formed of bamboo fibre which is a cellulose fibre extracted or fabricated from natural bamboo. Bamboo is a sustainable crop and, as a natural product derived entirely from plant cellulose, bamboo fibre is biodegradable by microorganisms in soil and also by sunlight. Preferably, the bamboo materials of the present invention are formed of 100% bamboo fibres although mixtures with other cellulose fibres are also contemplated.
- The bamboo may also be in the form of a paper towel, towelette, wipe or pad which may have the same applications as paper towels. The bamboo fibres may also be used as a clothing fabric, optionally in combination with other known fibres, to make garments, such as socks and hospital gowns. For example, socks made from bamboo fibres impregnated with the bioflavonoid compositions described herein can help reduce foot odour. The bioflavonoid impregnated bamboo fibres are activated when they come into contact with moisture from the foot. For hospital gowns, the bioflavonoid composition is activated when the gowns come into contact with, for example, blood or urine.
- Fabrics made from bamboo fibres which are impregnated with the bioflavonoid compositions described herein are very useful in hospital or care home environments. For example, the bamboo fabric can be used for bedding sheets, surgical drapes, curtains and the like where it is desirable to use a material with antimicrobial properties.
- Paper fibre fabrics can be used instead of the bamboo fibre fabrics described herein; however, the bamboo fibre fabrics are preferred as these fabrics are more durable than paper fibre fabrics.
- Paper towels, bamboo towels and the like, may be heated, for example by using a microwave, in order to provide a hot towel. These hot towels may be disposable and/or re-heatable and can be used in restaurants, hotels and on planes.
- The bioflavonoid impregnated paper and/or bamboo fibres of the invention can also be provided in the form of a face mask, such as a respiratory mask or surgical mask, to provide the user with enhanced protection against inhaling bacteria and viruses or to prevent or reduce the spread of bacteria and viruses. The face masks may be reusable or disposable. Methods of manufacturing face masks are well known in the art.
- Bioflavonoid impregnated bamboo and/or paper fibres can be used in the form of single or multi-ply food pads. Such food pads are often found in the bottom of food packaging and can also be referred to as napkins or blankets. The use of these food pads is particularly desirable in food packaging containing food with a short shelf life, for example meat or fruit. The food product, for example, the meat or fruit generally sit on top of the food pad within the packaging. The bioflavonoid impregnated food pad provides a dramatic reduction in the number of bacteria such as Salmonella, E. coli and Campylobacter which cause foods such as meat and fresh fruit to decay, reducing their shelf life. The bioflavonoid impregnated food pads are particularly suitable in the packaging of meats, including poultry (e.g. chicken or turkey), lamb, beef and pork; fish, including salmon and prawns; and fruits including soft fruits such as blackberries, raspberries, loganberries, strawberries and the like.
- Cardboard is heavy duty paper and may include a single thick sheet of paper or more complex configurations such as multiple corrugated and uncorrugated layers which tend to by more durable than regular paper. The cardboard of the present invention will generally be of a depth of less than about 1 cm. The impregnated cardboard can be used in packaging, for example food packaging.
- The cellulosic fibrous materials of the present invention are provided in a dry form and are activated when they are wetted, i.e. when the material comes into contact with moisture, such as a liquid. The liquid may be, for example, water, body fluids, for example sweat, blood or urine, fruit juice, cooking juices and the like. The materials can be wetted before being applied to a surface to be cleaned, for example, by applying water to the material before using on a surface. Alternatively, the materials are activated during use, for example, when drying hands moisture is transferred onto the material or when using the material to wipe down a wet surface.
- The materials are provided in a substantially dry form and are preferably dried by heating to constant mass.
- Preferably, the amount of bioflavonoid coating impregnated in the material is uniform throughout the material.
- The bioflavonoid compositions described herein are biodegradable and can be impregnated into biodegradable materials such as biodegradable paper, bamboo fibres and the like to provide environmentally friendly products.
- The bioflavonoid compositions described herein show activity against a wide range of organisms including gram positive bacteria, gram negative bacteria, fungi, virus, protazoans and insect parasites. The compositions may be employed against difficult bacteria such as methicillin resistant Staphylococcus aureus (MRSA), Clostridium difficile (C. diff), Helicobacter pylori (H. pylori), and vancomycin resistant enterobacteria. The compositions may also be used against norovirus and other pathogens whereby transmission is by contact on air. In particular, the compositions described herein show activity against E. coli, S. aureus, Salmonella, B. subtilis and P. aeruginosa.
- According to a second aspect of the invention, there is provided a process for impregnating the materials described herein with the bioflavonoid compositions described herein. Impregnation is the partial or total saturation of a material, although total saturation is preferred. In particular the material is a thin material. A thin material is defined as having a depth of less than about 1 cm. Impregnation may be after manufacture of the thin material or it may occur during manufacture of the thin material, for example, impregnation of the cellulose fibres before being formed into the material.
- If impregnating pre-formed cellulosic fibrous material, the process involves immersing the material, in the bioflavonoid composition to totally or partially saturate the material with the composition. The material may then be rolled, squeezed or wrung to remove any excess of the composition. The material is then dried, either by air drying naturally, oven drying or by mechanical drying. The equipment used to mechanically dry materials will be known to those skilled in the art as will alternative drying methods. The process results in a dry material which can then be packaged as desired and later activated by wetting. Alternatively, the cellulosic fibres used to produce the material may first be immersed in the bioflavonoid composition to totally or partially saturate the fibres with the composition which are then dried either before or after being formed into materials such as paper or cardboard by methods known in the art.
- Alternatively, the materials may be impregnated by spraying the bioflavonoid composition onto the materials so that the composition impregnates the outer surface region of the material to achieve at least partial impregnation. Spraying may also be used to impregnate the fibres during manufacture or extraction, before being formed into the materials of the invention.
- A particular method for impregnating paper towels is disclosed in Example 3. Fibrous bamboo products may also be impregnated in the same way as disclosed in Example 3.
- Preferably, the processes described above provide uniform bioflavonoid impregnation throughout the cellulosic fibrous material. A concentration of between 0.005 and 0.75%, preferably between 0.005 and 0.5%, more preferably between 0.025% and 0.5%, even more preferably between 0.025 and 0.1% of the bioflavonoid composition is used. The compositions described herein are water soluble and water can be used to dilute the bioflavonoid composition to the desired concentration.
- According to a third aspect of the invention, there is provided a method of reducing the bacterial load on a surface. The method of reducing the bacterial load on a surface is provided by two mechanisms. Firstly, the kill is achieved by the action of the bioflavonoid compositions and then secondly the contaminants are mechanically removed by the material itself via the action of placing on and wiping the surface, i.e. mechanical wiping.
- The surface may be any bioactive surface and could be either a human or non-human surface. For example, a human surface may include the skin on the hands, feet or face. A non-human surface may include any surface of sanitary importance which may carry a contaminant, for example, the surfaces found in schools, bathrooms, kitchens, factories, for example food factories, laboratories, hospitals and the like.
- For food contact the Environmental Protection Agency (EPA) requires the active to effect a 5 log reduction of the challenge organism in 30 seconds. Preferably, the materials of the present invention effect at least a 5 log reduction of the bacteria load on a surface in 30 seconds.
- According to a fourth aspect of the invention, there is provided a packaged product wherein the product is formed of a dry cellulosic fibrous material impregnated with a bioflavonoid composition. The product and the bioflavonoid composition are as described in the first aspect of the invention.
- The cellulosic product may be individually packaged. Alternatively, the product may be packaged as part of a multi-pack. Known packaging methods and materials may be used to package the products of the present invention, for example conventional filmic agents or cardboard boxes.
- In order that the invention may be more fully understood it will now be described, by way of example only, and with reference to the following Figure(s), in which:
-
FIG. 1 is a graph showing the results of the effects of different dilutions of the Citrox BC active dried onto Bounty® brand paper towels on S. aureus activity. -
FIG. 2 is a graph showing the results of the effects of different dilutions of the Citrox BC active dried onto Bounty® brand paper towels on E. coli activity. - The bioflavonoid content may comprise 40-50%, for example about 45% wt/wt of the bioflavonoid composition. A suitable source of a bioflavonoid composition is herein referred to as “HPLC 45” or “Citrox BC” of which about 45% (of the total composition of HPLC 45/Citrox BC) comprises bioflavonoids. The bioflavonoids are in admixture with biomass residues of extraction from bitter oranges, such as pectins, sugars and minor organic acids, which make up the remaining 55%. HPLC 45 is available from Exquim (a company of Grupo Ferrer) as Citrus Bioflavonoid Complex 45% HPLC.
-
TABLE 1 The mixture of bioflavonoids in HPLC 45 % bioflavonoid in mixture Bioflavonoid with biomass Neoeriocitrin 1.1 Isonaringin 1.2 Naringin 23.4 Hesperidin 1.4 Neohesperidin 12.5 Neodiosmin 1.4 Naringenin 1.5 Poncirin 2.0 Other (Rhiofolin) 0.5 - Staphylococcus aureus was chosen as a representative gram positive organism. This organism is found on mammalian skin and is, therefore, shed into the surrounding environment. E. coli was chosen as the representative of the gram negative enteric bacteria. This organism is found in the digestive tract of birds, mammals and reptiles. Its presence in the environment signals fecal contamination. Pseudomonas aeruginosa was chosen to represent the non-enteric gram-negative bacteria. This genera of bacteria is present in water with related species representing major plant pathogens and human opportunistic pathogens. Bacillus subtilis was chosen as the representative gram positive spore-formers. This bacterium is found in soil and water but is also ubiquitous in the environment. This species forms endospores as a survival mechanism. Bacterial endospores are the most resistant form of life on Earth and, therefore, represent an ongoing concern for sanitation, disinfection and sterilisation processes. Endospores represent the “ultimate” challenge for any antimicrobial agent.
- A pure culture of a single microorganism is grown in an appropriate broth. The culture is standardized using standard microbiological techniques to have a concentration of very near 1 million cells per millilitre. The more standard the microbial culture, the more reproducible the test results. The antimicrobial agent is diluted a number of times, 1:1, using sterile diluents. After the antimicrobial agent has been diluted, a volume of the standardised inoculums equal to the volume of the diluted antimicrobial agent is added to each dilution vessel, bringing the microbial concentration to approximately 500,000 cells per millilitre. The inoculated, serially diluted antimicrobial agent is incubated at an appropriate temperature for the test organism for a pre-set period, usually 18 hours. After incubation, the series of dilution vessels is observed for microbial growth, usually indicated by turbidity and/or a pellet of microorganisms in the bottom of the vessel. The last tube in the dilution series that does not demonstrate growth corresponds with the minimum inhibitory concentration (MIC) of the antimicrobial agent.
- In order to differentiate between a microbiostatic agent (bacteria are not killed just inhibited) and a microbiocidal agent (bacteria are killed) an MBC test is performed. When a microbiostatic agent is removed or neutralized, previously inhibited bacteria begin to grow again. Each well showing no growth/turbidity in the MIC test is sub-cultured on media that contains no biocide. Any microbial growth resulting from this test indicates that, at that concentration, the active is microbiostatic. If the subculture results in no bacterial regrowth, then, at that concentration, the active is microbiosidal. The range of concentration of Citrox BC active tested was 0.075-0.75%.
- The MIC test is an established “screen” for the biostatic (and possibly also biocidal) activity of liquid antimicrobials. It is often used to find the appropriate concentrations of an antimicrobial active to use for further efficacy testing. Performing both the MIC and MBC test will enable one to differentiate between a biocidal or biostatic mode of action. Depending on the concentration of active used and the contact time an active will often demonstrate both biostatic and biocidal modes of action.
- The range of Citrox BC active tested was 0.075%-0.75%. For P. aeruginosa, no MIC value was obtained as all concentrations of the Citrox BC active tested showed no turbidity (Table 2).
- MCB testing showed that all concentrations were also bactericidal for B. subtilis, there was also no MIC value obtained demonstrating that inhibition of growth took place at all concentrations tested. The MBC value obtained for B. subtilis was 0.315% Citrox BC active. This means that concentrations ranging from 0.075% to 0.315% are bacteristatic and all concentrations of the Citrox BC active greater than or equal to 0.315% are bactericidal.
- These results indicate that gram negatives like P. aeruginosa are more easily killed by the Citrox BC active than the gram positive B. subtilis.
-
TABLE 2 MIC/MBC Testing % MIC MBC Citrox (G/NG) (CFU/mL) BC P.a. B.s. P.a. B.s. 0 G 0 0 0 0.075 NG G 0 4.2 × 102 0.095 NG G 0 3.1 × 102 0.115 NG G 0 3.3 × 102 0.135 NG G 0 3.5 × 102 0.155 NG G 0 3.6 × 102 0.175 NG G 0 2.4 × 102 0.195 NG G 0 1.5 × 102 0.215 NG G 0 1.3 × 102 0.235 NG G 0 1.6 × 102 0.255 NG G 0 40 0.275 NG G 0 40 0.295 NG G 0 1 0.315 NG NG 0 0 0.335 NG NG 0 0 0.355 NG NG 0 0 0.375-0.750 NG NG 0 0 G = Growth, NG = No Growth P.a. = Psuedomonas aeruginosa B.s. = Bacillus subtilis - All timed kill tests were performed using a standard viable count procedure. Reference NB X34689.
- The following neutralising solution was used in all kill tests.
- A timed kill test assesses the amount of time it takes to kill a defined population of microorganisms. A wide variety of microorganisms are killed by the Citrox BC active. An important first step in characterising this active for use in an antimicrobial towel is to verify the kill claims. Claims for efficacy are based on the number of bacterial killed within a defined time frame. The most rigorous claims are those made for food contact where the active must affect a 5 log reduction of the challenge organism in 30 seconds.
- Bacterial kill kinetics are affected by bacterial numbers, the concentration of active used and the contact time. In order to determine the most effective range of the Citrox BC active, S. aureus was used in a 10 minute kill test to assess the efficacy of various concentrations of the Citrox BC active. A >6.56 log reduction was observed for all concentrations (0.45-0.65%) of the Citrox BC active tested (Table 3).
- When B. subtilis was used as a challenge organism, 0.7% Citrox BC was required to effect a >5 log reduction in 10 minutes (Table 4). Based on previous tests, 0.5% active is the most effective for general use.
-
TABLE 3 Time Kill Test: S. aureus, 10 min. % Citrox Log10 Log BC CFU/mL CFU/ mL Reduction 0 7.4 × 106 6.86 0 0.45 <2 0.3 6.56 0.5 <2 0.3 6.56 0.55 <2 0.3 6.56 0.6 <2 0.3 6.56 0.65 <2 0.3 6.56 0.65 + 6.6 × 106 6.81 0.05 neutralizer -
TABLE 4 Time Kill Test: B. subtilis, 10 min. % Citrox Log10 Log BC CFU/mL CFU/ mL Reduction 0 1.1 × 106 6.04 NA 0.5 2.9 × 104 4.4 1.64 0.7 <2 0.3 5.74 - Timed kill studies using E. coli, P. aeruginosa and S. aureus were performed using 0.5% Citrox BC active with a contact time of 30 seconds. Log reductions of >6.4 were seen for all organisms (Table 5). This confirms that this active would meet the criteria for use in food contact situations.
-
TABLE 5 Time Kill Test: 30 seconds E. coli P. aeruginosa S. aureus % Citrox BC 0 0.5 0 0.5 0 0.5 CFU/mL 5.1 × 106 <2 6.4 × 107 <2 7.4 × 106 <2 Log10 6.7 <0.3 7.8 <0.3 6.8 <0.3 CFU/mL Log NA 6.5 NA 7.3 NA 6.5 Reduction - As stated above, the ultimate test for any antimicrobial active is the ability to kill spores. Any chemical or process that kills a bacterial spore is, by definition, a sterilant. In order to assess if the Citrox BC active was sporicidal, a kill test was performed on an actual spore suspension. Citrox BC, over a range 0.5% to 1.5%, was tested over a 1 hour time period. There were some limitations to this test. The spore suspension (B. subtilis, ATCC 6633, 6.4×104 CFU/pellet, Microbiologics) in the test was only at ˜2×104 CFU/ml, limiting the log reduction calculation. The lyophilized pellets were found to contain charcoal, a substance known to neutralise the bioflavonoid component of the Citrox BC active. With those limitations, approximately a 2 log reduction in spores was demonstrated. This indicates that the Citrox BC active has definite activity against spores. Spore suspensions at a higher titer without a charcoal additive should be used to investigate this activity further.
- Bounty® (“Bounty” is a registered trademark of Procter & Gamble) brand paper towels were used to make the dry antimicrobial towels. Bounty® paper towels are a conventional, commercially available paper towel product. Citrox BC active concentrate was diluted to desired concentrations. One paper towel was immersed completely into the diluted active and then wrung out by hand. The towel was dried overnight.
- 2) Procedure: Weight of Citrox BC Active Dried onto Bounty® Brand Paper Towel
- Bounty® brand paper towels were dried to a constant weight in a 54° C. oven. Various dilutions of the Citrox BC active were dried onto Bounty® brand paper towels as described above. The towels were dried at room temperature overnight. The treated towels were then dried to a constant weight at 54° C. The weight difference between the untreated and treated towels is presumed to be the weight of the Citrox BC active.
- Using the lab bench top as a representative hard, non-porous surface, a grid was marked off using tape. Cotton-tipped swabs saturated with a broth culture of the challenge organism were used to inoculate the surface and air dried. Paper towels treated with dilutions of the Citrox BC active were wetted and then used to clean the inoculated bench top. The bench top was visibly wet for 3 minutes (contact time) and then allowed to completely air dry. RODAC (Replicate Organism Detection and Counting) plates were used to sample the cleaned surface for surviving bacteria. The plates were incubated overnight at a temperature appropriate to the challenge organism. Colonies were counted and the number used to calculate CFU/cm2. Results were calculated by averaging the counts from five 3″×3″ “grid squares”.
- A RODAC plate is used to touch the surface to be sampled after which the plate is incubated at an appropriate temperature. There are nutrients in the media that promote the growth of a variety of microbes. Lecithin and Polysorbate 80 are incorporated in the agar and function as disinfectant/sanitizer neutralisers. The type and number of microorganisms is detected by the appearance of colonies on the surface of the agar medium. Collection of samples from the same area before and after cleaning and treatment with a disinfectant permits the evaluation of sanitary procedures.
- Paper towels wetted with water and containing no Citrox BC active were assessed for the ability to remove bacteria from a contaminated hard surface. The results for this control (i.e. unimpregnated paper towels) are shown by the bar labelled “0” in
FIGS. 1 and 2 .FIGS. 1 and 2 show the results for both S. aureus and E. coli. Paper towels containing dilutions of the Citrox BC active greater than 1:200 were able to reduce the levels of S. aureus from >50 CFU/cm2 to <1 CFU/cm2. The paper towels containing dilutions of the Citrox BC active greater than 1:200 were able to reduce the levels of E. coli from >7 CFU/cm2 to <1 CFU/cm2. - These results show that a dry antimicrobial towel are activated by wetting.
- Different dilutions of the Citrox BC active were dried onto Bounty® brand paper towels. These treated towels were used to decontaminate a lab bench heavily inoculated with bacteria. The ability of the treated towels to affect a decrease of contaminants on the lab bench was evaluated using RODAC plates.
- A method was developed to assess ability of a paper towel impregnated with the Citrox BC active to reduce bacterial numbers on a contaminated hard surface. RODAC plates are recommended for the detection and enumeration of microorganisms present on surfaces of sanitary importance. RODAC plates are specially constructed so that an agar medium can be overfilled producing a dome-shaped surface that can be pressed on a surface for sampling its microbial content. RODAC plates are used in a variety of programs to establish and monitor cleaning techniques and schedules.
- When using a paper towel plus an antimicrobial active, one must keep in mind that removal of bacteria from a contaminated surface occurs by two mechanisms: first is the kill achieved by the action of the antimicrobial active and second is mechanical removal of the contaminants by the paper towel itself.
- Lab scale antibacterial towels were used to calculate the weight of the Citrox BC active dried onto the towels. The weight of active present on the towel (Table 6) can be used as a starting point for cost analysis.
-
TABLE 6 Weight of Citrox BC active dried onto Bounty ® paper towel Post- Ave. wt. Citrox Pre- treatment of BC BC treatment Dry active Dilution Dry Weight Weight Difference (g/towel) Std Dev 1:150 4.32547 4.31821 −0.00726 0.00388 0.006875 4.31226 4.32089 0.00863 4.31476 4.32400 0.00924 4.32424 4.32607 0.00183 4.32625 4.33321 0.00696 1:100 4.30877 4.35320 0.04443 0.05244 0.010257 4.30530 4.36125 0.05595 4.32380 4.37021 0.04641 4.30800 4.35446 0.04646 4.30435 4.37329 0.06895 1:50 4.31739 4.49804 0.18065 0.20090 0.046566 4.38309 4.51604 0.13295 4.31517 4.54191 0.22674 4.31539 4.52472 0.20933 4.32305 4.57787 0.25482
Claims (24)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1215171.8 | 2012-08-24 | ||
GB1215171.8A GB2505248B (en) | 2012-08-24 | 2012-08-24 | Bioflavonoid coated materials |
GB1218829.8A GB2507108B (en) | 2012-10-19 | 2012-10-19 | Bioflavonoid impregnated materials |
GB1218829.8 | 2012-10-19 | ||
PCT/GB2013/052218 WO2014030006A1 (en) | 2012-08-24 | 2013-08-22 | Bioflavonoid impregnated materials |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2013/052218 A-371-Of-International WO2014030006A1 (en) | 2012-08-24 | 2013-08-22 | Bioflavonoid impregnated materials |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/167,282 Continuation US20210171488A1 (en) | 2012-08-24 | 2021-02-04 | Bioflavonoid impregnated materials |
US17/400,396 Continuation US20220073487A1 (en) | 2012-08-24 | 2021-08-12 | Bioflavonoid impregnated materials |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150230465A1 true US20150230465A1 (en) | 2015-08-20 |
Family
ID=49117880
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/422,760 Active US9878840B2 (en) | 2012-08-24 | 2013-08-22 | Bioflavonoid coated materials |
US14/422,759 Abandoned US20150230465A1 (en) | 2012-08-24 | 2013-08-22 | Bioflavonoid impregnated materials |
US15/881,282 Active US10791735B2 (en) | 2012-08-24 | 2018-01-26 | Bioflavonoid coated materials |
US17/062,535 Active US11578050B2 (en) | 2012-08-24 | 2020-10-02 | Bioflavonoid coated materials |
US17/167,282 Pending US20210171488A1 (en) | 2012-08-24 | 2021-02-04 | Bioflavonoid impregnated materials |
US17/400,396 Abandoned US20220073487A1 (en) | 2012-08-24 | 2021-08-12 | Bioflavonoid impregnated materials |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/422,760 Active US9878840B2 (en) | 2012-08-24 | 2013-08-22 | Bioflavonoid coated materials |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/881,282 Active US10791735B2 (en) | 2012-08-24 | 2018-01-26 | Bioflavonoid coated materials |
US17/062,535 Active US11578050B2 (en) | 2012-08-24 | 2020-10-02 | Bioflavonoid coated materials |
US17/167,282 Pending US20210171488A1 (en) | 2012-08-24 | 2021-02-04 | Bioflavonoid impregnated materials |
US17/400,396 Abandoned US20220073487A1 (en) | 2012-08-24 | 2021-08-12 | Bioflavonoid impregnated materials |
Country Status (11)
Country | Link |
---|---|
US (6) | US9878840B2 (en) |
EP (2) | EP2888398B1 (en) |
JP (4) | JP6480861B2 (en) |
CN (3) | CN110004714A (en) |
BR (2) | BR112015003892B1 (en) |
CA (2) | CA2881408C (en) |
DK (1) | DK2888317T3 (en) |
ES (1) | ES2729777T3 (en) |
HU (1) | HUE044922T2 (en) |
IN (2) | IN2015DN01286A (en) |
WO (2) | WO2014030005A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10791735B2 (en) | 2012-08-24 | 2020-10-06 | Citrox Biosciences Limited | Bioflavonoid coated materials |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103999680B (en) * | 2014-06-04 | 2015-08-19 | 李永青 | Plasma treatment willow branch produces the method for bud mutation |
CN105359951A (en) * | 2015-10-13 | 2016-03-02 | 李永青 | Plasma Scindapsus aureus stem processing method for generating bud mutation |
JP7236994B2 (en) | 2016-09-30 | 2023-03-10 | ジェン-プローブ・インコーポレーテッド | Composition on plasma treated surfaces |
JP6534129B2 (en) * | 2017-05-29 | 2019-06-26 | 株式会社都ローラー工業 | DLC and CD fixed base material, DLC and CD fixed product |
CN107476130B (en) * | 2017-08-31 | 2019-10-11 | 云南中烟工业有限责任公司 | A kind of cigarette paper additive with moistening throat and clearing lung type resolving sputum and its application |
JP6534133B1 (en) * | 2018-07-31 | 2019-06-26 | 株式会社都ローラー工業 | DLC and CD fixed base material, DLC and CD fixed product |
CN114341236A (en) * | 2019-10-04 | 2022-04-12 | 株式会社吴羽 | Antibacterial molded article and method for producing same |
WO2021247720A1 (en) * | 2020-06-02 | 2021-12-09 | University Of Kentucky Research Foundation | Antiviral mask and antiviral filter made from a breathable microporous polymeric membrane |
GB2605972A (en) | 2021-04-19 | 2022-10-26 | Citrox Biosciences Ltd | Nutritional supplements for amelioration of respiratory tract infections |
GB2605971A (en) | 2021-04-19 | 2022-10-26 | Citrox Biosciences Ltd | Nutritional supplement and uses |
CN116763999B (en) * | 2023-08-25 | 2023-11-07 | 四川大学 | Urinary system catheter using propolis alcohol extract as coating and preparation method thereof |
CN118286491B (en) * | 2024-04-03 | 2024-10-25 | 美尔健(深圳)生物科技有限公司 | Preparation process and application of ganoderma lucidum flavone |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2883322A (en) * | 1957-05-31 | 1959-04-21 | Crown Zellerbach Corp | Preservative cellulosic product for fruits and process of making the same |
US3227614A (en) * | 1960-09-29 | 1966-01-04 | Dustikin Products Inc | Germicidal paper |
US3283357A (en) * | 1964-10-06 | 1966-11-08 | Michigan Tool Co | Disinfecting cleansing pad |
US4865855A (en) * | 1988-01-11 | 1989-09-12 | Kimberly-Clark Corporation | Antimicrobial absorbent food pad |
US4897304A (en) * | 1981-07-20 | 1990-01-30 | Kimberly-Clark Corporation | Virucidal composition, the method of use and the product therefor |
US6325969B1 (en) * | 1999-04-30 | 2001-12-04 | James Aamodt | Paper product impregnated with chemical material |
US6368361B1 (en) * | 1999-05-18 | 2002-04-09 | Ito En, Ltd. | Manufacturing process of antibacterial fiber |
US20060127457A1 (en) * | 2004-12-10 | 2006-06-15 | Gilbert Buchalter | Fabrics impregnated with antimicrobial agents |
US20070237807A1 (en) * | 2006-03-28 | 2007-10-11 | Georgia-Pacific Consumer Products Lp | Anti-microbial hand towel with time-delay chromatic transfer indicator and absorbency rate delay |
US20100101605A1 (en) * | 2009-11-23 | 2010-04-29 | S.C. Johnson & Son, Inc. | Water-Activated "Green" Multi-Functional Wipe |
WO2010089600A1 (en) * | 2009-02-05 | 2010-08-12 | Citrox Limited | Surface sterilisation by misting with a bioflavanoid solution |
WO2011085499A1 (en) * | 2010-01-18 | 2011-07-21 | Cascades Canada Inc. | Antimicrobial tissue paper and process to manufacture same |
US20110203944A1 (en) * | 2010-02-20 | 2011-08-25 | Todd Edward Singer | Combination food storage bag and container with soaker pad |
US20120100231A1 (en) * | 2009-06-23 | 2012-04-26 | Perla Marc D | Antimicrobial Compositions And Methods Of Making And Using The Same |
US20120141569A1 (en) * | 2010-12-07 | 2012-06-07 | Kimberly-Clark Worldwide, Inc. | Wipe Coated with a Botanical Composition having Antimicrobial Properties |
US20130158128A1 (en) * | 2010-12-07 | 2013-06-20 | Vasily A. Topolkaraev | Natural, multiple use and re-use, user saturated wipes |
Family Cites Families (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3309299A (en) * | 1963-08-22 | 1967-03-14 | Aerochem Res Lab | Method of treating synthetic resinous material to increase the wettability thereof |
US3633703A (en) * | 1970-11-27 | 1972-01-11 | Minnesota Mining & Mfg | Motoring devices |
FR2198380A5 (en) | 1972-09-01 | 1974-03-29 | Esbelin Jean | |
US5238749A (en) * | 1986-03-27 | 1993-08-24 | Clinitex Corporation | Antimicrobial coating process and product |
US4941995A (en) * | 1988-07-05 | 1990-07-17 | Scott Paper Company | Natural preservative composition for wet wipes |
JPH0739331B2 (en) * | 1989-01-20 | 1995-05-01 | カルファケミカル株式会社 | Antibacterial sheet and its manufacturing method |
US5265595A (en) * | 1989-06-19 | 1993-11-30 | Hans Rudolph, Inc. | Mask for breath analysis |
GB2273291A (en) * | 1992-12-08 | 1994-06-15 | Grace W R & Co | Biocide for aqueous systems |
US5334388A (en) | 1993-09-15 | 1994-08-02 | Becton, Dickinson And Company | Antimicrobial drying substrate |
CN1057232C (en) * | 1994-11-05 | 2000-10-11 | 加而发化学有限公司 | Anti-bacteria covering agent and preparation of same |
US5620448A (en) | 1995-03-24 | 1997-04-15 | Arthrex, Inc. | Bone plate system for opening wedge proximal tibial osteotomy |
US5888527A (en) * | 1995-05-11 | 1999-03-30 | Matsushita Seiko Co., Ltd. | Gargling cup, antiviral mask, antiviral filter, antifungal, antibacterial, and antiviral filter air cleaner and air-cleaner humidifier |
US5843375A (en) * | 1995-06-07 | 1998-12-01 | Proguard, Inc. | Method for decontamination of a liquid of gaseous environment |
US5840278A (en) | 1997-02-20 | 1998-11-24 | Coleman; Thomas | Nasal spray having a mineral vitamin component, a mineral component and aloe vera |
US20020176882A1 (en) | 1997-06-23 | 2002-11-28 | Schur Jorg Peter | Additive the improvement and/or stabilization of the keeping quality of microbially perishable products |
DE19726429A1 (en) * | 1997-06-23 | 1998-12-24 | Schuer Joerg Peter Prof | Process and additive to improve the shelf life and / or stabilize microbially perishable products |
AUPP427398A0 (en) | 1998-06-23 | 1998-07-16 | Novapharm Research (Australia) Pty Ltd | Improved disinfection |
AUPP463798A0 (en) * | 1998-07-14 | 1998-08-06 | Food & Packaging Centre Management Limited | Biocidal packaging system |
JP2000245382A (en) * | 1999-02-24 | 2000-09-12 | Taketo Kanehiro | Production of food and cosmetic material using citrus fruit |
US6488948B1 (en) | 1999-04-30 | 2002-12-03 | Sintal International, Inc. | Anti-bacterial composition and use thereof for skin care and fabric treatment |
GB0000007D0 (en) * | 2000-01-05 | 2000-02-23 | Tatt Ivan R | Meat product packaging |
AUPQ598300A0 (en) | 2000-03-03 | 2000-03-23 | Citrus Sensation Pty Ltd | Citrus fruit preservative |
JP3451485B2 (en) * | 2000-07-06 | 2003-09-29 | 株式会社プラスト | Antibacterial biodegradable resin foam molding |
CA2327738A1 (en) | 2000-12-06 | 2002-06-06 | Darlene Jazzar | Lemon extract and treatment methods |
JP2003275250A (en) * | 2002-03-20 | 2003-09-30 | Tokai Kakoshi Kk | Sheet for medical treatment |
US20030203082A1 (en) | 2002-04-30 | 2003-10-30 | Givaudan Sa | Inhibition of non-enzymatic browning |
US7169400B2 (en) * | 2002-05-07 | 2007-01-30 | Fort James Corporation | Waterless lotion and lotion-treated substrate |
US8012495B2 (en) * | 2002-05-07 | 2011-09-06 | Georgia-Pacific Consumer Products Lp | Lotion-treated tissue and towel |
DE10234768A1 (en) | 2002-07-30 | 2004-02-19 | Air Solution Gmbh | Equipment dispersing mixture for disinfection of surfaces e.g. of conveyor and ambient air, employs cold atomization by ultrasound |
JP2004131600A (en) | 2002-10-10 | 2004-04-30 | Japan Science & Technology Agency | Synthetic polymer coating method and chitosan coated molded product |
US8128950B2 (en) | 2003-02-19 | 2012-03-06 | Kruger Products L.P. | Paper product with disinfecting properties |
WO2004091569A2 (en) | 2003-04-15 | 2004-10-28 | Citramed Ltd. | Activated citrus peel extract |
US20040226771A1 (en) * | 2003-05-15 | 2004-11-18 | Werblud Marc S | Stethoscope |
US20050123528A1 (en) | 2003-12-08 | 2005-06-09 | Gorton Stephen J. | Application of a non-toxic organic enzyme formulation and process for reducing fungi-caused decay on fruits and vegetables |
US20050220907A1 (en) * | 2004-03-30 | 2005-10-06 | Theoharides Theoharis C | Implanted medical devices with anti-inflammatory coatings |
US20080063693A1 (en) * | 2004-04-29 | 2008-03-13 | Bacterin Inc. | Antimicrobial coating for inhibition of bacterial adhesion and biofilm formation |
GB0410749D0 (en) | 2004-05-14 | 2004-06-16 | Dow Corning Ireland Ltd | Coating apparatus |
WO2006014426A1 (en) * | 2004-07-06 | 2006-02-09 | Thilmany, Llc | Insulation paper facing containing an antimicotic of fungicide and methods of making and using the same |
WO2006034227A2 (en) * | 2004-09-20 | 2006-03-30 | California Pacific Medical Center | Face mask |
JP2006188672A (en) | 2004-12-06 | 2006-07-20 | Hayashibara Biochem Lab Inc | Radical formation inhibitor |
JP4212561B2 (en) * | 2005-01-25 | 2009-01-21 | くじらハウス株式会社 | Antibacterial paper, non-woven or textile products |
US7588820B2 (en) * | 2005-02-17 | 2009-09-15 | Cortec Corporation | Nano-particle corrosion inhibiting films |
JP2006257612A (en) * | 2005-03-18 | 2006-09-28 | Daiwa Kagaku Kogyo Kk | Functionalized fiber material characterized by treatment with hesperidin and method for treating functionalized fiber material |
JP2007075595A (en) | 2005-08-19 | 2007-03-29 | San Medical Gijutsu Kenkyusho:Kk | Sheet-like covering member used for implant medical device |
JP2007111142A (en) * | 2005-10-18 | 2007-05-10 | Toyota Technocraft Co Ltd | Ambulance |
GB2432528B (en) * | 2005-11-29 | 2011-04-06 | Ian Ripley | Anti-viral compositions comprising flavanone glycosides and fruit acids |
CA2630112A1 (en) * | 2005-12-08 | 2007-08-30 | Georgia-Pacific Consumer Products Lp | Antimicrobial cellulosic sheet |
WO2007073246A1 (en) * | 2005-12-20 | 2007-06-28 | Sca Hygiene Products Ab | New article |
US8704050B2 (en) | 2006-03-08 | 2014-04-22 | Aomori Prefecture | Non-browning apple, method for producing the same, and drink and food using the same |
US7780909B2 (en) | 2006-03-22 | 2010-08-24 | Zimek Technologies Ip, Llc | Ultrasonic sanitation and disinfecting methods |
NL2000064C2 (en) | 2006-04-28 | 2007-10-30 | Infection Control B V | Method and device for disinfecting a room. |
GB0614353D0 (en) | 2006-07-20 | 2006-08-30 | Oraldent Ltd | Oral compositions, their preparation and use |
ITMI20062253A1 (en) * | 2006-11-24 | 2008-05-25 | Nuova Pansac Spa | FILM MATERIAL WITH SANITIZER AND BATHING SANITIZER |
JP2008156787A (en) * | 2006-12-25 | 2008-07-10 | Unitika Textiles Ltd | Antioxidation antimicrobial fiber |
KR100873104B1 (en) | 2007-03-16 | 2008-12-09 | 삼성전자주식회사 | Rotating body cleaning unit and vacuum pump having same |
US20080295843A1 (en) * | 2007-06-01 | 2008-12-04 | Haas Marci B | Self sanitizing face masks and method of manufacture |
GB2450536B (en) | 2007-06-29 | 2011-06-15 | John Deal | Mist generating device and control system |
JP2009041169A (en) * | 2007-08-09 | 2009-02-26 | Senka Kk | Method for applying antibacterial treatment having washing resistance to textile product |
AU2007100851A4 (en) * | 2007-09-05 | 2007-11-08 | Axcess Oss P/L | An integrated system to prevent the spread of communicable diseases by contact |
GB0803473D0 (en) | 2008-02-26 | 2008-04-02 | Stephenson Group Ltd | Sanitising composition |
JP2009225930A (en) * | 2008-03-21 | 2009-10-08 | Tanaka Hidehiko | Mask and graft polymer extract |
AU2009347438A1 (en) * | 2008-06-04 | 2010-12-09 | Edmak Limited | Disinfectant comprising electrochemically activated water and grapefruit seed extract |
US20090321552A1 (en) | 2008-06-26 | 2009-12-31 | Frank Stephen Hada | Moldable paper product |
US20100069811A1 (en) * | 2008-09-18 | 2010-03-18 | Poddar Rohitashwa | Anti-microbial bamboo fibers and fabrics |
US8431170B2 (en) * | 2008-11-25 | 2013-04-30 | Oy Granula Ab Ltd. | Antimicrobial composition with low cytotoxicity |
FR2940615B1 (en) * | 2008-12-30 | 2011-12-30 | Oreal | ASSOCIATION OF MONOSACCHARIDES WITH ANTIOXIDANT AGENTS AND ITS USE IN COSMETICS |
US20110017631A1 (en) * | 2009-07-24 | 2011-01-27 | BumBoosa, LLC | Bamboo fiber baby wipes |
GB2473460B (en) * | 2009-09-10 | 2016-02-10 | Univ Surrey | Antimicrobial Composition |
US20110065798A1 (en) * | 2009-09-17 | 2011-03-17 | Becton, Dickinson And Company | Anti-infective lubricant for medical devices and methods for preparing the same |
JP5539412B2 (en) * | 2010-02-09 | 2014-07-02 | 守康 村田 | Food packaging sheet |
EP2635120A1 (en) * | 2010-08-06 | 2013-09-11 | Phyto Innovative Products Ltd | Compositions comprising oleuropeins and flavanoids and their use |
CN101962824A (en) * | 2010-09-21 | 2011-02-02 | 福建师范大学 | Method for preparing printed fibers for efficiently separating naringin in water phase based on electric spinning technology |
US20120207806A1 (en) * | 2011-02-15 | 2012-08-16 | Lopesio Patricia M | Multi-purpose dental appliance cleaner |
US9878840B2 (en) | 2012-08-24 | 2018-01-30 | Citrox Biosciences Limited | Bioflavonoid coated materials |
TWI615460B (en) | 2015-06-03 | 2018-02-21 | 羅門哈斯電子材料有限公司 | Compositions and methods for pattern treatment |
-
2013
- 2013-08-22 US US14/422,760 patent/US9878840B2/en active Active
- 2013-08-22 CN CN201910084321.7A patent/CN110004714A/en active Pending
- 2013-08-22 CA CA2881408A patent/CA2881408C/en active Active
- 2013-08-22 CN CN201380051817.5A patent/CN104704032B/en active Active
- 2013-08-22 IN IN1286DEN2015 patent/IN2015DN01286A/en unknown
- 2013-08-22 BR BR112015003892-1A patent/BR112015003892B1/en active IP Right Grant
- 2013-08-22 US US14/422,759 patent/US20150230465A1/en not_active Abandoned
- 2013-08-22 BR BR112015003894-8A patent/BR112015003894B1/en active IP Right Grant
- 2013-08-22 WO PCT/GB2013/052217 patent/WO2014030005A1/en active Application Filing
- 2013-08-22 EP EP13758965.1A patent/EP2888398B1/en not_active Not-in-force
- 2013-08-22 JP JP2015527968A patent/JP6480861B2/en active Active
- 2013-08-22 CN CN201380051821.1A patent/CN104704162A/en active Pending
- 2013-08-22 CA CA2881399A patent/CA2881399C/en active Active
- 2013-08-22 JP JP2015527969A patent/JP6293753B2/en active Active
- 2013-08-22 EP EP13758964.4A patent/EP2888317B1/en active Active
- 2013-08-22 DK DK13758964.4T patent/DK2888317T3/en active
- 2013-08-22 ES ES13758964T patent/ES2729777T3/en active Active
- 2013-08-22 WO PCT/GB2013/052218 patent/WO2014030006A1/en active Application Filing
- 2013-08-22 HU HUE13758964 patent/HUE044922T2/en unknown
-
2015
- 2015-02-17 IN IN1295DEN2015 patent/IN2015DN01295A/en unknown
-
2018
- 2018-01-26 US US15/881,282 patent/US10791735B2/en active Active
- 2018-09-28 JP JP2018183855A patent/JP2019070115A/en active Pending
-
2020
- 2020-10-02 US US17/062,535 patent/US11578050B2/en active Active
-
2021
- 2021-02-04 US US17/167,282 patent/US20210171488A1/en active Pending
- 2021-06-09 JP JP2021096734A patent/JP7273105B2/en active Active
- 2021-08-12 US US17/400,396 patent/US20220073487A1/en not_active Abandoned
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2883322A (en) * | 1957-05-31 | 1959-04-21 | Crown Zellerbach Corp | Preservative cellulosic product for fruits and process of making the same |
US3227614A (en) * | 1960-09-29 | 1966-01-04 | Dustikin Products Inc | Germicidal paper |
US3283357A (en) * | 1964-10-06 | 1966-11-08 | Michigan Tool Co | Disinfecting cleansing pad |
US4897304A (en) * | 1981-07-20 | 1990-01-30 | Kimberly-Clark Corporation | Virucidal composition, the method of use and the product therefor |
US4865855A (en) * | 1988-01-11 | 1989-09-12 | Kimberly-Clark Corporation | Antimicrobial absorbent food pad |
US6325969B1 (en) * | 1999-04-30 | 2001-12-04 | James Aamodt | Paper product impregnated with chemical material |
US6368361B1 (en) * | 1999-05-18 | 2002-04-09 | Ito En, Ltd. | Manufacturing process of antibacterial fiber |
US20060127457A1 (en) * | 2004-12-10 | 2006-06-15 | Gilbert Buchalter | Fabrics impregnated with antimicrobial agents |
US20070237807A1 (en) * | 2006-03-28 | 2007-10-11 | Georgia-Pacific Consumer Products Lp | Anti-microbial hand towel with time-delay chromatic transfer indicator and absorbency rate delay |
WO2010089600A1 (en) * | 2009-02-05 | 2010-08-12 | Citrox Limited | Surface sterilisation by misting with a bioflavanoid solution |
US20110294750A1 (en) * | 2009-02-05 | 2011-12-01 | Citrox Biosciences Limited | Surface sterilisation by misting with a bioflavanoid solution |
US20120100231A1 (en) * | 2009-06-23 | 2012-04-26 | Perla Marc D | Antimicrobial Compositions And Methods Of Making And Using The Same |
US20100101605A1 (en) * | 2009-11-23 | 2010-04-29 | S.C. Johnson & Son, Inc. | Water-Activated "Green" Multi-Functional Wipe |
WO2011085499A1 (en) * | 2010-01-18 | 2011-07-21 | Cascades Canada Inc. | Antimicrobial tissue paper and process to manufacture same |
US20110203944A1 (en) * | 2010-02-20 | 2011-08-25 | Todd Edward Singer | Combination food storage bag and container with soaker pad |
US20120141569A1 (en) * | 2010-12-07 | 2012-06-07 | Kimberly-Clark Worldwide, Inc. | Wipe Coated with a Botanical Composition having Antimicrobial Properties |
US20130158128A1 (en) * | 2010-12-07 | 2013-06-20 | Vasily A. Topolkaraev | Natural, multiple use and re-use, user saturated wipes |
Non-Patent Citations (2)
Title |
---|
Blanken "What are cellulose fibers?" available online February 8, 2011; http://diyfashion.about.com/od/dyingandscreenprinting/f/What-Are-Cellulose-Fibers.htm * |
Google date for Blanken, accessed 2015 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10791735B2 (en) | 2012-08-24 | 2020-10-06 | Citrox Biosciences Limited | Bioflavonoid coated materials |
US11578050B2 (en) | 2012-08-24 | 2023-02-14 | Citrox Biosciences Limited | Bioflavonoid coated materials |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210171488A1 (en) | Bioflavonoid impregnated materials | |
JP5890778B2 (en) | Antibacterial composition | |
JPH07506815A (en) | disinfectant composition | |
KR20120123028A (en) | Sporicidal composition for clostridium difficile spores | |
JP2009173641A (en) | Bactericidal disinfectant composition, bactericidal disinfectant material comprising the same, and bactericidal disinfection method using the same composition or the same material | |
KR20090036589A (en) | Methods and Compositions for Treating Substances | |
Horiuchi et al. | Antimicrobial activity and stability of weakly acidified chlorous acid water | |
US20130079408A1 (en) | Peracid and 2-hydroxy organic acid compositions and methods for treating items | |
GB2507108A (en) | Bioflavonoid Impregnated Materials as Antibacterial Wipes | |
Thormar et al. | Glycerol monocaprate (monocaprin) reduces contamination by Escherichia coli and Salmonella enteritidis on hard surfaces | |
JPH11113779A (en) | Sterile wet tissue | |
GB2578146A (en) | Bioflavonoid compositions and their use for water purification and food preservation | |
JP7270368B2 (en) | wet sheet | |
CN101460053A (en) | Methods and articles having a high antiviral and antibacterial efficacy | |
Olson et al. | Hard surface cleaning performance of six alternative household cleaners under laboratory conditions | |
JP5377098B2 (en) | Norovirus inactivating agent | |
WO2023144400A1 (en) | Antimicrobial indicator composition | |
JP2006069919A (en) | Disinfectant | |
Thormar et al. | Antimicrobial lipids as disinfectants, antiseptics and sanitizers | |
CN106137800A (en) | Eucalyptus oil pasteurization towelette and preparation method thereof | |
EP4175472A1 (en) | Stable botanical antimicrobial compositions | |
Nielsen et al. | Evaluation of the use of liquid dishwashing compounds to control bacteria in kitchen sponges | |
JP7421903B2 (en) | Virus inactivator composition | |
KR100655152B1 (en) | Composition for sterilizing and product using the same | |
JP2019026626A (en) | Sterilization method of bacterial spore |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CITROX BIOSCIENCES LIMITED, GREAT BRITAIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THOMAS, HOWARD;REEL/FRAME:035247/0563 Effective date: 20150325 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |