US20150098500A1 - Method and apparatus of deriving intra prediction mode using most probable mode group - Google Patents
Method and apparatus of deriving intra prediction mode using most probable mode group Download PDFInfo
- Publication number
- US20150098500A1 US20150098500A1 US14/569,752 US201414569752A US2015098500A1 US 20150098500 A1 US20150098500 A1 US 20150098500A1 US 201414569752 A US201414569752 A US 201414569752A US 2015098500 A1 US2015098500 A1 US 2015098500A1
- Authority
- US
- United States
- Prior art keywords
- mode
- intra prediction
- prediction mode
- unit
- block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
- H04N19/159—Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/11—Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/117—Filters, e.g. for pre-processing or post-processing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/12—Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
- H04N19/122—Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/124—Quantisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/129—Scanning of coding units, e.g. zig-zag scan of transform coefficients or flexible macroblock ordering [FMO]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/44—Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/46—Embedding additional information in the video signal during the compression process
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/46—Embedding additional information in the video signal during the compression process
- H04N19/463—Embedding additional information in the video signal during the compression process by compressing encoding parameters before transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/593—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/625—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using discrete cosine transform [DCT]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/85—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
- H04N19/86—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving reduction of coding artifacts, e.g. of blockiness
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/90—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
- H04N19/91—Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/172—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
Definitions
- the present invention relates to a method and an apparatus of deriving an intra prediction mode, and more particularly, to a method of constructing an MPM group using neighboring intra prediction modes and deriving the intra prediction mode using the MPM group and intra prediction information.
- one picture is divided into macroblocks to encode an image. Then, the respective macroblocks are encoded using inter prediction or intra prediction.
- a current block of the picture is encoded not using a reference picture, but using values of reconstructed pixels spatially adjacent to the current block.
- An optimal prediction mode with little distortion is selected out of a plurality of intra prediction modes by comparing a prediction block generated using the adjacent pixel values with an original block. Then, using the selected intra prediction mode and the adjacent pixel values, prediction values of the current block are calculated. Differences between the prediction values and pixels values of the original current block are calculated and then encoded through transform coding, quantization and entropy coding.
- the intra prediction mode is also encoded.
- the nine modes are a vertical mode, a horizontal mode, a DC mode, a diagonal down-left mode, a diagonal down-right mode, a vertical right mode, a vertical left mode, a horizontal-up mode and a horizontal-down mode.
- One mode is selected among the nine modes to generate a prediction block of the current block, the mode information is transmitted to the decoder.
- the number of intra prediction modes increases to 18 or 35, the size of coding unit lies between 8 ⁇ 8 and 128 ⁇ 128.
- the coding unit has similar purpose to the macroblock of H.264/AVC.
- the coding efficiency deteriorates because the number of intra prediction modes is greater than that of H.264/AVC. Also, as the size of the coding unit increases and the number of intra prediction modes increases, quantization method and scanning method should be modified to enhance the coding efficiency.
- the present invention is directed to a method and apparatus of constructing an MPM group using neighboring intra prediction modes and deriving the intra prediction mode using the MPM group and intra prediction information.
- One aspect of the present invention provides a method of deriving an intra prediction mode of a current prediction unit, comprising: entropy-decoding a mode group indicator and a prediction mode index, constructing an MPM group including three intra prediction modes, determining whether the mode group indicator indicates the MPM group or not, determining an intra prediction mode of the MPM group specified by the prediction mode index as the intra prediction mode of the current prediction unit if the mode group indicator indicates the MPM group, and deriving the intra prediction mode of the current prediction unit using the prediction mode index and the three prediction modes of the MPM group if the mode group indicator does not indicate the MPM group.
- a method constructs an MPM group including three intra prediction modes, determines the intra prediction mode of the MPM group specified by the prediction mode index as the intra prediction mode of the current prediction unit if the mode group indicator indicates the MPM group, and derives the intra prediction mode of the current prediction unit using the prediction mode index and the three prediction modes of the MPM group if the mode group indicator does not indicate the MPM group. Therefore, coding efficiency of intra prediction mode is improved by encoding the intra prediction mode of the current block using a plurality of most probable candidates. Also, coding efficiency of intra prediction mode is improved by generating the prediction block very similar to an original block and by minimizing the amount of bits required to encode the residual block.
- FIG. 1 is a block diagram of an image coding apparatus according to the present invention.
- FIG. 2 is a conceptual diagram illustrating intra prediction modes according to the present invention.
- FIG. 3 is a block diagram of an image decoding apparatus according to the present invention.
- FIG. 4 is a flow chart illustrating a method of generating a prediction block in intra prediction according to the present invention.
- FIG. 5 is a flow chart illustrating a procedure of restoring intra prediction mode according to the present invention.
- FIG. 6 is a conceptual diagram illustrating positions of reference pixels of a current block according to the present invention.
- FIG. 7 is a block diagram illustrating an apparatus of generating a prediction block in intra prediction according to the present invention.
- FIG. 1 is a block diagram of an image coding apparatus 100 according to the present invention.
- the image coding apparatus 100 includes a picture division unit 101 , a transform unit 103 , a quantization unit 104 , a scanning unit 105 , an entropy coding unit 106 , an inverse quantization unit 107 , an inverse transform unit 108 , a post-processing unit 110 , a picture storing unit 111 , an intra prediction unit 112 , an inter prediction unit 113 , a subtracter 102 and an adder 109 .
- the picture division unit 101 divides a picture or a slice into a plurality of largest coding units (LCUs), and divides each LCU into one or more coding units.
- the picture division unit 101 determines prediction mode of each coding unit and a size of prediction unit and a size of transform unit.
- An LCU includes one or more coding units.
- the LCU has a recursive quad tree structure to specify a division structure.
- Information specifying the maximum size and the minimum size of the coding unit is included in a sequence parameter set.
- the division structure is specified by one or more split coding unit flags (split_cu_flags).
- the coding unit has a size of 2N ⁇ 2N.
- a coding unit includes one or more prediction units.
- the size of the prediction unit is 2N ⁇ 2N or N ⁇ N.
- the size of the prediction unit is 2N ⁇ 2N, 2N ⁇ N, N ⁇ 2N or N ⁇ N.
- the size of the prediction unit may also be one of hN ⁇ 2N, (2 ⁇ h)N ⁇ 2N, 2N ⁇ hN and 2N ⁇ (2 ⁇ h)N.
- the value of h is 1 ⁇ 2.
- a coding unit includes one or more transform units.
- the transform unit has a recursive quad tree structure to specify a division structure.
- the division structure is specified by one or more split transform unit flags (split_tu_flags).
- split_tu_flags split transform unit flags
- the intra prediction unit 112 determines an intra prediction mode of a current prediction unit and generates one or more prediction blocks using the intra prediction mode.
- the prediction block has the same size of the transform unit.
- the intra prediction unit 112 generates reference pixels if there are unavailable reference pixels of a current block, filters adaptively the reference pixels of the current block according to the size of the current block and the intra prediction mode, and generates a prediction block of the current block.
- the current block has the same size of the prediction block.
- FIG. 2 is a conceptual diagram illustrating intra prediction modes according to the present invention. As shown in FIG. 2 , the number of intra prediction modes is 35.
- the DC mode and the planar mode are non-directional intra prediction modes and the others are directional intra prediction modes.
- the inter prediction unit 113 determines motion information of the current prediction unit using one or more reference pictures stored in the picture storing unit 111 , and generates a prediction block of the prediction unit.
- the motion information includes one or more reference picture indexes indicating the reference pictures and one or more motion vectors.
- the transform unit 103 transforms residual signals generated using an original block and a prediction block to generate a transformed block.
- the residual signals are transformed in transform units.
- a transform type is determined by the prediction mode and the size of the transform unit.
- the transform type is a DCT-based integer transform or a DST-based integer transform.
- the quantization unit 104 determines a quantization parameter for quantizing the transformed block.
- the quantization parameter is a quantization step size.
- the quantization parameter is determined per quantization unit having a size equal to or larger than a reference size.
- a quantization unit of the reference size is referred to as a minimum quantization unit. If the size of the coding unit is equal to or larger than the reference size, the coding unit becomes the quantization unit.
- a plurality of coding unit may be included in the minimum quantization unit.
- the reference size is one of allowable sizes of the coding unit.
- the reference size is determined per a picture and included in the picture parameter set.
- the quantization unit 104 generates a quantization parameter predictor and generates a differential quantization parameter by subtracting the quantization parameter predictor from the quantization parameter.
- the differential quantization parameter is encoded and transmitted to the decoder. If there are no residual signals to be transmitted in the coding unit, the differential quantization parameter of the coding unit may not be transmitted.
- the quantization parameter predictor is generated by using quantization parameters of neighboring coding units and/or a quantization parameter of previous coding unit.
- the quantization unit 104 sequentially retrieves a left quantization parameter, an above quantization parameter and a previous quantization parameter in this order.
- An average of the first two available quantization parameters retrieved in that order is set as the quantization parameter predictor when at least two quantization parameters are available.
- the available quantization parameter is set as the quantization parameter predictor.
- the left quantization parameter is a quantization parameter of the left neighboring coding unit.
- the above quantization parameter is a quantization parameter of the above neighboring coding unit.
- the previous quantization parameter is a quantization parameter of a previous coding unit in coding order.
- the quantization unit 104 quantizes the transformed block using a quantization matrix and the quantization parameter to generate a quantized block.
- the quantized block is provided to the inverse quantization unit 107 and the scanning unit 105 .
- the scanning unit 105 determines a scan pattern and applies the scan pattern to the quantized block.
- CABAC Context adaptive binary arithmetic coding
- the scan pattern is determined by the intra prediction mode and the size of the transform unit.
- the scan pattern is selected among a diagonal scan, a vertical scan and a horizontal scan.
- the quantized transform coefficients of the quantized block are divided into significant coefficients, sign flags and levels.
- the scan pattern is applied to the significant coefficients, sign flags and levels respectively.
- the horizontal scan is selected for the vertical mode and a predetermined number of neighboring intra prediction modes of the vertical mode
- the vertical scan is selected for the horizontal mode and the predetermined number of neighboring intra prediction modes of the horizontal mode
- the diagonal scan is selected for the other intra prediction modes.
- the first size is 8 ⁇ 8.
- the diagonal scan is selected for all intra prediction modes.
- a predetermined scan pattern is used.
- the predetermined scan pattern is the diagonal scan.
- the quantized block is divided into a plurality of subsets and scanned.
- the second size is 4 ⁇ 4.
- the scan pattern for scanning the subsets is the same as the scan pattern for scanning quantized transform coefficients of each subset.
- the quantized transform coefficients of each subset are scanned in the reverse direction.
- the subsets are also scanned in the reverse direction.
- Last non-zero position is encoded and transmitted to the decoder.
- the last non-zero position specifies position of last non-zero quantized transform coefficient within the transform unit.
- Non-zero subset flags are determined and encoded.
- the non-zero subset flag indicates whether the subset contains non-zero coefficients or not.
- the non-zero subset flag is not defined for a subset covering a DC coefficient and a subset covering last non-zero coefficient.
- the inverse quantization unit 107 inversely quantizes the quantized transform coefficients of the quantized block.
- the inverse transform unit 108 inversely transforms the inverse quantized block to generate residual signals of the spatial domain.
- the adder 109 generates a reconstructed block by adding the residual block and the prediction block.
- the post-processing unit 110 performs a deblocking filtering process for removing blocking artifact generated in a reconstructed picture.
- the picture storing unit 111 receives post-processed image from the post-processing unit 110 , and stores the image in picture units.
- a picture may be a frame or a field.
- the entropy coding unit 106 entropy-codes the one-dimensional coefficient information received from the scanning unit 105 , intra prediction information received from the intra prediction unit 112 , motion information received from the inter prediction unit 113 , and so on.
- FIG. 3 is a block diagram of an image decoding apparatus 200 according to the present invention.
- the image decoding apparatus 200 includes an entropy decoding unit 201 , an inverse scanning unit 202 , an inverse quantization unit 203 , an inverse transform unit 204 , an adder 205 , a post processing unit 206 , a picture storing unit 207 , an intra prediction unit 208 and an inter prediction unit 209 .
- the entropy decoding unit 201 extracts the intra prediction information, the inter prediction information and the one-dimensional coefficient information from a received bit stream.
- the entropy decoding unit 201 transmits the inter prediction information to the inter prediction unit 209 , the intra prediction information to the intra prediction unit 208 and the coefficient information to the inverse scanning unit 202 .
- the inverse scanning unit 202 uses an inverse scan pattern to generate two dimensional quantized block. It is supposed that CABAC is used as entropy coding method.
- the inverse scan pattern is one of the diagonal scan, the vertical scan and the horizontal scan.
- the inverse scan pattern is determined by the intra prediction mode and the size of the transform unit.
- the inverse scan pattern is selected among the diagonal scan, the vertical scan and the horizontal scan.
- the selected inverse scan pattern is applied to the significant coefficients, the sign flags and the levels respectively generate the quantized block.
- the horizontal scan is selected for the vertical mode and a predetermined number of neighboring intra prediction modes of the vertical mode
- the vertical scan is selected for the horizontal mode and the predetermined number of neighboring intra prediction modes of the horizontal mode
- the diagonal scan is selected for the other intra prediction modes.
- the first size is 8 ⁇ 8.
- the diagonal scan is selected for all intra prediction modes.
- the significant coefficients, the sign flags and the levels are inversely scanned in the unit of the subset to generate subsets. And the subsets are inversely scanned to generate the quantized block.
- the second size is 4 ⁇ 4.
- the inverse scan pattern used for generating each subset is the same as the inverse scan pattern used for generating the quantized block.
- the significant coefficients, the sign flags and the levels are scanned in the reverse direction.
- the subsets are also scanned in the reverse direction.
- the last non-zero position and the non-zero subset flags are received from the encoder.
- the last non-zero position is used to determine the number of subsets to be generated.
- the non-zero subset flags are used to determine the subsets to be generated by applying the inverse scan pattern.
- the subset covering the DC coefficient and the subset covering the last non-zero coefficient are generated using the inverse scan pattern because the non-zero subset flags for a subset covering a DC coefficient and a subset covering last non-zero coefficient are not transmitted.
- the inverse quantization unit 203 receives the differential quantization parameter from the entropy decoding unit 201 and generates the quantization parameter predictor.
- the quantization parameter predictor is generated through the same operation of the quantization unit 104 of FIG. 1 .
- the inverse quantization unit 203 adds the differential quantization parameter and the quantization parameter predictor to generate the quantization parameter of the current coding unit. If the current coding unit is equal to or larger than the minimum quantization unit and the differential quantization parameter for the current coding unit is not received from the encoder, the differential quantization parameter is set to 0.
- the inverse quantization unit 203 inversely quantizes the quantized block.
- the inverse transform unit 204 inversely transforms the inversely quantized block to restore a residual block.
- the inverse transform type is adaptively determined according to the prediction mode and the size of the transform unit.
- the inverse transform type is the DCT-based integer transform or the DST-based integer transform.
- the intra prediction unit 208 restores the intra prediction mode of the current prediction unit using the received intra prediction information, and generates a prediction block according to the restored intra prediction mode.
- the prediction block has the same size of the transform unit.
- the intra prediction unit 250 generates reference pixels if there are unavailable reference pixels of the current block, and filters adaptively the reference pixels of the current block according to the size of the current block and the intra prediction mode.
- the current block has the same size of the transform unit.
- the inter prediction unit 209 restores the motion information of the current prediction unit using the received inter prediction information, and generates a prediction block using the motion information.
- the post-processing unit 206 operates the same as the post-processing unit 110 of FIG. 1 .
- the picture storing unit 207 receives post-processed image from the post-processing unit 206 , and stores the image in picture units.
- a picture may be a frame or a field.
- the adder 205 adds the restored residual block and a prediction block to generate a reconstructed block.
- FIG. 4 is a flow chart illustrating a method of generating a prediction block in intra prediction according to the present invention.
- Intra prediction information of the current prediction unit is entropy-decoded (S 110 ).
- the intra prediction information includes a mode group indicator and a prediction mode index.
- the mode group indicator is a flag indicating whether the intra prediction mode of the current prediction unit belongs to a most probable mode group (MPM group). If the flag is 1, the intra prediction unit of the current prediction unit belongs to the MPM group. If the flag is 0, the intra prediction unit of the current prediction unit belongs to a residual mode group.
- the residual mode group includes all intra prediction modes other than the intra prediction modes belonging to the MPM group.
- the prediction mode index specifies the intra prediction mode of the current prediction unit within the group specified by the mode group indicator.
- the intra prediction mode of the current prediction unit is derived using the intra prediction information (S 120 ).
- FIG. 5 is a flow chart illustrating a procedure of deriving intra prediction mode according to the present invention.
- the intra prediction mode of the current prediction unit is derived using the following ordered steps.
- the MPM group is constructed using intra prediction modes of the neighboring prediction units (S 121 ).
- the intra prediction modes of the MPM group are adaptively determined by a left intra prediction mode and an above intra prediction mode.
- the left intra prediction mode is the intra prediction mode of the left neighboring prediction unit
- the above intra prediction mode is the intra prediction mode of the above neighboring prediction unit.
- the MPM group is comprised of three intra prediction modes.
- the intra prediction mode of the left or above neighboring unit is set as unavailable. For example, if the current prediction unit is located at the left or upper boundary of a picture, the left or above neighboring prediction unit does not exist. If the left or above neighboring unit is located within other slice or other tile, the intra prediction mode of the left or above neighboring unit is set as unavailable. If the left or above neighboring unit is inter-coded, the intra prediction mode of the left or above neighboring unit is set as unavailable. If the above neighboring unit is located within other LCU, the intra prediction mode of the left or above neighboring unit may be set as unavailable.
- the left intra prediction mode and the above intra prediction mode are included in the MPM group and one additional intra prediction mode is added to the MPM group.
- Index 0 is assigned to one intra prediction mode of small mode number and index 1 is assigned to the other.
- index 0 may be assigned to the left intra prediction mode and index 1 may be assigned to the above intra prediction mode.
- the additional intra prediction mode is determined by the left and above intra prediction modes as follows.
- one of the left and above intra prediction modes is a non-directional mode and the other is a directional mode
- the other non-directional mode is added to the MPM group.
- the one of the left and above intra prediction modes is the DC mode
- the planar mode is added to the MPM group.
- the DC mode is added to the MPM group.
- both of the left and above intra prediction modes are non-directional modes
- the vertical mode is added to the MPM group.
- both of the left and above intra prediction modes are directional modes, the DC mode or the planar mode is added to the MPM group.
- the available intra prediction mode is included in the MPM group and two additional intra prediction modes are added to the MPM group.
- the added two intra prediction modes are determined by the available intra prediction modes as follows.
- the available intra prediction mode is a non-directional mode
- the other non-directional mode and the vertical mode are added to the MPM group.
- the available intra prediction mode is the DC mode
- the planar mode and the vertical mode are added to the MPM group.
- the available intra prediction mode is the planar mode
- the DC mode and the vertical mode are added to the MPM group.
- the available intra prediction mode is a directional mode
- two non-directional modes are added to the MPM group.
- the available intra prediction mode is included in the MPM group and two additional intra prediction modes are added to the MPM group.
- the added two intra prediction modes are determined by the available intra prediction modes as follows.
- the available intra prediction mode is a directional mode
- two neighboring directional modes are added to the MPM group. For example, if the available intra prediction mode is the mode 23, the left neighboring mode (mode 1) and the right neighboring mode (mode 13) are added to the MPM group. If the available intra prediction mode is the mode 30, the two neighboring modes (mode 2 and mode 16) are added to the MPM group. If the available intra prediction mode is a non-directional mode, the other non-directional mode and the vertical mode are added to the MPM group. For example, if the available intra prediction mode is the DC mode, the planar mode and the vertical mode are added to the MPM group.
- the three intra prediction modes are the DC mode, the planar mode and the vertical mode. Indexes 0, 1 and 2 are assigned to the three intra prediction modes in the order of the DC mode, the planar mode and the vertical mode or in the order of the planar mode, the DC mode and the vertical mode.
- the intra prediction of the MPM group specified by the prediction mode index is determined as the intra prediction mode of the current prediction unit (S 123 ).
- the intra prediction of the residual mode group specified by the prediction mode index is determined as the intra prediction mode of the current prediction unit (S 124 ).
- the intra prediction mode of the current unit is derived using the prediction mode index and the intra prediction modes of the MPM group as the following ordered steps.
- the three intra prediction modes of the MPM group are reordered in the mode number order.
- the intra prediction mode with lowest mode number is set to a first candidate.
- the intra prediction mode with middle mode number is set to a second candidate.
- the intra prediction mode with highest mode number is set to a third candidate.
- the prediction mode index is compared with the first candidate. If the prediction mode index is equal to or greater than the first candidate of the MPM group, the value of the prediction mode index is increased by one. Otherwise, the value of the prediction mode index is maintained.
- the prediction mode index is compared with the second candidate. If the prediction mode index is equal to or greater than the second candidate of the MPM group, the value of the prediction mode index is increased by one. Otherwise, the value of the prediction mode index is maintained.
- the prediction mode index is compared with the third candidate. If the prediction mode index is equal to or greater than the third candidate of the MPM group, the value of the prediction mode index is increased by one. Otherwise, the value of the prediction mode index is maintained.
- the value of the final prediction mode index is set as the mode number of the intra prediction mode of the current prediction unit.
- a size of the prediction block is determined based on the transform size information specifying the size of the transform unit (S 130 ).
- the transform size infomation may be one or more split_transform_flags specifying the size of the transform unit.
- the size of the prediction block is equal to the size of the current prediction unit.
- the size of the prediction block is equal to the size of the transform unit.
- a process of generating a reconstructed block is performed on each sub-block of the current prediction unit. That is, a prediction block and a residual block of a current sub-block are generated and a reconstructed block of each sub-block is generated by adding the prediction block and the residual block. Then, a prediction block, a residual block and a reconstructed block of the next sub-block in decoding order are generated.
- the restored intra prediction mode is used to generate all prediction blocks of all sub-block. Some pixels of the reconstructed block of the current sub-block are used as reference pixels of the next sub-block. Therefore, it is possible to generate a prediction block which is more similar to the original sub-block.
- the current block is the current prediction unit or the current sub-block.
- the size of the current block is the size of the transform unit.
- FIG. 6 is a conceptual diagram illustrating the positions of reference pixels of the current block according to the present invention.
- N is the width of the current block and M is the height of the current block.
- the reference pixels are set as unavailable.
- CIP mode constrained intra prediction mode
- the reconstructed pixels of inter mode are also set as unavailable.
- one or more reference pixels are unavailable, one or more reference pixels are generated for the one or more unavailable reference pixels as follows.
- the value of 2 L-1 is substituted for the values of all the reference pixels.
- the value of L is the number of bits used to represent luminance pixel value.
- the value of the reference pixel nearest to the unavailable pixel is substituted for the unavailable reference pixel.
- the average value of the reference pixels nearest to the unavailable pixel in each side or the value of the reference pixel nearest to the unavailable pixel in a predetermined direction is substituted for each unavailable reference pixel.
- the reference pixels are adaptively filtered based on the intra prediction mode and the size of the current block (S 150 ).
- the size of the current block is the size of the transform unit.
- the reference pixels are not filtered.
- the reference pixels are not filtered.
- the reference pixels are adaptively according to the size of the current block.
- the reference pixels are not filtered in all intra prediction modes.
- the number of intra prediction mode where the reference pixels are filtered increases as the size of the current block becomes larger.
- the reference pixels are not filtered in the vertical mode and a predetermined number of neighboring intra prediction mode of the vertical mode.
- the reference pixels are also not filtered in the horizontal mode and the predetermined number of neighboring intra prediction mode of the horizontal mode.
- the predetermined number lies between 0 to 7 and decreases as the size of the current block is larger.
- a prediction block of the current block is generated using the reference pixels according to the restored intra prediction mode (S 160 ).
- the prediction pixels of the prediction block are generated by copying the value of the corresponding vertical reference pixel. Then, the prediction pixels which are adjacent to the left reference pixel are filtered by the left neighboring reference pixel and the corner pixel.
- the prediction pixels of the prediction block are generated by copying the value of the corresponding horizontal reference pixel. Then, the prediction pixels which are adjacent to the above reference pixel are filtered by the above neighboring reference pixel and the corner pixel.
- FIG. 7 is a block diagram illustrating an apparatus 300 of generating a prediction block in intra prediction according to the present invention.
- the apparatus 300 includes a parsing unit 310 , a prediction mode decoding unit 320 , a prediction size determining unit 330 , a reference availability checking unit 340 , a reference pixel generating unit 350 , a reference pixel filtering unit 360 and a prediction block generating unit 370 .
- the parsing unit 310 restores the intra prediction information of the current prediction unit from the bit stream.
- the intra prediction information includes a mode group indicator and a prediction mode index.
- the mode group indicator is a flag indicating whether the intra prediction mode of the current prediction unit belongs to a most probable mode group (MPM group). If the flag is 1, the intra prediction unit of the current prediction unit belongs to the MPM group. If the flag is 0, the intra prediction unit of the current prediction unit belongs to a residual mode group.
- the residual mode group includes all intra prediction modes other than the intra prediction modes belonging to the MPM group.
- the prediction mode index specifies the intra prediction mode of the current prediction unit within the group specified by the mode group indicator.
- the prediction mode decoding unit 320 includes a MPM group constructing unit 321 and a prediction mode restoring unit 322 .
- the MPM group constructing unit 321 constructs the MPM group of the current prediction unit.
- the MPM group is constructed using intra prediction modes of the neighboring prediction units.
- the intra prediction modes of the MPM group are adaptively determined by a left intra prediction mode and an above intra prediction mode.
- the left intra prediction mode is the intra prediction mode of the left neighboring prediction unit
- the above intra prediction mode is the intra prediction mode of the above neighboring prediction unit.
- the MPM group is comprised of three intra prediction modes.
- the MPM group constructing unit 321 checks the availability of the left intra prediction mode and the above intra prediction mode. If the left or above neighboring prediction unit does not exist, the intra prediction mode of the left or above neighboring unit is set as unavailable. For example, if the current prediction unit is located at the left or upper boundary of a picture, the left or above neighboring prediction unit does not exist. If the left or above neighboring unit is located within other slice or other tile, the intra prediction mode of the left or above neighboring unit is set as unavailable. If the left or above neighboring unit is inter-coded, the intra prediction mode of the left or above neighboring unit is set as unavailable. If the above neighboring unit is located within other LCU, the intra prediction mode of the left or above neighboring unit is set as unavailable.
- the MPM group constructing unit 321 constructs the MPM group as follows.
- the left intra prediction mode and the above intra prediction mode are included in the MPM group and one additional intra prediction mode is added to the MPM group.
- Index 0 is assigned to one intra prediction mode of small mode number and index 1 is assigned to the other.
- index 0 is assigned to the left intra prediction mode and index 1 is assigned to the above intra prediction mode.
- the added intra prediction mode is determined by the left and above intra prediction modes as follows.
- one of the left and above intra prediction modes is a non-directional mode and the other is a directional mode
- the other non-directional mode is added to the MPM group.
- the one of the left and above intra prediction modes is the DC mode
- the planar mode is added to the MPM group.
- the DC mode is added to the MPM group.
- both of the left and above intra prediction modes are non-directional modes
- the vertical mode is added to the MPM group.
- both of the left and above intra prediction modes are directional modes, the DC mode or the planar mode is added to the MPM group.
- the available intra prediction mode is included in the MPM group and two additional intra prediction modes are added to the MPM group.
- the added two intra prediction modes are determined by the available intra prediction modes as follows.
- the available intra prediction mode is a non-directional mode
- the other non-directional mode and the vertical mode are added to the MPM group.
- the available intra prediction mode is the DC mode
- the planar mode and the vertical mode are added to the MPM group.
- the available intra prediction mode is the planar mode
- the DC mode and the vertical mode are added to the MPM group.
- the available intra prediction mode is a directional mode
- two non-directional modes are added to the MPM group.
- the available intra prediction mode is included in the MPM group and two additional intra prediction modes are added to the MPM group.
- the added two intra prediction modes are determined by the available intra prediction modes as follows.
- the available intra prediction mode is a directional mode
- two neighboring directional modes are added to the MPM group. For example, if the available intra prediction mode is the mode 23, the left neighboring mode (mode 1) and the right neighboring mode (mode 13) are added to the MPM group. If the available intra prediction mode is the mode 30, the two neighboring modes (mode 2 and mode 16) are added to the MPM group. If the available intra prediction mode is a non-directional mode, the other non-directional mode and the vertical mode are added to the MPM group. For example, if the available intra prediction mode is the DC mode, the planar mode and the vertical mode are added to the MPM group.
- the three intra prediction modes are the DC mode, the planar mode and the vertical mode. Indexes 0, 1 and 2 are assigned to the three intra prediction modes in the order of the DC mode, the planar mode and the vertical mode or in the order of the planar mode, the DC mode and the vertical mode.
- the prediction mode restoring unit 322 derives the intra prediction mode of the current prediction unit using the mode group indicator and the prediction mode index as follows.
- the prediction mode restoring unit 322 determines whether the mode group indicator indicates the MPM group.
- the prediction mode restoring unit 322 determines the intra prediction of the MPM group specified by the prediction mode index as the intra prediction mode of the current prediction unit.
- the prediction mode restoring unit 322 determines the intra prediction of the residual mode group specified by the prediction mode index as the intra prediction mode of the current prediction unit.
- the intra prediction mode of the current unit is derived using the prediction mode index and the intra prediction modes of the MPM group as the following ordered steps.
- the three intra prediction modes of the MPM group are reordered in the mode number order.
- the intra prediction mode with lowest mode number is set to a first candidate.
- the intra prediction mode with middle mode number is set to a second candidate.
- the intra prediction mode with highest mode number is set to a third candidate.
- the prediction mode index is compared with the first candidate. If the prediction mode index is equal to or greater than the first candidate of the MPM group, the value of the prediction mode index is increased by one. Otherwise, the value of the prediction mode index is maintained.
- the prediction mode index is compared with the second candidate. If the prediction mode index is equal to or greater than the second candidate of the MPM group, the value of the prediction mode index is increased by one. Otherwise, the value of the prediction mode index is maintained.
- the prediction mode index is compared with the third candidate. If the prediction mode index is equal to or greater than the third candidate of the MPM group, the value of the prediction mode index is increased by one. Otherwise, the value of the prediction mode index is maintained.
- the value of the final prediction mode index is set as the mode number of the intra prediction mode of the current prediction unit.
- the prediction size determining unit 330 determines the size of the prediction block based on the transform size information specifying the size of the transform unit.
- the transform size information may be one or more split_transform_flags specifying the size of the transform unit.
- the size of the prediction block is equal to the size of the current prediction unit.
- the size of the prediction block is equal to the size of the transform unit.
- a process of generating a reconstructed block is performed on each sub-block of the current prediction unit. That is, a prediction block and a residual block of a current sub-block are generated and a reconstructed block of each sub-block is generated by adding the prediction block and the residual block. Then, a prediction block, a residual block and a reconstructed block of the next sub-block in decoding order are generated.
- the restored intra prediction mode is used to generate all prediction blocks of all sub-block. Some pixels of the reconstructed block of the current sub-block are used as reference pixels of the next sub-block. Therefore, it is possible to generate a prediction block which is more similar to the original sub-block.
- the reference pixel availability checking unit 340 determines whether all reference pixels of the current block are available.
- the current block is the current prediction unit or the current sub-block.
- the size of the current block is the size of the transform unit.
- the reference pixel generating unit 350 generates reference pixels if one or more reference pixels of the current block are unavailable.
- the value of 2 L-1 is substituted for the values of all the reference pixels.
- the value of L is the number of bits used to represent luminance pixel value.
- the value of the reference pixel nearest to the unavailable pixel is substituted for the unavailable reference pixel.
- the average value of the reference pixels nearest to the unavailable pixel in each side or the value of the reference pixel nearest to the unavailable pixel in a predetermined direction is substituted for each unavailable reference pixel.
- the reference pixel filtering unit 360 adaptively filters the reference pixels based on the intra prediction mode and the size of the current block.
- the reference pixels are not filtered.
- the reference pixels are not filtered.
- the reference pixels are adaptively according to the size of the current block.
- the reference pixels are not filtered in all intra prediction modes.
- the number of intra prediction mode where the reference pixels are filtered increases as the size of the current block becomes larger.
- the reference pixels are not filtered in the vertical mode and a predetermined number of neighboring intra prediction mode of the vertical mode.
- the reference pixels are also not filtered in the horizontal mode and the predetermined number of neighboring intra prediction mode of the horizontal mode.
- the predetermined number lies between 0 to 7 and decreases as the size of the current block is larger.
- the prediction block generating unit 370 generates a prediction block of the current block using the reference pixels according to the restored intra prediction mode.
- the prediction pixel adjacent to the reference pixel is generated using the average value and one or two adjacent reference pixels.
- the prediction pixels which are not adjacent to the left reference pixel are generated by copying the value of the vertical reference pixel.
- the prediction pixels which are adjacent to the left reference pixel are generated by the vertical reference pixel and variance between the corner pixel and the left neighboring pixel.
- the prediction pixels are generated using the same method.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Discrete Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Error Detection And Correction (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
- The present application is a continuation of the U.S. patent application Ser. No. 14/349,985, filed on Apr. 4, 2014, which is a 371 of international Patent Application No. PCT/CN2012/083972, filed on Nov. 2, 2012, which claims priority to Korean Patent Application 10-2011-0114606, filed on Nov. 4, 2011, which are incorporated by reference in their entirety.
- The present invention relates to a method and an apparatus of deriving an intra prediction mode, and more particularly, to a method of constructing an MPM group using neighboring intra prediction modes and deriving the intra prediction mode using the MPM group and intra prediction information.
- In image compression methods such as MPEG-1, MPEG-2, MPEG-4 and H.264/MPEG-4 AVC, one picture is divided into macroblocks to encode an image. Then, the respective macroblocks are encoded using inter prediction or intra prediction.
- In intra prediction, a current block of the picture is encoded not using a reference picture, but using values of reconstructed pixels spatially adjacent to the current block. An optimal prediction mode with little distortion is selected out of a plurality of intra prediction modes by comparing a prediction block generated using the adjacent pixel values with an original block. Then, using the selected intra prediction mode and the adjacent pixel values, prediction values of the current block are calculated. Differences between the prediction values and pixels values of the original current block are calculated and then encoded through transform coding, quantization and entropy coding. The intra prediction mode is also encoded.
- According to H.264 standard, there are nine modes in 4×4 intra prediction. The nine modes are a vertical mode, a horizontal mode, a DC mode, a diagonal down-left mode, a diagonal down-right mode, a vertical right mode, a vertical left mode, a horizontal-up mode and a horizontal-down mode. One mode is selected among the nine modes to generate a prediction block of the current block, the mode information is transmitted to the decoder.
- In HEVC standard under development, the number of intra prediction modes increases to 18 or 35, the size of coding unit lies between 8×8 and 128×128. The coding unit has similar purpose to the macroblock of H.264/AVC.
- Accordingly, if the intra prediction mode is encoded using the same method of H.264/AVC, the coding efficiency deteriorates because the number of intra prediction modes is greater than that of H.264/AVC. Also, as the size of the coding unit increases and the number of intra prediction modes increases, quantization method and scanning method should be modified to enhance the coding efficiency.
- The present invention is directed to a method and apparatus of constructing an MPM group using neighboring intra prediction modes and deriving the intra prediction mode using the MPM group and intra prediction information.
- One aspect of the present invention provides a method of deriving an intra prediction mode of a current prediction unit, comprising: entropy-decoding a mode group indicator and a prediction mode index, constructing an MPM group including three intra prediction modes, determining whether the mode group indicator indicates the MPM group or not, determining an intra prediction mode of the MPM group specified by the prediction mode index as the intra prediction mode of the current prediction unit if the mode group indicator indicates the MPM group, and deriving the intra prediction mode of the current prediction unit using the prediction mode index and the three prediction modes of the MPM group if the mode group indicator does not indicate the MPM group.
- A method according to the present invention constructs an MPM group including three intra prediction modes, determines the intra prediction mode of the MPM group specified by the prediction mode index as the intra prediction mode of the current prediction unit if the mode group indicator indicates the MPM group, and derives the intra prediction mode of the current prediction unit using the prediction mode index and the three prediction modes of the MPM group if the mode group indicator does not indicate the MPM group. Therefore, coding efficiency of intra prediction mode is improved by encoding the intra prediction mode of the current block using a plurality of most probable candidates. Also, coding efficiency of intra prediction mode is improved by generating the prediction block very similar to an original block and by minimizing the amount of bits required to encode the residual block.
-
FIG. 1 is a block diagram of an image coding apparatus according to the present invention. -
FIG. 2 is a conceptual diagram illustrating intra prediction modes according to the present invention. -
FIG. 3 is a block diagram of an image decoding apparatus according to the present invention. -
FIG. 4 is a flow chart illustrating a method of generating a prediction block in intra prediction according to the present invention. -
FIG. 5 is a flow chart illustrating a procedure of restoring intra prediction mode according to the present invention. -
FIG. 6 is a conceptual diagram illustrating positions of reference pixels of a current block according to the present invention. -
FIG. 7 is a block diagram illustrating an apparatus of generating a prediction block in intra prediction according to the present invention. - Hereinafter, various embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the exemplary embodiments disclosed below, but can be implemented in various types. Therefore, many other modifications and variations of the present invention are possible, and it is to be understood that within the scope of the disclosed concept, the present invention may be practiced otherwise than as has been specifically described.
-
FIG. 1 is a block diagram of animage coding apparatus 100 according to the present invention. - Referring to
FIG. 1 , theimage coding apparatus 100 according to the present invention includes apicture division unit 101, atransform unit 103, aquantization unit 104, ascanning unit 105, anentropy coding unit 106, aninverse quantization unit 107, aninverse transform unit 108, apost-processing unit 110, apicture storing unit 111, anintra prediction unit 112, aninter prediction unit 113, asubtracter 102 and anadder 109. - The
picture division unit 101 divides a picture or a slice into a plurality of largest coding units (LCUs), and divides each LCU into one or more coding units. Thepicture division unit 101 determines prediction mode of each coding unit and a size of prediction unit and a size of transform unit. - An LCU includes one or more coding units. The LCU has a recursive quad tree structure to specify a division structure. Information specifying the maximum size and the minimum size of the coding unit is included in a sequence parameter set. The division structure is specified by one or more split coding unit flags (split_cu_flags). The coding unit has a size of 2N×2N.
- A coding unit includes one or more prediction units. In intra prediction, the size of the prediction unit is 2N×2N or N×N. In inter prediction, the size of the prediction unit is 2N×2N, 2N×N, N×2N or N×N. When the prediction unit is an asymmetric partition in inter prediction, the size of the prediction unit may also be one of hN×2N, (2−h)N×2N, 2N×hN and 2N×(2−h)N. The value of h is ½.
- A coding unit includes one or more transform units. The transform unit has a recursive quad tree structure to specify a division structure. The division structure is specified by one or more split transform unit flags (split_tu_flags). Information specifying the maximum size and the minimum size of the transform unit is included in a sequence parameter set.
- The
intra prediction unit 112 determines an intra prediction mode of a current prediction unit and generates one or more prediction blocks using the intra prediction mode. The prediction block has the same size of the transform unit. Theintra prediction unit 112 generates reference pixels if there are unavailable reference pixels of a current block, filters adaptively the reference pixels of the current block according to the size of the current block and the intra prediction mode, and generates a prediction block of the current block. The current block has the same size of the prediction block. -
FIG. 2 is a conceptual diagram illustrating intra prediction modes according to the present invention. As shown inFIG. 2 , the number of intra prediction modes is 35. The DC mode and the planar mode are non-directional intra prediction modes and the others are directional intra prediction modes. - The
inter prediction unit 113 determines motion information of the current prediction unit using one or more reference pictures stored in thepicture storing unit 111, and generates a prediction block of the prediction unit. The motion information includes one or more reference picture indexes indicating the reference pictures and one or more motion vectors. - The
transform unit 103 transforms residual signals generated using an original block and a prediction block to generate a transformed block. The residual signals are transformed in transform units. A transform type is determined by the prediction mode and the size of the transform unit. The transform type is a DCT-based integer transform or a DST-based integer transform. - The
quantization unit 104 determines a quantization parameter for quantizing the transformed block. The quantization parameter is a quantization step size. The quantization parameter is determined per quantization unit having a size equal to or larger than a reference size. A quantization unit of the reference size is referred to as a minimum quantization unit. If the size of the coding unit is equal to or larger than the reference size, the coding unit becomes the quantization unit. A plurality of coding unit may be included in the minimum quantization unit. The reference size is one of allowable sizes of the coding unit. The reference size is determined per a picture and included in the picture parameter set. - The
quantization unit 104 generates a quantization parameter predictor and generates a differential quantization parameter by subtracting the quantization parameter predictor from the quantization parameter. The differential quantization parameter is encoded and transmitted to the decoder. If there are no residual signals to be transmitted in the coding unit, the differential quantization parameter of the coding unit may not be transmitted. - The quantization parameter predictor is generated by using quantization parameters of neighboring coding units and/or a quantization parameter of previous coding unit.
- The
quantization unit 104 sequentially retrieves a left quantization parameter, an above quantization parameter and a previous quantization parameter in this order. An average of the first two available quantization parameters retrieved in that order is set as the quantization parameter predictor when at least two quantization parameters are available. When only one quantization parameter is available, the available quantization parameter is set as the quantization parameter predictor. The left quantization parameter is a quantization parameter of the left neighboring coding unit. The above quantization parameter is a quantization parameter of the above neighboring coding unit. The previous quantization parameter is a quantization parameter of a previous coding unit in coding order. - The
quantization unit 104 quantizes the transformed block using a quantization matrix and the quantization parameter to generate a quantized block. The quantized block is provided to theinverse quantization unit 107 and thescanning unit 105. - The
scanning unit 105 determines a scan pattern and applies the scan pattern to the quantized block. When CABAC (Context adaptive binary arithmetic coding) is used for entropy coding, the scan pattern is determined as follows. - In intra prediction, the scan pattern is determined by the intra prediction mode and the size of the transform unit. The scan pattern is selected among a diagonal scan, a vertical scan and a horizontal scan. The quantized transform coefficients of the quantized block are divided into significant coefficients, sign flags and levels. The scan pattern is applied to the significant coefficients, sign flags and levels respectively.
- When the size of the transform unit is equal to or smaller than a first size, the horizontal scan is selected for the vertical mode and a predetermined number of neighboring intra prediction modes of the vertical mode, the vertical scan is selected for the horizontal mode and the predetermined number of neighboring intra prediction modes of the horizontal mode, and the diagonal scan is selected for the other intra prediction modes. The first size is 8×8.
- When the size of the transform unit is larger than the first size, the diagonal scan is selected for all intra prediction modes.
- In inter prediction, a predetermined scan pattern is used. The predetermined scan pattern is the diagonal scan.
- When the size of the transform unit is larger than a second size, the quantized block is divided into a plurality of subsets and scanned. The second size is 4×4. The scan pattern for scanning the subsets is the same as the scan pattern for scanning quantized transform coefficients of each subset. The quantized transform coefficients of each subset are scanned in the reverse direction. The subsets are also scanned in the reverse direction.
- Last non-zero position is encoded and transmitted to the decoder. The last non-zero position specifies position of last non-zero quantized transform coefficient within the transform unit.
- Non-zero subset flags are determined and encoded. The non-zero subset flag indicates whether the subset contains non-zero coefficients or not. The non-zero subset flag is not defined for a subset covering a DC coefficient and a subset covering last non-zero coefficient.
- The
inverse quantization unit 107 inversely quantizes the quantized transform coefficients of the quantized block. - The
inverse transform unit 108 inversely transforms the inverse quantized block to generate residual signals of the spatial domain. - The
adder 109 generates a reconstructed block by adding the residual block and the prediction block. - The
post-processing unit 110 performs a deblocking filtering process for removing blocking artifact generated in a reconstructed picture. - The
picture storing unit 111 receives post-processed image from thepost-processing unit 110, and stores the image in picture units. A picture may be a frame or a field. - The
entropy coding unit 106 entropy-codes the one-dimensional coefficient information received from thescanning unit 105, intra prediction information received from theintra prediction unit 112, motion information received from theinter prediction unit 113, and so on. -
FIG. 3 is a block diagram of animage decoding apparatus 200 according to the present invention. - The
image decoding apparatus 200 according to the present invention includes anentropy decoding unit 201, aninverse scanning unit 202, aninverse quantization unit 203, aninverse transform unit 204, anadder 205, apost processing unit 206, apicture storing unit 207, anintra prediction unit 208 and aninter prediction unit 209. - The
entropy decoding unit 201 extracts the intra prediction information, the inter prediction information and the one-dimensional coefficient information from a received bit stream. Theentropy decoding unit 201 transmits the inter prediction information to theinter prediction unit 209, the intra prediction information to theintra prediction unit 208 and the coefficient information to theinverse scanning unit 202. - The
inverse scanning unit 202 uses an inverse scan pattern to generate two dimensional quantized block. It is supposed that CABAC is used as entropy coding method. The inverse scan pattern is one of the diagonal scan, the vertical scan and the horizontal scan. - In intra prediction, the inverse scan pattern is determined by the intra prediction mode and the size of the transform unit. The inverse scan pattern is selected among the diagonal scan, the vertical scan and the horizontal scan. The selected inverse scan pattern is applied to the significant coefficients, the sign flags and the levels respectively generate the quantized block.
- When the size of the transform unit is equal to or smaller than the first size, the horizontal scan is selected for the vertical mode and a predetermined number of neighboring intra prediction modes of the vertical mode, the vertical scan is selected for the horizontal mode and the predetermined number of neighboring intra prediction modes of the horizontal mode, and the diagonal scan is selected for the other intra prediction modes. The first size is 8×8.
- When the size of the transform unit is larger than the first size, the diagonal scan is selected for all intra prediction modes.
- In inter prediction, the diagonal scan is used.
- When the size of the transform unit is larger than the second size, the significant coefficients, the sign flags and the levels are inversely scanned in the unit of the subset to generate subsets. And the subsets are inversely scanned to generate the quantized block. The second size is 4×4.
- The inverse scan pattern used for generating each subset is the same as the inverse scan pattern used for generating the quantized block. The significant coefficients, the sign flags and the levels are scanned in the reverse direction. The subsets are also scanned in the reverse direction.
- The last non-zero position and the non-zero subset flags are received from the encoder. The last non-zero position is used to determine the number of subsets to be generated. The non-zero subset flags are used to determine the subsets to be generated by applying the inverse scan pattern. The subset covering the DC coefficient and the subset covering the last non-zero coefficient are generated using the inverse scan pattern because the non-zero subset flags for a subset covering a DC coefficient and a subset covering last non-zero coefficient are not transmitted.
- The
inverse quantization unit 203 receives the differential quantization parameter from theentropy decoding unit 201 and generates the quantization parameter predictor. The quantization parameter predictor is generated through the same operation of thequantization unit 104 ofFIG. 1 . Then, theinverse quantization unit 203 adds the differential quantization parameter and the quantization parameter predictor to generate the quantization parameter of the current coding unit. If the current coding unit is equal to or larger than the minimum quantization unit and the differential quantization parameter for the current coding unit is not received from the encoder, the differential quantization parameter is set to 0. - The
inverse quantization unit 203 inversely quantizes the quantized block. - The
inverse transform unit 204 inversely transforms the inversely quantized block to restore a residual block. The inverse transform type is adaptively determined according to the prediction mode and the size of the transform unit. The inverse transform type is the DCT-based integer transform or the DST-based integer transform. - The
intra prediction unit 208 restores the intra prediction mode of the current prediction unit using the received intra prediction information, and generates a prediction block according to the restored intra prediction mode. The prediction block has the same size of the transform unit. The intra prediction unit 250 generates reference pixels if there are unavailable reference pixels of the current block, and filters adaptively the reference pixels of the current block according to the size of the current block and the intra prediction mode. The current block has the same size of the transform unit. - The
inter prediction unit 209 restores the motion information of the current prediction unit using the received inter prediction information, and generates a prediction block using the motion information. - The
post-processing unit 206 operates the same as thepost-processing unit 110 ofFIG. 1 . - The
picture storing unit 207 receives post-processed image from thepost-processing unit 206, and stores the image in picture units. A picture may be a frame or a field. - The
adder 205 adds the restored residual block and a prediction block to generate a reconstructed block. -
FIG. 4 is a flow chart illustrating a method of generating a prediction block in intra prediction according to the present invention. - Intra prediction information of the current prediction unit is entropy-decoded (S110).
- The intra prediction information includes a mode group indicator and a prediction mode index. The mode group indicator is a flag indicating whether the intra prediction mode of the current prediction unit belongs to a most probable mode group (MPM group). If the flag is 1, the intra prediction unit of the current prediction unit belongs to the MPM group. If the flag is 0, the intra prediction unit of the current prediction unit belongs to a residual mode group. The residual mode group includes all intra prediction modes other than the intra prediction modes belonging to the MPM group. The prediction mode index specifies the intra prediction mode of the current prediction unit within the group specified by the mode group indicator.
- The intra prediction mode of the current prediction unit is derived using the intra prediction information (S120).
-
FIG. 5 is a flow chart illustrating a procedure of deriving intra prediction mode according to the present invention. The intra prediction mode of the current prediction unit is derived using the following ordered steps. - The MPM group is constructed using intra prediction modes of the neighboring prediction units (S121). The intra prediction modes of the MPM group are adaptively determined by a left intra prediction mode and an above intra prediction mode. The left intra prediction mode is the intra prediction mode of the left neighboring prediction unit, and the above intra prediction mode is the intra prediction mode of the above neighboring prediction unit. The MPM group is comprised of three intra prediction modes.
- If the left or above neighboring prediction unit does not exist, the intra prediction mode of the left or above neighboring unit is set as unavailable. For example, if the current prediction unit is located at the left or upper boundary of a picture, the left or above neighboring prediction unit does not exist. If the left or above neighboring unit is located within other slice or other tile, the intra prediction mode of the left or above neighboring unit is set as unavailable. If the left or above neighboring unit is inter-coded, the intra prediction mode of the left or above neighboring unit is set as unavailable. If the above neighboring unit is located within other LCU, the intra prediction mode of the left or above neighboring unit may be set as unavailable.
- When both of the left intra prediction mode and the above intra prediction mode are available and are different each other, the left intra prediction mode and the above intra prediction mode are included in the MPM group and one additional intra prediction mode is added to the MPM group.
Index 0 is assigned to one intra prediction mode of small mode number andindex 1 is assigned to the other. Alternatively,index 0 may be assigned to the left intra prediction mode andindex 1 may be assigned to the above intra prediction mode. The additional intra prediction mode is determined by the left and above intra prediction modes as follows. - If one of the left and above intra prediction modes is a non-directional mode and the other is a directional mode, the other non-directional mode is added to the MPM group. For example, if the one of the left and above intra prediction modes is the DC mode, the planar mode is added to the MPM group. If the one of the left and above intra prediction modes is the planar mode, the DC mode is added to the MPM group. If both of the left and above intra prediction modes are non-directional modes, the vertical mode is added to the MPM group. If both of the left and above intra prediction modes are directional modes, the DC mode or the planar mode is added to the MPM group.
- When only one of the left intra prediction mode and the above intra prediction mode is available, the available intra prediction mode is included in the MPM group and two additional intra prediction modes are added to the MPM group. The added two intra prediction modes are determined by the available intra prediction modes as follows.
- If the available intra prediction mode is a non-directional mode, the other non-directional mode and the vertical mode are added to the MPM group. For example, if the available intra prediction mode is the DC mode, the planar mode and the vertical mode are added to the MPM group. If the available intra prediction mode is the planar mode, the DC mode and the vertical mode are added to the MPM group. If the available intra prediction mode is a directional mode, two non-directional modes (DC mode and planar mode) are added to the MPM group.
- When both of the left intra prediction mode and the above intra prediction mode are available and are same each other, the available intra prediction mode is included in the MPM group and two additional intra prediction modes are added to the MPM group. The added two intra prediction modes are determined by the available intra prediction modes as follows.
- If the available intra prediction mode is a directional mode, two neighboring directional modes are added to the MPM group. For example, if the available intra prediction mode is the
mode 23, the left neighboring mode (mode 1) and the right neighboring mode (mode 13) are added to the MPM group. If the available intra prediction mode is themode 30, the two neighboring modes (mode 2 and mode 16) are added to the MPM group. If the available intra prediction mode is a non-directional mode, the other non-directional mode and the vertical mode are added to the MPM group. For example, if the available intra prediction mode is the DC mode, the planar mode and the vertical mode are added to the MPM group. - When both of the left intra prediction mode and the above intra prediction mode are unavailable, three additional intra prediction modes are added to the MPM group. The three intra prediction modes are the DC mode, the planar mode and the vertical mode.
Indexes - It is determined whether the mode group indicator indicates the MPM group (S122).
- If the mode group indicator indicates the MPM group, the intra prediction of the MPM group specified by the prediction mode index is determined as the intra prediction mode of the current prediction unit (S123).
- If the mode group indicator does not indicate the MPM group, the intra prediction of the residual mode group specified by the prediction mode index is determined as the intra prediction mode of the current prediction unit (S124). The intra prediction mode of the current unit is derived using the prediction mode index and the intra prediction modes of the MPM group as the following ordered steps.
- 1) The three intra prediction modes of the MPM group are reordered in the mode number order. The intra prediction mode with lowest mode number is set to a first candidate. The intra prediction mode with middle mode number is set to a second candidate. The intra prediction mode with highest mode number is set to a third candidate.
- 2) The prediction mode index is compared with the first candidate. If the prediction mode index is equal to or greater than the first candidate of the MPM group, the value of the prediction mode index is increased by one. Otherwise, the value of the prediction mode index is maintained.
- 3) The prediction mode index is compared with the second candidate. If the prediction mode index is equal to or greater than the second candidate of the MPM group, the value of the prediction mode index is increased by one. Otherwise, the value of the prediction mode index is maintained.
- 4) The prediction mode index is compared with the third candidate. If the prediction mode index is equal to or greater than the third candidate of the MPM group, the value of the prediction mode index is increased by one. Otherwise, the value of the prediction mode index is maintained.
- 5) The value of the final prediction mode index is set as the mode number of the intra prediction mode of the current prediction unit.
- A size of the prediction block is determined based on the transform size information specifying the size of the transform unit (S130). The transform size infomation may be one or more split_transform_flags specifying the size of the transform unit.
- If the size of the transform unit is equal to the size of the current prediction unit, the size of the prediction block is equal to the size of the current prediction unit.
- If the size of the transform unit is smaller than the size of the current prediction unit, the size of the prediction block is equal to the size of the transform unit. In this case, a process of generating a reconstructed block is performed on each sub-block of the current prediction unit. That is, a prediction block and a residual block of a current sub-block are generated and a reconstructed block of each sub-block is generated by adding the prediction block and the residual block. Then, a prediction block, a residual block and a reconstructed block of the next sub-block in decoding order are generated. The restored intra prediction mode is used to generate all prediction blocks of all sub-block. Some pixels of the reconstructed block of the current sub-block are used as reference pixels of the next sub-block. Therefore, it is possible to generate a prediction block which is more similar to the original sub-block.
- Next, it is determined whether all reference pixels of the current block are available, and reference pixels are generated if one or more reference pixels are unavailable (S140). The current block is the current prediction unit or the current sub-block. The size of the current block is the size of the transform unit.
-
FIG. 6 is a conceptual diagram illustrating the positions of reference pixels of the current block according to the present invention. As shown inFIG. 6 , the reference pixels of the current block are comprised of above reference pixels located at (x=0, . . . , 2N−1, y=−1), left reference pixels located at (x=1−, y=0, . . . , 2M−1) and a corner pixel located at (x=−1, y=−1). N is the width of the current block and M is the height of the current block. - If reconstructed pixels do not exist at corresponding positions or reconstructed pixels are located within another slice, the reference pixels are set as unavailable. In constrained intra prediction mode (CIP mode), the reconstructed pixels of inter mode are also set as unavailable.
- If one or more reference pixels are unavailable, one or more reference pixels are generated for the one or more unavailable reference pixels as follows.
- If all reference pixels are unavailable, the value of 2L-1 is substituted for the values of all the reference pixels. The value of L is the number of bits used to represent luminance pixel value.
- If available reference pixels are located at only one side of the unavailable reference pixel, the value of the reference pixel nearest to the unavailable pixel is substituted for the unavailable reference pixel.
- If available reference pixels are located at both sides of the unavailable reference pixel, the average value of the reference pixels nearest to the unavailable pixel in each side or the value of the reference pixel nearest to the unavailable pixel in a predetermined direction is substituted for each unavailable reference pixel.
- Next, the reference pixels are adaptively filtered based on the intra prediction mode and the size of the current block (S150). The size of the current block is the size of the transform unit.
- In the DC mode, the reference pixels are not filtered. In the vertical mode and the horizontal mode, the reference pixels are not filtered. In the directional modes other than the vertical and horizontal modes, the reference pixels are adaptively according to the size of the current block.
- If the size of the current is 4×4, the reference pixels are not filtered in all intra prediction modes. For the
size 8×8, 16×16 and 32×32, the number of intra prediction mode where the reference pixels are filtered increases as the size of the current block becomes larger. For example, the reference pixels are not filtered in the vertical mode and a predetermined number of neighboring intra prediction mode of the vertical mode. The reference pixels are also not filtered in the horizontal mode and the predetermined number of neighboring intra prediction mode of the horizontal mode. The predetermined number lies between 0 to 7 and decreases as the size of the current block is larger. - Next, a prediction block of the current block is generated using the reference pixels according to the restored intra prediction mode (S160).
- In the DC mode, the prediction pixels of the prediction block are generated by averaging the N reference pixels located at (x=0, . . . N−1, y=−1) and the M reference pixels located at (x=−1, y=0, . . . M−1). Then, the prediction pixel adjacent to the reference pixel is filtered using one or two adjacent reference pixels.
- In the vertical mode, the prediction pixels of the prediction block are generated by copying the value of the corresponding vertical reference pixel. Then, the prediction pixels which are adjacent to the left reference pixel are filtered by the left neighboring reference pixel and the corner pixel.
- In the horizontal mode, the prediction pixels of the prediction block are generated by copying the value of the corresponding horizontal reference pixel. Then, the prediction pixels which are adjacent to the above reference pixel are filtered by the above neighboring reference pixel and the corner pixel.
-
FIG. 7 is a block diagram illustrating anapparatus 300 of generating a prediction block in intra prediction according to the present invention. - The
apparatus 300 according to the present invention includes aparsing unit 310, a predictionmode decoding unit 320, a predictionsize determining unit 330, a referenceavailability checking unit 340, a referencepixel generating unit 350, a referencepixel filtering unit 360 and a predictionblock generating unit 370. - The
parsing unit 310 restores the intra prediction information of the current prediction unit from the bit stream. - The intra prediction information includes a mode group indicator and a prediction mode index. The mode group indicator is a flag indicating whether the intra prediction mode of the current prediction unit belongs to a most probable mode group (MPM group). If the flag is 1, the intra prediction unit of the current prediction unit belongs to the MPM group. If the flag is 0, the intra prediction unit of the current prediction unit belongs to a residual mode group. The residual mode group includes all intra prediction modes other than the intra prediction modes belonging to the MPM group. The prediction mode index specifies the intra prediction mode of the current prediction unit within the group specified by the mode group indicator.
- The prediction
mode decoding unit 320 includes a MPM group constructing unit 321 and a prediction mode restoring unit 322. - The MPM group constructing unit 321 constructs the MPM group of the current prediction unit. The MPM group is constructed using intra prediction modes of the neighboring prediction units. The intra prediction modes of the MPM group are adaptively determined by a left intra prediction mode and an above intra prediction mode. The left intra prediction mode is the intra prediction mode of the left neighboring prediction unit, and the above intra prediction mode is the intra prediction mode of the above neighboring prediction unit. The MPM group is comprised of three intra prediction modes.
- The MPM group constructing unit 321 checks the availability of the left intra prediction mode and the above intra prediction mode. If the left or above neighboring prediction unit does not exist, the intra prediction mode of the left or above neighboring unit is set as unavailable. For example, if the current prediction unit is located at the left or upper boundary of a picture, the left or above neighboring prediction unit does not exist. If the left or above neighboring unit is located within other slice or other tile, the intra prediction mode of the left or above neighboring unit is set as unavailable. If the left or above neighboring unit is inter-coded, the intra prediction mode of the left or above neighboring unit is set as unavailable. If the above neighboring unit is located within other LCU, the intra prediction mode of the left or above neighboring unit is set as unavailable.
- The MPM group constructing unit 321 constructs the MPM group as follows.
- When both of the left intra prediction mode and the above intra prediction mode are available and are different each other, the left intra prediction mode and the above intra prediction mode are included in the MPM group and one additional intra prediction mode is added to the MPM group.
Index 0 is assigned to one intra prediction mode of small mode number andindex 1 is assigned to the other. Orindex 0 is assigned to the left intra prediction mode andindex 1 is assigned to the above intra prediction mode. The added intra prediction mode is determined by the left and above intra prediction modes as follows. - If one of the left and above intra prediction modes is a non-directional mode and the other is a directional mode, the other non-directional mode is added to the MPM group. For example, if the one of the left and above intra prediction modes is the DC mode, the planar mode is added to the MPM group. If the one of the left and above intra prediction modes is the planar mode, the DC mode is added to the MPM group. If both of the left and above intra prediction modes are non-directional modes, the vertical mode is added to the MPM group. If both of the left and above intra prediction modes are directional modes, the DC mode or the planar mode is added to the MPM group.
- When only one of the left intra prediction mode and the above intra prediction mode is available, the available intra prediction mode is included in the MPM group and two additional intra prediction modes are added to the MPM group. The added two intra prediction modes are determined by the available intra prediction modes as follows.
- If the available intra prediction mode is a non-directional mode, the other non-directional mode and the vertical mode are added to the MPM group. For example, if the available intra prediction mode is the DC mode, the planar mode and the vertical mode are added to the MPM group. If the available intra prediction mode is the planar mode, the DC mode and the vertical mode are added to the MPM group. If the available intra prediction mode is a directional mode, two non-directional modes (DC mode and planar mode) are added to the MPM group.
- When both of the left intra prediction mode and the above intra prediction mode are available and are same each other, the available intra prediction mode is included in the MPM group and two additional intra prediction modes are added to the MPM group. The added two intra prediction modes are determined by the available intra prediction modes as follows.
- If the available intra prediction mode is a directional mode, two neighboring directional modes are added to the MPM group. For example, if the available intra prediction mode is the
mode 23, the left neighboring mode (mode 1) and the right neighboring mode (mode 13) are added to the MPM group. If the available intra prediction mode is themode 30, the two neighboring modes (mode 2 and mode 16) are added to the MPM group. If the available intra prediction mode is a non-directional mode, the other non-directional mode and the vertical mode are added to the MPM group. For example, if the available intra prediction mode is the DC mode, the planar mode and the vertical mode are added to the MPM group. - When both of the left intra prediction mode and the above intra prediction mode are unavailable, three additional intra prediction modes are added to the MPM group. The three intra prediction modes are the DC mode, the planar mode and the vertical mode.
Indexes - The prediction mode restoring unit 322 derives the intra prediction mode of the current prediction unit using the mode group indicator and the prediction mode index as follows.
- The prediction mode restoring unit 322 determines whether the mode group indicator indicates the MPM group.
- If the mode group indicator indicates the MPM group, the prediction mode restoring unit 322 determines the intra prediction of the MPM group specified by the prediction mode index as the intra prediction mode of the current prediction unit.
- If the mode group indicator does not indicate the MPM group, the prediction mode restoring unit 322 determines the intra prediction of the residual mode group specified by the prediction mode index as the intra prediction mode of the current prediction unit. The intra prediction mode of the current unit is derived using the prediction mode index and the intra prediction modes of the MPM group as the following ordered steps.
- 1) The three intra prediction modes of the MPM group are reordered in the mode number order. The intra prediction mode with lowest mode number is set to a first candidate. The intra prediction mode with middle mode number is set to a second candidate. The intra prediction mode with highest mode number is set to a third candidate.
- 2) The prediction mode index is compared with the first candidate. If the prediction mode index is equal to or greater than the first candidate of the MPM group, the value of the prediction mode index is increased by one. Otherwise, the value of the prediction mode index is maintained.
- 3) The prediction mode index is compared with the second candidate. If the prediction mode index is equal to or greater than the second candidate of the MPM group, the value of the prediction mode index is increased by one. Otherwise, the value of the prediction mode index is maintained.
- 4) The prediction mode index is compared with the third candidate. If the prediction mode index is equal to or greater than the third candidate of the MPM group, the value of the prediction mode index is increased by one. Otherwise, the value of the prediction mode index is maintained.
- 5) The value of the final prediction mode index is set as the mode number of the intra prediction mode of the current prediction unit.
- The prediction
size determining unit 330 determines the size of the prediction block based on the transform size information specifying the size of the transform unit. The transform size information may be one or more split_transform_flags specifying the size of the transform unit. - If the size of the transform unit is equal to the size of the current prediction unit, the size of the prediction block is equal to the size of the current prediction unit.
- If the size of the transform unit is smaller than the size of the current prediction unit, the size of the prediction block is equal to the size of the transform unit. In this case, a process of generating a reconstructed block is performed on each sub-block of the current prediction unit. That is, a prediction block and a residual block of a current sub-block are generated and a reconstructed block of each sub-block is generated by adding the prediction block and the residual block. Then, a prediction block, a residual block and a reconstructed block of the next sub-block in decoding order are generated. The restored intra prediction mode is used to generate all prediction blocks of all sub-block. Some pixels of the reconstructed block of the current sub-block are used as reference pixels of the next sub-block. Therefore, it is possible to generate a prediction block which is more similar to the original sub-block.
- The reference pixel
availability checking unit 340 determines whether all reference pixels of the current block are available. The current block is the current prediction unit or the current sub-block. The size of the current block is the size of the transform unit. - The reference
pixel generating unit 350 generates reference pixels if one or more reference pixels of the current block are unavailable. - If all reference pixels are unavailable, the value of 2L-1 is substituted for the values of all the reference pixels. The value of L is the number of bits used to represent luminance pixel value.
- If available reference pixels are located at only one side of the unavailable reference pixel, the value of the reference pixel nearest to the unavailable pixel is substituted for the unavailable reference pixel.
- If available reference pixels are located at both sides of the unavailable reference pixel, the average value of the reference pixels nearest to the unavailable pixel in each side or the value of the reference pixel nearest to the unavailable pixel in a predetermined direction is substituted for each unavailable reference pixel.
- The reference
pixel filtering unit 360 adaptively filters the reference pixels based on the intra prediction mode and the size of the current block. - In the DC mode, the reference pixels are not filtered. In the vertical mode and the horizontal mode, the reference pixels are not filtered. In the directional modes other than the vertical and horizontal modes, the reference pixels are adaptively according to the size of the current block.
- If the size of the current is 4×4, the reference pixels are not filtered in all intra prediction modes. For the
size 8×8, 16×16 and 32×32, the number of intra prediction mode where the reference pixels are filtered increases as the size of the current block becomes larger. For example, the reference pixels are not filtered in the vertical mode and a predetermined number of neighboring intra prediction mode of the vertical mode. The reference pixels are also not filtered in the horizontal mode and the predetermined number of neighboring intra prediction mode of the horizontal mode. The predetermined number lies between 0 to 7 and decreases as the size of the current block is larger. - The prediction
block generating unit 370 generates a prediction block of the current block using the reference pixels according to the restored intra prediction mode. - In the DC mode, the prediction pixel of the prediction block which is not adjacent to the reference pixel is generated by averaging the N reference pixels located at (x=0, . . . N−1, y=−1) and the M reference pixels located at (x=−1, y=0, . . . M−1). The prediction pixel adjacent to the reference pixel is generated using the average value and one or two adjacent reference pixels.
- In the vertical mode, the prediction pixels which are not adjacent to the left reference pixel are generated by copying the value of the vertical reference pixel. The prediction pixels which are adjacent to the left reference pixel are generated by the vertical reference pixel and variance between the corner pixel and the left neighboring pixel.
- In the horizontal mode, the prediction pixels are generated using the same method.
- While the invention has been shown and described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Claims (6)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/569,752 US9270997B2 (en) | 2011-11-04 | 2014-12-14 | Method and apparatus of deriving intra prediction mode using most probable mode group |
US14/996,380 US9503730B2 (en) | 2011-11-04 | 2016-01-15 | Method and apparatus of deriving intra prediction mode using most probable mode group |
US15/332,325 US10375390B2 (en) | 2011-11-04 | 2016-10-24 | Method and apparatus of deriving intra prediction mode using most probable mode group |
US16/514,551 US10924734B2 (en) | 2011-11-04 | 2019-07-17 | Method and apparatus of deriving quantization parameter |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20110114606A KR20130049522A (en) | 2011-11-04 | 2011-11-04 | Method for generating intra prediction block |
KR10-2011-0114606 | 2011-11-04 | ||
PCT/CN2012/083972 WO2013064094A1 (en) | 2011-11-04 | 2012-11-02 | Method and apparatus of deriving intra predicion mode |
US201414349985A | 2014-04-04 | 2014-04-04 | |
US14/569,752 US9270997B2 (en) | 2011-11-04 | 2014-12-14 | Method and apparatus of deriving intra prediction mode using most probable mode group |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/083972 Continuation WO2013064094A1 (en) | 2011-11-04 | 2012-11-02 | Method and apparatus of deriving intra predicion mode |
US14/349,985 Continuation US8948259B2 (en) | 2011-11-04 | 2012-11-02 | Method and apparatus of deriving intra prediction mode using most probable mode group |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/996,380 Continuation US9503730B2 (en) | 2011-11-04 | 2016-01-15 | Method and apparatus of deriving intra prediction mode using most probable mode group |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150098500A1 true US20150098500A1 (en) | 2015-04-09 |
US9270997B2 US9270997B2 (en) | 2016-02-23 |
Family
ID=48191356
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/349,985 Active US8948259B2 (en) | 2011-11-04 | 2012-11-02 | Method and apparatus of deriving intra prediction mode using most probable mode group |
US14/569,752 Active US9270997B2 (en) | 2011-11-04 | 2014-12-14 | Method and apparatus of deriving intra prediction mode using most probable mode group |
US14/569,747 Active US9167251B2 (en) | 2011-11-04 | 2014-12-14 | Method and apparatus of deriving intra prediction mode using most probable mode group |
US14/569,751 Active US9237346B2 (en) | 2011-11-04 | 2014-12-14 | Method and apparatus of deriving intra prediction mode using most probable mode group |
US14/571,176 Active US9143786B2 (en) | 2011-11-04 | 2014-12-15 | Method and apparatus of deriving intra prediction mode using most probable mode group |
US14/996,380 Active US9503730B2 (en) | 2011-11-04 | 2016-01-15 | Method and apparatus of deriving intra prediction mode using most probable mode group |
US15/332,325 Active 2033-03-13 US10375390B2 (en) | 2011-11-04 | 2016-10-24 | Method and apparatus of deriving intra prediction mode using most probable mode group |
US16/514,551 Active 2032-11-30 US10924734B2 (en) | 2011-11-04 | 2019-07-17 | Method and apparatus of deriving quantization parameter |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/349,985 Active US8948259B2 (en) | 2011-11-04 | 2012-11-02 | Method and apparatus of deriving intra prediction mode using most probable mode group |
Family Applications After (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/569,747 Active US9167251B2 (en) | 2011-11-04 | 2014-12-14 | Method and apparatus of deriving intra prediction mode using most probable mode group |
US14/569,751 Active US9237346B2 (en) | 2011-11-04 | 2014-12-14 | Method and apparatus of deriving intra prediction mode using most probable mode group |
US14/571,176 Active US9143786B2 (en) | 2011-11-04 | 2014-12-15 | Method and apparatus of deriving intra prediction mode using most probable mode group |
US14/996,380 Active US9503730B2 (en) | 2011-11-04 | 2016-01-15 | Method and apparatus of deriving intra prediction mode using most probable mode group |
US15/332,325 Active 2033-03-13 US10375390B2 (en) | 2011-11-04 | 2016-10-24 | Method and apparatus of deriving intra prediction mode using most probable mode group |
US16/514,551 Active 2032-11-30 US10924734B2 (en) | 2011-11-04 | 2019-07-17 | Method and apparatus of deriving quantization parameter |
Country Status (19)
Country | Link |
---|---|
US (8) | US8948259B2 (en) |
EP (5) | EP3324627B1 (en) |
JP (5) | JP5789057B2 (en) |
KR (6) | KR20130049522A (en) |
CN (8) | CN103096069B (en) |
CY (1) | CY1120253T1 (en) |
DK (2) | DK2774120T3 (en) |
ES (1) | ES2673189T3 (en) |
HK (1) | HK1214441A1 (en) |
HR (1) | HRP20180968T1 (en) |
HU (1) | HUE039165T2 (en) |
IN (1) | IN2014CN03907A (en) |
LT (1) | LT2774120T (en) |
PL (1) | PL2774120T3 (en) |
PT (2) | PT2774120T (en) |
RS (1) | RS57168B1 (en) |
SI (1) | SI2774120T1 (en) |
TW (5) | TWI566583B (en) |
WO (1) | WO2013064094A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10003792B2 (en) | 2013-05-27 | 2018-06-19 | Microsoft Technology Licensing, Llc | Video encoder for images |
US10038917B2 (en) | 2015-06-12 | 2018-07-31 | Microsoft Technology Licensing, Llc | Search strategies for intra-picture prediction modes |
US10136132B2 (en) | 2015-07-21 | 2018-11-20 | Microsoft Technology Licensing, Llc | Adaptive skip or zero block detection combined with transform size decision |
US10136140B2 (en) | 2014-03-17 | 2018-11-20 | Microsoft Technology Licensing, Llc | Encoder-side decisions for screen content encoding |
US10924743B2 (en) | 2015-02-06 | 2021-02-16 | Microsoft Technology Licensing, Llc | Skipping evaluation stages during media encoding |
US10972725B2 (en) * | 2018-09-03 | 2021-04-06 | Huawei Technologies Co., Ltd. | Method and apparatus for intra prediction in video coding |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107105250B (en) | 2010-08-17 | 2019-07-12 | M&K控股株式会社 | Method for restoring intra prediction mode |
US11284072B2 (en) | 2010-08-17 | 2022-03-22 | M&K Holdings Inc. | Apparatus for decoding an image |
KR20120070479A (en) * | 2010-12-21 | 2012-06-29 | 한국전자통신연구원 | Method and apparatus for encoding and decoding of intra prediction mode information |
WO2013051903A1 (en) | 2011-10-07 | 2013-04-11 | Pantech Co., Ltd. | Methods and apparatuses of encoding/decoding intra prediction mode using candidate intra prediction modes |
ES2884066T3 (en) | 2011-10-18 | 2021-12-10 | Lg Electronics Inc | Intra prediction method and device for the same |
KR20130049522A (en) * | 2011-11-04 | 2013-05-14 | 오수미 | Method for generating intra prediction block |
KR20130049525A (en) * | 2011-11-04 | 2013-05-14 | 오수미 | Method for inverse transform for reconstructing residual block |
KR20130049523A (en) * | 2011-11-04 | 2013-05-14 | 오수미 | Apparatus for generating intra prediction block |
JPWO2014049981A1 (en) * | 2012-09-28 | 2016-08-22 | 三菱電機株式会社 | Moving picture encoding apparatus, moving picture decoding apparatus, moving picture encoding method, and moving picture decoding method |
CA2917419C (en) | 2013-07-24 | 2020-07-14 | Microsoft Technology Licensing, Llc | Scanning orders for non-transform coding |
WO2015139180A1 (en) * | 2014-03-17 | 2015-09-24 | 富士通株式会社 | Image coding method and device and image processing device |
CN104581152A (en) * | 2014-12-25 | 2015-04-29 | 同济大学 | HEVC intra-frame prediction mode decision accelerating method |
US10841593B2 (en) | 2015-06-18 | 2020-11-17 | Qualcomm Incorporated | Intra prediction and intra mode coding |
US11463689B2 (en) | 2015-06-18 | 2022-10-04 | Qualcomm Incorporated | Intra prediction and intra mode coding |
US11394972B2 (en) * | 2015-08-19 | 2022-07-19 | Lg Electronics Inc. | Method and device for encoding/decoding video signal by using optimized conversion based on multiple graph-based model |
EP3414906A4 (en) | 2016-02-08 | 2019-10-02 | Sharp Kabushiki Kaisha | Systems and methods for intra prediction coding |
KR102346713B1 (en) * | 2016-04-12 | 2022-01-03 | 세종대학교산학협력단 | Method and apparatus for processing a video signal based on intra prediction |
US10880564B2 (en) * | 2016-10-01 | 2020-12-29 | Qualcomm Incorporated | Transform selection for video coding |
US10958903B2 (en) * | 2016-10-04 | 2021-03-23 | Electronics And Telecommunications Research Institute | Method and apparatus for encoding/decoding image and recording medium storing bit stream |
KR20180043149A (en) | 2016-10-19 | 2018-04-27 | 에스케이텔레콤 주식회사 | Apparatus and Method for Video Encoding or Decoding |
CN116915991A (en) | 2016-10-19 | 2023-10-20 | Sk电信有限公司 | Methods of encoding or decoding video data and methods of storing bitstreams |
WO2018101687A1 (en) | 2016-11-29 | 2018-06-07 | 성균관대학교 산학협력단 | Image encoding/decoding method and device, and recording medium in which bitstream is stored |
WO2018221554A1 (en) | 2017-06-01 | 2018-12-06 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | Encoding device, encoding method, decoding device, and decoding method |
EP3700202A4 (en) * | 2017-10-18 | 2021-05-19 | Samsung Electronics Co., Ltd. | VIDEO DECODING PROCESS AND APPARATUS, AND VIDEO ENCODING PROCESS AND APPARATUS |
WO2019098758A1 (en) | 2017-11-16 | 2019-05-23 | 한국전자통신연구원 | Image encoding/decoding method and device, and recording medium storing bitstream |
US11303929B2 (en) | 2018-04-02 | 2022-04-12 | Lg Electronics Inc. | Image coding method using lookup table for intra prediction mode and apparatus therefor |
WO2019216605A1 (en) * | 2018-05-07 | 2019-11-14 | 엘지전자 주식회사 | Image coding method according to intra prediction using adaptively derived mpm list, and apparatus therefor |
CN118018724A (en) | 2018-05-10 | 2024-05-10 | 三星电子株式会社 | Video encoding method and apparatus, and video decoding method and apparatus |
IL279503B2 (en) | 2018-06-25 | 2024-09-01 | Guangdong Oppo Mobile Telecommunications Corp Ltd | Interior-frame and device prediction method |
US11277644B2 (en) | 2018-07-02 | 2022-03-15 | Qualcomm Incorporated | Combining mode dependent intra smoothing (MDIS) with intra interpolation filter switching |
CN112385227A (en) * | 2018-08-27 | 2021-02-19 | 华为技术有限公司 | Method and apparatus for intra prediction |
CN118055232A (en) | 2018-09-06 | 2024-05-17 | Lg 电子株式会社 | Image encoding method based on intra prediction using MPM list and apparatus therefor |
US10771778B2 (en) * | 2018-09-14 | 2020-09-08 | Tencent America LLC | Method and device for MPM list generation for multi-line intra prediction |
WO2020057589A1 (en) | 2018-09-19 | 2020-03-26 | Huawei Technologies Co., Ltd. | Method and apparatus for predicting most probable intra-modes |
CN117651133A (en) * | 2018-09-21 | 2024-03-05 | 华为技术有限公司 | Intra prediction mode derivation based on neighboring blocks |
US11303885B2 (en) | 2018-10-25 | 2022-04-12 | Qualcomm Incorporated | Wide-angle intra prediction smoothing and interpolation |
AU2019384016B2 (en) | 2018-11-22 | 2023-03-02 | Huawei Technologies Co., Ltd. | An encoder, a decoder and corresponding methods for inter prediction |
CN113273192B (en) | 2019-01-08 | 2023-07-07 | Lg电子株式会社 | Video coding method and device based on intra-frame prediction using MPM list |
KR20210097803A (en) | 2019-01-14 | 2021-08-09 | 삼성전자주식회사 | Encoding method and apparatus thereof, decoding method and apparatus thereof |
EP3922018A4 (en) | 2019-03-12 | 2022-06-08 | Zhejiang Dahua Technology Co., Ltd. | SYSTEMS AND METHODS FOR IMAGE CODING |
CN110166772B (en) * | 2019-03-12 | 2021-04-27 | 浙江大华技术股份有限公司 | Method, device, equipment and readable storage medium for coding and decoding intra-frame prediction mode |
CN111989919B (en) * | 2019-03-23 | 2023-07-18 | Lg电子株式会社 | Image coding method and device based on intra prediction using MPM list |
ES2966479T3 (en) | 2019-03-23 | 2024-04-22 | Huawei Tech Co Ltd | An encoder, a decoder and corresponding methods for intraprediction |
US20220408082A1 (en) * | 2019-11-07 | 2022-12-22 | Interdigital Vc Holdings France, Sas | Encoding and decoding methods and apparatus |
US12081742B2 (en) | 2021-06-11 | 2024-09-03 | Tencent America LLC | Intra mode coding |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030223495A1 (en) * | 2002-05-28 | 2003-12-04 | Sharp Laboratories Of America, Inc. | Methods and systems for image intra-prediction mode communication |
US20040264576A1 (en) * | 2003-06-10 | 2004-12-30 | Woods John W. | Method for processing I-blocks used with motion compensated temporal filtering |
US20050117646A1 (en) * | 2003-11-28 | 2005-06-02 | Anthony Joch | Low-complexity motion vector prediction for video codec with two lists of reference pictures |
US20050157797A1 (en) * | 2004-01-21 | 2005-07-21 | Klaus Gaedke | Method and apparatus for generating/evaluating in a picture signal encoding/decoding one or more prediction information items |
US20090141798A1 (en) * | 2005-04-01 | 2009-06-04 | Panasonic Corporation | Image Decoding Apparatus and Image Decoding Method |
US20090310678A1 (en) * | 2008-06-11 | 2009-12-17 | Canon Kabushiki Kaisha | Image encoding apparatus, method of controlling the same and computer program |
US20100208802A1 (en) * | 2007-06-29 | 2010-08-19 | Sharp Kabushiki Kaisha | Image encoding device, image encoding method, image decoding device, image decoding method, program, and storage medium |
US20110292994A1 (en) * | 2010-05-30 | 2011-12-01 | Lg Electronics Inc. | Enhanced intra prediction mode signaling |
US20110292999A1 (en) * | 2009-06-30 | 2011-12-01 | Electronics And Telecommunications Research Institute | Super macro block based intra coding method and apparatus |
US20110317757A1 (en) * | 2010-06-25 | 2011-12-29 | Qualcomm Incorporated | Intra prediction mode signaling for finer spatial prediction directions |
US20120082223A1 (en) * | 2010-10-01 | 2012-04-05 | Qualcomm Incorporated | Indicating intra-prediction mode selection for video coding |
US20120177112A1 (en) * | 2011-01-07 | 2012-07-12 | Mediatek Singapore Pte. Ltd. | Method and Apparatus of Improved Intra Prediction Mode Coding |
US8422810B2 (en) * | 2005-07-20 | 2013-04-16 | Electronics And Telecommunications Research Institute | Method of redundant picture coding using polyphase downsampling and the codec using the method |
Family Cites Families (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3428033B2 (en) * | 1992-02-19 | 2003-07-22 | 株式会社日立製作所 | Digital VTR |
KR100212559B1 (en) * | 1996-03-22 | 1999-08-02 | 전주범 | Contour Coding System of Objects and Its Motion Estimation Method |
KR100269125B1 (en) * | 1997-10-25 | 2000-10-16 | 윤덕용 | Image post processing method and apparatus for reducing quantization effect |
EP2938071B1 (en) * | 2001-11-29 | 2017-11-15 | Godo Kaisha IP Bridge 1 | Coding distortion removal method |
US7379608B2 (en) * | 2003-12-04 | 2008-05-27 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung, E.V. | Arithmetic coding for transforming video and picture data units |
CN100401789C (en) * | 2004-06-11 | 2008-07-09 | 上海大学 | A Fast Selection Method of H.264/AVC Intra Prediction Mode |
JP2006005438A (en) * | 2004-06-15 | 2006-01-05 | Sony Corp | Image processor and method thereof |
CN100348051C (en) * | 2005-03-31 | 2007-11-07 | 华中科技大学 | An enhanced in-frame predictive mode coding method |
KR101246294B1 (en) * | 2006-03-03 | 2013-03-21 | 삼성전자주식회사 | Method of and apparatus for video intraprediction encoding/decoding |
KR101311402B1 (en) | 2006-03-23 | 2013-09-25 | 삼성전자주식회사 | An video encoding/decoding method and apparatus |
US20100053300A1 (en) * | 2007-02-02 | 2010-03-04 | Einarsson Torbjoern | Method And Arrangement For Video Telephony Quality Assessment |
US8428133B2 (en) * | 2007-06-15 | 2013-04-23 | Qualcomm Incorporated | Adaptive coding of video block prediction mode |
JPWO2009001793A1 (en) * | 2007-06-26 | 2010-08-26 | 株式会社東芝 | Method and apparatus for image encoding and image decoding |
KR100940444B1 (en) * | 2007-12-18 | 2010-02-10 | 한국전자통신연구원 | How to Configure Intra Prediction Mode Using Spatial Edge Detection |
US9008171B2 (en) * | 2008-01-08 | 2015-04-14 | Qualcomm Incorporated | Two pass quantization for CABAC coders |
US8542730B2 (en) * | 2008-02-22 | 2013-09-24 | Qualcomm, Incorporated | Fast macroblock delta QP decision |
CN100596202C (en) * | 2008-05-30 | 2010-03-24 | 四川虹微技术有限公司 | Fast mode selection method in frame |
US8897359B2 (en) * | 2008-06-03 | 2014-11-25 | Microsoft Corporation | Adaptive quantization for enhancement layer video coding |
JP2010016454A (en) * | 2008-07-01 | 2010-01-21 | Sony Corp | Image encoding apparatus and method, image decoding apparatus and method, and program |
CN101350927B (en) * | 2008-07-29 | 2011-07-13 | 北京中星微电子有限公司 | Method and apparatus for forecasting and selecting optimum estimation mode in a frame |
CN101668202A (en) * | 2008-09-01 | 2010-03-10 | 中兴通讯股份有限公司 | Method and device for selecting intra-frame prediction mode |
KR101306834B1 (en) * | 2008-09-22 | 2013-09-10 | 에스케이텔레콤 주식회사 | Video Encoding/Decoding Apparatus and Method by Using Prediction Possibility of Intra Prediction Mode |
KR101356448B1 (en) | 2008-10-01 | 2014-02-06 | 한국전자통신연구원 | Image decoder using unidirectional prediction |
EP2182732A1 (en) * | 2008-10-28 | 2010-05-05 | Panasonic Corporation | Switching between scans in image coding |
US20110243227A1 (en) * | 2008-12-10 | 2011-10-06 | Hitachi, Ltd. | Moving picture decoding method and device, and moving picture encoding method and device |
JPWO2010087157A1 (en) * | 2009-01-29 | 2012-08-02 | パナソニック株式会社 | Image encoding method and image decoding method |
KR101128580B1 (en) * | 2009-04-09 | 2012-03-23 | 한국전자통신연구원 | Apparatus and method for predicting most probable mode in intra prediction system |
KR101507344B1 (en) | 2009-08-21 | 2015-03-31 | 에스케이 텔레콤주식회사 | Apparatus and Method for intra prediction mode coding using variable length code, and Recording Medium therefor |
JP5389742B2 (en) | 2009-09-30 | 2014-01-15 | 富士フイルム株式会社 | Electronic endoscope system, processor device for electronic endoscope, and method for operating electronic endoscope system |
CN102045560B (en) * | 2009-10-23 | 2013-08-07 | 华为技术有限公司 | Video encoding and decoding method and video encoding and decoding equipment |
KR101282193B1 (en) * | 2009-11-10 | 2013-07-04 | 한국전자통신연구원 | Method for Rate Control of Video Encoder using Kalman Filter and FIR Filter |
US20110274162A1 (en) * | 2010-05-04 | 2011-11-10 | Minhua Zhou | Coding Unit Quantization Parameters in Video Coding |
US9094691B2 (en) * | 2010-03-15 | 2015-07-28 | Mediatek Singapore Pte. Ltd. | Methods of utilizing tables adaptively updated for coding/decoding and related processing circuits thereof |
KR20110113561A (en) * | 2010-04-09 | 2011-10-17 | 한국전자통신연구원 | Intra Prediction Coding / Decoding Method Using Adaptive Filter and Its Apparatus |
KR101791242B1 (en) * | 2010-04-16 | 2017-10-30 | 에스케이텔레콤 주식회사 | Video Coding and Decoding Method and Apparatus |
CN101854551B (en) * | 2010-06-08 | 2012-08-15 | 浙江大学 | Intra-frame prediction mode coding and decoding method and device |
CN103155553B (en) * | 2010-06-10 | 2016-11-09 | 汤姆森特许公司 | Method and apparatus for determining quantization parameter prediction value from a plurality of adjacent quantization parameters |
US8885701B2 (en) * | 2010-09-08 | 2014-11-11 | Samsung Electronics Co., Ltd. | Low complexity transform coding using adaptive DCT/DST for intra-prediction |
US9049444B2 (en) * | 2010-12-22 | 2015-06-02 | Qualcomm Incorporated | Mode dependent scanning of coefficients of a block of video data |
CN103299622B (en) * | 2011-01-07 | 2016-06-29 | 联发科技(新加坡)私人有限公司 | Coded method and device and coding/decoding method and device |
US9667987B2 (en) | 2011-03-10 | 2017-05-30 | Futurewei Technologies, Inc. | Using multiple prediction sets to encode extended unified directional intra mode numbers for robustness |
US8767823B2 (en) * | 2011-03-30 | 2014-07-01 | Industrial Technology Research Institute | Method and apparatus for frame memory compression |
US9654785B2 (en) * | 2011-06-09 | 2017-05-16 | Qualcomm Incorporated | Enhanced intra-prediction mode signaling for video coding using neighboring mode |
GB2494468B (en) * | 2011-09-12 | 2014-01-15 | Canon Kk | Method and device for encoding or decoding information representing prediction modes |
WO2013039676A1 (en) | 2011-09-13 | 2013-03-21 | Mediatek Singapore Pte. Ltd. | Method and apparatus for intra mode coding in hevc |
US20130083845A1 (en) * | 2011-09-30 | 2013-04-04 | Research In Motion Limited | Methods and devices for data compression using a non-uniform reconstruction space |
WO2013051903A1 (en) | 2011-10-07 | 2013-04-11 | Pantech Co., Ltd. | Methods and apparatuses of encoding/decoding intra prediction mode using candidate intra prediction modes |
US9036704B2 (en) * | 2011-10-24 | 2015-05-19 | Infobridge Pte. Ltd. | Image decoding method using intra prediction mode |
EP2797324A4 (en) * | 2011-10-24 | 2015-11-11 | Infobridge Pte Ltd | Image decoding apparatus |
EP3910957A1 (en) * | 2011-10-24 | 2021-11-17 | Innotive Ltd | Method and apparatus for decoding intra prediction mode |
KR20130049526A (en) * | 2011-11-04 | 2013-05-14 | 오수미 | Method for generating reconstructed block |
US9154796B2 (en) * | 2011-11-04 | 2015-10-06 | Qualcomm Incorporated | Intra-mode video coding |
KR20130049522A (en) * | 2011-11-04 | 2013-05-14 | 오수미 | Method for generating intra prediction block |
KR20130049525A (en) * | 2011-11-04 | 2013-05-14 | 오수미 | Method for inverse transform for reconstructing residual block |
KR20130049524A (en) * | 2011-11-04 | 2013-05-14 | 오수미 | Method for generating intra prediction block |
KR20130049523A (en) * | 2011-11-04 | 2013-05-14 | 오수미 | Apparatus for generating intra prediction block |
-
2011
- 2011-11-04 KR KR20110114606A patent/KR20130049522A/en not_active Application Discontinuation
-
2012
- 2012-11-02 KR KR1020147009842A patent/KR101490216B1/en active IP Right Grant
- 2012-11-02 TW TW104141011A patent/TWI566583B/en active
- 2012-11-02 TW TW104141008A patent/TWI571101B/en active
- 2012-11-02 DK DK12845560.7T patent/DK2774120T3/en active
- 2012-11-02 EP EP18150753.4A patent/EP3324627B1/en active Active
- 2012-11-02 EP EP18165473.2A patent/EP3361727A1/en active Pending
- 2012-11-02 PT PT128455607T patent/PT2774120T/en unknown
- 2012-11-02 KR KR1020147009843A patent/KR101490220B1/en active IP Right Review Request
- 2012-11-02 WO PCT/CN2012/083972 patent/WO2013064094A1/en active Application Filing
- 2012-11-02 DK DK18150753.4T patent/DK3324627T3/en active
- 2012-11-02 ES ES12845560.7T patent/ES2673189T3/en active Active
- 2012-11-02 HU HUE12845560A patent/HUE039165T2/en unknown
- 2012-11-02 TW TW101140874A patent/TWI519132B/en active
- 2012-11-02 JP JP2014539229A patent/JP5789057B2/en active Active
- 2012-11-02 EP EP18165487.2A patent/EP3361728A1/en active Pending
- 2012-11-02 EP EP18165494.8A patent/EP3376765A1/en active Pending
- 2012-11-02 TW TW104141009A patent/TWI571102B/en active
- 2012-11-02 KR KR1020147009845A patent/KR20140074344A/en not_active Application Discontinuation
- 2012-11-02 KR KR1020147009844A patent/KR101490219B1/en active IP Right Review Request
- 2012-11-02 PL PL12845560T patent/PL2774120T3/en unknown
- 2012-11-02 TW TW104141010A patent/TWI571103B/en active
- 2012-11-02 EP EP12845560.7A patent/EP2774120B1/en active Active
- 2012-11-02 SI SI201231295T patent/SI2774120T1/en unknown
- 2012-11-02 RS RS20180541A patent/RS57168B1/en unknown
- 2012-11-02 LT LTEP12845560.7T patent/LT2774120T/en unknown
- 2012-11-02 US US14/349,985 patent/US8948259B2/en active Active
- 2012-11-02 PT PT181507534T patent/PT3324627T/en unknown
- 2012-11-02 IN IN3907CHN2014 patent/IN2014CN03907A/en unknown
- 2012-11-02 KR KR1020147009787A patent/KR101452195B1/en active IP Right Review Request
- 2012-11-05 CN CN201210436599.4A patent/CN103096069B/en active Active
- 2012-11-05 CN CN201610857719.6A patent/CN107105252B/en active Active
- 2012-11-05 CN CN201610857550.4A patent/CN106878716B/en active Active
- 2012-11-05 CN CN201610857548.7A patent/CN107105238B/en active Active
- 2012-11-05 CN CN201610856359.8A patent/CN107087174B/en active Active
- 2012-11-05 CN CN201510256162.6A patent/CN104869409B/en active Active
- 2012-11-05 CN CN201610857552.3A patent/CN106878717B/en active Active
- 2012-11-05 CN CN201610856213.3A patent/CN107105251B/en active Active
-
2014
- 2014-12-14 US US14/569,752 patent/US9270997B2/en active Active
- 2014-12-14 US US14/569,747 patent/US9167251B2/en active Active
- 2014-12-14 US US14/569,751 patent/US9237346B2/en active Active
- 2014-12-15 US US14/571,176 patent/US9143786B2/en active Active
-
2015
- 2015-07-30 JP JP2015150615A patent/JP6026600B2/en active Active
- 2015-07-30 JP JP2015150616A patent/JP6026601B2/en active Active
- 2015-07-30 JP JP2015150618A patent/JP6026602B2/en active Active
- 2015-07-30 JP JP2015150617A patent/JP6093815B2/en active Active
-
2016
- 2016-01-15 US US14/996,380 patent/US9503730B2/en active Active
- 2016-02-24 HK HK16102063.0A patent/HK1214441A1/en unknown
- 2016-10-24 US US15/332,325 patent/US10375390B2/en active Active
-
2018
- 2018-05-22 CY CY20181100539T patent/CY1120253T1/en unknown
- 2018-06-26 HR HRP20180968TT patent/HRP20180968T1/en unknown
-
2019
- 2019-07-17 US US16/514,551 patent/US10924734B2/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030223495A1 (en) * | 2002-05-28 | 2003-12-04 | Sharp Laboratories Of America, Inc. | Methods and systems for image intra-prediction mode communication |
US20040264576A1 (en) * | 2003-06-10 | 2004-12-30 | Woods John W. | Method for processing I-blocks used with motion compensated temporal filtering |
US20050117646A1 (en) * | 2003-11-28 | 2005-06-02 | Anthony Joch | Low-complexity motion vector prediction for video codec with two lists of reference pictures |
US20050157797A1 (en) * | 2004-01-21 | 2005-07-21 | Klaus Gaedke | Method and apparatus for generating/evaluating in a picture signal encoding/decoding one or more prediction information items |
US20090141798A1 (en) * | 2005-04-01 | 2009-06-04 | Panasonic Corporation | Image Decoding Apparatus and Image Decoding Method |
US8422810B2 (en) * | 2005-07-20 | 2013-04-16 | Electronics And Telecommunications Research Institute | Method of redundant picture coding using polyphase downsampling and the codec using the method |
US20100208802A1 (en) * | 2007-06-29 | 2010-08-19 | Sharp Kabushiki Kaisha | Image encoding device, image encoding method, image decoding device, image decoding method, program, and storage medium |
US20090310678A1 (en) * | 2008-06-11 | 2009-12-17 | Canon Kabushiki Kaisha | Image encoding apparatus, method of controlling the same and computer program |
US20110292999A1 (en) * | 2009-06-30 | 2011-12-01 | Electronics And Telecommunications Research Institute | Super macro block based intra coding method and apparatus |
US20110292994A1 (en) * | 2010-05-30 | 2011-12-01 | Lg Electronics Inc. | Enhanced intra prediction mode signaling |
US8902978B2 (en) * | 2010-05-30 | 2014-12-02 | Lg Electronics Inc. | Enhanced intra prediction mode signaling |
US20110317757A1 (en) * | 2010-06-25 | 2011-12-29 | Qualcomm Incorporated | Intra prediction mode signaling for finer spatial prediction directions |
US20120082223A1 (en) * | 2010-10-01 | 2012-04-05 | Qualcomm Incorporated | Indicating intra-prediction mode selection for video coding |
US20120177112A1 (en) * | 2011-01-07 | 2012-07-12 | Mediatek Singapore Pte. Ltd. | Method and Apparatus of Improved Intra Prediction Mode Coding |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10003792B2 (en) | 2013-05-27 | 2018-06-19 | Microsoft Technology Licensing, Llc | Video encoder for images |
US10136140B2 (en) | 2014-03-17 | 2018-11-20 | Microsoft Technology Licensing, Llc | Encoder-side decisions for screen content encoding |
US10924743B2 (en) | 2015-02-06 | 2021-02-16 | Microsoft Technology Licensing, Llc | Skipping evaluation stages during media encoding |
US10038917B2 (en) | 2015-06-12 | 2018-07-31 | Microsoft Technology Licensing, Llc | Search strategies for intra-picture prediction modes |
US10136132B2 (en) | 2015-07-21 | 2018-11-20 | Microsoft Technology Licensing, Llc | Adaptive skip or zero block detection combined with transform size decision |
US10972725B2 (en) * | 2018-09-03 | 2021-04-06 | Huawei Technologies Co., Ltd. | Method and apparatus for intra prediction in video coding |
US20210203927A1 (en) * | 2018-09-03 | 2021-07-01 | Huawei Technologies Co., Ltd. | Method and Apparatus for Intra Prediction in Video Coding |
US11647182B2 (en) * | 2018-09-03 | 2023-05-09 | Huawei Technologies Co., Ltd. | Method and apparatus for intra prediction in video coding |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10924734B2 (en) | Method and apparatus of deriving quantization parameter | |
US11470318B2 (en) | Apparatus of decoding video data | |
US10313671B2 (en) | Method for generating intra prediction block with most probable mode | |
US9497463B2 (en) | Method of generating reconstructed block |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: GENSQUARE LLC, KOREA, REPUBLIC OF Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:INFOBRIDGE PTE. LTD.;REEL/FRAME:061299/0844 Effective date: 20220823 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |