US20150011772A1 - Method for producing substituted anthranilic acid derivatives - Google Patents
Method for producing substituted anthranilic acid derivatives Download PDFInfo
- Publication number
- US20150011772A1 US20150011772A1 US14/375,496 US201314375496A US2015011772A1 US 20150011772 A1 US20150011772 A1 US 20150011772A1 US 201314375496 A US201314375496 A US 201314375496A US 2015011772 A1 US2015011772 A1 US 2015011772A1
- Authority
- US
- United States
- Prior art keywords
- chlorine
- alkyl
- fluorine
- formula
- identically
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 6
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical class NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 title abstract description 23
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 28
- 150000001875 compounds Chemical class 0.000 claims abstract description 27
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 17
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 13
- 239000003054 catalyst Substances 0.000 claims abstract description 12
- 239000000460 chlorine Substances 0.000 claims description 39
- 229910052801 chlorine Inorganic materials 0.000 claims description 36
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 29
- 239000011737 fluorine Substances 0.000 claims description 26
- 229910052731 fluorine Inorganic materials 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 24
- 125000004169 (C1-C6) alkyl group Chemical class 0.000 claims description 23
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 21
- 229910052739 hydrogen Inorganic materials 0.000 claims description 21
- 239000001257 hydrogen Substances 0.000 claims description 21
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 20
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 claims description 19
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 18
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 claims description 14
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 claims description 13
- 125000000041 C6-C10 aryl group Chemical class 0.000 claims description 12
- 239000003446 ligand Substances 0.000 claims description 12
- 125000003282 alkyl amino group Chemical group 0.000 claims description 10
- 125000006310 cycloalkyl amino group Chemical group 0.000 claims description 10
- 125000004663 dialkyl amino group Chemical group 0.000 claims description 10
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims description 10
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical group BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052794 bromium Inorganic materials 0.000 claims description 8
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 8
- 125000001153 fluoro group Chemical group F* 0.000 claims description 8
- 229910052736 halogen Inorganic materials 0.000 claims description 8
- 150000002367 halogens Chemical class 0.000 claims description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 8
- 125000004178 (C1-C4) alkyl group Chemical class 0.000 claims description 6
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 claims description 6
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 claims description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 125000001841 imino group Chemical group [H]N=* 0.000 claims description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 5
- 125000003118 aryl group Chemical group 0.000 claims description 5
- UKSZBOKPHAQOMP-SVLSSHOZSA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 UKSZBOKPHAQOMP-SVLSSHOZSA-N 0.000 claims description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 4
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 4
- 125000001246 bromo group Chemical group Br* 0.000 claims description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 4
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 claims description 4
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 claims description 3
- 125000004191 (C1-C6) alkoxy group Chemical class 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical group II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 claims description 3
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 claims description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 3
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 claims description 2
- QFMZQPDHXULLKC-UHFFFAOYSA-N 1,2-bis(diphenylphosphino)ethane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)CCP(C=1C=CC=CC=1)C1=CC=CC=C1 QFMZQPDHXULLKC-UHFFFAOYSA-N 0.000 claims description 2
- JJRYTJCOOYOVOZ-UHFFFAOYSA-N 1-diphenylphosphanylbutan-2-yl(diphenyl)phosphane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)C(CC)CP(C=1C=CC=CC=1)C1=CC=CC=C1 JJRYTJCOOYOVOZ-UHFFFAOYSA-N 0.000 claims description 2
- WGOBPPNNYVSJTE-UHFFFAOYSA-N 1-diphenylphosphanylpropan-2-yl(diphenyl)phosphane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)C(C)CP(C=1C=CC=CC=1)C1=CC=CC=C1 WGOBPPNNYVSJTE-UHFFFAOYSA-N 0.000 claims description 2
- PXBFMLJZNCDSMP-UHFFFAOYSA-N 2-Aminobenzamide Chemical class NC(=O)C1=CC=CC=C1N PXBFMLJZNCDSMP-UHFFFAOYSA-N 0.000 claims description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 claims description 2
- 150000007513 acids Chemical class 0.000 claims description 2
- MUALRAIOVNYAIW-UHFFFAOYSA-N binap Chemical group C1=CC=CC=C1P(C=1C(=C2C=CC=CC2=CC=1)C=1C2=CC=CC=C2C=CC=1P(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 MUALRAIOVNYAIW-UHFFFAOYSA-N 0.000 claims description 2
- 125000001072 heteroaryl group Chemical group 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 2
- 239000011630 iodine Chemical group 0.000 claims description 2
- 229910052740 iodine Chemical group 0.000 claims description 2
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical class [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 claims description 2
- INIOZDBICVTGEO-UHFFFAOYSA-L palladium(ii) bromide Chemical compound Br[Pd]Br INIOZDBICVTGEO-UHFFFAOYSA-L 0.000 claims description 2
- 125000001424 substituent group Chemical group 0.000 claims description 2
- 229930192474 thiophene Natural products 0.000 claims description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 2
- 229920002554 vinyl polymer Polymers 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 11
- VURFVHCLMJOLKN-UHFFFAOYSA-N diphosphane Chemical compound PP VURFVHCLMJOLKN-UHFFFAOYSA-N 0.000 claims 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 abstract description 9
- 0 [1*]C(=O)NC1=C([3*])C=CC=C1C([2*])=O.[4*]C Chemical compound [1*]C(=O)NC1=C([3*])C=CC=C1C([2*])=O.[4*]C 0.000 description 34
- -1 hetaryl radical Chemical class 0.000 description 19
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 150000002431 hydrogen Chemical group 0.000 description 9
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 150000003254 radicals Chemical class 0.000 description 6
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- TWOUFCUTXMWMBK-UHFFFAOYSA-N n-(2-bromo-4-cyano-6-methylphenyl)-2-(3-chloropyridin-2-yl)-5-[[5-(trifluoromethyl)tetrazol-2-yl]methyl]pyrazole-3-carboxamide Chemical compound CC1=CC(C#N)=CC(Br)=C1NC(=O)C1=CC(CN2N=C(N=N2)C(F)(F)F)=NN1C1=NC=CC=C1Cl TWOUFCUTXMWMBK-UHFFFAOYSA-N 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- HPYNZHMRTTWQTB-UHFFFAOYSA-N 2,3-dimethylpyridine Chemical compound CC1=CC=CN=C1C HPYNZHMRTTWQTB-UHFFFAOYSA-N 0.000 description 4
- ITQTTZVARXURQS-UHFFFAOYSA-N 3-methylpyridine Chemical compound CC1=CC=CN=C1 ITQTTZVARXURQS-UHFFFAOYSA-N 0.000 description 4
- NTSLROIKFLNUIJ-UHFFFAOYSA-N 5-Ethyl-2-methylpyridine Chemical compound CCC1=CC=C(C)N=C1 NTSLROIKFLNUIJ-UHFFFAOYSA-N 0.000 description 4
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 4
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 150000007530 organic bases Chemical class 0.000 description 4
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 4
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- YNHIGQDRGKUECZ-UHFFFAOYSA-L bis(triphenylphosphine)palladium(ii) dichloride Chemical compound [Cl-].[Cl-].[Pd+2].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-L 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 2
- SSUJUUNLZQVZMO-UHFFFAOYSA-N 1,2,3,4,8,9,10,10a-octahydropyrimido[1,2-a]azepine Chemical compound C1CCC=CN2CCCNC21 SSUJUUNLZQVZMO-UHFFFAOYSA-N 0.000 description 2
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 2
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- GKQLYSROISKDLL-UHFFFAOYSA-N EEDQ Chemical compound C1=CC=C2N(C(=O)OCC)C(OCC)C=CC2=C1 GKQLYSROISKDLL-UHFFFAOYSA-N 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000005270 trialkylamine group Chemical group 0.000 description 2
- COIOYMYWGDAQPM-UHFFFAOYSA-N tris(2-methylphenyl)phosphane Chemical compound CC1=CC=CC=C1P(C=1C(=CC=CC=1)C)C1=CC=CC=C1C COIOYMYWGDAQPM-UHFFFAOYSA-N 0.000 description 2
- BWHDROKFUHTORW-UHFFFAOYSA-N tritert-butylphosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(C)(C)C BWHDROKFUHTORW-UHFFFAOYSA-N 0.000 description 2
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 description 1
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- COLOHWPRNRVWPI-UHFFFAOYSA-N 1,1,1-trifluoroethane Chemical compound [CH2]C(F)(F)F COLOHWPRNRVWPI-UHFFFAOYSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- VRJIBCBHABNTRG-UHFFFAOYSA-N 2-(3-chloropyridin-2-yl)-5-[[5-(trifluoromethyl)tetrazol-2-yl]methyl]pyrazole-3-carboxylic acid Chemical compound N=1N(C=2C(=CC=CN=2)Cl)C(C(=O)O)=CC=1CN1N=NC(C(F)(F)F)=N1 VRJIBCBHABNTRG-UHFFFAOYSA-N 0.000 description 1
- XRBVGIIMBVJRLF-UHFFFAOYSA-N 2-(3-chloropyridin-2-yl)-n-[4-cyano-2-(dimethylcarbamoyl)-6-methylphenyl]-5-[[5-(trifluoromethyl)tetrazol-2-yl]methyl]pyrazole-3-carboxamide Chemical compound CN(C)C(=O)C1=CC(C#N)=CC(C)=C1NC(=O)C1=CC(CN2N=C(N=N2)C(F)(F)F)=NN1C1=NC=CC=C1Cl XRBVGIIMBVJRLF-UHFFFAOYSA-N 0.000 description 1
- FMEQZBIWIRLQEZ-UHFFFAOYSA-N 2-acetamido-5-cyano-3-methylbenzoic acid Chemical compound CC(=O)NC1=C(C)C=C(C#N)C=C1C(O)=O FMEQZBIWIRLQEZ-UHFFFAOYSA-N 0.000 description 1
- HDECRAPHCDXMIJ-UHFFFAOYSA-N 2-methylbenzenesulfonyl chloride Chemical compound CC1=CC=CC=C1S(Cl)(=O)=O HDECRAPHCDXMIJ-UHFFFAOYSA-N 0.000 description 1
- YOETUEMZNOLGDB-UHFFFAOYSA-N 2-methylpropyl carbonochloridate Chemical compound CC(C)COC(Cl)=O YOETUEMZNOLGDB-UHFFFAOYSA-N 0.000 description 1
- LBVZCSKDTGDAQW-UHFFFAOYSA-N 3-[(2-oxo-1,3-oxazolidin-3-yl)phosphanyl]-1,3-oxazolidin-2-one;hydrochloride Chemical compound [Cl-].O=C1OCCN1[PH2+]N1C(=O)OCC1 LBVZCSKDTGDAQW-UHFFFAOYSA-N 0.000 description 1
- XSTLURJCYVPCNE-UHFFFAOYSA-N 4-amino-3-bromo-5-methylbenzonitrile Chemical compound CC1=CC(C#N)=CC(Br)=C1N XSTLURJCYVPCNE-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- JNCMHMUGTWEVOZ-UHFFFAOYSA-N F[CH]F Chemical compound F[CH]F JNCMHMUGTWEVOZ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910013594 LiOAc Inorganic materials 0.000 description 1
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- PHSPJQZRQAJPPF-UHFFFAOYSA-N N-alpha-Methylhistamine Chemical compound CNCCC1=CN=CN1 PHSPJQZRQAJPPF-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N Pd(PPh3)4 Substances [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- KBUPJGPEIAZXDA-UHFFFAOYSA-N [H]N(C(=O)C1=CC(CN2N=NC(C(F)(F)F)=N2)=NN1C1=C(Cl)C=CC=N1)C1=C(C)C=C([N+]#[C-])C=C1Br Chemical compound [H]N(C(=O)C1=CC(CN2N=NC(C(F)(F)F)=N2)=NN1C1=C(Cl)C=CC=N1)C1=C(C)C=C([N+]#[C-])C=C1Br KBUPJGPEIAZXDA-UHFFFAOYSA-N 0.000 description 1
- ZXGHKCLTCMWQPQ-UHFFFAOYSA-N [H]N(C(=O)C1=CC(CN2N=NC(C(F)(F)F)=N2)=NN1C1=C(Cl)C=CC=N1)C1=C(C)C=C([N+]#[C-])C=C1C(=O)NC Chemical compound [H]N(C(=O)C1=CC(CN2N=NC(C(F)(F)F)=N2)=NN1C1=C(Cl)C=CC=N1)C1=C(C)C=C([N+]#[C-])C=C1C(=O)NC ZXGHKCLTCMWQPQ-UHFFFAOYSA-N 0.000 description 1
- OQRDGJGACGUFIZ-UHFFFAOYSA-N [H]N(C(=O)C1=CC(CN2N=NC(C(F)(F)F)=N2)=NN1C1=C(Cl)C=CC=N1)C1=C(C)C=C([N+]#[C-])C=C1C(=O)OC Chemical compound [H]N(C(=O)C1=CC(CN2N=NC(C(F)(F)F)=N2)=NN1C1=C(Cl)C=CC=N1)C1=C(C)C=C([N+]#[C-])C=C1C(=O)OC OQRDGJGACGUFIZ-UHFFFAOYSA-N 0.000 description 1
- PKUWMGJZQVKNBB-UHFFFAOYSA-N [H]N(C(C)=O)C1=C(C)C=C([N+]#[C-])C=C1C(=O)O Chemical compound [H]N(C(C)=O)C1=C(C)C=C([N+]#[C-])C=C1C(=O)O PKUWMGJZQVKNBB-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000005248 alkyl aryloxy group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- RROBIDXNTUAHFW-UHFFFAOYSA-N benzotriazol-1-yloxy-tris(dimethylamino)phosphanium Chemical compound C1=CC=C2N(O[P+](N(C)C)(N(C)C)N(C)C)N=NC2=C1 RROBIDXNTUAHFW-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 125000004965 chloroalkyl group Chemical group 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- MQIKJSYMMJWAMP-UHFFFAOYSA-N dicobalt octacarbonyl Chemical group [Co+2].[Co+2].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] MQIKJSYMMJWAMP-UHFFFAOYSA-N 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- YWEUIGNSBFLMFL-UHFFFAOYSA-N diphosphonate Chemical compound O=P(=O)OP(=O)=O YWEUIGNSBFLMFL-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- RIFGWPKJUGCATF-UHFFFAOYSA-N ethyl chloroformate Chemical compound CCOC(Cl)=O RIFGWPKJUGCATF-UHFFFAOYSA-N 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000000749 insecticidal effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- LRDFRRGEGBBSRN-UHFFFAOYSA-N isobutyronitrile Chemical compound CC(C)C#N LRDFRRGEGBBSRN-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- XMJHPCRAQCTCFT-UHFFFAOYSA-N methyl chloroformate Chemical compound COC(Cl)=O XMJHPCRAQCTCFT-UHFFFAOYSA-N 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- PBMIETCUUSQZCG-UHFFFAOYSA-N n'-cyclohexylmethanediimine Chemical compound N=C=NC1CCCCC1 PBMIETCUUSQZCG-UHFFFAOYSA-N 0.000 description 1
- ZSVDGFYHJDCJFF-UHFFFAOYSA-N n-(2-bromo-4-chloro-6-methylphenyl)-2-(3-chloropyridin-2-yl)-5-[[5-(1,1,2,2,2-pentafluoroethyl)tetrazol-2-yl]methyl]pyrazole-3-carboxamide Chemical compound CC1=CC(Cl)=CC(Br)=C1NC(=O)C1=CC(CN2N=C(N=N2)C(F)(F)C(F)(F)F)=NN1C1=NC=CC=C1Cl ZSVDGFYHJDCJFF-UHFFFAOYSA-N 0.000 description 1
- JMIZMJDIGHFNHY-UHFFFAOYSA-N n-(2-bromo-4-cyano-6-methylphenyl)acetamide Chemical compound CC(=O)NC1=C(C)C=C(C#N)C=C1Br JMIZMJDIGHFNHY-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- JIKUXBYRTXDNIY-UHFFFAOYSA-N n-methyl-n-phenylformamide Chemical compound O=CN(C)C1=CC=CC=C1 JIKUXBYRTXDNIY-UHFFFAOYSA-N 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 150000002940 palladium Chemical class 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 1
- DLYUQMMRRRQYAE-UHFFFAOYSA-N phosphorus pentoxide Inorganic materials O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 1
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002675 polymer-supported reagent Substances 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- IVRIRQXJSNCSPQ-UHFFFAOYSA-N propan-2-yl carbonochloridate Chemical compound CC(C)OC(Cl)=O IVRIRQXJSNCSPQ-UHFFFAOYSA-N 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 1
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- HVZJRWJGKQPSFL-UHFFFAOYSA-N tert-Amyl methyl ether Chemical compound CCC(C)(C)OC HVZJRWJGKQPSFL-UHFFFAOYSA-N 0.000 description 1
- ZBZJXHCVGLJWFG-UHFFFAOYSA-N trichloromethyl(.) Chemical compound Cl[C](Cl)Cl ZBZJXHCVGLJWFG-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- UYUUAUOYLFIRJG-UHFFFAOYSA-N tris(4-methoxyphenyl)phosphane Chemical compound C1=CC(OC)=CC=C1P(C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 UYUUAUOYLFIRJG-UHFFFAOYSA-N 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C253/00—Preparation of carboxylic acid nitriles
- C07C253/30—Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/49—Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
- C07C255/58—Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton
- C07C255/60—Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton at least one of the singly-bound nitrogen atoms being acylated
Definitions
- the present invention relates to a novel process for preparing substituted anthranilic acid derivatives of the formula (I)
- R 1 , R 3 and R 4 radicals are each as defined above and
- R 6 and R 7 are each as defined above.
- substituted anthranilic acid derivatives of the formula (I) require the availability of the corresponding substituted anthranilic acid derivatives of the general formula (VII).
- substituted anthranilic acid derivatives of the general formula (VII) are either known or can be prepared by known organic chemistry methods. Some of these substituted anthranilic acid derivatives of the general formula (VII), however, can be prepared only in a complex manner, in multiple stages and at high cost, which can lead to uneconomically high costs for the end products as a result of unavoidable yield losses.
- Substituted anthranilic acid derivatives of the formula (I) are of high interest as compounds having known insecticidal efficacy (see, for example, Bioorg. & Med. Chem. Lett. 15 (2005) 4898-4906; Biorg. & Med. Chem. 16 (2008) 3163-3170). Further, it is already known, that substituted anthranilic acid derivatives of the general formula (VII) can be obtained by reacting substituted anthranilic acid derivatives of the general formula (IX) with carbon monoxide in the presence of a palladium catalyst, of a ligand, of a primary amine and a base (WO 2012/103436). However, it is not known whether anthranilic acid amides of the general formula (IV) can be used correspondingly.
- R 6 and R 7 are each as defined above to give the substituted anthranilic acid derivatives of the general formula (I).
- the present invention likewise provides novel compounds of the general formula (IV)
- R 1 , R 3 , R 4 and X radicals are each as defined above.
- Alkyl groups substituted by one or more fluorine or chlorine atoms are selected, for example, from trifluoromethyl (CF 3 ), difluoromethyl (CHF 2 ), CCl 3 , CFCl 2 , CF 3 CH 2 , ClCH 2 , CF 3 CCl 2 .
- Alkyl groups in the context of the present invention are linear or branched hydrocarbyl groups.
- alkyl and C 1 -C 12 -alkyl encompasses, for example, the meanings of methyl, ethyl, n-, isopropyl, n, iso-, sec- and t-butyl, n-pentyl, n-hexyl, 1,3-dimethylbutyl, 3,3-dimethylbutyl, n-heptyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl.
- Aryl radicals in the context of the present invention are aromatic hydrocarbyl radicals which may have one, two or more heteroatoms selected from O, N, P and S and may optionally be substituted by further groups.
- Alkylaryl groups (alkaryl groups) and alkylaryloxy groups in the context of the present invention are, respectively, aryl groups and aryloxy groups which are substituted by alkyl groups, may have a C 1-8 -alkylene chain and may have, in the aryl skeleton or aryloxy skeleton, one or more heteroatoms selected from O, N, P and S.
- Anthranilic acid derivatives of the formula (IV) can be prepared as follows:
- the reaction time may, according to the batch size and the temperature, be selected within a range between 1 hour and several hours.
- Process step 1 can optionally be performed in the presence of a catalyst.
- a catalyst examples include 4-dimethylaminopyridine or 1-hydroxybenzotriazole.
- the amount of palladium catalyst used in the process according to the invention is 0.001 to 20 mole percent, based on substituted anthranilic acid derivative of the general formula (IV) used. Preferably 0.005 to 10 mole percent is used, more preferably 0.01 to 5 mole percent.
- phosphine ligands include chelating bisphosphines. Examples of these include 1,2-bis(diphenylphosphino)ethane, 1,2-bis(diphenylphosphino)propane, 1,2-bis(diphenylphosphino)butane, 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl and 1,1′-bis(diphenylpho sphino)ferrocene.
- Preferred phosphine ligands are trialkylphosphines such as tri-tert-butylphosphine and triadamantylphosphine, and also triarylphosphines such as triphenylphosphine, tri(ortho-tolyl)phosphine or tri(para-methoxyphenyl)phosphine. Particular preference is given to triphenylphosphine.
- phosphine 1-20 molar equivalents of phosphine are used, based on the amount of palladium used. Preferably 2-15 molar equivalents are used.
- Process step 2 of the process according to the invention is performed in the presence of carbon monoxide (CO).
- CO carbon monoxide
- the carbon monoxide is typically introduced in gaseous form, and so the reaction is usually performed in an autoclave. It is customary to work at CO pressure 0.1 to 50 bar, preferably at 1 to 25 bar.
- carbon monoxide in the form of suitable metal carbonyl complexes, for example dicobalt octacarbonyl or molybdenum hexacarbonyl. Preference is given to working with gaseous carbon monoxide.
- Process step 2 is generally performed in the presence of a base.
- Suitable bases are organic bases such as trialkylamines, alkylpyridines, phosphazenes and 1,8-diazabicyclo[5.4.0]undecene (DBU).
- organic bases such as triethylamine, tripropylamine, tributylamine, diisopropylethylamine, pyridine, alkylpyridines, for example 2,6-dimethylpyridine, 2-methyl-5-ethylpyridine or 2,3-dimethylpyridine.
- the compounds of the general formula (V) or (VI) required for preparation of the substituted anthranilic acid derivatives of the general formula (I) are typically used in an excess, based on the substituted anthranilic acid derivative of the general formula (IV). It is also possible to use the compounds of the general formula (V) or (VI) in such an amount that they simultaneously serve as solvents.
- the autoclave After closure, the autoclave is purged with carbon monoxide and heated to 110° C., and a carbon monoxide pressure of 10 bar is maintained After 18 hours, the mixture is allowed to cool to room temperature, the autoclave is depressurized, the reaction mixture is stirred with methylene chloride and filtered through kieselguhr, and the filtrate is washed, first with dilute hydrochloric acid and then with water, dried over sodium sulphate and concentrated under reduced pressure. This gives 1.14 g of the title compound.
- the reaction mixture is stirred at room temperature for one hour and at 40° C. for 1 hour and cooled to room temperature, water and methylene chloride are added thereto, and the organic phase is removed, washed with dilute hydrochloric acid, dried and concentrated.
- the crude product thus obtained is purified by chromatography on silica gel (cyclohexane/ethyl acetate). This gives 1.30 g of the title compound as a pale beige solid.
- the autoclave After closure, the autoclave is purged with carbon monoxide and heated to 110° C., and a carbon monoxide pressure of 10 bar is maintained. After 18 hours, the mixture is allowed to cool to room temperature, the autoclave is depressurized, the reaction mixture is stirred with methylene chloride and filtered through kieselguhr, and the filtrate is washed, first with dilute hydrochloric acid and then with water, dried over sodium sulphate and concentrated under reduced pressure. This gives 0.49 g of the title compound.
- the autoclave After closure, the autoclave is purged with carbon monoxide and heated to 110° C., and a carbon monoxide pressure of 10 bar is maintained. After 18 hours, the mixture is allowed to cool to room temperature, the autoclave is depressurized, the reaction mixture is stirred with methylene chloride and filtered through kieselguhr, and the filtrate is washed, first with dilute hydrochloric acid and then with water, dried over sodium sulphate and concentrated under reduced pressure. This gives 0.475 g of the title compound.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
The present invention relates to a process for preparing substituted anthranilic acid derivatives of the formula (I)
in which R1, R2, R3 and R4 are each as defined in the description, by conversion of compounds of the general formula (IV) in the presence of a palladium catalyst and carbon monoxide. The present invention likewise relates to compounds of the general formula (IV).
Description
- The present invention relates to a novel process for preparing substituted anthranilic acid derivatives of the formula (I)
- in which
-
- R1 is optionally singly or multiply, identically or differently fluorine- or chlorine-substituted C1-C6-alkyl, or C6-C10-aryl, or is a hetaryl radical of the general formula (II)
-
- R1 is preferably C1-C3-alkyl, C6-aryl or a hetaryl radical of the general formula (II),
- R1 is more preferably C1-C2-alkyl or a hetaryl radical of the general formula (II),
where - R8 is C1-C6-alkyl, C3-C6-cycloalkyl, C1-C4-alkoxy, C1-C4-alkylthio, C1-C4-alkylsulphinyl, C1-C4-alkylsulphonyl, which may optionally be mono- or polysubstituted identically or differently by fluorine or chlorine, or is fluorine, chlorine, cyano, alkylamino, dialkylamino, cycloalkylamino or C3-C6-trialkylsilyl,
- R8 is preferably fluorine, chlorine or C1-C6-alkyl,
- R8 is more preferably fluorine or chlorine,
- Z is CH or N,
- Z is preferably and more preferably N,
and - Y is hydrogen, fluorine, chlorine, optionally singly or multiply, identically or differently fluorine- or chlorine-substituted C1-C6-alkyl, C3-C6-cycloalkyl, C1-C4-alkoxy, C1-C4-alkylthio, C1-C4-alkylsulphinyl, C1-C4-alkylsulphonyl, or is cyano, alkylamino, dialkylamino, cycloalkylamino, C3-C6-trialkylsilyl or a radical of the general formula (III)
- where
-
- R9 is C1-C5-alkyl which may optionally be mono- or polysubstituted identically or differently by halogen,
- R9 is preferably C1-C3 perfluoroalkyl,
- R9 is more preferably CF3 or C2F5,
- R2 is an OR5 or NR6R7 radical,
- R2 is preferably and more preferably OR5,
- R2 is likewise preferably and more preferably NR6R7,
where - R5, R6 and R7 are each independently hydrogen, C1-C6-alkyl, or C6-C10-aryl,
- R5, R6 and R7 are preferably each independently hydrogen, C1-C3-alkyl or C6-aryl,
- R5, R6 and R7 are more preferably each independently hydrogen or C1-C2-alkyl,
- R3 is hydrogen, optionally singly or multiply, identically or differently fluorine- or chlorine-substituted C1-C6-alkyl, C1-C6-alkoxy or C3-C6-cycloalkyl,
- R3 is likewise halogen,
- R3 is preferably C1-C5-alkyl,
- R3 is more preferably methyl, ethyl or tert-butyl,
- R3 is likewise preferably and more preferably chlorine,
- R4 is hydrogen, fluorine, chlorine, cyano, optionally singly or multiply, identically or differently fluorine- or chlorine-substituted C1-C4-alkyl, C1-C4-alkoxy, C1-C4-alkylthio, C1-C4-alkylsulphinyl, C1-C4-alkylsulphonyl, C1-C4-alkylamino, di(C1-C4-alkyflamino, C3-C6-cycloalkylamino, (C1-C4-alkoxy)imino, (C1-C4-alkyl)(C1-C4-alkoxy)imino, SF5 or C3-C6-trialkylsilyl,
- R4 is preferably hydrogen, chlorine or cyano,
- R4 is more preferably chlorine or cyano,
characterized in that substituted anthranilic acid derivatives of the formula (IV)
- in which the R1, R3 and R4 radicals are each as defined above
and -
- X is chlorine, bromine or iodine, preferably bromine or iodine, more preferably bromine,
are reacted in the presence of a palladium catalyst and optionally of a phosphine ligand simultaneously with carbon monoxide and a compound of the general formula (V)
- X is chlorine, bromine or iodine, preferably bromine or iodine, more preferably bromine,
-
R5-OH (V) - in which R5 is as defined above
or a compound of the general formula (VI) -
HNR6R7 (VI) - in which R6 and R7 are each as defined above.
- The literature already states that it is possible to obtain substituted anthranilic acid derivatives of the formula (I) by reaction of anthranilic acid derivatives of the general formula (VII)
- with carboxylic acids of the general formula (VIII)
-
R1-COOH (VIII) - in the presence of agents which activate the carboxyl group for the desired reaction, for example thionyl chloride, oxalyl chloride, phosgene, methanesulphonyl chloride or toluenesulphonyl chloride (WO 2003/015519; WO 2003/106427; WO 2004/067528; WO 2006/062978; WO 2008/010897; WO 2008/070158; WO 2008/082502; WO 2009/006061; WO 2009/061991; WO 2009/085816; WO 2009 111553; Bioorg. & Med. Chem. Lett. 15 (2005) 4898-4906; Bioorg. & Med. Chem. 16 (2008) 3163-3170).
- The known reactions can be illustrated by the following reaction schemes, where R1, R3, R4, R6 and R7 have, for example, the definitions given above:
- These known methods for preparation of substituted anthranilic acid derivatives of the formula (I) require the availability of the corresponding substituted anthranilic acid derivatives of the general formula (VII). These substituted anthranilic acid derivatives of the general formula (VII) are either known or can be prepared by known organic chemistry methods. Some of these substituted anthranilic acid derivatives of the general formula (VII), however, can be prepared only in a complex manner, in multiple stages and at high cost, which can lead to uneconomically high costs for the end products as a result of unavoidable yield losses.
- Substituted anthranilic acid derivatives of the formula (I) are of high interest as compounds having known insecticidal efficacy (see, for example, Bioorg. & Med. Chem. Lett. 15 (2005) 4898-4906; Biorg. & Med. Chem. 16 (2008) 3163-3170). Further, it is already known, that substituted anthranilic acid derivatives of the general formula (VII) can be obtained by reacting substituted anthranilic acid derivatives of the general formula (IX) with carbon monoxide in the presence of a palladium catalyst, of a ligand, of a primary amine and a base (WO 2012/103436). However, it is not known whether anthranilic acid amides of the general formula (IV) can be used correspondingly.
- It is therefore an object of the present invention to provide a novel, more economically viable process for preparing substituted anthranilic acid derivatives of the formula (I).
- The object was achieved according to the present invention by a process for preparing anthranilic acid derivatives of the general formula (I), characterized in that substituted anthranilic acid derivatives of the general formula (IX)
- in which X, R3 and R4 are each as defined above
are reacted with acids of the general formula (VIII) to give the substituted anthranilic acid derivatives of the formula (IV) - and the latter are then reacted in the presence of a palladium catalyst and optionally of a phosphine ligand simultaneously with carbon monoxide and a compound of the general formula (V)
-
R5-OH (V) - in which R5 is as defined above
or a compound of the general formula (VI) -
HNR6R7 (VI) - in which R6 and R7 are each as defined above
to give the substituted anthranilic acid derivatives of the general formula (I). - The process according to the invention can be illustrated by the following scheme:
- The present invention likewise provides novel compounds of the general formula (IV)
- in which the R1, R3, R4 and X radicals are each as defined above.
- Preference is given to compounds of the general formula (IV) in which
-
- R1 is optionally singly or multiply, identically or differently fluorine- or chlorine-substituted C1-C6-alkyl, or C6-C10-aryl, or is a hetaryl radical of the general formula (II)
- where
-
- R8 is optionally singly or multiply, identically or differently fluorine- or chlorine-substituted C1-C6-alkyl, C3-C6-cycloalkyl, C1-C4-alkoxy, C1-C4-alkylthio, C1-C4-alkylsulphinyl, C1-C4-alkylsulphonyl, or is fluorine, chlorine, cyano, alkylamino, dialkylamino, cycloalkylamino or C3-C6-trialkylsilyl, preferably fluorine, chlorine or C1-C6-alkyl, more preferably fluorine or chlorine,
- Z is CH or N, preferably N,
and - Y is hydrogen, fluorine, chlorine, optionally singly or multiply, identically or differently fluorine- or chlorine-substituted C1-C6-alkyl, C3-C6-cycloalkyl, C1-C4-alkoxy, C1-C4-alkylthio, C1-C4-alkylsulphinyl, C1-C4-alkylsulphonyl, or is cyano, alkylamino, dialkylamino, cycloalkylamino, C3-C6-trialkylsilyl or a radical of the general formula (III)
- in which
-
- R9 is C1-C5-alkyl which may be mono- or polysubstituted identically or differently by halogen,
- R9 is preferably C1-C3-perfluoroalkyl,
- R9 is more preferably CF3 or C2F5,
- R3 is chlorine,
- R3 is likewise methyl,
- R4 is chlorine or cyano,
and - X is bromine or iodine.
- Particular preference is given to compounds of the general formula (IV) in which
-
- R1 is a hetaryl radical of the general formula (II)
- where
-
- R8 is fluorine or chlorine,
- Z is N,
and - Y is hydrogen, fluorine, chlorine or a radical of the general formula (III)
- where
-
- R9 is CF3 or C2F5,
- R3 is methyl,
- R4 is chlorine or cyano,
and - X is bromine
- Examples of the particularly preferred compounds of the general formula (IV) include:
- N-(2-bromo-4-cyano-6-methylphenyl)-1-(3-chloropyridin-2-yl)-3-{[5-(trifluoromethyl)-2H-tetrazol-2-yl]methyl}-1H-pyrazole-5-carboxamide
- N-(2-bromo-4-chloro-6-methylphenyl)-1-(3-chloropyridin-2-yl)-3-{[5-(pentafluoroethyl)-2H-tetrazol-2-yl]methyl}-1H-pyrazole-5-carboxamide.
- General definitions: Alkyl groups substituted by one or more fluorine or chlorine atoms (=fluoro- or chloroalkyl groups) are selected, for example, from trifluoromethyl (CF3), difluoromethyl (CHF2), CCl3, CFCl2, CF3CH2, ClCH2, CF3CCl2.
- Alkyl groups in the context of the present invention, unless defined differently, are linear or branched hydrocarbyl groups.
- The definition alkyl and C1-C12-alkyl encompasses, for example, the meanings of methyl, ethyl, n-, isopropyl, n, iso-, sec- and t-butyl, n-pentyl, n-hexyl, 1,3-dimethylbutyl, 3,3-dimethylbutyl, n-heptyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl.
- Cycloalkyl groups in the context of the present invention, unless defined differently, are cyclic saturated hydrocarbyl groups.
- Aryl radicals in the context of the present invention, unless defined differently, are aromatic hydrocarbyl radicals which may have one, two or more heteroatoms selected from O, N, P and S and may optionally be substituted by further groups.
- Arylalkyl groups and arylalkoxy groups in the context of the present invention, unless defined differently, are, respectively, alkyl and alkoxy groups which are substituted by aryl groups and may have an alkylene chain. Specifically, the definition arylalkyl encompasses, for example, the meanings of benzyl and phenylethyl, and the definition arylalkoxy, for example, the meaning of benzyloxy.
- Alkylaryl groups (alkaryl groups) and alkylaryloxy groups in the context of the present invention, unless defined differently, are, respectively, aryl groups and aryloxy groups which are substituted by alkyl groups, may have a C1-8-alkylene chain and may have, in the aryl skeleton or aryloxy skeleton, one or more heteroatoms selected from O, N, P and S.
- Step 1
- Anthranilic acid derivatives of the formula (IV) can be prepared as follows:
- The reaction is performed in the presence of a condensing agent. Suitable agents for this purpose are all agents customary for such coupling reactions. Examples include acid halide formers such as phosgene, phosphorus tribromide, phosphorus trichloride, phosphorus pentachloride, phosphorus oxychloride, oxalyl chloride or thionyl chloride; anhydride formers such as ethyl chloroformate, methyl chloroformate, isopropyl chloroformate, isobutyl chloroformate or methanesulphonyl chloride; carbodiimides such as N,N′-dicyclohexylcarbodiimide (DCC) or other customary condensing agents such as phosphorus pentoxide, polyphosphoric acid, 1,1′-carbonyldiimidazole, 2-ethoxy-N-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ), triphenylphosphine/carbon tetrachloride, bromotripyrrolidinophosphonium hexafluorophosphate, bis(2-oxo-3-oxazolidinyl)phosphine chloride or benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate. It is likewise possible to use polymer-supported reagents, for example polymer-bound cyclohexylcarbodiimide
- Preference is given to phosgene, mesyl chloride and thionyl chloride.
- Process step 1 can optionally be performed in the presence of an inert organic diluent customary for such reactions. These preferably include aliphatic, alicyclic or aromatic hydrocarbons, for example petroleum ether, hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene, xylene or decalin; halogenated hydrocarbons, for example chlorobenzene, dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, dichloroethane or trichloroethane; ethers such as diethyl ether, diisopropyl ether, methyl tert-butyl ether, methyl tert-amyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, 1,2-diethoxyethane or anisole; ketones such as acetone, butanone, methyl isobutyl ketone or cyclohexanone; nitriles such as acetonitrile, propionitrile, n- or isobutyronitrile or benzonitrile; amides such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylformanilide, N-methylpyrrolidone or hexamethylphosphoramide, or mixtures thereof.
- Process step 1 is generally performed in the presence of a base.
- Suitable bases are alkali metal hydroxides, for example lithium hydroxide, sodium hydroxide or potassium hydroxide, alkali metal carbonates, for example Na2CO3, K2CO3, and acetates, for example NaOAc, KOAc, LiOAc, and also alkoxides, for example NaOMe, NaOEt, NaOt-Bu, KOt-Bu. Likewise suitable bases are organic bases such as trialkylamines, alkylpyridines, phosphazenes and 1,8-diazabicyclo[5.4.0]undecene (DBU). Preference is given to organic bases such as pyridines, alkylpyridines, for example 2,6-dimethylpyridine, 2-methyl-5-ethylpyridine or 2,3-dimethylpyridine.
- Process step 1 of the invention is performed preferably within a temperature range from 20° C. to +100° C., more preferably at temperatures of 30° C. to +80 ° C., more preferably at 30-60° C.
- Process step 1 of the invention is generally performed under standard pressure. Alternatively, however, it is also possible to work under vacuum or under elevated pressure in an autoclave.
- The reaction time may, according to the batch size and the temperature, be selected within a range between 1 hour and several hours.
- Process step 1 can optionally be performed in the presence of a catalyst. Examples include 4-dimethylaminopyridine or 1-hydroxybenzotriazole.
- Step 2
- Substituted anthranilic acid derivatives of the general formula (1) can be prepared in accordance with process step 2 as follows:
- The reaction is performed in the presence of a palladium catalyst. The palladium catalysts used in the process according to the invention are palladium(II) salts, for instance palladium chloride, bromide, iodide, acetate or acetylacetonate, which may optionally be stabilized by further ligands, for example alkyl nitriles, or Pd(O) species, for example palladium on activated carbon, Pd(PPh3)4, bis(dibenzylideneacetone)palladium or tris(dibenzylideneacetone)dipalladium. Preference is given to bis(dibenzylideneacetone)palladium, tris(dibenzylideneacetone)dipalladium, palladium chloride, palladium bromide and palladium acetate; particular preference is given to bis(dibenzylideneacetone)palladium, palladium chloride and palladium acetate.
- The amount of palladium catalyst used in the process according to the invention is 0.001 to 20 mole percent, based on substituted anthranilic acid derivative of the general formula (IV) used. Preferably 0.005 to 10 mole percent is used, more preferably 0.01 to 5 mole percent.
- The phosphine ligands used in the process according to the invention are ligands of the general formula (X)
-
PR10R11R12 (X) - where the R10, R11 and R12 radicals are each independently hydrogen, linear or branched C1-C8-alkyl, vinyl, aryl or heteroaryl from the group of pyridine, pyrimidine, pyrrole, thiophene and furan, which may in turn be substituted by further substituents from the group of linear or branched C1-C8-alkyl or C6-C10-aryl, linear or branched C1-C8-alkyloxy or C1-C10-aryloxy, halogenated linear or branched C1-C8-alkyl or halogenated C6-C10-aryl, C6-C10 -aryloxycarbonyl, linear or branched C1-C8-alkylamino, linear or branched C1-C8-dialkylamino, C1-C8-arylamino, C1-C8-diarylamino, hydroxyl, carboxyl, cyano and halogen such as fluorine or chlorine.
- Further useful phosphine ligands include chelating bisphosphines. Examples of these include 1,2-bis(diphenylphosphino)ethane, 1,2-bis(diphenylphosphino)propane, 1,2-bis(diphenylphosphino)butane, 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl and 1,1′-bis(diphenylpho sphino)ferrocene.
- Preferred phosphine ligands are trialkylphosphines such as tri-tert-butylphosphine and triadamantylphosphine, and also triarylphosphines such as triphenylphosphine, tri(ortho-tolyl)phosphine or tri(para-methoxyphenyl)phosphine. Particular preference is given to triphenylphosphine.
- As an alternative to this, it is also possible to use defined palladium complexes which have been obtained from the abovementioned ligands in one or more process steps.
- In the process according to the invention, 1-20 molar equivalents of phosphine are used, based on the amount of palladium used. Preferably 2-15 molar equivalents are used.
- Process step 2 of the process according to the invention is performed in the presence of carbon monoxide (CO). The carbon monoxide is typically introduced in gaseous form, and so the reaction is usually performed in an autoclave. It is customary to work at CO pressure 0.1 to 50 bar, preferably at 1 to 25 bar.
- It is alternatively also possible in principle to introduce the carbon monoxide in the form of suitable metal carbonyl complexes, for example dicobalt octacarbonyl or molybdenum hexacarbonyl. Preference is given to working with gaseous carbon monoxide.
- Process step 2 is generally performed in the presence of a base. Suitable bases are organic bases such as trialkylamines, alkylpyridines, phosphazenes and 1,8-diazabicyclo[5.4.0]undecene (DBU). Preference is given to organic bases such as triethylamine, tripropylamine, tributylamine, diisopropylethylamine, pyridine, alkylpyridines, for example 2,6-dimethylpyridine, 2-methyl-5-ethylpyridine or 2,3-dimethylpyridine.
- The compounds of the general formula (V) or (VI) required for preparation of the substituted anthranilic acid derivatives of the general formula (I) are typically used in an excess, based on the substituted anthranilic acid derivative of the general formula (IV). It is also possible to use the compounds of the general formula (V) or (VI) in such an amount that they simultaneously serve as solvents.
- The Preparation Examples which follow illustrate the invention without limiting it.
-
- In a 30 ml autoclave, under nitrogen as protective gas, 2.54 g [10 mmol] of N-(2-bromo-4-cyan-6-methylphenyl)acetamide, 3.89 g [21 mmol] of tri-n-butylamine, 0.131 g [0.5 mmol] of triphenylphosphine, 0.035 g [0.05 mmol] of bis(triphenylphosphine)palladium(II) chloride and 2 g of water are combined. After closure, the autoclave is purged with carbon monoxide and heated to 110° C., and a carbon monoxide pressure of 10 bar is maintained After 18 hours, the mixture is allowed to cool to room temperature, the autoclave is depressurized, the reaction mixture is stirred with methylene chloride and filtered through kieselguhr, and the filtrate is washed, first with dilute hydrochloric acid and then with water, dried over sodium sulphate and concentrated under reduced pressure. This gives 1.14 g of the title compound.
- LC/MS: m/e=219 (MH+).
- GC/MS(sil.): m/e=362 (M+, 2×sil., 10%), 347 (M+−15, 2×sil., 45%).
-
- To a solution of 3.74 g of 1-(3-chloropyridin-2-yl)-3-{[5-(trifluoromethyl)-2H-tetrazol-2-yl]methyl}-1H-pyrazole-5-carboxylic acid in 20 ml of acetonitrile are added 1.86 g of 3-methylpyridine. Then 1.37 g of methanesulphonyl chloride are added dropwise at 0° C. After 30 minutes at 0° C., the red solution thus obtained is slowly added dropwise to a solution of 2.11 g of 4-amino-3-bromo-5-methylbenzonitrile and 1.12 g of 3-methylpyridine in 20 ml of acetonitrile. The reaction mixture is stirred at room temperature for one hour and at 40° C. for 1 hour and cooled to room temperature, water and methylene chloride are added thereto, and the organic phase is removed, washed with dilute hydrochloric acid, dried and concentrated. The crude product thus obtained is purified by chromatography on silica gel (cyclohexane/ethyl acetate). This gives 1.30 g of the title compound as a pale beige solid.
- LC/MS: m/e=566 (MH+ with 79Br and 35Cl).
-
- In a 30 ml autoclave, under nitrogen as protective gas, 0.567 g of N-(2-bromo-4-cyano-6-methylphenyl)-1-(3-chloropyridin-2-yl)-3-{[5-(trifluoromethyl)-2H-tetrazol-2-yl] methyl}-1H-pyrazole-5-carboxamide, 0.463 g of tri-n-butylamine, 0.066 g of triphenylphosphine, 0.035 g of bis(triphenylphosphine)palladium(II) chloride and 10 ml of methanol are combined. After closure, the autoclave is purged with carbon monoxide and heated to 110° C., and a carbon monoxide pressure of 10 bar is maintained. After 18 hours, the mixture is allowed to cool to room temperature, the autoclave is depressurized, the reaction mixture is stirred with methylene chloride and filtered through kieselguhr, and the filtrate is washed, first with dilute hydrochloric acid and then with water, dried over sodium sulphate and concentrated under reduced pressure. This gives 0.49 g of the title compound.
- LC/MS: m/e=546 (MH+ with 35Cl).
-
- In a 30 ml autoclave, under nitrogen as protective gas, 0.567 g of N-(2-bromo-4-cyano-6-methylphenyl)-1-(3-chloropyridin-2-yl)-3-{[5-(trifluoromethyl)-2H-tetrazol-2-yl]methyl}-1H-pyrazole-5-carboxamide, 0.463 g of tri-n-butylamine, 0.066 g of triphenylphosphine, 0.035 g of bis(triphenylphosphine)palladium(II) chloride and 2 ml of dimethylamine are combined. After closure, the autoclave is purged with carbon monoxide and heated to 110° C., and a carbon monoxide pressure of 10 bar is maintained. After 18 hours, the mixture is allowed to cool to room temperature, the autoclave is depressurized, the reaction mixture is stirred with methylene chloride and filtered through kieselguhr, and the filtrate is washed, first with dilute hydrochloric acid and then with water, dried over sodium sulphate and concentrated under reduced pressure. This gives 0.475 g of the title compound.
- LC/MS: m/e=559 (MH+ with 35Cl).
Claims (12)
1. Process for preparing a compound of formula (I)
in which
R1 is optionally singly or multiply, identically or differently fluorine- or chlorine-substituted C1-C6-alkyl, or C6-C10-aryl, or is a hetaryl radical of formula (II)
where
R8 is C1-C6-alkyl, C3-C6-cycloalkyl, C1-C4-alkoxy, C1-C4-alkylthio, C1-C4-alkylsulphinyl, C1-C4-alkylsulphonyl, which may optionally be mono- or polysubstituted, identically or differently by fluorine or chlorine, or is fluorine, chlorine, cyano, alkylamino, dialkylamino, cycloalkylamino or C3-C6-trialkylsilyl,
Z is CH or N,
and
Y is hydrogen, fluorine, chlorine, optionally singly or multiply, identically or differently fluorine- or chlorine-substituted C1-C6-alkyl, C3-C6-cycloalkyl, C1-C4-alkoxy, C1-C4-alkylthio, C1-C4-alkylsulphinyl, C1-C4-alkylsulphonyl, or is cyano, alkylamino, dialkylamino, cycloalkylamino, C3-C6-trialkylsilyl or a radical of formula (III)
where
R9 is C1-C5-alkyl which may optionally be mono- or polysubstituted identically or differently by halogen,
R2 is an OR5 or NR6R7 radical,
where
R5, R6 and R7 are each independently hydrogen, C1-C6-alkyl, or C6-C10-aryl,
R3 is hydrogen, optionally singly or multiply, identically or differently fluorine- or chlorine-substituted C1-C6-alkyl, C1-C6-alkoxy or C3-C6-cycloalkyl,
R4 is hydrogen, fluorine, chlorine, cyano, optionally singly or multiply, identically or differently fluorine- or chlorine-substituted C1-C4-alkyl, C1-C4-alkoxy, C1-C4-alkylthio, C1-C4-alkylsulphinyl, C1-C4-alkylsulphonyl, C1-C4-alkylamino, di(C1-C4-alkyl)amino, C3-C6-cycloalkylamino, (C1-C4-alkoxy)imino, (C1-C4-alkyl)(C1-C4-alkoxy)imino, SF5 or C3-C6-trialkylsilyl,
comprising reacting a substituted anthranilamide derivative of the formula (IV)
in which the R1, R3 and R4 radicals are each as defined above
and X is chlorine, bromine or iodine,
in the presence of a palladium catalyst and optionally of a phosphine ligand simultaneously with carbon monoxide and a compound of formula (V)
R5—OH (V)
R5—OH (V)
in which R5 is as defined above
or a compound of formula (VI)
HNR6R7 (VI)
HNR6R7 (VI)
in which R6 and R7 are each as defined above.
3. Process according to claim 2 , wherein the compound of formula (IV) is prepared in the presence of a condensing agent and of a base.
4. Process according to claim 1 , wherein the palladium catalyst used is a palladium (II) salt and/or Pd(O) species.
5. Process according to claim 4 , wherein the palladium catalyst used is bis(dibenzylideneacetone)palladium, tris(dibenzylideneacetone)dipalladium, palladium chloride, palladium bromide and/or palladium acetate.
6. Process according to claim 1 , wherein the phosphine ligand used is a compound of formula (X)
PR10R11R12 (X)
PR10R11R12 (X)
where the R10, R11 and R12 radicals are each independently hydrogen, linear or branched C1-C8-alkyl, vinyl, aryl or heteroaryl selected from pyridine, pyrimidine, pyrrole, thiophene and furan, which may in turn be substituted by further substituents from the group of linear or branched C1-C8-alkyl or C6-C10-aryl, linear or branched C1-C8-alkyloxy or C1-C10-aryloxy, halogenated linear or branched C1-C8-alkyl or halogenated C6-C10-aryl, C6-C10-aryloxycarbonyl, linear or branched C1-C8-alkylamino, linear or branched C1-C8-dialkylamino, C1-C8-arylamino, C1-C8-diarylamino, hydroxyl, carboxyl, cyano and halogen,
or a chelating biphosphine.
7. Process according to claim 6 , wherein the chelating biphosphine is one or more selected from 1,2-bis(diphenylphosphino)ethane, 1,2-bis(diphenylphosphino)propane, 1,2-bis(diphenylphosphino)butane, 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl and 1,1′-bis(diphenylphosphino)ferrocene.
8. Process according to claim 6 , wherein the phosphine ligand used is triphenylphosphine.
9. Process according to claim 6 , wherein 1-20 molar equivalents of phosphine are used, based on the amount of palladium catalyst used.
10. Compound of formula (IV)
Where
R1 is optionally singly or multiply, identically or differently fluorine- or chlorine-substituted C1-C6-alkyl, or C6-C10-aryl, or is a hetaryl radical of formula (II)
where
R8 is C1-C6-alkyl, C3-C6-cycloalkyl, C1-C4-alkoxy, C1-C4-alkylthio, C1-C4-alkylsulphinyl, C1-C4-alkylsulphonyl, which may optionally be mono- or polysubstituted, identically or differently by fluorine or chlorine, or is fluorine, chlorine, cyano, alkylamino, dialkylamino, cycloalkylamino or C3-C6-trialkylsilyl,
Z is CH or N,
and
Y is hydrogen, fluorine, chlorine, optionally singly or multiply, identically or differently fluorine- or chlorine-substituted C1-C6-alkyl, C3-C6-cycloalkyl, C1-C4-alkoxy, C1-C4-alkylthio, C1-C4-alkylsulphinyl, C1-C4-alkylsulphonyl, or is cyano, alkylamino, dialkylamino, cycloalkylamino, C3-C6-trialkylsilyl or a radical of formula (III)
where
R9 is C1-C5-alkyl which may optionally be mono- or polysubstituted identically or differently by halogen,
R2 is an OR5 or NR6R7 radical,
where
R5, R6 and R7 are each independently hydrogen, C1-C6-alkyl, or C6-C10-aryl,
R3 is hydrogen, optionally singly or multiply, identically or differently fluorine- or chlorine-substituted C1-C6-alkyl, C1-C6-alkoxy or C3-C6-cycloalkyl,
R4 is hydrogen, fluorine, chlorine, cyano, optionally singly or multiply, identically or differently fluorine- or chlorine-substituted C1-C4-alkyl, C1-C4-alkoxy, C1-C4-alkylthio, C1-C4-alkylsulphinyl, C1-C4-alkylsulphonyl, C1-C4-alkylamino, di(C1-C4-alkyl)amino, C3-C6-cycloalkylamino, (C1-C4-alkoxy)imino, (C1-C4-alkyl)(C1-C4-alkoxy)imino, SF5 or C3-C6-trialkylsilyl.
11. Compound of formula (IV) according to claim 10 , where
R1 is optionally singly or multiply, identically or differently fluorine- or chlorine-substituted C1-C6-alkyl, or C6-C10-aryl, or is a hetaryl radical of the general formula (II)
where
R8 is optionally singly or multiply, identically or differently fluorine- or chlorine-substituted C1-C6-alkyl, C3-C6-cycloalkyl, C1-C4-alkoxy, C1-C4-alkylthio, C1-C4-alkylsulphinyl, C1-C4-alkylsulphonyl, or is fluorine, chlorine, cyano, alkylamino, dialkylamino, cycloalkylamino or C3-C6-trialkylsilyl,
Z is CH or N, and
Y is hydrogen, fluorine, chlorine, C1-C6-alkyl, C3-C6-cycloalkyl, C1-C6-fluoro- or -chloroalkyl, C1-C6-fluoro- or -chlorocycloalkyl, C1-C4-alkoxy, C1-C4-fluoro- or -chloroalkoxy, C1-C4-alkylthio, C1-C4-alkylsulphinyl, C1-C4-alkylsulphonyl, C1-C4-fluoro- or -chloroalkylthio, C1-C4-fluoro- or -chloroalkylsulphinyl, C1-C4-fluoro- or -chloroalkylsulphonyl, cyano, alkylamino, dialkylamino, cycloalkylamino, C3-C6-trialkylsilyl or a radical of the general formula (III)
12. Compound of formula (IV) according to claim 10 , where
R1 is a hetaryl radical of the general formula (II)
where
R8 is fluorine or chlorine,
Z is N,
and
Y is hydrogen, fluorine, chlorine or a radical of the general formula (III)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12154290.6 | 2012-02-07 | ||
EP12154290 | 2012-02-07 | ||
PCT/EP2013/052350 WO2013117601A1 (en) | 2012-02-07 | 2013-02-06 | Method for producing substituted anthranilic acid derivatives |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/052350 A-371-Of-International WO2013117601A1 (en) | 2012-02-07 | 2013-02-06 | Method for producing substituted anthranilic acid derivatives |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/924,889 Continuation US9670182B2 (en) | 2012-02-07 | 2015-10-28 | Method for producing substituted anthranilic acid derivatives |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150011772A1 true US20150011772A1 (en) | 2015-01-08 |
Family
ID=47722253
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/375,496 Abandoned US20150011772A1 (en) | 2012-02-07 | 2013-02-06 | Method for producing substituted anthranilic acid derivatives |
US14/924,889 Expired - Fee Related US9670182B2 (en) | 2012-02-07 | 2015-10-28 | Method for producing substituted anthranilic acid derivatives |
US15/493,087 Expired - Fee Related US9969717B2 (en) | 2012-02-07 | 2017-04-20 | Method for producing substituted anthranilic acid derivatives |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/924,889 Expired - Fee Related US9670182B2 (en) | 2012-02-07 | 2015-10-28 | Method for producing substituted anthranilic acid derivatives |
US15/493,087 Expired - Fee Related US9969717B2 (en) | 2012-02-07 | 2017-04-20 | Method for producing substituted anthranilic acid derivatives |
Country Status (10)
Country | Link |
---|---|
US (3) | US20150011772A1 (en) |
EP (1) | EP2812310A1 (en) |
JP (2) | JP2015511229A (en) |
KR (1) | KR102032979B1 (en) |
CN (2) | CN104245666B (en) |
BR (1) | BR112014019487A2 (en) |
IL (1) | IL233945A0 (en) |
MX (1) | MX363730B (en) |
TW (1) | TWI644888B (en) |
WO (1) | WO2013117601A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150011772A1 (en) * | 2012-02-07 | 2015-01-08 | Bayer Intellectual Property Gmbh | Method for producing substituted anthranilic acid derivatives |
WO2015162260A1 (en) * | 2014-04-25 | 2015-10-29 | Basf Se | Process for preparing anthranilamide esters and derivatives |
CN104961644B (en) * | 2015-05-20 | 2017-04-12 | 上海交通大学 | Method used for preparing N-aryl amide compound |
CN106045870B (en) * | 2016-07-07 | 2018-07-03 | 上海应用技术学院 | A kind of method for preparing amide |
CN109180518B (en) * | 2018-10-18 | 2021-05-18 | 陕西科技大学 | A kind of secondary/tertiary amide compound and its synthesis method |
EP4214188A1 (en) | 2020-09-17 | 2023-07-26 | PI Industries Ltd. | A process for the synthesis of anthranilic acid/amide compounds and intermediates thereof |
CN116535388B (en) * | 2023-03-27 | 2024-12-10 | 江苏七洲绿色科技研究院有限公司 | A kind of preparation method of chlorantraniliprole |
WO2025134143A1 (en) | 2023-12-19 | 2025-06-26 | Pi Industries Ltd. | A method for the synthesis of substituted anthranilic amide compounds, intermediates and salts thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6635657B1 (en) * | 1998-12-23 | 2003-10-21 | Eli Lilly And Company | Aromatic amides |
US7456169B2 (en) * | 2003-02-27 | 2008-11-25 | Abbott Laboratories Inc. | Heterocyclic kinase inhibitors |
US7491718B2 (en) * | 2002-10-08 | 2009-02-17 | Abbott Laboratories | Sulfonamides having antiangiogenic and anticancer activity |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3161456D1 (en) * | 1980-02-06 | 1983-12-29 | Hoffmann La Roche | Process for the preparation of anthranilic acid derivatives |
US5739330A (en) * | 1996-02-05 | 1998-04-14 | Hoechst Celanese Corporation | Process for preparing quinazolones |
US6632815B2 (en) * | 1999-09-17 | 2003-10-14 | Millennium Pharmaceuticals, Inc. | Inhibitors of factor Xa |
KR20040034594A (en) * | 2001-01-26 | 2004-04-28 | 브리스톨-마이어스스퀴브컴파니 | Imidazolyl Derivatives as Corticotropin Releasing Factor Inhibitors |
AR036872A1 (en) | 2001-08-13 | 2004-10-13 | Du Pont | ANTRANILAMIDE COMPOSITE, COMPOSITION THAT INCLUDES IT AND METHOD FOR CONTROLLING AN INVERTEBRATE PEST |
JP2004004374A (en) | 2002-05-31 | 2004-01-08 | Canon Inc | Flash photographing device |
BR0311707A (en) * | 2002-06-13 | 2005-03-15 | Du Pont | Compound, composition and method of control of at least one invertebrate pest |
JP2004043474A (en) * | 2002-07-05 | 2004-02-12 | Nippon Nohyaku Co Ltd | 2-aminobenzoic acid derivative and method for producing the same |
US20040068012A1 (en) * | 2002-10-08 | 2004-04-08 | Comess Kenneth M. | Sulfonamides having antiangiogenic and anticancer activity |
EP1599463B1 (en) | 2003-01-28 | 2013-06-05 | E.I. Du Pont De Nemours And Company | Cyano anthranilamide insecticides |
TWI363756B (en) | 2004-12-07 | 2012-05-11 | Du Pont | Method for preparing n-phenylpyrazole-1-carboxamides |
DE102006032168A1 (en) * | 2006-06-13 | 2007-12-20 | Bayer Cropscience Ag | Anthranilic acid diamide derivatives with heteroaromatic substituents |
UA99257C2 (en) * | 2006-07-19 | 2012-08-10 | Е.І. Дю Пон Де Немур Енд Компані | Process for making 3-substituted 2-amino-5-halobenzamides |
TWI395728B (en) | 2006-12-06 | 2013-05-11 | Du Pont | Process for preparing 2-amino-5-cyanobenzoic acid derivatives |
TWI415827B (en) | 2006-12-21 | 2013-11-21 | Du Pont | Process for preparing 2-amino-5-cyanobenzoic acid derivatives |
TWI430980B (en) | 2007-06-29 | 2014-03-21 | Du Pont | Process for preparing 2-amino-5-cyanobenzoic acid derivatives |
KR20100098382A (en) | 2007-11-08 | 2010-09-06 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Process for preparing 2-amino-5-cyanobenzoic acid derivatives |
TWI432421B (en) | 2007-12-19 | 2014-04-01 | Du Pont | Process for preparing 2-amino-5-cyanobenzoic acid derivatives |
TWI431000B (en) | 2008-03-05 | 2014-03-21 | Du Pont | Process for preparing 2-amino-5-cyanobenzoic acid derivatives |
KR20160148046A (en) * | 2008-12-18 | 2016-12-23 | 바이엘 인텔렉쳐 프로퍼티 게엠베하 | Tetrazole substituted anthranilic amides as pesticides |
BR112012019973B1 (en) * | 2010-02-09 | 2019-02-05 | Bayer Cropscience Ag | HYDRAZINE-SUBSTITUTED ANTRANYLIC ACID DERIVATIVES, MIXTURES, PRECURSOR COMPOUNDS, AGRICULTURAL COMPOSITIONS, PROCESSES FOR PREPARING THESE COMPOUNDS AND COMPOSITIONS, USE OF THE COMPOUNDS, MIXTURES OR COMPOSITIONS FOR THE MATERIALS AND CONTROLS |
ES2554903T3 (en) * | 2010-06-15 | 2015-12-28 | Bayer Intellectual Property Gmbh | Diaramide derivatives of anthranilic acid with cyclic side chains |
MX347841B (en) * | 2010-06-15 | 2017-05-16 | Bayer Ip Gmbh | Process for preparing tetrazole-substituted anthranilamide derivatives and novel crystal polymorph of these derivatives. |
BR112012032259A2 (en) * | 2010-06-15 | 2015-09-15 | Bayer Ip Gmbh | "New ortho-substituted arylamide derivatives". |
KR20140006007A (en) * | 2011-01-28 | 2014-01-15 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Method for preparing 2-aminobenzamide derivatives |
US20150011772A1 (en) * | 2012-02-07 | 2015-01-08 | Bayer Intellectual Property Gmbh | Method for producing substituted anthranilic acid derivatives |
-
2013
- 2013-02-06 US US14/375,496 patent/US20150011772A1/en not_active Abandoned
- 2013-02-06 TW TW102104496A patent/TWI644888B/en not_active IP Right Cessation
- 2013-02-06 WO PCT/EP2013/052350 patent/WO2013117601A1/en active Application Filing
- 2013-02-06 CN CN201380008403.4A patent/CN104245666B/en not_active Expired - Fee Related
- 2013-02-06 CN CN201811620018.6A patent/CN109970707A/en active Pending
- 2013-02-06 MX MX2014009317A patent/MX363730B/en active IP Right Grant
- 2013-02-06 EP EP13704756.9A patent/EP2812310A1/en not_active Withdrawn
- 2013-02-06 JP JP2014555260A patent/JP2015511229A/en not_active Withdrawn
- 2013-02-06 KR KR1020147024396A patent/KR102032979B1/en not_active Expired - Fee Related
- 2013-02-06 BR BR112014019487-4A patent/BR112014019487A2/en not_active Application Discontinuation
-
2014
- 2014-08-04 IL IL233945A patent/IL233945A0/en unknown
-
2015
- 2015-10-28 US US14/924,889 patent/US9670182B2/en not_active Expired - Fee Related
-
2017
- 2017-04-20 US US15/493,087 patent/US9969717B2/en not_active Expired - Fee Related
- 2017-09-21 JP JP2017180910A patent/JP6438551B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6635657B1 (en) * | 1998-12-23 | 2003-10-21 | Eli Lilly And Company | Aromatic amides |
US7491718B2 (en) * | 2002-10-08 | 2009-02-17 | Abbott Laboratories | Sulfonamides having antiangiogenic and anticancer activity |
US7456169B2 (en) * | 2003-02-27 | 2008-11-25 | Abbott Laboratories Inc. | Heterocyclic kinase inhibitors |
Non-Patent Citations (4)
Title |
---|
Fulford, e-EROS Encyclopedia of Reagents for Organic Synthesis (2001), John Wiley &Sons, Chichester, UK) CODEN:69KUHI * |
Seo et al. J. Org. Chem. 2006, 71, 8891-8900 * |
Sorgi et al. Encyclopedia of Reagents for Organic Synthesis, 2001, doi:10.1002/047084289X.rt164. * |
Valentine et al. Journal of Organic Chemistry, 1981, 46, 4614-4617. * |
Also Published As
Publication number | Publication date |
---|---|
US9670182B2 (en) | 2017-06-06 |
US20170217934A1 (en) | 2017-08-03 |
MX2014009317A (en) | 2014-11-12 |
US9969717B2 (en) | 2018-05-15 |
CN109970707A (en) | 2019-07-05 |
IL233945A0 (en) | 2014-09-30 |
US20160046607A1 (en) | 2016-02-18 |
TWI644888B (en) | 2018-12-21 |
MX363730B (en) | 2019-04-01 |
JP2015511229A (en) | 2015-04-16 |
TW201336811A (en) | 2013-09-16 |
WO2013117601A1 (en) | 2013-08-15 |
EP2812310A1 (en) | 2014-12-17 |
BR112014019487A2 (en) | 2020-10-27 |
KR20140124810A (en) | 2014-10-27 |
KR102032979B1 (en) | 2019-10-16 |
CN104245666B (en) | 2019-01-11 |
JP2018027964A (en) | 2018-02-22 |
JP6438551B2 (en) | 2018-12-12 |
CN104245666A (en) | 2014-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9969717B2 (en) | Method for producing substituted anthranilic acid derivatives | |
US20110003999A1 (en) | Process for Preparing Substituted Biphenylanilides | |
JP5970065B2 (en) | Method for producing tetrazole-substituted anthranilic acid diamide derivatives by reacting pyrazolic acid with anthranilic acid ester | |
KR101949551B1 (en) | Method for producing tetrazole-substituted anthranilic acid diamide derivatives by reacting benzoxazinones with amines | |
KR102167814B1 (en) | Method for producing carboxamides | |
KR101652360B1 (en) | Process for preparing substituted biphenyl anilides | |
JP5140776B1 (en) | Process for producing 1-substituted-3-fluoroalkylpyrazole-4-carboxylic acid ester | |
US9458091B2 (en) | Aromatic amidecarboxylic acid and process for producing the same | |
US9481650B2 (en) | Process for the preparation of 2-trifluoromethyl isonicotinic acid and esters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BAYER INTELLECTUAL PROPERTY GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIMMLER, THOMAS;PAZENOK, SERGII;VOLZ, FRANK;AND OTHERS;SIGNING DATES FROM 20140721 TO 20140725;REEL/FRAME:033476/0149 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |