US20100044011A1 - Heating device - Google Patents
Heating device Download PDFInfo
- Publication number
- US20100044011A1 US20100044011A1 US12/278,065 US27806507A US2010044011A1 US 20100044011 A1 US20100044011 A1 US 20100044011A1 US 27806507 A US27806507 A US 27806507A US 2010044011 A1 US2010044011 A1 US 2010044011A1
- Authority
- US
- United States
- Prior art keywords
- spiral
- heating device
- heating medium
- housing
- sealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 73
- 238000007789 sealing Methods 0.000 claims abstract description 49
- 238000002485 combustion reaction Methods 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 5
- 239000007789 gas Substances 0.000 description 7
- 238000005495 investment casting Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000001174 ascending effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/02—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
- F28D7/024—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/22—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
- F24H1/40—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes
- F24H1/43—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes helically or spirally coiled
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
Definitions
- the invention relates to a heating device according to the preamble of claim 1 .
- a heating device of the type specified initially is known from DE 38 15 647 A1.
- This consists of at least one heat exchanger that spirals helically around a spiral axis, is traversed by a heating medium (in this case a coolant) and is configured as a flat tube comprising ends of the spiral on the feed flow and return flow sides and heating medium connections, said heat exchanger defining a corresponding spiral-shaped flow opening, wherein a cap-type sealing housing is attached in a fluid-tight manner to at least one end of the spiral and the heating medium connection is situated on said housing.
- FIG. 1 of DE 38 15 647 A1 shows a solution with a single spiral
- FIG. 2 shows a solution with an intertwined double spiral.
- Another heating device is known from DE 102 11 489 C1, wherein such heating devices fitted with double or multiple spirals as heat exchangers are particularly intended for higher power ranges.
- the two wound heat exchangers formed as flat tubes are intercalated in said heating device by welding to sealing walls (so-called plates) provided on both sides, in which corresponding indentations are made with reference to the gradient of the two wound flat tubes or the heat exchanger, wherein the open ends of the obliquely truncated flat tubes corresponding to the gradient there are connected to inlet and outlet openings in the plates (the oblique cut is necessary from the production technology aspect since the plates are produced by deep drawing so that a 90° angle is not possible).
- These plates must also be configured as hollow plates in order to form feed and return flow chambers with feed and return flow connections for heat consumption circuits to be connected.
- At least one end of the spiral is obliquely truncated in relation to the spiral axis and the end of the sealing housing on the spiral side has a corresponding inverse oblique configuration, wherein the heating medium connection on the cap-type sealing housing is preferably aligned to that it is oriented in the direction of the spiral axis.
- the inlet and outlet openings at the spiral ends are arranged in a plane oriented obliquely in relation to the flow direction, to which the sealing or distributor housing, cut correspondingly but in the opposite direction, is attached, i.e. according to the invention, an obliquely oriented plane (connecting plane) is provided between the spiral end the sealing housing.
- this oblique cut facilitates the connection of the sealing housing to the spiral end since all the connecting edges are accessible to a welding process, for example, without further spreading of the spiral, which was not possible in spirals in the sense of DE 102 11 489 C1 or DE 10 2004 005 048 A1 since the flow gap (heating gas flow gap) is relatively narrow in contrast to DE 38 15 647 A1.
- the sealing or distributor housing in side view are preferably configured substantially as right-angled triangles, whose hypotenuse forms the connecting side for the spiral ends and the heating-medium connection is located on their larger side.
- the solution according to the invention is particularly intended for heating devices whose heat exchangers consist of at least two tube spirals for which it is therefore necessary to connect the participating flat tube spirals to one another hydraulically, seal them at their ends and provide common heating medium connections.
- the solution according to the invention is also suitable for heating devices which manage with only one spiral tube (that is one heat exchanger), for example, as a result of lower power requirements.
- the sealing housing is configured as a distributor housing and is attached in a liquid-tight manner to the ends of the spirals
- the ends of the spirals of the heat exchangers are each arranged in pairs flush and adjacent to one another, wherein in each case edges of their adjacently extending walls are connected to one another in a liquid-tight manner.
- the heating device particularly has the function of a heating boiler (see again on this matter DE 102 11 489 C1 and DE 10 2004 005 048 A1). Accordingly, it is preferably provided that that the at least one heat exchanger encloses a combustion chamber which, when viewed in the direction of the spiral axis, is delimited by respectively one sealing wall wherein a housing formed from a jacket part and the sealing walls surrounds the heat exchanger forming an exhaust gas chamber.
- the configuration of the two heat exchanger spirals according to the invention as an essential element of the heat exchanger fulfils a double function, i.e. firstly the hydraulic connection of the two spirals is made by the distributor housing which at the same time forms a convenient approach for the.
- the cap-type sealing or distributor housing is configured as substantially corresponding to the opening cross-section of the two spiral ends, i. e. the two cap-type distributor housing occupy virtually no additional space and in this respect, constitute merely a continuation of the spiral ends on the external contour side.
- the distributor housing is arranged in relation to the return flow supply and also the outflowing feed flow starting from the lower flat tube or the lower flat tube spiral with its hypotenuse ascending.
- the sealing walls of the distributor housing opposite to the attached spiral ends are advantageously configured as concavely curved or concavely profiled on the inside.
- the sealing or distributor housing can be configured in the form of deep-drawn parts or also in such a manner that the distributor housings are each formed from a sheet metal blank which is to be folded and corresponds to their final shape. It is preferably provided that the sealing housing is configured in the form of a cast part, in particular a precision cast part.
- FIG. 1 shows a simplified section through the actual heat exchanger of the heating device
- FIG. 2 shows a corresponding section according to FIG. 1 in the embodiment according to the invention
- FIG. 2A shows a sheet metal blank for forming distributor housings
- FIG. 3 shows a perspective view of one end of the double spiral
- FIG. 4 shows the end of the double spiral according to FIG. 3 with attached distributor housing (not yet welded on);
- FIG. 5 shows a diagram corresponding to that of FIG. 4 showing one spiral end in a contour-matched embodiment of the distributor housing (precision casting);
- FIG. 6 shows an oblique section along the line A-A in FIG. 5 ;
- FIG. 7 shows a perspective overall view of the heat exchanger of the heating device
- FIG. 8 also shows a perspective and simplified view of the entire heating device without external accessories
- FIG. 9 shows a perspective view of a heat exchanger formed from only one spiral with attached sealing housing.
- FIG. 10 shows an embodiment of the sealing housing made of precision casting.
- the heating device consists of two helically spiralling heat exchangers 1 , 2 , traversed by a heating medium and defining a correspondingly spiralled flow gap S for heating gases, which heat exchangers are guided parallel to one another and into one another as flat tubes F or are arranged so that they are screwed into one another to a certain extent.
- the heat exchangers 1 , 2 which thus form a double spiral, each have two spiral ends 3 , 4 ; 3 ′, 4 ′ on the return flow and feed flow sides (see FIGS. 1 , 2 ), wherein the two heat exchangers 1 , 2 in hydraulic communication with one another in relation to heating medium connections 5 enclose a cylindrical combustion chamber BR which, when viewed axially (i. e. in the direction of the spiral axis), is delimited at both ends by a sealing wall 6 , 7 , of which one serves as a connecting wall 6 for a burner B.
- a housing 8 formed from a jacket part 9 and the walls 6 , 7 (shown only schematically in FIG. 1 ), encloses the two heat exchangers 1 , 2 to form an exhaust gas chamber 11 provided with an exhaust gas connection 10 (see FIG. 8 ), which is also only indicated schematically in FIG. 1 .
- the spiral ends 3 , 4 , 3 ′, 4 ′ on the feed and return flow sides are jointly attached in a liquid tight manner to respectively one cap-type sealing housing 12 which is open toward the flat tubes F and is configured as a distributor housing, each distributor housing being provided with respectively one of the heating medium connections 5 .
- the cap-type distributor housings are configured in the section viewed transversely to the direction of flow of the heating medium as substantially corresponding to the opening cross-section of the two spiral ends 3 , 4 , 3 ′, 4 ′ in order to take up as little space as possible.
- the inlet and outlet openings 14 at the spiral ends 3 , 4 , 3 ′, 4 ′ are arranged according to the invention in a plane E oriented obliquely in relation to the direction of flow (see FIG. 2 ), to which the distributor housings cut correspondingly obliquely in the opposite direction are attached, i.e. preferably welded on.
- the sealing housings 12 substantially form right-angled triangles whose hypotenuse H forms the connecting side for the spiral ends 3 , 4 , 3 ′, 4 ′, the relevant heating medium connection 5 being disposed on the larger side K in each case.
- the sealing housing 12 is preferably arranged with reference to the return flow guidance and FIG. 2 , starting from the lower flat tube F or the heat exchanger 2 , with its hypotenuse H ascending.
- the sealing walls 13 of the distributor housing 12 opposite to the spiral ends 3 , 4 , 3 ′, 4 ′ are configured as concavely curved or concavely profiled on the inside, as is illustrated in the oblique section view according to FIGS. 6 and 10 .
- the previously explained sealing housing 12 can easily be manufactured as deep-drawn parts on account of their simplicity but can also be formed from a sheet metal blank which is to be folded to correspond to their final shape, one of which is shown in FIG. 2A for a sealing housing 12 which is triangular in side view, this being the preferred shape, since an optimised distribution of the return flow and the feed flow of the heating medium at the two spiralled heat exchangers 1 , 2 is thereby obtained with reference to FIG. 2 .
- heating device whose heat exchanger consists of only a single flat tube spiral 1 which is illustrated in FIG. 9 for completeness, wherein this representation comprises the embodiment according to the invention in which the spiral ends 3 , 4 of the flat tube F on the return and feed slow sides are obliquely truncated and the sealing housing 12 attached thereto has a corresponding inverse obliquely truncated configuration, forming a flat triangle in side view.
- FIG. 10 shows a preferred embodiment of the sealing housing 12 as a precision casting including the heating medium connection 5 .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
- Air-Conditioning For Vehicles (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006004900.4 | 2006-02-03 | ||
DE102006004900A DE102006004900A1 (de) | 2006-02-03 | 2006-02-03 | Heizgerät |
PCT/DE2007/000216 WO2007087801A2 (de) | 2006-02-03 | 2007-02-02 | Heizgerät |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100044011A1 true US20100044011A1 (en) | 2010-02-25 |
Family
ID=38229686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/278,065 Abandoned US20100044011A1 (en) | 2006-02-03 | 2007-02-02 | Heating device |
Country Status (6)
Country | Link |
---|---|
US (1) | US20100044011A1 (de) |
EP (1) | EP1979696B1 (de) |
AT (1) | ATE553346T1 (de) |
CA (1) | CA2637845C (de) |
DE (1) | DE102006004900A1 (de) |
WO (1) | WO2007087801A2 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110114086A1 (en) * | 2008-03-15 | 2011-05-19 | Babcock Power Services Inc | Heating device |
US20120291429A1 (en) * | 2010-11-17 | 2012-11-22 | Liebherr-Hydraulikbagger Gmbh | Implement |
US9644344B2 (en) | 2010-11-17 | 2017-05-09 | Liebherr-Hydraulikbagger Gmbh | Temperature control of energy recovery cylinder |
US20170350654A1 (en) * | 2014-12-15 | 2017-12-07 | Jian Liu | Barrel-shaped component as well as vessel and motor housing based on it |
IT202100025346A1 (it) * | 2021-10-04 | 2023-04-04 | Condevo S P A | Avvolgimento tubiero per una cella di scambio di calore a gas per una caldaia |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008035852A1 (de) * | 2008-08-01 | 2010-02-04 | Herbert Kannegiesser Gmbh | Vorrichtung zum Aufheizen eines Wärmeträgers für insbesondere Wäschereimaschinen und bevorzugte Verwendungen der Vorrichtung |
DE102009043288A1 (de) | 2009-09-29 | 2011-04-14 | Viessmann Werke Gmbh & Co Kg | Heizgerät |
DE102011010444A1 (de) | 2011-02-04 | 2012-08-09 | Viessmann Werke Gmbh & Co Kg | Heizkessel |
RU2553007C1 (ru) * | 2013-12-25 | 2015-06-10 | Юрий Яковлевич Печенегов | Теплоутилизатор |
DE102015118094A1 (de) | 2015-10-23 | 2017-04-27 | Viessmann Werke Gmbh & Co Kg | Wärmeübertragungsvorrichtung |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1485770A (en) * | 1922-03-20 | 1924-03-04 | Mare Baltzar E L De | Regenerator |
US1968890A (en) * | 1932-11-05 | 1934-08-07 | Cutter Mfg Company | Fire screen |
US2566310A (en) * | 1946-01-22 | 1951-09-04 | Hydrocarbon Research Inc | Tray type heat exchanger |
GB1270568A (en) * | 1969-04-21 | 1972-04-12 | Henry Brants | Heat exchanger |
US4188917A (en) * | 1977-04-28 | 1980-02-19 | Asman Elof Viktor | Method and device for improving the efficiency of heat generators |
DE3122944A1 (de) * | 1981-06-10 | 1983-01-13 | Parca Norrahammar AB, 56200 Norrahammar | Rohrwaermetauscher |
US4484561A (en) * | 1982-09-14 | 1984-11-27 | Crescent Metal Products, Inc. | Gas convection oven |
US4602674A (en) * | 1982-02-08 | 1986-07-29 | Ab Elge-Verken | Two-circuit heat exchanger |
JPH01179813A (ja) * | 1988-01-09 | 1989-07-17 | Daikichi Hajiki | 廃タイヤ燃焼方法及びその装置 |
DE3902025A1 (de) * | 1988-01-26 | 1989-07-27 | Vaillant Joh Gmbh & Co | Verfahren und einrichtungen zur herstellung eines einer verbrennung zuzufuehrenden, aus brenngas und verbrennungsluft bestehenden gemisches |
US4863091A (en) * | 1987-03-18 | 1989-09-05 | Quality Tubing, Inc. | Method and apparatus for producing continuous lengths of coilable tubing |
US5191911A (en) * | 1987-03-18 | 1993-03-09 | Quality Tubing, Inc. | Continuous length of coilable tubing |
US5419392A (en) * | 1993-02-10 | 1995-05-30 | Maruyama; Noboru | Heat exchanging apparatus |
US5607487A (en) * | 1993-03-17 | 1997-03-04 | Taylor; Leland T. | Bottom feed - updraft gasification system |
US6702762B2 (en) * | 2001-12-27 | 2004-03-09 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for joining two guide wire core materials without a hypotube |
FR2847972A1 (fr) * | 2002-11-29 | 2004-06-04 | Realisation Mecaniques Engenee | Echangeur de chaleur et dispositif de production d'eau chaude sanitaire |
US6866642B2 (en) * | 2002-11-25 | 2005-03-15 | Advanced Cardiovascular Systems, Inc. | Enhanced method for joining two core wires |
US6918882B2 (en) * | 2001-10-05 | 2005-07-19 | Scimed Life Systems, Inc. | Guidewire with stiffness blending connection |
EP1562006A1 (de) * | 2004-01-30 | 2005-08-10 | Viessmann Werke GmbH & Co KG | Heizgeraet |
WO2005103594A1 (en) * | 2004-04-23 | 2005-11-03 | Aarhuskarlshamn Denmark A/S | Method, apparatus, system and heat exchanger for increasing the temperature of a substance which is initially in an at least partly solidified state in a container |
JP2006234254A (ja) * | 2005-02-24 | 2006-09-07 | Sanyo Electric Co Ltd | 熱交換器及びそれを用いたヒートポンプ式給湯装置 |
EP1746361A1 (de) * | 2005-07-20 | 2007-01-24 | Viessmann Werke GmbH & Co KG | Heizgerät |
US20090227902A1 (en) * | 2004-08-31 | 2009-09-10 | Abbott Cardiovascular Systems, Inc. | Guide wire with core having welded wire segments |
FR2929389A1 (fr) * | 2008-03-27 | 2009-10-02 | 2 C Soc Par Actions Simplifiee | Echangeur de chaleur pour installation de traitement par oxydation hydrothermale |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL6801838A (de) * | 1967-03-07 | 1968-09-09 | ||
DE3815647A1 (de) * | 1987-06-05 | 1988-12-22 | Sueddeutsche Kuehler Behr | Rundwaermetauscher, insbesondere fuer kaeltemittel von klimaanlagen |
DE10026548C1 (de) * | 2000-05-27 | 2001-11-22 | Viessmann Werke Kg | Wendelspalt-Wärmetauscher |
DE10211489C1 (de) * | 2002-03-15 | 2003-06-26 | Viessmann Werke Kg | Kompaktheizkessel |
DE102004023711B3 (de) * | 2004-05-11 | 2005-10-13 | Viessmann Werke Gmbh & Co Kg | Heizgerät |
-
2006
- 2006-02-03 DE DE102006004900A patent/DE102006004900A1/de not_active Withdrawn
-
2007
- 2007-02-02 AT AT07721886T patent/ATE553346T1/de active
- 2007-02-02 EP EP07721886A patent/EP1979696B1/de active Active
- 2007-02-02 US US12/278,065 patent/US20100044011A1/en not_active Abandoned
- 2007-02-02 WO PCT/DE2007/000216 patent/WO2007087801A2/de active Application Filing
- 2007-02-02 CA CA2637845A patent/CA2637845C/en active Active
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1485770A (en) * | 1922-03-20 | 1924-03-04 | Mare Baltzar E L De | Regenerator |
US1968890A (en) * | 1932-11-05 | 1934-08-07 | Cutter Mfg Company | Fire screen |
US2566310A (en) * | 1946-01-22 | 1951-09-04 | Hydrocarbon Research Inc | Tray type heat exchanger |
GB1270568A (en) * | 1969-04-21 | 1972-04-12 | Henry Brants | Heat exchanger |
US4188917A (en) * | 1977-04-28 | 1980-02-19 | Asman Elof Viktor | Method and device for improving the efficiency of heat generators |
DE3122944A1 (de) * | 1981-06-10 | 1983-01-13 | Parca Norrahammar AB, 56200 Norrahammar | Rohrwaermetauscher |
US4602674A (en) * | 1982-02-08 | 1986-07-29 | Ab Elge-Verken | Two-circuit heat exchanger |
US4484561A (en) * | 1982-09-14 | 1984-11-27 | Crescent Metal Products, Inc. | Gas convection oven |
US4863091A (en) * | 1987-03-18 | 1989-09-05 | Quality Tubing, Inc. | Method and apparatus for producing continuous lengths of coilable tubing |
US5191911A (en) * | 1987-03-18 | 1993-03-09 | Quality Tubing, Inc. | Continuous length of coilable tubing |
JPH01179813A (ja) * | 1988-01-09 | 1989-07-17 | Daikichi Hajiki | 廃タイヤ燃焼方法及びその装置 |
DE3902025A1 (de) * | 1988-01-26 | 1989-07-27 | Vaillant Joh Gmbh & Co | Verfahren und einrichtungen zur herstellung eines einer verbrennung zuzufuehrenden, aus brenngas und verbrennungsluft bestehenden gemisches |
US5419392A (en) * | 1993-02-10 | 1995-05-30 | Maruyama; Noboru | Heat exchanging apparatus |
US5607487A (en) * | 1993-03-17 | 1997-03-04 | Taylor; Leland T. | Bottom feed - updraft gasification system |
US6918882B2 (en) * | 2001-10-05 | 2005-07-19 | Scimed Life Systems, Inc. | Guidewire with stiffness blending connection |
US6702762B2 (en) * | 2001-12-27 | 2004-03-09 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for joining two guide wire core materials without a hypotube |
US6866642B2 (en) * | 2002-11-25 | 2005-03-15 | Advanced Cardiovascular Systems, Inc. | Enhanced method for joining two core wires |
FR2847972A1 (fr) * | 2002-11-29 | 2004-06-04 | Realisation Mecaniques Engenee | Echangeur de chaleur et dispositif de production d'eau chaude sanitaire |
EP1562006A1 (de) * | 2004-01-30 | 2005-08-10 | Viessmann Werke GmbH & Co KG | Heizgeraet |
WO2005103594A1 (en) * | 2004-04-23 | 2005-11-03 | Aarhuskarlshamn Denmark A/S | Method, apparatus, system and heat exchanger for increasing the temperature of a substance which is initially in an at least partly solidified state in a container |
US20080264601A1 (en) * | 2004-04-23 | 2008-10-30 | Aarbuskarlshamn Denmark A/S | Method, Apparatus, System And Heat Exchanger For Increasing the Temperature Of A Substance Which Is Initially In An At Least Partly Solidified State In A Container |
US20090227902A1 (en) * | 2004-08-31 | 2009-09-10 | Abbott Cardiovascular Systems, Inc. | Guide wire with core having welded wire segments |
JP2006234254A (ja) * | 2005-02-24 | 2006-09-07 | Sanyo Electric Co Ltd | 熱交換器及びそれを用いたヒートポンプ式給湯装置 |
EP1746361A1 (de) * | 2005-07-20 | 2007-01-24 | Viessmann Werke GmbH & Co KG | Heizgerät |
FR2929389A1 (fr) * | 2008-03-27 | 2009-10-02 | 2 C Soc Par Actions Simplifiee | Echangeur de chaleur pour installation de traitement par oxydation hydrothermale |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110114086A1 (en) * | 2008-03-15 | 2011-05-19 | Babcock Power Services Inc | Heating device |
US20120291429A1 (en) * | 2010-11-17 | 2012-11-22 | Liebherr-Hydraulikbagger Gmbh | Implement |
US9593465B2 (en) * | 2010-11-17 | 2017-03-14 | Liebherr-Hydraulikbagger Gmbh | Heat exchanger for energy recovery cylinder |
US9644344B2 (en) | 2010-11-17 | 2017-05-09 | Liebherr-Hydraulikbagger Gmbh | Temperature control of energy recovery cylinder |
US20170350654A1 (en) * | 2014-12-15 | 2017-12-07 | Jian Liu | Barrel-shaped component as well as vessel and motor housing based on it |
IT202100025346A1 (it) * | 2021-10-04 | 2023-04-04 | Condevo S P A | Avvolgimento tubiero per una cella di scambio di calore a gas per una caldaia |
EP4160132A1 (de) * | 2021-10-04 | 2023-04-05 | Condevo S.p.A. | Rohrwicklung einer gaskondensationswärmeaustauschzelle für einen kessel |
US12320549B2 (en) | 2021-10-04 | 2025-06-03 | Condevo S.P.A. | Tube winding for a gas heat exchange cell for a boiler |
Also Published As
Publication number | Publication date |
---|---|
EP1979696B1 (de) | 2012-04-11 |
ATE553346T1 (de) | 2012-04-15 |
WO2007087801A2 (de) | 2007-08-09 |
CA2637845C (en) | 2014-10-07 |
DE102006004900A1 (de) | 2007-08-16 |
CA2637845A1 (en) | 2007-08-09 |
WO2007087801A3 (de) | 2007-09-20 |
EP1979696A2 (de) | 2008-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100044011A1 (en) | Heating device | |
US8020610B2 (en) | Exhaust gas heat exchanger and method of operating the same | |
JP5193310B2 (ja) | 内燃機関用再循環排気ガス冷却器 | |
AU2007207217B2 (en) | Tube bundle heat exchanger | |
US10066874B2 (en) | Plate heat exchanger and method for constructing multiple passes in the plate heat exchanger | |
EP2171246B1 (de) | Herstellungsverfahren für wärmetauscher | |
US20070017661A1 (en) | Heat exchanger | |
US8915292B2 (en) | Exhaust gas heat exchanger and method of operating the same | |
JP5293077B2 (ja) | 熱交換器 | |
US4271901A (en) | Oil cooler for an internal combustion engine | |
CN102066868A (zh) | 用于机动车的换热器 | |
KR20150056860A (ko) | 가스, 특히 엔진의 배기 가스용 열교환기 | |
CA2682620A1 (en) | Heat exchanger construction | |
KR20140111295A (ko) | 가스, 특히 엔진의 배기 가스를 위한 열교환기 | |
JP5323858B2 (ja) | 渦巻き式熱交換器 | |
US10094619B2 (en) | Heat exchanger having arcuately and linearly arranged heat exchange tubes | |
US20110127016A1 (en) | Heat exchanger | |
US11262143B2 (en) | Compact heat exchanger | |
JP2018105535A (ja) | インタークーラ | |
WO2018123334A1 (ja) | インタークーラ | |
US20100180834A1 (en) | Heat exchanger | |
JP5763434B2 (ja) | 仕切壁をもつ二重管型伝熱装置 | |
RU2179693C2 (ru) | Модульный биметаллический радиатор для бытовых систем отопления | |
ES2594361A1 (es) | Intercambiador de calor para gases, en especial de los gases de escape de un motor | |
CN113167514A (zh) | 热交换器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VIESSMANN WERKE GMBH & CO. KG,GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHLEITER, WOLFGANG;REEL/FRAME:021966/0024 Effective date: 20080805 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |