[go: up one dir, main page]

US20090003986A1 - Pump and Pumping System Utilizing the Same - Google Patents

Pump and Pumping System Utilizing the Same Download PDF

Info

Publication number
US20090003986A1
US20090003986A1 US12/160,105 US16010507A US2009003986A1 US 20090003986 A1 US20090003986 A1 US 20090003986A1 US 16010507 A US16010507 A US 16010507A US 2009003986 A1 US2009003986 A1 US 2009003986A1
Authority
US
United States
Prior art keywords
pumping
pumping unit
screw
water
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/160,105
Other languages
English (en)
Inventor
Kyungho Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20090003986A1 publication Critical patent/US20090003986A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D1/025Comprising axial and radial stages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/002Manually-actuated controlling means, e.g. push buttons, levers or triggers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/12Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means capable of producing different kinds of discharge, e.g. either jet or spray
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • B05B1/18Roses; Shower heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0278Arrangement or mounting of spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/007At least a part of the apparatus, e.g. a container, being provided with means, e.g. wheels, for allowing its displacement relative to the ground
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D3/00Axial-flow pumps
    • F04D3/02Axial-flow pumps of screw type

Definitions

  • the present invention relates to a pump and a pumping system utilizing the same, and more particularly, to a pumping device with an improved rotor to enhance the pumping efficiency of freshwater or seawater, and a pumping system utilizing the same.
  • turbo pumps feature a high feed rate but a relatively small size and are configured for a low delivery head and a large volume of fluid.
  • Centrifugal pumps belong to the turbo pumps.
  • Positive displacement pumps are configured for a high delivery head and a low flow rate, and a feed rate is almost constant under any delivery head ranges.
  • the positive displacement pumps include gear pumps, reciprocating pumps, screw pumps, etc.
  • Centrifugal pumps include an impeller and a casing.
  • the centrifugal pumps are devices in which a centrifugal force is generated when rotating a fluid in a high speed with an impeller, and the fluid is directed to the circumference from the center of the impeller through a pressure change caused by the centrifugal force.
  • Gear pumps are operated in such a way to push a fluid from an inlet side to an outlet side while two gears in a casing are rotated engagingly with each other.
  • the gear pumps are configured for a small volume of fluid and are mainly used to deliver oils such as a lubricant.
  • Utility Model Registration No. 0167567 discloses a screw operator in which a screw impeller having an anti-scattering film is inserted into a case member having a coupling hole and a plurality of guiding blades.
  • a centrifugal pump which is a turbo pump, has a representative advantage capable of delivering a large volume of fluid but is configured for a low delivery head.
  • a gear pump which is a positive displacement pump, can optionally raise a delivery head, thereby guaranteeing a high pumping efficiency, but has a disadvantage that cannot significantly increase a feed rate due to its structural characteristics.
  • a screw pump can pump a large volume of water, but has a disadvantage that cannot raise a delivery head.
  • the present invention provides a pumping device capable of relatively increasing water pumping efficiency using the rotary strength and centrifugal force of a screw, and a pumping system utilizing the same.
  • the present invention also provides a pumping system that is simple in maintenance and management and is easy in adjustment of a pumping depth.
  • the present invention also provides a pumping system that can constantly maintain a water intake location below the surface of water and can convert a centrifugal force to the lifting power of water.
  • a pumping device including a rotor, the rotor including: a screw pumping unit including a rotary body which is rotatably supported by a rotary shaft installed in a frame and a screw installed between an inner surface of the rotary body and an outer surface of the rotary shaft to form a pumping passage; and a centrifugal pumping unit, disposed on the screw pumping unit, radially ejecting water pumped by the screw pumping unit under a centrifugal force.
  • the rotary body and the screw of the screw pumping unit may have a diameter gradually decreasing toward the centrifugal pumping unit from the bottom of the pumping device.
  • a pumping device including a rotor, the rotor including: a screw pumping unit including an inner body rotatably supported by a rotary shaft installed in a frame, an outer body separated from the inter body by a predetermined body to surround the inner body, and a plurality of wings installed between the inner body and the outer body to form a spiral pumping passage; and a centrifugal pumping unit, disposed on the screw pumping unit, radially ejecting water pumped by the screw pumping unit under a centrifugal force.
  • a screw pumping unit including an inner body rotatably supported by a rotary shaft installed in a frame, an outer body separated from the inter body by a predetermined body to surround the inner body, and a plurality of wings installed between the inner body and the outer body to form a spiral pumping passage; and a centrifugal pumping unit, disposed on the screw pumping unit, radially ejecting water pumped by the screw pumping unit under a centrifugal force.
  • a distance between an outer surface of the inner body and the outer body may be constantly maintained, and the inner body and the outer body may have a diameter gradually increasing from the bottom to the top of the pumping device.
  • a pumping system including: a tower, installed at a water intake place, having an internal space section and a water-bearing section disposed on the internal space section; an outlet pipe connecting the water-bearing section and a reservoir installed on land; an intake pipe which communicates with the internal space section, extends to the water intake place from a lower portion of the tower, and has an upward folded end, a hood being installed at the upward folded end; and a pumping device, installed in the tower, pumping water entered into the internal space section via the intake pipe to the water-bearing section and including: a rotary shaft vertically installed in the tower; a rotor including a screw pumping unit and a centrifugal pumping unit disposed on the screw pumping unit, the screw pumping unit including an inner body installed slidably along the rotary shaft and having a shaft bearing and a buoyancy space, an outer body separated from the inner body by a predetermined distance to surround the inner body, and a plurality
  • the driver may include a motor including: a driven pulley having a length which is substantially the same as a lifting distance of the rotor along the rotary shaft supported by the shaft bearing; and a driving pulley connected to the driven pulley via a belt.
  • a distance between an outer surface of the inner body and the outer body of the screw pumping unit may be constantly maintained, and the inner body and the outer body may have a diameter gradually increasing from the bottom to the top of the pumping device.
  • the present invention provides a pumping device and a pumping system utilizing the same.
  • the pumping device which is positioned in a tower installed in a water intake place, includes a screw pumping unit and a centrifugal pumping unit, and thus, water lifting and suction are simultaneously performed by means of a screw, thereby increasing water pumping power.
  • FIG. 1 is a schematic front view illustrating the installation of a pumping system according to an embodiment of the present invention
  • FIG. 2 is a sectional view illustrating a pumping device installed in a tower according to an embodiment of the present invention
  • FIG. 3 is a sectional view illustrating a pumping device according to another embodiment of the present invention.
  • FIG. 4 is a sectional view illustrating a pumping device according to still another embodiment of the present invention.
  • FIG. 5 is a sectional view illustrating a pumping device according to yet another embodiment of the present invention.
  • FIG. 6 is a partial exploded perspective view of a rotor of FIG. 5 ;
  • FIG. 7 is a perspective view illustrating another embodiment of a driver installed in a tower of FIG. 5 ;
  • FIG. 8 is a sectional view illustrating a pumping device according to a further embodiment of the present invention.
  • a pumping system according to the present invention is installed to be adjacent to a river, a lake, or a sea in order to draw freshwater, seawater, or the like toward land through an intake pipe extended to a water intake place and to pump the drawn water to a reservoir installed on land.
  • An embodiment of the pumping system is illustrated in FIGS. 1 and 2 .
  • a pumping system 10 is installed at a riverside, a lakeside, or a seaside, and includes a tower 13 including therein a vertical space section 11 and a water-bearing section 12 disposed on the vertical space section 11 ; a reservoir 100 , installed on land, supplying water to a nursery area, a purification system for drinking purpose, or a plant for industrial use; an outlet pipe 14 connecting the water-bearing section 12 defined in an upper side of the tower 13 and the reservoir 100 ; and an intake pipe 16 which communicates with the vertical space section 11 and extends to a deeper area of a river, a lake, or a sea from a lower portion of the tower 13 , an end of the intake pipe 16 being folded upward and a hood 15 being installed at the upward folded end.
  • the tower 13 includes a pumping device 20 pumping water supplied into the vertical space section 11 via the intake pipe 16 to the water-bearing section 12 and then to the reservoir 100 via the outlet pipe 14 .
  • the tower 13 is a concrete structure and has therein the vertical space section 11 and the water-bearing section 12 disposed on the vertical space section 11 to receive water pumped by the pumping device 20 .
  • a flow passage is defined along an inner surface of the water-bearing section 12 of the tower 13 so that pumped water is discharged into the outlet pipe 14 by a centrifugal pumping unit of a rotor as will be described later.
  • an observation platform may be disposed on the tower 13 , and additional facilities may be installed on an outer surface of the tower 13 .
  • the pumping device 20 is used to pump water entered into the vertical space section 11 of the tower 13 via the intake pipe 16 to the water-bearing section 12 .
  • An embodiment of the pumping device 20 is illustrated in FIG. 2 .
  • the pumping device 20 is installed in the tower 13 and serves to pump water entered into the vertical space section 11 via the intake pipe 16 to the water-bearing section 12 .
  • the pumping device 20 includes a rotor 21 including a screw pumping unit 22 vertically lifting water and a centrifugal pumping unit 23 radially pumping water from the screw pumping unit 22 ; and a driver 25 driving a rotary shaft 24 of the rotor 21 .
  • the screw pumping unit 22 of the rotor 21 includes a rotary body 22 a surrounding the rotary shaft 24 vertically rotatably installed in the vertical space section 11 and being radially spaced from the rotary shaft 24 by a predetermined distance; and a screw 22 c installed between an outer surface of the rotary shaft 24 and an inner surface of the rotary body 22 a to form a spiral pumping passage 22 b .
  • the diameters of the screw 22 c and the rotary body 22 a may be gradually decreased from the bottom to the top thereof to relatively increase an initial intake quantity of water, as illustrated in FIG. 3 .
  • the centrifugal pumping unit 23 of the rotor 21 includes a lower plate member 23 a radially extended from an upper end of the rotary body 22 a ; an upper plate member 23 b , installed at the rotary shaft 24 , being separated from the lower plate member 23 a by a predetermined distance; and blades 23 c disposed between the upper plate member 23 b and the lower plate member 23 a to extend radially with respect to the rotary shaft 24 .
  • the blades 23 c are spirally twisted at a predetermined angle.
  • the rotary body 22 a is connected to the rotary shaft 24 via the screw 22 c , and thus, the screw pumping unit 22 and the centrifugal pumping unit 23 are rotated together with the rotary shaft 24 .
  • the rotary shaft 24 of the rotor 21 is rotatably installed in a state wherein both ends of the rotary shaft 24 are supported in the tower 13 .
  • at least a side of an outer surface of the screw pumping unit 22 may be supported by a journal bearing or a roller.
  • the rotary shaft 24 may also be rotatably supported by a separate frame.
  • the driver 25 may be a motor 25 a installed in an upper portion of the tower 13 to drive the rotary shaft 24 .
  • a driving shaft of the motor 25 a may be connected to the rotary shaft 24 by power transmission elements, e.g., driving and driven pulleys and belts.
  • FIG. 4 illustrates a pumping device 30 according to another embodiment of the present invention.
  • the same components as those in the previous embodiments are represented by the same reference numerals.
  • the pumping device 30 includes a vertical rotary shaft 31 installed in a tower 13 ; a rotor 32 installed at the rotary shaft 31 ; and a driver 35 driving the rotary shaft 31 , like in the above-described embodiments.
  • the rotor 32 includes a screw pumping unit 33 and a centrifugal pumping unit 34 .
  • the screw pumping unit 33 includes an inner body 33 a installed coaxially with the rotary shaft 31 ; an outer body 33 b which is separated from the inner body 33 a by a pre-determined distance and has a greater diameter than the inner body 33 a ; and wings 33 d installed between the inner body 33 a and the outer body 33 b to form a pumping passage 33 c.
  • the centrifugal pumping unit 34 has substantially the same structure as those of the previous embodiments, and includes a lower plate member 34 a radially extended from an upper end of the outer body 33 b ; an upper plate member 34 b , installed at the rotary shaft 31 , being separated from the lower plate member 34 a by a predetermined distance; and blades 34 c disposed between the upper plate member 34 b and the lower plate member 34 a to extend radially with respect to the rotary shaft 31 .
  • the number of the blades 34 c may be the same as the number of the wings 33 d , and the blades 34 c may radially extend with respect to the wings 33 d.
  • the driver 35 has the same structure as those of the previous embodiments, and thus, a description thereof will be omitted.
  • FIGS. 5 and 6 illustrate a pumping device 40 according to still another embodiment of the present invention.
  • the pumping device 40 includes a vertical rotary shaft 41 installed in a tower 13 ; a rotor 42 installed to move up and down along the rotary shaft 41 by the buoyancy of water entered into the tower 13 ; and a driver 46 , installed in the tower 13 , rotating the rotor 42 .
  • the rotor 42 has a space in which buoyancy is generated, and includes a screw pumping unit 43 and a centrifugal pumping unit 44 .
  • the screw pumping unit 43 includes an inner body 43 b that has a buoyancy space 43 a and is installed to move slidably along the rotary shaft 41 ; an outer body 43 c separated from the inner body 43 b by a predetermined distance to surround the inner body 43 b ; and wings 43 e installed between the inner body 43 b and the outer body 43 c to form a pumping passage 43 d.
  • a shaft bearing 43 f is installed to be bored through the buoyancy space 43 a of the inner body 43 b , and the rotary shaft 41 is slidably supported by the shaft bearing 43 f .
  • a bearing 43 g may be installed between the shaft bearing 43 f and the rotary shaft 41 .
  • the centrifugal pumping unit 44 has substantially the same structure as those of the previous embodiments, and thus, a description thereof will be omitted.
  • the driver 46 includes a driven pulley 46 a that extends from an upper portion of the rotor 42 along the rotary shaft 41 and has a predetermined diameter; a driving pulley 46 c installed at a rotary shaft of a motor 46 b installed in the tower 13 ; and a belt 46 d connecting the driven pulley 46 a and the driving pulley 46 c .
  • the driven pulley 46 a of the driver 46 has a length equal to a lifting distance of the rotor 42 .
  • the driver 46 may also include a motor 53 installed at a frame 52 moving up and down along a guide 51 installed at an inner surface of a tower 13 ; and a rotary shaft 54 connected to a driving shaft of the motor 53 , as illustrated in FIG. 7 .
  • the rotor 42 must be installed to freely move up and down by the buoyancy space 43 a and may be rotatably supported by a plurality of guide rollers installed at an inner surface of the tower 13 .
  • the screw pumping unit 43 may be structured such that the diameters of the inner body 43 b and the outer body 43 c are increased gradually from the bottom to the top while constantly maintaining a width of a pumping space, i.e., a distance between the inner body 43 b and the outer body 43 c , as illustrated in FIG. 8 .
  • a motor 25 a which is a driver 25 , is driven, thereby rotating a rotor 21 .
  • a pumping passage 22 b formed by a spiral screw 22 c installed between a rotary body 22 a and a rotary shaft 24 .
  • the pumped water is radially re-pumped by a centrifugal force generated by a centrifugal pumping unit 23 .
  • a screw pumping unit 22 can perform water suction by the centrifugal pumping unit 23 , thereby increasing pumping efficiency.
  • the thus-pumped water is supplied to a reservoir 100 via a water-bearing section 12 and an outlet pipe 14 .
  • a pumping device having a buoyancy space can pump water entered into a vertical space section of a tower at a predetermined depth from a ground surface.
  • the pumping can be achieved regardless of a variation in level of seawater entered into a vertical space section which is caused by the ebb and flow of the tide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)
US12/160,105 2006-01-06 2007-01-05 Pump and Pumping System Utilizing the Same Abandoned US20090003986A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2006-0001913 2006-01-06
KR1020060001913A KR100731838B1 (ko) 2006-01-06 2006-01-06 펌프와 이를 이용한 취수장치
PCT/KR2007/000084 WO2007078175A1 (en) 2006-01-06 2007-01-05 Pump and pumping system utilizing the same

Publications (1)

Publication Number Publication Date
US20090003986A1 true US20090003986A1 (en) 2009-01-01

Family

ID=38228459

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/160,105 Abandoned US20090003986A1 (en) 2006-01-06 2007-01-05 Pump and Pumping System Utilizing the Same

Country Status (8)

Country Link
US (1) US20090003986A1 (de)
EP (1) EP1974144A4 (de)
JP (1) JP2009522501A (de)
KR (1) KR100731838B1 (de)
CN (1) CN101365881A (de)
AU (1) AU2007203871B2 (de)
RU (1) RU2435075C2 (de)
WO (1) WO2007078175A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130115046A1 (en) * 2011-11-07 2013-05-09 I-Nan Kao High speed swirling type centrifugal revolving pipeline device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013015432A1 (ja) * 2011-07-25 2015-02-23 泰工技研工業株式会社 流体機械
CN104018727A (zh) * 2013-03-03 2014-09-03 蒋小钊 泵塔巨型连通器
WO2014177532A1 (de) * 2013-04-29 2014-11-06 Vullnet Miraka Rotationspumpe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4531892A (en) * 1983-03-14 1985-07-30 Sunds Defibrator Aktiebolag Apparatus for pumping of pulp
US4884943A (en) * 1987-06-25 1989-12-05 A. Ahlstrom Corporation Method and apparatus for pumping high-consistency fiber suspension
US20050238479A1 (en) * 2004-04-05 2005-10-27 Konstandinos Zamfes Centrifugal Pump with screw pump accelerator
US6960061B2 (en) * 2003-03-05 2005-11-01 K.H. Brinkmann Gmbh & Co. Kg Rotary pump with vented pump chamber

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2984189A (en) * 1958-08-07 1961-05-16 Worthington Corp Inducer for a rotating pump
US3200754A (en) * 1964-02-10 1965-08-17 Frederick B Cline Water pump
US4150916A (en) * 1975-03-13 1979-04-24 Nikkiso Co., Ltd. Axial flow inducers for hydraulic devices
KR890002921Y1 (ko) * 1987-02-13 1989-05-10 주식회사 삼양사 쑥찜기의 쑥증기 분무장치
US4854818A (en) * 1987-12-28 1989-08-08 Rockwell International Corporation Shrouded inducer pump
JPH0811617B2 (ja) * 1988-11-11 1996-02-07 宇部興産株式会社 スクリュポンプ
JPH02144317A (ja) * 1988-11-22 1990-06-04 Ube Ind Ltd スクリュポンプ
JPH02149619U (de) * 1989-05-24 1990-12-20
JPH0746790Y2 (ja) * 1990-11-20 1995-10-25 石垣機工株式会社 下水等の中継地におけるスクリューポンプの羽根とケーシングとの間隙調節装置
JP3073570B2 (ja) * 1991-09-30 2000-08-07 株式会社鶴見製作所 揚液装置
JPH05172083A (ja) * 1991-12-24 1993-07-09 Kubota Corp 揚水流量制御装置
JPH05321864A (ja) * 1992-05-13 1993-12-07 Tsurumi Mfg Co Ltd 揚液装置
KR200142640Y1 (ko) * 1995-10-21 1999-06-01 윤종용 소형 급수펌프
KR200167366Y1 (ko) * 1997-05-01 2000-03-02 김정복 해수 고양정 버티컬 펌프
JP4036948B2 (ja) * 1998-01-20 2008-01-23 象印マホービン株式会社 スクリューポンプ及びそのスクリュー
JP3672167B2 (ja) * 1998-12-09 2005-07-13 株式会社三協精機製作所 ポンプ装置の取り付け構造およびポット装置ならびにポンプ装置
JP2001355575A (ja) * 2000-06-12 2001-12-26 Ogawa Masaya 深層水の汲み上げ装置及び汲み上げ方法
KR20030070508A (ko) * 2002-02-25 2003-08-30 박재원 나선형수중펌프 확대관 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4531892A (en) * 1983-03-14 1985-07-30 Sunds Defibrator Aktiebolag Apparatus for pumping of pulp
US4884943A (en) * 1987-06-25 1989-12-05 A. Ahlstrom Corporation Method and apparatus for pumping high-consistency fiber suspension
US6960061B2 (en) * 2003-03-05 2005-11-01 K.H. Brinkmann Gmbh & Co. Kg Rotary pump with vented pump chamber
US20050238479A1 (en) * 2004-04-05 2005-10-27 Konstandinos Zamfes Centrifugal Pump with screw pump accelerator
US7419354B2 (en) * 2004-04-05 2008-09-02 Konstandinos Zamfes Centrifugal pump with screw pump accelerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130115046A1 (en) * 2011-11-07 2013-05-09 I-Nan Kao High speed swirling type centrifugal revolving pipeline device
US8800647B2 (en) * 2011-11-07 2014-08-12 I-Nan Kao High speed swirling type centrifugal revolving pipeline device

Also Published As

Publication number Publication date
KR100731838B1 (ko) 2007-06-22
JP2009522501A (ja) 2009-06-11
CN101365881A (zh) 2009-02-11
AU2007203871A1 (en) 2007-07-12
WO2007078175A1 (en) 2007-07-12
AU2007203871B2 (en) 2011-04-21
RU2008132329A (ru) 2010-02-20
EP1974144A4 (de) 2012-03-14
EP1974144A1 (de) 2008-10-01
RU2435075C2 (ru) 2011-11-27

Similar Documents

Publication Publication Date Title
CN204226258U (zh) 滑动轴承和多级离心泵
AU2007203871B2 (en) Pump and pumping system utilizing the same
US20180252199A1 (en) Water Powered Motor for Producing Useful Work
CN105604959A (zh) 动力切换组合式农用水泵
US20140061957A1 (en) Submerged aerator
KR100731837B1 (ko) 해수 펌핑장치
CN102434483B (zh) 切碎式排污泵
CN111059061B (zh) 一种改进型高效率潜水泵
Khaing et al. Design and calculation of centrifugal pump (impeller) for water pumping
CN110902840B (zh) 一种湿地污水回收装置抽水口结构
CN205190241U (zh) 一种具有喂水吸水双配套装置的多级离心泵
CN202441635U (zh) 切碎式排污泵
KR100731840B1 (ko) 펌프와 이를 이용한 취수장치
Hasan et al. Pumps for Irrigation Systems
KR100371949B1 (ko) 부양식 양수장치
JP3176336B2 (ja) 気液圧送装置
CN220956087U (zh) 一种组合式潜水泵
KR102720421B1 (ko) 해수 인입 후드
CN111963451A (zh) 一种自适应水深的井用潜水泵
RU46143U1 (ru) Экологически чистое водозаборное устройство
CN111120345B (zh) 一种高效率潜水泵
KR102608864B1 (ko) 공기의 부력과 중력을 이용하는 수중회전장치
KR101399546B1 (ko) 자흡식 양수펌프
JP3063835U (ja) 液体と気体の圧送装置
CN208089562U (zh) 液压式潜水排涝泵

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION