US20080153204A1 - Semiconductor dice having back side redistribution layer accessed using through-silicon vias, methods - Google Patents
Semiconductor dice having back side redistribution layer accessed using through-silicon vias, methods Download PDFInfo
- Publication number
- US20080153204A1 US20080153204A1 US11/968,359 US96835908A US2008153204A1 US 20080153204 A1 US20080153204 A1 US 20080153204A1 US 96835908 A US96835908 A US 96835908A US 2008153204 A1 US2008153204 A1 US 2008153204A1
- Authority
- US
- United States
- Prior art keywords
- back surface
- semiconductor die
- semiconductor substrate
- semiconductor
- active surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 228
- 238000000034 method Methods 0.000 title claims abstract description 38
- 229910052710 silicon Inorganic materials 0.000 title description 6
- 239000010703 silicon Substances 0.000 title description 6
- 239000004020 conductor Substances 0.000 claims abstract description 45
- 239000000463 material Substances 0.000 claims description 34
- 239000002243 precursor Substances 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 5
- 238000000059 patterning Methods 0.000 claims description 5
- 238000000227 grinding Methods 0.000 claims description 4
- 238000000608 laser ablation Methods 0.000 claims description 4
- 238000005498 polishing Methods 0.000 claims description 4
- 238000005553 drilling Methods 0.000 claims description 3
- 230000000873 masking effect Effects 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims 2
- 239000000758 substrate Substances 0.000 abstract description 202
- 238000004806 packaging method and process Methods 0.000 abstract description 9
- 229910000679 solder Inorganic materials 0.000 description 16
- 239000000945 filler Substances 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 230000035882 stress Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000000429 assembly Methods 0.000 description 4
- 230000000712 assembly Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- 230000008646 thermal stress Effects 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000005382 thermal cycling Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 230000005686 electrostatic field Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
- H01L25/0657—Stacked arrangements of devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76898—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/481—Internal lead connections, e.g. via connections, feedthrough structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/525—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/50—Multistep manufacturing processes of assemblies consisting of devices, the devices being individual devices of subclass H10D or integrated devices of class H10
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/563—Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/023—Redistribution layers [RDL] for bonding areas
- H01L2224/0231—Manufacturing methods of the redistribution layers
- H01L2224/02313—Subtractive methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/023—Redistribution layers [RDL] for bonding areas
- H01L2224/0237—Disposition of the redistribution layers
- H01L2224/02372—Disposition of the redistribution layers connecting to a via connection in the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/0401—Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/1302—Disposition
- H01L2224/13024—Disposition the bump connector being disposed on a redistribution layer on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/13111—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16135—Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/16145—Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/291—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/29116—Lead [Pb] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32135—Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/32145—Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48235—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a via metallisation of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73257—Bump and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/8538—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/85399—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/0651—Wire or wire-like electrical connections from device to substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06513—Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06517—Bump or bump-like direct electrical connections from device to substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06524—Electrical connections formed on device or on substrate, e.g. a deposited or grown layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06527—Special adaptation of electrical connections, e.g. rewiring, engineering changes, pressure contacts, layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06541—Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/11—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01018—Argon [Ar]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01049—Indium [In]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01072—Hafnium [Hf]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01074—Tungsten [W]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01075—Rhenium [Re]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01087—Francium [Fr]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12041—LED
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12042—LASER
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19041—Component type being a capacitor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/30107—Inductance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3011—Impedance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/35—Mechanical effects
- H01L2924/351—Thermal stress
Definitions
- the present invention relates generally to methods and apparatus for assembling one or more semiconductor dice with a substrate.
- the present invention relates to methods and apparatus for electrically interconnecting a back side of one or more semiconductor dice to a carrier substrate and various assembly and stacking arrangements implemented using back side electrical interconnections of semiconductor dice.
- Interconnection and packaging-related issues are among the factors that determine not only the number of circuits that can be integrated on a semiconductor die or “chip,” but also the performance of the chip. These issues have gained in importance as advances in chip design have led to reduced sizes of transistors and enhanced chip performance. The industry has come to realize that merely having a fast chip will not necessarily result in a fast system; the fast chip must also be supported by equally fast and reliable electrical connections. Essentially, on-chip connections, in conjunction with those of the chip's associated packaging, supply the chip with signals and power, provide signals from the chip and redistribute the tightly spaced or pitched terminals or bond pads of the chip to the terminals of a carrier substrate such as a printed circuit board.
- a flip-chip semiconductor device conventionally comprises a semiconductor die having an active surface having active integrated circuitry components formed therein and bearing contacts such as bond pads, and an opposing back surface or “back side” devoid of active components or, usually, of any components whatsoever.
- a dielectric layer for example, of silicon dioxide or silicon nitride, is formed over the active surface by techniques well known in the art.
- Apertures are defined in the dielectric layer (also termed a passivation layer), for example, using well-known photolithographic techniques to mask and pattern the dielectric layer and etch the same, for example, with buffered HF to expose the contacts or bond pads on the active surface.
- the bond pads may be respectively connected to traces of a redistribution layer on the dielectric layer in the form of redistribution lines, i.e., power, ground and signal lines, in a well-known manner, for example, by evaporating or sputtering a layer of aluminum or an alloy thereof over the passivation layer, followed by masking and etching to define the traces.
- the redistribution lines of the redistribution layer enable the external connections of the semiconductor device provided by the relatively compact arrangement of closely spaced or pitched bond pads to be distributed over a larger surface area with wider spacing or pitch between external connections to higher-level packaging.
- Solder bumps, or balls are typically placed upon a pad located at an end of each redistribution line to enable electrical coupling with contact pads or terminals on the higher-level packaging, typically comprising a carrier substrate, such as a printed circuit board.
- the flip-chip semiconductor device, with the solder bumps on its active surface, is “flipped” and attached face down to a surface of the carrier substrate, with each solder bump on the semiconductor device being positioned on the appropriate contact pad or terminal of the carrier substrate.
- the assembly of the flip-chip semiconductor device and the carrier substrate is then heated so as to reflow the solder bumps to a molten state and thus connect each bond pad on the semiconductor device through its associated redistribution line and solder bump to an associated contact pad or terminal on the carrier substrate.
- the flip-chip arrangement does not require leads of a lead frame or other carrier structures coupled to a semiconductor die and extending beyond the lateral periphery thereof it provides a compact assembly in terms of the semiconductor die's “footprint” on the carrier substrate.
- the area of the carrier substrate within which the contact pads or terminals are located is, for a given semiconductor die, the same as or less than that occupied by the semiconductor die itself.
- the contacts on the die in the form of widely spaced or pitched solder bumps, may be arranged in a so-called “area array” disposed over substantially the entire active surface of the die.
- the redistribution lines for integrated circuits generate electromagnetic and electrostatic fields, or “cross-talk.” These electromagnetic and electrostatic fields may affect the signals carried in adjacent redistribution lines unless some form of compensation is used. Examples of redistribution lines formed over the active circuitry in a flip-chip semiconductor device that disclose methods of limiting cross-talk are illustrated in U.S. Pat. Nos. 5,994,766 and 6,025,647, each to Shenoy et al.
- Electromagnetic and electrostatic coupling between redistribution lines, or cross-talk is undesirable because it increases the impedance of the redistribution lines and may create impedance mismatching and signal delays.
- Significant factors affecting cross-talk between adjacent redistribution lines include redistribution line length, the distance between the adjacent redistribution lines and the dielectric constant ( ⁇ r ) of the material between the adjacent redistribution lines.
- ⁇ r dielectric constant
- redistribution lines on the active surface also severely limits the location, size and number of passive circuit elements such as resistors, capacitors and inductors which may be used to compensate for cross-talk or otherwise enhance performance of the packaged semiconductor device without undesirably enlarging the size thereof. Further, such impedance problems affecting the speed of the semiconductor device are only compounded when stacking multiple flip-chip devices.
- the present invention relates to methods and apparatus for rerouting redistribution lines from an active surface of a semiconductor device substrate such as a semiconductor die to the back surface thereof and assembling and packaging individual and multiple semiconductor dice with such rerouted redistribution lines formed thereon.
- the rerouted redistribution lines formed on the back surface of the semiconductor substrate may be located, configured and oriented to substantially reduce and even prevent cross-talk in comparison to those which might ordinarily be located on an active surface of the semiconductor substrate and to provide physical and thermal stress relief in assemblies formed with such semiconductor substrate.
- rerouting such redistribution lines to the back surface of the semiconductor substrate may be used to maintain or even further reduce the footprint of the resulting individual semiconductor die or dice after packaging and provides additional space for additional electrical components on both the active surface and the back surface of the semiconductor substrate.
- the present invention includes a semiconductor substrate comprising one or more semiconductor dice.
- Such semiconductor substrate may be in wafer or other bulk substrate form, an interconnected array of semiconductor dice such as a partial wafer, or a single semiconductor die.
- the semiconductor substrate includes an active surface and a back surface with at least one via extending from the active surface to the back surface and having conductive material herein. At least one redistribution line is formed over the back surface of the semiconductor substrate to extend from the conductive material in the at least one via to a predetermined location on the back surface of the semiconductor substrate.
- redistribution lines are routed to specific locations on the hack surface of the semiconductor substrate to correspond with an interconnect pattern of another, adjacent substrate such as a carrier substrate for attachment thereto. Additionally, the redistribution lines interconnect with the active circuitry on the active surface of the semiconductor substrate and may also interconnect with additional electronic components as well as with circuitry of other semiconductor substrates stacked thereon or thereunder. Rerouting redistribution lines to the back surface of the semiconductor substrate thus limits the necessary footprint for a semiconductor die and provides improved assembly and stacking configurations that provide physical and thermal stress relief therein.
- the electronic components which may be integrated in the back surface of the semiconductor substrate with redistribution lines extending thereto may include, by way of example only, capacitors, inductors, resistors, fuses, controllers and/or additional circuits. Such electronic components may be discrete and configured to remove or reroute thermal and electrical stresses from the active surface to the back surface as well as enabling more even distribution of stresses over the active surface.
- the semiconductor substrate may be attached to another substrate, such as a carrier substrate like an interposer or printed circuit board.
- the back surface of the semiconductor substrate may be attached to the other substrate with the ends of the redistribution lines distal from the vias positioned and configured to correspond to an interconnection pattern of the other substrate.
- the resulting assembly provides that the active surface of the semiconductor substrate is facing upward with the back surface attached to the other substrate.
- Conductive bumps or pillars may be placed between the distal ends of the redistribution lines and the corresponding electronic interconnects such as contact pads or terminals on the other substrate.
- a dielectric filler material may also be provided between the semiconductor substrate and the other substrate for environmental protection of the conductive interconnections therebetween and enhanced mechanical bonding of the two substrates.
- the redistribution lines on the back surface of a semiconductor substrate enable various embodiments of semiconductor substrate stacking arrangements.
- the stacking arrangements may include embodiments of active surface-on-active surface attachment, back surface-on-active surface attachment, back surface-on-back surface attachment and active surface-on-back surface attachment of semiconductor substrates.
- conductive bumps, studs or pillars may be utilized for electrical interconnection between the stacked semiconductor substrates.
- An appropriate dielectric filler material may be applied between adjacent semiconductor dice.
- the semiconductor substrate of the present invention is fabricated by forming vias in “dead space” on the active surface side of the semiconductor substrate.
- vias may be formed by drilling or laser ablation or any other suitable known method so that the vias are defined by at least one sidewall and a bottom wall.
- a thin insulative film, such as silicon dioxide, is formed on via wall surfaces, after which a conductive material may be used to fill the vias.
- Thinning of the semiconductor substrate is then effected by, for example, grinding or etching the back surface of the semiconductor substrate to remove a predetermined depth of semiconductor material.
- the back surface may then be etched by either a dry or wet etch and/or polished by abrasive polishing techniques such as so-called chemical-mechanical polishing, or “CMP,” to expose the conductive material in the vias.
- CMP chemical-mechanical polishing
- a redistribution layer precursor of metal may ten be deposited and patterned on the back surface of the semiconductor substrate to form redistribution lines. Such patterning may be employed by etching excess portions of the redistribution layer precursor therefrom.
- the redistribution lines are located, configured and oriented to extend from the conductive material-filled vias to predetermined remote locations on the back surface that will correspond with the interconnection pattern of another substrate.
- Conductive bumps such as solder balls, may be disposed or formed on portions of the redistribution lines, typically ends thereof distal from the associated via, to provide an interconnect between the semiconductor substrate and the substrate, such as a carrier substrate, circuit board, or another semiconductor substrate. It is also contemplated that the ends of the vias on the active surface of the substrate may also be used to electrically interconnect the semiconductor substrate to another semiconductor or other type of substrate placed thereover and having appropriately located contacts thereon.
- the semiconductor substrate of the present invention is mounted to a circuit board in an electronic system, such as a computer system.
- the circuit board is electrically connected to a processor device which also electrically communicates with an input device and an output device.
- FIG. 1 illustrates a simplified cross-sectional side view of a semiconductor substrate having vias formed into an active surface thereof and filled with conductive material, according to the present invention
- FIG. 2 illustrates a simplified cross-sectional side view of a thinned semiconductor substrate with vias filled with conductive material extending from an active surface to a back surface thereof and a redistribution layer precursor formed on the back surface of the thinned substrate, according to the present invention
- FIG. 3 illustrates a simplified cross-sectional side view of the thinned semiconductor substrate of FIG. 2 with the redistribution layer precursor patterned into redistribution lines and interconnected with the conductive material in the vias in the thinned semiconductor substrate, according to the present invention
- FIG. 4 illustrates a simplified plan view of the back surface of the semiconductor substrate of FIG. 3 , depicting redistribution lines and additional electrical components on the back surface of the semiconductor substrate, according to the present invention
- FIG. 5 illustrates a carrier substrate interconnected to the back surface of the semiconductor substrate of FIG. 3 with conductive bumps therebetween, according to the present invention
- FIG. 6 illustrates a first embodiment of a stacked semiconductor device assembly according to the present invention
- FIG. 7 illustrates a second embodiment of a stacked semiconductor device assembly according to the present invention.
- FIG. 8 illustrates a third embodiment of a stacked semiconductor device assembly according to the present invention.
- FIG. 9 illustrates a fourth embodiment of a stacked semiconductor device assembly according to the present invention.
- FIG. 10 illustrates a simplified block diagram of a semiconductor device assembly of the present invention in an electronic system.
- FIGS. 1-3 illustrate a process that may be used for fabricating a semiconductor die including redistribution lines on a back surface of a semiconductor substrate 110 and interconnected to conductive material in vias extending through the semiconductor substrate 110 .
- the semiconductor substrate 110 is preferably in wafer form with rows and columns of interconnected semiconductor dice, but may comprise an array of interconnected semiconductor dice or a single semiconductor die.
- the semiconductor substrate 110 is preferably formed from silicon, but may be formed from gallium arsenide, indium phosphide or any other known semiconducting material whose electrical conductivity and resistivity lie between those of a conductor and an insulator.
- the semiconductor substrate 110 includes an active surface 112 and a back surface or back side 114 , with integrated circuitry (not shown) formed on the active surface 112 thereof, as known in the art.
- the active surface 112 of the semiconductor substrate 110 includes a plurality of vias 124 extending therein substantially perpendicular to the plane of semiconductor substrate 110 , each via 124 having a bottom wall 126 at a predetermined distance into the semiconductor substrate 10 from active surface 112 .
- the vias 124 may be formed in portions of “dead space” in the active surface 112 , being portions of the semiconductor substrate 110 without integrated circuitry formed herein. Such vias 124 may be formed by drilling, by laser ablation or by any other suitable method known in the art.
- Laser ablation may be effected using equipment, such as the Model 5000-series lasers, offered currently by ElectroScientific industries Portland, Oreg.
- equipment such as the Model 5000-series lasers, offered currently by ElectroScientific industries Portland, Oreg.
- One specific, suitable piece of equipment is a 355 nm wavelength UV YAG laser, Model 270, which may be used to form vias as little as 25 ⁇ m in diameter.
- One hundred pulses using this laser will form a 750 ⁇ m deep via through silicon.
- a TMAH (tetramethyl ammonium hydroxide) solution may be used to clean the via, which also results in a squared cross-section for the via.
- ADP atmospheric downstream plasma
- one or more dielectric layers 128 may be formed over the walls of the vias 124 .
- the silicon dioxide may be formed by a thermal oxidation process, as known in the art.
- the vias 124 may be filled with a conductive material 130 , such as aluminum, copper and/or alloys thereof or a conductive or conductor-filled epoxy.
- An additional layer such as Ti—W may be formed over the dielectric layer 128 to promote adhesion with a conductive filter, such as copper.
- Beneficial vertical diffusion of the conductive dopant may be enhanced while curtailing lateral spread of the diffused conductor through selective crystallographic orientation of the matrix of silicon or other semiconductive die material to facilitate channeling of the conductive material through the matrix.
- An alternative to diffusion is ion-implantation of the conductor material, which is relatively rapidly effected in comparison to diffusion techniques and similarly limits undesirable lateral spread of the conductive material of the via.
- a conductive layer such as a metal, may then be formed over the active surface 112 of the semiconductor substrate 110 .
- Such conductive layer may be etched or patterned to form conductive traces 132 to interconnect the conductive material 130 in the vias 124 and bond pads 122 on the active surface 112 .
- the bond pads 122 are typically electrically interconnected to the integrated circuitry previously formed on the active surface 112 of the semiconductor substrate 110 .
- the conductive traces 132 may also comprise a redistribution layer over the active surface 112 , as known in the art, to enable stacking of semiconductor substrates as referenced in further detail below.
- the conductive traces 132 patterned and interconnected with the conductive material 130 on the active surface 112 of the semiconductor substrate 110 comprises two interconnect types, namely interconnect type A and interconnect type B.
- Interconnect type A may include a conductive trace 132 extending from a bond pad 122 and associated active circuitry on the active surface 112 of the semiconductor substrate 110 to the conductive material 130 formed in the vias 124 to electrically interconnect the conductive material 130 with the active circuitry of the semiconductor substrate 110 .
- a conductive trace 132 may extend from conductive material 130 of a via 124 to a “dummy” bond pad location which is unconnected to any circuitry of semiconductor substrate 110 .
- Interconnect type B may eliminate the conductive trace 132 and instead be structured as a bond pad 122 disposed on a top surface of the conductive material 130 .
- An exemplary bond pad size is about 100 ⁇ m.
- Interconnect type B may also be electrically connected to or electrically isolated from any active circuitry on the active surface 112 of the semiconductor substrate 110 .
- FIG. 2 illustrates the semiconductor substrate 110 being thinned from the back surface 114 to a predetermined thickness or depth to remove or at least expose the bottom walls 126 of the vias 124 above which the conductive material 130 resides in the vias 124 .
- Such thinning may be effected by, for example, mechanically grinding the back surface 114 down or by spin etching the back surface 114 , bot as known in the art. If required, the back surface 114 may then be etched by either a dry etch or wet etch to expose the conductive material 130 .
- the back surface 114 may be polished by abrasive techniques such as chemical-mechanical polishing or any known controlled process to remove the back surface material to a predetermined extent, exposing the conductive material 130 formed in the vias 124 through the back surface 114 of the semiconductor substrate 110 .
- abrasive techniques such as chemical-mechanical polishing or any known controlled process to remove the back surface material to a predetermined extent, exposing the conductive material 130 formed in the vias 124 through the back surface 114 of the semiconductor substrate 110 .
- Yet another suitable thinning technology is the ADP process referenced above, offered by Tru-Si Technologies. Inc. of Sunnyvale, Calif.
- a redistribution layer precursor 134 is formed on the back surface 114 of the semiconductor substrate 110 .
- the redistribution layer precursor 134 may be any known conductive material, such as, for example, copper or aluminum or an alloy thereof.
- the redistribution layer precursor 134 may be formed on the back surface 114 utilizing chemical vapor deposition (CVD), plasma enhanced CVD, also known as physical vapor deposition (PVD), sputtering, evaporation or otherwise, as known in the art.
- CVD chemical vapor deposition
- PVD physical vapor deposition
- redistribution layer precursor 134 may comprise a thin metal foil adhered to the back surface 114 .
- the redistribution layer precursor 134 is formed such that it is in contact with the exposed surface of the conductive material 130 in the vias 124 .
- the back surface 114 may, if desired, optionally be covered with a dielectric layer (not shown) such as silicon dioxide, silicon nitride or a polymer such as polyimide prior to application of the redistribution layer precursor 134 .
- the redistribution layer precursor 134 is then etched in a predetermined pattern so as to form redistribution lines 140 .
- the redistribution lines 140 are patterned on the back surface 114 of the semiconductor substrate 110 to respectively extend from the conductive material 130 in associated vias 124 to predetermined distal locations on the back surface 114 thereof.
- patterning the redistribution layer precursor 134 to form redistribution lines 140 may be accomplished by masking and patterning of a resist, such as a positive or negative photoresist, followed by a dry etch or wet etch.
- redistribution lines 140 may be printed using a conductive or conductor-filled polymer on back surface 114 or applied as preformed traces from a thin carrier film, which may then be removed or remain as a dielectric layer on back surface 114 .
- Conductive bumps 120 may be formed and configured on the redistribution lines 140 proximate the predetermined distal locations to correspond and interconnect with an interconnect pattern defined by contact pads or terminals of another substrate.
- Conductive bumps 120 may comprise, for example, solder balls of tin and lead which are preformed and placed on redistribution lines 140 and then at least partially reflowed or masses of solder paste which are stenciled on back surface 114 at desired locations and then reflowed to form solder balls.
- a solder mask (not shown) may be applied prior to solder ball formation, which solder mask may then be removed or remain for additional protection of back surface 114 .
- conductive bumps may comprise masses of conductive or conductor-filled epoxy formed as columns or pillars.
- such semiconductor substrate 110 may be singulated or separated into single or multiple but interconnected semiconductor dice prior to assembling such single or interconnected dice into a semiconductor device assembly with one or more other substrates.
- FIG. 4 illustrates a simplified view of the back surface 114 of the semiconductor substrate 110 as a singulated semiconductor die.
- the vias 124 filled with conductive material 130 may appear to be formed in random locations since such vias 124 are preferably formed in portions of “dead space” in the semiconductor substrate 110 , as previously discussed.
- the conductive material 130 in the vias 124 may then be electrically connected through redistribution lines 140 and conductive bumps 120 to correspond with a predetermined interconnect pattern of another substrate.
- such vias 124 may also be formed symmetrically in the semiconductor substrate and routed by the redistribution lines 140 to correspond with an appropriate predetermined electrical interconnect pattern of another substrate.
- the vias 124 may be located to, for example, accommodate or even balance physical stresses such as thermal stresses in the semiconductor substrate 110 attributable to mismatches in coefficients of thermal expansion (CTE) of the various materials employed therein, and to accommodate physical stresses resulting from assembly of semiconductor substrate 110 with other substrates due to CTE mismatches or residual stresses from fabrication processes and materials employed.
- CTE coefficients of thermal expansion
- the redistribution lines 140 may be interconnected to, or include, additional electronic components 150 , such as capacitors, inductors, resistors, fuses, and controllers.
- additional electronic components 150 such as capacitors, inductors, resistors, fuses, and controllers.
- Such electronic components 150 may provide advantages, such as providing improved RIC (resistance-inductance-capacitance) characteristics to the integrated circuitry of the semiconductor substrate 110 .
- One especially suitable component comprises a decoupling capacitor for isolating the integrated circuitry on the active surface 112 . Fabrication of electronic components 150 may be effected by any suitable methods known in the art and already practiced for forming the same electrical components on the active surface of a semiconductor substrate. Accordingly, no further discussion thereof is believed to be necessary.
- connecting conductive traces 132 extending from bond pads 122 to the redistribution lines 140 using a type A interconnection may result in improved impedance, less cross-talk between adjacent conductive traces 132 on the active surface 112 , a smaller semiconductor die footprint, and additional space to provide discrete electronic components 150 on the back surface 114 of the semiconductor substrate 110 .
- Using a type B interconnection eliminates any cross-talk whatsoever on the active surface 112 , as the bond pad-equivalent connections provided by conductive material 130 in vias 124 remove the potential for electrostatic or electromagnetic interference from active surface 112 .
- the electronic components 150 provided in or on the back surface 114 of the semiconductor substrate 110 may be components conventionally provided on an active surface 112 of a semiconductor die or adjacently separate from a semiconductor die but electrically interconnected thereto.
- the present invention provides an effective increase in available “real estate” without increasing the footprint of semiconductor substrate 110 by providing electronic components 150 in or on the back surface 114 of the semiconductor substrate 110 .
- the redistribution lines 140 are formed to extend to predetermined locations to interconnect through conductive bumps 120 with the interconnect pattern of another substrate, thus providing numerous possibilities for new semiconductor device assembly arrangements and attachment configurations for the semiconductor substrate 110 having the redistribution lines 140 on the back surface 114 thereof.
- Such semiconductor assembly device arrangements may include stacking semiconductor substrates with active surface-on-active surface attachment, back surface-on-active surface attachment, back surface-on-back surface attachment and active surface-on-back surface attachment of semiconductor substrates with, in each case, conductive bumps, studs, pillars or other interconnection elements extending transversely therebetween.
- FIG. 5 illustrates a semiconductor device assembly 185 , wherein the back surface 114 of semiconductor substrate 110 is attached to a carrier substrate 160 .
- the carrier substrate 160 includes a first surface 162 and a second surface 16 .
- Conductive bumps 120 on the redistribution lines 140 extend transversely from back surface 114 to electrical interconnects in the form of contact pads or terminals 166 on first surface 162 of carrier substrate 160 .
- the carrier substrate 160 may be formed from any suitable, rigid substrate material known in the art, such as silicon, a bismaleimide triazine (BT) resin, an FR-4 or FR-5 laminate, ceramic or epoxy resin, or a flexible material like a polymer such as a polyimide film, or other suitable polymeric material.
- BT bismaleimide triazine
- the conductive bumps 120 disposed on redistribution lines 140 are located, sized and configured to correspond with contact pads or terminals 166 on the first surface 162 of the carrier substrate 160 to make electrical and mechanical connection thereto.
- the contact pads or terminals 166 on the first surface 162 of the carrier substrate 160 may then be electrically interconnected to other electrical components peripheral to the semiconductor substrate 110 on carrier substrate 160 or to other components through higher-level packaging, such as a motherboard.
- Such active surface 112 may be interconnected to other components, such as another carrier substrate or interposer for interconnecting to one or more semiconductor dice.
- wire bonds 176 may be extended from selected bond pads 122 or conductive traces 132 on the active surface 112 to the first surface 162 of the carrier substrate 160 or to other semiconductor substrates laterally proximate thereto and carried on carrier substrate 160 .
- conductive bumps 120 may include, but are not limited to, any particular known conductive materials or alloys thereof suitable for attaching flip-chip assemblies, such as tin/lead solder, copper, silver, gold and alloys thereof and conductive polymers and/or conductive composites.
- the conductive bumps 120 may also be formed as layers of such materials and/or alloys thereof.
- the conductive bumps 120 may be formed as bumps, balls, pillars, columns and studs, or any other suitable physical structure.
- solder is to be used for conductive bumps 120
- pads (not shown) formed on a portion of the redistribution lines 140 at the intended distal locations of conductive bumps 120 may include an under bump metallization (UBM) laminated, multilayer metal structure as known in the art with an exposed, solder-wettable layer thereon, which may directly contact the conductive bump 120 and bond thereto after a reflow process at a predetermined temperature. The temperature may be determined by the solder alloy employed in the conductive bump 120 as known to one of ordinary skill in the art.
- a similar, solder-wettable layer may be formed on contact pads or terminals 166 on carrier substrate 160 . In this manner, the semiconductor substrate 110 having the above-described redistribution lines 140 on the back surface thereof may be mounted to a carrier substrate 160 .
- a dielectric filler material 168 may be applied therebetween, surrounding conductive bumps 120 .
- the presence of dielectric filler material 168 reduces the potential for corrosion of redistribution lines 140 , eliminates any potential for moisture or particulate-induced shorting between conductive bumps 120 , increases the mechanical strength of attachment between components of the semiconductor device and accommodates stress on the assembly due to thermal cycling and residual stresses in the substrates and materials used to interconnect them.
- the dielectric filler material 168 may comprise a polymeric material, such as an epoxy or an acrylic resin, and may contain inert filler material, such as silicon particles, therein to reduce costs.
- the dielectric filler material 168 may be introduced between the substrates using a dispensing needle or other nozzle, and distribution thereof between the substrates may be enhanced by introduction from multiple locations, by use of a vacuum opposite the introduction point or applied through an aperture in carrier substrate 160 , by capillary action, by tilting the assembly from the horizontal to use gravity assist, or otherwise as known in the art.
- FIG. 6 illustrates a first embodiment of a stacked semiconductor device assembly 190 according to the present invention.
- the first embodiment may include the active surface 112 of the semiconductor substrate 110 attached and electrically connected to an active surface 112 ′ of a second, flip-chip configured semiconductor substrate 110 ′ with conductive bumps 120 therebetween.
- the second semiconductor substrate 110 ′ may optionally include redistribution lines 140 on the back surface 114 ′ thereof with additional electronic components 150 (not shown).
- stacked semiconductor device assembly 190 depicts interconnect type B being utilized as a direct link for active circuitry in semiconductor substrate 110 ′ to interconnect with carrier substrate 160 , either in combination with or in isolation from, as desired, the active circuitry on the active surface 11 of semiconductor substrate 110 .
- wire bonds 176 may be optionally formed and the stacked semiconductor device assembly 190 may be encapsulated with a dielectric encapsulation material (not shown).
- Dielectric filler material 168 may be provided between semiconductor substrates 110 and 110 ′ and between the semiconductor substrate 110 and the carrier substrate 160 , as previously described.
- FIG. 7 depicts a stacked semiconductor device assembly 290 with a plurality of semiconductor substrates 110 , 110 ′, 110 ′′ having the redistribution lines 140 (not shown) on their back surfaces 114 , according to a second embodiment of the present invention.
- the second embodiment is similar to the first stacked semiconductor device embodiment, except back surface 114 ′ of second semiconductor substrate 110 ′ is attached to active surface 112 of first semiconductor substrate 110 with conductive bumps 120 and dielectric filler material 168 therebetween.
- a third semiconductor substrate 110 ′′ having a back surface 114 ′′ may also be stacked on semiconductor substrate 110 ′ so that active surface 112 ′ of second semiconductor substrate 110 ′ faces and is attached to active surface 112 ′′ of third semiconductor substrate 110 ′′ with conductive bumps 120 and dielectric filler material 168 therebetween.
- third semiconductor substrate 110 ′′ may also be oriented with active surface 112 ′′ up and connect with second semiconductor substrate 110 ′ through redistribution lines 140 (not shown).
- redistribution lines 140 not shown.
- FIG. 8 depicts a stacked semiconductor assembly 390 with semiconductor substrates 110 and 110 ′ attached in a back-to-back arrangement, according to a third embodiment of the present invention.
- a first semiconductor substrate 110 is attached in a typical flip-chip attachment, wherein active surface 112 of first semiconductor substrate 110 is attached face down to carrier substrate 360 with conductive bumps 120 and dielectric filler material 168 therebetween.
- a hack surface 114 ′ of second semiconductor substrate 110 ′ is attached to back surface 114 of first semiconductor substrate 110 .
- Wire bonds 376 may be optionally provided from the active surface 112 ′ of second semiconductor substrate 110 ′ to a first surface 362 of carrier substrate 360 , after which an encapsulation material 378 may be provided to at least encapsulate the active surface 112 ′ and wire bonds 376 extending therefrom.
- the back surface-to-back surface arrangement of semiconductor substrates 110 and 110 ′ may be employed since electrical interconnection therebetween may be made through the redistribution lines of the present invention on each of the back surfaces 114 , 114 ′ thereof.
- FIG. 9 depicts a stacked semiconductor device assembly 490 with semiconductor substrates 110 and 110 ′ attached in an active surface-to-back surface arrangement, according to a fourth embodiment of the present invention.
- a first semiconductor substrate 110 is attached to first surface 462 of carrier substrate 460 in a flip-chip type attachment with active surface 112 of first semiconductor substrate 110 attached face down to carrier substrate 460 with conductive bumps 120 and filler material 168 therebetween.
- An active surface 112 ′ of second semiconductor substrate 110 ′ may then be attached by conductive bumps 120 to back surface 114 of first semiconductor substrate 110 .
- wire bonds 476 may be provided from bond pads 122 or redistribution lines 140 on back surface 114 ′ of second semiconductor substrate 110 ′ to carrier substrate 460 with dielectric encapsulation material 478 thereover.
- the back surface 114 of first semiconductor substrate 10 may include the redistribution lines of the present invention to provide an electrical interconnection for second semiconductor substrate 110 ′.
- second semiconductor substrate 110 ′ may or may not include the back surface redistribution lines 140 of the present invention.
- semiconductor device assembly 185 or stacked semiconductor device assemblies 190 , 290 , 390 , 490 of the present invention may be mounted to a circuit board 510 , such as a memory module, daughter board or motherboard, in an electronic system 500 , such as a computer system.
- the circuit board 510 may have connected hereto a processor device 520 , which also communicates with an input device 530 and an output device 540 .
- the input device 530 may comprise one or more of a keyboard, mouse, joystick or any other type of electronic input device.
- the output device 540 may comprise one or more of a monitor, printer or storage device, such as a disk drive, or any other type of output device.
- the processor device 520 may be, but is not limited to, a microprocessor or a circuit card including hardware in the form of a central processing unit, or CPU, for processing instructions for the electronic system 500 . Additional structure for the electronic system 500 is readily apparent to those of ordinary skill in the art.
- extremely small vias provides the opportunity to substantially reduce the pitch, or spacing, between contacts on a semiconductor substrate.
- conventional bond pads with a size approximating 100 ⁇ m, may require a minimum pitch of 250 ⁇ m or even greater, due to fabrication issues.
- Using 25 ⁇ m diameter vias according to the present invention enables a pitch reduction between adjacent vias to 100 ⁇ m, or even less.
- redistribution layer on the back surface of a semiconductor substrate enables the formation of a fully populated array of conductive bumps at a very wide, easily usable pitch of about 350 ⁇ m.
- the availability of the entire back surface of a semiconductor substrate and the great extent and wide pitch of the redistribution lines and conductive bumps thereover spreads out, or distributes, stresses manifested in the semiconductor substrate under thermal cycling during testing, burn-in and subsequent normal operation of the integrated circuitry due to different CTEs of the materials used in fabricating the semiconductor substrate.
- the presence of the redistribution lines themselves on the back surface of the semiconductor substrate may be used to compensate the substrate for residual stresses induced by fabrication of the integrated circuitry on the active surface as well as for mismatched CTE-induced stresses attributable to thermal cycling.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
An apparatus and method of rerouting redistribution lines from an active surface of a semiconductor substrate to a back surface thereof and assembling and packaging individual and multiple semiconductor dice with such rerouted redistribution lines formed thereon. The semiconductor substrate includes one or more vias having conductive material formed therein and which extend from an active surface to a back surface of the semiconductor substrate. The redistribution lines are patterned on the back surface of the semiconductor substrate, extending from the conductive material in the vias to predetermined locations on the back surface of the semiconductor substrate that correspond with an interconnect pattern of another substrate for interconnection thereto.
Description
- This application is a divisional of application Ser. No. 11/110,431, filed Apr. 20, 2005, pending, which is a continuation of application Ser. No. 10/732,558, filed Dec. 10, 2003, now U.S. Pat. No. 6,962,867, issued Nov. 8, 2005, which is a divisional of application Ser. No. 10/209,823, filed Jul. 31, 2002, now U.S. Pat. No. 6,800,930, issued Oct. 5, 2004. The disclosure of each of the previously referenced U.S. patent applications and patents referenced is hereby incorporated by reference in its entirety.
- 1. Field of the Invention
- The present invention relates generally to methods and apparatus for assembling one or more semiconductor dice with a substrate. In particular, the present invention relates to methods and apparatus for electrically interconnecting a back side of one or more semiconductor dice to a carrier substrate and various assembly and stacking arrangements implemented using back side electrical interconnections of semiconductor dice.
- 2. State of the Art
- Interconnection and packaging-related issues are among the factors that determine not only the number of circuits that can be integrated on a semiconductor die or “chip,” but also the performance of the chip. These issues have gained in importance as advances in chip design have led to reduced sizes of transistors and enhanced chip performance. The industry has come to realize that merely having a fast chip will not necessarily result in a fast system; the fast chip must also be supported by equally fast and reliable electrical connections. Essentially, on-chip connections, in conjunction with those of the chip's associated packaging, supply the chip with signals and power, provide signals from the chip and redistribute the tightly spaced or pitched terminals or bond pads of the chip to the terminals of a carrier substrate such as a printed circuit board.
- Flip-chip technology, its fabrication and use are well known to those of ordinary skill in the art, as the technology has been in use for over 30 years and continues to develop. A flip-chip semiconductor device conventionally comprises a semiconductor die having an active surface having active integrated circuitry components formed therein and bearing contacts such as bond pads, and an opposing back surface or “back side” devoid of active components or, usually, of any components whatsoever. A dielectric layer, for example, of silicon dioxide or silicon nitride, is formed over the active surface by techniques well known in the art. Apertures are defined in the dielectric layer (also termed a passivation layer), for example, using well-known photolithographic techniques to mask and pattern the dielectric layer and etch the same, for example, with buffered HF to expose the contacts or bond pads on the active surface. The bond pads may be respectively connected to traces of a redistribution layer on the dielectric layer in the form of redistribution lines, i.e., power, ground and signal lines, in a well-known manner, for example, by evaporating or sputtering a layer of aluminum or an alloy thereof over the passivation layer, followed by masking and etching to define the traces. The redistribution lines of the redistribution layer enable the external connections of the semiconductor device provided by the relatively compact arrangement of closely spaced or pitched bond pads to be distributed over a larger surface area with wider spacing or pitch between external connections to higher-level packaging. Solder bumps, or balls, are typically placed upon a pad located at an end of each redistribution line to enable electrical coupling with contact pads or terminals on the higher-level packaging, typically comprising a carrier substrate, such as a printed circuit board. The flip-chip semiconductor device, with the solder bumps on its active surface, is “flipped” and attached face down to a surface of the carrier substrate, with each solder bump on the semiconductor device being positioned on the appropriate contact pad or terminal of the carrier substrate. The assembly of the flip-chip semiconductor device and the carrier substrate is then heated so as to reflow the solder bumps to a molten state and thus connect each bond pad on the semiconductor device through its associated redistribution line and solder bump to an associated contact pad or terminal on the carrier substrate.
- Because the flip-chip arrangement does not require leads of a lead frame or other carrier structures coupled to a semiconductor die and extending beyond the lateral periphery thereof it provides a compact assembly in terms of the semiconductor die's “footprint” on the carrier substrate. In other words, the area of the carrier substrate within which the contact pads or terminals are located is, for a given semiconductor die, the same as or less than that occupied by the semiconductor die itself. Furthermore, the contacts on the die, in the form of widely spaced or pitched solder bumps, may be arranged in a so-called “area array” disposed over substantially the entire active surface of the die. Flip-chip bonding, therefore, is well suited for use with dice having large numbers of I/O contacts, in contrast to wire bonding and tape-automated bonding techniques which are more limiting in terms of the number of bond pads which may reasonably and reliably be employed. As a result, the maximum number of I/O contacts and power/ground terminals available can be increased without substantial difficulty, and signal and power/ground interconnections can be more efficiently routed on the semiconductor die. Examples of methods of fabricating semiconductor die assemblies using flip-chip and other techniques are described in U.S. Pat. No. 6,048,753 to Farnworth et al., U.S. Pat. No. 6,018,196 to Noddin, U.S. Pat. No. 6,020,220 to Gilleo et al., U.S. Pat. No. 5,950,304 to Khandros et al., and U.S. Pat. No. 4,833,521 to Early.
- As with any conductive line carrying a signal, the redistribution lines for integrated circuits generate electromagnetic and electrostatic fields, or “cross-talk.” These electromagnetic and electrostatic fields may affect the signals carried in adjacent redistribution lines unless some form of compensation is used. Examples of redistribution lines formed over the active circuitry in a flip-chip semiconductor device that disclose methods of limiting cross-talk are illustrated in U.S. Pat. Nos. 5,994,766 and 6,025,647, each to Shenoy et al.
- Electromagnetic and electrostatic coupling between redistribution lines, or cross-talk, is undesirable because it increases the impedance of the redistribution lines and may create impedance mismatching and signal delays. Significant factors affecting cross-talk between adjacent redistribution lines include redistribution line length, the distance between the adjacent redistribution lines and the dielectric constant (∈r) of the material between the adjacent redistribution lines. For flip-chip devices, where a large number of bond pads with associated redistribution lines on the active surface are used to carry signals to and from various external connection locations with higher-level packaging for convenient access, impedance can be a significant factor affecting the speed of the system. The location of redistribution lines on the active surface also severely limits the location, size and number of passive circuit elements such as resistors, capacitors and inductors which may be used to compensate for cross-talk or otherwise enhance performance of the packaged semiconductor device without undesirably enlarging the size thereof. Further, such impedance problems affecting the speed of the semiconductor device are only compounded when stacking multiple flip-chip devices.
- Therefore, it would be advantageous to prevent cross-talk between adjacent redistribution lines on the active surface of a flip-chip configured semiconductor die while also maintaining a large number of available, widely spaced or pitched I/O terminals and, further, maintaining or even reducing the size of the semiconductor die and associated footprint. It would also be advantageous to provide a flip-chip configured semiconductor die that offers improved stacking capabilities without compounding impedance problems, may be tailored to provide physical and thermal stress relief, and may be configured to provide enhanced resistive, inductive and capacitive electrical characteristics to the packaged semiconductor die.
- The present invention relates to methods and apparatus for rerouting redistribution lines from an active surface of a semiconductor device substrate such as a semiconductor die to the back surface thereof and assembling and packaging individual and multiple semiconductor dice with such rerouted redistribution lines formed thereon. The rerouted redistribution lines formed on the back surface of the semiconductor substrate may be located, configured and oriented to substantially reduce and even prevent cross-talk in comparison to those which might ordinarily be located on an active surface of the semiconductor substrate and to provide physical and thermal stress relief in assemblies formed with such semiconductor substrate. Further, rerouting such redistribution lines to the back surface of the semiconductor substrate may be used to maintain or even further reduce the footprint of the resulting individual semiconductor die or dice after packaging and provides additional space for additional electrical components on both the active surface and the back surface of the semiconductor substrate.
- The present invention includes a semiconductor substrate comprising one or more semiconductor dice. Such semiconductor substrate may be in wafer or other bulk substrate form, an interconnected array of semiconductor dice such as a partial wafer, or a single semiconductor die. In any case, the semiconductor substrate includes an active surface and a back surface with at least one via extending from the active surface to the back surface and having conductive material herein. At least one redistribution line is formed over the back surface of the semiconductor substrate to extend from the conductive material in the at least one via to a predetermined location on the back surface of the semiconductor substrate.
- According to one aspect of the present invention, redistribution lines are routed to specific locations on the hack surface of the semiconductor substrate to correspond with an interconnect pattern of another, adjacent substrate such as a carrier substrate for attachment thereto. Additionally, the redistribution lines interconnect with the active circuitry on the active surface of the semiconductor substrate and may also interconnect with additional electronic components as well as with circuitry of other semiconductor substrates stacked thereon or thereunder. Rerouting redistribution lines to the back surface of the semiconductor substrate thus limits the necessary footprint for a semiconductor die and provides improved assembly and stacking configurations that provide physical and thermal stress relief therein.
- The electronic components which may be integrated in the back surface of the semiconductor substrate with redistribution lines extending thereto may include, by way of example only, capacitors, inductors, resistors, fuses, controllers and/or additional circuits. Such electronic components may be discrete and configured to remove or reroute thermal and electrical stresses from the active surface to the back surface as well as enabling more even distribution of stresses over the active surface.
- According to another aspect of the present invention, the semiconductor substrate may be attached to another substrate, such as a carrier substrate like an interposer or printed circuit board. In particular, the back surface of the semiconductor substrate may be attached to the other substrate with the ends of the redistribution lines distal from the vias positioned and configured to correspond to an interconnection pattern of the other substrate. In this configuration, the resulting assembly provides that the active surface of the semiconductor substrate is facing upward with the back surface attached to the other substrate. Conductive bumps or pillars may be placed between the distal ends of the redistribution lines and the corresponding electronic interconnects such as contact pads or terminals on the other substrate. A dielectric filler material may also be provided between the semiconductor substrate and the other substrate for environmental protection of the conductive interconnections therebetween and enhanced mechanical bonding of the two substrates.
- According to the present invention, the redistribution lines on the back surface of a semiconductor substrate enable various embodiments of semiconductor substrate stacking arrangements. The stacking arrangements may include embodiments of active surface-on-active surface attachment, back surface-on-active surface attachment, back surface-on-back surface attachment and active surface-on-back surface attachment of semiconductor substrates. In each of the various stacking arrangements, conductive bumps, studs or pillars may be utilized for electrical interconnection between the stacked semiconductor substrates. An appropriate dielectric filler material may be applied between adjacent semiconductor dice.
- In another aspect, the semiconductor substrate of the present invention is fabricated by forming vias in “dead space” on the active surface side of the semiconductor substrate. Such vias may be formed by drilling or laser ablation or any other suitable known method so that the vias are defined by at least one sidewall and a bottom wall. A thin insulative film, such as silicon dioxide, is formed on via wall surfaces, after which a conductive material may be used to fill the vias. Thinning of the semiconductor substrate is then effected by, for example, grinding or etching the back surface of the semiconductor substrate to remove a predetermined depth of semiconductor material. The back surface may then be etched by either a dry or wet etch and/or polished by abrasive polishing techniques such as so-called chemical-mechanical polishing, or “CMP,” to expose the conductive material in the vias. A redistribution layer precursor of metal may ten be deposited and patterned on the back surface of the semiconductor substrate to form redistribution lines. Such patterning may be employed by etching excess portions of the redistribution layer precursor therefrom. The redistribution lines are located, configured and oriented to extend from the conductive material-filled vias to predetermined remote locations on the back surface that will correspond with the interconnection pattern of another substrate. Conductive bumps, such as solder balls, may be disposed or formed on portions of the redistribution lines, typically ends thereof distal from the associated via, to provide an interconnect between the semiconductor substrate and the substrate, such as a carrier substrate, circuit board, or another semiconductor substrate. It is also contemplated that the ends of the vias on the active surface of the substrate may also be used to electrically interconnect the semiconductor substrate to another semiconductor or other type of substrate placed thereover and having appropriately located contacts thereon.
- In another aspect of the present invention, the semiconductor substrate of the present invention is mounted to a circuit board in an electronic system, such as a computer system. In the electronic system, the circuit board is electrically connected to a processor device which also electrically communicates with an input device and an output device.
- Other features and advantages of the present invention will become apparent to those of skill in the art through a consideration of the ensuing description, the accompanying drawings and the appended claims.
-
FIG. 1 illustrates a simplified cross-sectional side view of a semiconductor substrate having vias formed into an active surface thereof and filled with conductive material, according to the present invention; -
FIG. 2 illustrates a simplified cross-sectional side view of a thinned semiconductor substrate with vias filled with conductive material extending from an active surface to a back surface thereof and a redistribution layer precursor formed on the back surface of the thinned substrate, according to the present invention; -
FIG. 3 illustrates a simplified cross-sectional side view of the thinned semiconductor substrate ofFIG. 2 with the redistribution layer precursor patterned into redistribution lines and interconnected with the conductive material in the vias in the thinned semiconductor substrate, according to the present invention; -
FIG. 4 illustrates a simplified plan view of the back surface of the semiconductor substrate ofFIG. 3 , depicting redistribution lines and additional electrical components on the back surface of the semiconductor substrate, according to the present invention; -
FIG. 5 illustrates a carrier substrate interconnected to the back surface of the semiconductor substrate ofFIG. 3 with conductive bumps therebetween, according to the present invention; -
FIG. 6 illustrates a first embodiment of a stacked semiconductor device assembly according to the present invention; -
FIG. 7 illustrates a second embodiment of a stacked semiconductor device assembly according to the present invention; -
FIG. 8 illustrates a third embodiment of a stacked semiconductor device assembly according to the present invention; -
FIG. 9 illustrates a fourth embodiment of a stacked semiconductor device assembly according to the present invention; ad -
FIG. 10 illustrates a simplified block diagram of a semiconductor device assembly of the present invention in an electronic system. - Embodiments of the present invention will be hereinafter described with reference to the accompanying drawings. It would be understood that these illustrations are not to be taken as actual views of any specific apparatus or method of the present invention, but are merely exemplary, idealized representations employed to more clearly and fully depict the present invention than might otherwise be possible. Additionally, elements and features common between the drawing figures retain the same numerical designation.
-
FIGS. 1-3 illustrate a process that may be used for fabricating a semiconductor die including redistribution lines on a back surface of asemiconductor substrate 110 and interconnected to conductive material in vias extending through thesemiconductor substrate 110. Thesemiconductor substrate 110 is preferably in wafer form with rows and columns of interconnected semiconductor dice, but may comprise an array of interconnected semiconductor dice or a single semiconductor die. Thesemiconductor substrate 110 is preferably formed from silicon, but may be formed from gallium arsenide, indium phosphide or any other known semiconducting material whose electrical conductivity and resistivity lie between those of a conductor and an insulator. - As depicted in
FIG. 1 , thesemiconductor substrate 110 includes anactive surface 112 and a back surface or backside 114, with integrated circuitry (not shown) formed on theactive surface 112 thereof, as known in the art. Theactive surface 112 of thesemiconductor substrate 110 includes a plurality ofvias 124 extending therein substantially perpendicular to the plane ofsemiconductor substrate 110, each via 124 having abottom wall 126 at a predetermined distance into the semiconductor substrate 10 fromactive surface 112. Thevias 124 may be formed in portions of “dead space” in theactive surface 112, being portions of thesemiconductor substrate 110 without integrated circuitry formed herein.Such vias 124 may be formed by drilling, by laser ablation or by any other suitable method known in the art. Laser ablation may be effected using equipment, such as the Model 5000-series lasers, offered currently by ElectroScientific industries Portland, Oreg. One specific, suitable piece of equipment is a 355 nm wavelength UV YAG laser, Model 270, which may be used to form vias as little as 25 μm in diameter. One hundred pulses using this laser will form a 750 μm deep via through silicon. If desired, a TMAH (tetramethyl ammonium hydroxide) solution may be used to clean the via, which also results in a squared cross-section for the via. - One other suitable technology for forming the
vias 124 is the so-called atmospheric downstream plasma (ADP) process offered by Tru-Si Technologies, Inc. of Sunnyvale, Calif. As applied to via formation, the ADP process is implemented using an aluminum mask layer formed over the active surface of a semiconductor substrate patterned with apertures to define via locations. An argon carrier gas is employed, with fluorine as the reactant gas. The etch effected is substantially isotropic. - After the
vias 124 are formed in theactive surface 112 of thesemiconductor substrate 110, one or moredielectric layers 128, such as a silicon dioxide or the like, may be formed over the walls of thevias 124. The silicon dioxide may be formed by a thermal oxidation process, as known in the art. Then thevias 124 may be filled with aconductive material 130, such as aluminum, copper and/or alloys thereof or a conductive or conductor-filled epoxy. An additional layer such as Ti—W may be formed over thedielectric layer 128 to promote adhesion with a conductive filter, such as copper. - Yet another approach to forming
vias 124 and providing conductors therethrough is disclosed in U.S. Pat. Nos. 5,973,396 and 6,168,969, issued to Warren M. Farnworth and assigned to the assignee of the present invention, the disclosures of each of which patents being incorporated herein by reference. The '396 and '969 patents disclose conductive doping (using Au or Al, for example) of a semiconductive material, such as silicon, from which a semiconductor die is formed, to provide conductive vias therethrough. Additional details of the technology are disclosed in U.S. Pat. Nos. 5,455,445 and 5,386,142, the disclosures of each of which patents being incorporated herein by reference. Beneficial vertical diffusion of the conductive dopant may be enhanced while curtailing lateral spread of the diffused conductor through selective crystallographic orientation of the matrix of silicon or other semiconductive die material to facilitate channeling of the conductive material through the matrix. An alternative to diffusion is ion-implantation of the conductor material, which is relatively rapidly effected in comparison to diffusion techniques and similarly limits undesirable lateral spread of the conductive material of the via. - A conductive layer, such as a metal, may then be formed over the
active surface 112 of thesemiconductor substrate 110. Such conductive layer may be etched or patterned to formconductive traces 132 to interconnect theconductive material 130 in thevias 124 andbond pads 122 on theactive surface 112. Thebond pads 122 are typically electrically interconnected to the integrated circuitry previously formed on theactive surface 112 of thesemiconductor substrate 110. The conductive traces 132 may also comprise a redistribution layer over theactive surface 112, as known in the art, to enable stacking of semiconductor substrates as referenced in further detail below. - According to one aspect of the present invention, the
conductive traces 132 patterned and interconnected with theconductive material 130 on theactive surface 112 of thesemiconductor substrate 110 comprises two interconnect types, namely interconnect type A and interconnect type B. Interconnect type A may include aconductive trace 132 extending from abond pad 122 and associated active circuitry on theactive surface 112 of thesemiconductor substrate 110 to theconductive material 130 formed in thevias 124 to electrically interconnect theconductive material 130 with the active circuitry of thesemiconductor substrate 110. Alternately, aconductive trace 132 may extend fromconductive material 130 of a via 124 to a “dummy” bond pad location which is unconnected to any circuitry ofsemiconductor substrate 110. Interconnect type B may eliminate theconductive trace 132 and instead be structured as abond pad 122 disposed on a top surface of theconductive material 130. An exemplary bond pad size is about 100 μm. Interconnect type B may also be electrically connected to or electrically isolated from any active circuitry on theactive surface 112 of thesemiconductor substrate 110. -
FIG. 2 illustrates thesemiconductor substrate 110 being thinned from theback surface 114 to a predetermined thickness or depth to remove or at least expose thebottom walls 126 of thevias 124 above which theconductive material 130 resides in thevias 124. Such thinning may be effected by, for example, mechanically grinding theback surface 114 down or by spin etching theback surface 114, bot as known in the art. If required, theback surface 114 may then be etched by either a dry etch or wet etch to expose theconductive material 130. Also, theback surface 114 may be polished by abrasive techniques such as chemical-mechanical polishing or any known controlled process to remove the back surface material to a predetermined extent, exposing theconductive material 130 formed in thevias 124 through theback surface 114 of thesemiconductor substrate 110. Yet another suitable thinning technology is the ADP process referenced above, offered by Tru-Si Technologies. Inc. of Sunnyvale, Calif. - After thinning the
semiconductor substrate 110 to the predetermined extent, aredistribution layer precursor 134 is formed on theback surface 114 of thesemiconductor substrate 110. Theredistribution layer precursor 134 may be any known conductive material, such as, for example, copper or aluminum or an alloy thereof. Theredistribution layer precursor 134 may be formed on theback surface 114 utilizing chemical vapor deposition (CVD), plasma enhanced CVD, also known as physical vapor deposition (PVD), sputtering, evaporation or otherwise, as known in the art. For example,redistribution layer precursor 134 may comprise a thin metal foil adhered to theback surface 114. In any case, theredistribution layer precursor 134 is formed such that it is in contact with the exposed surface of theconductive material 130 in thevias 124. Theback surface 114 may, if desired, optionally be covered with a dielectric layer (not shown) such as silicon dioxide, silicon nitride or a polymer such as polyimide prior to application of theredistribution layer precursor 134. - As depicted in
FIG. 3 , theredistribution layer precursor 134 is then etched in a predetermined pattern so as to form redistribution lines 140. The redistribution lines 140 are patterned on theback surface 114 of thesemiconductor substrate 110 to respectively extend from theconductive material 130 in associatedvias 124 to predetermined distal locations on theback surface 114 thereof. As well known in the art, patterning theredistribution layer precursor 134 to formredistribution lines 140 may be accomplished by masking and patterning of a resist, such as a positive or negative photoresist, followed by a dry etch or wet etch. Alternatively,redistribution lines 140 may be printed using a conductive or conductor-filled polymer onback surface 114 or applied as preformed traces from a thin carrier film, which may then be removed or remain as a dielectric layer onback surface 114. -
Conductive bumps 120 may be formed and configured on theredistribution lines 140 proximate the predetermined distal locations to correspond and interconnect with an interconnect pattern defined by contact pads or terminals of another substrate.Conductive bumps 120 may comprise, for example, solder balls of tin and lead which are preformed and placed onredistribution lines 140 and then at least partially reflowed or masses of solder paste which are stenciled onback surface 114 at desired locations and then reflowed to form solder balls. As desired or required, a solder mask (not shown) may be applied prior to solder ball formation, which solder mask may then be removed or remain for additional protection ofback surface 114. Alternatively, conductive bumps may comprise masses of conductive or conductor-filled epoxy formed as columns or pillars. - In the instance that the
semiconductor substrate 110 is in wafer form,such semiconductor substrate 110 may be singulated or separated into single or multiple but interconnected semiconductor dice prior to assembling such single or interconnected dice into a semiconductor device assembly with one or more other substrates. -
FIG. 4 illustrates a simplified view of theback surface 114 of thesemiconductor substrate 110 as a singulated semiconductor die. As shown, thevias 124 filled withconductive material 130 may appear to be formed in random locations sincesuch vias 124 are preferably formed in portions of “dead space” in thesemiconductor substrate 110, as previously discussed. Theconductive material 130 in thevias 124 may then be electrically connected throughredistribution lines 140 andconductive bumps 120 to correspond with a predetermined interconnect pattern of another substrate. Alternatively,such vias 124 may also be formed symmetrically in the semiconductor substrate and routed by theredistribution lines 140 to correspond with an appropriate predetermined electrical interconnect pattern of another substrate. Thevias 124 may be located to, for example, accommodate or even balance physical stresses such as thermal stresses in thesemiconductor substrate 110 attributable to mismatches in coefficients of thermal expansion (CTE) of the various materials employed therein, and to accommodate physical stresses resulting from assembly ofsemiconductor substrate 110 with other substrates due to CTE mismatches or residual stresses from fabrication processes and materials employed. - According to the present invention, the
redistribution lines 140 may be interconnected to, or include, additionalelectronic components 150, such as capacitors, inductors, resistors, fuses, and controllers. Suchelectronic components 150 may provide advantages, such as providing improved RIC (resistance-inductance-capacitance) characteristics to the integrated circuitry of thesemiconductor substrate 110. One especially suitable component comprises a decoupling capacitor for isolating the integrated circuitry on theactive surface 112. Fabrication ofelectronic components 150 may be effected by any suitable methods known in the art and already practiced for forming the same electrical components on the active surface of a semiconductor substrate. Accordingly, no further discussion thereof is believed to be necessary. - Further, connecting
conductive traces 132 extending frombond pads 122 to theredistribution lines 140 using a type A interconnection may result in improved impedance, less cross-talk between adjacentconductive traces 132 on theactive surface 112, a smaller semiconductor die footprint, and additional space to provide discreteelectronic components 150 on theback surface 114 of thesemiconductor substrate 110. Using a type B interconnection eliminates any cross-talk whatsoever on theactive surface 112, as the bond pad-equivalent connections provided byconductive material 130 invias 124 remove the potential for electrostatic or electromagnetic interference fromactive surface 112. - Furthermore, the
electronic components 150 provided in or on theback surface 114 of thesemiconductor substrate 110 may be components conventionally provided on anactive surface 112 of a semiconductor die or adjacently separate from a semiconductor die but electrically interconnected thereto. Thus, the present invention provides an effective increase in available “real estate” without increasing the footprint ofsemiconductor substrate 110 by providingelectronic components 150 in or on theback surface 114 of thesemiconductor substrate 110. In addition, as previously noted, theredistribution lines 140 are formed to extend to predetermined locations to interconnect throughconductive bumps 120 with the interconnect pattern of another substrate, thus providing numerous possibilities for new semiconductor device assembly arrangements and attachment configurations for thesemiconductor substrate 110 having theredistribution lines 140 on theback surface 114 thereof. Such semiconductor assembly device arrangements may include stacking semiconductor substrates with active surface-on-active surface attachment, back surface-on-active surface attachment, back surface-on-back surface attachment and active surface-on-back surface attachment of semiconductor substrates with, in each case, conductive bumps, studs, pillars or other interconnection elements extending transversely therebetween. -
FIG. 5 illustrates asemiconductor device assembly 185, wherein theback surface 114 ofsemiconductor substrate 110 is attached to acarrier substrate 160. Thecarrier substrate 160 includes afirst surface 162 and a second surface 16.Conductive bumps 120 on theredistribution lines 140 extend transversely fromback surface 114 to electrical interconnects in the form of contact pads orterminals 166 onfirst surface 162 ofcarrier substrate 160. Thecarrier substrate 160 may be formed from any suitable, rigid substrate material known in the art, such as silicon, a bismaleimide triazine (BT) resin, an FR-4 or FR-5 laminate, ceramic or epoxy resin, or a flexible material like a polymer such as a polyimide film, or other suitable polymeric material. - The
conductive bumps 120 disposed onredistribution lines 140 are located, sized and configured to correspond with contact pads orterminals 166 on thefirst surface 162 of thecarrier substrate 160 to make electrical and mechanical connection thereto. The contact pads orterminals 166 on thefirst surface 162 of thecarrier substrate 160 may then be electrically interconnected to other electrical components peripheral to thesemiconductor substrate 110 oncarrier substrate 160 or to other components through higher-level packaging, such as a motherboard. With thesemiconductor substrate 110 attached to thecarrier substrate 160 with theactive surface 112 exposed and facing upward, suchactive surface 112 may be interconnected to other components, such as another carrier substrate or interposer for interconnecting to one or more semiconductor dice. Additionally, if stacking additional semiconductor dice onsemiconductor substrate 110 is not required,wire bonds 176 may be extended from selectedbond pads 122 orconductive traces 132 on theactive surface 112 to thefirst surface 162 of thecarrier substrate 160 or to other semiconductor substrates laterally proximate thereto and carried oncarrier substrate 160. - As noted previously,
conductive bumps 120 may include, but are not limited to, any particular known conductive materials or alloys thereof suitable for attaching flip-chip assemblies, such as tin/lead solder, copper, silver, gold and alloys thereof and conductive polymers and/or conductive composites. Theconductive bumps 120 may also be formed as layers of such materials and/or alloys thereof. Further, theconductive bumps 120 may be formed as bumps, balls, pillars, columns and studs, or any other suitable physical structure. - Contact pads or
terminals 166 reside on thecarrier substrate 160. If solder is to be used forconductive bumps 120, pads (not shown) formed on a portion of theredistribution lines 140 at the intended distal locations ofconductive bumps 120 may include an under bump metallization (UBM) laminated, multilayer metal structure as known in the art with an exposed, solder-wettable layer thereon, which may directly contact theconductive bump 120 and bond thereto after a reflow process at a predetermined temperature. The temperature may be determined by the solder alloy employed in theconductive bump 120 as known to one of ordinary skill in the art. A similar, solder-wettable layer may be formed on contact pads orterminals 166 oncarrier substrate 160. In this manner, thesemiconductor substrate 110 having the above-describedredistribution lines 140 on the back surface thereof may be mounted to acarrier substrate 160. - After assembly of
semiconductor substrate 110 withcarrier substrate 160, adielectric filler material 168 may be applied therebetween, surroundingconductive bumps 120. The presence ofdielectric filler material 168 reduces the potential for corrosion ofredistribution lines 140, eliminates any potential for moisture or particulate-induced shorting betweenconductive bumps 120, increases the mechanical strength of attachment between components of the semiconductor device and accommodates stress on the assembly due to thermal cycling and residual stresses in the substrates and materials used to interconnect them. Thedielectric filler material 168 may comprise a polymeric material, such as an epoxy or an acrylic resin, and may contain inert filler material, such as silicon particles, therein to reduce costs. Thedielectric filler material 168 may be introduced between the substrates using a dispensing needle or other nozzle, and distribution thereof between the substrates may be enhanced by introduction from multiple locations, by use of a vacuum opposite the introduction point or applied through an aperture incarrier substrate 160, by capillary action, by tilting the assembly from the horizontal to use gravity assist, or otherwise as known in the art. -
FIG. 6 illustrates a first embodiment of a stackedsemiconductor device assembly 190 according to the present invention. The first embodiment may include theactive surface 112 of thesemiconductor substrate 110 attached and electrically connected to anactive surface 112′ of a second, flip-chip configuredsemiconductor substrate 110′ withconductive bumps 120 therebetween. In this manner, there are twosemiconductor substrates back surface 114′ of thesecond semiconductor substrate 110′ exposed upward. Similar tosemiconductor substrate 110, thesecond semiconductor substrate 110′ may optionally includeredistribution lines 140 on theback surface 114′ thereof with additional electronic components 150 (not shown). Also, stackedsemiconductor device assembly 190 depicts interconnect type B being utilized as a direct link for active circuitry insemiconductor substrate 110′ to interconnect withcarrier substrate 160, either in combination with or in isolation from, as desired, the active circuitry on the active surface 11 ofsemiconductor substrate 110. - From the
redistribution lines 140 on thesecond semiconductor substrate 110′,wire bonds 176 may be optionally formed and the stackedsemiconductor device assembly 190 may be encapsulated with a dielectric encapsulation material (not shown).Dielectric filler material 168 may be provided betweensemiconductor substrates semiconductor substrate 110 and thecarrier substrate 160, as previously described. -
FIG. 7 depicts a stackedsemiconductor device assembly 290 with a plurality ofsemiconductor substrates back surfaces 114, according to a second embodiment of the present invention. The second embodiment is similar to the first stacked semiconductor device embodiment, exceptback surface 114′ ofsecond semiconductor substrate 110′ is attached toactive surface 112 offirst semiconductor substrate 110 withconductive bumps 120 anddielectric filler material 168 therebetween. Athird semiconductor substrate 110″ having aback surface 114″ may also be stacked onsemiconductor substrate 110′ so thatactive surface 112′ ofsecond semiconductor substrate 110′ faces and is attached toactive surface 112″ ofthird semiconductor substrate 110″ withconductive bumps 120 anddielectric filler material 168 therebetween. Alternatively,third semiconductor substrate 110″ may also be oriented withactive surface 112″ up and connect withsecond semiconductor substrate 110′ through redistribution lines 140 (not shown). With this arrangement, there are threesemiconductor substrates carrier substrate 260 in the stackedsemiconductor device assembly 290, wherein at leastfirst semiconductor substrate 110 andsecond semiconductor substrate 110′ each include the redistribution lines 140 (not shown inFIG. 7 ) of the present invention since such first andsecond semiconductor substrates -
FIG. 8 depicts a stackedsemiconductor assembly 390 withsemiconductor substrates first semiconductor substrate 110 is attached in a typical flip-chip attachment, whereinactive surface 112 offirst semiconductor substrate 110 is attached face down tocarrier substrate 360 withconductive bumps 120 anddielectric filler material 168 therebetween. Ahack surface 114′ ofsecond semiconductor substrate 110′ is attached to backsurface 114 offirst semiconductor substrate 110.Wire bonds 376 may be optionally provided from theactive surface 112′ ofsecond semiconductor substrate 110′ to afirst surface 362 ofcarrier substrate 360, after which anencapsulation material 378 may be provided to at least encapsulate theactive surface 112′ andwire bonds 376 extending therefrom. With this stackedsemiconductor device assembly 390, the back surface-to-back surface arrangement ofsemiconductor substrates back surfaces -
FIG. 9 depicts a stackedsemiconductor device assembly 490 withsemiconductor substrates first semiconductor substrate 110 is attached tofirst surface 462 ofcarrier substrate 460 in a flip-chip type attachment withactive surface 112 offirst semiconductor substrate 110 attached face down tocarrier substrate 460 withconductive bumps 120 andfiller material 168 therebetween. Anactive surface 112′ ofsecond semiconductor substrate 110′ may then be attached byconductive bumps 120 to backsurface 114 offirst semiconductor substrate 110. If required or desired,wire bonds 476 may be provided frombond pads 122 orredistribution lines 140 onback surface 114′ ofsecond semiconductor substrate 110′ tocarrier substrate 460 withdielectric encapsulation material 478 thereover. With this stackedsemiconductor device assembly 490, theback surface 114 of first semiconductor substrate 10 may include the redistribution lines of the present invention to provide an electrical interconnection forsecond semiconductor substrate 110′. However,second semiconductor substrate 110′ may or may not include the backsurface redistribution lines 140 of the present invention. - As illustrated in block diagram form in drawing
FIG. 10 ,semiconductor device assembly 185 or stackedsemiconductor device assemblies circuit board 510, such as a memory module, daughter board or motherboard, in anelectronic system 500, such as a computer system. In theelectronic system 500, thecircuit board 510 may have connected hereto aprocessor device 520, which also communicates with aninput device 530 and anoutput device 540. Theinput device 530 may comprise one or more of a keyboard, mouse, joystick or any other type of electronic input device. Theoutput device 540 may comprise one or more of a monitor, printer or storage device, such as a disk drive, or any other type of output device. Theprocessor device 520 may be, but is not limited to, a microprocessor or a circuit card including hardware in the form of a central processing unit, or CPU, for processing instructions for theelectronic system 500. Additional structure for theelectronic system 500 is readily apparent to those of ordinary skill in the art. - The use of extremely small vias according to the present invention provides the opportunity to substantially reduce the pitch, or spacing, between contacts on a semiconductor substrate. For example, conventional bond pads, with a size approximating 100 μm, may require a minimum pitch of 250 μm or even greater, due to fabrication issues. Using 25 μm diameter vias according to the present invention enables a pitch reduction between adjacent vias to 100 μm, or even less.
- Likewise, the use of a redistribution layer on the back surface of a semiconductor substrate enables the formation of a fully populated array of conductive bumps at a very wide, easily usable pitch of about 350 μm. Further, the availability of the entire back surface of a semiconductor substrate and the great extent and wide pitch of the redistribution lines and conductive bumps thereover spreads out, or distributes, stresses manifested in the semiconductor substrate under thermal cycling during testing, burn-in and subsequent normal operation of the integrated circuitry due to different CTEs of the materials used in fabricating the semiconductor substrate. The presence of the redistribution lines themselves on the back surface of the semiconductor substrate may be used to compensate the substrate for residual stresses induced by fabrication of the integrated circuitry on the active surface as well as for mismatched CTE-induced stresses attributable to thermal cycling.
- Wile the present invention has been disclosed in terms of certain preferred embodiments and alternatives thereof, those of ordinary skill in the art will recognize and appreciate that the invention is not so limited. Additions, deletions and modifications to the disclosed embodiments may be effected without departing from the scope of the invention as claimed herein. Similarly, features from one embodiment may be combined with those of another while remaining within the scope of the invention.
Claims (13)
1. A method of making a stacked semiconductor assembly comprising:
providing a first semiconductor die having an active surface bearing integrated circuitry and a back surface, the first semiconductor die defining at least one via having a substantially uniform cross-section extending from the active surface to the back surface with conductive material filling the at least one via;
forming at least one electrically conductive redistribution line on the back surface of the first semiconductor die in electrical communication with the conductive material in the at least one via and extending to a location on the back surface of the first semiconductor die remote from the location of the at least one via;
attaching a second semiconductor die to the first semiconductor die, the second semiconductor die having an active surface, a back surface, and at least one via therethrough extending from the active surface to the back surface thereof; and
electrically connecting the back surface of the first semiconductor die to the active surface of the second semiconductor die so that at least one conductive element on the active surface of the second semiconductor die is electrically connected to the at least one redistribution line at the location on the back surface of the first semiconductor die.
2. The method of claim 1 , wherein providing comprises:
forming the at least one via in the active surface of the first semiconductor die to extend partially through the first semiconductor die;
filling the at least one via with the conductive material; and
removing material from the back surface of the first semiconductor die to expose the conductive material in the at least one via.
3. The method of claim 2 , wherein forming the at least one via comprises at least one of drilling and laser ablation.
4. The method of claim 2 , wherein filling comprises depositing conductive material over the active surface to fill the at least one via.
5. The method of claim 2 , wherein removing comprises:
grinding material from the back surface of the first semiconductor die; and
applying at least one of a wet etch and a dry etch on the back surface to expose the conductive material on the back surface.
6. The method of claim 2 , wherein removing comprises abrasively removing.
7. The method of claim 2 , wherein removing comprises:
grinding the material from the back surface of the first semiconductor die; and
abrasively polishing the back surface to expose the conductive material on the back surface and to planarize the back surface.
8. The method of claim 1 , wherein disposing the conductive material comprises doping a matrix material of the first semiconductor die to simultaneously define the at least one via and render it conductive.
9. The method of claim 1 , wherein forming comprises:
depositing a redistribution layer precursor on the back surface of the first semiconductor die; and
patterning the redistribution layer to define the at least one redistribution line on the back surface.
10. The method of claim 9 , wherein patterning comprises selectively masking and etching the redistribution layer precursor to remove excess material of the redistribution layer precursor to form the at least one redistribution line on the back surface.
11. The method of claim 1 , wherein forming comprises printing the at least one redistribution line on the back surface.
12. The method of claim 1 , wherein forming comprises applying the at least one redistribution line as a preform to the back surface.
13. The method of claim 1 , wherein forming comprises positioning a conductive bump on a portion of the at least one redistribution line proximate the location on the back surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/968,359 US20080153204A1 (en) | 2002-07-31 | 2008-01-02 | Semiconductor dice having back side redistribution layer accessed using through-silicon vias, methods |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/209,823 US6800930B2 (en) | 2002-07-31 | 2002-07-31 | Semiconductor dice having back side redistribution layer accessed using through-silicon vias, and assemblies |
US10/732,558 US6962867B2 (en) | 2002-07-31 | 2003-12-10 | Methods of fabrication of semiconductor dice having back side redistribution layer accessed using through-silicon vias and assemblies thereof |
US11/110,431 US7355273B2 (en) | 2002-07-31 | 2005-04-20 | Semiconductor dice having back side redistribution layer accessed using through-silicon vias, methods |
US11/968,359 US20080153204A1 (en) | 2002-07-31 | 2008-01-02 | Semiconductor dice having back side redistribution layer accessed using through-silicon vias, methods |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/110,431 Division US7355273B2 (en) | 2002-07-31 | 2005-04-20 | Semiconductor dice having back side redistribution layer accessed using through-silicon vias, methods |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080153204A1 true US20080153204A1 (en) | 2008-06-26 |
Family
ID=31187150
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/209,823 Expired - Lifetime US6800930B2 (en) | 2002-07-31 | 2002-07-31 | Semiconductor dice having back side redistribution layer accessed using through-silicon vias, and assemblies |
US10/732,558 Expired - Fee Related US6962867B2 (en) | 2002-07-31 | 2003-12-10 | Methods of fabrication of semiconductor dice having back side redistribution layer accessed using through-silicon vias and assemblies thereof |
US11/110,431 Expired - Lifetime US7355273B2 (en) | 2002-07-31 | 2005-04-20 | Semiconductor dice having back side redistribution layer accessed using through-silicon vias, methods |
US11/968,359 Abandoned US20080153204A1 (en) | 2002-07-31 | 2008-01-02 | Semiconductor dice having back side redistribution layer accessed using through-silicon vias, methods |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/209,823 Expired - Lifetime US6800930B2 (en) | 2002-07-31 | 2002-07-31 | Semiconductor dice having back side redistribution layer accessed using through-silicon vias, and assemblies |
US10/732,558 Expired - Fee Related US6962867B2 (en) | 2002-07-31 | 2003-12-10 | Methods of fabrication of semiconductor dice having back side redistribution layer accessed using through-silicon vias and assemblies thereof |
US11/110,431 Expired - Lifetime US7355273B2 (en) | 2002-07-31 | 2005-04-20 | Semiconductor dice having back side redistribution layer accessed using through-silicon vias, methods |
Country Status (1)
Country | Link |
---|---|
US (4) | US6800930B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010009553A1 (en) * | 2008-07-25 | 2010-01-28 | Ati Technologies Ulc | Under bump metallization for on-die capacitor |
US20100323526A1 (en) * | 2009-06-17 | 2010-12-23 | Canon Kabushiki Kaisha | Method of processing silicon substrate and method of manufacturing substrate for liquid discharge head |
US20110042804A1 (en) * | 2009-08-19 | 2011-02-24 | Chien-Hung Liu | Chip package and fabrication method thereof |
US20110132652A1 (en) * | 2007-11-20 | 2011-06-09 | International Business Machines Corporation | Structure of very high insertion loss of the substrate noise decoupling |
US20110133338A1 (en) * | 2007-08-01 | 2011-06-09 | Topacio Roden R | Conductor bump method and apparatus |
US20110159638A1 (en) * | 2009-12-31 | 2011-06-30 | Meng-Jen Wang | Method for Making a Chip Package |
US20110298117A1 (en) * | 2010-06-04 | 2011-12-08 | Sehat Sutardja | Pad configurations for an electronic package assembly |
US20120112312A1 (en) * | 2010-11-04 | 2012-05-10 | Qualcomm Incorporated | Integrated Circuit Chip Customization Using Backside Access |
US20120298410A1 (en) * | 2011-05-27 | 2012-11-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Interposer Testing Using Dummy Connections |
US10957625B2 (en) * | 2017-12-29 | 2021-03-23 | Micron Technology, Inc. | Pillar-last methods for forming semiconductor devices |
Families Citing this family (394)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7179740B1 (en) * | 1999-05-03 | 2007-02-20 | United Microelectronics Corporation | Integrated circuit with improved interconnect structure and process for making same |
SG111935A1 (en) | 2002-03-04 | 2005-06-29 | Micron Technology Inc | Interposer configured to reduce the profiles of semiconductor device assemblies and packages including the same and methods |
SG121707A1 (en) | 2002-03-04 | 2006-05-26 | Micron Technology Inc | Method and apparatus for flip-chip packaging providing testing capability |
SG115459A1 (en) * | 2002-03-04 | 2005-10-28 | Micron Technology Inc | Flip chip packaging using recessed interposer terminals |
KR20030083306A (en) * | 2002-04-20 | 2003-10-30 | 삼성전자주식회사 | A memory card |
US6803303B1 (en) * | 2002-07-11 | 2004-10-12 | Micron Technology, Inc. | Method of fabricating semiconductor component having encapsulated, bonded, interconnect contacts |
US6891248B2 (en) * | 2002-08-23 | 2005-05-10 | Micron Technology, Inc. | Semiconductor component with on board capacitor |
US6696748B1 (en) * | 2002-08-23 | 2004-02-24 | Micron Technology, Inc. | Stress balanced semiconductor packages, method of fabrication and modified mold segment |
DE10245930A1 (en) * | 2002-09-30 | 2004-04-08 | Osram Opto Semiconductors Gmbh | Optoelectronic component and component module |
TWI227050B (en) * | 2002-10-11 | 2005-01-21 | Sanyo Electric Co | Semiconductor device and method for manufacturing the same |
JP4056360B2 (en) * | 2002-11-08 | 2008-03-05 | 沖電気工業株式会社 | Semiconductor device and manufacturing method thereof |
JP2004228392A (en) * | 2003-01-24 | 2004-08-12 | Seiko Epson Corp | Method of manufacturing semiconductor device and method of manufacturing semiconductor module |
US6924551B2 (en) * | 2003-05-28 | 2005-08-02 | Intel Corporation | Through silicon via, folded flex microelectronic package |
JP2005051150A (en) * | 2003-07-31 | 2005-02-24 | Seiko Epson Corp | Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus |
US8084866B2 (en) | 2003-12-10 | 2011-12-27 | Micron Technology, Inc. | Microelectronic devices and methods for filling vias in microelectronic devices |
US20050170609A1 (en) * | 2003-12-15 | 2005-08-04 | Alie Susan A. | Conductive bond for through-wafer interconnect |
US20050133571A1 (en) * | 2003-12-18 | 2005-06-23 | Texas Instruments Incorporated | Flip-chip solder bump formation using a wirebonder apparatus |
JP2005277114A (en) * | 2004-03-25 | 2005-10-06 | Sanyo Electric Co Ltd | Semiconductor device |
JP3945493B2 (en) * | 2004-04-16 | 2007-07-18 | セイコーエプソン株式会社 | Semiconductor device and manufacturing method thereof |
US20050247894A1 (en) | 2004-05-05 | 2005-11-10 | Watkins Charles M | Systems and methods for forming apertures in microfeature workpieces |
US7608534B2 (en) | 2004-06-02 | 2009-10-27 | Analog Devices, Inc. | Interconnection of through-wafer vias using bridge structures |
US7301229B2 (en) * | 2004-06-25 | 2007-11-27 | Taiwan Semiconductor Manufacturing Company | Electrostatic discharge (ESD) protection for integrated circuit packages |
US7232754B2 (en) | 2004-06-29 | 2007-06-19 | Micron Technology, Inc. | Microelectronic devices and methods for forming interconnects in microelectronic devices |
US7419852B2 (en) | 2004-08-27 | 2008-09-02 | Micron Technology, Inc. | Low temperature methods of forming back side redistribution layers in association with through wafer interconnects, semiconductor devices including same, and assemblies |
US7083425B2 (en) | 2004-08-27 | 2006-08-01 | Micron Technology, Inc. | Slanted vias for electrical circuits on circuit boards and other substrates |
US7151040B2 (en) * | 2004-08-31 | 2006-12-19 | Micron Technology, Inc. | Methods for increasing photo alignment margins |
US7910288B2 (en) | 2004-09-01 | 2011-03-22 | Micron Technology, Inc. | Mask material conversion |
US7115525B2 (en) | 2004-09-02 | 2006-10-03 | Micron Technology, Inc. | Method for integrated circuit fabrication using pitch multiplication |
US7655387B2 (en) | 2004-09-02 | 2010-02-02 | Micron Technology, Inc. | Method to align mask patterns |
US7300857B2 (en) | 2004-09-02 | 2007-11-27 | Micron Technology, Inc. | Through-wafer interconnects for photoimager and memory wafers |
DE102004047730B4 (en) * | 2004-09-30 | 2017-06-22 | Advanced Micro Devices, Inc. | A method for thinning semiconductor substrates for the production of thin semiconductor wafers |
DE112005002762T5 (en) | 2004-11-12 | 2007-08-30 | Analog Devices Inc., Norwood | Spaced, bumped component structure |
JP4290158B2 (en) * | 2004-12-20 | 2009-07-01 | 三洋電機株式会社 | Semiconductor device |
US7316572B2 (en) * | 2005-02-03 | 2008-01-08 | International Business Machines Corporation | Compliant electrical contacts |
US7276794B2 (en) * | 2005-03-02 | 2007-10-02 | Endevco Corporation | Junction-isolated vias |
DE102005010272A1 (en) * | 2005-03-03 | 2006-09-14 | Infineon Technologies Ag | Semiconductor component and method for producing a semiconductor device |
US7253118B2 (en) | 2005-03-15 | 2007-08-07 | Micron Technology, Inc. | Pitch reduced patterns relative to photolithography features |
US7390746B2 (en) * | 2005-03-15 | 2008-06-24 | Micron Technology, Inc. | Multiple deposition for integration of spacers in pitch multiplication process |
US7611944B2 (en) | 2005-03-28 | 2009-11-03 | Micron Technology, Inc. | Integrated circuit fabrication |
US7120046B1 (en) | 2005-05-13 | 2006-10-10 | Micron Technology, Inc. | Memory array with surrounding gate access transistors and capacitors with global and staggered local bit lines |
US7371627B1 (en) | 2005-05-13 | 2008-05-13 | Micron Technology, Inc. | Memory array with ultra-thin etched pillar surround gate access transistors and buried data/bit lines |
US7429536B2 (en) | 2005-05-23 | 2008-09-30 | Micron Technology, Inc. | Methods for forming arrays of small, closely spaced features |
US7560390B2 (en) | 2005-06-02 | 2009-07-14 | Micron Technology, Inc. | Multiple spacer steps for pitch multiplication |
JP4311376B2 (en) | 2005-06-08 | 2009-08-12 | セイコーエプソン株式会社 | Semiconductor device, semiconductor device manufacturing method, electronic component, circuit board, and electronic apparatus |
US7396781B2 (en) | 2005-06-09 | 2008-07-08 | Micron Technology, Inc. | Method and apparatus for adjusting feature size and position |
US7795134B2 (en) | 2005-06-28 | 2010-09-14 | Micron Technology, Inc. | Conductive interconnect structures and formation methods using supercritical fluids |
US7528006B2 (en) * | 2005-06-30 | 2009-05-05 | Intel Corporation | Integrated circuit die containing particle-filled through-silicon metal vias with reduced thermal expansion |
US7888721B2 (en) | 2005-07-06 | 2011-02-15 | Micron Technology, Inc. | Surround gate access transistors with grown ultra-thin bodies |
KR100721353B1 (en) * | 2005-07-08 | 2007-05-25 | 삼성전자주식회사 | Structure and Manufacturing Method of Chip Insert Intermediate Substrate, Wafer Level Stacking Structure and Package Structure of Heterogeneous Chip |
US7768051B2 (en) | 2005-07-25 | 2010-08-03 | Micron Technology, Inc. | DRAM including a vertical surround gate transistor |
US7413981B2 (en) * | 2005-07-29 | 2008-08-19 | Micron Technology, Inc. | Pitch doubled circuit layout |
US8123968B2 (en) | 2005-08-25 | 2012-02-28 | Round Rock Research, Llc | Multiple deposition for integration of spacers in pitch multiplication process |
JP4847072B2 (en) * | 2005-08-26 | 2011-12-28 | 本田技研工業株式会社 | Semiconductor integrated circuit device and manufacturing method thereof |
US7816262B2 (en) | 2005-08-30 | 2010-10-19 | Micron Technology, Inc. | Method and algorithm for random half pitched interconnect layout with constant spacing |
US7696567B2 (en) | 2005-08-31 | 2010-04-13 | Micron Technology, Inc | Semiconductor memory device |
US7322138B2 (en) * | 2005-08-31 | 2008-01-29 | Southern Imperial, Inc. | Shelf edge sign holder |
US7829262B2 (en) | 2005-08-31 | 2010-11-09 | Micron Technology, Inc. | Method of forming pitch multipled contacts |
US7262134B2 (en) | 2005-09-01 | 2007-08-28 | Micron Technology, Inc. | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US7687342B2 (en) | 2005-09-01 | 2010-03-30 | Micron Technology, Inc. | Method of manufacturing a memory device |
US7776744B2 (en) | 2005-09-01 | 2010-08-17 | Micron Technology, Inc. | Pitch multiplication spacers and methods of forming the same |
US7416943B2 (en) | 2005-09-01 | 2008-08-26 | Micron Technology, Inc. | Peripheral gate stacks and recessed array gates |
US7393789B2 (en) | 2005-09-01 | 2008-07-01 | Micron Technology, Inc. | Protective coating for planarization |
US7557032B2 (en) | 2005-09-01 | 2009-07-07 | Micron Technology, Inc. | Silicided recessed silicon |
US7863187B2 (en) | 2005-09-01 | 2011-01-04 | Micron Technology, Inc. | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US7572572B2 (en) | 2005-09-01 | 2009-08-11 | Micron Technology, Inc. | Methods for forming arrays of small, closely spaced features |
US7759197B2 (en) * | 2005-09-01 | 2010-07-20 | Micron Technology, Inc. | Method of forming isolated features using pitch multiplication |
US7897920B2 (en) * | 2005-09-21 | 2011-03-01 | Analog Devices, Inc. | Radiation sensor device and method |
US8476591B2 (en) | 2005-09-21 | 2013-07-02 | Analog Devices, Inc. | Radiation sensor device and method |
US8154105B2 (en) * | 2005-09-22 | 2012-04-10 | International Rectifier Corporation | Flip chip semiconductor device and process of its manufacture |
DE102005046737B4 (en) * | 2005-09-29 | 2009-07-02 | Infineon Technologies Ag | Benefits for the production of an electronic component, component with chip-through contacts and methods |
US8114771B2 (en) * | 2006-01-13 | 2012-02-14 | Stats Chippac Ltd. | Semiconductor wafer scale package system |
KR100699807B1 (en) * | 2006-01-26 | 2007-03-28 | 삼성전자주식회사 | Stacked chip and having stacked chip package |
US7541251B2 (en) * | 2006-02-10 | 2009-06-02 | California Micro Devices | Wire bond and redistribution layer process |
US7842558B2 (en) | 2006-03-02 | 2010-11-30 | Micron Technology, Inc. | Masking process for simultaneously patterning separate regions |
US7476933B2 (en) | 2006-03-02 | 2009-01-13 | Micron Technology, Inc. | Vertical gated access transistor |
US7514289B2 (en) * | 2006-03-20 | 2009-04-07 | Sun Microsystems, Inc. | Methods and structures for facilitating proximity communication |
US7902074B2 (en) | 2006-04-07 | 2011-03-08 | Micron Technology, Inc. | Simplified pitch doubling process flow |
TW200741959A (en) * | 2006-04-20 | 2007-11-01 | Min-Chang Dong | A die and method fabricating the same |
US8003310B2 (en) * | 2006-04-24 | 2011-08-23 | Micron Technology, Inc. | Masking techniques and templates for dense semiconductor fabrication |
US7488685B2 (en) | 2006-04-25 | 2009-02-10 | Micron Technology, Inc. | Process for improving critical dimension uniformity of integrated circuit arrays |
US7510928B2 (en) * | 2006-05-05 | 2009-03-31 | Tru-Si Technologies, Inc. | Dielectric trenches, nickel/tantalum oxide structures, and chemical mechanical polishing techniques |
KR100784498B1 (en) * | 2006-05-30 | 2007-12-11 | 삼성전자주식회사 | Laminated chip, manufacturing method thereof and semiconductor package having same |
US7795149B2 (en) | 2006-06-01 | 2010-09-14 | Micron Technology, Inc. | Masking techniques and contact imprint reticles for dense semiconductor fabrication |
US7749899B2 (en) | 2006-06-01 | 2010-07-06 | Micron Technology, Inc. | Microelectronic workpieces and methods and systems for forming interconnects in microelectronic workpieces |
US7723009B2 (en) | 2006-06-02 | 2010-05-25 | Micron Technology, Inc. | Topography based patterning |
US20080001271A1 (en) * | 2006-06-30 | 2008-01-03 | Sony Ericsson Mobile Communications Ab | Flipped, stacked-chip IC packaging for high bandwidth data transfer buses |
US8581380B2 (en) * | 2006-07-10 | 2013-11-12 | Stats Chippac Ltd. | Integrated circuit packaging system with ultra-thin die |
US7629249B2 (en) | 2006-08-28 | 2009-12-08 | Micron Technology, Inc. | Microfeature workpieces having conductive interconnect structures formed by chemically reactive processes, and associated systems and methods |
US7560371B2 (en) * | 2006-08-29 | 2009-07-14 | Micron Technology, Inc. | Methods for selectively filling apertures in a substrate to form conductive vias with a liquid using a vacuum |
US7611980B2 (en) | 2006-08-30 | 2009-11-03 | Micron Technology, Inc. | Single spacer process for multiplying pitch by a factor greater than two and related intermediate IC structures |
US7902643B2 (en) | 2006-08-31 | 2011-03-08 | Micron Technology, Inc. | Microfeature workpieces having interconnects and conductive backplanes, and associated systems and methods |
US7666578B2 (en) | 2006-09-14 | 2010-02-23 | Micron Technology, Inc. | Efficient pitch multiplication process |
US8129289B2 (en) | 2006-10-05 | 2012-03-06 | Micron Technology, Inc. | Method to deposit conformal low temperature SiO2 |
US20080087979A1 (en) * | 2006-10-13 | 2008-04-17 | Analog Devices, Inc. | Integrated Circuit with Back Side Conductive Paths |
US7912875B2 (en) * | 2006-10-31 | 2011-03-22 | Business Objects Software Ltd. | Apparatus and method for filtering data using nested panels |
US7573115B2 (en) * | 2006-11-13 | 2009-08-11 | International Business Machines Corporation | Structure and method for enhancing resistance to fracture of bonding pads |
US20080131658A1 (en) * | 2006-12-05 | 2008-06-05 | Vijay Wakharkar | Electronic packages and components thereof formed by co-deposited carbon nanotubes |
US8110899B2 (en) * | 2006-12-20 | 2012-02-07 | Intel Corporation | Method for incorporating existing silicon die into 3D integrated stack |
US7692278B2 (en) * | 2006-12-20 | 2010-04-06 | Intel Corporation | Stacked-die packages with silicon vias and surface activated bonding |
US7605458B1 (en) * | 2007-02-01 | 2009-10-20 | Xilinx, Inc. | Method and apparatus for integrating capacitors in stacked integrated circuits |
CN101601129B (en) * | 2007-02-07 | 2011-08-17 | 罗姆股份有限公司 | Mounting board and electronic device |
US8198716B2 (en) * | 2007-03-26 | 2012-06-12 | Intel Corporation | Die backside wire bond technology for single or stacked die package |
US7812461B2 (en) * | 2007-03-27 | 2010-10-12 | Micron Technology, Inc. | Method and apparatus providing integrated circuit having redistribution layer with recessed connectors |
US8134227B2 (en) * | 2007-03-30 | 2012-03-13 | Stats Chippac Ltd. | Stacked integrated circuit package system with conductive spacer |
US8445325B2 (en) | 2007-05-04 | 2013-05-21 | Stats Chippac, Ltd. | Package-in-package using through-hole via die on saw streets |
US7723159B2 (en) * | 2007-05-04 | 2010-05-25 | Stats Chippac, Ltd. | Package-on-package using through-hole via die on saw streets |
US7902638B2 (en) * | 2007-05-04 | 2011-03-08 | Stats Chippac, Ltd. | Semiconductor die with through-hole via on saw streets and through-hole via in active area of die |
US7829998B2 (en) * | 2007-05-04 | 2010-11-09 | Stats Chippac, Ltd. | Semiconductor wafer having through-hole vias on saw streets with backside redistribution layer |
US8039309B2 (en) * | 2007-05-10 | 2011-10-18 | Texas Instruments Incorporated | Systems and methods for post-circuitization assembly |
US7528492B2 (en) * | 2007-05-24 | 2009-05-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Test patterns for detecting misalignment of through-wafer vias |
US8476735B2 (en) | 2007-05-29 | 2013-07-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Programmable semiconductor interposer for electronic package and method of forming |
US7923373B2 (en) | 2007-06-04 | 2011-04-12 | Micron Technology, Inc. | Pitch multiplication using self-assembling materials |
US8110930B2 (en) * | 2007-06-19 | 2012-02-07 | Intel Corporation | Die backside metallization and surface activated bonding for stacked die packages |
US7939941B2 (en) | 2007-06-27 | 2011-05-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Formation of through via before contact processing |
KR100906065B1 (en) * | 2007-07-12 | 2009-07-03 | 주식회사 동부하이텍 | Semiconductor chip, manufacturing method thereof and laminated package having same |
US7825517B2 (en) | 2007-07-16 | 2010-11-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for packaging semiconductor dies having through-silicon vias |
US7932179B2 (en) * | 2007-07-27 | 2011-04-26 | Micron Technology, Inc. | Method for fabricating semiconductor device having backside redistribution layers |
US8193092B2 (en) | 2007-07-31 | 2012-06-05 | Micron Technology, Inc. | Semiconductor devices including a through-substrate conductive member with an exposed end and methods of manufacturing such semiconductor devices |
US8563229B2 (en) | 2007-07-31 | 2013-10-22 | Micron Technology, Inc. | Process of semiconductor fabrication with mask overlay on pitch multiplied features and associated structures |
KR100896883B1 (en) * | 2007-08-16 | 2009-05-14 | 주식회사 동부하이텍 | Semiconductor chip, manufacturing method thereof and laminated package having same |
US7973413B2 (en) | 2007-08-24 | 2011-07-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Through-substrate via for semiconductor device |
SG150410A1 (en) * | 2007-08-31 | 2009-03-30 | Micron Technology Inc | Partitioned through-layer via and associated systems and methods |
US8044497B2 (en) * | 2007-09-10 | 2011-10-25 | Intel Corporation | Stacked die package |
US8476769B2 (en) * | 2007-10-17 | 2013-07-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Through-silicon vias and methods for forming the same |
US7737039B2 (en) | 2007-11-01 | 2010-06-15 | Micron Technology, Inc. | Spacer process for on pitch contacts and related structures |
KR101176187B1 (en) | 2007-11-21 | 2012-08-22 | 삼성전자주식회사 | Stacked semiconductor device and method for thereof serial path build up |
US8227902B2 (en) * | 2007-11-26 | 2012-07-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structures for preventing cross-talk between through-silicon vias and integrated circuits |
US7691747B2 (en) * | 2007-11-29 | 2010-04-06 | STATS ChipPAC, Ltd | Semiconductor device and method for forming passive circuit elements with through silicon vias to backside interconnect structures |
US7588993B2 (en) * | 2007-12-06 | 2009-09-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Alignment for backside illumination sensor |
US7659208B2 (en) | 2007-12-06 | 2010-02-09 | Micron Technology, Inc | Method for forming high density patterns |
US7884015B2 (en) | 2007-12-06 | 2011-02-08 | Micron Technology, Inc. | Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods |
US7767496B2 (en) * | 2007-12-14 | 2010-08-03 | Stats Chippac, Ltd. | Semiconductor device and method of forming interconnect structure for encapsulated die having pre-applied protective layer |
US7790531B2 (en) | 2007-12-18 | 2010-09-07 | Micron Technology, Inc. | Methods for isolating portions of a loop of pitch-multiplied material and related structures |
KR100929464B1 (en) * | 2007-12-21 | 2009-12-02 | 주식회사 동부하이텍 | Semiconductor chip, manufacturing method thereof and semiconductor chip stack package |
US7843064B2 (en) | 2007-12-21 | 2010-11-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and process for the formation of TSVs |
US8722457B2 (en) * | 2007-12-27 | 2014-05-13 | Stats Chippac, Ltd. | System and apparatus for wafer level integration of components |
JP2009170561A (en) * | 2008-01-15 | 2009-07-30 | Panasonic Corp | Wiring board and manufacturing method thereof |
US8671476B2 (en) * | 2008-02-05 | 2014-03-18 | Standard Textile Co., Inc. | Woven contoured bed sheet with elastomeric yarns |
US7894199B1 (en) * | 2008-02-20 | 2011-02-22 | Altera Corporation | Hybrid package |
US7906857B1 (en) * | 2008-03-13 | 2011-03-15 | Xilinx, Inc. | Molded integrated circuit package and method of forming a molded integrated circuit package |
US20090236724A1 (en) * | 2008-03-19 | 2009-09-24 | Broadcom Corporation | Ic package with wirebond and flipchip interconnects on the same die with through wafer via |
US8030218B2 (en) | 2008-03-21 | 2011-10-04 | Micron Technology, Inc. | Method for selectively modifying spacing between pitch multiplied structures |
US8754506B1 (en) * | 2008-05-05 | 2014-06-17 | Marvell International Ltd. | Through via semiconductor die with backside redistribution layer |
US7709915B2 (en) * | 2008-05-07 | 2010-05-04 | Aptina Imaging Corporation | Microelectronic devices having an EMI shield and associated systems and methods |
US8853830B2 (en) | 2008-05-14 | 2014-10-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | System, structure, and method of manufacturing a semiconductor substrate stack |
US7964106B2 (en) * | 2008-05-30 | 2011-06-21 | Unimicron Technology Corp. | Method for fabricating a packaging substrate |
US7968460B2 (en) | 2008-06-19 | 2011-06-28 | Micron Technology, Inc. | Semiconductor with through-substrate interconnect |
JP2010010324A (en) * | 2008-06-26 | 2010-01-14 | Toshiba Corp | Semiconductor device and method of manufacturing the same |
US8598700B2 (en) | 2008-06-27 | 2013-12-03 | Qualcomm Incorporated | Active thermal control for stacked IC devices |
US7829940B2 (en) * | 2008-06-27 | 2010-11-09 | Infineon Technologies Austria Ag | Semiconductor component arrangement having a component with a drift zone and a drift control zone |
US8076208B2 (en) | 2008-07-03 | 2011-12-13 | Micron Technology, Inc. | Method for forming transistor with high breakdown voltage using pitch multiplication technique |
US8288872B2 (en) | 2008-08-05 | 2012-10-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Through silicon via layout |
US8399273B2 (en) | 2008-08-18 | 2013-03-19 | Tsmc Solid State Lighting Ltd. | Light-emitting diode with current-spreading region |
US8339474B2 (en) * | 2008-08-20 | 2012-12-25 | Freescale Semiconductor, Inc. | Gain controlled threshold in denoising filter for image signal processing |
KR20100023641A (en) * | 2008-08-22 | 2010-03-04 | 삼성전자주식회사 | A semiconductor chip including a via plug penetrating a circuit substrate, a stacked structure thereof and a semiconductor package thereof |
US20100062693A1 (en) * | 2008-09-05 | 2010-03-11 | Taiwan Semiconductor Manufacturing Co., Ltd. | Two step method and apparatus for polishing metal and other films in semiconductor manufacturing |
US8278152B2 (en) * | 2008-09-08 | 2012-10-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bonding process for CMOS image sensor |
US8101497B2 (en) | 2008-09-11 | 2012-01-24 | Micron Technology, Inc. | Self-aligned trench formation |
US9524945B2 (en) | 2010-05-18 | 2016-12-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Cu pillar bump with L-shaped non-metal sidewall protection structure |
US7911070B2 (en) * | 2008-09-25 | 2011-03-22 | Stats Chippac Ltd. | Integrated circuit packaging system having planar interconnect |
US8063475B2 (en) * | 2008-09-26 | 2011-11-22 | Stats Chippac Ltd. | Semiconductor package system with through silicon via interposer |
US8653648B2 (en) * | 2008-10-03 | 2014-02-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Zigzag pattern for TSV copper adhesion |
US7928534B2 (en) * | 2008-10-09 | 2011-04-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bond pad connection to redistribution lines having tapered profiles |
US8624360B2 (en) * | 2008-11-13 | 2014-01-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Cooling channels in 3DIC stacks |
US8492282B2 (en) | 2008-11-24 | 2013-07-23 | Micron Technology, Inc. | Methods of forming a masking pattern for integrated circuits |
US7935571B2 (en) * | 2008-11-25 | 2011-05-03 | Freescale Semiconductor, Inc. | Through substrate vias for back-side interconnections on very thin semiconductor wafers |
US8344503B2 (en) | 2008-11-25 | 2013-01-01 | Freescale Semiconductor, Inc. | 3-D circuits with integrated passive devices |
US8158456B2 (en) * | 2008-12-05 | 2012-04-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of forming stacked dies |
US7989318B2 (en) | 2008-12-08 | 2011-08-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for stacking semiconductor dies |
KR20100066970A (en) * | 2008-12-10 | 2010-06-18 | 주식회사 동부하이텍 | Semiconductor device, system in package having the same and fabricating method for the same |
US8513119B2 (en) | 2008-12-10 | 2013-08-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming bump structure having tapered sidewalls for stacked dies |
US8900921B2 (en) | 2008-12-11 | 2014-12-02 | Stats Chippac, Ltd. | Semiconductor device and method of forming topside and bottom-side interconnect structures around core die with TSV |
US8736050B2 (en) | 2009-09-03 | 2014-05-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Front side copper post joint structure for temporary bond in TSV application |
US8264077B2 (en) * | 2008-12-29 | 2012-09-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Backside metal of redistribution line with silicide layer on through-silicon via of semiconductor chips |
US7910473B2 (en) * | 2008-12-31 | 2011-03-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Through-silicon via with air gap |
US20100171197A1 (en) | 2009-01-05 | 2010-07-08 | Hung-Pin Chang | Isolation Structure for Stacked Dies |
US8749027B2 (en) * | 2009-01-07 | 2014-06-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Robust TSV structure |
US8399354B2 (en) | 2009-01-13 | 2013-03-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Through-silicon via with low-K dielectric liner |
US8501587B2 (en) | 2009-01-13 | 2013-08-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Stacked integrated chips and methods of fabrication thereof |
US8168529B2 (en) | 2009-01-26 | 2012-05-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Forming seal ring in an integrated circuit die |
US8314483B2 (en) | 2009-01-26 | 2012-11-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | On-chip heat spreader |
US8820728B2 (en) * | 2009-02-02 | 2014-09-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor wafer carrier |
US8704375B2 (en) * | 2009-02-04 | 2014-04-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Barrier structures and methods for through substrate vias |
US8531565B2 (en) * | 2009-02-24 | 2013-09-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Front side implanted guard ring structure for backside illuminated image sensor |
US9142586B2 (en) | 2009-02-24 | 2015-09-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Pad design for backside illuminated image sensor |
US7932608B2 (en) * | 2009-02-24 | 2011-04-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Through-silicon via formed with a post passivation interconnect structure |
US8643149B2 (en) * | 2009-03-03 | 2014-02-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Stress barrier structures for semiconductor chips |
US8487444B2 (en) | 2009-03-06 | 2013-07-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Three-dimensional system-in-package architecture |
US7998860B2 (en) * | 2009-03-12 | 2011-08-16 | Micron Technology, Inc. | Method for fabricating semiconductor components using maskless back side alignment to conductive vias |
US8344513B2 (en) | 2009-03-23 | 2013-01-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Barrier for through-silicon via |
US7989282B2 (en) * | 2009-03-26 | 2011-08-02 | International Business Machines Corporation | Structure and method for latchup improvement using through wafer via latchup guard ring |
US8232625B2 (en) | 2009-03-26 | 2012-07-31 | International Business Machines Corporation | ESD network circuit with a through wafer via structure and a method of manufacture |
US8329578B2 (en) | 2009-03-27 | 2012-12-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Via structure and via etching process of forming the same |
US8232140B2 (en) | 2009-03-27 | 2012-07-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for ultra thin wafer handling and processing |
TWI366906B (en) * | 2009-03-31 | 2012-06-21 | Ind Tech Res Inst | Die stacking structure and fabricating method thereof |
US8552563B2 (en) | 2009-04-07 | 2013-10-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Three-dimensional semiconductor architecture |
JP2010251347A (en) * | 2009-04-10 | 2010-11-04 | Elpida Memory Inc | Method of manufacturing semiconductor device |
US8691664B2 (en) * | 2009-04-20 | 2014-04-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Backside process for a substrate |
US7892963B2 (en) * | 2009-04-24 | 2011-02-22 | Globalfoundries Singapore Pte. Ltd. | Integrated circuit packaging system and method of manufacture thereof |
KR20100117977A (en) * | 2009-04-27 | 2010-11-04 | 삼성전자주식회사 | Semiconductor package |
US8759949B2 (en) * | 2009-04-30 | 2014-06-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Wafer backside structures having copper pillars |
TWI387085B (en) * | 2009-05-12 | 2013-02-21 | Ind Tech Res Inst | Hardwired switch of die stack and operating method of hardwired switch |
US8319325B2 (en) * | 2009-06-12 | 2012-11-27 | Qualcomm Incorporated | Intra-die routing using back side redistribution layer and associated method |
US8432038B2 (en) * | 2009-06-12 | 2013-04-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Through-silicon via structure and a process for forming the same |
TWI387086B (en) * | 2009-06-18 | 2013-02-21 | Ind Tech Res Inst | Wafer and method for improving yield rate of wafer |
US8054597B2 (en) * | 2009-06-23 | 2011-11-08 | International Business Machines Corporation | Electrostatic discharge structures and methods of manufacture |
US8158489B2 (en) * | 2009-06-26 | 2012-04-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Formation of TSV backside interconnects by modifying carrier wafers |
US8871609B2 (en) * | 2009-06-30 | 2014-10-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Thin wafer handling structure and method |
US9305769B2 (en) | 2009-06-30 | 2016-04-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Thin wafer handling method |
US8247906B2 (en) | 2009-07-06 | 2012-08-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Supplying power to integrated circuits using a grid matrix formed of through-silicon vias |
KR101078734B1 (en) * | 2009-07-07 | 2011-11-02 | 주식회사 하이닉스반도체 | Semiconductor package and manufacturing method thereof, stack package using same |
US8264066B2 (en) * | 2009-07-08 | 2012-09-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Liner formation in 3DIC structures |
US8841766B2 (en) | 2009-07-30 | 2014-09-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Cu pillar bump with non-metal sidewall protection structure |
US8377816B2 (en) * | 2009-07-30 | 2013-02-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming electrical connections |
US8497564B2 (en) * | 2009-08-13 | 2013-07-30 | Broadcom Corporation | Method for fabricating a decoupling composite capacitor in a wafer and related structure |
US8859424B2 (en) | 2009-08-14 | 2014-10-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor wafer carrier and method of manufacturing |
TWI528514B (en) * | 2009-08-20 | 2016-04-01 | 精材科技股份有限公司 | Chip package and fabrication method thereof |
US9799562B2 (en) * | 2009-08-21 | 2017-10-24 | Micron Technology, Inc. | Vias and conductive routing layers in semiconductor substrates |
US8324738B2 (en) | 2009-09-01 | 2012-12-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Self-aligned protection layer for copper post structure |
US8252665B2 (en) | 2009-09-14 | 2012-08-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Protection layer for adhesive material at wafer edge |
US8791549B2 (en) | 2009-09-22 | 2014-07-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Wafer backside interconnect structure connected to TSVs |
CN102033877A (en) * | 2009-09-27 | 2011-04-27 | 阿里巴巴集团控股有限公司 | Search method and device |
US8647925B2 (en) * | 2009-10-01 | 2014-02-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Surface modification for handling wafer thinning process |
US8264067B2 (en) * | 2009-10-09 | 2012-09-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Through silicon via (TSV) wire bond architecture |
US7969013B2 (en) * | 2009-10-22 | 2011-06-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Through silicon via with dummy structure and method for forming the same |
US8159060B2 (en) * | 2009-10-29 | 2012-04-17 | International Business Machines Corporation | Hybrid bonding interface for 3-dimensional chip integration |
US8659155B2 (en) * | 2009-11-05 | 2014-02-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mechanisms for forming copper pillar bumps |
US8283745B2 (en) * | 2009-11-06 | 2012-10-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of fabricating backside-illuminated image sensor |
US8405201B2 (en) | 2009-11-09 | 2013-03-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Through-silicon via structure |
US8803305B2 (en) * | 2009-11-18 | 2014-08-12 | Qualcomm Incorporated | Hybrid package construction with wire bond and through silicon vias |
US7927919B1 (en) * | 2009-12-03 | 2011-04-19 | Powertech Technology Inc. | Semiconductor packaging method to save interposer |
US8574960B2 (en) | 2010-02-03 | 2013-11-05 | Stats Chippac, Ltd. | Semiconductor device and method of forming cavity adjacent to sensitive region of semiconductor die using wafer-level underfill material |
US10297550B2 (en) | 2010-02-05 | 2019-05-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3D IC architecture with interposer and interconnect structure for bonding dies |
US8907457B2 (en) * | 2010-02-08 | 2014-12-09 | Micron Technology, Inc. | Microelectronic devices with through-substrate interconnects and associated methods of manufacturing |
US8610270B2 (en) * | 2010-02-09 | 2013-12-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and semiconductor assembly with lead-free solder |
US8252682B2 (en) * | 2010-02-12 | 2012-08-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for thinning a wafer |
US8237272B2 (en) * | 2010-02-16 | 2012-08-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Conductive pillar structure for semiconductor substrate and method of manufacture |
US8390009B2 (en) | 2010-02-16 | 2013-03-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Light-emitting diode (LED) package systems |
US8222139B2 (en) | 2010-03-30 | 2012-07-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Chemical mechanical polishing (CMP) processing of through-silicon via (TSV) and contact plug simultaneously |
US8466059B2 (en) | 2010-03-30 | 2013-06-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-layer interconnect structure for stacked dies |
US8507940B2 (en) | 2010-04-05 | 2013-08-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Heat dissipation by through silicon plugs |
US8174124B2 (en) | 2010-04-08 | 2012-05-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Dummy pattern in wafer backside routing |
US8455995B2 (en) | 2010-04-16 | 2013-06-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | TSVs with different sizes in interposers for bonding dies |
US9293366B2 (en) | 2010-04-28 | 2016-03-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Through-substrate vias with improved connections |
US8519538B2 (en) | 2010-04-28 | 2013-08-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Laser etch via formation |
US8441124B2 (en) | 2010-04-29 | 2013-05-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Cu pillar bump with non-metal sidewall protection structure |
US8866301B2 (en) | 2010-05-18 | 2014-10-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package systems having interposers with interconnection structures |
US9048233B2 (en) | 2010-05-26 | 2015-06-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package systems having interposers |
US9059026B2 (en) | 2010-06-01 | 2015-06-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3-D inductor and transformer |
US8471358B2 (en) | 2010-06-01 | 2013-06-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3D inductor and transformer |
US9018758B2 (en) | 2010-06-02 | 2015-04-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Cu pillar bump with non-metal sidewall spacer and metal top cap |
US8362591B2 (en) | 2010-06-08 | 2013-01-29 | Taiwan Semiconductor Manufacturing Co., Ltd. | Integrated circuits and methods of forming the same |
US8411459B2 (en) | 2010-06-10 | 2013-04-02 | Taiwan Semiconductor Manufacturing Company, Ltd | Interposer-on-glass package structures |
US8500182B2 (en) | 2010-06-17 | 2013-08-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Vacuum wafer carriers for strengthening thin wafers |
US8426961B2 (en) | 2010-06-25 | 2013-04-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Embedded 3D interposer structure |
US8896136B2 (en) | 2010-06-30 | 2014-11-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Alignment mark and method of formation |
US8319336B2 (en) | 2010-07-08 | 2012-11-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Reduction of etch microloading for through silicon vias |
US8338939B2 (en) | 2010-07-12 | 2012-12-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | TSV formation processes using TSV-last approach |
US8999179B2 (en) | 2010-07-13 | 2015-04-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Conductive vias in a substrate |
US8722540B2 (en) | 2010-07-22 | 2014-05-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Controlling defects in thin wafer handling |
US9299594B2 (en) | 2010-07-27 | 2016-03-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Substrate bonding system and method of modifying the same |
US8674510B2 (en) | 2010-07-29 | 2014-03-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Three-dimensional integrated circuit structure having improved power and thermal management |
US8846499B2 (en) | 2010-08-17 | 2014-09-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Composite carrier structure |
US8546254B2 (en) | 2010-08-19 | 2013-10-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mechanisms for forming copper pillar bumps using patterned anodes |
US8507358B2 (en) | 2010-08-27 | 2013-08-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Composite wafer semiconductor |
US8693163B2 (en) | 2010-09-01 | 2014-04-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Cylindrical embedded capacitors |
US8928159B2 (en) | 2010-09-02 | 2015-01-06 | Taiwan Semiconductor Manufacturing & Company, Ltd. | Alignment marks in substrate having through-substrate via (TSV) |
US8502338B2 (en) | 2010-09-09 | 2013-08-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Through-substrate via waveguides |
US8928127B2 (en) | 2010-09-24 | 2015-01-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Noise decoupling structure with through-substrate vias |
US9224647B2 (en) | 2010-09-24 | 2015-12-29 | Stats Chippac, Ltd. | Semiconductor device and method of forming TSV interposer with semiconductor die and build-up interconnect structure on opposing surfaces of the interposer |
US8525343B2 (en) | 2010-09-28 | 2013-09-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Device with through-silicon via (TSV) and method of forming the same |
US8993377B2 (en) * | 2010-09-29 | 2015-03-31 | Stats Chippac, Ltd. | Semiconductor device and method of bonding different size semiconductor die at the wafer level |
US9190325B2 (en) | 2010-09-30 | 2015-11-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | TSV formation |
US8580682B2 (en) | 2010-09-30 | 2013-11-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Cost-effective TSV formation |
TWI429055B (en) * | 2010-10-07 | 2014-03-01 | Advanced Semiconductor Eng | Stacked semiconductor package and method for making the same |
US8836116B2 (en) | 2010-10-21 | 2014-09-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Wafer level packaging of micro-electro-mechanical systems (MEMS) and complementary metal-oxide-semiconductor (CMOS) substrates |
US8427833B2 (en) | 2010-10-28 | 2013-04-23 | International Business Machines Corporation | Thermal power plane for integrated circuits |
US8253234B2 (en) | 2010-10-28 | 2012-08-28 | International Business Machines Corporation | Optimized semiconductor packaging in a three-dimensional stack |
US8405998B2 (en) | 2010-10-28 | 2013-03-26 | International Business Machines Corporation | Heat sink integrated power delivery and distribution for integrated circuits |
US8519409B2 (en) | 2010-11-15 | 2013-08-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Light emitting diode components integrated with thermoelectric devices |
US8567837B2 (en) | 2010-11-24 | 2013-10-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Reconfigurable guide pin design for centering wafers having different sizes |
KR101803746B1 (en) * | 2010-12-01 | 2017-12-04 | 에스케이하이닉스 주식회사 | Semiconductor chip, stack type semiconductor package and method for manufacturing the same |
US9153462B2 (en) | 2010-12-09 | 2015-10-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Spin chuck for thin wafer cleaning |
US8773866B2 (en) | 2010-12-10 | 2014-07-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Radio-frequency packaging with reduced RF loss |
US8569861B2 (en) | 2010-12-22 | 2013-10-29 | Analog Devices, Inc. | Vertically integrated systems |
US8236584B1 (en) | 2011-02-11 | 2012-08-07 | Tsmc Solid State Lighting Ltd. | Method of forming a light emitting diode emitter substrate with highly reflective metal bonding |
US9059262B2 (en) | 2011-02-24 | 2015-06-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuits including conductive structures through a substrate and methods of making the same |
US8373252B1 (en) | 2011-03-07 | 2013-02-12 | Xilinx, Inc. | Integrated circuit having capacitor on back surface |
US8487410B2 (en) | 2011-04-13 | 2013-07-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Through-silicon vias for semicondcutor substrate and method of manufacture |
US8519515B2 (en) | 2011-04-13 | 2013-08-27 | United Microlectronics Corp. | TSV structure and method for forming the same |
US8716128B2 (en) | 2011-04-14 | 2014-05-06 | Tsmc Solid State Lighting Ltd. | Methods of forming through silicon via openings |
KR101195271B1 (en) * | 2011-04-29 | 2012-11-14 | 에스케이하이닉스 주식회사 | Semiconductor apparatus and method for fabricating the same |
US8546235B2 (en) | 2011-05-05 | 2013-10-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuits including metal-insulator-metal capacitors and methods of forming the same |
US8552540B2 (en) * | 2011-05-10 | 2013-10-08 | Conexant Systems, Inc. | Wafer level package with thermal pad for higher power dissipation |
US8481425B2 (en) | 2011-05-16 | 2013-07-09 | United Microelectronics Corp. | Method for fabricating through-silicon via structure |
US8674883B2 (en) | 2011-05-24 | 2014-03-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Antenna using through-silicon via |
US8900994B2 (en) | 2011-06-09 | 2014-12-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for producing a protective structure |
US8587127B2 (en) | 2011-06-15 | 2013-11-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor structures and methods of forming the same |
US8552485B2 (en) | 2011-06-15 | 2013-10-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor structure having metal-insulator-metal capacitor structure |
US8822336B2 (en) | 2011-06-16 | 2014-09-02 | United Microelectronics Corp. | Through-silicon via forming method |
US8766409B2 (en) | 2011-06-24 | 2014-07-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method and structure for through-silicon via (TSV) with diffused isolation well |
US8531035B2 (en) | 2011-07-01 | 2013-09-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Interconnect barrier structure and method |
US8828745B2 (en) | 2011-07-06 | 2014-09-09 | United Microelectronics Corp. | Method for manufacturing through-silicon via |
US8872345B2 (en) | 2011-07-07 | 2014-10-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Forming grounded through-silicon vias in a semiconductor substrate |
US8604491B2 (en) | 2011-07-21 | 2013-12-10 | Tsmc Solid State Lighting Ltd. | Wafer level photonic device die structure and method of making the same |
US8445296B2 (en) | 2011-07-22 | 2013-05-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Apparatus and methods for end point determination in reactive ion etching |
US8809073B2 (en) | 2011-08-03 | 2014-08-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Apparatus and methods for de-embedding through substrate vias |
US9159907B2 (en) | 2011-08-04 | 2015-10-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Hybrid film for protecting MTJ stacks of MRAM |
TWI492680B (en) * | 2011-08-05 | 2015-07-11 | Unimicron Technology Corp | Package substrate having embedded interposer and fabrication method thereof |
US8748284B2 (en) | 2011-08-12 | 2014-06-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of manufacturing decoupling MIM capacitor designs for interposers |
US9524957B2 (en) * | 2011-08-17 | 2016-12-20 | Intersil Americas LLC | Back-to-back stacked dies |
US8525278B2 (en) | 2011-08-19 | 2013-09-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | MEMS device having chip scale packaging |
US8546886B2 (en) | 2011-08-24 | 2013-10-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Controlling the device performance by forming a stressed backside dielectric layer |
US8604619B2 (en) | 2011-08-31 | 2013-12-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Through silicon via keep out zone formation along different crystal orientations |
US8803322B2 (en) | 2011-10-13 | 2014-08-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Through substrate via structures and methods of forming the same |
US8610247B2 (en) | 2011-12-30 | 2013-12-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for a transformer with magnetic features |
US8659126B2 (en) | 2011-12-07 | 2014-02-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuit ground shielding structure |
US9087838B2 (en) | 2011-10-25 | 2015-07-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for a high-K transformer with capacitive coupling |
US8896089B2 (en) | 2011-11-09 | 2014-11-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Interposers for semiconductor devices and methods of manufacture thereof |
US9390949B2 (en) | 2011-11-29 | 2016-07-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Wafer debonding and cleaning apparatus and method of use |
US10381254B2 (en) | 2011-11-29 | 2019-08-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Wafer debonding and cleaning apparatus and method |
US11264262B2 (en) | 2011-11-29 | 2022-03-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Wafer debonding and cleaning apparatus |
US8803316B2 (en) | 2011-12-06 | 2014-08-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | TSV structures and methods for forming the same |
US8546953B2 (en) | 2011-12-13 | 2013-10-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | Through silicon via (TSV) isolation structures for noise reduction in 3D integrated circuit |
US8890293B2 (en) | 2011-12-16 | 2014-11-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Guard ring for through vias |
US8580647B2 (en) | 2011-12-19 | 2013-11-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Inductors with through VIAS |
TWI449152B (en) | 2011-12-21 | 2014-08-11 | Ind Tech Res Inst | Semiconductor device stacked structure |
US8518823B2 (en) | 2011-12-23 | 2013-08-27 | United Microelectronics Corp. | Through silicon via and method of forming the same |
US8609529B2 (en) | 2012-02-01 | 2013-12-17 | United Microelectronics Corp. | Fabrication method and structure of through silicon via |
US8618631B2 (en) | 2012-02-14 | 2013-12-31 | Taiwan Semiconductor Manufacturing Co., Ltd. | On-chip ferrite bead inductor |
US9618712B2 (en) | 2012-02-23 | 2017-04-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Optical bench on substrate and method of making the same |
US10180547B2 (en) | 2012-02-23 | 2019-01-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Optical bench on substrate |
US8860114B2 (en) | 2012-03-02 | 2014-10-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for a fishbone differential capacitor |
US9293521B2 (en) | 2012-03-02 | 2016-03-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Concentric capacitor structure |
US9312432B2 (en) | 2012-03-13 | 2016-04-12 | Tsmc Solid State Lighting Ltd. | Growing an improved P-GaN layer of an LED through pressure ramping |
US8956973B2 (en) | 2012-03-27 | 2015-02-17 | International Business Machines Corporation | Bottom-up plating of through-substrate vias |
US9105628B1 (en) | 2012-03-29 | 2015-08-11 | Valery Dubin | Through substrate via (TSuV) structures and method of making the same |
US9139420B2 (en) | 2012-04-18 | 2015-09-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | MEMS device structure and methods of forming same |
US8691600B2 (en) | 2012-05-02 | 2014-04-08 | United Microelectronics Corp. | Method for testing through-silicon-via (TSV) structures |
US9583365B2 (en) | 2012-05-25 | 2017-02-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming interconnects for three dimensional integrated circuit |
US8691688B2 (en) | 2012-06-18 | 2014-04-08 | United Microelectronics Corp. | Method of manufacturing semiconductor structure |
US9275933B2 (en) | 2012-06-19 | 2016-03-01 | United Microelectronics Corp. | Semiconductor device |
US8900996B2 (en) | 2012-06-21 | 2014-12-02 | United Microelectronics Corp. | Through silicon via structure and method of fabricating the same |
US8525296B1 (en) | 2012-06-26 | 2013-09-03 | United Microelectronics Corp. | Capacitor structure and method of forming the same |
KR20140023055A (en) * | 2012-08-16 | 2014-02-26 | 에스케이하이닉스 주식회사 | Semiconductor device and method for forming using the same |
US9343442B2 (en) * | 2012-09-20 | 2016-05-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Passive devices in package-on-package structures and methods for forming the same |
US8912844B2 (en) | 2012-10-09 | 2014-12-16 | United Microelectronics Corp. | Semiconductor structure and method for reducing noise therein |
US9035457B2 (en) | 2012-11-29 | 2015-05-19 | United Microelectronics Corp. | Substrate with integrated passive devices and method of manufacturing the same |
TWI495074B (en) | 2012-11-30 | 2015-08-01 | Ind Tech Res Inst | Stress relief structure |
US8716104B1 (en) | 2012-12-20 | 2014-05-06 | United Microelectronics Corp. | Method of fabricating isolation structure |
US9484211B2 (en) | 2013-01-24 | 2016-11-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Etchant and etching process |
US9490133B2 (en) | 2013-01-24 | 2016-11-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Etching apparatus |
US9041206B2 (en) * | 2013-03-12 | 2015-05-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Interconnect structure and method |
US9041152B2 (en) | 2013-03-14 | 2015-05-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Inductor with magnetic material |
US8884398B2 (en) | 2013-04-01 | 2014-11-11 | United Microelectronics Corp. | Anti-fuse structure and programming method thereof |
US9287173B2 (en) | 2013-05-23 | 2016-03-15 | United Microelectronics Corp. | Through silicon via and process thereof |
US9123730B2 (en) | 2013-07-11 | 2015-09-01 | United Microelectronics Corp. | Semiconductor device having through silicon trench shielding structure surrounding RF circuit |
US9024416B2 (en) | 2013-08-12 | 2015-05-05 | United Microelectronics Corp. | Semiconductor structure |
US8916471B1 (en) | 2013-08-26 | 2014-12-23 | United Microelectronics Corp. | Method for forming semiconductor structure having through silicon via for signal and shielding structure |
US9048223B2 (en) | 2013-09-03 | 2015-06-02 | United Microelectronics Corp. | Package structure having silicon through vias connected to ground potential |
US9117804B2 (en) | 2013-09-13 | 2015-08-25 | United Microelectronics Corporation | Interposer structure and manufacturing method thereof |
US20150091842A1 (en) | 2013-09-30 | 2015-04-02 | Synaptics Incorporated | Matrix sensor for image touch sensing |
US10042489B2 (en) | 2013-09-30 | 2018-08-07 | Synaptics Incorporated | Matrix sensor for image touch sensing |
US9443764B2 (en) * | 2013-10-11 | 2016-09-13 | GlobalFoundries, Inc. | Method of eliminating poor reveal of through silicon vias |
EP2871455B1 (en) | 2013-11-06 | 2020-03-04 | Invensense, Inc. | Pressure sensor |
EP3367082A1 (en) | 2013-11-06 | 2018-08-29 | Invensense, Inc. | Pressure sensor |
US9263349B2 (en) * | 2013-11-08 | 2016-02-16 | Globalfoundries Inc. | Printing minimum width semiconductor features at non-minimum pitch and resulting device |
US9673134B2 (en) | 2013-12-11 | 2017-06-06 | Semiconductor Components Industries, Llc | Semiconductor component and method of manufacture |
US9343359B2 (en) | 2013-12-25 | 2016-05-17 | United Microelectronics Corp. | Integrated structure and method for fabricating the same |
US9721852B2 (en) | 2014-01-21 | 2017-08-01 | International Business Machines Corporation | Semiconductor TSV device package to which other semiconductor device package can be later attached |
US10340203B2 (en) | 2014-02-07 | 2019-07-02 | United Microelectronics Corp. | Semiconductor structure with through silicon via and method for fabricating and testing the same |
US10042488B2 (en) | 2014-04-04 | 2018-08-07 | Synaptics Incorporated | Through silicon vias for backside connection |
US9754918B2 (en) | 2014-05-09 | 2017-09-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3D chip-on-wafer-on-substrate structure with via last process |
US9711379B2 (en) * | 2014-04-30 | 2017-07-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3D stacked-chip package |
US9666520B2 (en) | 2014-04-30 | 2017-05-30 | Taiwan Semiconductor Manufactuing Company, Ltd. | 3D stacked-chip package |
US9331021B2 (en) | 2014-04-30 | 2016-05-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Chip-on-wafer package and method of forming same |
US9449837B2 (en) * | 2014-05-09 | 2016-09-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3D chip-on-wafer-on-substrate structure with via last process |
US9269607B2 (en) | 2014-06-17 | 2016-02-23 | Globalfoundries Inc. | Wafer stress control with backside patterning |
US20160071822A1 (en) * | 2014-09-08 | 2016-03-10 | International Business Machines Corporation | OPTIMIZING POWER DISTRIBUTION FROM A POWER SOURCE THROUGH A C4 SOLDER BALL GRID INTERCONNECTED THROUGH SILICON VIAS IN INTERMEDIATE INTEGRATED CIRCUIT CHIP CONNECTED TO CIRCUITRY IN AN UPPER INTEGRATED CIRCUIT CHIP THROUGH A GRID OF MICRO uC4 SOLDER BALLS |
KR101697603B1 (en) | 2014-12-08 | 2017-01-19 | 삼성전자주식회사 | Semiconductor Package |
US9716056B2 (en) | 2015-01-26 | 2017-07-25 | International Business Machines Corporation | Integrated circuit with back side inductor |
EP3614115B1 (en) | 2015-04-02 | 2024-09-11 | InvenSense, Inc. | Pressure sensor |
US10134670B2 (en) * | 2015-04-08 | 2018-11-20 | International Business Machines Corporation | Wafer with plated wires and method of fabricating same |
US10170711B2 (en) * | 2015-05-05 | 2019-01-01 | Apple Inc. | Display with vias to access driver circuitry |
US10067587B2 (en) | 2015-12-29 | 2018-09-04 | Synaptics Incorporated | Routing conductors in an integrated display device and sensing device |
US10290554B2 (en) * | 2016-12-12 | 2019-05-14 | Melexis Technologies Sa | Current sensor and method of making a current sensor |
US20180166362A1 (en) * | 2016-12-14 | 2018-06-14 | Nanya Technology Corporation | Semiconductor stacking structure and method for manufacturing thereof |
WO2018210803A1 (en) | 2017-05-15 | 2018-11-22 | Analog Devices Global Unlimited Company | Integrated ion sensing apparatus and methods |
US10730743B2 (en) | 2017-11-06 | 2020-08-04 | Analog Devices Global Unlimited Company | Gas sensor packages |
US11225409B2 (en) | 2018-09-17 | 2022-01-18 | Invensense, Inc. | Sensor with integrated heater |
US11860815B2 (en) | 2018-10-04 | 2024-01-02 | Brookhaven Science Associates, Llc | High-data throughput reconfigurable computing platform |
CN113785178B (en) | 2019-05-17 | 2024-12-17 | 应美盛股份有限公司 | Pressure sensor with improved airtightness |
US11587839B2 (en) | 2019-06-27 | 2023-02-21 | Analog Devices, Inc. | Device with chemical reaction chamber |
US11616019B2 (en) * | 2020-12-21 | 2023-03-28 | Nvidia Corp. | Semiconductor assembly |
Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3648131A (en) * | 1969-11-07 | 1972-03-07 | Ibm | Hourglass-shaped conductive connection through semiconductor structures |
US3761782A (en) * | 1971-05-19 | 1973-09-25 | Signetics Corp | Semiconductor structure, assembly and method |
US4833521A (en) * | 1983-12-13 | 1989-05-23 | Fairchild Camera & Instrument Corp. | Means for reducing signal propagation losses in very large scale integrated circuits |
US5258236A (en) * | 1991-05-03 | 1993-11-02 | Ibm Corporation | Multi-layer thin film structure and parallel processing method for fabricating same |
US5334804A (en) * | 1992-11-17 | 1994-08-02 | Fujitsu Limited | Wire interconnect structures for connecting an integrated circuit to a substrate |
US5386142A (en) * | 1993-05-07 | 1995-01-31 | Kulite Semiconductor Products, Inc. | Semiconductor structures having environmentally isolated elements and method for making the same |
US5432999A (en) * | 1992-08-20 | 1995-07-18 | Capps; David F. | Integrated circuit lamination process |
US5455445A (en) * | 1994-01-21 | 1995-10-03 | Kulite Semiconductor Products, Inc. | Multi-level semiconductor structures having environmentally isolated elements |
US5682062A (en) * | 1995-06-05 | 1997-10-28 | Harris Corporation | System for interconnecting stacked integrated circuits |
US5762744A (en) * | 1991-12-27 | 1998-06-09 | Rohm Co., Ltd. | Method of producing a semiconductor device using an expand tape |
US5825080A (en) * | 1995-12-18 | 1998-10-20 | Atr Optical And Radio Communications Research Laboratories | Semiconductor device provided with surface grounding conductor for covering surfaces of electrically insulating films |
US5872051A (en) * | 1995-08-02 | 1999-02-16 | International Business Machines Corporation | Process for transferring material to semiconductor chip conductive pads using a transfer substrate |
US5950304A (en) * | 1990-09-24 | 1999-09-14 | Tessera, Inc. | Methods of making semiconductor chip assemblies |
US5973396A (en) * | 1996-02-16 | 1999-10-26 | Micron Technology, Inc. | Surface mount IC using silicon vias in an area array format or same size as die array |
US5994766A (en) * | 1998-09-21 | 1999-11-30 | Vlsi Technology, Inc. | Flip chip circuit arrangement with redistribution layer that minimizes crosstalk |
US6011314A (en) * | 1999-02-01 | 2000-01-04 | Hewlett-Packard Company | Redistribution layer and under bump material structure for converting periphery conductive pads to an array of solder bumps |
US6018196A (en) * | 1996-11-08 | 2000-01-25 | W. L. Gore & Associates, Inc. | Semiconductor flip chip package |
US6020220A (en) * | 1996-07-09 | 2000-02-01 | Tessera, Inc. | Compliant semiconductor chip assemblies and methods of making same |
US6025647A (en) * | 1997-11-24 | 2000-02-15 | Vlsi Technology, Inc. | Apparatus for equalizing signal parameters in flip chip redistribution layers |
US6048753A (en) * | 1996-04-02 | 2000-04-11 | Micron Technology, Inc. | Standardized bonding location process and apparatus |
US6166444A (en) * | 1999-06-21 | 2000-12-26 | United Microelectronics Corp. | Cascade-type chip module |
US6225143B1 (en) * | 1998-06-03 | 2001-05-01 | Lsi Logic Corporation | Flip-chip integrated circuit routing to I/O devices |
US6236115B1 (en) * | 1995-12-27 | 2001-05-22 | International Business Machines Corporation | High density integrated circuit packaging with chip stacking and via interconnections |
US6239495B1 (en) * | 1998-07-29 | 2001-05-29 | Kabushiki Kaisha Toshiba | Multichip semiconductor device and memory card |
US6261375B1 (en) * | 1999-05-19 | 2001-07-17 | Tru-Si Technologies, Inc. | Plasma processing methods and apparatus |
US6322903B1 (en) * | 1999-12-06 | 2001-11-27 | Tru-Si Technologies, Inc. | Package of integrated circuits and vertical integration |
US6323134B1 (en) * | 1997-11-20 | 2001-11-27 | Tru-Si Technologies, Inc. | Plasma processing methods and apparatus |
US20020097962A1 (en) * | 1998-10-09 | 2002-07-25 | Tetsuzo Yoshimura | Single and multilayer waveguides and fabrication process |
US6429096B1 (en) * | 1999-03-29 | 2002-08-06 | Sony Corporation | Method of making thinned, stackable semiconductor device |
US20020125566A1 (en) * | 2001-03-05 | 2002-09-12 | Yoshiyuki Tonami | High frequency circuit chip and method of producing the same |
US20030003724A1 (en) * | 2001-06-27 | 2003-01-02 | Hitachi, Ltd. | Manufacturing method of the semiconductor device |
US6577013B1 (en) * | 2000-09-05 | 2003-06-10 | Amkor Technology, Inc. | Chip size semiconductor packages with stacked dies |
US6608371B2 (en) * | 2000-08-04 | 2003-08-19 | Seiko Epson Corporation | Semiconductor device and method of manufacturing the same, circuit board, and electronic equipment |
US6809421B1 (en) * | 1996-12-02 | 2004-10-26 | Kabushiki Kaisha Toshiba | Multichip semiconductor device, chip therefor and method of formation thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5242530A (en) * | 1991-08-05 | 1993-09-07 | International Business Machines Corporation | Pulsed gas plasma-enhanced chemical vapor deposition of silicon |
US5465680A (en) * | 1993-07-01 | 1995-11-14 | Dow Corning Corporation | Method of forming crystalline silicon carbide coatings |
JP3597307B2 (en) * | 1996-05-30 | 2004-12-08 | オリンパス株式会社 | Head positioning control device for optical disk drive |
JPH09321175A (en) | 1996-05-30 | 1997-12-12 | Oki Electric Ind Co Ltd | Microwave circuit and chip |
US6147009A (en) * | 1998-06-29 | 2000-11-14 | International Business Machines Corporation | Hydrogenated oxidized silicon carbon material |
US6737727B2 (en) * | 2001-01-12 | 2004-05-18 | International Business Machines Corporation | Electronic structures with reduced capacitance |
KR100847926B1 (en) * | 2001-07-02 | 2008-07-22 | 다우 코닝 코포레이션 | Improved Metal Barrier Behavior by SiC: H Deposition on Porous Materials |
-
2002
- 2002-07-31 US US10/209,823 patent/US6800930B2/en not_active Expired - Lifetime
-
2003
- 2003-12-10 US US10/732,558 patent/US6962867B2/en not_active Expired - Fee Related
-
2005
- 2005-04-20 US US11/110,431 patent/US7355273B2/en not_active Expired - Lifetime
-
2008
- 2008-01-02 US US11/968,359 patent/US20080153204A1/en not_active Abandoned
Patent Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3648131A (en) * | 1969-11-07 | 1972-03-07 | Ibm | Hourglass-shaped conductive connection through semiconductor structures |
US3761782A (en) * | 1971-05-19 | 1973-09-25 | Signetics Corp | Semiconductor structure, assembly and method |
US4833521A (en) * | 1983-12-13 | 1989-05-23 | Fairchild Camera & Instrument Corp. | Means for reducing signal propagation losses in very large scale integrated circuits |
US5950304A (en) * | 1990-09-24 | 1999-09-14 | Tessera, Inc. | Methods of making semiconductor chip assemblies |
US5258236A (en) * | 1991-05-03 | 1993-11-02 | Ibm Corporation | Multi-layer thin film structure and parallel processing method for fabricating same |
US5762744A (en) * | 1991-12-27 | 1998-06-09 | Rohm Co., Ltd. | Method of producing a semiconductor device using an expand tape |
US5432999A (en) * | 1992-08-20 | 1995-07-18 | Capps; David F. | Integrated circuit lamination process |
US5334804A (en) * | 1992-11-17 | 1994-08-02 | Fujitsu Limited | Wire interconnect structures for connecting an integrated circuit to a substrate |
US5386142A (en) * | 1993-05-07 | 1995-01-31 | Kulite Semiconductor Products, Inc. | Semiconductor structures having environmentally isolated elements and method for making the same |
US5455445A (en) * | 1994-01-21 | 1995-10-03 | Kulite Semiconductor Products, Inc. | Multi-level semiconductor structures having environmentally isolated elements |
US5682062A (en) * | 1995-06-05 | 1997-10-28 | Harris Corporation | System for interconnecting stacked integrated circuits |
US5872051A (en) * | 1995-08-02 | 1999-02-16 | International Business Machines Corporation | Process for transferring material to semiconductor chip conductive pads using a transfer substrate |
US5825080A (en) * | 1995-12-18 | 1998-10-20 | Atr Optical And Radio Communications Research Laboratories | Semiconductor device provided with surface grounding conductor for covering surfaces of electrically insulating films |
US6236115B1 (en) * | 1995-12-27 | 2001-05-22 | International Business Machines Corporation | High density integrated circuit packaging with chip stacking and via interconnections |
US5973396A (en) * | 1996-02-16 | 1999-10-26 | Micron Technology, Inc. | Surface mount IC using silicon vias in an area array format or same size as die array |
US6168969B1 (en) * | 1996-02-16 | 2001-01-02 | Micron Technology, Inc. | Surface mount IC using silicon vias in an area array format or same size as die array |
US6048753A (en) * | 1996-04-02 | 2000-04-11 | Micron Technology, Inc. | Standardized bonding location process and apparatus |
US6020220A (en) * | 1996-07-09 | 2000-02-01 | Tessera, Inc. | Compliant semiconductor chip assemblies and methods of making same |
US6018196A (en) * | 1996-11-08 | 2000-01-25 | W. L. Gore & Associates, Inc. | Semiconductor flip chip package |
US6809421B1 (en) * | 1996-12-02 | 2004-10-26 | Kabushiki Kaisha Toshiba | Multichip semiconductor device, chip therefor and method of formation thereof |
US6323134B1 (en) * | 1997-11-20 | 2001-11-27 | Tru-Si Technologies, Inc. | Plasma processing methods and apparatus |
US6025647A (en) * | 1997-11-24 | 2000-02-15 | Vlsi Technology, Inc. | Apparatus for equalizing signal parameters in flip chip redistribution layers |
US6225143B1 (en) * | 1998-06-03 | 2001-05-01 | Lsi Logic Corporation | Flip-chip integrated circuit routing to I/O devices |
US6239495B1 (en) * | 1998-07-29 | 2001-05-29 | Kabushiki Kaisha Toshiba | Multichip semiconductor device and memory card |
US5994766A (en) * | 1998-09-21 | 1999-11-30 | Vlsi Technology, Inc. | Flip chip circuit arrangement with redistribution layer that minimizes crosstalk |
US20020097962A1 (en) * | 1998-10-09 | 2002-07-25 | Tetsuzo Yoshimura | Single and multilayer waveguides and fabrication process |
US6011314A (en) * | 1999-02-01 | 2000-01-04 | Hewlett-Packard Company | Redistribution layer and under bump material structure for converting periphery conductive pads to an array of solder bumps |
US6429096B1 (en) * | 1999-03-29 | 2002-08-06 | Sony Corporation | Method of making thinned, stackable semiconductor device |
US6261375B1 (en) * | 1999-05-19 | 2001-07-17 | Tru-Si Technologies, Inc. | Plasma processing methods and apparatus |
US6287976B1 (en) * | 1999-05-19 | 2001-09-11 | Tru-Si Technologies, Inc. | Plasma processing methods and apparatus |
US6166444A (en) * | 1999-06-21 | 2000-12-26 | United Microelectronics Corp. | Cascade-type chip module |
US6322903B1 (en) * | 1999-12-06 | 2001-11-27 | Tru-Si Technologies, Inc. | Package of integrated circuits and vertical integration |
US6608371B2 (en) * | 2000-08-04 | 2003-08-19 | Seiko Epson Corporation | Semiconductor device and method of manufacturing the same, circuit board, and electronic equipment |
US6577013B1 (en) * | 2000-09-05 | 2003-06-10 | Amkor Technology, Inc. | Chip size semiconductor packages with stacked dies |
US20020125566A1 (en) * | 2001-03-05 | 2002-09-12 | Yoshiyuki Tonami | High frequency circuit chip and method of producing the same |
US20030003724A1 (en) * | 2001-06-27 | 2003-01-02 | Hitachi, Ltd. | Manufacturing method of the semiconductor device |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8294266B2 (en) | 2007-08-01 | 2012-10-23 | Advanced Micro Devices, Inc. | Conductor bump method and apparatus |
US20110133338A1 (en) * | 2007-08-01 | 2011-06-09 | Topacio Roden R | Conductor bump method and apparatus |
US20110132652A1 (en) * | 2007-11-20 | 2011-06-09 | International Business Machines Corporation | Structure of very high insertion loss of the substrate noise decoupling |
US9059183B2 (en) | 2007-11-20 | 2015-06-16 | International Business Machines Corporation | Structure of very high insertion loss of the substrate noise decoupling |
US8421183B2 (en) * | 2007-11-20 | 2013-04-16 | International Business Machines Corporation | Structure of very high insertion loss of the substrate noise decoupling |
CN102150228B (en) * | 2008-07-25 | 2016-02-10 | Ati技术无限责任公司 | The underbump metallization of capacitor on sheet |
WO2010009553A1 (en) * | 2008-07-25 | 2010-01-28 | Ati Technologies Ulc | Under bump metallization for on-die capacitor |
US20100323526A1 (en) * | 2009-06-17 | 2010-12-23 | Canon Kabushiki Kaisha | Method of processing silicon substrate and method of manufacturing substrate for liquid discharge head |
US8287747B2 (en) * | 2009-06-17 | 2012-10-16 | Canon Kabushiki Kaisha | Method of processing silicon substrate and method of manufacturing substrate for liquid discharge head |
US8497534B2 (en) * | 2009-08-19 | 2013-07-30 | Chien-Hung Liu | Chip package with heavily doped regions and fabrication method thereof |
US8922026B2 (en) | 2009-08-19 | 2014-12-30 | Chien-Hung Liu | Chip package and fabrication method thereof |
US20110042804A1 (en) * | 2009-08-19 | 2011-02-24 | Chien-Hung Liu | Chip package and fabrication method thereof |
US20110159638A1 (en) * | 2009-12-31 | 2011-06-30 | Meng-Jen Wang | Method for Making a Chip Package |
US8691625B2 (en) * | 2009-12-31 | 2014-04-08 | Advanced Semiconductor Engineering, Inc. | Method for making a chip package |
US9331052B2 (en) * | 2010-06-04 | 2016-05-03 | Marvell World Trade Ltd. | Pad configurations for an electronic package assembly |
US8860193B2 (en) * | 2010-06-04 | 2014-10-14 | Marvell World Trade Ltd. | Pad configurations for an electronic package assembly |
US20110298117A1 (en) * | 2010-06-04 | 2011-12-08 | Sehat Sutardja | Pad configurations for an electronic package assembly |
US20150035160A1 (en) * | 2010-06-04 | 2015-02-05 | Marvell World Trade Ltd. | Pad configurations for an electronic package assembly |
US9543236B2 (en) * | 2010-06-04 | 2017-01-10 | Marvell World Trade Ltd. | Pad configurations for an electronic package assembly |
US20160240459A1 (en) * | 2010-06-04 | 2016-08-18 | Marvell World Trade Ltd. | Pad configurations for an electronic package assembly |
US20120112312A1 (en) * | 2010-11-04 | 2012-05-10 | Qualcomm Incorporated | Integrated Circuit Chip Customization Using Backside Access |
US9431298B2 (en) * | 2010-11-04 | 2016-08-30 | Qualcomm Incorporated | Integrated circuit chip customization using backside access |
US8664540B2 (en) * | 2011-05-27 | 2014-03-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Interposer testing using dummy connections |
US20120298410A1 (en) * | 2011-05-27 | 2012-11-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Interposer Testing Using Dummy Connections |
US10957625B2 (en) * | 2017-12-29 | 2021-03-23 | Micron Technology, Inc. | Pillar-last methods for forming semiconductor devices |
US11631630B2 (en) | 2017-12-29 | 2023-04-18 | Micron Technology, Inc. | Pillar-last methods for forming semiconductor devices |
Also Published As
Publication number | Publication date |
---|---|
US20040021139A1 (en) | 2004-02-05 |
US6962867B2 (en) | 2005-11-08 |
US7355273B2 (en) | 2008-04-08 |
US6800930B2 (en) | 2004-10-05 |
US20050186705A1 (en) | 2005-08-25 |
US20040121521A1 (en) | 2004-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6962867B2 (en) | Methods of fabrication of semiconductor dice having back side redistribution layer accessed using through-silicon vias and assemblies thereof | |
US20240395726A1 (en) | Semiconductor package including cavity-mounted device | |
US7087992B2 (en) | Multichip wafer level packages and computing systems incorporating same | |
US11088100B2 (en) | Semiconductor package and manufacturing method thereof | |
US7173330B2 (en) | Multiple chip semiconductor package | |
US6075712A (en) | Flip-chip having electrical contact pads on the backside of the chip | |
US6613606B1 (en) | Structure of high performance combo chip and processing method | |
US7145225B2 (en) | Interposer configured to reduce the profiles of semiconductor device assemblies and packages including the same and methods | |
US20050101116A1 (en) | Integrated circuit device and the manufacturing method thereof | |
US11488894B2 (en) | Semiconductor device having planarized passivation layer and method of fabricating the same | |
TWI694578B (en) | Integrated circuit package and forming method thereof | |
US11894312B2 (en) | Semiconductor packages and method of manufacture | |
US7009300B2 (en) | Low profile stacked multi-chip package and method of forming same | |
US20230207546A1 (en) | Stacking power delivery device dies | |
TW202030843A (en) | Package device | |
US20240096827A1 (en) | Semiconductor device and method | |
TWI843329B (en) | Device package and manufacturing method thereof | |
US20220367374A1 (en) | Redistribution structure for integrated circuit package and method of forming same | |
US20230245991A1 (en) | Integrated Circuit Packages and Methods of Forming the Same | |
US20230377905A1 (en) | Dummy through vias for Integrated Circuit Packages and Methods of Forming the Same | |
US20240145433A1 (en) | Integrated circuit package and method | |
JP3735986B2 (en) | Multichip module and manufacturing method thereof | |
US20230130354A1 (en) | Three-dimensional semiconductor package having a stacked passive device | |
CN119275115A (en) | Semiconductor packaging structure and method for forming the same | |
TW202129886A (en) | Package component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |