US20070055247A1 - Marking and guidance method and system for flexible fixation of a spine - Google Patents
Marking and guidance method and system for flexible fixation of a spine Download PDFInfo
- Publication number
- US20070055247A1 US20070055247A1 US11/595,303 US59530306A US2007055247A1 US 20070055247 A1 US20070055247 A1 US 20070055247A1 US 59530306 A US59530306 A US 59530306A US 2007055247 A1 US2007055247 A1 US 2007055247A1
- Authority
- US
- United States
- Prior art keywords
- marking
- vertebral bone
- marking pin
- securing member
- spinal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/16—Instruments for performing osteoclasis; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1739—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
- A61B17/1757—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the spine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3468—Trocars; Puncturing needles for implanting or removing devices, e.g. prostheses, implants, seeds, wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7004—Longitudinal elements, e.g. rods with a cross-section which varies along its length
- A61B17/7007—Parts of the longitudinal elements, e.g. their ends, being specially adapted to fit around the screw or hook heads
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7019—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
- A61B17/7026—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a part that is flexible due to its form
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7019—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
- A61B17/7026—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a part that is flexible due to its form
- A61B17/7028—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a part that is flexible due to its form the flexible part being a coil spring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7019—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
- A61B17/7026—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a part that is flexible due to its form
- A61B17/7029—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a part that is flexible due to its form the entire longitudinal element being flexible
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/02—Surgical instruments, devices or methods for holding wounds open, e.g. retractors; Tractors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B17/3423—Access ports, e.g. toroid shape introducers for instruments or hands
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B17/3439—Cannulas with means for changing the inner diameter of the cannula, e.g. expandable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3472—Trocars; Puncturing needles for bones, e.g. intraosseus injections
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7004—Longitudinal elements, e.g. rods with a cross-section which varies along its length
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/701—Longitudinal elements with a non-circular, e.g. rectangular, cross-section
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7032—Screws or hooks with U-shaped head or back through which longitudinal rods pass
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/88—Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
- A61B17/8897—Guide wires or guide pins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00004—(bio)absorbable, (bio)resorbable or resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00831—Material properties
- A61B2017/00862—Material properties elastic or resilient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/02—Surgical instruments, devices or methods for holding wounds open, e.g. retractors; Tractors
- A61B17/025—Joint distractors
- A61B2017/0256—Joint distractors for the spine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B2090/363—Use of fiducial points
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3904—Markers, e.g. radio-opaque or breast lesions markers specially adapted for marking specified tissue
- A61B2090/3916—Bone tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3987—Applicators for implanting markers
Definitions
- the present invention relates to a method and system for fixing and stabilizing a spinal column and, more particularly, to a method and system of spinal fixation in which one or more screw type fixing members are implanted and fixed into a portion of a patient's spinal column and flexible, semi-rigid rods or plates are connected and fixed to the upper ends of the fixing members to provide dynamic stabilization of the spinal column.
- Degenerative spinal column diseases such as disc degenerative diseases (DDD), spinal stenosis, spondylolisthesis, and so on, need surgical operation if they do not take a turn for the better by conservative management.
- spinal decompression is the first surgical procedure that is performed.
- the primary purpose of decompression is to reduce pressure in the spinal canal and on nerve roots located therein by removing a certain tissue of the spinal column to reduce or eliminate the pressure and pain caused by the pressure. If the tissue of the spinal column is removed the pain is reduced but the spinal column is weakened. Therefore, fusion surgery (e.g., ALIF, PLIF or posterolateral fusion) is often necessary for spinal stability following the decompression procedure.
- fusion takes additional time to achieve maximum stability and a spinal fixation device is typically used to support the spinal column until a desired level of fusion is achieved.
- a spinal fixation surgery can sometimes be performed immediately following decompression, without performing the fusion procedure. The fixation surgery is performed in most cases because it provides immediate postoperative stability and, if fusion surgery has also been performed, it provides support of the spine until sufficient fusion and stability has been achieved.
- Conventional methods of spinal fixation utilize a rigid spinal fixation device to support an injured spinal part and prevent movement of the injured part.
- These conventional spinal fixation devices include: fixing screws configured to be inserted into the spinal pedicle or sacral of the backbone to a predetermined depth and angle, rods or plates configured to be positioned adjacent to the injured spinal part, and coupling elements for connecting and coupling the rods or plates to the fixing screws such that the injured spinal part is supported and held in a relatively fixed position by the rods or plates.
- U.S. Pat. No. 6,193,720 discloses a conventional spinal fixation device, in which connection members of a rod or plate type are mounted on the upper ends of at least one or more screws inserted into the spinal pedicle or sacral of the backbone.
- the connection units such as the rods and plates, are used to stabilize the injured part of the spinal column which has been weakened by decompression.
- the connection units also prevent further pain and injury to the patient by substantially restraining the movement of the spinal column.
- the spinal fixation device can cause ill effects, such as “junctional syndrome” (transitional syndrome) or “fusion disease” resulting in further complications and abnormalities associated with the spinal column.
- the Graf band is one example of a non-fusion fixation device that is applied after decompression without bone fusion.
- the Graf band is composed of a polyethylene band and pedicle screws to couple the polyethylene band to the spinal vertebrae requiring stabilization.
- the primary purpose of the Graf band is to prevent sagittal rotation (flexion instability) of the injured spinal parts.
- sagittal rotation flexion instability
- it is effective in selected cases but is not appropriate for cases that require greater stability and fixation. See, Kanayama et al, Journal of Neurosurgery (2001) 95(1 Suppl):5-10, 2001, Markwalder & Wenger, Acta Neurochrgica 145(3):209-14.).
- Dynesys Another non-fusion fixation device called “Dynesys” has recently been introduced. See Stoll et al, European Spine Journal (2002) 11 Suppl 2:S170-8, Schmoelz et al, J of spinal disorder & techniques (2003) 16(4):418-23.
- the Dynesys device is similar to the Graf band except it uses a polycarburethane spacer between the screws to maintain the distance between the heads of two corresponding pedicle screws and, hence, adjacent vertebrae in which the screws are fixed.
- Early reports by the inventors of the Dynesys device indicate it has been successful in many cases. However, it has not yet been determined whether the Dynesys device can maintain long-term stability with flexibility and durability in a controlled study. Because it has polyethylene components and interfaces, there is a risk of mechanical failure. Furthermore, due to the mechanical configuration of the device, the surgical technique required to attach the device to the spinal column is complex and complicated.
- U.S. Pat. Nos. 5,282,863 and 4,748,260 disclose a flexible spinal stabilization system and method using a plastic, non-metallic rod.
- U.S. patent publication no. 2003/0083657 discloses another example of a flexible spinal stabilization device that uses a flexible elongate member. These devices are flexible but they are not well-suited for enduring long-term axial loading and stress. Additionally, the degree of desired flexibility vs. rigidity may vary from patient to patient. The design of existing flexible fixation devices are not well suited to provide varying levels of flexibility to provide optimum results for each individual candidate. For example, U.S. Pat. No.
- 5,672,175 discloses a flexible spinal fixation device which utilizes a flexible rod made of metal alloy and/or a composite material. Additionally, compression or extension springs are coiled around the rod for the purpose of providing de-rotation forces on the vertebrae in a desired direction.
- this patent is primarily concerned with providing a spinal fixation device that permits “relative longitudinal translational sliding movement along vertical axis” of the spine and neither teaches nor suggests any particular designs of connection units (e.g., rods or plates) that can provide various flexibility characteristics.
- Prior flexible rods such as that mentioned in U.S. Pat. No. 5,672,175 typically have solid construction with a relatively small diameter in order to provide a desired level of flexibility. Because they are typically very thin to provide suitable flexibility, such prior art rods are prone to mechanical failure and have been known to break after implantation in patients.
- a doctor incises the midline of the back to about 10-15 centimeters, and then, dissects and retracts it to both sides. In this way, the doctor performs muscular dissection to expose the outer part of the facet joint.
- the doctor finds an entrance point to the spinal pedicle using radiographic devices (e.g., C-arm flouroscopy), and inserts securing members of the spinal fixation device (referred to as “spinal pedicle screws”) into the spinal pedicle.
- the connection units e.g., rods or plates
- the connection units are attached to the upper portions of the pedicle screws in order to provide support and stability to the injured portion of the spinal column.
- the patient's back is incised about 10 ⁇ 15 cm, and as a result, the back muscle, which is important for maintaining the spinal column, is incised or injured, resulting in significant post-operative pain to the patient and a slow recovery period.
- a minimally invasive surgical procedure which is capable of performing spinal fixation surgery through a relatively small hole or “window” that is created in the patient's back at the location of the surgical procedure.
- minimally invasive surgery allows a much smaller incision of the patient's affected area.
- two or more securing members e.g., pedicle screws
- the stabilizing members e.g., rods or plates
- the surgical procedure may include inserting a step dilator into the incision and then gradually increasing the diameter of the dilator. Thereafter, a tubular retractor is inserted into the dilated area to retract the patient's muscle and provide a visual field for surgery. After establishing this visual field, decompression and, if desired, fusion procedures may be performed, followed by a fixation procedure, which includes the steps of finding the position of the spinal pedicle, inserting pedicle screws into the spinal pedicle, using an endoscope or a microscope, and securing the stabilization members (e.g., rods or plates) to the pedicle screws in order to stabilize and support the weakened spinal column.
- a fixation procedure which includes the steps of finding the position of the spinal pedicle, inserting pedicle screws into the spinal pedicle, using an endoscope or a microscope, and securing the stabilization members (e.g., rods or plates) to the pedicle screws in order to stabilize and support the weakened spinal column.
- One of the most challenging aspects of performing the minimally invasive spinal fixation procedure is locating the entry point for the pedicle screw under endoscopic or microscopic visualization.
- anatomical landmarks and/or radiographic devices are used to find the entry point, but clear anatomical relationships are often difficult to identify due to the confined working space.
- the minimally invasive procedure requires that a significant amount of the soft tissue must be removed to reveal the anatomy of the regions for pedicle screw insertion. The removal of this soft tissue results in bleeding in the affected area, thereby adding to the difficulty of finding the correct position to insert the securing members and causing damage to the muscles and soft tissue surrounding the surgical area.
- conventional procedures are unnecessarily traumatic.
- Radiography techniques have been proposed and implemented in an attempt to more accurately and quickly find the position of the spinal pedicle in which the securing members will be inserted.
- it is often difficult to obtain clear images required for finding the corresponding position of the spinal pedicle using radiography techniques due to radiographic interference caused by metallic tools and equipment used during the surgical operation.
- reading and interpreting radiographic images is a complex task requiring significant training and expertise.
- Radiography poses a further problem in that the patient is exposed to significant amounts of radiation.
- prior guidance systems have been developed which guide the insertion of a pedicle screw to the desired entry point on the spinal pedicle, these prior systems have proven difficult to use and, furthermore, hinder the operation procedure.
- prior guidance systems for pedicle screw insertion utilize a long wire that is inserted through a guide tube that is inserted through a patient's back muscle and tissue. The location of insertion of the guide tube is determined by radiographic means (e.g., C-arm flouroscope) and driven until a first end of the guide tube reaches the desired location on the surface of the pedicle bone.
- radiographic means e.g., C-arm flouroscope
- a first end of the guide wire typically made of a biocompatible metal material, is inserted into the guide tube and pushed into the pedicle bone, while the opposite end of the wire remains protruding out of the patient's back.
- the guide tube is removed, and a hole centered around the guide wire is dilated and retracted.
- a pedicle screw having an axial hole or channel configured to receive the guide wire therethrough is guided by the guide wire to the desired location on the pedicle bone, where the pedicle screw is screw-driven into the pedicle.
- the guide wire has been very difficult to use. Because it is a relatively long and thin wire, the structural integrity of the guide wire often fails during attempts to drive one end of the wire into the pedicle bone, making the process unnecessarily time-consuming and laborious. Furthermore, because the wire bends and crimps during insertion, it does not provide a smooth and secure anchor for guiding subsequent tooling and pedicle screws to the entry point on the pedicle. Furthermore, current percutaneous wire guiding systems are used in conjunction with C-arm flouroscopy (or other radiographic device) without direct visualization with the use of an endoscope or microscope. Thus, current wire guidance systems pose a potential risk of misplacement or pedicle breakage.
- the invention addresses the above and other needs by providing an improved method and system for stabilizing an injured or weakened spinal column.
- the inventor of the present invention has invented a novel flexible spinal fixation device with an improved construction and design that uses metal or metal-synthetic hybrid components to provide a desired level of flexibility, stability and durability.
- the invention provides a method and device for accurately and quickly finding a position of the spinal column in which securing members of the spinal fixation device will be inserted.
- a novel guidance/marking device is used to indicate the position in the spinal column where the securing members will be inserted.
- FIG. 1 illustrates a perspective view of a spinal fixation device in accordance with one embodiment of the invention.
- FIG. 2 illustrates a perspective view of spinal fixation device in accordance with another embodiment of the invention.
- FIG. 3 illustrates an exploded view of the coupling assembly 14 of the pedicle screw 2 of FIGS. 1 and 2 , in accordance with one embodiment of the invention.
- FIG. 4 illustrates a perspective view of a flexible rod connection unit in accordance with one embodiment of the invention.
- FIG. 5 illustrates a perspective view of a flexible rod connection unit in accordance with another embodiment of the invention.
- FIG. 6 illustrates a perspective view of a flexible rod connection unit in accordance with a further embodiment of the invention.
- FIG. 7 illustrates a perspective view of a pre-bent flexible rod connection unit in accordance with one embodiment of the invention.
- FIG. 8 illustrates a perspective, cross-sectional view of a flexible portion of connection unit in accordance with one embodiment of the invention.
- FIG. 9 illustrates a perspective, cross-sectional view of a flexible portion of connection unit in accordance with another embodiment of the invention.
- FIG. 10 illustrates a perspective, cross-sectional view of a flexible portion of connection unit in accordance with a further embodiment of the invention.
- FIG. 11 illustrates a perspective view of a flexible rod connection unit in accordance with one embodiment of the invention.
- FIG. 12A illustrates a perspective view of a flexible connection unit having one or more spacers in between two end portions, in accordance with one embodiment of the invention.
- FIG. 12B illustrates an exploded view of the flexible connection unit of FIG. 12A .
- FIG. 12C provides a view of the male and female interlocking elements of the flexible connection unit of FIGS. 12A and 12B , in accordance with one embodiment of the invention.
- FIG. 13 shows a perspective view of a flexible connection unit, in accordance with a further embodiment of the invention.
- FIG. 14 illustrates a perspective view of a spinal fixation device in accordance with another embodiment of the invention.
- FIG. 15 illustrates an exploded view of the spinal fixation device of FIG. 14 .
- FIG. 16A shows a perspective view of a flexible plate connection unit in accordance with one embodiment of the invention.
- FIG. 16B illustrates a perspective view of a flexible plate connection unit in accordance with a further embodiment of the invention.
- FIG. 16C shows a side view of the flexible plate connection unit of FIG. 16A .
- FIG. 16D shows a top view of the flexible plate connection unit of FIG. 16A .
- FIG. 16E illustrates a side view of the flexible plate connection unit of FIG. 16A having a pre-bent configuration in accordance with a further embodiment of the invention.
- FIG. 17 is a perspective view of a flexible plate connection unit in accordance with another embodiment of the invention.
- FIG. 18 illustrates a perspective view of a flexible plate connection unit in accordance with another embodiment of the invention.
- FIG. 19 illustrates a perspective view of a hybrid rod-plate connection unit having a flexible middle portion according to a further embodiment of the present invention.
- FIG. 20 is a perspective view of a spinal fixation device that utilizes the hybrid rod-plate connection unit of FIG. 19 .
- FIG. 21 illustrates a perspective view of the spinal fixation device of FIG. 1 after it has been implanted into a patient's spinal column.
- FIGS. 22A and 22B provide perspective views of spinal fixation devices utilizing the plate connection units of FIGS. 16A and 16B , respectively.
- FIG. 23A illustrates a perspective view of two pedicle screws inserted into the pedicles of two adjacent vertebrae at a skewed angle, in accordance with one embodiment of the invention.
- FIG. 23B illustrates a structural view of a coupling assembly of a pedicle screw in accordance with one embodiment of the invention.
- FIG. 23C provides a perspective view of a slanted stabilizing spacer in accordance with one embodiment of the invention.
- FIG. 23D illustrates a side view of the slanted stabilizing spacer of FIG. 23C .
- FIG. 23E is a top view of the cylindrical head of the pedicle screw of FIG. 23 .
- FIG. 24 illustrates a perspective view of a marking and guiding device in accordance with one embodiment of the invention.
- FIG. 25 is an exploded view of the marking and guidance device of FIG. 24 .
- FIG. 26A provides a perspective, cross-section view of a patient's spine after the marking and guiding device of FIG. 24 has been inserted during surgery.
- FIG. 26B provides a perspective, cross-section view of a patient's spine as an inner trocar of the marking and guiding device of FIG. 24 is being removed.
- FIGS. 27A and 27B illustrate perspective views of two embodiments of a fiducial pin, respectively.
- FIG. 28 is a perspective view of a pushing trocar in accordance with a further embodiment of the invention.
- FIG. 29A illustrates a perspective, cross-sectional view of a patient's spine as the pushing trocar of FIG. 28 is used to drive a fiducial pin into a designate location of a spinal pedicle, in accordance with one embodiment of the invention.
- FIG. 29B illustrates a perspective, cross-sectional view of a patient's spine after two fiducial pins have been implanted into two adjacent spinal pedicles, in accordance with one embodiment of the invention.
- FIG. 30 is a perspective view of a cannulated awl in accordance with one embodiment of the invention.
- FIG. 31 is a perspective, cross-sectional view of a patient's spine as the cannulated awl of FIG. 30 is being used to enlarge an entry hole for a pedicle screw, in accordance with one embodiment of the invention.
- FIG. 32 provides a perspective view of fiducial pin retrieving device, in accordance with one embodiment of the invention.
- FIG. 33 is a perspective view of a pedicle screw having an axial cylindrical cavity for receiving at least a portion of a fiducial pin therein, in accordance with a further embodiment of the invention.
- FIG. 34 is a perspective, cross-sectional view of a patient's spine after one pedicle screw has been implanted into a designated location of a spinal pedicle, in accordance with one embodiment of the invention.
- FIG. 35 is a perspective, cross-sectional view of a patient's spine after two pedicle screws have been implanted into designated locations of two adjacent spinal pedicles, in accordance with one embodiment of the invention.
- FIG. 1 depicts a spinal fixation device in accordance with one embodiment of the present invention.
- the spinal fixation device includes two securing members 2 (designated as 2 ′ and 2 ′′), and a flexible fixation rod 4 configured to be received and secured within a coupling assembly 14 , as described in further detail below with respect to FIG. 3 .
- Each securing member 2 includes a threaded screw-type shaft 10 configured to be inserted and screwed into a patient's spinal pedicle.
- the screw-type shaft 10 includes an external spiral screw thread 12 formed over the length of the shaft 10 and a conical tip at the end of the shaft 10 configured to be inserted into the patient's spinal column at a designated location.
- Other known forms of the securing member 2 may be used in connection with the present invention provided the securing member 2 can be inserted and fixed into the spinal column and securely coupled to the rod 4 .
- the spinal fixation device is used for surgical treatment of spinal diseases by mounting securing members 2 at desired positions in the spinal column.
- the rod 4 extends across two or more vertebrae of the spinal column and is secured by the securing members 2 so as to stabilize movement of the two or more vertebrae.
- FIG. 2 illustrates a perspective view of a spinal fixation device in accordance with a further embodiment of the present invention.
- the spinal fixation device of FIG. 2 is similar to the spinal fixation device of FIG. 1 except that the rod 4 comprises a flexible middle portion 8 juxtaposed between two rigid end portions 9 of the rod 4 .
- FIG. 3 provides an exploded view of the securing member 2 of FIGS. 1 and 2 illustrating various components of the coupling assembly 14 , in accordance with one embodiment of the invention.
- the coupling assembly 14 includes: a cylindrical head 16 located at a top end of the screw-type shaft 10 , a spiral thread or groove 18 formed along portions of the inner wall surface of the cylindrical head 16 , and a U-shaped seating groove 20 configured to receive the rod 4 therein.
- the coupling assembly 14 further comprises an outside-threaded nut 22 having a spiral thread 24 formed on the outside lateral surface of the nut 22 , wherein the spiral thread 24 is configured to mate with the internal spiral thread 18 of the cylindrical head 16 .
- the coupling assembly 14 includes a fixing cap 26 configured to be mounted over a portion of the cylindrical head 16 to cover and protect the outside-threaded nut 22 and more securely hold rod 4 within seating groove 20 .
- an inner diameter of the fixing gap 26 is configured to securely mate with the outer diameter of the cylindrical head 16 .
- Other methods of securing the fixing cap 26 to the cylindrical head, such as correspondingly located notches and groove (not shown), would be readily apparent to those of skill in the art.
- the components and parts of the securing member 2 may be made of highly rigid and durable bio-compatible materials such as: stainless steel, iron steel, titanium or titanium alloy.
- bio-compatible materials refers to those materials that will not cause any adverse chemical or immunological reactions after being implanted into a patient's body.
- the rod 4 is coupled to the securing means 2 by seating the rod 4 horizontally into the seating groove 20 of the coupling means 14 perpendicularly to the direction of the length of the threaded shaft 10 of securing member 2 .
- the outside threaded nut 22 is then received and screwed into the cylindrical head 16 above the rod 4 so as to secure the rod 4 in the seating groove 20 .
- the fixing cap 26 is then placed over the cylindrical head 16 to cover, protect and more firmly secure the components in the internal cavity of the cylindrical head 16 .
- FIGS. 4-7 illustrate perspective views of various embodiments of a rod 4 that may be used in a fixation device, in accordance with the present invention.
- FIG. 4 illustrates the rod 4 of FIG.
- rod 4 comprises a metal tube or pipe having a cylindrical wall 5 of a predefined thickness.
- the cylindrical wall 5 is cut in a spiral fashion along the length of the rod 4 to form spiral cuts or grooves 6 .
- the width and density of the spiral grooves 6 may be adjusted to provide a desired level of flexibility.
- the grooves 6 are formed from very thin spiral cuts or incisions that penetrate through the entire thickness of the cylindrical wall of the rod 4 .
- the thickness and material of the tubular walls 5 also affect the level of flexibility.
- the rod 4 is designed to have a flexibility that substantially equals that of a normal back. Flexibility ranges for a normal back are known by those skilled in the art, and one of ordinary skill can easily determine a thickness and material of the tubular walls 5 and a width and density of the grooves 6 to achieve a desired flexibility or flexibility range within the range for a normal back.
- the term “density” refers to tightness of the spiral grooves 6 or, in other words, the distance between adjacent groove lines 6 as shown in FIG. 4 , for example.
- the present invention is not limited to a particular, predefined flexibility range.
- the rigidity of the rod 4 should be able to endure a vertical axial load applied to the patient's spinal column along a vertical axis of the spine in a uniform manner with respect to the rest of the patient's natural spine.
- FIG. 5 illustrates the rod 4 of FIG. 2 wherein only a middle portion 8 is made and designed to be flexible and two end portions 9 are made to be rigid.
- metal end rings or caps 9 ′ having no grooves therein, may be placed over respective ends of the rod 4 of FIG. 4 so as make the end portions 9 rigid.
- the rings or caps 9 ′ may be permanently affixed to the ends of the rod 4 using known methods such as pressing and/or welding the metals together.
- the spiral groove 6 is only cut along the length of the middle portion 8 and the end portions 9 comprise the tubular wall 5 without grooves 6 . Without the grooves 6 , the tubular wall 5 , which is made of a rigid metal or metal hybrid material, exhibits high rigidity.
- FIG. 6 illustrates a further embodiment of the rod 4 having multiple sections, two flexible sections 8 interleaved between three rigid sections 9 .
- This embodiment may be used, for example, to stabilize three adjacent vertebrae with respect to each other, wherein three pedicle screws are fixed to a respective one of the vertebrae and the three rigid sections 9 are connected to a coupling assembly 14 of a respective pedicle screw 2 , as described above with respect to FIG. 3 .
- Each of the flexible sections 8 and rigid sections 9 may be made as described above with respect to FIG. 5 .
- FIG. 7 illustrates another embodiment of the rod 4 having a pre-bent structure and configuration to conform to and maintain a patient's curvature of the spine, known as “lordosis,” while stabilizing the spinal column.
- a patient's lumbar is in the shape of a ‘C’ form, and the structure of the rod 4 is formed to coincide to the normal lumbar shape when utilized in the spinal fixation device of FIG. 2 , in accordance with one embodiment of the invention.
- the pre-bent rod 4 includes a middle portion 8 that is made and designed to be flexible interposed between two rigid end portions 9 .
- the middle portion 8 and end portions 9 may be made as described above with respect to FIG. 5 .
- the pre-bent structure and design of the rod 4 may offset a skew angle when two adjacent pedicle screws are not inserted parallel to one another, as described in further detail below with respect to FIG. 23A .
- FIG. 8 illustrates a perspective, cross-sectional view of a flexible tubular rod 4 , or rod portion 8 in accordance with one embodiment of the invention.
- the flexible rod 4 , 8 is made from a first metal tube 5 having a spiral groove 6 cut therein as described above with respect to FIGS. 4-7 .
- a second tube 30 having spiral grooves 31 cut therein and having a smaller diameter than the first tube 5 is inserted into the cylindrical cavity of the first tube 5 .
- the second tube 30 has spiral grooves 31 which are cut in an opposite spiral direction with respect to the spiral grooves 6 cut in the first tube 5 , such that the rotational torsion characteristics of the second tube 30 offset at least some of the rotational torsion characteristics of the first tube 5
- the second flexible tube 30 is inserted into the core of the first tube to provide further durability and strength to the flexible rod 4 , 8 .
- the second tube 30 may be made of the same or different material than the first tube 5 .
- the material used to manufacture the first and second tubes 5 and 30 may be any one or combination of the following exemplary metals: stainless steel, iron steel, titanium, and titanium alloy.
- FIG. 9 illustrates a perspective, cross-sectional view of a flexible rod 4 , 8 in accordance with a further embodiment of the invention.
- the flexible rod 4 , 8 includes an inner core made of a metallic wire 32 comprising a plurality of overlapping thin metallic yams, such as steel yams, titanium yams, or titanium-alloy yams.
- the wire 32 is encased by a metal, or metal hybrid, flexible tube 5 having spiral grooves 6 cut therein, as discussed above.
- the number and thickness of the metallic yams in the wire 32 also affects the rigidity and flexibility of the rod 4 , 8 . By changing the number, thickness or material of the yarns flexibility can be increased or decreased.
- the number, thickness and/or material of the metallic yams in the wire 32 can be adjusted to provide a desired rigidity and flexibility in accordance with a patient's particular needs.
- Those of ordinary skill in the art can easily determine the number, thickness and material of the yams, in conjunction with a given flexibility of the tube 5 in order to achieve a desired rigidity v. flexibility profile for the rod 4 , 8 .
- FIG. 10 shows yet another embodiment of a flexible rod 4 wherein the flexible tube 5 encases a non-metallic, flexible core 34 .
- the core 34 may be made from known biocompatible shape memory alloys (e.g., NITINOL), or biocompatible synthetic materials such as: carbon fiber, Poly Ether Ether Ketone (PEEK), Poly Ether Ketone Ketone Ether Ketone (PEKKEK), or Ultra High Molecular Weight Poly Ethylene (UHMWPE).
- NITINOL known biocompatible shape memory alloys
- PEEK Poly Ether Ether Ketone
- PEKKEK Poly Ether Ketone Ketone Ether Ketone
- UHMWPE Ultra High Molecular Weight Poly Ethylene
- FIG. 11 illustrates a perspective view of another embodiment of the flexible rod 35 in which a plurality of metal wires 32 , as described above with respect to FIG. 9 , are interweaved or braided together to form a braided metal wire rod 35 .
- the braided metal wire rod 35 can be made from the same materials as the metal wire 32 .
- the rigidity and flexibility of the braided rod 35 can be further modified to achieve desired characteristics by varying the number and thickness of the wires 32 used in the braided structure 35 .
- each end of the braided metal wire rod 35 is encased by a rigid metal cap or ring 9 ′ as described above with respect to FIGS. 5-7 , to provide a rod 4 having a flexible middle portion 8 and rigid end portions 9 .
- the metal braided wire rod 35 may be utilized as a flexible inner core encased by a metal tube 5 having spiral grooves 6 cut therein to create a flexible metal rod 4 or rod portion 8 , in a similar fashion to the embodiments shown in FIGS. 8-10 .
- the term “braid” or “braided structure” encompasses two or more wires, strips, strands, ribbons and/or other shapes of material interwoven in an overlapping fashion. Various methods of interweaving wires, strips, strands, ribbons and/or other shapes of material are known in the art. Such interweaving techniques are encompassed by the present invention.
- the flexible metal rod 35 includes a braided metal structure having two or more metal strips, strands or ribbons interweaved in a diagonally overlapping pattern.
- FIG. 12A illustrates a further embodiment of a flexible connection unit 36 having two rigid end portions 9 ′ and an exemplary number of rigid spacers 37 .
- the rigid end portions 9 ′ and spacers can be made of bio-compatible metal or metal-hybrid materials as discussed above.
- the connection unit 36 further includes a flexible wire 32 , as discussed above with respect to FIG. 9 , which traverses an axial cavity or hole (not shown) in each of the rigid end portions 9 ′ and spacers 37 .
- FIG. 12B illustrates an exploded view of the connection unit 36 that further shows how the wire 32 is inserted through center axis holes of the rigid end portions 9 ′ and spacers 37 . As further shown in FIG.
- each of the end portions 9 ′ and spacers 37 include a male interlocking member 38 which is configured to mate with a female interlocking cavity (not shown) in the immediately adjacent end portion 9 ′ or spacer 37 .
- FIG. 12C illustrates an exploded side view and indicates with dashed lines the location and configuration of the female interlocking cavity 39 for receiving corresponding male interlocking members 38 .
- FIG. 13 shows a perspective view of a flexible connection unit 40 in accordance with another embodiment of the invention.
- the connection 40 is similar to the connection unit 36 described above, however, the spacers 42 are configured to have the same shape and design as the rigid end portions 9 ′. Additionally, the end portions 9 ′ have an exit hole or groove 44 located on a lateral side surface through which the wire 32 may exit, be pulled taut, and clamped or secured using a metal clip (not shown) or other known techniques. In this way, the length of the flexible connection unit 36 or 40 may be varied at the time of surgery to fit each patient's unique anatomical characteristics.
- the wire 32 may be secured using a metallic clip or stopper (not shown).
- a clip or stopper may include a small tubular cylinder having an inner diameter that is slightly larger than the diameter of the wire 32 to allow the wire 32 to pass therethrough. After the wire 32 is pulled to a desired tension through the tubular stopper, the stopper is compressed so as to pinch the wire 32 contained therein.
- the wire 32 may be pre-secured using known techniques during the manufacture of the rod-like connection units 36 , 40 having a predetermined number of spacers 37 , 42 therein.
- FIG. 14 depicts a spinal fixation device according to another embodiment of the present invention.
- the spinal fixation device includes: at least two securing members 2 containing an elongate screw type shaft 10 having an external spiral thread 12 , and a coupling assembly 14 .
- the device further includes a plate connection unit 50 , or simply “plate 50 ,” configured to be securely connected to the coupling parts 14 of the two securing members 2 .
- the plate 50 comprises two rigid connection members 51 each having a planar surface and joined to each other by a flexible middle portion 8 .
- the flexible middle portion 8 may be made in accordance with any of the embodiments described above with respect to FIGS. 4-11 .
- Each connection member 51 contains a coupling hole 52 configured to receive therethrough a second threaded shaft 54 ( FIG. 15 ) of the coupling assembly 14 .
- the coupling assembly 14 of the securing member 2 includes a bolt head 56 adjoining the top of the first threaded shaft 10 and having a circumference or diameter greater than the circumference of the first threaded shaft 10 .
- the second threaded shaft 54 extends upwardly from the bolt head 56 .
- the coupling assembly 14 further includes a nut 58 having an internal screw thread configured to mate with the second threaded shaft 54 , and one or more washers 60 , for clamping the connection member 51 against the top surface of the bolt head 56 , thereby securely attaching the plate 50 to the pedicle screw 2 .
- FIGS. 16A and 16B illustrate two embodiments of a plate connection unit 40 having at least two coupling members 51 and at least one flexible portion 8 interposed between and attached to two adjacent connection members 51 .
- the flexible middle portion 8 comprises a flexible metal braided wire structure 36 as described above with respect to FIG. 11 .
- the flexible portion 8 can be designed and manufactured in accordance with any of the embodiments described above with respect to FIGS. 4-11 , or combinations thereof.
- FIGS. 16C and 16D illustrate a side view and top view, respectively, of the plate 50 of FIG. 16A .
- the manufacture of different embodiments of the flexible connection units 50 and 58 having different types of flexible middle portions 8 is easily accomplished using known metallurgy manufacturing processes.
- FIG. 16E illustrate a side view of a pre-bent plate connection unit 50 ′, in accordance with a further embodiment of the invention.
- This plate connection unit 50 ′ is similar to the plate 50 except that connection members 51 ′ are formed or bent at an angle ⁇ from a parallel plane 53 during manufacture of the plate connection unit 50 ′.
- this pre-bent configuration is designed to emulate and support a natural curvature of the spine (e.g., lordosis). Additionally, or alternatively, this pre-bent structure may offset a skew angle when two adjacent pedicle screws are not inserted parallel to one another, as described in further detail below with respect to FIG. 23A .
- FIG. 17 illustrates a perspective view of a plate connection unit 60 having two planar connection members 62 each having a coupling hole 64 therein for receiving the second threaded shaft 44 of the pedicle screw 2 .
- a flexible middle portion 8 is interposed between the two connection members 62 and attached thereto.
- the flexible middle portion 8 is made in a similar fashion to wire 32 described above with respect to FIG. 9 , except it has a rectangular configuration instead of a cylindrical or circular configuration as shown in FIG. 9 . It is understood, however, that the flexible middle portion 8 may be made in accordance with the design and materials of any of the embodiments previously discussed.
- FIG. 18 illustrates a perspective view of a further embodiment of the plate 60 of FIG. 17 wherein the coupling hole 64 includes one or more nut guide grooves 66 cut into the top portion of the connection member 62 to seat and fix the nut 58 ( FIG. 15 ) into the coupling hole 64 .
- the nut guide groove 66 is configured to receive and hold at least a portion of the nut 58 therein and prevent lateral sliding of the nut 58 within the coupling hole 64 after the connection member 62 has been clamped to the bolt head 56 of the pedicle screw 2 .
- FIG. 19 illustrates a perspective view of a hybrid plate and rod connection unit 70 having a rigid rod-like connection member 4 , 9 or 9 ′, as described above with respect to FIGS. 4-7 , at one end of the connection unit 70 and a plate-like connection member 51 or 62 , as described above with respect to FIGS. 14-18 , at the other end of the connection unit 70 .
- a flexible member 8 interposed between rod-like connection member 9 ( 9 ′) and the plate-like connection member 52 ( 64 ) is a flexible member 8 .
- the flexible member 8 may be designed and manufactured in accordance with any of the embodiments discussed above with reference to FIGS. 8-13 .
- FIG. 20 illustrates a perspective view of a spinal fixation device that utilizes the hybrid plate and rod connection unit 70 of FIG. 19 .
- this fixation device utilizes two types of securing members 2 (e.g., pedicle screws), the first securing member 2 ′being configured to securely hold the plate connection member 42 ( 64 ) as described above with respect to FIG. 15 , and the second securing member 2 ′′ being configured to securely hold the rod connection member 4 , 9 or 9 ′, as described above with respect to FIG. 3 .
- securing members 2 e.g., pedicle screws
- FIG. 21 illustrates a perspective top view of two spinal fixation devices, in accordance with the embodiment illustrated in FIG. 1 , after they are attached to two adjacent vertebrae 80 and 82 to flexibly stabilize the vertebrae.
- FIGS. 22A and 22B illustrate perspective top views of spinal fixation devices using the flexible stabilizing members 50 and 58 of FIGS. 16A and 16B , respectively, after they are attached to two or more adjacent vertebrae of the spine.
- FIG. 23A illustrates a side view of a spinal fixation device after it has been implanted into the pedicles of two adjacent vertebrae.
- the pedicle screws 2 are mounted into the pedicle bone such that a center axis 80 of the screws 2 are offset by an angle ⁇ from a parallel plane 82 and the center axes 80 of the two screws 2 are offset by an angle of approximately 2 ⁇ from each other.
- This type of non-parallel insertion of the pedicle screws 2 often results due to the limited amount of space that is available when performing minimally invasive surgery.
- the pedicle screws 2 may have a tendency to be skewed from parallel due to a patient's natural curvature of the spine (e.g., lordosis). Thus, due to the non-parallel nature of how the pedicle screws 2 are ultimately fixed to the spinal pedicle, it is desirable to offset this skew when attaching a rod or plate connection unit to each of the pedicle screws 2 .
- FIG. 23B illustrates a side view of the head of the pedicle screw in accordance with one embodiment of the invention.
- the screw 2 includes a cylindrical head 84 which is similar to the cylindrical head 16 described above with respect to FIG. 3 except that the cylindrical head 84 includes a slanted seat 86 configured to receive and hold a flexible rod 4 in a slanted orientation that offsets the slant or skew ⁇ of the pedicle screw 2 as described above.
- the improved pedicle screw 2 further includes a slanted stabilizing spacer 88 which is configured to securely fit inside the cavity of the cylindrical head 84 and hold down the rod 4 at the same slant as the slanted seat 86 .
- the pedicle screw 2 further includes an outside threaded nut 22 configured to mate with spiral threads along the interior surface (not shown) of the cylindrical head 84 for clamping down and securing the slanted spacer 88 and the rod 4 to the slanted seat 86 and, hence, to the cylindrical head 84 of the pedicle screw 2 .
- FIG. 23C shows a perspective view of the slanted spacer 88 , in accordance with embodiment of the invention.
- the spacer 88 includes a circular middle portion 90 and two rectangular-shaped end portions 92 extending outwardly from opposite sides of the circular middle portion 90 .
- FIG. 23D shows a side view of the spacer 88 that further illustrates the slant from one end to another to compensate or offset the skew angle ⁇ of the pedicle screw 2 .
- FIG. 23E illustrates a top view of the cylindrical head 84 configured to receive a rod 4 and slanted spacer 88 therein.
- the rod 4 is received through two openings or slots 94 in the cylindrical walls of the cylindrical head 84 , which allow the rod 4 to enter the circular or cylindrical cavity 96 of the cylindrical head 84 and rest on top of the slanted seat 86 formed within the circular or cylindrical cavity 94 .
- the slanted stabilizing spacer 88 is received in the cavity 96 such that the two rectangular-shaped end portions 92 are received within the two slots 94 , thereby preventing lateral rotation of the spacer 88 within the cylindrical cavity 96 .
- the outside threaded nut 22 and fixing cap 26 are inserted on top of the slanted spacer 88 to securely hold the spacer 88 and rod 4 within the cylindrical head 84 .
- FIG. 24 illustrates a perspective view of a marking and guidance device 100 for marking a desired location on the spinal pedicle where a pedicle screw 2 will be inserted and guiding the pedicle screw 2 to the marked location using a minimally invasive surgical technique.
- the marking device 100 includes a tubular hollow guider 52 which receives within its hollow an inner trocar 104 having a sharp tip 105 at one end that penetrates a patient's muscle and tissue to reach the spinal pedicle.
- the inner trocar 104 further includes a trocar grip 106 at the other end for easy insertion and removal of the trocar 104 .
- the marking and guidance device 100 includes a guider handle 108 to allow for easier handling of the device 100 .
- the trocar 104 is in the form of a long tube or cylinder having a diameter smaller than the inner diameter of the hollow of the guider 102 so as to be inserted into the hollow of the tubular guider 102 .
- the trocar 104 further includes a sharp or pointed tip 105 for penetrating the vertebral body through the pedicle.
- the trocar 104 further includes a trocar grip 106 having a diameter larger than the diameter of the hollow of the guider tube 102 in order to stop the trocar 104 from sliding completely through the hollow.
- the trocar grip 106 also allows for easier handling of the trocar 104 .
- FIGS. 26A and 26B provide perspective views of the marking and guidance device 100 after it has been inserted into a patient's back and pushed through the muscle and soft tissue to reach a desired location on the spinal pedicle.
- the desired location is determined using known techniques such as x-ray or radiographic imaging for a relatively short duration of time.
- prolonged exposure of the patient to x-ray radiation is unnecessary.
- the inner trocar 104 is removed to allow fiducial pins (not shown) to be inserted into the hollow of the guidance tube 102 and thereafter be fixed into the pedicle.
- FIGS. 27A and 27B illustrate perspective views of two embodiments of the fiducial pins 110 and 112 , respectively.
- the fiducial pins 110 and 112 according to the present invention are inserted and fixed into the spinal pedicle after passing through the hollow guider 102 .
- the pins 110 and 112 have a cylindrical shape with a diameter smaller than the inner diameter of the hollow of the guider tube 102 in order to pass through the hollow of the guider 102 .
- An end of each fiducial pin is a sharp point 111 configured to be easily inserted and fixed into the spinal pedicle of the spinal column. In one embodiment, as shown in FIG.
- the other end of the fiducial pin incorporates a threaded shaft 114 which is configured to mate with an internally threaded tube of a retriever (not shown) for extraction of the pin 112 .
- This retriever is described in further detail below with respect to FIG. 32 .
- the fiducial pins 110 , 112 are preferably made of a durable and rigid biocompatible metal (e.g., stainless steel, iron steel, titanium, titanium alloy) for easy insertion into the pedicle bone.
- a durable and rigid biocompatible metal e.g., stainless steel, iron steel, titanium, titanium alloy
- the fiducial pins 110 , 112 are easily driven into the spinal pedicle without risk of bending or structural failure.
- the process of driving in prior art guidance wires was often very difficult and time-consuming.
- the insertion of the fiducial pins 110 , 112 into the entry point on the spinal pedicle is much easier and convenient for the surgeon and, furthermore, does not hinder subsequent procedures due to a guide wire protruding out of the patient's back.
- FIG. 28 shows a cylindrical pushing trocar 116 having a cylindrical head 118 of larger diameter than the body of the pushing trocar 116 .
- the pushing trocar 116 is inserted into the hollow of the guider 102 after the fiducial pin 110 or 112 has been inserted into the hollow of the guider 102 to drive and fix the fiducial pin 110 or 112 into the spinal pedicle.
- a doctor strikes the trocar head 118 with a chisel or a hammer to drive the fiducial pin 110 and 112 into the spinal pedicle.
- the pushing trocar 116 is in the form of a cylindrical tube, which has a diameter smaller than the inner diameter of the hollow of the guider tube 112 .
- the pushing trocar 116 also includes a cylindrical head 118 having a diameter larger than the diameter of the pushing trocar 116 to allow the doctor to strike it with a chisel or hammer with greater ease.
- a hammer or chisel is not necessarily required.
- a surgeon may choose to push or tap the head 118 of the pushing trocar 116 with the palm of his or her hand or other object.
- FIG. 29A illustrates how a hammer or mallet 120 and the pushing trocar 116 may be used to drive the pin 110 , 112 through the hollow of the guider tube 102 and into the designated location of the spinal pedicle.
- FIG. 29B illustrates a perspective cross-sectional view of the spinal column after two fiducial pins 110 , 112 have been driven and fixed into two adjacent vertebrae.
- a larger hole or area centered around each pin 110 , 112 is created to allow easer insertion and mounting of a pedicle screw 2 into the pedicle bone.
- the larger hole is created using a cannulated awl 122 as shown in FIG. 30 .
- the cannulated awl 122 is inserted over the fiducial pin 110 , 112 fixed at the desired position of the spinal pedicle.
- the awl 122 is in the form of a cylindrical hollow tube wherein an internal diameter of the hollow is larger than the outer diameter of the fiducial pins 110 and 112 so that the pins 110 , 112 may be inserted into the hollow of the awl 122 .
- the awl 122 further includes one or more sharp teeth 124 at a first end for cutting and grinding tissue and bone so as to create the larger entry point centered around the fiducial pin 110 , 112 so that the pedicle screw 2 may be more easily implanted into the spinal pedicle.
- FIG. 31 illustrates a perspective cross-sectional view of a patient's spinal column when the cannulated awl 122 is inserted into a minimally invasive incision in the patient's back, over a fiducial pin 110 , 112 to create a larger insertion hole for a pedicle screw 2 (not shown).
- a retractor 130 has been inserted into the minimally invasive incision over the surgical area and a lower tubular body of the retractor 130 is expanded to outwardly push surrounding tissue away from the surgical area and provide more space and a visual field for the surgeon to operate.
- the minimally invasive incision is made in the patient's back between and connecting the two entry points of the guide tube 102 used to insert the two fiducial pins 110 , 112 .
- prior expansion of the minimally invasive incision is typically required using a series of step dilators (not shown), each subsequent dilator having a larger diameter than the previous dilator.
- the retractor 130 is inserted with its lower tubular body in a retracted, non-expanded state. After the retractor 130 is pushed toward the spinal pedicle to a desired depth, the lower tubular portion is then expanded as shown in FIG. 31 .
- step dilators and retractors are well known in the art.
- the fiducial pin 110 , 112 is removed.
- a retrieving device 140 may be used to remove the fiducial pin 112 before implantation of a pedicle screw 2 .
- the retriever 140 comprises a long tubular or cylindrical portion having an internally threaded end 142 configured to mate with the externally threaded top portion 114 of the fiducial pin 112 .
- a doctor my pull the fiducial pin 112 out of the spinal pedicle.
- appropriate tools e.g., specially designed needle nose pliers
- the fiducial pins 110 , 112 are not extracted from the spinal pedicle. Instead, a specially designed pedicle screw 144 may be inserted into the spinal pedicle over the pin 110 , 112 without prior removal of the pin 110 , 112 .
- the specially designed pedicle screw 144 includes an externally threaded shaft 10 and a coupling assembly 14 ( FIG. 3 ) that includes a cylindrical head 16 ( FIG. 3 ) for receiving a flexible rod-shaped connection unit 4 ( FIGS. 4-13 ).
- the coupling assembly 14 may be configured to receive a plate-like connection unit as shown in FIGS. 14-20 .
- the pedicle screw 144 further includes a longitudinal axial channel (not shown) inside the threaded shaft 10 having an opening 146 at the tip of the shaft 10 and configured to receive the fiducial pin 110 , 112 therein.
- FIG. 34 illustrates a perspective cross-sectional view of the patient's spinal column after a pedicle screw 2 has been inserted into a first pedicle of the spine using an insertion device 150 .
- Various types of insertion devices 150 known in the art may be used to insert the pedicle screw 2 .
- the retractor 130 is adjusted and moved slightly to provide space and a visual field for insertion of a second pedicle screw at the location of the second fiducial pin 110 , 112 .
- FIG. 35 provides a perspective, cross sectional view of the patient's spinal column after two pedicle screws 2 have been implanted in two respective adjacent pedicles of the spine, in accordance with the present invention.
- a flexible rod, plate or hybrid connection unit as described above with respect to FIGS. 4-20 may be connected to the pedicle screws to provide flexible stabilization of the spine.
- the retractor 130 is removed and the minimally invasive incision is closed and/or stitched.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Neurology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
Abstract
Description
- This application is a continuation of U.S. application Ser. No. 10/728,563, filed Dec. 5, 2003, which claims benefit of priority under 35 U.S.C. § 119(a) to Korean Application Serial No. 2003-0066108, entitled “Dynamic Spinal Fixation Device,” filed on Sep. 24, 2003, the entirety of which are incorporated by reference.
- The present invention relates to a method and system for fixing and stabilizing a spinal column and, more particularly, to a method and system of spinal fixation in which one or more screw type fixing members are implanted and fixed into a portion of a patient's spinal column and flexible, semi-rigid rods or plates are connected and fixed to the upper ends of the fixing members to provide dynamic stabilization of the spinal column.
- Degenerative spinal column diseases, such as disc degenerative diseases (DDD), spinal stenosis, spondylolisthesis, and so on, need surgical operation if they do not take a turn for the better by conservative management. Typically, spinal decompression is the first surgical procedure that is performed. The primary purpose of decompression is to reduce pressure in the spinal canal and on nerve roots located therein by removing a certain tissue of the spinal column to reduce or eliminate the pressure and pain caused by the pressure. If the tissue of the spinal column is removed the pain is reduced but the spinal column is weakened. Therefore, fusion surgery (e.g., ALIF, PLIF or posterolateral fusion) is often necessary for spinal stability following the decompression procedure. However, following the surgical procedure, fusion takes additional time to achieve maximum stability and a spinal fixation device is typically used to support the spinal column until a desired level of fusion is achieved. Depending on a patient's particular circumstances and condition, a spinal fixation surgery can sometimes be performed immediately following decompression, without performing the fusion procedure. The fixation surgery is performed in most cases because it provides immediate postoperative stability and, if fusion surgery has also been performed, it provides support of the spine until sufficient fusion and stability has been achieved.
- Conventional methods of spinal fixation utilize a rigid spinal fixation device to support an injured spinal part and prevent movement of the injured part. These conventional spinal fixation devices include: fixing screws configured to be inserted into the spinal pedicle or sacral of the backbone to a predetermined depth and angle, rods or plates configured to be positioned adjacent to the injured spinal part, and coupling elements for connecting and coupling the rods or plates to the fixing screws such that the injured spinal part is supported and held in a relatively fixed position by the rods or plates.
- U.S. Pat. No. 6,193,720 discloses a conventional spinal fixation device, in which connection members of a rod or plate type are mounted on the upper ends of at least one or more screws inserted into the spinal pedicle or sacral of the backbone. The connection units, such as the rods and plates, are used to stabilize the injured part of the spinal column which has been weakened by decompression. The connection units also prevent further pain and injury to the patient by substantially restraining the movement of the spinal column. However, because the connection units prevent normal movement of the spinal column, after prolonged use, the spinal fixation device can cause ill effects, such as “junctional syndrome” (transitional syndrome) or “fusion disease” resulting in further complications and abnormalities associated with the spinal column. In particular, due to the high rigidity of the rods or plates used in conventional fixation devices, the patient's fixed joints are not allowed to move after the surgical operation, and the movement of the spinal joints located above or under the operated area is increased. Consequently, such spinal fixation devices cause decreased mobility of the patient and increased stress and instability to the spinal column joints adjacent to the operated area.
- It has been reported that excessive rigid spinal fixation is not helpful to the fusion process due to load shielding caused by rigid fixation. Thus, trials using load sharing semi-rigid spinal fixation devices have been performed to eliminate this problem and assist the bone fusion process. For example, U.S. Pat. No. 5,672,175, U.S. Pat. No. 5,540,688, and U.S. Pub No 2001/0037111 disclose dynamic spine stabilization devices having flexible designs that permit axial load translation (i.e., along the vertical axis of the spine) for bone fusion promotion. However, because these devices are intended for use following a bone fusion procedure, they are not well-suited for spinal fixation without fusion. Thus, in the end result, these devices do not prevent the problem of rigid fixation resulting from fusion.
- To solve the above-described problems associated with rigid fixation, non-fusion technologies have been developed. The Graf band is one example of a non-fusion fixation device that is applied after decompression without bone fusion. The Graf band is composed of a polyethylene band and pedicle screws to couple the polyethylene band to the spinal vertebrae requiring stabilization. The primary purpose of the Graf band is to prevent sagittal rotation (flexion instability) of the injured spinal parts. Thus, it is effective in selected cases but is not appropriate for cases that require greater stability and fixation. See, Kanayama et al, Journal of Neurosurgery (2001) 95(1 Suppl):5-10, 2001, Markwalder & Wenger, Acta Neurochrgica 145(3):209-14.). Another non-fusion fixation device called “Dynesys” has recently been introduced. See Stoll et al, European Spine Journal (2002) 11 Suppl 2:S170-8, Schmoelz et al, J of spinal disorder & techniques (2003) 16(4):418-23. The Dynesys device is similar to the Graf band except it uses a polycarburethane spacer between the screws to maintain the distance between the heads of two corresponding pedicle screws and, hence, adjacent vertebrae in which the screws are fixed. Early reports by the inventors of the Dynesys device indicate it has been successful in many cases. However, it has not yet been determined whether the Dynesys device can maintain long-term stability with flexibility and durability in a controlled study. Because it has polyethylene components and interfaces, there is a risk of mechanical failure. Furthermore, due to the mechanical configuration of the device, the surgical technique required to attach the device to the spinal column is complex and complicated.
- U.S. Pat. Nos. 5,282,863 and 4,748,260 disclose a flexible spinal stabilization system and method using a plastic, non-metallic rod. U.S. patent publication no. 2003/0083657 discloses another example of a flexible spinal stabilization device that uses a flexible elongate member. These devices are flexible but they are not well-suited for enduring long-term axial loading and stress. Additionally, the degree of desired flexibility vs. rigidity may vary from patient to patient. The design of existing flexible fixation devices are not well suited to provide varying levels of flexibility to provide optimum results for each individual candidate. For example, U.S. Pat. No. 5,672,175 discloses a flexible spinal fixation device which utilizes a flexible rod made of metal alloy and/or a composite material. Additionally, compression or extension springs are coiled around the rod for the purpose of providing de-rotation forces on the vertebrae in a desired direction. However, this patent is primarily concerned with providing a spinal fixation device that permits “relative longitudinal translational sliding movement along vertical axis” of the spine and neither teaches nor suggests any particular designs of connection units (e.g., rods or plates) that can provide various flexibility characteristics. Prior flexible rods such as that mentioned in U.S. Pat. No. 5,672,175 typically have solid construction with a relatively small diameter in order to provide a desired level of flexibility. Because they are typically very thin to provide suitable flexibility, such prior art rods are prone to mechanical failure and have been known to break after implantation in patients.
- Therefore, conventional spinal fixation devices have not provided a comprehensive and balanced solution to the problems associated with curing spinal diseases. Many of the prior devices are characterized by excessive rigidity, which leads to the problems discussed above while others, though providing some flexibility, are not well-adapted to provide varying degrees of flexibility. Additionally, existing flexible fixation devices utilize non-metallic components that are not proven to provide long-term stability and durability. Therefore, there is a need for an improved dynamic spinal fixation device that provides a desired level of flexibility to the injured parts of the spinal column, while also providing long-term durability and consistent stabilization of the spinal column.
- Additionally, in a conventional surgical method for fixing the spinal fixation device to the spinal column, a doctor incises the midline of the back to about 10-15 centimeters, and then, dissects and retracts it to both sides. In this way, the doctor performs muscular dissection to expose the outer part of the facet joint. Next, after the dissection, the doctor finds an entrance point to the spinal pedicle using radiographic devices (e.g., C-arm flouroscopy), and inserts securing members of the spinal fixation device (referred to as “spinal pedicle screws”) into the spinal pedicle. Thereafter, the connection units (e.g., rods or plates) are attached to the upper portions of the pedicle screws in order to provide support and stability to the injured portion of the spinal column. Thus, in conventional spinal fixation procedures, the patient's back is incised about 10˜15 cm, and as a result, the back muscle, which is important for maintaining the spinal column, is incised or injured, resulting in significant post-operative pain to the patient and a slow recovery period.
- Recently, to reduce patient trauma, a minimally invasive surgical procedure has been developed which is capable of performing spinal fixation surgery through a relatively small hole or “window” that is created in the patient's back at the location of the surgical procedure. Through the use of an endoscope, or microscope, minimally invasive surgery allows a much smaller incision of the patient's affected area. Through this smaller incision, two or more securing members (e.g., pedicle screws) of the spinal fixation device are screwed into respective spinal pedicle areas using a navigation system. Thereafter, special tools are used to connect the stabilizing members (e.g., rods or plates) of the fixation device to the securing members. Alternatively, or additionally, the surgical procedure may include inserting a step dilator into the incision and then gradually increasing the diameter of the dilator. Thereafter, a tubular retractor is inserted into the dilated area to retract the patient's muscle and provide a visual field for surgery. After establishing this visual field, decompression and, if desired, fusion procedures may be performed, followed by a fixation procedure, which includes the steps of finding the position of the spinal pedicle, inserting pedicle screws into the spinal pedicle, using an endoscope or a microscope, and securing the stabilization members (e.g., rods or plates) to the pedicle screws in order to stabilize and support the weakened spinal column.
- One of the most challenging aspects of performing the minimally invasive spinal fixation procedure is locating the entry point for the pedicle screw under endoscopic or microscopic visualization. Usually anatomical landmarks and/or radiographic devices are used to find the entry point, but clear anatomical relationships are often difficult to identify due to the confined working space. Additionally, the minimally invasive procedure requires that a significant amount of the soft tissue must be removed to reveal the anatomy of the regions for pedicle screw insertion. The removal of this soft tissue results in bleeding in the affected area, thereby adding to the difficulty of finding the correct position to insert the securing members and causing damage to the muscles and soft tissue surrounding the surgical area. Furthermore, because it is difficult to accurately locate the point of insertion for the securing members, conventional procedures are unnecessarily traumatic.
- Radiography techniques have been proposed and implemented in an attempt to more accurately and quickly find the position of the spinal pedicle in which the securing members will be inserted. However, it is often difficult to obtain clear images required for finding the corresponding position of the spinal pedicle using radiography techniques due to radiographic interference caused by metallic tools and equipment used during the surgical operation. Moreover, reading and interpreting radiographic images is a complex task requiring significant training and expertise. Radiography poses a further problem in that the patient is exposed to significant amounts of radiation.
- Although some guidance systems have been developed which guide the insertion of a pedicle screw to the desired entry point on the spinal pedicle, these prior systems have proven difficult to use and, furthermore, hinder the operation procedure. For example, prior guidance systems for pedicle screw insertion utilize a long wire that is inserted through a guide tube that is inserted through a patient's back muscle and tissue. The location of insertion of the guide tube is determined by radiographic means (e.g., C-arm flouroscope) and driven until a first end of the guide tube reaches the desired location on the surface of the pedicle bone. Thereafter, a first end of the guide wire, typically made of a biocompatible metal material, is inserted into the guide tube and pushed into the pedicle bone, while the opposite end of the wire remains protruding out of the patient's back. After the guide wire has been fixed into the pedicle bone, the guide tube is removed, and a hole centered around the guide wire is dilated and retracted. Finally, a pedicle screw having an axial hole or channel configured to receive the guide wire therethrough is guided by the guide wire to the desired location on the pedicle bone, where the pedicle screw is screw-driven into the pedicle.
- Although the concept of the wire guidance system is a good one, in practice, the guide wire has been very difficult to use. Because it is a relatively long and thin wire, the structural integrity of the guide wire often fails during attempts to drive one end of the wire into the pedicle bone, making the process unnecessarily time-consuming and laborious. Furthermore, because the wire bends and crimps during insertion, it does not provide a smooth and secure anchor for guiding subsequent tooling and pedicle screws to the entry point on the pedicle. Furthermore, current percutaneous wire guiding systems are used in conjunction with C-arm flouroscopy (or other radiographic device) without direct visualization with the use of an endoscope or microscope. Thus, current wire guidance systems pose a potential risk of misplacement or pedicle breakage. Finally, because one end of the wire remains protruding out of the head of the pedicle screw, and the patient's back, this wire hinders freedom of motion by the surgeon in performing the various subsequent procedures involved in spinal fixation surgery. Thus, there is a need to provide an improved guidance system, adaptable for use in minimally invasive pedicle screw fixation procedures under endoscopic or microscopic visualization, which is easier to implant into the spinal pedicle and will not hinder subsequent procedures performed by the surgeon.
- As discussed above, existing methods and devices used to cure spinal diseases are in need of much improvement. Most conventional spinal fixation devices are too rigid and inflexible. This excessive rigidity causes further abnormalities and diseases of the spine, as well as significant discomfort to the patient. Although some existing spinal fixation devices do provide some level of flexibility, these devices are not designed or manufactured so that varying levels of flexibility may be easily obtained to provide a desired level of flexibility for each particular patient. Additionally, prior art devices having flexible connection units (e.g., rods or plates) pose a greater risk of mechanical failure and do not provide long-term durability and stabilization of the spine. Furthermore, existing methods of performing the spinal fixation procedure are unnecessarily traumatic to the patient due to the difficulty in finding the precise location of the spinal pedicle or sacral of the backbone where the spinal fixation device will be secured.
- The invention addresses the above and other needs by providing an improved method and system for stabilizing an injured or weakened spinal column.
- To overcome the deficiencies of conventional spinal fixation devices, in one embodiment, the inventor of the present invention has invented a novel flexible spinal fixation device with an improved construction and design that uses metal or metal-synthetic hybrid components to provide a desired level of flexibility, stability and durability.
- As a result of long-term studies to reduce the operation time required for minimally invasive spinal surgery, to minimize injury to tissues near the surgical area, in another embodiment, the invention provides a method and device for accurately and quickly finding a position of the spinal column in which securing members of the spinal fixation device will be inserted. A novel guidance/marking device is used to indicate the position in the spinal column where the securing members will be inserted.
-
FIG. 1 illustrates a perspective view of a spinal fixation device in accordance with one embodiment of the invention. -
FIG. 2 illustrates a perspective view of spinal fixation device in accordance with another embodiment of the invention. -
FIG. 3 illustrates an exploded view of thecoupling assembly 14 of thepedicle screw 2 ofFIGS. 1 and 2 , in accordance with one embodiment of the invention. -
FIG. 4 illustrates a perspective view of a flexible rod connection unit in accordance with one embodiment of the invention. -
FIG. 5 illustrates a perspective view of a flexible rod connection unit in accordance with another embodiment of the invention. -
FIG. 6 illustrates a perspective view of a flexible rod connection unit in accordance with a further embodiment of the invention. -
FIG. 7 illustrates a perspective view of a pre-bent flexible rod connection unit in accordance with one embodiment of the invention. -
FIG. 8 illustrates a perspective, cross-sectional view of a flexible portion of connection unit in accordance with one embodiment of the invention. -
FIG. 9 illustrates a perspective, cross-sectional view of a flexible portion of connection unit in accordance with another embodiment of the invention. -
FIG. 10 illustrates a perspective, cross-sectional view of a flexible portion of connection unit in accordance with a further embodiment of the invention. -
FIG. 11 illustrates a perspective view of a flexible rod connection unit in accordance with one embodiment of the invention. -
FIG. 12A illustrates a perspective view of a flexible connection unit having one or more spacers in between two end portions, in accordance with one embodiment of the invention. -
FIG. 12B illustrates an exploded view of the flexible connection unit ofFIG. 12A . -
FIG. 12C provides a view of the male and female interlocking elements of the flexible connection unit ofFIGS. 12A and 12B , in accordance with one embodiment of the invention. -
FIG. 13 shows a perspective view of a flexible connection unit, in accordance with a further embodiment of the invention. -
FIG. 14 illustrates a perspective view of a spinal fixation device in accordance with another embodiment of the invention. -
FIG. 15 illustrates an exploded view of the spinal fixation device ofFIG. 14 . -
FIG. 16A shows a perspective view of a flexible plate connection unit in accordance with one embodiment of the invention. -
FIG. 16B illustrates a perspective view of a flexible plate connection unit in accordance with a further embodiment of the invention. -
FIG. 16C shows a side view of the flexible plate connection unit ofFIG. 16A . -
FIG. 16D shows a top view of the flexible plate connection unit ofFIG. 16A . -
FIG. 16E illustrates a side view of the flexible plate connection unit ofFIG. 16A having a pre-bent configuration in accordance with a further embodiment of the invention. -
FIG. 17 is a perspective view of a flexible plate connection unit in accordance with another embodiment of the invention. -
FIG. 18 illustrates a perspective view of a flexible plate connection unit in accordance with another embodiment of the invention. -
FIG. 19 illustrates a perspective view of a hybrid rod-plate connection unit having a flexible middle portion according to a further embodiment of the present invention. -
FIG. 20 is a perspective view of a spinal fixation device that utilizes the hybrid rod-plate connection unit ofFIG. 19 . -
FIG. 21 illustrates a perspective view of the spinal fixation device ofFIG. 1 after it has been implanted into a patient's spinal column. -
FIGS. 22A and 22B provide perspective views of spinal fixation devices utilizing the plate connection units ofFIGS. 16A and 16B , respectively. -
FIG. 23A illustrates a perspective view of two pedicle screws inserted into the pedicles of two adjacent vertebrae at a skewed angle, in accordance with one embodiment of the invention. -
FIG. 23B illustrates a structural view of a coupling assembly of a pedicle screw in accordance with one embodiment of the invention. -
FIG. 23C provides a perspective view of a slanted stabilizing spacer in accordance with one embodiment of the invention. -
FIG. 23D illustrates a side view of the slanted stabilizing spacer ofFIG. 23C . -
FIG. 23E is a top view of the cylindrical head of the pedicle screw ofFIG. 23 . -
FIG. 24 illustrates a perspective view of a marking and guiding device in accordance with one embodiment of the invention. -
FIG. 25 is an exploded view of the marking and guidance device ofFIG. 24 . -
FIG. 26A provides a perspective, cross-section view of a patient's spine after the marking and guiding device ofFIG. 24 has been inserted during surgery. -
FIG. 26B provides a perspective, cross-section view of a patient's spine as an inner trocar of the marking and guiding device ofFIG. 24 is being removed. -
FIGS. 27A and 27B illustrate perspective views of two embodiments of a fiducial pin, respectively. -
FIG. 28 is a perspective view of a pushing trocar in accordance with a further embodiment of the invention. -
FIG. 29A illustrates a perspective, cross-sectional view of a patient's spine as the pushing trocar ofFIG. 28 is used to drive a fiducial pin into a designate location of a spinal pedicle, in accordance with one embodiment of the invention. -
FIG. 29B illustrates a perspective, cross-sectional view of a patient's spine after two fiducial pins have been implanted into two adjacent spinal pedicles, in accordance with one embodiment of the invention. -
FIG. 30 is a perspective view of a cannulated awl in accordance with one embodiment of the invention. -
FIG. 31 is a perspective, cross-sectional view of a patient's spine as the cannulated awl ofFIG. 30 is being used to enlarge an entry hole for a pedicle screw, in accordance with one embodiment of the invention. -
FIG. 32 provides a perspective view of fiducial pin retrieving device, in accordance with one embodiment of the invention. -
FIG. 33 is a perspective view of a pedicle screw having an axial cylindrical cavity for receiving at least a portion of a fiducial pin therein, in accordance with a further embodiment of the invention. -
FIG. 34 is a perspective, cross-sectional view of a patient's spine after one pedicle screw has been implanted into a designated location of a spinal pedicle, in accordance with one embodiment of the invention. -
FIG. 35 is a perspective, cross-sectional view of a patient's spine after two pedicle screws have been implanted into designated locations of two adjacent spinal pedicles, in accordance with one embodiment of the invention. - The invention is described in detail below with reference to the figures wherein like elements are referenced with like numerals throughout.
-
FIG. 1 depicts a spinal fixation device in accordance with one embodiment of the present invention. The spinal fixation device includes two securing members 2 (designated as 2′ and 2″), and aflexible fixation rod 4 configured to be received and secured within acoupling assembly 14, as described in further detail below with respect toFIG. 3 . . Each securingmember 2 includes a threaded screw-type shaft 10 configured to be inserted and screwed into a patient's spinal pedicle. As shown inFIG. 1 , the screw-type shaft 10 includes an externalspiral screw thread 12 formed over the length of theshaft 10 and a conical tip at the end of theshaft 10 configured to be inserted into the patient's spinal column at a designated location. Other known forms of the securingmember 2 may be used in connection with the present invention provided the securingmember 2 can be inserted and fixed into the spinal column and securely coupled to therod 4. - As described above, the spinal fixation device is used for surgical treatment of spinal diseases by mounting securing
members 2 at desired positions in the spinal column. In one embodiment, therod 4 extends across two or more vertebrae of the spinal column and is secured by the securingmembers 2 so as to stabilize movement of the two or more vertebrae. -
FIG. 2 illustrates a perspective view of a spinal fixation device in accordance with a further embodiment of the present invention. The spinal fixation device ofFIG. 2 is similar to the spinal fixation device ofFIG. 1 except that therod 4 comprises a flexiblemiddle portion 8 juxtaposed between tworigid end portions 9 of therod 4. -
FIG. 3 provides an exploded view of the securingmember 2 ofFIGS. 1 and 2 illustrating various components of thecoupling assembly 14, in accordance with one embodiment of the invention. As shown inFIG. 3 , thecoupling assembly 14 includes: acylindrical head 16 located at a top end of the screw-type shaft 10, a spiral thread or groove 18 formed along portions of the inner wall surface of thecylindrical head 16, and aU-shaped seating groove 20 configured to receive therod 4 therein. Thecoupling assembly 14 further comprises an outside-threadednut 22 having aspiral thread 24 formed on the outside lateral surface of thenut 22, wherein thespiral thread 24 is configured to mate with theinternal spiral thread 18 of thecylindrical head 16. In a further embodiment, thecoupling assembly 14 includes a fixingcap 26 configured to be mounted over a portion of thecylindrical head 16 to cover and protect the outside-threadednut 22 and more securely holdrod 4 withinseating groove 20. In one embodiment an inner diameter of the fixinggap 26 is configured to securely mate with the outer diameter of thecylindrical head 16. Other methods of securing the fixingcap 26 to the cylindrical head, such as correspondingly located notches and groove (not shown), would be readily apparent to those of skill in the art. In preferred embodiments the components and parts of the securingmember 2 may be made of highly rigid and durable bio-compatible materials such as: stainless steel, iron steel, titanium or titanium alloy. As known in the art, and used herein, “bio-compatible” materials refers to those materials that will not cause any adverse chemical or immunological reactions after being implanted into a patient's body. - As shown in
FIGS. 1 and 2 , in preferred embodiments, therod 4 is coupled to the securing means 2 by seating therod 4 horizontally into theseating groove 20 of the coupling means 14 perpendicularly to the direction of the length of the threadedshaft 10 of securingmember 2. The outside threadednut 22 is then received and screwed into thecylindrical head 16 above therod 4 so as to secure therod 4 in theseating groove 20. The fixingcap 26 is then placed over thecylindrical head 16 to cover, protect and more firmly secure the components in the internal cavity of thecylindrical head 16.FIGS. 4-7 illustrate perspective views of various embodiments of arod 4 that may be used in a fixation device, in accordance with the present invention.FIG. 4 illustrates therod 4 ofFIG. 1 wherein the entire rod is made and designed to be flexible. In this embodiment,rod 4 comprises a metal tube or pipe having acylindrical wall 5 of a predefined thickness. In one embodiment, in order to provide flexibility to therod 4, thecylindrical wall 5 is cut in a spiral fashion along the length of therod 4 to form spiral cuts orgrooves 6. As would be apparent to one of ordinary skill in the art, the width and density of thespiral grooves 6 may be adjusted to provide a desired level of flexibility. In one embodiment, thegrooves 6 are formed from very thin spiral cuts or incisions that penetrate through the entire thickness of the cylindrical wall of therod 4. As known to those skilled in the art, the thickness and material of thetubular walls 5 also affect the level of flexibility. - In one embodiment, the
rod 4 is designed to have a flexibility that substantially equals that of a normal back. Flexibility ranges for a normal back are known by those skilled in the art, and one of ordinary skill can easily determine a thickness and material of thetubular walls 5 and a width and density of thegrooves 6 to achieve a desired flexibility or flexibility range within the range for a normal back. When referring to thegrooves 6 herein, the term “density” refers to tightness of thespiral grooves 6 or, in other words, the distance betweenadjacent groove lines 6 as shown inFIG. 4 , for example. However, it is understood that the present invention is not limited to a particular, predefined flexibility range. In one embodiment, in addition to having desired lateral flexibility characteristics, the rigidity of therod 4 should be able to endure a vertical axial load applied to the patient's spinal column along a vertical axis of the spine in a uniform manner with respect to the rest of the patient's natural spine. -
FIG. 5 illustrates therod 4 ofFIG. 2 wherein only amiddle portion 8 is made and designed to be flexible and twoend portions 9 are made to be rigid. In one embodiment, metal end rings orcaps 9′, having no grooves therein, may be placed over respective ends of therod 4 ofFIG. 4 so as make theend portions 9 rigid. The rings orcaps 9′ may be permanently affixed to the ends of therod 4 using known methods such as pressing and/or welding the metals together. In another embodiment, thespiral groove 6 is only cut along the length of themiddle portion 8 and theend portions 9 comprise thetubular wall 5 withoutgrooves 6. Without thegrooves 6, thetubular wall 5, which is made of a rigid metal or metal hybrid material, exhibits high rigidity. -
FIG. 6 illustrates a further embodiment of therod 4 having multiple sections, twoflexible sections 8 interleaved between threerigid sections 9. This embodiment may be used, for example, to stabilize three adjacent vertebrae with respect to each other, wherein three pedicle screws are fixed to a respective one of the vertebrae and the threerigid sections 9 are connected to acoupling assembly 14 of arespective pedicle screw 2, as described above with respect toFIG. 3 . Each of theflexible sections 8 andrigid sections 9 may be made as described above with respect toFIG. 5 . -
FIG. 7 illustrates another embodiment of therod 4 having a pre-bent structure and configuration to conform to and maintain a patient's curvature of the spine, known as “lordosis,” while stabilizing the spinal column. Generally, a patient's lumbar is in the shape of a ‘C’ form, and the structure of therod 4 is formed to coincide to the normal lumbar shape when utilized in the spinal fixation device ofFIG. 2 , in accordance with one embodiment of the invention. In one embodiment, thepre-bent rod 4 includes amiddle portion 8 that is made and designed to be flexible interposed between tworigid end portions 9. Themiddle portion 8 andend portions 9 may be made as described above with respect toFIG. 5 . Methods of manufacturing metallic or metallic-hybrid tubular rods of various sizes, lengths and pre-bent configurations are well-known in the art. Additionally, or alternatively, the pre-bent structure and design of therod 4 may offset a skew angle when two adjacent pedicle screws are not inserted parallel to one another, as described in further detail below with respect toFIG. 23A . - Additional designs and materials used to create a flexible
tubular rod 4 or flexiblemiddle portion 8 are described below with respect toFIGS. 8-10 .FIG. 8 illustrates a perspective, cross-sectional view of a flexibletubular rod 4, orrod portion 8 in accordance with one embodiment of the invention. In this embodiment, theflexible rod first metal tube 5 having aspiral groove 6 cut therein as described above with respect toFIGS. 4-7 . Asecond tube 30 having spiral grooves 31 cut therein and having a smaller diameter than thefirst tube 5 is inserted into the cylindrical cavity of thefirst tube 5. In one embodiment, thesecond tube 30 has spiral grooves 31 which are cut in an opposite spiral direction with respect to thespiral grooves 6 cut in thefirst tube 5, such that the rotational torsion characteristics of thesecond tube 30 offset at least some of the rotational torsion characteristics of thefirst tube 5 The secondflexible tube 30 is inserted into the core of the first tube to provide further durability and strength to theflexible rod second tube 30 may be made of the same or different material than thefirst tube 5. In preferred embodiments, the material used to manufacture the first andsecond tubes -
FIG. 9 illustrates a perspective, cross-sectional view of aflexible rod flexible rod metallic wire 32 comprising a plurality of overlapping thin metallic yams, such as steel yams, titanium yams, or titanium-alloy yams. Thewire 32 is encased by a metal, or metal hybrid,flexible tube 5 havingspiral grooves 6 cut therein, as discussed above. The number and thickness of the metallic yams in thewire 32 also affects the rigidity and flexibility of therod wire 32 can be adjusted to provide a desired rigidity and flexibility in accordance with a patient's particular needs. Those of ordinary skill in the art can easily determine the number, thickness and material of the yams, in conjunction with a given flexibility of thetube 5 in order to achieve a desired rigidity v. flexibility profile for therod -
FIG. 10 shows yet another embodiment of aflexible rod 4 wherein theflexible tube 5 encases a non-metallic,flexible core 34. The core 34 may be made from known biocompatible shape memory alloys (e.g., NITINOL), or biocompatible synthetic materials such as: carbon fiber, Poly Ether Ether Ketone (PEEK), Poly Ether Ketone Ketone Ether Ketone (PEKKEK), or Ultra High Molecular Weight Poly Ethylene (UHMWPE). -
FIG. 11 illustrates a perspective view of another embodiment of theflexible rod 35 in which a plurality ofmetal wires 32, as described above with respect toFIG. 9 , are interweaved or braided together to form a braidedmetal wire rod 35. Thus, the braidedmetal wire rod 35 can be made from the same materials as themetal wire 32. In addition to the variability of the rigidity and flexibility of thewire 32 as explained above, the rigidity and flexibility of thebraided rod 35 can be further modified to achieve desired characteristics by varying the number and thickness of thewires 32 used in thebraided structure 35. For example, in order to achieve various flexion levels or ranges within the known flexion range of a normal healthy spine, those of ordinary skill in the art can easily manufacture various designs of thebraided wire rod 35 by varying and measuring the flexion provided by different gauges, numbers and materials of the wire used to create thebraided wire rod 35. In a further embodiment each end of the braidedmetal wire rod 35 is encased by a rigid metal cap orring 9′ as described above with respect toFIGS. 5-7 , to provide arod 4 having a flexiblemiddle portion 8 andrigid end portions 9. In a further embodiment (not shown), the metalbraided wire rod 35 may be utilized as a flexible inner core encased by ametal tube 5 havingspiral grooves 6 cut therein to create aflexible metal rod 4 orrod portion 8, in a similar fashion to the embodiments shown inFIGS. 8-10 . As used herein the term “braid” or “braided structure” encompasses two or more wires, strips, strands, ribbons and/or other shapes of material interwoven in an overlapping fashion. Various methods of interweaving wires, strips, strands, ribbons and/or other shapes of material are known in the art. Such interweaving techniques are encompassed by the present invention. In another exemplary embodiment (not shown), theflexible metal rod 35 includes a braided metal structure having two or more metal strips, strands or ribbons interweaved in a diagonally overlapping pattern. -
FIG. 12A illustrates a further embodiment of aflexible connection unit 36 having tworigid end portions 9′ and an exemplary number ofrigid spacers 37. In one embodiment, therigid end portions 9′ and spacers can be made of bio-compatible metal or metal-hybrid materials as discussed above. Theconnection unit 36 further includes aflexible wire 32, as discussed above with respect toFIG. 9 , which traverses an axial cavity or hole (not shown) in each of therigid end portions 9′ andspacers 37.FIG. 12B illustrates an exploded view of theconnection unit 36 that further shows how thewire 32 is inserted through center axis holes of therigid end portions 9′ andspacers 37. As further shown inFIG. 12B , each of theend portions 9′ andspacers 37 include a male interlockingmember 38 which is configured to mate with a female interlocking cavity (not shown) in the immediatelyadjacent end portion 9′ orspacer 37.FIG. 12C illustrates an exploded side view and indicates with dashed lines the location and configuration of the female interlockingcavity 39 for receiving corresponding male interlockingmembers 38. -
FIG. 13 shows a perspective view of aflexible connection unit 40 in accordance with another embodiment of the invention. Theconnection 40 is similar to theconnection unit 36 described above, however, thespacers 42 are configured to have the same shape and design as therigid end portions 9′. Additionally, theend portions 9′ have an exit hole or groove 44 located on a lateral side surface through which thewire 32 may exit, be pulled taut, and clamped or secured using a metal clip (not shown) or other known techniques. In this way, the length of theflexible connection unit wire 32 may be secured using a metallic clip or stopper (not shown). For example, a clip or stopper may include a small tubular cylinder having an inner diameter that is slightly larger than the diameter of thewire 32 to allow thewire 32 to pass therethrough. After thewire 32 is pulled to a desired tension through the tubular stopper, the stopper is compressed so as to pinch thewire 32 contained therein. Alternatively, thewire 32 may be pre-secured using known techniques during the manufacture of the rod-like connection units spacers -
FIG. 14 depicts a spinal fixation device according to another embodiment of the present invention. The spinal fixation device includes: at least two securingmembers 2 containing an elongatescrew type shaft 10 having anexternal spiral thread 12, and acoupling assembly 14. The device further includes aplate connection unit 50, or simply “plate 50,” configured to be securely connected to thecoupling parts 14 of the two securingmembers 2. Theplate 50 comprises tworigid connection members 51 each having a planar surface and joined to each other by a flexiblemiddle portion 8. The flexiblemiddle portion 8 may be made in accordance with any of the embodiments described above with respect toFIGS. 4-11 . Eachconnection member 51 contains acoupling hole 52 configured to receive therethrough a second threaded shaft 54 (FIG. 15 ) of thecoupling assembly 14. - As shown in
FIG. 15 , thecoupling assembly 14 of the securingmember 2 includes abolt head 56 adjoining the top of the first threadedshaft 10 and having a circumference or diameter greater than the circumference of the first threadedshaft 10. The second threadedshaft 54 extends upwardly from thebolt head 56. Thecoupling assembly 14 further includes anut 58 having an internal screw thread configured to mate with the second threadedshaft 54, and one ormore washers 60, for clamping theconnection member 51 against the top surface of thebolt head 56, thereby securely attaching theplate 50 to thepedicle screw 2. -
FIGS. 16A and 16B illustrate two embodiments of aplate connection unit 40 having at least twocoupling members 51 and at least oneflexible portion 8 interposed between and attached to twoadjacent connection members 51. As shown inFIGS. 16A and 16B , the flexiblemiddle portion 8 comprises a flexible metalbraided wire structure 36 as described above with respect toFIG. 11 . However, theflexible portion 8 can be designed and manufactured in accordance with any of the embodiments described above with respect toFIGS. 4-11 , or combinations thereof.FIGS. 16C and 16D illustrate a side view and top view, respectively, of theplate 50 ofFIG. 16A . The manufacture of different embodiments of theflexible connection units middle portions 8, as described above, is easily accomplished using known metallurgy manufacturing processes. -
FIG. 16E illustrate a side view of a pre-bentplate connection unit 50′, in accordance with a further embodiment of the invention. Thisplate connection unit 50′ is similar to theplate 50 except thatconnection members 51′ are formed or bent at an angle θ from aparallel plane 53 during manufacture of theplate connection unit 50′. As discussed above with respect to the pre-bent rod-like connection unit 4 ofFIG. 7 , this pre-bent configuration is designed to emulate and support a natural curvature of the spine (e.g., lordosis). Additionally, or alternatively, this pre-bent structure may offset a skew angle when two adjacent pedicle screws are not inserted parallel to one another, as described in further detail below with respect toFIG. 23A . -
FIG. 17 illustrates a perspective view of aplate connection unit 60 having twoplanar connection members 62 each having acoupling hole 64 therein for receiving the second threadedshaft 44 of thepedicle screw 2. A flexiblemiddle portion 8 is interposed between the twoconnection members 62 and attached thereto. In one embodiment, the flexiblemiddle portion 8 is made in a similar fashion to wire 32 described above with respect toFIG. 9 , except it has a rectangular configuration instead of a cylindrical or circular configuration as shown inFIG. 9 . It is understood, however, that the flexiblemiddle portion 8 may be made in accordance with the design and materials of any of the embodiments previously discussed. -
FIG. 18 illustrates a perspective view of a further embodiment of theplate 60 ofFIG. 17 wherein thecoupling hole 64 includes one or morenut guide grooves 66 cut into the top portion of theconnection member 62 to seat and fix the nut 58 (FIG. 15 ) into thecoupling hole 64. Thenut guide groove 66 is configured to receive and hold at least a portion of thenut 58 therein and prevent lateral sliding of thenut 58 within thecoupling hole 64 after theconnection member 62 has been clamped to thebolt head 56 of thepedicle screw 2. -
FIG. 19 illustrates a perspective view of a hybrid plate androd connection unit 70 having a rigid rod-like connection member FIGS. 4-7 , at one end of theconnection unit 70 and a plate-like connection member FIGS. 14-18 , at the other end of theconnection unit 70. In one embodiment, interposed between rod-like connection member 9 (9′) and the plate-like connection member 52 (64) is aflexible member 8. Theflexible member 8 may be designed and manufactured in accordance with any of the embodiments discussed above with reference toFIGS. 8-13 . -
FIG. 20 illustrates a perspective view of a spinal fixation device that utilizes the hybrid plate androd connection unit 70 ofFIG. 19 . As shown inFIG. 20 , this fixation device utilizes two types of securing members 2 (e.g., pedicle screws), the first securingmember 2′being configured to securely hold the plate connection member 42(64) as described above with respect toFIG. 15 , and the second securingmember 2″ being configured to securely hold therod connection member FIG. 3 . -
FIG. 21 illustrates a perspective top view of two spinal fixation devices, in accordance with the embodiment illustrated inFIG. 1 , after they are attached to twoadjacent vertebrae FIGS. 22A and 22B illustrate perspective top views of spinal fixation devices using the flexible stabilizingmembers FIGS. 16A and 16B , respectively, after they are attached to two or more adjacent vertebrae of the spine. -
FIG. 23A illustrates a side view of a spinal fixation device after it has been implanted into the pedicles of two adjacent vertebrae. As shown in this figure, the pedicle screws 2 are mounted into the pedicle bone such that acenter axis 80 of thescrews 2 are offset by an angle θ from aparallel plane 82 and the center axes 80 of the twoscrews 2 are offset by an angle of approximately 2θ from each other. This type of non-parallel insertion of the pedicle screws 2 often results due to the limited amount of space that is available when performing minimally invasive surgery. Additionally, the pedicle screws 2 may have a tendency to be skewed from parallel due to a patient's natural curvature of the spine (e.g., lordosis). Thus, due to the non-parallel nature of how the pedicle screws 2 are ultimately fixed to the spinal pedicle, it is desirable to offset this skew when attaching a rod or plate connection unit to each of the pedicle screws 2. -
FIG. 23B illustrates a side view of the head of the pedicle screw in accordance with one embodiment of the invention. Thescrew 2 includes acylindrical head 84 which is similar to thecylindrical head 16 described above with respect toFIG. 3 except that thecylindrical head 84 includes a slantedseat 86 configured to receive and hold aflexible rod 4 in a slanted orientation that offsets the slant or skew θ of thepedicle screw 2 as described above. Theimproved pedicle screw 2 further includes a slanted stabilizingspacer 88 which is configured to securely fit inside the cavity of thecylindrical head 84 and hold down therod 4 at the same slant as theslanted seat 86. Thepedicle screw 2 further includes an outside threadednut 22 configured to mate with spiral threads along the interior surface (not shown) of thecylindrical head 84 for clamping down and securing the slantedspacer 88 and therod 4 to the slantedseat 86 and, hence, to thecylindrical head 84 of thepedicle screw 2. -
FIG. 23C shows a perspective view of the slantedspacer 88, in accordance with embodiment of the invention. Thespacer 88 includes a circularmiddle portion 90 and two rectangular-shapedend portions 92 extending outwardly from opposite sides of the circularmiddle portion 90.FIG. 23D shows a side view of thespacer 88 that further illustrates the slant from one end to another to compensate or offset the skew angle θ of thepedicle screw 2.FIG. 23E illustrates a top view of thecylindrical head 84 configured to receive arod 4 and slantedspacer 88 therein. Therod 4 is received through two openings orslots 94 in the cylindrical walls of thecylindrical head 84, which allow therod 4 to enter the circular orcylindrical cavity 96 of thecylindrical head 84 and rest on top of the slantedseat 86 formed within the circular orcylindrical cavity 94. After therod 4 is positioned on the slantedseat 86, the slanted stabilizingspacer 88 is received in thecavity 96 such that the two rectangular-shapedend portions 92 are received within the twoslots 94, thereby preventing lateral rotation of thespacer 88 within thecylindrical cavity 96. Finally, the outside threadednut 22 and fixingcap 26 are inserted on top of the slantedspacer 88 to securely hold thespacer 88 androd 4 within thecylindrical head 84. -
FIG. 24 illustrates a perspective view of a marking andguidance device 100 for marking a desired location on the spinal pedicle where apedicle screw 2 will be inserted and guiding thepedicle screw 2 to the marked location using a minimally invasive surgical technique. As shown inFIG. 24 , the markingdevice 100 includes a tubularhollow guider 52 which receives within its hollow aninner trocar 104 having asharp tip 105 at one end that penetrates a patient's muscle and tissue to reach the spinal pedicle. theinner trocar 104 further includes atrocar grip 106 at the other end for easy insertion and removal of thetrocar 104. In one embodiment, the marking andguidance device 100 includes aguider handle 108 to allow for easier handling of thedevice 100. - As shown in
FIG. 25 , thetrocar 104 is in the form of a long tube or cylinder having a diameter smaller than the inner diameter of the hollow of theguider 102 so as to be inserted into the hollow of thetubular guider 102. Thetrocar 104 further includes a sharp orpointed tip 105 for penetrating the vertebral body through the pedicle. Thetrocar 104 further includes atrocar grip 106 having a diameter larger than the diameter of the hollow of theguider tube 102 in order to stop thetrocar 104 from sliding completely through the hollow. Thetrocar grip 106 also allows for easier handling of thetrocar 104. -
FIGS. 26A and 26B provide perspective views of the marking andguidance device 100 after it has been inserted into a patient's back and pushed through the muscle and soft tissue to reach a desired location on the spinal pedicle. The desired location is determined using known techniques such as x-ray or radiographic imaging for a relatively short duration of time. After the marking andguidance device 100 has been inserted, prolonged exposure of the patient to x-ray radiation is unnecessary. As shown inFIG. 26B , after theguidance tube 102 is positioned over the desired location on the pedicle, theinner trocar 104 is removed to allow fiducial pins (not shown) to be inserted into the hollow of theguidance tube 102 and thereafter be fixed into the pedicle. -
FIGS. 27A and 27B illustrate perspective views of two embodiments of thefiducial pins fiducial pins hollow guider 102. Thepins guider tube 102 in order to pass through the hollow of theguider 102. An end of each fiducial pin is asharp point 111 configured to be easily inserted and fixed into the spinal pedicle of the spinal column. In one embodiment, as shown inFIG. 27B , the other end of the fiducial pin incorporates a threadedshaft 114 which is configured to mate with an internally threaded tube of a retriever (not shown) for extraction of thepin 112. This retriever is described in further detail below with respect toFIG. 32 . - The
fiducial pins fiducial pins fiducial pins -
FIG. 28 shows a cylindrical pushingtrocar 116 having acylindrical head 118 of larger diameter than the body of the pushingtrocar 116. The pushingtrocar 116, according to the present invention, is inserted into the hollow of theguider 102 after thefiducial pin guider 102 to drive and fix thefiducial pin trocar head 118 with a chisel or a hammer to drive thefiducial pin trocar 116 is in the form of a cylindrical tube, which has a diameter smaller than the inner diameter of the hollow of theguider tube 112. The pushingtrocar 116 also includes acylindrical head 118 having a diameter larger than the diameter of the pushingtrocar 116 to allow the doctor to strike it with a chisel or hammer with greater ease. Of course, in alternative embodiments, a hammer or chisel is not necessarily required. For example, depending on the circumstances of each case, a surgeon may choose to push or tap thehead 118 of the pushingtrocar 116 with the palm of his or her hand or other object. -
FIG. 29A illustrates how a hammer ormallet 120 and the pushingtrocar 116 may be used to drive thepin guider tube 102 and into the designated location of the spinal pedicle.FIG. 29B illustrates a perspective cross-sectional view of the spinal column after twofiducial pins - After the
fiducial pins pin pedicle screw 2 into the pedicle bone. The larger hole is created using a cannulatedawl 122 as shown inFIG. 30 . The cannulatedawl 122 is inserted over thefiducial pin awl 122 is in the form of a cylindrical hollow tube wherein an internal diameter of the hollow is larger than the outer diameter of thefiducial pins pins awl 122. Theawl 122 further includes one or moresharp teeth 124 at a first end for cutting and grinding tissue and bone so as to create the larger entry point centered around thefiducial pin pedicle screw 2 may be more easily implanted into the spinal pedicle.FIG. 31 illustrates a perspective cross-sectional view of a patient's spinal column when the cannulatedawl 122 is inserted into a minimally invasive incision in the patient's back, over afiducial pin FIG. 31 , aretractor 130 has been inserted into the minimally invasive incision over the surgical area and a lower tubular body of theretractor 130 is expanded to outwardly push surrounding tissue away from the surgical area and provide more space and a visual field for the surgeon to operate. In order to insert theretractor 130, in one embodiment, the minimally invasive incision is made in the patient's back between and connecting the two entry points of theguide tube 102 used to insert the twofiducial pins retractor 130 is inserted, prior expansion of the minimally invasive incision is typically required using a series of step dilators (not shown), each subsequent dilator having a larger diameter than the previous dilator. After the last step dilator is in place, theretractor 130 is inserted with its lower tubular body in a retracted, non-expanded state. After theretractor 130 is pushed toward the spinal pedicle to a desired depth, the lower tubular portion is then expanded as shown inFIG. 31 . The use of step dilators and retractors are well known in the art. - After the cannulated
awl 122 has created a larger insertion hole for thepedicle screw 2, in one embodiment, thefiducial pin fiducial pin 112 has been used, a retrievingdevice 140 may be used to remove thefiducial pin 112 before implantation of apedicle screw 2. As shown inFIG. 32 , theretriever 140 comprises a long tubular or cylindrical portion having an internally threadedend 142 configured to mate with the externally threadedtop portion 114 of thefiducial pin 112. After theretriever end 142 has been screwed onto the threadedend 114, a doctor my pull thefiducial pin 112 out of the spinal pedicle. In another embodiment, if thefiducial pin 110 without a threaded top portion has been used, appropriate tools (e.g., specially designed needle nose pliers) may be used to pull thepin 110 out. - In alternate embodiments, the
fiducial pins pedicle screw 144 may be inserted into the spinal pedicle over thepin pin FIG. 33 , the specially designedpedicle screw 144 includes an externally threadedshaft 10 and a coupling assembly 14 (FIG. 3 ) that includes a cylindrical head 16 (FIG. 3 ) for receiving a flexible rod-shaped connection unit 4 (FIGS. 4-13 ). Alternatively, thecoupling assembly 14 may be configured to receive a plate-like connection unit as shown inFIGS. 14-20 . Thepedicle screw 144 further includes a longitudinal axial channel (not shown) inside the threadedshaft 10 having anopening 146 at the tip of theshaft 10 and configured to receive thefiducial pin -
FIG. 34 illustrates a perspective cross-sectional view of the patient's spinal column after apedicle screw 2 has been inserted into a first pedicle of the spine using aninsertion device 150. Various types ofinsertion devices 150 known in the art may be used to insert thepedicle screw 2. As shown inFIG. 34 , after afirst pedicle screw 2 has been implanted, theretractor 130 is adjusted and moved slightly to provide space and a visual field for insertion of a second pedicle screw at the location of the secondfiducial pin -
FIG. 35 provides a perspective, cross sectional view of the patient's spinal column after twopedicle screws 2 have been implanted in two respective adjacent pedicles of the spine, in accordance with the present invention. After the pedicle screws 2 are in place, a flexible rod, plate or hybrid connection unit as described above with respect toFIGS. 4-20 may be connected to the pedicle screws to provide flexible stabilization of the spine. Thereafter, theretractor 130 is removed and the minimally invasive incision is closed and/or stitched. - Various embodiments of the invention have been described above. However, those of ordinary skill in the art will appreciate that the above descriptions of the preferred embodiments are exemplary only and that the invention may be practiced with modifications or variations of the devices and techniques disclosed above. Those of ordinary skill in the art will know, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such modifications, variations and equivalents are contemplated to be within the spirit and scope of the present invention as set forth in the claims below.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/595,303 US20070055247A1 (en) | 2003-09-24 | 2006-11-10 | Marking and guidance method and system for flexible fixation of a spine |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2003-0066108 | 2003-09-24 | ||
KR20030066108 | 2003-09-24 | ||
US10/728,563 US7137985B2 (en) | 2003-09-24 | 2003-12-05 | Marking and guidance method and system for flexible fixation of a spine |
US11/595,303 US20070055247A1 (en) | 2003-09-24 | 2006-11-10 | Marking and guidance method and system for flexible fixation of a spine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/728,563 Continuation US7137985B2 (en) | 2003-09-24 | 2003-12-05 | Marking and guidance method and system for flexible fixation of a spine |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070055247A1 true US20070055247A1 (en) | 2007-03-08 |
Family
ID=34309508
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/728,566 Abandoned US20050065516A1 (en) | 2003-09-24 | 2003-12-05 | Method and apparatus for flexible fixation of a spine |
US10/728,563 Expired - Lifetime US7137985B2 (en) | 2003-09-24 | 2003-12-05 | Marking and guidance method and system for flexible fixation of a spine |
US11/071,271 Active 2028-12-14 US7993370B2 (en) | 2003-09-24 | 2005-03-02 | Method and apparatus for flexible fixation of a spine |
US11/285,527 Abandoned US20060195093A1 (en) | 2003-09-24 | 2005-11-22 | Method and apparatus for flexible fixation of a spine |
US11/595,303 Abandoned US20070055247A1 (en) | 2003-09-24 | 2006-11-10 | Marking and guidance method and system for flexible fixation of a spine |
US11/650,260 Expired - Lifetime US8968366B2 (en) | 2003-09-24 | 2007-01-04 | Method and apparatus for flexible fixation of a spine |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/728,566 Abandoned US20050065516A1 (en) | 2003-09-24 | 2003-12-05 | Method and apparatus for flexible fixation of a spine |
US10/728,563 Expired - Lifetime US7137985B2 (en) | 2003-09-24 | 2003-12-05 | Marking and guidance method and system for flexible fixation of a spine |
US11/071,271 Active 2028-12-14 US7993370B2 (en) | 2003-09-24 | 2005-03-02 | Method and apparatus for flexible fixation of a spine |
US11/285,527 Abandoned US20060195093A1 (en) | 2003-09-24 | 2005-11-22 | Method and apparatus for flexible fixation of a spine |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/650,260 Expired - Lifetime US8968366B2 (en) | 2003-09-24 | 2007-01-04 | Method and apparatus for flexible fixation of a spine |
Country Status (9)
Country | Link |
---|---|
US (6) | US20050065516A1 (en) |
EP (2) | EP1686906A4 (en) |
JP (2) | JP4603549B2 (en) |
KR (1) | KR100499559B1 (en) |
CN (2) | CN1882286B (en) |
AU (1) | AU2004275735B2 (en) |
CA (1) | CA2539923A1 (en) |
IL (1) | IL174444A0 (en) |
WO (2) | WO2005030031A2 (en) |
Cited By (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050240209A1 (en) * | 2002-10-25 | 2005-10-27 | Hamada James S | Minimal access lumbar diskectomy instrumentation and method |
US20050261686A1 (en) * | 2004-05-14 | 2005-11-24 | Paul Kamaljit S | Spinal support, stabilization |
US20060167487A1 (en) * | 2002-10-25 | 2006-07-27 | Hamada James S | Minimal access lumbar diskectomy instrumentation and method |
US20060178693A1 (en) * | 2002-10-25 | 2006-08-10 | Hamada James S | Minimal access lumbar diskectomy instrumentation and method |
US20060271096A1 (en) * | 2002-10-25 | 2006-11-30 | Hamada James S | Minimal incision maximal access MIS spine instrumentation and method |
US20070038216A1 (en) * | 2002-10-25 | 2007-02-15 | Hamada James S | Minimal incision maximal access MIS spine instrumentation and method |
US20070106123A1 (en) * | 2005-09-26 | 2007-05-10 | Josef Gorek | Minimally invasive retractor and methods of use |
US20070123871A1 (en) * | 2003-09-24 | 2007-05-31 | Tae-Ahn Jahng | Method and apparatus for flexible fixation of a spine |
US20070191832A1 (en) * | 2006-01-27 | 2007-08-16 | Sdgi Holdings, Inc. | Vertebral rods and methods of use |
US20070191837A1 (en) * | 2006-01-27 | 2007-08-16 | Sdgi Holdings, Inc. | Interspinous devices and methods of use |
US20070191953A1 (en) * | 2006-01-27 | 2007-08-16 | Sdgi Holdings, Inc. | Intervertebral implants and methods of use |
US20070233094A1 (en) * | 2006-03-29 | 2007-10-04 | Dennis Colleran | Dynamic motion spinal stabilization system |
US20070233091A1 (en) * | 2006-02-23 | 2007-10-04 | Naifeh Bill R | Multi-level spherical linkage implant system |
US20070260125A1 (en) * | 2006-05-02 | 2007-11-08 | Strauss Kevin R | Minimally open retraction device |
US20070276380A1 (en) * | 2003-09-24 | 2007-11-29 | Tae-Ahn Jahng | Spinal stabilization device |
US20070288093A1 (en) * | 2000-07-25 | 2007-12-13 | Abbott Spine | Semirigid linking piece for stabilizing the spine |
US20080039943A1 (en) * | 2004-05-25 | 2008-02-14 | Regis Le Couedic | Set For Treating The Degeneracy Of An Intervertebral Disc |
US20080065079A1 (en) * | 2006-09-11 | 2008-03-13 | Aurelien Bruneau | Spinal Stabilization Devices and Methods of Use |
US20080262318A1 (en) * | 2007-04-17 | 2008-10-23 | K2M, Inc. | Minimally open interbody access retraction device and surgical method |
US20080312694A1 (en) * | 2007-06-15 | 2008-12-18 | Peterman Marc M | Dynamic stabilization rod for spinal implants and methods for manufacturing the same |
US20090005814A1 (en) * | 2007-06-28 | 2009-01-01 | Peter Thomas Miller | Stabilization system and method |
US20090048631A1 (en) * | 2007-08-17 | 2009-02-19 | Bhatnagar Mohit K | Dynamic Stabilization Device for Spine |
US20090093843A1 (en) * | 2007-10-05 | 2009-04-09 | Lemoine Jeremy J | Dynamic spine stabilization system |
US20090163955A1 (en) * | 2007-12-19 | 2009-06-25 | Missoum Moumene | Polymeric Pedicle Rods and Methods of Manufacturing |
US20090222045A1 (en) * | 2008-02-28 | 2009-09-03 | K2M, Inc. | Minimally Invasive Retractor and Methods of Use |
US20090221877A1 (en) * | 2008-02-28 | 2009-09-03 | K2M, Inc. | Minimally Invasive Retraction Device Having Detachable Blades |
US20090222046A1 (en) * | 2008-02-28 | 2009-09-03 | K2M, Inc. | Minimally Invasive Retraction Device Having Removable Blades |
US20090221879A1 (en) * | 2008-02-28 | 2009-09-03 | K2M, Inc. | Minimally Invasive Retractor Having Separable Blades |
US20090221878A1 (en) * | 2008-02-28 | 2009-09-03 | K2M, Inc. | Minimally Invasive Retractor with Separable Blades and Methods of Use |
US20090326583A1 (en) * | 2008-06-25 | 2009-12-31 | Missoum Moumene | Posterior Dynamic Stabilization System With Flexible Ligament |
US20090326584A1 (en) * | 2008-06-27 | 2009-12-31 | Michael Andrew Slivka | Spinal Dynamic Stabilization Rods Having Interior Bumpers |
US20100094344A1 (en) * | 2008-10-14 | 2010-04-15 | Kyphon Sarl | Pedicle-Based Posterior Stabilization Members and Methods of Use |
US20100114165A1 (en) * | 2008-11-04 | 2010-05-06 | Abbott Spine, Inc. | Posterior dynamic stabilization system with pivoting collars |
US20100211104A1 (en) * | 2009-02-13 | 2010-08-19 | Missoum Moumene | Dual Spring Posterior Dynamic Stabilization Device With Elongation Limiting Elastomers |
WO2010127325A1 (en) * | 2009-05-01 | 2010-11-04 | Spinal Kinetics, Inc. | Spinal stabilization devices, systems and methods |
US20100331886A1 (en) * | 2009-06-25 | 2010-12-30 | Jonathan Fanger | Posterior Dynamic Stabilization Device Having A Mobile Anchor |
US7901437B2 (en) | 2007-01-26 | 2011-03-08 | Jackson Roger P | Dynamic stabilization member with molded connection |
US20110071570A1 (en) * | 2009-09-24 | 2011-03-24 | Warsaw Orthopedic, Inc. | Composite vertebral rod system and methods of use |
US20110106167A1 (en) * | 2003-09-24 | 2011-05-05 | Tae-Ahn Jahng | Adjustable spinal stabilization system |
US7951170B2 (en) | 2007-05-31 | 2011-05-31 | Jackson Roger P | Dynamic stabilization connecting member with pre-tensioned solid core |
US8012177B2 (en) | 2007-02-12 | 2011-09-06 | Jackson Roger P | Dynamic stabilization assembly with frusto-conical connection |
US20110238119A1 (en) * | 2010-03-24 | 2011-09-29 | Missoum Moumene | Composite Material Posterior Dynamic Stabilization Spring Rod |
US8066739B2 (en) | 2004-02-27 | 2011-11-29 | Jackson Roger P | Tool system for dynamic spinal implants |
US8092500B2 (en) | 2007-05-01 | 2012-01-10 | Jackson Roger P | Dynamic stabilization connecting member with floating core, compression spacer and over-mold |
US8100915B2 (en) | 2004-02-27 | 2012-01-24 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US8105368B2 (en) | 2005-09-30 | 2012-01-31 | Jackson Roger P | Dynamic stabilization connecting member with slitted core and outer sleeve |
US8118840B2 (en) | 2009-02-27 | 2012-02-21 | Warsaw Orthopedic, Inc. | Vertebral rod and related method of manufacture |
US8152810B2 (en) | 2004-11-23 | 2012-04-10 | Jackson Roger P | Spinal fixation tool set and method |
US8292926B2 (en) | 2005-09-30 | 2012-10-23 | Jackson Roger P | Dynamic stabilization connecting member with elastic core and outer sleeve |
US8353932B2 (en) | 2005-09-30 | 2013-01-15 | Jackson Roger P | Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member |
US8366745B2 (en) | 2007-05-01 | 2013-02-05 | Jackson Roger P | Dynamic stabilization assembly having pre-compressed spacers with differential displacements |
US8394133B2 (en) | 2004-02-27 | 2013-03-12 | Roger P. Jackson | Dynamic fixation assemblies with inner core and outer coil-like member |
US8444681B2 (en) | 2009-06-15 | 2013-05-21 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert |
US8475498B2 (en) | 2007-01-18 | 2013-07-02 | Roger P. Jackson | Dynamic stabilization connecting member with cord connection |
US8556938B2 (en) | 2009-06-15 | 2013-10-15 | Roger P. Jackson | Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit |
US8591515B2 (en) | 2004-11-23 | 2013-11-26 | Roger P. Jackson | Spinal fixation tool set and method |
US8814913B2 (en) | 2002-09-06 | 2014-08-26 | Roger P Jackson | Helical guide and advancement flange with break-off extensions |
US8845649B2 (en) | 2004-09-24 | 2014-09-30 | Roger P. Jackson | Spinal fixation tool set and method for rod reduction and fastener insertion |
US8911477B2 (en) | 2007-10-23 | 2014-12-16 | Roger P. Jackson | Dynamic stabilization member with end plate support and cable core extension |
US8956284B2 (en) | 2011-01-20 | 2015-02-17 | K2M, Inc. | Minimally invasive retractor and posted screw |
US8979904B2 (en) | 2007-05-01 | 2015-03-17 | Roger P Jackson | Connecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control |
US9050139B2 (en) | 2004-02-27 | 2015-06-09 | Roger P. Jackson | Orthopedic implant rod reduction tool set and method |
US9125703B2 (en) | 2012-01-16 | 2015-09-08 | K2M, Inc. | Rod reducer, compressor, distractor system |
US9216041B2 (en) | 2009-06-15 | 2015-12-22 | Roger P. Jackson | Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts |
US9216039B2 (en) | 2004-02-27 | 2015-12-22 | Roger P. Jackson | Dynamic spinal stabilization assemblies, tool set and method |
US9414863B2 (en) | 2005-02-22 | 2016-08-16 | Roger P. Jackson | Polyaxial bone screw with spherical capture, compression insert and alignment and retention structures |
US9451989B2 (en) | 2007-01-18 | 2016-09-27 | Roger P Jackson | Dynamic stabilization members with elastic and inelastic sections |
US9452000B2 (en) | 2013-10-07 | 2016-09-27 | K2M, Inc. | Rod reducer |
US9480517B2 (en) | 2009-06-15 | 2016-11-01 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, shank, friction fit retainer, winged insert and low profile edge lock |
US9743957B2 (en) | 2004-11-10 | 2017-08-29 | Roger P. Jackson | Polyaxial bone screw with shank articulation pressure insert and method |
US9907574B2 (en) | 2008-08-01 | 2018-03-06 | Roger P. Jackson | Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features |
US9943344B2 (en) | 2015-01-15 | 2018-04-17 | K2M, Inc. | Rod reducer |
US9980753B2 (en) | 2009-06-15 | 2018-05-29 | Roger P Jackson | pivotal anchor with snap-in-place insert having rotation blocking extensions |
US10039578B2 (en) | 2003-12-16 | 2018-08-07 | DePuy Synthes Products, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
US10149674B2 (en) | 2015-08-12 | 2018-12-11 | K2M, Inc. | Orthopedic surgical system including surgical access systems, distraction systems, and methods of using same |
US10194951B2 (en) | 2005-05-10 | 2019-02-05 | Roger P. Jackson | Polyaxial bone anchor with compound articulation and pop-on shank |
US10258382B2 (en) | 2007-01-18 | 2019-04-16 | Roger P. Jackson | Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord |
US10299839B2 (en) | 2003-12-16 | 2019-05-28 | Medos International Sárl | Percutaneous access devices and bone anchor assemblies |
US10363070B2 (en) | 2009-06-15 | 2019-07-30 | Roger P. Jackson | Pivotal bone anchor assemblies with pressure inserts and snap on articulating retainers |
US10383660B2 (en) | 2007-05-01 | 2019-08-20 | Roger P. Jackson | Soft stabilization assemblies with pretensioned cords |
US10405896B2 (en) | 2015-04-30 | 2019-09-10 | K2M, Inc. | Rod reducer |
US10485590B2 (en) | 2017-01-18 | 2019-11-26 | K2M, Inc. | Rod reducing device |
US10485588B2 (en) | 2004-02-27 | 2019-11-26 | Nuvasive, Inc. | Spinal fixation tool attachment structure |
US10499894B2 (en) | 2015-08-12 | 2019-12-10 | K2M, Inc. | Orthopedic surgical system including surgical access systems, distraction systems, and methods of using same |
US10524843B2 (en) | 2016-05-06 | 2020-01-07 | K2M, Inc. | Rotation shaft for a rod reducer |
US10729469B2 (en) | 2006-01-09 | 2020-08-04 | Roger P. Jackson | Flexible spinal stabilization assembly with spacer having off-axis core member |
US10779866B2 (en) | 2016-12-29 | 2020-09-22 | K2M, Inc. | Rod reducer assembly |
US11241261B2 (en) | 2005-09-30 | 2022-02-08 | Roger P Jackson | Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure |
US11419642B2 (en) | 2003-12-16 | 2022-08-23 | Medos International Sarl | Percutaneous access devices and bone anchor assemblies |
Families Citing this family (367)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2812186B1 (en) | 2000-07-25 | 2003-02-28 | Spine Next Sa | FLEXIBLE CONNECTION PIECE FOR SPINAL STABILIZATION |
US7833250B2 (en) | 2004-11-10 | 2010-11-16 | Jackson Roger P | Polyaxial bone screw with helically wound capture connection |
ES2240384T3 (en) * | 2000-09-18 | 2005-10-16 | Zimmer Gmbh | PEDICULAR SCREW FOR INTERVERTEBRAL SUPPORT ELEMENT. |
US9314228B2 (en) | 2002-05-31 | 2016-04-19 | Vidacare LLC | Apparatus and method for accessing the bone marrow |
US7951089B2 (en) | 2002-05-31 | 2011-05-31 | Vidacare Corporation | Apparatus and methods to harvest bone and bone marrow |
US8142365B2 (en) | 2002-05-31 | 2012-03-27 | Vidacare Corporation | Apparatus and method for accessing the bone marrow of the sternum |
US8690791B2 (en) | 2002-05-31 | 2014-04-08 | Vidacare Corporation | Apparatus and method to access the bone marrow |
US11337728B2 (en) | 2002-05-31 | 2022-05-24 | Teleflex Life Sciences Limited | Powered drivers, intraosseous devices and methods to access bone marrow |
US8656929B2 (en) | 2002-05-31 | 2014-02-25 | Vidacare Corporation | Medical procedures trays and related methods |
US10973545B2 (en) | 2002-05-31 | 2021-04-13 | Teleflex Life Sciences Limited | Powered drivers, intraosseous devices and methods to access bone marrow |
WO2008033871A2 (en) | 2006-09-12 | 2008-03-20 | Vidacare Corporation | Apparatus and methods for biopsy and aspiration of bone marrow |
US20070049945A1 (en) | 2002-05-31 | 2007-03-01 | Miller Larry J | Apparatus and methods to install, support and/or monitor performance of intraosseous devices |
US8668698B2 (en) | 2002-05-31 | 2014-03-11 | Vidacare Corporation | Assembly for coupling powered driver with intraosseous device |
US10973532B2 (en) | 2002-05-31 | 2021-04-13 | Teleflex Life Sciences Limited | Powered drivers, intraosseous devices and methods to access bone marrow |
US7811260B2 (en) | 2002-05-31 | 2010-10-12 | Vidacare Corporation | Apparatus and method to inject fluids into bone marrow and other target sites |
US8641715B2 (en) | 2002-05-31 | 2014-02-04 | Vidacare Corporation | Manual intraosseous device |
US11298202B2 (en) | 2002-05-31 | 2022-04-12 | Teleflex Life Sciences Limited | Biopsy devices and related methods |
US9072543B2 (en) | 2002-05-31 | 2015-07-07 | Vidacare LLC | Vascular access kits and methods |
EP2039298B1 (en) | 2002-05-31 | 2017-10-25 | Vidacare LLC | Apparatus to access bone marrow |
AU2003265597A1 (en) * | 2002-08-23 | 2004-03-11 | Paul C. Mcafee | Metal-backed uhmpe rod sleeve system preserving spinal motion |
US8876868B2 (en) | 2002-09-06 | 2014-11-04 | Roger P. Jackson | Helical guide and advancement flange with radially loaded lip |
US7887539B2 (en) | 2003-01-24 | 2011-02-15 | Depuy Spine, Inc. | Spinal rod approximators |
US8540753B2 (en) | 2003-04-09 | 2013-09-24 | Roger P. Jackson | Polyaxial bone screw with uploaded threaded shank and method of assembly and use |
US7377923B2 (en) | 2003-05-22 | 2008-05-27 | Alphatec Spine, Inc. | Variable angle spinal screw assembly |
US9504477B2 (en) | 2003-05-30 | 2016-11-29 | Vidacare LLC | Powered driver |
US7967850B2 (en) | 2003-06-18 | 2011-06-28 | Jackson Roger P | Polyaxial bone anchor with helical capture connection, insert and dual locking assembly |
US8926670B2 (en) | 2003-06-18 | 2015-01-06 | Roger P. Jackson | Polyaxial bone screw assembly |
US8366753B2 (en) | 2003-06-18 | 2013-02-05 | Jackson Roger P | Polyaxial bone screw assembly with fixed retaining structure |
US7753958B2 (en) | 2003-08-05 | 2010-07-13 | Gordon Charles R | Expandable intervertebral implant |
US7799082B2 (en) | 2003-08-05 | 2010-09-21 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US7909869B2 (en) | 2003-08-05 | 2011-03-22 | Flexuspine, Inc. | Artificial spinal unit assemblies |
US8002798B2 (en) | 2003-09-24 | 2011-08-23 | Stryker Spine | System and method for spinal implant placement |
US20050203513A1 (en) | 2003-09-24 | 2005-09-15 | Tae-Ahn Jahng | Spinal stabilization device |
US7763052B2 (en) * | 2003-12-05 | 2010-07-27 | N Spine, Inc. | Method and apparatus for flexible fixation of a spine |
US7955355B2 (en) | 2003-09-24 | 2011-06-07 | Stryker Spine | Methods and devices for improving percutaneous access in minimally invasive surgeries |
EP1667593A1 (en) * | 2003-09-29 | 2006-06-14 | Synthes GmbH | Dynamic damping element for two bones |
US20050090822A1 (en) * | 2003-10-24 | 2005-04-28 | Dipoto Gene | Methods and apparatus for stabilizing the spine through an access device |
DE10348329B3 (en) * | 2003-10-17 | 2005-02-17 | Biedermann Motech Gmbh | Rod-shaped element used in spinal column and accident surgery for connecting two bone-anchoring elements comprises a rigid section and an elastic section that are made in one piece |
US7270656B2 (en) | 2003-11-07 | 2007-09-18 | Visualase, Inc. | Cooled laser fiber for improved thermal therapy |
US8632570B2 (en) | 2003-11-07 | 2014-01-21 | Biedermann Technologies Gmbh & Co. Kg | Stabilization device for bones comprising a spring element and manufacturing method for said spring element |
US20050131407A1 (en) * | 2003-12-16 | 2005-06-16 | Sicvol Christopher W. | Flexible spinal fixation elements |
US7550010B2 (en) | 2004-01-09 | 2009-06-23 | Warsaw Orthopedic, Inc. | Spinal arthroplasty device and method |
US7771479B2 (en) | 2004-01-09 | 2010-08-10 | Warsaw Orthopedic, Inc. | Dual articulating spinal device and method |
WO2005072625A2 (en) | 2004-01-26 | 2005-08-11 | Vidacare Corporation | Manual interosseous device |
US7815642B2 (en) | 2004-01-26 | 2010-10-19 | Vidacare Corporation | Impact-driven intraosseous needle |
US8029548B2 (en) | 2008-05-05 | 2011-10-04 | Warsaw Orthopedic, Inc. | Flexible spinal stabilization element and system |
US7815664B2 (en) * | 2005-01-04 | 2010-10-19 | Warsaw Orthopedic, Inc. | Systems and methods for spinal stabilization with flexible elements |
US7846183B2 (en) * | 2004-02-06 | 2010-12-07 | Spinal Elements, Inc. | Vertebral facet joint prosthesis and method of fixation |
CA2555141C (en) * | 2004-02-06 | 2013-01-08 | Depuy Spine, Inc. | Devices and methods for inserting a spinal fixation element |
WO2005079711A1 (en) * | 2004-02-18 | 2005-09-01 | Boehm Frank H Jr | Facet joint prosthesis and method of replacing a facet joint |
FR2867057B1 (en) * | 2004-03-02 | 2007-06-01 | Spinevision | DYNAMIC BONDING ELEMENT FOR A SPINAL FIXING SYSTEM AND FIXING SYSTEM COMPRISING SUCH A CONNECTING MEMBER |
CA2558419A1 (en) * | 2004-03-04 | 2005-09-15 | Synthes Gmbh | Connecting rod for bone connecting elements |
DE102004011685A1 (en) * | 2004-03-09 | 2005-09-29 | Biedermann Motech Gmbh | Spine supporting element, comprising spiraled grooves at outer surface and three plain areas |
US7901435B2 (en) | 2004-05-28 | 2011-03-08 | Depuy Spine, Inc. | Anchoring systems and methods for correcting spinal deformities |
US9504583B2 (en) | 2004-06-10 | 2016-11-29 | Spinal Elements, Inc. | Implant and method for facet immobilization |
US7651496B2 (en) * | 2004-07-23 | 2010-01-26 | Zimmer Spine, Inc. | Methods and apparatuses for percutaneous implant delivery |
DE202004020396U1 (en) | 2004-08-12 | 2005-07-07 | Columbus Trading-Partners Pos und Brendel GbR (vertretungsberechtigte Gesellschafter Karin Brendel, 95503 Hummeltal und Bohumila Pos, 95445 Bayreuth) | Child seat for motor vehicles |
WO2006016371A2 (en) * | 2004-08-13 | 2006-02-16 | Mazor Surgical Technologies Ltd | Minimally invasive spinal fusion |
DE102004048938B4 (en) * | 2004-10-07 | 2015-04-02 | Synthes Gmbh | Device for the dynamic stabilization of vertebral bodies |
US20070239159A1 (en) * | 2005-07-22 | 2007-10-11 | Vertiflex, Inc. | Systems and methods for stabilization of bone structures |
US7935134B2 (en) | 2004-10-20 | 2011-05-03 | Exactech, Inc. | Systems and methods for stabilization of bone structures |
US8162985B2 (en) | 2004-10-20 | 2012-04-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8226690B2 (en) | 2005-07-22 | 2012-07-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for stabilization of bone structures |
US8267969B2 (en) | 2004-10-20 | 2012-09-18 | Exactech, Inc. | Screw systems and methods for use in stabilization of bone structures |
US8025680B2 (en) * | 2004-10-20 | 2011-09-27 | Exactech, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US7604655B2 (en) | 2004-10-25 | 2009-10-20 | X-Spine Systems, Inc. | Bone fixation system and method for using the same |
EP1814473B1 (en) | 2004-10-25 | 2012-12-05 | X-spine Systems, Inc. | Pedicle screw systems |
US8926672B2 (en) | 2004-11-10 | 2015-01-06 | Roger P. Jackson | Splay control closure for open bone anchor |
US8998848B2 (en) | 2004-11-12 | 2015-04-07 | Vidacare LLC | Intraosseous device and methods for accessing bone marrow in the sternum and other target areas |
US9168069B2 (en) | 2009-06-15 | 2015-10-27 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer |
EP1814474B1 (en) | 2004-11-24 | 2011-09-14 | Samy Abdou | Devices for inter-vertebral orthopedic device placement |
US8267967B2 (en) * | 2004-12-15 | 2012-09-18 | Stryker Spine | Methods and apparatus for modular and variable spinal fixation |
EP1719468A1 (en) * | 2004-12-17 | 2006-11-08 | Zimmer GmbH | Intervertebral stabilization system |
EP1830723A4 (en) * | 2004-12-27 | 2010-03-10 | N Spine Inc | Adjustable spinal stabilization system |
US9339301B2 (en) | 2004-12-30 | 2016-05-17 | Mark A. Barry | System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions |
WO2006079531A1 (en) * | 2005-01-26 | 2006-08-03 | Aesculap Ag & Co. Kg | Self-contouring spinal rod |
US7604654B2 (en) * | 2005-02-22 | 2009-10-20 | Stryker Spine | Apparatus and method for dynamic vertebral stabilization |
WO2006091863A2 (en) | 2005-02-23 | 2006-08-31 | Pioneer Laboratories, Inc. | Minimally invasive surgical system |
US7556639B2 (en) * | 2005-03-03 | 2009-07-07 | Accelerated Innovation, Llc | Methods and apparatus for vertebral stabilization using sleeved springs |
US20060212033A1 (en) * | 2005-03-03 | 2006-09-21 | Accin Corporation | Vertebral stabilization using flexible rods |
US7951172B2 (en) * | 2005-03-04 | 2011-05-31 | Depuy Spine Sarl | Constrained motion bone screw assembly |
US7951175B2 (en) | 2005-03-04 | 2011-05-31 | Depuy Spine, Inc. | Instruments and methods for manipulating a vertebra |
US20060229607A1 (en) * | 2005-03-16 | 2006-10-12 | Sdgi Holdings, Inc. | Systems, kits and methods for treatment of the spinal column using elongate support members |
US20060247638A1 (en) * | 2005-04-29 | 2006-11-02 | Sdgi Holdings, Inc. | Composite spinal fixation systems |
US7695499B2 (en) * | 2005-04-29 | 2010-04-13 | Warsaw Orthopedic, Inc. | System, devices and method for augmenting existing fusion constructs |
US20060264937A1 (en) * | 2005-05-04 | 2006-11-23 | White Patrick M | Mobile spine stabilization device |
US20060264935A1 (en) * | 2005-05-04 | 2006-11-23 | White Patrick M | Orthopedic stabilization device |
US20060276788A1 (en) * | 2005-05-26 | 2006-12-07 | Amedica Corporation | Osteoconductive spinal fixation system |
WO2006135555A2 (en) * | 2005-06-08 | 2006-12-21 | Accelerated Innovation, Llc | Vertebral facet stabilizer |
US7828825B2 (en) * | 2005-06-20 | 2010-11-09 | Warsaw Orthopedic, Inc. | Multi-level multi-functional spinal stabilization systems and methods |
WO2007011755A2 (en) * | 2005-07-14 | 2007-01-25 | Globus Medical, Inc. | Vertebral marker devices and installation methods |
US20070016204A1 (en) * | 2005-07-14 | 2007-01-18 | Medical Device Concepts Llc. | Spinal buttress device and method |
US8523865B2 (en) | 2005-07-22 | 2013-09-03 | Exactech, Inc. | Tissue splitter |
US7717943B2 (en) | 2005-07-29 | 2010-05-18 | X-Spine Systems, Inc. | Capless multiaxial screw and spinal fixation assembly and method |
US20070035795A1 (en) * | 2005-08-04 | 2007-02-15 | Hubbard Jason R | Artificial facet joint and a method of making same |
ES2305969T3 (en) * | 2005-08-24 | 2008-11-01 | Biedermann Motech Gmbh | ELEMENT OF IMPLANT IN THE FORM OF A BAR FOR THE APPLICATION IN SURGERY OF THE VERTEBRAL COLUMN OR TRAUMATIC SURGERY AND DEVICE OF STABILIZATION WITH SUCH ELEMENT OF IMPLANT IN THE FORM OF A BAR. |
DE502006002049D1 (en) * | 2005-09-13 | 2008-12-24 | Bird Biedermann Ag | Dynamic clamping device for spinal implant |
US20070083200A1 (en) * | 2005-09-23 | 2007-04-12 | Gittings Darin C | Spinal stabilization systems and methods |
US20080243194A1 (en) * | 2005-09-26 | 2008-10-02 | The Regents Of The University Of California | Articulating instrumentation for dynamic spinal stabilization |
WO2007038429A1 (en) | 2005-09-27 | 2007-04-05 | Endius, Inc. | Methods and apparatuses for stabilizing the spine through an access device |
WO2007041702A2 (en) | 2005-10-04 | 2007-04-12 | Alphaspine, Inc. | Pedicle screw system with provisional locking aspects |
US20070093813A1 (en) * | 2005-10-11 | 2007-04-26 | Callahan Ronald Ii | Dynamic spinal stabilizer |
US7722651B2 (en) | 2005-10-21 | 2010-05-25 | Depuy Spine, Inc. | Adjustable bone screw assembly |
GB0521582D0 (en) | 2005-10-22 | 2005-11-30 | Depuy Int Ltd | An implant for supporting a spinal column |
US8357181B2 (en) | 2005-10-27 | 2013-01-22 | Warsaw Orthopedic, Inc. | Intervertebral prosthetic device for spinal stabilization and method of implanting same |
US8109973B2 (en) | 2005-10-31 | 2012-02-07 | Stryker Spine | Method for dynamic vertebral stabilization |
US20070112427A1 (en) * | 2005-11-16 | 2007-05-17 | Aoi Medical, Inc. | Intervertebral Spacer |
US20070118119A1 (en) * | 2005-11-18 | 2007-05-24 | Zimmer Spine, Inc. | Methods and device for dynamic stabilization |
US7704271B2 (en) | 2005-12-19 | 2010-04-27 | Abdou M Samy | Devices and methods for inter-vertebral orthopedic device placement |
US20070173822A1 (en) * | 2006-01-13 | 2007-07-26 | Sdgi Holdings, Inc. | Use of a posterior dynamic stabilization system with an intradiscal device |
GB0600662D0 (en) | 2006-01-13 | 2006-02-22 | Depuy Int Ltd | Spinal support rod kit |
US8518084B2 (en) | 2006-01-24 | 2013-08-27 | Biedermann Technologies Gmbh & Co. Kg | Connecting rod with external flexible element |
US8348952B2 (en) | 2006-01-26 | 2013-01-08 | Depuy International Ltd. | System and method for cooling a spinal correction device comprising a shape memory material for corrective spinal surgery |
US20070191841A1 (en) * | 2006-01-27 | 2007-08-16 | Sdgi Holdings, Inc. | Spinal rods having different flexural rigidities about different axes and methods of use |
US7635389B2 (en) * | 2006-01-30 | 2009-12-22 | Warsaw Orthopedic, Inc. | Posterior joint replacement device |
US7811326B2 (en) | 2006-01-30 | 2010-10-12 | Warsaw Orthopedic Inc. | Posterior joint replacement device |
JP5215872B2 (en) | 2006-02-06 | 2013-06-19 | ストライカー・スピン | Apparatus and method for shaping a rod in a percutaneous pedicle screw extension |
US20070233089A1 (en) * | 2006-02-17 | 2007-10-04 | Endius, Inc. | Systems and methods for reducing adjacent level disc disease |
US20070233064A1 (en) * | 2006-02-17 | 2007-10-04 | Holt Development L.L.C. | Apparatus and method for flexible spinal fixation |
US8118869B2 (en) | 2006-03-08 | 2012-02-21 | Flexuspine, Inc. | Dynamic interbody device |
US20070225707A1 (en) * | 2006-03-22 | 2007-09-27 | Sdgi Holdings, Inc. | Orthopedic spinal devices fabricated from two or more materials |
WO2007114834A1 (en) | 2006-04-05 | 2007-10-11 | Dong Myung Jeon | Multi-axial, double locking bone screw assembly |
EP2012686B1 (en) * | 2006-04-18 | 2013-10-02 | Joseph Nicholas Logan | Spinal rod system |
US7563274B2 (en) * | 2006-04-25 | 2009-07-21 | Warsaw Orthopedic, Inc. | Surgical instruments and techniques for controlling spinal motion segments with positioning of spinal stabilization elements |
US20070270821A1 (en) * | 2006-04-28 | 2007-11-22 | Sdgi Holdings, Inc. | Vertebral stabilizer |
US10085780B2 (en) | 2006-05-26 | 2018-10-02 | Mark Richard Cunliffe | Bone fixation device |
GB0610630D0 (en) * | 2006-05-26 | 2006-07-05 | Ness Malcolm G | A bone fixation device |
US20070299443A1 (en) * | 2006-06-09 | 2007-12-27 | Endius, Inc. | Methods and apparatus for access to and/or treatment of the spine |
US8043337B2 (en) | 2006-06-14 | 2011-10-25 | Spartek Medical, Inc. | Implant system and method to treat degenerative disorders of the spine |
US8226693B2 (en) * | 2006-06-16 | 2012-07-24 | Reimels William J | Bone bridge providing dynamic compression on bone fractures |
WO2008003047A2 (en) * | 2006-06-28 | 2008-01-03 | Synthes (U.S.A.) | Dynamic fixation system |
FR2902991B1 (en) * | 2006-06-29 | 2009-02-13 | Frederic Fortin | POSTERIOR DYNAMIC STABILIZATION PROSTHESIS APPLICABLE TO RACHIS |
US20080039847A1 (en) * | 2006-08-09 | 2008-02-14 | Mark Piper | Implant and system for stabilization of the spine |
US7806913B2 (en) | 2006-08-16 | 2010-10-05 | Depuy Spine, Inc. | Modular multi-level spine stabilization system and method |
US9526525B2 (en) * | 2006-08-22 | 2016-12-27 | Neuropro Technologies, Inc. | Percutaneous system for dynamic spinal stabilization |
US8551141B2 (en) * | 2006-08-23 | 2013-10-08 | Pioneer Surgical Technology, Inc. | Minimally invasive surgical system |
US7766942B2 (en) * | 2006-08-31 | 2010-08-03 | Warsaw Orthopedic, Inc. | Polymer rods for spinal applications |
US8298264B2 (en) * | 2006-09-07 | 2012-10-30 | Warsaw Orthopedic, Inc | Systems and methods for use in spinal support |
EP3659520B1 (en) | 2006-09-12 | 2023-11-08 | Teleflex Life Sciences Limited | Bone marrow aspiration devices |
US8944069B2 (en) | 2006-09-12 | 2015-02-03 | Vidacare Corporation | Assemblies for coupling intraosseous (IO) devices to powered drivers |
EP2073728B1 (en) | 2006-09-12 | 2018-11-07 | Teleflex Medical Devices S.à.r.l. | Biopsy device |
US20080097431A1 (en) * | 2006-09-22 | 2008-04-24 | Paul Peter Vessa | Flexible spinal stabilization |
WO2008039790A1 (en) * | 2006-09-25 | 2008-04-03 | Zimmer Spine, Inc. | Apparatus for connecting a longitudinal member to a bone portion |
US7947045B2 (en) * | 2006-10-06 | 2011-05-24 | Zimmer Spine, Inc. | Spinal stabilization system with flexible guides |
US20090012563A1 (en) * | 2006-10-11 | 2009-01-08 | Nas Medical Technologies, Inc. | Spinal fixation devices and methods |
US20080147122A1 (en) * | 2006-10-12 | 2008-06-19 | Jackson Roger P | Dynamic stabilization connecting member with molded inner segment and surrounding external elastomer |
ES2322114B1 (en) * | 2006-10-23 | 2010-04-07 | Tequir, S.L. | BAR FOR DYNAMIC STABILIZATION SYSTEM OF THE VERTEBRAL COLUMN. |
US8096996B2 (en) | 2007-03-20 | 2012-01-17 | Exactech, Inc. | Rod reducer |
US20080177320A1 (en) * | 2006-10-30 | 2008-07-24 | Warsaw Orthopedic, Inc. | Vertebral Rods and Methods of Use |
US8974410B2 (en) | 2006-10-30 | 2015-03-10 | Vidacare LLC | Apparatus and methods to communicate fluids and/or support intraosseous devices |
US7993375B2 (en) * | 2006-12-05 | 2011-08-09 | Spine Wave, Inc. | Dynamic stabilization devices and methods |
US7824430B2 (en) * | 2006-12-08 | 2010-11-02 | Warsaw Orthopedic, Inc. | Methods and devices for treating a multi-level spinal deformity |
AR064204A1 (en) | 2006-12-10 | 2009-03-18 | Paradigm Spine Llc | BACK DYNAMIC STABILIZATION SYSTEM |
FR2910267B1 (en) | 2006-12-21 | 2009-01-23 | Ldr Medical Soc Par Actions Si | VERTEBRAL SUPPORT DEVICE |
US8029544B2 (en) * | 2007-01-02 | 2011-10-04 | Zimmer Spine, Inc. | Spine stiffening device |
US7875059B2 (en) * | 2007-01-18 | 2011-01-25 | Warsaw Orthopedic, Inc. | Variable stiffness support members |
US7931676B2 (en) * | 2007-01-18 | 2011-04-26 | Warsaw Orthopedic, Inc. | Vertebral stabilizer |
US7959677B2 (en) | 2007-01-19 | 2011-06-14 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US8109975B2 (en) * | 2007-01-30 | 2012-02-07 | Warsaw Orthopedic, Inc. | Collar bore configuration for dynamic spinal stabilization assembly |
US8029547B2 (en) * | 2007-01-30 | 2011-10-04 | Warsaw Orthopedic, Inc. | Dynamic spinal stabilization assembly with sliding collars |
CA2920553C (en) | 2007-02-01 | 2018-11-20 | Interactive Neuroscience Center, Llc | Surgical navigation system for guiding an access member |
US8152714B2 (en) * | 2007-02-09 | 2012-04-10 | Alphatec Spine, Inc. | Curviliner spinal access method and device |
US9414861B2 (en) * | 2007-02-09 | 2016-08-16 | Transcendental Spine, Llc | Dynamic stabilization device |
WO2008098201A2 (en) * | 2007-02-09 | 2008-08-14 | Altiva Corporation | Surgical connector |
WO2008100590A1 (en) * | 2007-02-14 | 2008-08-21 | Flex Technology Inc | Flexible spine components |
US10842535B2 (en) | 2007-02-14 | 2020-11-24 | William R. Krause | Flexible spine components having multiple slots |
EP2813190B1 (en) | 2007-02-22 | 2017-04-26 | Spinal Elements, Inc. | Vertebral facet joint drill |
US8992533B2 (en) | 2007-02-22 | 2015-03-31 | Spinal Elements, Inc. | Vertebral facet joint drill and method of use |
US8740944B2 (en) * | 2007-02-28 | 2014-06-03 | Warsaw Orthopedic, Inc. | Vertebral stabilizer |
US8292929B2 (en) * | 2007-03-16 | 2012-10-23 | Zimmer Spine, Inc. | Dynamic spinal stabilization system and method of using the same |
US8057516B2 (en) | 2007-03-21 | 2011-11-15 | Zimmer Spine, Inc. | Spinal stabilization system with rigid and flexible elements |
US8052727B2 (en) | 2007-03-23 | 2011-11-08 | Zimmer Gmbh | System and method for insertion of flexible spinal stabilization element |
EP2146654A4 (en) | 2007-03-27 | 2011-09-28 | X Spine Systems Inc | Pedicle screw system configured to receive a straight or a curved rod |
WO2008124463A2 (en) | 2007-04-04 | 2008-10-16 | Vidacare Corporation | Powered drivers, intraosseous devices and methods to access bone marrow |
US20080249628A1 (en) * | 2007-04-09 | 2008-10-09 | Moti Altarac | Multi-component interbody device |
US7901439B2 (en) * | 2007-04-13 | 2011-03-08 | Horton Kenneth L | Allograft spinal facet fusion system |
US7922725B2 (en) * | 2007-04-19 | 2011-04-12 | Zimmer Spine, Inc. | Method and associated instrumentation for installation of spinal dynamic stabilization system |
US20080269805A1 (en) | 2007-04-25 | 2008-10-30 | Warsaw Orthopedic, Inc. | Methods for correcting spinal deformities |
US8241362B2 (en) * | 2007-04-26 | 2012-08-14 | Voorhies Rand M | Lumbar disc replacement implant for posterior implantation with dynamic spinal stabilization device and method |
US8016832B2 (en) * | 2007-05-02 | 2011-09-13 | Zimmer Spine, Inc. | Installation systems for spinal stabilization system and related methods |
US8864832B2 (en) | 2007-06-20 | 2014-10-21 | Hh Spinal Llc | Posterior total joint replacement |
US8105359B2 (en) | 2007-06-05 | 2012-01-31 | Spartek Medical, Inc. | Deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method |
US7963978B2 (en) | 2007-06-05 | 2011-06-21 | Spartek Medical, Inc. | Method for implanting a deflection rod system and customizing the deflection rod system for a particular patient need for dynamic stabilization and motion preservation spinal implantation system |
US8114134B2 (en) | 2007-06-05 | 2012-02-14 | Spartek Medical, Inc. | Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine |
US8021396B2 (en) | 2007-06-05 | 2011-09-20 | Spartek Medical, Inc. | Configurable dynamic spinal rod and method for dynamic stabilization of the spine |
US8105356B2 (en) | 2007-06-05 | 2012-01-31 | Spartek Medical, Inc. | Bone anchor with a curved mounting element for a dynamic stabilization and motion preservation spinal implantation system and method |
US8092501B2 (en) | 2007-06-05 | 2012-01-10 | Spartek Medical, Inc. | Dynamic spinal rod and method for dynamic stabilization of the spine |
US8048115B2 (en) | 2007-06-05 | 2011-11-01 | Spartek Medical, Inc. | Surgical tool and method for implantation of a dynamic bone anchor |
US8048123B2 (en) | 2007-06-05 | 2011-11-01 | Spartek Medical, Inc. | Spine implant with a deflection rod system and connecting linkages and method |
US8083772B2 (en) | 2007-06-05 | 2011-12-27 | Spartek Medical, Inc. | Dynamic spinal rod assembly and method for dynamic stabilization of the spine |
US10821003B2 (en) | 2007-06-20 | 2020-11-03 | 3Spline Sezc | Spinal osteotomy |
US8623019B2 (en) | 2007-07-03 | 2014-01-07 | Pioneer Surgical Technology, Inc. | Bone plate system |
US8361126B2 (en) | 2007-07-03 | 2013-01-29 | Pioneer Surgical Technology, Inc. | Bone plate system |
US20090018583A1 (en) * | 2007-07-12 | 2009-01-15 | Vermillion Technologies, Llc | Dynamic spinal stabilization system incorporating a wire rope |
EP2033670B1 (en) * | 2007-07-17 | 2015-09-02 | Brainlab AG | Attachment device for medical purposes, in particular for attaching a reference geometry for navigation-assisted operations to a body, in particular to a bone |
US9403029B2 (en) * | 2007-07-18 | 2016-08-02 | Visualase, Inc. | Systems and methods for thermal therapy |
CN101801293A (en) * | 2007-08-07 | 2010-08-11 | 新特斯有限责任公司 | Dynamic cable system |
US20090082815A1 (en) * | 2007-09-20 | 2009-03-26 | Zimmer Gmbh | Spinal stabilization system with transition member |
US20090088782A1 (en) * | 2007-09-28 | 2009-04-02 | Missoum Moumene | Flexible Spinal Rod With Elastomeric Jacket |
US20090088803A1 (en) * | 2007-10-01 | 2009-04-02 | Warsaw Orthopedic, Inc. | Flexible members for correcting spinal deformities |
US20090093846A1 (en) * | 2007-10-04 | 2009-04-09 | Zimmer Spine Inc. | Pre-Curved Flexible Member For Providing Dynamic Stability To A Spine |
US20090093819A1 (en) * | 2007-10-05 | 2009-04-09 | Abhijeet Joshi | Anisotropic spinal stabilization rod |
EP2047811B1 (en) * | 2007-10-11 | 2011-03-30 | BIEDERMANN MOTECH GmbH | Press-fit connection for fixing a rod in a surgical device, e.g. in a spinal stabilization device |
EP2364656B1 (en) * | 2007-10-11 | 2013-04-03 | Biedermann Technologies GmbH & Co. KG | Rod assembly and modular rod system for spinal stabilization |
US20090099608A1 (en) * | 2007-10-12 | 2009-04-16 | Aesculap Implant Systems, Inc. | Rod assembly for dynamic posterior stabilization |
US20090099606A1 (en) * | 2007-10-16 | 2009-04-16 | Zimmer Spine Inc. | Flexible member with variable flexibility for providing dynamic stability to a spine |
US8523912B2 (en) | 2007-10-22 | 2013-09-03 | Flexuspine, Inc. | Posterior stabilization systems with shared, dual dampener systems |
US8267965B2 (en) | 2007-10-22 | 2012-09-18 | Flexuspine, Inc. | Spinal stabilization systems with dynamic interbody devices |
US8157844B2 (en) | 2007-10-22 | 2012-04-17 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a variable length elongated member |
US8187330B2 (en) | 2007-10-22 | 2012-05-29 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a variable length elongated member |
US8162994B2 (en) | 2007-10-22 | 2012-04-24 | Flexuspine, Inc. | Posterior stabilization system with isolated, dual dampener systems |
US8182514B2 (en) | 2007-10-22 | 2012-05-22 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a fixed length elongated member |
GB0720762D0 (en) | 2007-10-24 | 2007-12-05 | Depuy Spine Sorl | Assembly for orthopaedic surgery |
US20090112261A1 (en) * | 2007-10-29 | 2009-04-30 | Barry Richard J | Minimally invasive spine internal fixation system |
US7947064B2 (en) * | 2007-11-28 | 2011-05-24 | Zimmer Spine, Inc. | Stabilization system and method |
US20090149862A1 (en) * | 2007-12-10 | 2009-06-11 | Sym Partners, Llc | Guide pin for pedicle screw placement and method for use of such guide pin in spinal fusion surgeries |
EP2229126A4 (en) * | 2007-12-15 | 2010-12-29 | Brian D Parlato | Flexible rod assembly for spinal fixation |
US8252028B2 (en) | 2007-12-19 | 2012-08-28 | Depuy Spine, Inc. | Posterior dynamic stabilization device |
US20090171395A1 (en) * | 2007-12-28 | 2009-07-02 | Jeon Dong M | Dynamic spinal rod system |
CN101909537B (en) * | 2007-12-28 | 2012-11-07 | 斯恩蒂斯有限公司 | A tack or drive screw for securing a prosthesis to bone and associated instrumentation and method |
US8092499B1 (en) | 2008-01-11 | 2012-01-10 | Roth Herbert J | Skeletal flexible/rigid rod for treating skeletal curvature |
KR100837108B1 (en) * | 2008-01-11 | 2008-06-11 | 최길운 | Flexible Rod for Spinal Fixation |
USD620109S1 (en) | 2008-02-05 | 2010-07-20 | Zimmer Spine, Inc. | Surgical installation tool |
US9277940B2 (en) * | 2008-02-05 | 2016-03-08 | Zimmer Spine, Inc. | System and method for insertion of flexible spinal stabilization element |
US8353935B2 (en) | 2008-02-14 | 2013-01-15 | Krause William R | Flexible spine components having a concentric slot |
US20090210000A1 (en) * | 2008-02-15 | 2009-08-20 | Sullivan Humbert G | Percutaneous pedicle plug and method of use |
US8211155B2 (en) | 2008-02-26 | 2012-07-03 | Spartek Medical, Inc. | Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine |
US8333792B2 (en) | 2008-02-26 | 2012-12-18 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine |
US8083775B2 (en) | 2008-02-26 | 2011-12-27 | Spartek Medical, Inc. | Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine |
US8057515B2 (en) | 2008-02-26 | 2011-11-15 | Spartek Medical, Inc. | Load-sharing anchor having a deflectable post and centering spring and method for dynamic stabilization of the spine |
US8007518B2 (en) | 2008-02-26 | 2011-08-30 | Spartek Medical, Inc. | Load-sharing component having a deflectable post and method for dynamic stabilization of the spine |
US8267979B2 (en) | 2008-02-26 | 2012-09-18 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine |
US8097024B2 (en) | 2008-02-26 | 2012-01-17 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post and method for stabilization of the spine |
US8016861B2 (en) | 2008-02-26 | 2011-09-13 | Spartek Medical, Inc. | Versatile polyaxial connector assembly and method for dynamic stabilization of the spine |
US8337536B2 (en) | 2008-02-26 | 2012-12-25 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine |
US8608746B2 (en) | 2008-03-10 | 2013-12-17 | DePuy Synthes Products, LLC | Derotation instrument with reduction functionality |
US8709015B2 (en) | 2008-03-10 | 2014-04-29 | DePuy Synthes Products, LLC | Bilateral vertebral body derotation system |
US20090234388A1 (en) * | 2008-03-15 | 2009-09-17 | Warsaw Orthopedic, Inc. | Spinal Stabilization Connecting Element and System |
US8202299B2 (en) | 2008-03-19 | 2012-06-19 | Collabcom II, LLC | Interspinous implant, tools and methods of implanting |
US20090248083A1 (en) * | 2008-03-26 | 2009-10-01 | Warsaw Orthopedic, Inc. | Elongated connecting element with varying modulus of elasticity |
US20090259257A1 (en) * | 2008-04-15 | 2009-10-15 | Warsaw Orthopedic, Inc. | Pedicule-Based Motion- Preserving Device |
US8430912B2 (en) * | 2008-05-05 | 2013-04-30 | Warsaw Orthopedic, Inc. | Dynamic stabilization rod |
DE602008004213D1 (en) * | 2008-05-06 | 2011-02-10 | Biedermann Motech Gmbh | Rod-shaped implant, in particular for the dynamic stabilization of the spine |
WO2009139902A1 (en) * | 2008-05-13 | 2009-11-19 | Stryker Spine | Composite spinal rod |
AU2009246785B2 (en) * | 2008-05-14 | 2015-05-28 | Smith & Nephew, Inc. | Arthroscopic biceps tenodesis repair |
US10973556B2 (en) | 2008-06-17 | 2021-04-13 | DePuy Synthes Products, Inc. | Adjustable implant assembly |
US20100063548A1 (en) * | 2008-07-07 | 2010-03-11 | Depuy International Ltd | Spinal Correction Method Using Shape Memory Spinal Rod |
EP2160988B1 (en) * | 2008-09-04 | 2012-12-26 | Biedermann Technologies GmbH & Co. KG | Rod-shaped implant in particular for stabilizing the spinal column and stabilization device including such a rod-shaped implant |
US9408649B2 (en) * | 2008-09-11 | 2016-08-09 | Innovasis, Inc. | Radiolucent screw with radiopaque marker |
US8425573B2 (en) * | 2008-10-24 | 2013-04-23 | The Cleveland Clinic Foundation | Method and system for attaching a plate to a bone |
US20100106193A1 (en) * | 2008-10-27 | 2010-04-29 | Barry Mark A | System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions in patients requiring the accomodation of spinal column growth or elongation |
US20100137908A1 (en) * | 2008-12-01 | 2010-06-03 | Zimmer Spine, Inc. | Dynamic Stabilization System Components Including Readily Visualized Polymeric Compositions |
US9055979B2 (en) * | 2008-12-03 | 2015-06-16 | Zimmer Gmbh | Cord for vertebral fixation having multiple stiffness phases |
US8858606B2 (en) | 2008-12-09 | 2014-10-14 | Smith & Nephew, Inc. | Tissue repair assembly |
US8529610B2 (en) | 2008-12-09 | 2013-09-10 | Smith & Nephew, Inc. | Tissue repair assembly |
BRPI0919600A2 (en) * | 2008-12-17 | 2015-12-08 | Synthes Gmbh | posterior and dynamic spinal stabilizer |
USD605289S1 (en) | 2008-12-17 | 2009-12-01 | Horton Kenneth L | Surgical drill guide |
EP2198792A1 (en) * | 2008-12-19 | 2010-06-23 | Sepitec Foundation | Implant system for stabilising bones |
US8137356B2 (en) * | 2008-12-29 | 2012-03-20 | Zimmer Spine, Inc. | Flexible guide for insertion of a vertebral stabilization system |
US20100249846A1 (en) * | 2009-03-25 | 2010-09-30 | Simonson Peter M | Variable height, multi-axial bone screw assembly |
US8372146B2 (en) * | 2009-03-26 | 2013-02-12 | Warsaw Orthopedic, Inc. | Distensible ligament systems |
US8202301B2 (en) * | 2009-04-24 | 2012-06-19 | Warsaw Orthopedic, Inc. | Dynamic spinal rod and implantation method |
US8292927B2 (en) * | 2009-04-24 | 2012-10-23 | Warsaw Orthopedic, Inc. | Flexible articulating spinal rod |
WO2010125808A1 (en) * | 2009-04-27 | 2010-11-04 | Keio University | Medical wire |
US9936892B1 (en) | 2009-05-04 | 2018-04-10 | Cortex Manufacturing Inc. | Systems and methods for providing a fiducial marker |
US8998959B2 (en) | 2009-06-15 | 2015-04-07 | Roger P Jackson | Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert |
US11229457B2 (en) | 2009-06-15 | 2022-01-25 | Roger P. Jackson | Pivotal bone anchor assembly with insert tool deployment |
US9668771B2 (en) | 2009-06-15 | 2017-06-06 | Roger P Jackson | Soft stabilization assemblies with off-set connector |
US8876867B2 (en) | 2009-06-24 | 2014-11-04 | Zimmer Spine, Inc. | Spinal correction tensioning system |
US8267968B2 (en) * | 2009-06-24 | 2012-09-18 | Neuropro Technologies, Inc. | Percutaneous system for dynamic spinal stabilization |
US20110009906A1 (en) * | 2009-07-13 | 2011-01-13 | Zimmer Spine, Inc. | Vertebral stabilization transition connector |
US8105360B1 (en) | 2009-07-16 | 2012-01-31 | Orthonex LLC | Device for dynamic stabilization of the spine |
EP2279705A1 (en) * | 2009-07-28 | 2011-02-02 | Spinelab AG | Spinal implant |
US8657856B2 (en) * | 2009-08-28 | 2014-02-25 | Pioneer Surgical Technology, Inc. | Size transition spinal rod |
US20110054543A1 (en) * | 2009-08-31 | 2011-03-03 | Warsaw Orthopedic, Inc. | Locking mechanism |
US9433439B2 (en) * | 2009-09-10 | 2016-09-06 | Innovasis, Inc. | Radiolucent stabilizing rod with radiopaque marker |
US20110066187A1 (en) * | 2009-09-11 | 2011-03-17 | Zimmer Spine, Inc. | Spinal stabilization system |
US20110106162A1 (en) * | 2009-10-30 | 2011-05-05 | Warsaw Orthopedic, Inc. | Composite Connecting Elements for Spinal Stabilization Systems |
US8328849B2 (en) | 2009-12-01 | 2012-12-11 | Zimmer Gmbh | Cord for vertebral stabilization system |
CN102695465A (en) | 2009-12-02 | 2012-09-26 | 斯帕泰克医疗股份有限公司 | Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod |
US8764806B2 (en) | 2009-12-07 | 2014-07-01 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
US9839740B2 (en) | 2010-02-02 | 2017-12-12 | Teleflex Medical Devices S.À R.L | Intraosseous-needle stabilizer and methods |
US8801712B2 (en) * | 2010-03-08 | 2014-08-12 | Innovasis, Inc. | Radiolucent bone plate with radiopaque marker |
US8740945B2 (en) | 2010-04-07 | 2014-06-03 | Zimmer Spine, Inc. | Dynamic stabilization system using polyaxial screws |
US20110257685A1 (en) * | 2010-04-15 | 2011-10-20 | Hay J Scott | Pre-stressed spinal stabilization system |
US20110307015A1 (en) | 2010-06-10 | 2011-12-15 | Spartek Medical, Inc. | Adaptive spinal rod and methods for stabilization of the spine |
CA2803178C (en) | 2010-06-28 | 2015-02-03 | K2M, Inc. | Spinal stabilization system |
US20120029564A1 (en) * | 2010-07-29 | 2012-02-02 | Warsaw Orthopedic, Inc. | Composite Rod for Spinal Implant Systems With Higher Modulus Core and Lower Modulus Polymeric Sleeve |
US8382803B2 (en) | 2010-08-30 | 2013-02-26 | Zimmer Gmbh | Vertebral stabilization transition connector |
US20120109207A1 (en) * | 2010-10-29 | 2012-05-03 | Warsaw Orthopedic, Inc. | Enhanced Interfacial Conformance for a Composite Rod for Spinal Implant Systems with Higher Modulus Core and Lower Modulus Polymeric Sleeve |
US8721566B2 (en) | 2010-11-12 | 2014-05-13 | Robert A. Connor | Spinal motion measurement device |
US8231624B1 (en) | 2010-12-22 | 2012-07-31 | Strippgen Walter E | Dynamic surgical implant |
US9023085B2 (en) | 2010-12-22 | 2015-05-05 | Walter E. Strippgen | Dynamic surgical implant |
US8740949B2 (en) | 2011-02-24 | 2014-06-03 | Spinal Elements, Inc. | Methods and apparatus for stabilizing bone |
US9271765B2 (en) | 2011-02-24 | 2016-03-01 | Spinal Elements, Inc. | Vertebral facet joint fusion implant and method for fusion |
USD724733S1 (en) | 2011-02-24 | 2015-03-17 | Spinal Elements, Inc. | Interbody bone implant |
US8388687B2 (en) | 2011-03-25 | 2013-03-05 | Flexuspine, Inc. | Interbody device insertion systems and methods |
JP6126091B2 (en) | 2011-07-11 | 2017-05-10 | バイダケア リミテッド ライアビリティ カンパニー | Sternum arrangement and related systems and methods |
US9144506B2 (en) * | 2011-08-11 | 2015-09-29 | Jeff Phelps | Interbody axis cage |
US8845728B1 (en) | 2011-09-23 | 2014-09-30 | Samy Abdou | Spinal fixation devices and methods of use |
US20130090690A1 (en) * | 2011-10-06 | 2013-04-11 | David A. Walsh | Dynamic Rod Assembly |
USD739935S1 (en) | 2011-10-26 | 2015-09-29 | Spinal Elements, Inc. | Interbody bone implant |
US9526627B2 (en) | 2011-11-17 | 2016-12-27 | Exactech, Inc. | Expandable interbody device system and method |
US9241807B2 (en) | 2011-12-23 | 2016-01-26 | Pioneer Surgical Technology, Inc. | Systems and methods for inserting a spinal device |
US8911479B2 (en) | 2012-01-10 | 2014-12-16 | Roger P. Jackson | Multi-start closures for open implants |
US8430916B1 (en) | 2012-02-07 | 2013-04-30 | Spartek Medical, Inc. | Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors |
US20130226240A1 (en) | 2012-02-22 | 2013-08-29 | Samy Abdou | Spinous process fixation devices and methods of use |
US9138265B2 (en) | 2012-03-19 | 2015-09-22 | Aesculap Implant Systems, Llc | Apparatus and method for visualizing insertion of a fixation element into an implant |
US9198767B2 (en) | 2012-08-28 | 2015-12-01 | Samy Abdou | Devices and methods for spinal stabilization and instrumentation |
US9101426B2 (en) | 2012-10-11 | 2015-08-11 | Stryker Trauma Sa | Cable plug |
US9320617B2 (en) | 2012-10-22 | 2016-04-26 | Cogent Spine, LLC | Devices and methods for spinal stabilization and instrumentation |
US9827018B2 (en) | 2012-11-13 | 2017-11-28 | K2M, Inc. | Spinal stabilization system |
US9186182B2 (en) | 2012-11-13 | 2015-11-17 | K2M, Inc. | Spinal stabilization system |
US9095378B2 (en) | 2012-11-13 | 2015-08-04 | K2M, Inc. | Spinal stabilization system |
US9168068B2 (en) | 2012-11-13 | 2015-10-27 | K2M, Inc. | Spinal stabilization system |
US9801662B2 (en) | 2012-11-13 | 2017-10-31 | K2M, Inc. | Spinal stabilization system |
US8911478B2 (en) | 2012-11-21 | 2014-12-16 | Roger P. Jackson | Splay control closure for open bone anchor |
US10058354B2 (en) | 2013-01-28 | 2018-08-28 | Roger P. Jackson | Pivotal bone anchor assembly with frictional shank head seating surfaces |
US8852239B2 (en) | 2013-02-15 | 2014-10-07 | Roger P Jackson | Sagittal angle screw with integral shank and receiver |
US9492288B2 (en) | 2013-02-20 | 2016-11-15 | Flexuspine, Inc. | Expandable fusion device for positioning between adjacent vertebral bodies |
US9421044B2 (en) | 2013-03-14 | 2016-08-23 | Spinal Elements, Inc. | Apparatus for bone stabilization and distraction and methods of use |
US9827020B2 (en) | 2013-03-14 | 2017-11-28 | Stryker European Holdings I, Llc | Percutaneous spinal cross link system and method |
USD765853S1 (en) | 2013-03-14 | 2016-09-06 | Spinal Elements, Inc. | Flexible elongate member with a portion configured to receive a bone anchor |
US9820784B2 (en) | 2013-03-14 | 2017-11-21 | Spinal Elements, Inc. | Apparatus for spinal fixation and methods of use |
CA2846149C (en) | 2013-03-14 | 2018-03-20 | Stryker Spine | Systems and methods for percutaneous spinal fusion |
US9456855B2 (en) | 2013-09-27 | 2016-10-04 | Spinal Elements, Inc. | Method of placing an implant between bone portions |
US9839450B2 (en) | 2013-09-27 | 2017-12-12 | Spinal Elements, Inc. | Device and method for reinforcement of a facet |
US9566092B2 (en) | 2013-10-29 | 2017-02-14 | Roger P. Jackson | Cervical bone anchor with collet retainer and outer locking sleeve |
US10159579B1 (en) | 2013-12-06 | 2018-12-25 | Stryker European Holdings I, Llc | Tubular instruments for percutaneous posterior spinal fusion systems and methods |
US9744050B1 (en) | 2013-12-06 | 2017-08-29 | Stryker European Holdings I, Llc | Compression and distraction system for percutaneous posterior spinal fusion |
US9408716B1 (en) | 2013-12-06 | 2016-08-09 | Stryker European Holdings I, Llc | Percutaneous posterior spinal fusion implant construction and method |
US9717533B2 (en) | 2013-12-12 | 2017-08-01 | Roger P. Jackson | Bone anchor closure pivot-splay control flange form guide and advancement structure |
US9451993B2 (en) | 2014-01-09 | 2016-09-27 | Roger P. Jackson | Bi-radial pop-on cervical bone anchor |
US9480520B2 (en) * | 2014-01-23 | 2016-11-01 | Warsaw Orthopedic, Inc. | Surgical instrument and method |
US10398565B2 (en) | 2014-04-24 | 2019-09-03 | Choice Spine, Llc | Limited profile intervertebral implant with incorporated fastening and locking mechanism |
US9517144B2 (en) | 2014-04-24 | 2016-12-13 | Exactech, Inc. | Limited profile intervertebral implant with incorporated fastening mechanism |
US10758274B1 (en) | 2014-05-02 | 2020-09-01 | Nuvasive, Inc. | Spinal fixation constructs and related methods |
US9597119B2 (en) | 2014-06-04 | 2017-03-21 | Roger P. Jackson | Polyaxial bone anchor with polymer sleeve |
US10064658B2 (en) | 2014-06-04 | 2018-09-04 | Roger P. Jackson | Polyaxial bone anchor with insert guides |
CN104306056A (en) * | 2014-07-07 | 2015-01-28 | 吴爱悯 | Jumping type spine dynamic fixing device |
US10499968B2 (en) | 2014-08-08 | 2019-12-10 | Stryker European Holdings I, Llc | Cable plugs for bone plates |
EP2987529B1 (en) * | 2014-08-19 | 2016-12-14 | BIOTRONIK SE & Co. KG | Implant comprising a fixing device, and insertion apparatus comprising an implant |
WO2016044432A1 (en) | 2014-09-17 | 2016-03-24 | Spinal Elements, Inc. | Flexible fastening band connector |
KR102448693B1 (en) * | 2014-09-19 | 2022-09-30 | 삼성전자주식회사 | Force transmission frame and exercise assisting device including same |
EP3015084B1 (en) | 2014-10-30 | 2017-05-10 | K2M, Inc. | Spinal fixation member |
CA3008161C (en) | 2014-12-09 | 2023-09-26 | John A. Heflin | Spine alignment system |
JP2018502693A (en) | 2015-01-27 | 2018-02-01 | スパイナル・エレメンツ・インコーポレーテッド | Facet joint implant |
US10857003B1 (en) | 2015-10-14 | 2020-12-08 | Samy Abdou | Devices and methods for vertebral stabilization |
US10973557B2 (en) * | 2015-10-15 | 2021-04-13 | Seth K. WILLIAMS | Spinal rod implant extension |
CN105581830B (en) * | 2015-12-14 | 2018-10-02 | 青田县人民医院 | A kind of flexible fixed utensil of backbone |
US11172821B2 (en) | 2016-04-28 | 2021-11-16 | Medtronic Navigation, Inc. | Navigation and local thermometry |
US10744000B1 (en) | 2016-10-25 | 2020-08-18 | Samy Abdou | Devices and methods for vertebral bone realignment |
US10973648B1 (en) | 2016-10-25 | 2021-04-13 | Samy Abdou | Devices and methods for vertebral bone realignment |
US10874434B2 (en) * | 2017-10-18 | 2020-12-29 | Texas Scottish Rite Hospital For Children | Deformable dynamization device |
CN108577954B (en) * | 2018-02-13 | 2020-04-10 | 哈尔滨医科大学 | Internal absorbable lumbar vertebra limiting dynamic fixing device |
US11116559B2 (en) | 2018-02-19 | 2021-09-14 | Warsaw Orthopedic, Inc. | Surgical instrument and method |
US11026736B2 (en) | 2018-02-19 | 2021-06-08 | Warsaw Orthopedic, Inc. | Surgical instrument and method |
US11179248B2 (en) | 2018-10-02 | 2021-11-23 | Samy Abdou | Devices and methods for spinal implantation |
AU2019403451B2 (en) | 2018-12-21 | 2025-02-13 | Paradigm Spine, Llc | Modular spine stabilization system and associated instruments |
US11457959B2 (en) | 2019-05-22 | 2022-10-04 | Spinal Elements, Inc. | Bone tie and bone tie inserter |
US11464552B2 (en) | 2019-05-22 | 2022-10-11 | Spinal Elements, Inc. | Bone tie and bone tie inserter |
US11278326B2 (en) * | 2019-09-23 | 2022-03-22 | Premia Spine Ltd. | Flexible spinal fusion rod |
WO2021163313A1 (en) | 2020-02-14 | 2021-08-19 | Spinal Elements, Inc. | Bone tie methods |
US11877779B2 (en) | 2020-03-26 | 2024-01-23 | Xtant Medical Holdings, Inc. | Bone plate system |
JP7340291B1 (en) * | 2022-02-28 | 2023-09-07 | 株式会社シンテック | Spinal fixation implant rod |
US20240260994A1 (en) * | 2023-02-03 | 2024-08-08 | Warsaw Orthopedic, Inc. | Spinal rod with multiple sections having eccentric centers |
CN118697446B (en) * | 2024-06-26 | 2025-02-11 | 上海斯潘威生物技术有限公司 | A rod bender for connecting rods in orthopedic spine surgery and a preparation method thereof |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4573448A (en) * | 1983-10-05 | 1986-03-04 | Pilling Co. | Method for decompressing herniated intervertebral discs |
US4748260A (en) * | 1986-12-22 | 1988-05-31 | Ethyl Corporation | Preparation of amine alanes |
US5282863A (en) * | 1985-06-10 | 1994-02-01 | Charles V. Burton | Flexible stabilization system for a vertebral column |
US5540688A (en) * | 1991-05-30 | 1996-07-30 | Societe "Psi" | Intervertebral stabilization device incorporating dampers |
US5665092A (en) * | 1993-03-01 | 1997-09-09 | Mangiardi; John R. | Marker for surgical procedures |
US5672175A (en) * | 1993-08-27 | 1997-09-30 | Martin; Jean Raymond | Dynamic implanted spinal orthosis and operative procedure for fitting |
US6175758B1 (en) * | 1997-07-15 | 2001-01-16 | Parviz Kambin | Method for percutaneous arthroscopic disc removal, bone biopsy and fixation of the vertebrae |
US6193720B1 (en) * | 1998-11-30 | 2001-02-27 | Depuy Orthopaedics, Inc. | Cervical spine stabilization method and system |
US20010037111A1 (en) * | 2000-05-08 | 2001-11-01 | Dixon Robert A. | Method and apparatus for dynamized spinal stabilization |
US6468279B1 (en) * | 1998-01-27 | 2002-10-22 | Kyphon Inc. | Slip-fit handle for hand-held instruments that access interior body regions |
US6530929B1 (en) * | 1999-10-20 | 2003-03-11 | Sdgi Holdings, Inc. | Instruments for stabilization of bony structures |
US20030083657A1 (en) * | 2001-10-30 | 2003-05-01 | Drewry Troy D. | Flexible spinal stabilization system and method |
US6558390B2 (en) * | 2000-02-16 | 2003-05-06 | Axiamed, Inc. | Methods and apparatus for performing therapeutic procedures in the spine |
US6575979B1 (en) * | 2000-02-16 | 2003-06-10 | Axiamed, Inc. | Method and apparatus for providing posterior or anterior trans-sacral access to spinal vertebrae |
US6821277B2 (en) * | 2000-06-23 | 2004-11-23 | University Of Southern California Patent And Copyright Administration | Percutaneous vertebral fusion system |
US20050059976A1 (en) * | 2000-08-08 | 2005-03-17 | Sdgi Holdings, Inc. | Method and apparatus for stereotactic implantation |
US7137985B2 (en) * | 2003-09-24 | 2006-11-21 | N Spine, Inc. | Marking and guidance method and system for flexible fixation of a spine |
Family Cites Families (297)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR742618A (en) | 1933-03-10 | |||
US378712A (en) * | 1888-02-28 | Manufacture of sash-balances | ||
US1276117A (en) * | 1917-06-13 | 1918-08-20 | Rogers Motor Lock Company | Flexible armored conduit. |
US1985427A (en) | 1934-01-06 | 1934-12-25 | William H Richardson | Flexible ferrule |
US2134197A (en) | 1937-02-18 | 1938-10-25 | Nickolaus F Miller | Smoking pipe |
US2379577A (en) * | 1943-01-25 | 1945-07-03 | Harry H Harsted | Foldable antenna |
US2546026A (en) * | 1947-04-15 | 1951-03-20 | Gen Electric | Flexible antenna mounting |
US2554708A (en) * | 1948-08-25 | 1951-05-29 | Kosten Johannes | Rowing device and oar assembly |
US2805441A (en) | 1954-10-26 | 1957-09-10 | Reder Leon | Flexible door stop |
US3019552A (en) * | 1956-12-05 | 1962-02-06 | Schleich Friedrich | Flexible figure toy |
US2845748A (en) | 1957-02-04 | 1958-08-05 | Wilkening Mfg Co | Plastic toy and flexible plastic unit for toys and other articles |
US2895594A (en) | 1958-09-17 | 1959-07-21 | Goodman Mfg Co | Flexible troughing roller assembly for belt conveyor |
US2995151A (en) | 1959-01-30 | 1961-08-08 | Lockwood Jack | Radiator hose |
US3028291A (en) * | 1959-08-26 | 1962-04-03 | Fred T Roberts | Method of making spirally corrugated reinforced flexible hose |
US3325327A (en) | 1964-04-27 | 1967-06-13 | Air Reduction | Method and apparatus for making a hose of helically wrapped reinforcing and web components |
US3263949A (en) | 1965-05-17 | 1966-08-02 | Teleflex Inc | Screw retaining fitting for a remote control assembly |
US3364807A (en) * | 1965-11-26 | 1968-01-23 | Tinnerman Products Inc | Threadless nut type fastener |
US3463148A (en) | 1966-01-20 | 1969-08-26 | Richards Mfg Co | Bone plate |
US3401607A (en) | 1966-08-08 | 1968-09-17 | Michael L. Wortman | Reciprocating bellows |
US3388732A (en) | 1967-07-31 | 1968-06-18 | Tinnerman Products Inc | Self-threading fastening device |
FR2008210A1 (en) * | 1968-05-10 | 1970-01-16 | Magneti Marelli Spa | |
US3575194A (en) * | 1969-07-11 | 1971-04-20 | Mcmurry Oil Tools Inc | Gas-lift valve |
US3635233A (en) * | 1970-03-19 | 1972-01-18 | Charles H Robertson | Collapsible cane and crutch construction |
US3744488A (en) | 1971-06-08 | 1973-07-10 | J Cox | Bone splint |
US3669133A (en) * | 1971-06-08 | 1972-06-13 | Hycor Inc | Collapsible rod |
US3741205A (en) | 1971-06-14 | 1973-06-26 | K Markolf | Bone fixation plate |
BE793596A (en) * | 1972-01-03 | 1973-05-02 | Dayco Corp | FLEXIBLE ELASTOMERIC HOSE, ESPECIALLY FOR VACUUM CLEANERS |
US3858578A (en) * | 1974-01-21 | 1975-01-07 | Pravel Wilson & Matthews | Surgical retaining device |
US3996834A (en) | 1974-04-05 | 1976-12-14 | Litton Systems, Inc. | Fastening element |
GB1551704A (en) * | 1975-04-28 | 1979-08-30 | Downs Surgical Ltd | Surgical implant |
GB1551706A (en) * | 1975-04-28 | 1979-08-30 | Downs Surgical Ltd | Surgical implant |
US3999730A (en) | 1975-10-23 | 1976-12-28 | Gonsalves George E | Trolley conveyor track switch unit |
CH614761A5 (en) | 1977-03-03 | 1979-12-14 | Alphons Rogger | Screw |
CH628803A5 (en) | 1978-05-12 | 1982-03-31 | Sulzer Ag | Implant insertable between adjacent vertebrae |
US4378712A (en) * | 1979-02-27 | 1983-04-05 | Nippon Cable System, Inc. | Control cable |
CA1112401A (en) | 1979-05-24 | 1981-11-17 | Roland Dore | Deformable high energy storage tension spring |
US4409968A (en) * | 1980-02-04 | 1983-10-18 | Drummond Denis S | Method and apparatus for engaging a hook assembly to a spinal column |
US4369769A (en) * | 1980-06-13 | 1983-01-25 | Edwards Charles C | Spinal fixation device and method |
CH651192A5 (en) * | 1980-11-20 | 1985-09-13 | Synthes Ag | OSTEOSYNTHETIC DEVICE AND CORRESPONDING DRILL GAUGE. |
US4338926A (en) | 1980-11-21 | 1982-07-13 | Howmedica, Inc. | Bone fracture prosthesis with controlled stiffness |
US4448191A (en) * | 1981-07-07 | 1984-05-15 | Rodnyansky Lazar I | Implantable correctant of a spinal curvature and a method for treatment of a spinal curvature |
US4483562A (en) * | 1981-10-16 | 1984-11-20 | Arnold Schoolman | Locking flexible shaft device with live distal end attachment |
US4422451A (en) | 1982-03-22 | 1983-12-27 | Ali Kalamchi | Spinal compression and distraction instrumentation |
USRE32650E (en) * | 1982-08-25 | 1988-04-26 | Body weight support system | |
US4911346A (en) * | 1984-11-23 | 1990-03-27 | Shallman Richard W | Flexible, segmental backpack frame |
US5215338A (en) * | 1985-04-09 | 1993-06-01 | Tsubakimoto Chain Co. | Flexible supporting sheath for cables and the like |
US4773402A (en) * | 1985-09-13 | 1988-09-27 | Isola Implants, Inc. | Dorsal transacral surgical implant |
NZ222159A (en) | 1986-10-27 | 1989-12-21 | Johnson & Johnson Prod Inc | Absorbable bone plate |
JPH078504Y2 (en) | 1987-06-16 | 1995-03-01 | 株式会社東芝 | Roll-shaped recording paper holding device |
SE466732B (en) * | 1987-10-29 | 1992-03-30 | Atos Medical Ab | LED PROTES, INCLUDING A LED BODY BETWEEN ONE COUPLE OF TAPS FOR INSTALLATION |
US5468241A (en) * | 1988-02-18 | 1995-11-21 | Howmedica Gmbh | Support device for the human vertebral column |
US4979531A (en) | 1988-03-25 | 1990-12-25 | Toor John W | Tent pole and method of manufacture therefor |
CH675531A5 (en) | 1988-04-29 | 1990-10-15 | Synthes Ag | Instrument for osteosynthesis with perforated plate - has convex head bone screws fitting in tapering holes in osteosynthesis plate |
DE8807485U1 (en) * | 1988-06-06 | 1989-08-10 | Mecron Medizinische Produkte Gmbh, 1000 Berlin | Intervertebral disc endoprosthesis |
DE3823737A1 (en) * | 1988-07-13 | 1990-01-18 | Lutz Biedermann | CORRECTION AND HOLDING DEVICE, ESPECIALLY FOR THE SPINE |
USRE36221E (en) * | 1989-02-03 | 1999-06-01 | Breard; Francis Henri | Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column |
US4960410A (en) | 1989-03-31 | 1990-10-02 | Cordis Corporation | Flexible tubular member for catheter construction |
US5092889A (en) | 1989-04-14 | 1992-03-03 | Campbell Robert M Jr | Expandable vertical prosthetic rib |
CH678803A5 (en) * | 1989-07-12 | 1991-11-15 | Sulzer Ag | |
US5029847A (en) * | 1989-08-07 | 1991-07-09 | Helen Ross | Foldable exercise stick |
US4932975A (en) * | 1989-10-16 | 1990-06-12 | Vanderbilt University | Vertebral prosthesis |
US4949927A (en) * | 1989-10-17 | 1990-08-21 | John Madocks | Articulable column |
US5055104A (en) * | 1989-11-06 | 1991-10-08 | Surgical Dynamics, Inc. | Surgically implanting threaded fusion cages between adjacent low-back vertebrae by an anterior approach |
JPH066810Y2 (en) | 1989-11-29 | 1994-02-23 | 旭光学工業株式会社 | Vertebral body fixation plate |
US5030220A (en) * | 1990-03-29 | 1991-07-09 | Advanced Spine Fixation Systems Incorporated | Spine fixation system |
FR2666981B1 (en) * | 1990-09-21 | 1993-06-25 | Commarmond Jacques | SYNTHETIC LIGAMENT VERTEBRAL. |
US5133716A (en) * | 1990-11-07 | 1992-07-28 | Codespi Corporation | Device for correction of spinal deformities |
FR2672202B1 (en) * | 1991-02-05 | 1993-07-30 | Safir | BONE SURGICAL IMPLANT, ESPECIALLY FOR INTERVERTEBRAL STABILIZER. |
DE4109941A1 (en) | 1991-03-26 | 1992-10-01 | Reljica Kostic Zlatko Dr | Flexible prosthesis for backbone - comprises flexible spring forming supporting element connected to two fixing elements attached to adjacent vertebrae |
US5251611A (en) * | 1991-05-07 | 1993-10-12 | Zehel Wendell E | Method and apparatus for conducting exploratory procedures |
CA2117088A1 (en) | 1991-09-05 | 1993-03-18 | David R. Holmes | Flexible tubular device for use in medical applications |
US5246442A (en) * | 1991-12-31 | 1993-09-21 | Danek Medical, Inc. | Spinal hook |
FR2686500B1 (en) * | 1992-01-23 | 1998-11-27 | Euros Sa | PROSTHETIC ASSEMBLY, PARTICULARLY FOR LUMB-SACRED ARTICULATION. |
US5194678A (en) * | 1992-01-27 | 1993-03-16 | Terry Kramer | Firearm rest |
DE9202745U1 (en) * | 1992-03-02 | 1992-04-30 | Howmedica Gmbh, 2314 Schoenkirchen | Device for bracing vertebrae of the human spine |
FR2692952B1 (en) | 1992-06-25 | 1996-04-05 | Psi | IMPROVED SHOCK ABSORBER WITH MOVEMENT LIMIT. |
DE4224699A1 (en) | 1992-07-25 | 1994-01-27 | Euwe Eugen Wexler Gmbh | Plastic joint for connecting two components - has two rigid and connectors and soft elastic section between, allowing movement of joint out of normal axis |
FR2694182B1 (en) | 1992-07-31 | 1994-10-21 | Psi | Attachment for prosthesis, especially interpedicular. |
GB9217578D0 (en) * | 1992-08-19 | 1992-09-30 | Surgicarft Ltd | Surgical implants,etc |
US5814046A (en) | 1992-11-13 | 1998-09-29 | Sofamor S.N.C. | Pedicular screw and posterior spinal instrumentation |
DE4239716C1 (en) | 1992-11-26 | 1994-08-04 | Kernforschungsz Karlsruhe | Elastic implant for stabilising degenerated spinal column segments |
US5353843A (en) * | 1992-12-10 | 1994-10-11 | Crown Industries, Inc. | Method and apparatus for protecting a hose |
DE4243951C2 (en) * | 1992-12-23 | 1997-07-03 | Plus Endoprothetik Ag | Device for stiffening a spinal column section consisting of at least two vertebrae |
US5507812A (en) * | 1992-12-28 | 1996-04-16 | Moore; David E. | Modular prosthetic ligament |
US5306275A (en) * | 1992-12-31 | 1994-04-26 | Bryan Donald W | Lumbar spine fixation apparatus and method |
US6030162A (en) | 1998-12-18 | 2000-02-29 | Acumed, Inc. | Axial tension screw |
DE4303770C1 (en) * | 1993-02-09 | 1994-05-26 | Plus Endoprothetik Ag Rotkreuz | Stiffening and correction system for spinal vertebrae - comprises screw-ended holders with connecting rod supporting clamped distance pieces. |
US5413576A (en) * | 1993-02-10 | 1995-05-09 | Rivard; Charles-Hilaire | Apparatus for treating spinal disorder |
FR2701650B1 (en) * | 1993-02-17 | 1995-05-24 | Psi | Double shock absorber for intervertebral stabilization. |
FR2702362B3 (en) * | 1993-02-24 | 1995-04-14 | Soprane Sa | Fixator for osteosynthesis of the lumbosacral spine. |
FR2702363B1 (en) * | 1993-03-12 | 1995-04-21 | Biomat | Rod-shaped osteosynthesis element. |
US5415661A (en) * | 1993-03-24 | 1995-05-16 | University Of Miami | Implantable spinal assist device |
US5534027A (en) | 1993-06-21 | 1996-07-09 | Zimmer, Inc. | Method for providing a barrier to the advancement of wear debris in an orthopaedic implant assembly |
US5423820A (en) | 1993-07-20 | 1995-06-13 | Danek Medical, Inc. | Surgical cable and crimp |
US5513827A (en) * | 1993-07-26 | 1996-05-07 | Karlin Technology, Inc. | Gooseneck surgical instrument holder |
US5423816A (en) * | 1993-07-29 | 1995-06-13 | Lin; Chih I. | Intervertebral locking device |
FR2709247B1 (en) | 1993-08-27 | 1995-09-29 | Martin Jean Raymond | Device for anchoring spinal instrumentation on a vertebra. |
FR2712481B1 (en) | 1993-11-18 | 1996-01-12 | Graf Henry | Improvements to flexible inter-vertebral stabilizers. |
DE4343117C2 (en) | 1993-12-17 | 1999-11-04 | Dietmar Wolter | Bone fixation system |
US5558674A (en) | 1993-12-17 | 1996-09-24 | Smith & Nephew Richards, Inc. | Devices and methods for posterior spinal fixation |
FR2715825A1 (en) * | 1994-02-09 | 1995-08-11 | Soprane Sa | Self-aligning rod for spinal osteosynthesis apparatus |
DE59408313D1 (en) | 1994-02-28 | 1999-07-01 | Sulzer Orthopaedie Ag | Stabilization of neighboring vertebrae |
FR2717370A1 (en) | 1994-03-18 | 1995-09-22 | Moreau Patrice | Intervertebral stabilising prosthesis for spinal reinforcement inserted during spinal surgery |
FR2728158A1 (en) * | 1994-12-14 | 1996-06-21 | Elberg Jean Francois | Spinal column prosthesis |
EP0677277A3 (en) | 1994-03-18 | 1996-02-28 | Patrice Moreau | Spinal prosthetic assembly. |
CA2551185C (en) * | 1994-03-28 | 2007-10-30 | Sdgi Holdings, Inc. | Apparatus and method for anterior spinal stabilization |
FR2718946B1 (en) * | 1994-04-25 | 1996-09-27 | Soprane Sa | Flexible rod for lumbosacral osteosynthesis fixator. |
ES2081766B1 (en) * | 1994-05-13 | 1996-10-01 | Bilbao Ortiz De Zarate Jose Ra | POSTERIOR CERVICAL VERTEBRAL FIXATION SYSTEM. |
AU4089697A (en) * | 1994-05-25 | 1998-03-19 | Roger P Jackson | Apparatus and method for spinal fixation and correction of spinal deformities |
US5620445A (en) * | 1994-07-15 | 1997-04-15 | Brosnahan; Robert | Modular intramedullary nail |
US5488761A (en) * | 1994-07-28 | 1996-02-06 | Leone; Ronald P. | Flexible shaft and method for manufacturing same |
US5810823A (en) | 1994-09-12 | 1998-09-22 | Synthes (U.S.A.) | Osteosynthetic bone plate and lock washer |
US5681311A (en) | 1994-09-15 | 1997-10-28 | Smith & Nephew, Inc. | Osteosynthesis apparatus |
FR2724553B1 (en) | 1994-09-15 | 1996-12-20 | Tornier Sa | EXTERNAL OR INTERNAL FIXER FOR THE REPAIR OF FRACTURES OR ARTHROPLASTIES OF THE SKELETON |
US5601553A (en) * | 1994-10-03 | 1997-02-11 | Synthes (U.S.A.) | Locking plate and bone screw |
FR2731344B1 (en) * | 1995-03-06 | 1997-08-22 | Dimso Sa | SPINAL INSTRUMENTATION ESPECIALLY FOR A ROD |
ES2150558T3 (en) | 1995-03-27 | 2000-12-01 | Synthes Ag | PLATE FOR OSTEOSYNTHESIS. |
US5634926A (en) | 1995-04-25 | 1997-06-03 | Jobe; Richard P. | Surgical bone fixation apparatus |
US5607428A (en) * | 1995-05-01 | 1997-03-04 | Lin; Kwan C. | Orthopedic fixation device having a double-threaded screw |
US5735752A (en) * | 1995-06-13 | 1998-04-07 | Antonious; Anthony J. | Golf club shaft and insert therefor |
US6447518B1 (en) | 1995-07-18 | 2002-09-10 | William R. Krause | Flexible shaft components |
WO1997003611A1 (en) * | 1995-07-18 | 1997-02-06 | Edwards, Garland, U. | Flexible shaft |
DE59509247D1 (en) * | 1995-09-06 | 2001-06-13 | Synthes Ag | BONE PLATE |
US5658286A (en) | 1996-02-05 | 1997-08-19 | Sava; Garard A. | Fabrication of implantable bone fixation elements |
US5688275A (en) | 1996-02-09 | 1997-11-18 | Koros; Tibor | Spinal column rod fixation system |
US5984970A (en) * | 1996-03-13 | 1999-11-16 | Bramlet; Dale G. | Arthroplasty joint assembly |
US5810306A (en) | 1996-05-17 | 1998-09-22 | Custom Accessories, Inc. | Shape retaining flexible connector |
US5713900A (en) * | 1996-05-31 | 1998-02-03 | Acromed Corporation | Apparatus for retaining bone portions in a desired spatial relationship |
DE19629011C2 (en) | 1996-07-18 | 2001-08-23 | Dietmar Wolter | Tools for osteosynthesis |
GB2316735B (en) * | 1996-08-30 | 2000-01-19 | Reliance Gear Co | Flexible coupling |
US6030692A (en) * | 1996-09-13 | 2000-02-29 | Netpco Incorporated | Cover tape for formed tape packing system and process for making same |
FR2755844B1 (en) * | 1996-11-15 | 1999-01-29 | Stryker France Sa | OSTEOSYNTHESIS SYSTEM WITH ELASTIC DEFORMATION FOR SPINE |
IL128261A0 (en) | 1999-01-27 | 1999-11-30 | Disc O Tech Medical Tech Ltd | Expandable element |
FR2763832B1 (en) | 1997-05-29 | 1999-10-01 | Materiel Orthopedique En Abreg | VERTEBRAL ROD FOR INSTRUMENTATION OF RACHIDIAN OSTEOSYNTHESIS, AND OSTEOSYNTHESIS INSTRUMENTATION COMPRISING SUCH ROD |
DE29711559U1 (en) * | 1997-07-02 | 1997-08-21 | Howmedica GmbH, 24232 Schönkirchen | Elongated element for the transmission of forces |
US6290700B1 (en) * | 1997-07-31 | 2001-09-18 | Plus Endoprothetik Ag | Device for stiffening and/or correcting a vertebral column or such like |
US5964769A (en) * | 1997-08-26 | 1999-10-12 | Spinal Concepts, Inc. | Surgical cable system and method |
US5964767A (en) * | 1997-09-12 | 1999-10-12 | Tapia; Eduardo Armando | Hollow sealable device for temporary or permanent surgical placement through a bone to provide a passageway into a cavity or internal anatomic site in a mammal |
DE19746687C2 (en) | 1997-10-22 | 2001-02-15 | Gerd Werding | Device for external fixation of broken bones, especially the extremities |
DE19750493A1 (en) | 1997-11-14 | 1999-06-02 | Medos Medizintechnik Gmbh | Fracture stabilization implant and screw for use in surgery |
FR2771280B1 (en) * | 1997-11-26 | 2001-01-26 | Albert P Alby | RESILIENT VERTEBRAL CONNECTION DEVICE |
FR2774581B1 (en) | 1998-02-10 | 2000-08-11 | Dimso Sa | INTEREPINOUS STABILIZER TO BE ATTACHED TO SPINOUS APOPHYSIS OF TWO VERTEBRES |
FR2775583B1 (en) | 1998-03-04 | 2000-08-11 | Dimso Sa | SYSTEM FOR OSTEOSYNTHESIS OF THE RACHIS WITH LIGAMENT |
US5961524A (en) | 1998-03-11 | 1999-10-05 | Stryker Technologies Corporation | Screw and method of attachment to a substrate |
JP2942538B1 (en) * | 1998-04-09 | 1999-08-30 | 康夫 伊藤 | Spinal fusion guidewire insertion aid |
US6187000B1 (en) * | 1998-08-20 | 2001-02-13 | Endius Incorporated | Cannula for receiving surgical instruments |
US6296644B1 (en) * | 1998-08-26 | 2001-10-02 | Jean Saurat | Spinal instrumentation system with articulated modules |
US6010162A (en) * | 1998-09-25 | 2000-01-04 | Aeroquip Corporation | Clip fitting for a hose |
US6355038B1 (en) * | 1998-09-25 | 2002-03-12 | Perumala Corporation | Multi-axis internal spinal fixation |
US5944719A (en) * | 1998-11-10 | 1999-08-31 | Millennium Devices, L.L.C. | External fixator |
US6585769B1 (en) * | 1999-04-05 | 2003-07-01 | Howmedica Osteonics Corp. | Artificial spinal ligament |
US6162223A (en) | 1999-04-09 | 2000-12-19 | Smith & Nephew, Inc. | Dynamic wrist fixation apparatus for early joint motion in distal radius fractures |
US6342055B1 (en) * | 1999-04-29 | 2002-01-29 | Theken Surgical Llc | Bone fixation system |
JP3025265B1 (en) | 1999-05-17 | 2000-03-27 | 株式会社ロバート・リード商会 | Wire rod fixing device |
WO2001019268A1 (en) | 1999-09-14 | 2001-03-22 | Dietmar Wolter | Fixation system for bones |
DE19962317A1 (en) * | 1999-09-14 | 2001-03-15 | Dietmar Wolter | Bone fixation system |
US6475220B1 (en) | 1999-10-15 | 2002-11-05 | Whiteside Biomechanics, Inc. | Spinal cable system |
US6811567B2 (en) * | 1999-10-22 | 2004-11-02 | Archus Orthopedics Inc. | Facet arthroplasty devices and methods |
FR2799949B1 (en) | 1999-10-22 | 2002-06-28 | Abder Benazza | SPINAL OSTETHOSYNTHESIS DEVICE |
FR2802796B1 (en) * | 1999-12-24 | 2002-12-27 | Materiel Orthopedique En Abreg | INSTRUMENTATION FOR SHRINKAGE OF THE RACHIS COMPRISING SCREWS WITH INCLINED HEADS |
KR200188511Y1 (en) * | 2000-01-06 | 2000-07-15 | 구자교 | A supplement plug for spinal colulm |
US6893462B2 (en) * | 2000-01-11 | 2005-05-17 | Regeneration Technologies, Inc. | Soft and calcified tissue implants |
US20020133155A1 (en) | 2000-02-25 | 2002-09-19 | Ferree Bret A. | Cross-coupled vertebral stabilizers incorporating spinal motion restriction |
FR2805451B1 (en) * | 2000-02-29 | 2002-04-19 | Arnaud Andre Soubeiran | IMPROVED DEVICE FOR MOVING TWO BODIES IN RELATION TO ONE ANOTHER, PARTICULARLY FOR REALIZING IMPLANTABLE SYSTEMS IN THE HUMAN BODY |
US6293949B1 (en) | 2000-03-01 | 2001-09-25 | Sdgi Holdings, Inc. | Superelastic spinal stabilization system and method |
DE60136980D1 (en) | 2000-03-28 | 2009-01-22 | Showa Ika Kogyo Co Ltd | Spine implant, drive tool and nut guide |
US6402750B1 (en) * | 2000-04-04 | 2002-06-11 | Spinlabs, Llc | Devices and methods for the treatment of spinal disorders |
US6530934B1 (en) * | 2000-06-06 | 2003-03-11 | Sarcos Lc | Embolic device composed of a linear sequence of miniature beads |
US6964667B2 (en) | 2000-06-23 | 2005-11-15 | Sdgi Holdings, Inc. | Formed in place fixation system with thermal acceleration |
US6749614B2 (en) * | 2000-06-23 | 2004-06-15 | Vertelink Corporation | Formable orthopedic fixation system with cross linking |
US6899713B2 (en) * | 2000-06-23 | 2005-05-31 | Vertelink Corporation | Formable orthopedic fixation system |
US6576018B1 (en) * | 2000-06-23 | 2003-06-10 | Edward S. Holt | Apparatus configuration and method for treating flatfoot |
US6328047B1 (en) | 2000-07-19 | 2001-12-11 | Chorng-Cheng Lee | Position adjustment member of a sunshade |
EP1174092A3 (en) * | 2000-07-22 | 2003-03-26 | Corin Spinal Systems Limited | A pedicle attachment assembly |
FR2812185B1 (en) * | 2000-07-25 | 2003-02-28 | Spine Next Sa | SEMI-RIGID CONNECTION PIECE FOR RACHIS STABILIZATION |
FR2812186B1 (en) * | 2000-07-25 | 2003-02-28 | Spine Next Sa | FLEXIBLE CONNECTION PIECE FOR SPINAL STABILIZATION |
US7056321B2 (en) * | 2000-08-01 | 2006-06-06 | Endius, Incorporated | Method of securing vertebrae |
US6626905B1 (en) | 2000-08-02 | 2003-09-30 | Sulzer Spine-Tech Inc. | Posterior oblique lumbar arthrodesis |
US6447546B1 (en) * | 2000-08-11 | 2002-09-10 | Dale G. Bramlet | Apparatus and method for fusing opposing spinal vertebrae |
CA2424553C (en) * | 2000-08-25 | 2008-01-29 | The Cleveland Clinic Foundation | Apparatus and method for assessing loads on adjacent bones |
US6554831B1 (en) * | 2000-09-01 | 2003-04-29 | Hopital Sainte-Justine | Mobile dynamic system for treating spinal disorder |
ES2240384T3 (en) * | 2000-09-18 | 2005-10-16 | Zimmer Gmbh | PEDICULAR SCREW FOR INTERVERTEBRAL SUPPORT ELEMENT. |
US6551320B2 (en) * | 2000-11-08 | 2003-04-22 | The Cleveland Clinic Foundation | Method and apparatus for correcting spinal deformity |
US6579319B2 (en) * | 2000-11-29 | 2003-06-17 | Medicinelodge, Inc. | Facet joint replacement |
US6752831B2 (en) * | 2000-12-08 | 2004-06-22 | Osteotech, Inc. | Biocompatible osteogenic band for repair of spinal disorders |
US6419703B1 (en) * | 2001-03-01 | 2002-07-16 | T. Wade Fallin | Prosthesis for the replacement of a posterior element of a vertebra |
US6964665B2 (en) * | 2000-12-29 | 2005-11-15 | Thomas James C | Vertebral alignment system |
US6488681B2 (en) | 2001-01-05 | 2002-12-03 | Stryker Spine S.A. | Pedicle screw assembly |
CA2435718A1 (en) * | 2001-01-29 | 2002-08-08 | Stephen Ritland | Retractor and method for spinal pedicle screw placement |
JP2002224131A (en) | 2001-02-05 | 2002-08-13 | Mizuho Co Ltd | Inter-vertebral fixing device |
US6451021B1 (en) * | 2001-02-15 | 2002-09-17 | Third Millennium Engineering, Llc | Polyaxial pedicle screw having a rotating locking element |
US6666867B2 (en) * | 2001-02-15 | 2003-12-23 | Fast Enetix, Llc | Longitudinal plate assembly having an adjustable length |
US6652585B2 (en) | 2001-02-28 | 2003-11-25 | Sdgi Holdings, Inc. | Flexible spine stabilization system |
US6827743B2 (en) * | 2001-02-28 | 2004-12-07 | Sdgi Holdings, Inc. | Woven orthopedic implants |
US7229441B2 (en) * | 2001-02-28 | 2007-06-12 | Warsaw Orthopedic, Inc. | Flexible systems for spinal stabilization and fixation |
US6802844B2 (en) * | 2001-03-26 | 2004-10-12 | Nuvasive, Inc | Spinal alignment apparatus and methods |
US7128760B2 (en) * | 2001-03-27 | 2006-10-31 | Warsaw Orthopedic, Inc. | Radially expanding interbody spinal fusion implants, instrumentation, and methods of insertion |
US7344539B2 (en) * | 2001-03-30 | 2008-03-18 | Depuy Acromed, Inc. | Intervertebral connection system |
US6706044B2 (en) * | 2001-04-19 | 2004-03-16 | Spineology, Inc. | Stacked intermedular rods for spinal fixation |
ATE382298T1 (en) | 2001-04-24 | 2008-01-15 | Coligne Ag | INSTRUMENTS FOR STABILIZING CERTAIN VERTEBRATES OF THE SPINE |
US6589246B1 (en) * | 2001-04-26 | 2003-07-08 | Poly-4 Medical, Inc. | Method of applying an active compressive force continuously across a fracture |
US7862587B2 (en) * | 2004-02-27 | 2011-01-04 | Jackson Roger P | Dynamic stabilization assemblies, tool set and method |
GB0114783D0 (en) | 2001-06-16 | 2001-08-08 | Sengupta Dilip K | A assembly for the stabilisation of vertebral bodies of the spine |
US6575018B2 (en) * | 2001-07-06 | 2003-06-10 | Delphi Technologies, Inc. | Method for determining oil viscosity |
FR2827498B1 (en) | 2001-07-18 | 2004-05-14 | Frederic Fortin | FLEXIBLE VERTEBRAL CONNECTION DEVICE CONSISTING OF PALLIANT ELEMENTS OF THE RACHIS |
WO2003007829A1 (en) * | 2001-07-20 | 2003-01-30 | Spinal Concepts, Inc. | Spinal stabilization system and method |
JP4755781B2 (en) * | 2001-08-01 | 2011-08-24 | 昭和医科工業株式会社 | Jointing member for osteosynthesis |
US6884241B2 (en) * | 2001-09-04 | 2005-04-26 | Orthotec, Llc | Spinal assembly plate |
US6974460B2 (en) * | 2001-09-14 | 2005-12-13 | Stryker Spine | Biased angulation bone fixation assembly |
US7722645B2 (en) * | 2001-09-24 | 2010-05-25 | Bryan Donald W | Pedicle screw spinal fixation device |
US7207992B2 (en) * | 2001-09-28 | 2007-04-24 | Stephen Ritland | Connection rod for screw or hook polyaxial system and method of use |
GB2382304A (en) | 2001-10-10 | 2003-05-28 | Dilip Kumar Sengupta | An assembly for soft stabilisation of vertebral bodies of the spine |
FR2831420B1 (en) | 2001-10-30 | 2004-07-16 | Vitatech | APPARATUS FOR HOLDING THE SPIN WITH JOINTING ASSEMBLY |
US7008431B2 (en) * | 2001-10-30 | 2006-03-07 | Depuy Spine, Inc. | Configured and sized cannula |
US7285121B2 (en) * | 2001-11-05 | 2007-10-23 | Warsaw Orthopedic, Inc. | Devices and methods for the correction and treatment of spinal deformities |
MXPA04005398A (en) | 2001-12-07 | 2005-03-23 | Mathys Medizinaltechnik Ag | Damping element. |
US6520495B1 (en) * | 2002-01-24 | 2003-02-18 | Christopher La Mendola | Clamping device with flexible arm |
US6626909B2 (en) | 2002-02-27 | 2003-09-30 | Kingsley Richard Chin | Apparatus and method for spine fixation |
US6966910B2 (en) * | 2002-04-05 | 2005-11-22 | Stephen Ritland | Dynamic fixation device and method of use |
US7261688B2 (en) * | 2002-04-05 | 2007-08-28 | Warsaw Orthopedic, Inc. | Devices and methods for percutaneous tissue retraction and surgery |
US20050261682A1 (en) | 2002-04-13 | 2005-11-24 | Ferree Bret A | Vertebral shock absorbers |
US7223289B2 (en) * | 2002-04-16 | 2007-05-29 | Warsaw Orthopedic, Inc. | Annulus repair systems and techniques |
AU2003228960B2 (en) * | 2002-05-08 | 2009-06-11 | Stephen Ritland | Dynamic fixation device and method of use |
ATE299671T1 (en) | 2002-05-21 | 2005-08-15 | Spinelab Gmbh | ELASTIC STABILIZATION SYSTEM FOR SPINES |
US20030220643A1 (en) | 2002-05-24 | 2003-11-27 | Ferree Bret A. | Devices to prevent spinal extension |
DE10236691B4 (en) * | 2002-08-09 | 2005-12-01 | Biedermann Motech Gmbh | Dynamic stabilization device for bones, in particular for vertebrae |
FR2843538B1 (en) * | 2002-08-13 | 2005-08-12 | Frederic Fortin | DEVICE FOR DISTRACTING AND DAMPING ADJUSTABLE TO THE GROWTH OF THE RACHIS |
AU2003265597A1 (en) * | 2002-08-23 | 2004-03-11 | Paul C. Mcafee | Metal-backed uhmpe rod sleeve system preserving spinal motion |
JP2004095004A (en) * | 2002-08-29 | 2004-03-25 | Pioneer Electronic Corp | Data selecting device, data reproducing device, and data selecting method |
US6648888B1 (en) * | 2002-09-06 | 2003-11-18 | Endius Incorporated | Surgical instrument for moving a vertebra |
US6919497B2 (en) * | 2002-09-10 | 2005-07-19 | First Line Seeds Ltd. | Soybean cultivar SN83544 |
JP4323147B2 (en) * | 2002-09-10 | 2009-09-02 | 天野エンザイム株式会社 | Transglutaminase producing bacteria |
FR2844180B1 (en) * | 2002-09-11 | 2005-08-05 | Spinevision | CONNECTING ELEMENT FOR THE DYNAMIC STABILIZATION OF A SPINAL FIXING SYSTEM AND SPINAL FASTENING SYSTEM COMPRISING SUCH A MEMBER |
FR2845587B1 (en) * | 2002-10-14 | 2005-01-21 | Scient X | DYNAMIC DEVICE FOR INTERVERTEBRAL CONNECTION WITH MULTIDIRECTIONALLY CONTROLLED DEBATMENT |
US20040147928A1 (en) * | 2002-10-30 | 2004-07-29 | Landry Michael E. | Spinal stabilization system using flexible members |
EP2366349B1 (en) * | 2002-10-30 | 2017-04-05 | Zimmer Spine, Inc. | Spinal stabilization system insertion |
US7104992B2 (en) * | 2003-01-14 | 2006-09-12 | Ebi, L.P. | Spinal fixation system |
JP5089848B2 (en) | 2003-02-03 | 2012-12-05 | 株式会社日立製作所 | Incubator |
US7604653B2 (en) * | 2003-04-25 | 2009-10-20 | Kitchen Michael S | Spinal curvature correction device |
US7473267B2 (en) * | 2003-04-25 | 2009-01-06 | Warsaw Orthopedic, Inc. | System and method for minimally invasive posterior fixation |
US7713287B2 (en) | 2003-05-02 | 2010-05-11 | Applied Spine Technologies, Inc. | Dynamic spine stabilizer |
US20050182401A1 (en) | 2003-05-02 | 2005-08-18 | Timm Jens P. | Systems and methods for spine stabilization including a dynamic junction |
US8652175B2 (en) | 2003-05-02 | 2014-02-18 | Rachiotek, Llc | Surgical implant devices and systems including a sheath member |
US20050171543A1 (en) | 2003-05-02 | 2005-08-04 | Timm Jens P. | Spine stabilization systems and associated devices, assemblies and methods |
ES2387420T3 (en) | 2003-05-02 | 2012-09-21 | Yale University | DORSAL SPINE DYNAMIC STABILIZER |
US20050182400A1 (en) | 2003-05-02 | 2005-08-18 | Jeffrey White | Spine stabilization systems, devices and methods |
JP5078355B2 (en) | 2003-05-23 | 2012-11-21 | グローバス メディカル インコーポレイティッド | Spine stabilization system |
US6986771B2 (en) * | 2003-05-23 | 2006-01-17 | Globus Medical, Inc. | Spine stabilization system |
DE10326517A1 (en) | 2003-06-12 | 2005-01-05 | Stratec Medical | Device for the dynamic stabilization of bones or bone fragments, in particular vertebrae |
DE10327358A1 (en) | 2003-06-16 | 2005-01-05 | Ulrich Gmbh & Co. Kg | Implant for correction and stabilization of the spine |
US7326200B2 (en) * | 2003-07-25 | 2008-02-05 | Warsaw Orthopedic, Inc. | Annulus repair systems, instruments and techniques |
US7794476B2 (en) * | 2003-08-08 | 2010-09-14 | Warsaw Orthopedic, Inc. | Implants formed of shape memory polymeric material for spinal fixation |
US6996910B2 (en) * | 2003-08-29 | 2006-02-14 | Ying Chou Liao | Laser leveling device for generating parallel lines |
US7815665B2 (en) | 2003-09-24 | 2010-10-19 | N Spine, Inc. | Adjustable spinal stabilization system |
US8979900B2 (en) | 2003-09-24 | 2015-03-17 | DePuy Synthes Products, LLC | Spinal stabilization device |
US7763052B2 (en) * | 2003-12-05 | 2010-07-27 | N Spine, Inc. | Method and apparatus for flexible fixation of a spine |
US20050203513A1 (en) | 2003-09-24 | 2005-09-15 | Tae-Ahn Jahng | Spinal stabilization device |
EP1667593A1 (en) | 2003-09-29 | 2006-06-14 | Synthes GmbH | Dynamic damping element for two bones |
JP4932254B2 (en) | 2003-09-29 | 2012-05-16 | ジンテーズ ゲゼルシャフト ミト ベシュレンクテル ハフツング | Apparatus for elastic stabilization of vertebral bodies |
AU2003264225A1 (en) | 2003-09-29 | 2005-04-14 | Synthes Gmbh | Damping element |
US20050090822A1 (en) * | 2003-10-24 | 2005-04-28 | Dipoto Gene | Methods and apparatus for stabilizing the spine through an access device |
WO2005037150A1 (en) * | 2003-10-16 | 2005-04-28 | Osteotech, Inc. | System and method for flexible correction of bony motion segment |
WO2005039454A2 (en) | 2003-10-17 | 2005-05-06 | Biedermann Motech Gmbh | Flexible implant |
DE10348329B3 (en) * | 2003-10-17 | 2005-02-17 | Biedermann Motech Gmbh | Rod-shaped element used in spinal column and accident surgery for connecting two bone-anchoring elements comprises a rigid section and an elastic section that are made in one piece |
EP1925264B1 (en) | 2003-11-07 | 2010-09-29 | BIEDERMANN MOTECH GmbH | Bone anchoring element |
US8632570B2 (en) * | 2003-11-07 | 2014-01-21 | Biedermann Technologies Gmbh & Co. Kg | Stabilization device for bones comprising a spring element and manufacturing method for said spring element |
US7862586B2 (en) * | 2003-11-25 | 2011-01-04 | Life Spine, Inc. | Spinal stabilization systems |
US20050131407A1 (en) * | 2003-12-16 | 2005-06-16 | Sicvol Christopher W. | Flexible spinal fixation elements |
US7815664B2 (en) * | 2005-01-04 | 2010-10-19 | Warsaw Orthopedic, Inc. | Systems and methods for spinal stabilization with flexible elements |
US7297146B2 (en) | 2004-01-30 | 2007-11-20 | Warsaw Orthopedic, Inc. | Orthopedic distraction implants and techniques |
US7597694B2 (en) * | 2004-01-30 | 2009-10-06 | Warsaw Orthopedic, Inc. | Instruments and methods for minimally invasive spinal stabilization |
US20050203511A1 (en) | 2004-03-02 | 2005-09-15 | Wilson-Macdonald James | Orthopaedics device and system |
FR2867057B1 (en) * | 2004-03-02 | 2007-06-01 | Spinevision | DYNAMIC BONDING ELEMENT FOR A SPINAL FIXING SYSTEM AND FIXING SYSTEM COMPRISING SUCH A CONNECTING MEMBER |
US7799053B2 (en) | 2004-03-08 | 2010-09-21 | Warsaw Orthopedic, Inc. | Occipital and cervical stabilization systems and methods |
DE102004011685A1 (en) * | 2004-03-09 | 2005-09-29 | Biedermann Motech Gmbh | Spine supporting element, comprising spiraled grooves at outer surface and three plain areas |
WO2005092222A1 (en) | 2004-03-25 | 2005-10-06 | Un Soon Kim | Multiple rod connecting peidcle screws |
FR2868285B1 (en) | 2004-03-30 | 2006-11-24 | Scient X Sa | INTERVERTEBRAL CONNECTION DEVICE WITH CONTROLLED MULTIDIRECTIONAL MOVEMENTS |
US7282065B2 (en) | 2004-04-09 | 2007-10-16 | X-Spine Systems, Inc. | Disk augmentation system and method |
US7833256B2 (en) * | 2004-04-16 | 2010-11-16 | Biedermann Motech Gmbh | Elastic element for the use in a stabilization device for bones and vertebrae and method for the manufacture of such elastic element |
DE502004009870D1 (en) * | 2004-04-28 | 2009-09-17 | Synthes Gmbh | DEVICE FOR DYNAMIC STABILIZATION OF BONES |
FR2869523A1 (en) | 2004-04-28 | 2005-11-04 | Frederic Fortin | FLEXIBLE AND MODULAR VERTEBRAL CONNECTION DEVICE HAVING AN ADJUSTABLE ELEMENT FOR WORKING MULTIDIRECTIONALLY |
US7766941B2 (en) | 2004-05-14 | 2010-08-03 | Paul Kamaljit S | Spinal support, stabilization |
GB2414674B (en) | 2004-06-04 | 2009-08-12 | John Burke | Apparatus for the correction of skeletal deformities |
US8858599B2 (en) | 2004-06-09 | 2014-10-14 | Warsaw Orthopedic, Inc. | Systems and methods for flexible spinal stabilization |
US20060015100A1 (en) * | 2004-06-23 | 2006-01-19 | Panjabi Manohar M | Spinal stabilization devices coupled by torsional member |
US7854752B2 (en) * | 2004-08-09 | 2010-12-21 | Theken Spine, Llc | System and method for dynamic skeletal stabilization |
US8162985B2 (en) * | 2004-10-20 | 2012-04-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8267967B2 (en) * | 2004-12-15 | 2012-09-18 | Stryker Spine | Methods and apparatus for modular and variable spinal fixation |
EP1830723A4 (en) | 2004-12-27 | 2010-03-10 | N Spine Inc | Adjustable spinal stabilization system |
US7604654B2 (en) | 2005-02-22 | 2009-10-20 | Stryker Spine | Apparatus and method for dynamic vertebral stabilization |
US20060212033A1 (en) | 2005-03-03 | 2006-09-21 | Accin Corporation | Vertebral stabilization using flexible rods |
US7556639B2 (en) * | 2005-03-03 | 2009-07-07 | Accelerated Innovation, Llc | Methods and apparatus for vertebral stabilization using sleeved springs |
US8221467B2 (en) | 2005-11-18 | 2012-07-17 | Life Spine, Inc. | Dynamic spinal stabilization device and systems |
JP2007267359A (en) | 2006-03-03 | 2007-10-11 | Ricoh Co Ltd | Image reading apparatus and image forming apparatus |
US7785350B2 (en) | 2006-05-08 | 2010-08-31 | Warsaw Orthopedic, Inc. | Load bearing flexible spinal connecting element |
DE102006060933A1 (en) | 2006-12-20 | 2008-07-10 | Wolter, Dietmar F., Prof. Dr. | bone screw |
US8292925B2 (en) | 2007-06-19 | 2012-10-23 | Zimmer Spine, Inc. | Flexible member with variable flexibility for providing dynamic stability to a spine |
-
2003
- 2003-12-05 US US10/728,566 patent/US20050065516A1/en not_active Abandoned
- 2003-12-05 US US10/728,563 patent/US7137985B2/en not_active Expired - Lifetime
-
2004
- 2004-09-17 AU AU2004275735A patent/AU2004275735B2/en not_active Ceased
- 2004-09-17 EP EP04784392A patent/EP1686906A4/en not_active Withdrawn
- 2004-09-17 CN CN2004800335885A patent/CN1882286B/en not_active Expired - Fee Related
- 2004-09-17 JP JP2006528076A patent/JP4603549B2/en not_active Expired - Fee Related
- 2004-09-17 CA CA002539923A patent/CA2539923A1/en not_active Abandoned
- 2004-09-17 EP EP04784566A patent/EP1677689A4/en not_active Withdrawn
- 2004-09-17 WO PCT/US2004/030732 patent/WO2005030031A2/en active Application Filing
- 2004-09-17 CN CN2010101581808A patent/CN101912297A/en active Pending
- 2004-09-17 WO PCT/US2004/030519 patent/WO2005030029A2/en active Application Filing
- 2004-09-23 KR KR10-2004-0076294A patent/KR100499559B1/en not_active IP Right Cessation
-
2005
- 2005-03-02 US US11/071,271 patent/US7993370B2/en active Active
- 2005-11-22 US US11/285,527 patent/US20060195093A1/en not_active Abandoned
-
2006
- 2006-03-21 IL IL174444A patent/IL174444A0/en unknown
- 2006-11-10 US US11/595,303 patent/US20070055247A1/en not_active Abandoned
-
2007
- 2007-01-04 US US11/650,260 patent/US8968366B2/en not_active Expired - Lifetime
-
2010
- 2010-10-08 JP JP2010228354A patent/JP2011031057A/en not_active Withdrawn
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4573448A (en) * | 1983-10-05 | 1986-03-04 | Pilling Co. | Method for decompressing herniated intervertebral discs |
US5282863A (en) * | 1985-06-10 | 1994-02-01 | Charles V. Burton | Flexible stabilization system for a vertebral column |
US4748260A (en) * | 1986-12-22 | 1988-05-31 | Ethyl Corporation | Preparation of amine alanes |
US5540688A (en) * | 1991-05-30 | 1996-07-30 | Societe "Psi" | Intervertebral stabilization device incorporating dampers |
US5665092A (en) * | 1993-03-01 | 1997-09-09 | Mangiardi; John R. | Marker for surgical procedures |
US5672175A (en) * | 1993-08-27 | 1997-09-30 | Martin; Jean Raymond | Dynamic implanted spinal orthosis and operative procedure for fitting |
US6175758B1 (en) * | 1997-07-15 | 2001-01-16 | Parviz Kambin | Method for percutaneous arthroscopic disc removal, bone biopsy and fixation of the vertebrae |
US6596008B1 (en) * | 1997-07-15 | 2003-07-22 | Parviz Kambin | Method and instruments for percutaneous arthroscopic disc removal, bone biopsy and fixation of the vertebral |
US6468279B1 (en) * | 1998-01-27 | 2002-10-22 | Kyphon Inc. | Slip-fit handle for hand-held instruments that access interior body regions |
US6193720B1 (en) * | 1998-11-30 | 2001-02-27 | Depuy Orthopaedics, Inc. | Cervical spine stabilization method and system |
US6530929B1 (en) * | 1999-10-20 | 2003-03-11 | Sdgi Holdings, Inc. | Instruments for stabilization of bony structures |
US6558390B2 (en) * | 2000-02-16 | 2003-05-06 | Axiamed, Inc. | Methods and apparatus for performing therapeutic procedures in the spine |
US6575979B1 (en) * | 2000-02-16 | 2003-06-10 | Axiamed, Inc. | Method and apparatus for providing posterior or anterior trans-sacral access to spinal vertebrae |
US20010037111A1 (en) * | 2000-05-08 | 2001-11-01 | Dixon Robert A. | Method and apparatus for dynamized spinal stabilization |
US6821277B2 (en) * | 2000-06-23 | 2004-11-23 | University Of Southern California Patent And Copyright Administration | Percutaneous vertebral fusion system |
US20050059976A1 (en) * | 2000-08-08 | 2005-03-17 | Sdgi Holdings, Inc. | Method and apparatus for stereotactic implantation |
US20030083657A1 (en) * | 2001-10-30 | 2003-05-01 | Drewry Troy D. | Flexible spinal stabilization system and method |
US7137985B2 (en) * | 2003-09-24 | 2006-11-21 | N Spine, Inc. | Marking and guidance method and system for flexible fixation of a spine |
Cited By (181)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070288093A1 (en) * | 2000-07-25 | 2007-12-13 | Abbott Spine | Semirigid linking piece for stabilizing the spine |
US8012182B2 (en) | 2000-07-25 | 2011-09-06 | Zimmer Spine S.A.S. | Semi-rigid linking piece for stabilizing the spine |
US8814913B2 (en) | 2002-09-06 | 2014-08-26 | Roger P Jackson | Helical guide and advancement flange with break-off extensions |
US7887482B2 (en) | 2002-10-25 | 2011-02-15 | K2M, Inc. | Minimal access lumbar diskectomy instrumentation and method |
US7935054B2 (en) | 2002-10-25 | 2011-05-03 | K2M, Inc. | Minimal access lumbar diskectomy instrumentation and method |
US20070038216A1 (en) * | 2002-10-25 | 2007-02-15 | Hamada James S | Minimal incision maximal access MIS spine instrumentation and method |
US8303499B2 (en) | 2002-10-25 | 2012-11-06 | K2M, Inc. | Minimal incision maximal access MIS spine instrumentation and method |
US7850608B2 (en) | 2002-10-25 | 2010-12-14 | K2M, Inc. | Minimal incision maximal access MIS spine instrumentation and method |
US20050240209A1 (en) * | 2002-10-25 | 2005-10-27 | Hamada James S | Minimal access lumbar diskectomy instrumentation and method |
US8636657B2 (en) | 2002-10-25 | 2014-01-28 | K2M, Inc. | Minimal incision maximal access MIS spine instrumentation and method |
US7883522B2 (en) | 2002-10-25 | 2011-02-08 | K2M, Inc. | Minimal access lumbar diskectomy instrumentation and method |
US20060167487A1 (en) * | 2002-10-25 | 2006-07-27 | Hamada James S | Minimal access lumbar diskectomy instrumentation and method |
US7946982B2 (en) | 2002-10-25 | 2011-05-24 | K2M, Inc. | Minimal incision maximal access MIS spine instrumentation and method |
US9095301B2 (en) | 2002-10-25 | 2015-08-04 | K2M, Inc. | Minimal incision maximal access MIS spine instrumentation and method |
US20060271096A1 (en) * | 2002-10-25 | 2006-11-30 | Hamada James S | Minimal incision maximal access MIS spine instrumentation and method |
US20060178693A1 (en) * | 2002-10-25 | 2006-08-10 | Hamada James S | Minimal access lumbar diskectomy instrumentation and method |
US8298139B2 (en) | 2002-10-25 | 2012-10-30 | K2M, Inc. | Minimal incision maximal access MIS spine instrumentation and method |
US20070276380A1 (en) * | 2003-09-24 | 2007-11-29 | Tae-Ahn Jahng | Spinal stabilization device |
US8979900B2 (en) | 2003-09-24 | 2015-03-17 | DePuy Synthes Products, LLC | Spinal stabilization device |
US8968366B2 (en) | 2003-09-24 | 2015-03-03 | DePuy Synthes Products, LLC | Method and apparatus for flexible fixation of a spine |
US20070123871A1 (en) * | 2003-09-24 | 2007-05-31 | Tae-Ahn Jahng | Method and apparatus for flexible fixation of a spine |
US20110106167A1 (en) * | 2003-09-24 | 2011-05-05 | Tae-Ahn Jahng | Adjustable spinal stabilization system |
US11419642B2 (en) | 2003-12-16 | 2022-08-23 | Medos International Sarl | Percutaneous access devices and bone anchor assemblies |
US10299839B2 (en) | 2003-12-16 | 2019-05-28 | Medos International Sárl | Percutaneous access devices and bone anchor assemblies |
US11426216B2 (en) | 2003-12-16 | 2022-08-30 | DePuy Synthes Products, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
US10039578B2 (en) | 2003-12-16 | 2018-08-07 | DePuy Synthes Products, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
US8162948B2 (en) | 2004-02-27 | 2012-04-24 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US9662151B2 (en) | 2004-02-27 | 2017-05-30 | Roger P Jackson | Orthopedic implant rod reduction tool set and method |
US9636151B2 (en) | 2004-02-27 | 2017-05-02 | Roger P Jackson | Orthopedic implant rod reduction tool set and method |
US9918751B2 (en) | 2004-02-27 | 2018-03-20 | Roger P. Jackson | Tool system for dynamic spinal implants |
US9532815B2 (en) | 2004-02-27 | 2017-01-03 | Roger P. Jackson | Spinal fixation tool set and method |
US8066739B2 (en) | 2004-02-27 | 2011-11-29 | Jackson Roger P | Tool system for dynamic spinal implants |
US10485588B2 (en) | 2004-02-27 | 2019-11-26 | Nuvasive, Inc. | Spinal fixation tool attachment structure |
US9216039B2 (en) | 2004-02-27 | 2015-12-22 | Roger P. Jackson | Dynamic spinal stabilization assemblies, tool set and method |
US8394133B2 (en) | 2004-02-27 | 2013-03-12 | Roger P. Jackson | Dynamic fixation assemblies with inner core and outer coil-like member |
US11147597B2 (en) | 2004-02-27 | 2021-10-19 | Roger P Jackson | Dynamic spinal stabilization assemblies, tool set and method |
US8377067B2 (en) | 2004-02-27 | 2013-02-19 | Roger P. Jackson | Orthopedic implant rod reduction tool set and method |
US8100915B2 (en) | 2004-02-27 | 2012-01-24 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US9055978B2 (en) | 2004-02-27 | 2015-06-16 | Roger P. Jackson | Orthopedic implant rod reduction tool set and method |
US9050139B2 (en) | 2004-02-27 | 2015-06-09 | Roger P. Jackson | Orthopedic implant rod reduction tool set and method |
US11291480B2 (en) | 2004-02-27 | 2022-04-05 | Nuvasive, Inc. | Spinal fixation tool attachment structure |
US8894657B2 (en) | 2004-02-27 | 2014-11-25 | Roger P. Jackson | Tool system for dynamic spinal implants |
US11648039B2 (en) | 2004-02-27 | 2023-05-16 | Roger P. Jackson | Spinal fixation tool attachment structure |
US8292892B2 (en) | 2004-02-27 | 2012-10-23 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US7766941B2 (en) | 2004-05-14 | 2010-08-03 | Paul Kamaljit S | Spinal support, stabilization |
US20050261686A1 (en) * | 2004-05-14 | 2005-11-24 | Paul Kamaljit S | Spinal support, stabilization |
US20080039943A1 (en) * | 2004-05-25 | 2008-02-14 | Regis Le Couedic | Set For Treating The Degeneracy Of An Intervertebral Disc |
US8845649B2 (en) | 2004-09-24 | 2014-09-30 | Roger P. Jackson | Spinal fixation tool set and method for rod reduction and fastener insertion |
US9743957B2 (en) | 2004-11-10 | 2017-08-29 | Roger P. Jackson | Polyaxial bone screw with shank articulation pressure insert and method |
US8591515B2 (en) | 2004-11-23 | 2013-11-26 | Roger P. Jackson | Spinal fixation tool set and method |
US11389214B2 (en) | 2004-11-23 | 2022-07-19 | Roger P. Jackson | Spinal fixation tool set and method |
US8273089B2 (en) | 2004-11-23 | 2012-09-25 | Jackson Roger P | Spinal fixation tool set and method |
US9629669B2 (en) | 2004-11-23 | 2017-04-25 | Roger P. Jackson | Spinal fixation tool set and method |
US8152810B2 (en) | 2004-11-23 | 2012-04-10 | Jackson Roger P | Spinal fixation tool set and method |
US9211150B2 (en) | 2004-11-23 | 2015-12-15 | Roger P. Jackson | Spinal fixation tool set and method |
US10039577B2 (en) | 2004-11-23 | 2018-08-07 | Roger P Jackson | Bone anchor receiver with horizontal radiused tool attachment structures and parallel planar outer surfaces |
US9414863B2 (en) | 2005-02-22 | 2016-08-16 | Roger P. Jackson | Polyaxial bone screw with spherical capture, compression insert and alignment and retention structures |
USRE47551E1 (en) | 2005-02-22 | 2019-08-06 | Roger P. Jackson | Polyaxial bone screw with spherical capture, compression insert and alignment and retention structures |
US10194951B2 (en) | 2005-05-10 | 2019-02-05 | Roger P. Jackson | Polyaxial bone anchor with compound articulation and pop-on shank |
US20110054259A1 (en) * | 2005-09-26 | 2011-03-03 | K2M, Inc. | Minimally invasive retractor and methods of use |
US8298138B2 (en) | 2005-09-26 | 2012-10-30 | K2M, Inc. | Minimally invasive retractor and methods of use |
US7846093B2 (en) | 2005-09-26 | 2010-12-07 | K2M, Inc. | Minimally invasive retractor and methods of use |
US9161779B2 (en) | 2005-09-26 | 2015-10-20 | K2M, Inc. | Minimally invasive retractor and methods of use |
US9510858B2 (en) | 2005-09-26 | 2016-12-06 | K2M, Inc. | Minimally invasive retractor and methods of use |
US8734338B2 (en) | 2005-09-26 | 2014-05-27 | K2M, Inc. | Minimally invasive retractor and methods of use |
US20070106123A1 (en) * | 2005-09-26 | 2007-05-10 | Josef Gorek | Minimally invasive retractor and methods of use |
US8591560B2 (en) | 2005-09-30 | 2013-11-26 | Roger P. Jackson | Dynamic stabilization connecting member with elastic core and outer sleeve |
US8105368B2 (en) | 2005-09-30 | 2012-01-31 | Jackson Roger P | Dynamic stabilization connecting member with slitted core and outer sleeve |
US8696711B2 (en) | 2005-09-30 | 2014-04-15 | Roger P. Jackson | Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member |
US8353932B2 (en) | 2005-09-30 | 2013-01-15 | Jackson Roger P | Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member |
US11241261B2 (en) | 2005-09-30 | 2022-02-08 | Roger P Jackson | Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure |
US8292926B2 (en) | 2005-09-30 | 2012-10-23 | Jackson Roger P | Dynamic stabilization connecting member with elastic core and outer sleeve |
US8613760B2 (en) | 2005-09-30 | 2013-12-24 | Roger P. Jackson | Dynamic stabilization connecting member with slitted core and outer sleeve |
US10729469B2 (en) | 2006-01-09 | 2020-08-04 | Roger P. Jackson | Flexible spinal stabilization assembly with spacer having off-axis core member |
US20110022092A1 (en) * | 2006-01-27 | 2011-01-27 | Warsaw Orthopedic, Inc. | Vertebral rods and methods of use |
US20070191953A1 (en) * | 2006-01-27 | 2007-08-16 | Sdgi Holdings, Inc. | Intervertebral implants and methods of use |
US7815663B2 (en) | 2006-01-27 | 2010-10-19 | Warsaw Orthopedic, Inc. | Vertebral rods and methods of use |
US7578849B2 (en) | 2006-01-27 | 2009-08-25 | Warsaw Orthopedic, Inc. | Intervertebral implants and methods of use |
US20070191832A1 (en) * | 2006-01-27 | 2007-08-16 | Sdgi Holdings, Inc. | Vertebral rods and methods of use |
US7682376B2 (en) | 2006-01-27 | 2010-03-23 | Warsaw Orthopedic, Inc. | Interspinous devices and methods of use |
US20070191837A1 (en) * | 2006-01-27 | 2007-08-16 | Sdgi Holdings, Inc. | Interspinous devices and methods of use |
US8414619B2 (en) | 2006-01-27 | 2013-04-09 | Warsaw Orthopedic, Inc. | Vertebral rods and methods of use |
US20070233091A1 (en) * | 2006-02-23 | 2007-10-04 | Naifeh Bill R | Multi-level spherical linkage implant system |
US8025681B2 (en) | 2006-03-29 | 2011-09-27 | Theken Spine, Llc | Dynamic motion spinal stabilization system |
US20070233094A1 (en) * | 2006-03-29 | 2007-10-04 | Dennis Colleran | Dynamic motion spinal stabilization system |
US20070260125A1 (en) * | 2006-05-02 | 2007-11-08 | Strauss Kevin R | Minimally open retraction device |
US8696560B2 (en) | 2006-05-02 | 2014-04-15 | K2M, Inc. | Minimally open retraction device |
US9681863B2 (en) | 2006-05-02 | 2017-06-20 | K2M, Inc. | Minimally open retraction device |
US10485529B2 (en) | 2006-05-02 | 2019-11-26 | K2M, Inc. | Minimally open retraction device |
US11529132B2 (en) | 2006-05-02 | 2022-12-20 | K2M, Inc. | Minimally open retraction device |
US9131934B2 (en) | 2006-05-02 | 2015-09-15 | K2M, Inc. | Minimally open retraction device |
US8425601B2 (en) | 2006-09-11 | 2013-04-23 | Warsaw Orthopedic, Inc. | Spinal stabilization devices and methods of use |
US20080065079A1 (en) * | 2006-09-11 | 2008-03-13 | Aurelien Bruneau | Spinal Stabilization Devices and Methods of Use |
US10258382B2 (en) | 2007-01-18 | 2019-04-16 | Roger P. Jackson | Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord |
US8475498B2 (en) | 2007-01-18 | 2013-07-02 | Roger P. Jackson | Dynamic stabilization connecting member with cord connection |
US9451989B2 (en) | 2007-01-18 | 2016-09-27 | Roger P Jackson | Dynamic stabilization members with elastic and inelastic sections |
US10470801B2 (en) | 2007-01-18 | 2019-11-12 | Roger P. Jackson | Dynamic spinal stabilization with rod-cord longitudinal connecting members |
US9101404B2 (en) | 2007-01-26 | 2015-08-11 | Roger P. Jackson | Dynamic stabilization connecting member with molded connection |
US7901437B2 (en) | 2007-01-26 | 2011-03-08 | Jackson Roger P | Dynamic stabilization member with molded connection |
US8012177B2 (en) | 2007-02-12 | 2011-09-06 | Jackson Roger P | Dynamic stabilization assembly with frusto-conical connection |
US8506599B2 (en) | 2007-02-12 | 2013-08-13 | Roger P. Jackson | Dynamic stabilization assembly with frusto-conical connection |
US11083447B2 (en) | 2007-04-17 | 2021-08-10 | K2M, Inc. | Minimally open interbody access retraction device and surgical method |
US8979749B2 (en) | 2007-04-17 | 2015-03-17 | K2M, Inc. | Minimally open interbody access retraction device and surgical method |
US9675337B2 (en) | 2007-04-17 | 2017-06-13 | K2M, Inc. | Minimally open interbody access retraction device and surgical method |
US20080262318A1 (en) * | 2007-04-17 | 2008-10-23 | K2M, Inc. | Minimally open interbody access retraction device and surgical method |
US11812940B2 (en) | 2007-04-17 | 2023-11-14 | K2M, Inc. | Minimally open interbody access retraction device and surgical method |
US10405841B2 (en) | 2007-04-17 | 2019-09-10 | K2M, Inc. | Minimally open interbody access retraction device and surgical method |
US8092500B2 (en) | 2007-05-01 | 2012-01-10 | Jackson Roger P | Dynamic stabilization connecting member with floating core, compression spacer and over-mold |
US8979904B2 (en) | 2007-05-01 | 2015-03-17 | Roger P Jackson | Connecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control |
US10383660B2 (en) | 2007-05-01 | 2019-08-20 | Roger P. Jackson | Soft stabilization assemblies with pretensioned cords |
US8366745B2 (en) | 2007-05-01 | 2013-02-05 | Jackson Roger P | Dynamic stabilization assembly having pre-compressed spacers with differential displacements |
WO2008136802A1 (en) * | 2007-05-02 | 2008-11-13 | K2M, Inc. | Minimally open retraction device |
US7951170B2 (en) | 2007-05-31 | 2011-05-31 | Jackson Roger P | Dynamic stabilization connecting member with pre-tensioned solid core |
US20080312694A1 (en) * | 2007-06-15 | 2008-12-18 | Peterman Marc M | Dynamic stabilization rod for spinal implants and methods for manufacturing the same |
US20090005814A1 (en) * | 2007-06-28 | 2009-01-01 | Peter Thomas Miller | Stabilization system and method |
US8043343B2 (en) | 2007-06-28 | 2011-10-25 | Zimmer Spine, Inc. | Stabilization system and method |
US8870919B2 (en) | 2007-06-28 | 2014-10-28 | Zimmer Spine, Inc. | Stabilization system and method |
US20100228298A1 (en) * | 2007-08-17 | 2010-09-09 | Jmea Corporation | Method For Treating A Spinal Deformity |
US20090048631A1 (en) * | 2007-08-17 | 2009-02-19 | Bhatnagar Mohit K | Dynamic Stabilization Device for Spine |
US8425568B2 (en) | 2007-08-17 | 2013-04-23 | Jmea Corporation | Method for treating a spinal deformity |
US8080038B2 (en) | 2007-08-17 | 2011-12-20 | Jmea Corporation | Dynamic stabilization device for spine |
US9445845B2 (en) | 2007-08-17 | 2016-09-20 | Jmea Corporation | Dynamic stabilization systems and devices for a spine |
US20090093843A1 (en) * | 2007-10-05 | 2009-04-09 | Lemoine Jeremy J | Dynamic spine stabilization system |
US8911477B2 (en) | 2007-10-23 | 2014-12-16 | Roger P. Jackson | Dynamic stabilization member with end plate support and cable core extension |
US20090163955A1 (en) * | 2007-12-19 | 2009-06-25 | Missoum Moumene | Polymeric Pedicle Rods and Methods of Manufacturing |
US9232968B2 (en) | 2007-12-19 | 2016-01-12 | DePuy Synthes Products, Inc. | Polymeric pedicle rods and methods of manufacturing |
US8870878B2 (en) | 2008-02-28 | 2014-10-28 | K2M, Inc. | Minimally invasive retractor and methods of use |
US8747407B2 (en) | 2008-02-28 | 2014-06-10 | K2M, Inc. | Minimally invasive retractor and methods of use |
US8932210B2 (en) | 2008-02-28 | 2015-01-13 | K2M, Inc. | Minimally invasive retraction device having detachable blades |
US8414625B2 (en) | 2008-02-28 | 2013-04-09 | K2M, Inc. | Minimally invasive retraction device having removable blades |
US20090221878A1 (en) * | 2008-02-28 | 2009-09-03 | K2M, Inc. | Minimally Invasive Retractor with Separable Blades and Methods of Use |
US20090221879A1 (en) * | 2008-02-28 | 2009-09-03 | K2M, Inc. | Minimally Invasive Retractor Having Separable Blades |
US20090222046A1 (en) * | 2008-02-28 | 2009-09-03 | K2M, Inc. | Minimally Invasive Retraction Device Having Removable Blades |
US20090221877A1 (en) * | 2008-02-28 | 2009-09-03 | K2M, Inc. | Minimally Invasive Retraction Device Having Detachable Blades |
US8246538B2 (en) | 2008-02-28 | 2012-08-21 | K2M, Inc. | Minimally invasive retractor with separable blades and methods of use |
US8376940B2 (en) | 2008-02-28 | 2013-02-19 | K2M, Inc. | Minimally invasive retractor with separable blades and methods of use |
US8097026B2 (en) | 2008-02-28 | 2012-01-17 | K2M, Inc. | Minimally invasive retraction device having removable blades |
US20090222045A1 (en) * | 2008-02-28 | 2009-09-03 | K2M, Inc. | Minimally Invasive Retractor and Methods of Use |
US20090326583A1 (en) * | 2008-06-25 | 2009-12-31 | Missoum Moumene | Posterior Dynamic Stabilization System With Flexible Ligament |
US20090326584A1 (en) * | 2008-06-27 | 2009-12-31 | Michael Andrew Slivka | Spinal Dynamic Stabilization Rods Having Interior Bumpers |
US9907574B2 (en) | 2008-08-01 | 2018-03-06 | Roger P. Jackson | Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features |
US20100094344A1 (en) * | 2008-10-14 | 2010-04-15 | Kyphon Sarl | Pedicle-Based Posterior Stabilization Members and Methods of Use |
US20100114165A1 (en) * | 2008-11-04 | 2010-05-06 | Abbott Spine, Inc. | Posterior dynamic stabilization system with pivoting collars |
US20100211104A1 (en) * | 2009-02-13 | 2010-08-19 | Missoum Moumene | Dual Spring Posterior Dynamic Stabilization Device With Elongation Limiting Elastomers |
US8641734B2 (en) | 2009-02-13 | 2014-02-04 | DePuy Synthes Products, LLC | Dual spring posterior dynamic stabilization device with elongation limiting elastomers |
US8118840B2 (en) | 2009-02-27 | 2012-02-21 | Warsaw Orthopedic, Inc. | Vertebral rod and related method of manufacture |
WO2010127325A1 (en) * | 2009-05-01 | 2010-11-04 | Spinal Kinetics, Inc. | Spinal stabilization devices, systems and methods |
US20100280550A1 (en) * | 2009-05-01 | 2010-11-04 | Spinal Kinetics, Inc. | Spinal Stabilization Devices, Systems, and Methods |
US10517650B2 (en) | 2009-05-01 | 2019-12-31 | Spinal Kinetics, Inc. | Spinal stabilization devices, systems, and methods |
US8444681B2 (en) | 2009-06-15 | 2013-05-21 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert |
US8556938B2 (en) | 2009-06-15 | 2013-10-15 | Roger P. Jackson | Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit |
US10363070B2 (en) | 2009-06-15 | 2019-07-30 | Roger P. Jackson | Pivotal bone anchor assemblies with pressure inserts and snap on articulating retainers |
US9216041B2 (en) | 2009-06-15 | 2015-12-22 | Roger P. Jackson | Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts |
US9918745B2 (en) | 2009-06-15 | 2018-03-20 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet |
US9980753B2 (en) | 2009-06-15 | 2018-05-29 | Roger P Jackson | pivotal anchor with snap-in-place insert having rotation blocking extensions |
US9480517B2 (en) | 2009-06-15 | 2016-11-01 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, shank, friction fit retainer, winged insert and low profile edge lock |
US9320543B2 (en) | 2009-06-25 | 2016-04-26 | DePuy Synthes Products, Inc. | Posterior dynamic stabilization device having a mobile anchor |
US20100331886A1 (en) * | 2009-06-25 | 2010-12-30 | Jonathan Fanger | Posterior Dynamic Stabilization Device Having A Mobile Anchor |
US20110071570A1 (en) * | 2009-09-24 | 2011-03-24 | Warsaw Orthopedic, Inc. | Composite vertebral rod system and methods of use |
US9011494B2 (en) | 2009-09-24 | 2015-04-21 | Warsaw Orthopedic, Inc. | Composite vertebral rod system and methods of use |
US9445844B2 (en) | 2010-03-24 | 2016-09-20 | DePuy Synthes Products, Inc. | Composite material posterior dynamic stabilization spring rod |
US20110238119A1 (en) * | 2010-03-24 | 2011-09-29 | Missoum Moumene | Composite Material Posterior Dynamic Stabilization Spring Rod |
US8956284B2 (en) | 2011-01-20 | 2015-02-17 | K2M, Inc. | Minimally invasive retractor and posted screw |
USRE48250E1 (en) | 2012-01-16 | 2020-10-13 | K2M, Inc. | Rod reducer, compressor, distractor system |
USRE49410E1 (en) | 2012-01-16 | 2023-02-07 | K2M, Inc. | Rod reducer, compressor, distractor system |
US9737351B2 (en) | 2012-01-16 | 2017-08-22 | K2M, Inc. | Rod reducer, compressor, distractor system |
US9125703B2 (en) | 2012-01-16 | 2015-09-08 | K2M, Inc. | Rod reducer, compressor, distractor system |
US9452000B2 (en) | 2013-10-07 | 2016-09-27 | K2M, Inc. | Rod reducer |
US9943344B2 (en) | 2015-01-15 | 2018-04-17 | K2M, Inc. | Rod reducer |
US11350973B2 (en) | 2015-01-15 | 2022-06-07 | K2M, Inc. | Rod reducer |
US10653461B2 (en) | 2015-01-15 | 2020-05-19 | K2M, Inc. | Rod reducer |
US10405896B2 (en) | 2015-04-30 | 2019-09-10 | K2M, Inc. | Rod reducer |
US10149674B2 (en) | 2015-08-12 | 2018-12-11 | K2M, Inc. | Orthopedic surgical system including surgical access systems, distraction systems, and methods of using same |
US10499894B2 (en) | 2015-08-12 | 2019-12-10 | K2M, Inc. | Orthopedic surgical system including surgical access systems, distraction systems, and methods of using same |
US11006942B2 (en) | 2015-08-12 | 2021-05-18 | K2M, Inc. | Orthopedic surgical system including surgical access systems, distraction systems, and methods of using same |
US12048426B2 (en) | 2015-08-12 | 2024-07-30 | K2M, Inc. | Orthopedic surgical system including surgical access systems, distraction systems, and methods of using same |
US10524843B2 (en) | 2016-05-06 | 2020-01-07 | K2M, Inc. | Rotation shaft for a rod reducer |
US10779866B2 (en) | 2016-12-29 | 2020-09-22 | K2M, Inc. | Rod reducer assembly |
US12178479B2 (en) | 2016-12-29 | 2024-12-31 | K2M, Inc. | Rod reducer assembly |
US11439443B2 (en) | 2017-01-18 | 2022-09-13 | K2M, Inc. | Rod reducing device |
US10485590B2 (en) | 2017-01-18 | 2019-11-26 | K2M, Inc. | Rod reducing device |
Also Published As
Publication number | Publication date |
---|---|
US20050177157A1 (en) | 2005-08-11 |
US20070123871A1 (en) | 2007-05-31 |
CN1882286A (en) | 2006-12-20 |
JP4603549B2 (en) | 2010-12-22 |
EP1677689A4 (en) | 2010-02-17 |
KR20050030142A (en) | 2005-03-29 |
WO2005030029A3 (en) | 2005-09-22 |
WO2005030031A3 (en) | 2006-01-12 |
CA2539923A1 (en) | 2005-04-07 |
EP1686906A4 (en) | 2011-07-27 |
KR100499559B1 (en) | 2005-07-05 |
CN1882286B (en) | 2010-05-26 |
US20050065515A1 (en) | 2005-03-24 |
JP2011031057A (en) | 2011-02-17 |
WO2005030029A2 (en) | 2005-04-07 |
US7993370B2 (en) | 2011-08-09 |
EP1677689A2 (en) | 2006-07-12 |
US20050065516A1 (en) | 2005-03-24 |
EP1686906A2 (en) | 2006-08-09 |
CN101912297A (en) | 2010-12-15 |
WO2005030031A2 (en) | 2005-04-07 |
AU2004275735B2 (en) | 2009-12-10 |
US8968366B2 (en) | 2015-03-03 |
US20060195093A1 (en) | 2006-08-31 |
AU2004275735A1 (en) | 2005-04-07 |
US7137985B2 (en) | 2006-11-21 |
JP2007506514A (en) | 2007-03-22 |
IL174444A0 (en) | 2006-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7137985B2 (en) | Marking and guidance method and system for flexible fixation of a spine | |
US7763052B2 (en) | Method and apparatus for flexible fixation of a spine | |
US7815665B2 (en) | Adjustable spinal stabilization system | |
CA2591848C (en) | Adjustable spinal stabilization system | |
US20050203513A1 (en) | Spinal stabilization device | |
US8623057B2 (en) | Spinal stabilization device | |
JP2007506514A5 (en) | ||
JP2007516733A (en) | Method and apparatus for flexible fixation of the spine | |
JP2007516733A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: N SPINE, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JAHNG, TAE-AHN;REEL/FRAME:018561/0864 Effective date: 20040416 |
|
AS | Assignment |
Owner name: SILICON VALLEY BANK, CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:N SPINE, INC.;REEL/FRAME:019850/0947 Effective date: 20070831 Owner name: OXFORD FINANCE CORPORATION, VIRGINIA Free format text: SECURITY AGREEMENT;ASSIGNOR:N SPINE, INC.;REEL/FRAME:019850/0947 Effective date: 20070831 |
|
AS | Assignment |
Owner name: N SPINE, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JAHNG, TAE-AHN, DR.;REEL/FRAME:020113/0961 Effective date: 20071108 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: N SPINE INC., CALIFORNIA Free format text: RELEASE;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:027319/0756 Effective date: 20111125 |
|
AS | Assignment |
Owner name: N SPINE, INC., CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNMENT INCORRECTLY RECORDED AND TO REMOVE THE ASSIGNMENT PREVIOUSLY RECORDED ON REEL 020113 FRAME 0961. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:JAHNG, TAE-AHN, DR.;REEL/FRAME:029621/0740 Effective date: 20071108 |
|
AS | Assignment |
Owner name: DEPUY SYNTHES PRODUCTS, LLC, MASSACHUSETTS Free format text: CHANGE OF NAME;ASSIGNOR:HAND INNOVATIONS LLC;REEL/FRAME:030354/0601 Effective date: 20121231 Owner name: DEPUY SPINE, LLC, MASSACHUSETTS Free format text: MERGER;ASSIGNOR:DEPUY ACQUISITION LLC;REEL/FRAME:030354/0351 Effective date: 20121230 Owner name: DEPUY ACQUISITION LLC, INDIANA Free format text: MERGER;ASSIGNOR:N SPINE, INC.;REEL/FRAME:030354/0247 Effective date: 20121230 Owner name: HAND INNOVATIONS LLC, FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DEPUY SPINE, LLC;REEL/FRAME:030354/0460 Effective date: 20121230 |