US20050277604A1 - Immunostimulatory nucleic acid molecules - Google Patents
Immunostimulatory nucleic acid molecules Download PDFInfo
- Publication number
- US20050277604A1 US20050277604A1 US10/435,656 US43565603A US2005277604A1 US 20050277604 A1 US20050277604 A1 US 20050277604A1 US 43565603 A US43565603 A US 43565603A US 2005277604 A1 US2005277604 A1 US 2005277604A1
- Authority
- US
- United States
- Prior art keywords
- odn
- cpg
- dna
- cells
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/4706—4-Aminoquinolines; 8-Aminoquinolines, e.g. chloroquine, primaquine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7048—Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/711—Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7125—Nucleic acids or oligonucleotides having modified internucleoside linkage, i.e. other than 3'-5' phosphodiesters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/39—Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/02—Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/117—Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55561—CpG containing adjuvants; Oligonucleotide containing adjuvants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/17—Immunomodulatory nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/315—Phosphorothioates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- oligonucleotides Like DNA, oligodeoxyribonucleotides (ODNs) are able to enter cells in a saturable, sequence independent, and temperature and energy dependent fashion (reviewed in Jaroszewski, J. W., and J. S. Cohen. 1991.
- Lymphocyte ODN uptake has been shown to be regulated by cell activation.
- Spleen cells stimulated with the B cell mitogen LPS had dramatically enhanced ODN uptake in the B cell population, while spleen cells treated with the T cell mitogen Con A showed enhanced ODN uptake by T but not B cells (Krieg, A. M., F. Gmelig-Meyling, M. F. Gourley, W. J. Kisch, L. A. Chrisey, and A. D. Steinberg. 1991. “Uptake of oligodeoxyribonucleotides by lymphoid cells is heterogeneous and inducible”. Antisense Research and Development 1:161).
- poly (I,C) which is a potent inducer of IFN production as well as a macrophage activator and inducer of NK activity
- I,C a potent inducer of IFN production as well as a macrophage activator and inducer of NK activity
- Guanine ribonucleotides substituted at the C8 position with either a bromine or a thiol group are B cell mitogens and may replace “B cell differentiation factors” (Feldbush, T. L., and Z. K. Ballas. 1985. “Lymphokine-like activity of 8-mercaptoguanosine: induction of T and B cell differentiation”. J. Immunol. 134:3204; and Goodman, M. G. 1986. “Mechanism of synergy between T cell signals and C8-substituted guanine nucleosides in humoral immunity: B lymphotropic cytokines induce responsiveness to 8-mercaptoguanosine”. J. Immunol. 136:3335).
- 8-mercaptoguanosine and 8-bromoguanosine also can substitute for the cytokine requirement for the generation of MHC restricted CTL (Feldbush, T. L., 1985. cited supra), augment murine NK activity (Koo, G. C., M. E. Jewell, C. L. Manyak, N. H. Sigal, and L. S. Wicker. 1988. “Activation of murine natural killer cells and macrophages by 8-bromoguanosine”. J. Immunol. 140:3249), and synergize with IL-2 in inducing murine LAK generation (Thompson, R. A., and Z. K. Ballas. 1990. “Lymphokine-activated killer (LAK) cells.
- Pisetsky et al. reported that pure mammalian DNA has no detectable immune effects, but that DNA from certain bacteria induces B cell activation and immunoglobulin secretion (Messina, J. P., G. S. Gilkeson, and D. S. Pisetsky. 1991. “Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA”. J. Immunol. 147:1759). Assuming that these data did not result from some unusual contaminant, these studies suggested that a particular structure or other characteristic of bacterial DNA renders it capable of triggering B cell activation.
- CREB Camp Response Element Binding Protein
- ATF Activating transcription factor
- CREB/ATF family of transcription factors is a ubiquitously expressed class of transcription factors of which 11 members have so far been cloned (reviewed in de Groot, R. P., and P. Sassone-Corsi: “Hormonal control of gene expression: Multiplicity and versatility of cyclic adenosine 3′,5′-monophosphate-responsive nuclear regulators”. Mol. Endocrin. 7:145, 1993; Lee, K. A. W., and N. Masson: “Transcriptional regulation by CREB and its relatives”. Biochim. Biophys. Acta 1174:221, 1993.).
- bZip basic region/leucine zipper
- All cells appear to express one or more CREB/ATF proteins, but the members expressed and the regulation of mRNA splicing appear to be tissue-specific. Differential splicing of activation domains can determine whether a particular CREB/ATF protein will be a transcriptional inhibitor or activator. Many CREB/ATF proteins activate viral transcription, but some splicing variants which lack the activation domain are inhibitory.
- CREB/ATF proteins can bind DNA as homo- or hetero-dimers through the cAMP response element, the CRE, the consensus form of which is the unmethylated sequence TGACGTC (binding is abolished if the CpG is methylated) (Iguchi-Ariga, S. M. M., and W. Schaffner: “CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation”. Genes & Develop. 3:612, 1989.).
- CREB/ATF proteins appear to regulate the expression of multiple genes through the CRE including immunologically important genes such as fos, jun B, Rb-1, IL6, IL-1 (Tsukada, J., K. Saito, W. R. Waterman, A. C. Webb, and P. E. Auron: “Transcription factors NF-IL6 and CREB recognize a common essential site in the human prointerleukin 1 ⁇ gene”. Mol. Cell.
- Ehrlich “Binding of AP-1/CREB proteins and of MDBP to contiguous sites downstream of the human TGF-B1 gene”. Biochim. Biophys. Acta 1219:55, 1994.), TGF- ⁇ 2, class II MHC (Cox, P. M., and C. R. Goding: “An ATF/CREB binding motif is required for aberrant constitutive expression of the MHC class II DRa promoter and activation by SV40 T-antigen”. Nucl. Acids Res. 20:4881, 1992.), E-selectin, GM-CSF, CD-8 ⁇ , the germline Ig ⁇ constant region gene, the TCR V ⁇ gene, and the proliferating cell nuclear antigen (Huang, D., P. M.
- Activation of CREB through the cyclic AMP pathway requires protein kinase A (PKA), which phosphorylates CREB 341 on sera 133 and allows it to bind to a recently cloned protein, CBP (Kwok, R. P. S., J. R. Lundblad, J. C. Chrivia, J. P. Richards, H. P. Bachinger, R. G. Brennan, S. G. E. Roberts, M. R. Green, and R. H. Goodman: “Nuclear protein CBP is a coactivator for the transcription factor CREB”. Nature 370:223, 1994; Arias, J., A. S. Alberts, P. Brindle, F. X.
- PKA protein kinase A
- CBP basal transcription factor
- TFIIB basal transcription factor
- CREB also has been reported to interact with dTAFII 110, a TATA binding protein-associated factor whose binding may regulate transcription (Ferreri, K., G. Gill, and M. Montminy: “The cAMP-regulated transcription factor CREB interacts with a component of the TFIID complex”. Proc. Natl. Acad. Sci. USA 91:1210, 1994.).
- CREB/ATF proteins can specifically bind multiple other nuclear factors (Hoeffler, J. P., J. W. Lustbader, and C.-Y. Chen: “Identification of multiple nuclear factors that interact with cyclic adenosine 3′,5′-monophosphate response element-binding protein and activating transcription factor-2 by protein-protein interactions”. Mol. Endocrinol. 5:256, 1991) but the biologic significance of most of these interactions is unknown.
- CREB is normally thought to bind DNA either as a homodimer or as a heterodimer with several other proteins.
- CREB monomers constitutively activate transcription Krajewski, W., and K. A. W. Lee: “A monomeric derivative of the cellular transcription factor CREB functions as a constitutive activator”. Mol. Cell. Biol. 14:7204, 1994.).
- cytomegalovirus immediate early promoter one of the strongest known mammalian promoters, contains eleven copies of the CRE which are essential for promoter function (Chang, Y.-N., S. Crawford, J. Stall, D. R. Rawlins, K.-T. Jeang, and G. S. Hayward: “The palindromic series 1 repeats in the simian cytomegalovirus major immediate-early promoter behave as both strong basal enhancers and cyclic AMP response elements”. J. Virol. 64:264, 1990).
- HTLV-1 Human T lymphotropic virus-1
- Tax the retrovirus which binds to CREB/ATF proteins and redirects them from their normal cellular binding sites to different DNA sequences (flanked by G- and C-rich sequences) present within the HTLV transcriptional enhancer
- the instant invention is based on the finding that certain nucleic acids containing unmethylated cytosine-guanine (CpG) dinucleotides activate lymphocytes in a subject and redirect a subjects immune response from a Th2 to a Th1 (e.g. by inducing monocytic cells and other cells to produce Th1 cytokines, including IL-12, IFN- ⁇ and GM-CSF). Based on this finding, the invention features, in one aspect, novel immunostimulatory nucleic acid compositions.
- CpG cytosine-guanine
- the immunostimulatory nucleic acid contains a consensus mitogenic CpG motif represented by the formula: 5′ X1CGX2 3′
- an immunostimulatory nucleic acid molecule contains a consensus mitogenic CpG motif represented by the formula: 5′ X1X2CGX3X4 3′
- X 1 X 2 is selected from the group consisting of GpT, GpG, GpA and ApA and/or X 3 X 4 is selected from the group consisting of TpT, CpT and GpT (Table 5).
- CpG containing immunostimulatory nucleic acid molecules are preferably in the range of 8 to 40 base pairs in size.
- nucleic acids of any size are immunostimulatory if sufficient immunostimulatory motifs are present, since such larger nucleic acids are degraded into oligonucleotides inside of cells.
- Preferred synthetic oligonucleotides do not include a GCG trinucleotide sequence at or near the 5′ and/or 3′ terminals and/or the consensus mitogenic CpG motif is not a palindrome.
- Prolonged immunostimulation can be obtained using stabilized oligonucleotides, particularly phosphorothioate stabilized oligonucleotides.
- the invention features useful therapies, which are based on the immunostimulatory activity of the nucleic acid molecules.
- the immunostimulatory nucleic acid molecules can be used to treat, prevent or ameliorate an immune system deficiency (e.g., a tumor or cancer or a viral, fungal, bacterial or parasitic infection in a subject).
- an immune system deficiency e.g., a tumor or cancer or a viral, fungal, bacterial or parasitic infection in a subject.
- immunostimulatory nucleic acid molecules can be administered to stimulate a subject's response to a vaccine.
- the instant claimed nucleic acid molecules can be administered to treat or prevent the symptoms of asthma.
- the instant claimed nucleic acid molecules can be administered in conjunction with a particular allergen to a subject as a type of desensitization therapy to treat or prevent the occurrence of an allergic reaction.
- immunostimulatory nucleic acid molecules to induce leukemic cells to enter the cell cycle supports the use of immunostimulatory nucleic acid molecules in treating leukemia by increasing the sensitivity of chronic leukemia cells and then administering conventional ablative chemotherapy, or combining the immunostimulatory nucleic acid molecules with another immunotherapy.
- FIG. 1A -C are graphs plotting dose-dependent IL-6 production in response to various DNA sequences in T cell depleted spleen cell cultures.
- ODN phosphodiester oligodeoxynucleotide
- SEQ ID NO:1 ATGGAAGGTCCAGTGTTCTC 3′
- CpG ODN 5′ ATCGACCTACGTGCGTTCTC 3′
- SEQ ID NO:3 5′ TCCATAACGTTCCTGATGCT 3′
- FIG. 2 is a graph plotting IL-6 production induced by CpG DNA in vivo as determined 1-8 hrs after injection. Data represent the mean from duplicate analyses of sera from two mice.
- BALB/c mice two mice/group were injected iv. with 100 ⁇ l of PBS ( ⁇ ) or 200 ⁇ g of CpG phosphorothioate ODN 5′ TCCATGACGTTCCTGATGCT 3′ (SEQ ID NO:7) ( ⁇ ) or non-CpG phosphorothioate ODN 5′ TCCATGAGCTTCCTGAGTCT 3′ (SEQ ID NO:8) ( ⁇ ).
- FIG. 3 is an autoradiograph showing IL-6 mRNA expression as determined by reverse transcription polymerase chain reaction in liver, spleen, and thymus at various time periods after in vivo stimulation of BALB/c mice (two mice/group) injected iv with 100 ⁇ l of PBS, 200 ⁇ g of CpG phosphorothioate ODN 5′ TCCATGACGTTCCTGATGCT 3′ (SEQ [D NO:7) or non-CpG phosphorothioate ODN 5′ TCCATGAGCTTCCTGAGTCT 3′ (SEQ ID NO:8).
- FIG. 4A is a graph plotting dose-dependent inhibition of CpG-induced IgM production by anti-IL-6.
- Splenic B-cells from DBA/2 mice were stimulated with CpG ODN 5′ TCCAAGACGTTCCTGATGCE (SEQ ID NO:9) in the presence of the indicated concentrations of neutralizing anti-IL-6 ( ⁇ ) or isotype control Ab ( ⁇ ) and IgM levels in culture supernatants determined by ELISA.
- ⁇ neutralizing anti-IL-6
- ⁇ isotype control Ab
- IgM levels in culture supernatants determined by ELISA.
- the anti-IL-6 Ab had no effect on IgM secretion ( ⁇ ).
- FIG. 4B is a graph plotting the stimulation index of CpG-induced splenic B cells cultured with anti-IL-6 and CpG S-ODN 5′ TCCATGACGTTCCTGATGCT 3′ (SEQ ID NO:7) ( ⁇ ) or anti-IL-6 antibody only ( ⁇ ). Data present the mean ⁇ standard deviation of triplicates.
- FIG. 5 is a bar graph plotting chloramphenicol acetyltransferase (CAT) activity in WEHI-231 cells transfected with a promoter-less CAT construct (pCAT), positive control plasmid (RSV), or IL-6 promoter-CAT construct alone or cultured with CpG 5′ TCCATGACGTTCCTGATGCT 3′ (SEQ ID NO:7) or non-CpG 5′ TCCATGAGCTTCCTGAGTCT 3′ (SEQ ID NO:8) phosphorothioate ODN at the indicated concentrations. Data present the mean of triplicates.
- FIG. 6 is a schematic overview of the immune effects of the immunostimulatory unmethylated CpG containing nucleic acids, which can directly activate both B cells and monocytic cells (including macrophages and dendritic cells) as shown.
- the immunostimulatory oligonucleotides do not directly activate purified NK cells, but render them competent to respond to IL-12 with a marked increase in their IFN 1 production.
- the immunostimulatory nucleic acids promote a Th1 type immune response. No direct activation of proliferation of cytokine secretion by highly purified T cells has been found. However, the induction of Th1 cytokine secretion by the immunostimulatory oligonucleotides promotes the development of a cytotoxic lymphocyte response.
- FIG. 7 is an autoradiograph showing NF ⁇ B mRNA induction in monocytes treated with E. coli (EC) DNA (containing unmethylated CpG motifs), control (CT) DNA (containing no unmethylated CpG motifs) and lipopolysaccharide (LPS) at various measured times, 15 and 30 minutes after contact.
- E. coli E. coli
- CT control
- LPS lipopolysaccharide
- FIG. 8A shows the results from a flow cytometry study using mouse B cells with the dihydrorhodamine 123 dye to determine levels of reactive oxygen species.
- the dye only sample in Panel A of the figure shows the background level of cells positive for the dye at 28.6%.
- This level of reactive oxygen species' was greatly increased to 80% in the cells treated for 20 minutes with PMA and ionomycin, a positive control (Panel B).
- the cells treated with the CpG oligo (TCCATGACGTTCCTGACGTT SEQ ID NO:10) also showed an increase in the level of reactive oxygen species such that more than 50% of the cells became positive (Panel D).
- FIG. 8B shows the results from a flow cytometry study using mouse B cells in the presence of chloroquine with the dihydrorhodamine 123 dye to determine levels of reactive oxygen species. Chloroquine slightly lowers the background level of reactive oxygen species in the cells such that the untreated cells in Panel A have only 4.3% that are positive. Chloroquine completely abolishes the induction of reactive oxygen species in the cells treated with CpG DNA (Panel B) but does not reduce the level of reactive oxygen species in the cells treated with PMA and ionomycin (Panel E).
- FIG. 9 is a graph plotting lung lavage cell count over time.
- the graph shows that when the mice are initially injected with Schistosoma mansoni eggs “egg”, which induces a Th2 immune response, and subsequently inhale Schistosoma mansoni egg antigen “SEA” (open circle), many inflammatory cells are present in the lungs. However, when the mice are initially given CpG oligo (SEQ ID NO:10) along with egg, the inflammatory cells in the lung are not increased by subsequent inhalation of SEA (open triangles).
- FIG. 10 is a graph plotting lung lavage eosinophil count over time. Again, the graph shows that when the mice are initially injected with egg and subsequently inhale SEA (open circle), many eosinophils are present in the lungs. However, when the mice are initially given CpG oligo (SEQ ID NO:10) along with egg, the inflammatory cells in the lung are not increased by subsequent inhalation of the SEA (open triangles).
- FIG. 11 is a bar graph plotting the effect on the percentage of macrophage, lymphocyte, neutrophil and eosinophil cells induced by exposure to saline alone; egg, then SEA; egg and SEQ ID NO:11, then SEA; and egg and control oligo (SEQ ID NO:11), then SEA.
- mice are treated with the control oligo at the time of the initial exposure to the egg, there is little effect on the subsequent influx of eosinophils into the lungs after inhalation of SEA.
- mice inhale the eggs on days 14 or 21 they develop an acute inflammatory response in the lungs.
- giving a CpG oligo along with the eggs at the time of initial antigen exposure on days 0 and 7 almost completely abolishes the increase in eosinophils when the mice inhale the egg antigen on day 14.
- FIG. 12 is a bar graph plotting eosinophil count in response to injection of various amounts of the protective oligo SEQ ID NO:10.
- FIG. 13 is a graph plotting interleukin 4 (IL4) production (pg/ml) in mice over time in response to injection of egg, then SEA (open diamond); egg and SEQ ID NO:10, then SEA (open circle); or saline, then saline (open square).
- the graph shows that the resultant inflammatory response correlates with the levels of the Th2 cytokine MLA in the lung.
- FIG. 14 is a bar graph plotting interleukin 12 (IL-12) production (pg/ml) in mice over time in response to injection of saline; egg, then SEA; or SEQ ID NO:10 and egg, then SEA.
- the graph shows that administration of an oligonucleotide containing an unmethylated CpG motif can actually redirect the cytokine response of the lung to production of IL-12, indicating a Th1 type of immune response.
- IL-12 interleukin 12
- FIG. 15 is a bar graph plotting interferon gamma (IFN- ⁇ ) production (pg/ml) in mice over time in response to injection of saline; egg, then saline; or SEQ ID NO:10 and egg, then SEA.
- the graph shows that administration of an oligonucleotide containing an unmethylated CpG motif can also redirect the cytokine response of the lung to production of IFN- ⁇ , indicating a Th1 type of immune response.
- allergen refers to a substance that can induce an allergic or asthmatic response in a susceptible subject.
- the list of allergens is enormous and can include pollens, insect venoms, animal dander, dust, fungal spores and drugs (e.g. penicillin).
- Examples of natural, animal and plant allergens include proteins specific to the following genera: Canine ( Canis familiaris ); Dermatophagoides (e.g. Dermatophagoides farinae ); Felis ( Felis domesticus ); Ambrosia ( Ambrosia artemiisfolia; Lolium (e.g.
- Lolium perenne or Lolium multiflorum Cryptomeria ( Cryptomeria japonica ); Alternaria ( Alternaria alternata ); Alder; Alnus ( Alnus gultinosa ); Betula ( Betula verrucosa ); Quercus ( Quercus alba ); Olea ( Olea europa ); Arlemisia ( Artemisia vulgaris ); Plantago (e.g. Plantago lanceolata ); Parietaria (e.g. Parietaria officinalis or Parietariajudaica); Blattella (e.g. Blattella germanica ); Apis (e.g. Apis multiflorum ); Cupressus (e.g.
- Juniperus e.g. Juniperus sabinoides, Juniperus virginiana, Juniperus communis and Juniperus asheq
- Thuya e.g. Thuya orientalis
- Chamaecyparis e.g. Chamaecyparis obtusa
- Periplaneta e.g. Periplaneta americana
- Agropyron e.g. Agropyron repens
- Secale e.g. Secale cereale
- Triticum e.g. Triticum aestivum
- Dactylis e.g.
- Avena e.g. Avena sativa
- Holcus e
- Allergic conditions include eczema, allergic rhinitis or coryza, hay fever, bronchial asthma, urticaria (hives) and food allergies, and other atopic conditions.
- Asthma refers to a disorder of the respiratory system characterized by inflammation, narrowing of the airways and increased reactivity of the airways to inhaled agents. Asthma is frequently, although not exclusively associated with atopic or allergic symptoms.
- an “immune system deficiency” shall mean a disease or disorder in which the subject's immune system is not functioning in normal capacity or in which it would be useful to boost a subject's immune response for example to eliminate a tumor or cancer (e.g. tumors of the brain, lung (e.g. small cell and non-small cell), ovary, breast, prostate, colon, as well as other carcinomas and sarcomas) or an infection in a subject.
- a tumor or cancer e.g. tumors of the brain, lung (e.g. small cell and non-small cell), ovary, breast, prostate, colon, as well as other carcinomas and sarcomas
- an infection in a subject e.g. tumors of the brain, lung (e.g. small cell and non-small cell), ovary, breast, prostate, colon, as well as other carcinomas and sarcomas
- Retroviridae e.g., human immunodeficiency viruses, such as HIV-I (also referred to as HTLV-III, LAV or HTLV-III/LAV, or HIV-III; and other isolates, such as HIV-LP; Picornaviridae (e.g., polio viruses, hepatitis A virus; enteroviruses, human coxsackie viruses, rhinoviruses, echoviruses); Calciviridae (e.g., strains that cause gastroenteritis); Togaviridae (e.g., equine encephalitis viruses, rubella viruses); Flaviridae (e.g., dengue viruses, encephalitis viruses, yellow fever viruses); Coronaviridae (e.g., coronaviruses); Rhabdoviridae (e.g., vesicular stomatitis viruses, rabies viruses); Flaviridae (e.g., ebola),
- infectious bacteria examples include: Helicobacter pyloris, Borelia burgdorferi, Legionella pneumophilia , Mycobacteria spp. (e.g., M. luberculosis, M. avium, M. intracellulare, M. kansasii, M.
- infectious fungi examples include: Cryptococcus neoformans, Histoplasma capsulatum, Coccidioides immitis, Blastomyces dermatitidis, Chlamydia trachomatis, Candida albicans .
- Other infectious organisms i.e., protists
- Plasmodium falciparum and Toxoplasma gondii examples include: Plasmodium falciparum and Toxoplasma gondii.
- an “immunostimulatory nucleic acid molecule” refers to a nucleic acid molecule, which contains an unmethylated cytosine, guanine dinucleotide sequence (i.e. “CpG DNA” or DNA containing a cytosine followed by guanosine and linked by a phosphate bond) and stimulates (e.g. has a mitogenic effect on, or induces or increases cytokine expression by) a vertebrate lymphocyte.
- An immunostimulatory nucleic acid molecule can be double-stranded or single-stranded. Generally, double-stranded molecules are more stable in vivo, while single-stranded molecules have increased immune activity.
- the immunostimulatory nucleic acid contains a consensus mitogenic CpG motif represented by the formula: 5′ X1CGX2 3′
- immunostimulatory nucleic acid molecules are between 2 to 100 base pairs in size and contain a consensus mitogenic CpG motif represented by the formula: 5 X1X2CGX3X4 3′
- the immunostimulatory CpG DNA is in the range of between 8 to 40 base pairs in size if it is synthesized as an oligonucleotide.
- CpG dinucleotides can be produced on a large scale in plasmids, which after being administered to a subject are degraded into oligonucleotides.
- Preferred immunostimulatory nucleic acid molecules e.g. for use in increasing the effectiveness of a vaccine or to treat an immune system deficiency by stimulating an antibody [humoral] response in a subject
- the stimulation index of a particular immunostimulatory CpG DNA can be tested in various immune cell assays.
- the stimulation index of the immunostimulatory CpG DNA with regard to B-cell proliferation is at least about 5, preferably at least about 10, more preferably at least about 15 and most preferably at least about 20 as determined by incorporation of 3 H uridine in a murine B cell culture, which has been contacted with a 20 ⁇ M of ODN for 20 h at 37° C. and has been pulsed with 1 Ci of 3 H uridine; and harvested and counted 4h later as described in detail in Example 1.
- the immunostimulatory CpG DNA be capable of effectively inducing cytokine secretion by monocytic cells and/or Natural Killer (NK) cell lytic activity.
- Preferred immunostimulatory CpG nucleic acids should effect at least about 500 pg/ml of TNF- ⁇ , 15 pg/ml IFN- ⁇ , 70 pg/ml of GMCSF 275 pg/ml of IL-6, 200 pg/ml IL-12, depending on the therapeutic indication, as determined by the assays described in Example 12.
- Other preferred immunostimulatory CpG DNAs should effect at least about 10%, more preferably at least about 15% and most preferably at least about 20% YAC-1 cell specific lysis or at least about 30, more preferably at least about 35 and most preferably at least about 40% 2C11 cell specific lysis as determined by the assay described in detail in Example 4.
- nucleic acid or “DNA” shall mean multiple nucleotides (i.e. molecules comprising a sugar (e.g. ribose or deoxyribose) linked to a phosphate group and to an exchangeable organic base, which is either a substituted pyrimidine (e.g. cytosine (C), thymine (T) or uracil (U)) or a substituted purine (e.g. adenine (A) or guanine (G)).
- cytosine (C), thymine (T) or uracil (U) or a substituted purine (e.g. adenine (A) or guanine (G)
- the term refers to ribonucleotides as well as oligodeoxyribonucleotides.
- the term shall also include polynucleosides (i.e.
- Nucleic acid molecules can be obtained from existing nucleic acid sources (e.g. genomic or cDNA), but are preferably synthetic (e.g. produced by oligonucleotide synthesis).
- nucleic acid delivery complex shall mean a nucleic acid molecule associated with (e.g. ionically or covalently bound to; or encapsulated within) a targeting means (e.g. a molecule that results in higher affinity binding to target cell (e.g. B-cell and natural killer (NK) cell) surfaces and/or increased cellular uptake by target cells).
- a targeting means e.g. a molecule that results in higher affinity binding to target cell (e.g. B-cell and natural killer (NK) cell) surfaces and/or increased cellular uptake by target cells.
- nucleic acid delivery complexes include nucleic acids associated with: a sterol (e.g. cholesterol), a lipid (e.g. a cationic lipid, virosome or liposome), or a target cell specific binding agent (e.g. a ligand recognized by target cell specific receptor).
- Preferred complexes must be sufficiently stable in vivo to prevent significant uncoupling prior to internalization by the target
- “Palindromic sequence” shall mean an inverted repeat (i.e. a sequence such as ABCDEE′D′C′B′A′ in which A and A′ are bases capable of forming the usual Watson-Crick base pairs. In vivo, such sequences may form double stranded structures.
- a “stabilized nucleic acid molecule” shall mean a nucleic acid molecule that is relatively resistant to in vivo degradation (e.g. via an exo- or endo-nuclease). Stabilization can be a function of length or secondary structure. Unmethylated CpG containing nucleic acid molecules that are tens to hundreds of kbs long are relatively resistant to in vivo degradation. For shorter immunostimulatory nucleic acid molecules, secondary structure can stabilize and increase their effect. For example, if the 3′ end of a nucleic acid molecule has self-complementarity to an upstream region, so that it can fold back and form a sort of stem loop structure, then the nucleic acid molecule becomes stabilized and therefore exhibits more activity.
- Preferred stabilized nucleic acid molecules of the instant invention have a modified backbone.
- especially preferred stabilized nucleic acid molecules are phosphorothioate modified nucleic acid molecules (i.e. at least one of the phosphate oxygens of the nucleic acid molecule is replaced by sulfur).
- the phosphate modification occurs at or near the 5′ and/or 3′ end of the nucleic acid molecule.
- phosphorothioate-modified nucleic acid molecules can increase the extent of immune stimulation of the nucleic acid molecule, which contains an unmethylated CpG dinucleotide as shown herein.
- nucleic acid molecules include: nonionic DNA analogs, such as alkyl- and aryl-phosphonates (in which the charged phosphonate oxygen is replaced by an alkyl or aryl group), phosphodiester and alkylphosphotriesters, in which the charged oxygen moiety is alkylated.
- Nucleic acid molecules which contain a diol, such as tetraethyleneglycol or hexaethyleneglycol, at either or both termini have also been shown to be substantially resistant to nuclease degradation.
- a “subject” shall mean a human or vertebrate animal including a dog, cat, horse, cow, pig, sheep, goat, chicken, monkey, rat, mouse, etc.
- vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
- Preferred vectors are those capable of autonomous replication and expression of nucleic acids to which they are linked (e.g., an episome).
- Vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as “expression vectors.”
- expression vectors of utility in recombinant DNA techniques are often in the form of “plasmids” which refer generally to circular double stranded DNA loops which, in their vector form, are not bound to the chromosome.
- plasmid and vector are used interchangeably as the plasmid is the most commonly used form of vector.
- the invention is intended to include such other forms of expression vectors which serve equivalent functions and which become known in the art subsequently hereto.
- ODN 1 and 2 were synthesized. These ODNs, including the two original “controls” (ODN 1 and 2) and two originally synthesized as “antisense” (ODN 3D and 3M; Krieg, A. M. J. Immunol. 143:2448 (1989)), were then examined for in vitro effects on spleen cells (representative sequences are listed in Table 1).
- ODN that contained CpG dinucleotides induced B cell activation and IgM secretion; the magnitude of this stimulation typically could be increased by adding more CpG dinucleotides (Table 1; compare ODN 2 to 2a or 3D to 3Da and 3 Db). Stimulation did not appear to result from an antisense mechanism or impurity. ODN caused no detectable proliferation of ⁇ or other T cell populations.
- the optimal stimulatory motif was determined to consist of a CpG flanked by two 5′ purines (preferably a GpA dinucleotide) and two 3′ pyrimidines (preferably a TpT or TpC dinucleotide). Mutations of ODN to bring the CpG motif closer to this ideal improved stimulation (e.g. Table 1, compare ODN 2 to 2e; 3M to 3Md) while mutations that disturbed the motif reduced stimulation (e.g. Table 1, compare ODN 3D to 3Df; 4 to 4b, 4c and 4d).
- ODNs shorter than 8 bases were non-stimulatory (e.g. Table 1, ODN 4e).
- ODN 4e the most stimulatory sequence identified was TCAACGTT (ODN 4) which contains the self complementary “palindrome” AACGTT.
- ODN containing Gs at both ends showed increased stimulation, particularly if the ODN were rendered nuclease resistant by phosphorothioate modification of the terminal internucleotide linkages.
- ODN 1585 (5′ GGGTCAACGTTGAGGGGGG 3′ (SEQ ID NO:12)), in which the first two and last five internucleotide linkages are phosphorothioate modified caused an average 25.4 fold increase in mouse spleen cell proliferation compared to an average 3.2 fold increase in proliferation induced by ODN 1638, which has the same sequence as ODN 1585 except that the 10 Gs at the two ends are replaced by 10 As.
- the effect of the G-rich ends is cis; addition of an ODN with poly G ends but no CpG motif to cells along with 1638 gave no increased proliferation.
- non-palindromic motifs containing an unmethylated CpG were found to be more immunostimulatory.
- octamer ODN containing a 6 base palindrome with a TpC dinucleotide at the 5′ end were also active (e.g. Table 1, ODN 4b,4c).
- Other dinucleotides at the 5′ end gave reduced stimulation (e.g. ODN 4f; all sixteen possible dinucleotides were tested).
- ODN 4f all sixteen possible dinucleotides were tested.
- the presence of a 3′ dinucleotide was insufficient to compensate for the lack of a 5′ dinucleotide (e.g. Table 1, ODN 4g).
- Disruption of the palindrome eliminated stimulation in octamer ODN (e-g. Table 1, ODN 4h), but palindromes were not required in longer ODN.
- IL-6 pg/ml
- a SEQUENCE SPLENIC B ODN 5′-3′
- CH12.LX CELL SI b
- IgM ng/ml
- c 512 SEQ ID NO:37
- CpG-ODN induced cycling in more than 95% of B cells.
- Splenic B lymphocytes sorted by flow cytometry into CD23 ⁇ (marginal zone) and CD23+ (follicular) subpopulations were equally responsive to ODN-induced stimulation, as were both resting and activated populations of B cells isolated by fractionation over Percoll gradients.
- Certain B cell lines such as WEHI-231 are induced to undergo growth arrest and/or apoptosis in response to crosslinking of their antigen receptor by anti-IgM (Jakway, J. P. et al., “Growth regulation of the B lymphoma cell line WEHI-231 by anti-immunoglobulin, lipopolysaccharide and other bacterial products” J. Immunol. 137: 2225 (1986); Tsubata, T., J. Wu and T. Honjo: B-cell apoptosis induced by antigen receptor crosslinking is blocked by a T-cell signal through CD40.” Nature 364: 645 (1993)).
- WEHI-231 cells are rescued from this growth arrest by certain stimuli such as LPS and by the CD40 ligand.
- ODN containing the CpG motif were also found to protect WEHI-231 from anti-IgM induced growth arrest, indicating that accessory cell populations are not required for the effect.
- CpG ODN induce Bcl-x and myc expression, which may account for the protection from apoptosis.
- CpG nucleic acids have been found to block apoptosis in human cells. This inhibition of apoptosis is important, since it should enhance and prolong immune activation by CpG DNA.
- the amount of IL-6 secreted by spleen cells after CpG DNA stimulation was measured by ELISA.
- T cell depleted spleen cell cultures rather than whole spleen cells were used for in vitro studies following preliminary studies showing that T cells contribute little or nothing to the IL-6 produced by CpG DNA-stimulated spleen cells.
- ILL production was markedly increased in cells cultured with E. coli DNA but not in cells cultured with calf thymus DNA.
- the DNA was digested with DNAse prior to analysis. DNAse pretreatment abolished IL-6 production induced by E.
- T cell depleted spleen cells from DBA/2 mice were stimulated with phosphodiester modified oligonucleotides (O-ODN) (20 ⁇ M), calf thymus DNA (50 ⁇ g/li) or E. coli DNA (50 ⁇ g/ml) with or without enzyme treatment, or LPS (10 ⁇ g/ml) for 24 hr.
- O-ODN phosphodiester modified oligonucleotides
- calf thymus DNA 50 ⁇ g/li
- E. coli DNA 50 ⁇ g/ml
- LPS 10 ⁇ g/ml
- the optimal B cell stimulatory CpG motif was identical with the optimal CpG motif for IL-6 secretion
- a panel of ODN in which the bases flanking the CpG dinucleotide were progressively substituted was studied.
- This ODN panel was analyzed for effects on B cell proliferation, Ig production, and IL-6 secretion, using both splenic B cells and CH12.LX cells.
- the optimal stimulatory motif is composed of an unmethylated CpG flanked by two 5′ purines and two 3′ pyrimidines. Generally a mutation of either 5′ purine to pyrimidine or 3′ pyrimidine to purine significantly reduced its effects.
- FIG. 1 Bacterial DNA and CpG ODN induced IL-6 production in T cell depleted murine spleen cells in a dose-dependent manner, but vertebrate DNA and non-CpG ODN did not ( FIG. 1 ).
- the maximum levels of IL-6 induced by bacterial DNA and CpG ODN were 1-1.5 ng/ml and 24 ng/ml respectively. These levels were significantly greater than those seen after stimulation by LPS (0.35 ng/ml) ( FIG. 1A ).
- CpG ODN with a nuclease-resistant DNA backbone would also induce IL6 production
- S-ODN were added to T cell depleted murine spleen cells.
- CpG S-ODN also induced IL-6 production in a dose-dependent manner to approximately the same level as CpG O-ODN while non-CpG S-ODN failed to induce IL-6 ( FIG. 1C ).
- CpG S-ODN at a concentration of 0.05 ⁇ M could induce maximal IL-6 production in these cells.
- mice were injected iv. with 100 ⁇ g of E. coli DNA, calf thymus DNA, or CpG or non-stimulatory S-ODN and bled 2 hr after stimulation.
- the level of IL-6 in the sera from the E. coli DNA injected group was approximately 13 ng/ml while IL-6 was not detected in the sera from calf thymus DNA or PBS injected groups (Table 4).
- CpG S-ODN also induced IL-6 secretion in viva.
- the IL6 level in the sera from CpG S-ODN injected groups was approximately 20 ng/ml.
- IL-6 was not detected in the sera from non-stimulatory S-ODN stimulated group (Table 4). TABLE 4 Secretion of Murine IL-6 induced by CpG DNA stimulation in vivo.
- Stimulant IL-6 pg/ml
- PBS ⁇ 50 E. coli DNA 13858 ⁇ 3143 Calf Thymus DNA ⁇ 50
- Mice (2 mice/group) were i.v. injected with 100 ⁇ l of PBS, 200 ⁇ g of E. coli DNA or calf thymus DNA, or 500 ⁇ g of CpG S-ODN or non-CpG control S-ODN.
- mice were bled 2 hr after injection and 1:10 dilution of each serum was analyzed by IL-6 ELISA. Sensitivity limit of IL-6 ELISA was 5 pg/ml. Sequences of the CpG S-ODN is 5′GCATGACGTTGAGCT3′ (SEQ ID NO:48) and of the non-stimulatory S-ODN is 5′GCTAGATGTTAGCGT3′ (SEQ ID NO:49). Note that although there is a CpG in sequence 48, it is too close to the 3′ end to effect stimulation, as explained herein. Data represent mean ⁇ SD of duplicates. The experiment was done at least twice with similar results.
- mice were injected iv. with CpG or control non-CpG S-ODN. Serum IL-6 levels were significantly increased within 1 hr and peaked at 2 hr to a level of approximately 9 ng/ml in the CpG S-ODN injected group ( FIG. 2 ). IL-6 protein in sera rapidly decreased after 4 hr and returned to basal level by 12 hr after stimulation. In contrast to CpG DNA stimulated groups, no significant increase of IL-6 was observed in the sera from the non-stimulatory S-ODN or PBS injected groups ( FIG. 2 ).
- the level of serum IL-6 increased rapidly after CpG DNA stimulation.
- BALB/c mice were injected iv with CpG or non-CpG S-ODN and RNA was extracted from liver, spleen, thymus, and bone marrow at various time points after stimulation.
- FIG. 3A the level of IL-6 mRNA in liver, spleen, and thymus was increased within 30 min. after injection of CpG S-ODN.
- liver IL-6 mRNA peaked at 2 hr post-injection and rapidly decreased and reached basal level 8 hr after stimulation ( FIG. 3A ).
- Splenic IL-6 mRNA peaked at 2 hr after stimulation and then gradually decreased ( FIG. 3A ).
- Thymus IL-6 mRNA peaked at 1 hr post-injection and then gradually decreased ( FIG. 3A ).
- IL-6 mRNA was significantly increased in bone marrow within 1 hr after CpG S-ODN injection but then returned to basal level. In response to CpG S-ODN, liver, spleen and thymus showed more substantial increases in IL-6 mRNA expression than the bone marrow.
- Oligonucleotide 1619 was the best inducer of TNF- ⁇ and IFN- ⁇ secretion, and was closely followed by a nearly identical motif in oligonucleotide 1634 (GTCGCT) (Table 5).
- the motifs in oligodeoxynucleotides 1637 and 1614 led to strong IL-6 secretion with relatively little induction of other cytokines.
- human lymphocytes like murine lymphocytes, secrete cytokines differentially in response to CpG dinucleotides, depending on the surrounding bases.
- the motifs that stimulate murine cells best differ from those that are most effective with human cells.
- Certain CpG oligodeoxynucleotides are poor at activating human cells (oligodeoxynucleotides 1707, 1708, which contain the palindrome forming sequences GACGTC and CACGTG respectively).
- L-LME L-leucyl-L-leucine methyl ester
- coli (EC) DNA requires unmethylated CpG motifs, since it is abolished by methylation of the EC DNA (next to the bottom row, Table 6). LPS contamination of the DNA cannot explain the results since the level of contamination was identical in the native and methylated DNA, and since addition of twice the highest amount of contaminating LPS had no effect (not shown).
- CpG DNA induces cytokine secretion by human PBMC TNF- ⁇ IL-6 IFN- ⁇ RANTES DNA (pg/ml) 1 (pg/ml) (pg/ml) (pg/ml) EC DNA (50 ⁇ g/ml) 900 12,000 700 1560 EC DNA (5 ⁇ g/ml) 850 11,000 400 750 EC DNA (0.5 ⁇ g/ml) 500 ND 200 0 EC DNA (0.05 ⁇ g/ml) 62.5 10,000 15.6 0 EC DNA (50 ⁇ g/ml) + L-LME 2 0 ND ND ND EC DNA (10 ⁇ g/ml) Methyl.
- CpG DNA induces cytokine expression in purified human macrophages IL-6 (pg/ml) GM-CSF (pg/ml) TNF- ⁇ (pg/ml) Cells alone 0 0 0 CT DNA (50 ⁇ g/ml) 0 0 0 EC DNA (50 ⁇ g/ml) 2000 15.6 1000
- IL-6 mRNA and protein after CpG DNA stimulation could result from transcriptional or post-transcriptional regulation.
- a murine B cell line, WEHI-231 which produces IL-6 in response to CpG DNA, was transfected with an ILL promoter-CAT construct (pIL-6/CAT) (Pottratz, S. T. et al., 17B-estradiol) inhibits expression of human interleukin-6-promoter-reporter constructs by a receptor-dependent mechanism. J. Clin. Invest. 93:944).
- CAT assays were performed after stimulation with various concentrations of CpG or non-CpG ODN. As shown in FIG. 5 , CpG ODN induced increased CAT activity in dose-dependent manner while non-CpG ODN failed to induce CAT activity. This confirms that CpG induces the transcriptional activity of the IL-6 promoter.
- the lymphocyte stimulating effects of these ODN were tested at three concentrations (3.3, 10, and 30 ⁇ M) by measuring the total levels of RNA synthesis (by 3 H uridine incorporation) or DNA synthesis (by 3 H thymidine incorporation) in treated spleen cell cultures (Example 10).
- O-ODN (0/0 phosphorothioate modifications) bearing a CpG motif caused no spleen cell stimulation unless added to the cultures at concentrations of at least 10 ⁇ M (Example 10).
- this sequence was modified with two S linkages at the 5′ end and at least three S linkages at the 3′ end, significant stimulation was seen at a dose of 3.3 ⁇ M.
- the level of stimulation showed a progressive increase as the number of 3′ modified bases was increased, until this reached or exceeded six, at which point the stimulation index began to decline.
- the optimal number of 3′ S linkages for spleen cell stimulation was five. At all three concentrations tested in these experiments, the S-ODN was less stimulatory than the optimal chimeric compounds.
- S-ODN Phosphorothioate modified ODN
- O-ODN phosphodiester modified ODN
- the increased immune stimulation caused by S-ODN and S-O-ODN i.e. chimeric phosphorothioate ODN in which the central linkages are phosphodiester, but the two 5′ and five 3′ linkages are phosphorothioate modified
- S-ODN and S-O-ODN i.e. chimeric phosphorothioate ODN in which the central linkages are phosphodiester, but the two 5′ and five 3′ linkages are phosphorothioate modified
- S-O-ODN were far more stimulatory than O-ODN, and were even more stimulatory than S-ODN, at least at concentrations above 3.3 ⁇ M. At concentrations below 3 ⁇ M, the S-ODN with the 3M sequence was more potent than the corresponding S-O-ODN, while the S-ODN with the 3D sequence was less potent than the corresponding S-O-ODN (Example 10).
- the 3D sequence is a perfect match for the stimulatory motif in that the CpG is flanked by two 5′ purines and two 3′ pyrimidines.
- the bases immediately flanking the CpG in ODN 3D are not optimal; it has a 5′ pyrimidine and a 3′ purine.
- the sequence requirement for immune stimulation is more stringent for S-ODN than for S-O- or O-ODN.
- S-ODN with poor matches to the optimal CpG motif cause little or no lymphocyte activation (e.g. Sequence 3D).
- S-ODN with good matches to the motif, most critically at the positions immediately flanking the CpG are more potent than the corresponding S-O-ODN (e.g. Sequence 3M, Sequences 4 and 6), even though at higher concentrations (greater than 3 ⁇ M) the peak effect from the S-ODN is greater (Example 10).
- S 2 -O-ODN were remarkably stimulatory, and caused substantially greater lymphocyte activation than the corresponding S-ODN or S-O-ODN at every tested concentration.
- nuclease resistance can not be the only explanation, since the MP-O-ODN were actually less stimulatory than the O-ODN with CpG motifs.
- Prior studies have shown that ODN uptake by lymphocytes is markedly affected by the backbone chemistry (Zhao et al., (1993) Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides.
- CpG DNA can directly activate highly purified B cells and monocytic cells. There are many similarities in the mechanism through which CpG DNA activates these cell types. For example, both require NF ⁇ B activation as explained further below.
- oligo 1668 with the best mouse B cell motif, is a strong inducer of both B cell and natural killer (NK) cell activation, while oligo 1758 is a weak B cell activator, but still induces excellent NK responses (Table 10).
- Vertebrate DNA is highly methylated and CpG dinucleotides are underrepresented.
- the stimulatory CpG motif is common in microbial genomic DNA, but quite rare in vertebrate DNA.
- bacterial DNA has been reported to induce B cell proliferation and immunoglobulin (Ig) production, while mammalian DNA does not (Messina, J. P. et al., J. Immunol. 147:1759 (1991)).
- Ig immunoglobulin
- Example 3 in which methylation of bacterial DNA with CpG methylase was found to abolish mitogenicity, demonstrates that the difference in CpG status is the cause of B cell stimulation by bacterial DNA. This data supports the following conclusion: that unmethylated CpG dinucleotides present within bacterial DNA are responsible for the stimulatory effects of bacterial DNA.
- lymphocyte activation by the CpG motif represents an immune defense mechanism that can thereby distinguish bacterial from host DNA.
- Host DNA which would commonly be present in many anatomic regions and areas of inflammation due to apoptosis (cell death), would generally induce little or no lymphocyte activation due to CpG suppression and methylation.
- the presence of bacterial DNA containing unmethylated CpG motifs can cause lymphocyte activation precisely in infected anatomic regions, where it is beneficial. This novel activation pathway provides a rapid alternative to T cell dependent antigen specific B cell activation.
- B cells bearing antigen receptor specific for bacterial antigens would receive one activation signal through cell membrane Ig and a second signal from bacterial DNA, and would therefore tend to be preferentially activated.
- the interrelationship of this pathway with other pathways of B cell activation provide a physiologic mechanism employing a polyclonal antigen to induce antigen-specific responses.
- B cell activation would not be totally nonspecific.
- B cells bearing antigen receptors specific for bacterial products could receive one activation signal through cell membrane Ig, and a second from bacterial DNA, thereby more vigorously triggering antigen specific immune responses.
- the response to bacterial DNA could have undesirable consequences in some settings.
- autoimmune responses to self antigens would also tend to be preferentially triggered by bacterial infections, since autoantigens could also provide a second activation signal to autoreactive B cells triggered by bacterial DNA.
- the induction of autoimmunity by bacterial infections is a common clinical observance.
- the autoimmune disease systemic lupus erythematosus which is: i) characterized by the production of anti-DNA antibodies; ii) induced by drugs which inhibit DNA methyltransferase (Cornacchia, E. J. et al., J. Clin. Invest. 92:38 (1993)); and iii) associated with reduced DNA methylation (Richardson, B. L. et al., Arth. Rheum 35:647 (1992)), is likely triggered at least in part by activation of DNA-specific B cells through stimulatory signals provided by CpG motifs, as well as by binding of bacterial DNA to antigen receptors.
- sepsis which is characterized by high morbidity and mortality due to massive and nonspecific activation of the immune system may be initiated by bacterial DNA and other products released from dying bacteria that reach concentrations sufficient to directly activate many lymphocytes. Further evidence of the role of CpG DNA in the sepsis syndrome is described in Cowdery, J., et. al., (1996) The Journal of Immunology 156:4570-4575.
- CpG-ODN did not induce any detectable Ca 2+ flux, changes in protein tyrosine phosphorylation, or IP 3 generation.
- Flow cytometry with FITC-conjugated ODN with or without a CpG motif was performed as described in Zhao, Q et al., ( Antisense Research and Development 3:53-66 (1993)), and showed equivalent membrane binding, cellular uptake, efflux, and intracellular localization. This suggests that there may not be cell membrane proteins specific for CpG ODN.
- NF ⁇ B NF ⁇ B activation
- these include through activation of various protein kinases, or through the generation of reactive oxygen species.
- No evidence for protein kinase activation induced immediately after CpG DNA treatment of B cells or monocytic cells have been found, and inhibitors of protein kinase A, protein kinase C, and protein tyrosine kinases had no effects on the CpG induced activation.
- CpG DNA causes a rapid induction of the production of reactive oxygen species in both B cells and monocytic cells, as detected by the sensitive fluorescent dye dihydrorhodamine 123 as described in Royall, J. A., and Ischiropoulos, H.
- FIG. 8A shows the results from a flow cytometry study using mouse B cells with the dihydrorhodamine 123 dye to determine levels of reactive oxygen species.
- the dye only sample in Panel A of the figure shows the background level of cells positive for the dye at 28.6%.
- this level of reactive oxygen species was greatly increased to 80% in the cells treated for 20 minutes with PMA and ionomycin, a positive control (Panel B).
- the cells treated with the CpG oligo also showed an increase in the level of reactive oxygen species such that more than 50% of the cells became positive (Panel D).
- cells treated with an oligonucleotide with the identical sequence except that the CpG was switched did not show this significant increase in the level of reactive oxygen species (Panel E).
- Chloroquine slightly lowers the background level of reactive oxygen species in the cells such that the untreated cells in Panel A have only 4.3% that are positive. Chloroquine completely abolishes the induction of reactive oxygen species in the cells treated with CpG DNA (Panel B) but does not reduce the level of reactive oxygen species in the cells treated with PMA and ionomycin (Panel E). This demonstrates that unlike the PMA plus ionomycin, the generation of reactive oxygen species following treatment of B cells with CpG DNA requires that the DNA undergo an acidification step in the endosomes. This is a completely novel mechanism of leukocyte activation. Chloroquine, monensin, and bafilomycin also appear to block the activation of NF ⁇ B by CpG DNA as well as the subsequent proliferation and induction of cytokine secretion.
- NFKB or related protein is a component of a protein or protein complex that binds the stimulatory CpG oligonucleotides.
- the CpG nucleic acids may bind to one of the TRAF proteins that bind to the cytoplasmic region of CD40 and mediate NF ⁇ B activation when CD40 is cross-linked.
- TRAF proteins include TRAF-2 and TRAF-5.
- nucleic acids can be synthesized de novo using any of a number of procedures well known in the art.
- the ⁇ -cyanoethyl phosphoramidite method S. L. Beaucage and M. H. Caruthers, (1981) Tet. Let. 22:1859
- nucleoside H-phosphonate method Garegg et. al., (1986) Tet. Let. 27: 40514054; Froehler et al., (1986) Nucl. Acid Res. 14: 5399-5407; Garegg et al., (1986) Tet. Let. 27: 40554058, Gaffney et al., (1988) Tet. Let.
- oligonucleotide synthesizers available in the market.
- oligonucleotides can be prepared from existing nucleic acid sequences (e.g. genomic or cDNA) using known techniques, such as those employing restriction enzymes, exonucleases or endonucleases.
- nucleic acids are preferably relatively resistant to degradation (e.g. via endo- and exo-nucleases). Secondary structures, such as stem loops, can stabilize nucleic acids against degradation. Alternatively, nucleic acid stabilization can be accomplished via phosphate backbone modifications. A preferred stabilized nucleic acid has at least a partial phosphorothioate modified backbone. Phosphorothioates may be synthesized using automated techniques employing either phosphoramidate or H-phosphonate chemistries. Aryl- and alkyl-phosphonates can be made e.g. as described in U.S. Pat. No.
- 4,469,863; and alkylphosphotriesters in which the charged oxygen moiety is alkylated as described in U.S. Pat. No. 5,023,243 and European Patent No. 092,574 can be prepared by automated solid phase synthesis using commercially available reagents. Methods for making other DNA backbone modifications and substitutions have been described (Uhlmann, E. and Peyman, A. (1990) Chem. Rev. 90:544; Goodchild, J. (1990) Bioconjugate Chem. 1:165). 2′-O-methyl nucleic acids with CpG motifs also cause immune activation, as do ethoxy-modified CpG nucleic acids. In fact, no backbone modifications have been found that completely abolish the CpG effect, although it is greatly reduced by replacing the C with a 5-methyl C.
- nucleic acids may be associated with a molecule that results in higher affinity binding to target cell (e.g. B-cell, monocytic cell and natural killer (NK) cell) surfaces and/or increased cellular uptake by target cells to form a “nucleic acid delivery complex”.
- target cell e.g. B-cell, monocytic cell and natural killer (NK) cell
- Nucleic acids can be ionically, or covalently associated with appropriate molecules using techniques which are well known in the art.
- a variety of coupling or crosslinking agents can be used e.g. protein A, carbodiimide, and N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP).
- SPDP N-succinimidyl-3-(2-pyridyldithio) propionate
- Nucleic acids can alternatively be encapsulated in liposomes or virosomes using well-known techniques
- nucleic acid molecules containing at least one unmethylated CpG dinucleotide can be administered to a subject in vivo to treat an “immune system deficiency”.
- nucleic acid molecules containing at least one unmethylated CpG dinucleotide can be contacted with lymphocytes (e.g. B cells, monocytic cells or NK cells) obtained from a subject having an immune system deficiency ex vivo and activated lymphocytes can then be reimplanted in the subject.
- lymphocytes e.g. B cells, monocytic cells or NK cells
- IL-6 As reported herein, in response to unmethylated CpG containing nucleic acid molecules, an increased number of spleen cells secrete IL-6, IL-12, IFN- ⁇ , IFN- ⁇ , IFN- ⁇ , IL-1, IL-3, IL-10, TNF- ⁇ , TNF- ⁇ , GM-CSF, RANTES, and probably others.
- the increased IL-6 expression was found to occur in B cells, CD4 + T cells and monocytic cells.
- Immunostimulatory nucleic acid molecules can also be administered to a subject in conjunction with a vaccine to boost a subject's immune system and thereby effect a better response from the vaccine.
- the immunostimulatory nucleic acid molecule is administered slightly before or at the same time as the vaccine.
- a conventional adjuvant may optionally be administered in conjunction with the vaccine, which is minimally comprised of an antigen, as the conventional adjuvant may further improve the vaccination by enhancing antigen absorption.
- the vaccine is a DNA vaccine
- the antigen encoded by the vaccine determines the specificity of the immune response.
- the backbone of the plasmid contains CpG motifs, it functions as an adjuvant for the vaccine.
- CpG DNA acts as an effective “danger signal” and causes the immune system to respond vigorously to new antigens in the area. This mode of action presumably results primarily from the stimulatory local effects of CpG DNA on dendritic cells and other “professional” antigen presenting cells, as well as from the costimulatory effects on B cells.
- Immunostimulatory oligonucleotides and unmethylated CpG containing vaccines which directly activate lymphocytes and co-stimulate an antigen-specific response, are fundamentally different from conventional adjuvants (e.g. aluminum precipitates), which are inert when injected alone and are thought to work through absorbing the antigen and thereby presenting it more effectively to immune cells.
- conventional adjuvants e.g. aluminum precipitates
- conventional adjuvants only work for certain antigens, only induce an antibody (humoral) immune response (Th2), and are very poor at inducing cellular immune responses (Th 1).
- Th2 human immune response
- Th1 for many pathogens, the humoral response contributes little to protection, and can even be detrimental.
- an immunostimulatory oligonucleotide can be administered prior to, along with or after administration of a chemotherapy or immunotherapy to increase the responsiveness of the malignant cells to subsequent chemotherapy or immunotherapy or to speed the recovery of the bone marrow through induction of restorative cytokines such as GM-CSF.
- CpG nucleic acids also increase natural killer cell lytic activity and antibody dependent cellular cytotoxicity (ADCC). Induction of NK activity and ADCC may likewise be beneficial in cancer immunotherapy, alone or in conjunction with other treatments.
- Another use of the described immunostimulatory nucleic acid molecules is in desensitization therapy for allergies, which are generally caused by IgE antibody generation against harmless allergens.
- the cytokines that are induced by unmethylated CpG nucleic acids are predominantly of a class called “Th1” which is most marked by a cellular immune response and is associated with IL-12 and IFN- ⁇ .
- Th1 The other major type of immune response is termed a Th2 immune response, which is associated with more of an antibody immune response and with the production of IL4, IL-5 and IL-10.
- Th2 immune response which is associated with more of an antibody immune response and with the production of IL4, IL-5 and IL-10.
- allergic diseases are mediated by Th2 type immune responses and autoimmune diseases by Th1 immune response.
- an effective dose of an immunostimulatory nucleic acid (or a vector containing a nucleic acid) alone or in conjunction with an allergen can be administered to a subject to treat or prevent an allergy.
- Nucleic acids containing unmethylated CpG motifs may also have significant therapeutic utility in the treatment of asthma.
- Th2 cytokines especially IL-4 and IL-5 are elevated in the airways of asthmatic subjects. These cytokines promote important aspects of the asthmatic inflammatory response, including IgE isotype switching, eosinophil chemotaxis and activation and mast cell growth.
- Th1 cytokines especially IFN- ⁇ and IL-12, can suppress the formation of Th2 clones and production of Th2 cytokines.
- oligonucleotides containing an unmethylated CpG motif i.e. TCCATGA CG TTCCTGA CG TT; SEQ ID NO:10), but not a control oligonucleotide (TCCATGAGCTTCCTGAGTCT; SEQ ID NO:11) prevented the development of an inflammatory cellular infiltrate and eosinophilia in a murine model of asthma. Furthermore, the suppression of eosinophilic inflammation was associated with a suppression of a Th2 response and induction of a Th1 response.
- an effective amount of an appropriate immunostimulatory nucleic acid molecule alone or formulated as a delivery complex can be administered to a subject by any mode allowing the oligonucleotide to be taken up by the appropriate target cells (e.g., B-cells and monocytic cells).
- Preferred routes of administration include oral and transdermal (e.g., via a patch).
- Other routes of administration include injection (subcutaneous, intravenous, parenteral, intraperitoneal, intrathecal, etc.). The injection can be in a bolus or a continuous infusion.
- a nucleic acid alone or as a nucleic acid delivery complex can be administered in conjunction with a pharmaceutically acceptable carrier.
- pharmaceutically acceptable carrier is intended to include substances that can be coadministered with a nucleic acid or a nucleic acid delivery complex and allows the nucleic acid to perform its indicated function. Examples of such carriers include solutions, solvents, dispersion media, delay agents, emulsions and the like. The use of such media for pharmaceutically active substances are well known in the art. Any other conventional carrier suitable for use with the nucleic acids falls within the scope of the instant invention.
- an effective amount of a nucleic acid molecule refers to the amount necessary or sufficient to realize a desired biologic effect.
- an effective amount of a nucleic acid containing at least one unmethylated CpG for treating an immune system deficiency could be that amount necessary to eliminate a tumor, cancer, or bacterial, viral or fungal infection.
- An effective amount for use as a vaccine adjuvant could be that amount useful for boosting a subjects immune response to a vaccine.
- An “effective amount” for treating asthma can be that amount useful for redirecting a Th2 type of immune response that is associated with asthma to a Th1 type of response.
- the effective amount for any particular application can vary depending on such factors as the disease or condition being treated, the particular nucleic acid being administered (e.g.
- B cells were purified from spleens obtained from 6-12 wk old specific pathogen free DBA/2 or BXSB mice (bred in the University of Iowa animal care facility; no substantial strain differences were noted) that were depleted of T cells with anti-Thy-1.2 and complement and centrifugation over lympholyte M (Cedarlane Laboratories, Hornby, Ontario, Canada) (“B cells”). B cells contained fewer than 1% CD4 + or CD8 + cells. 8 ⁇ 10 4 B cells were dispensed in triplicate into 96 well microtiter plates in 100 ⁇ l RPMI containing 10% FBS (heat inactivated to 65° C.
- DBA/2 B cells were cultured with no DNA or 50 ⁇ g/ml of a) Micrococcus lysodeikticus ; b) NZB/N mouse spleen; and c) NFS/N mouse spleen genomic DNAs for 48 hours, then pulsed with 3 H thymidine for 4 hours prior to cell harvest.
- Duplicate DNA samples were digested with DNAse I for 30 minutes at 37 C. prior to addition to cell cultures.
- E coli DNA also induced an 8.8 fold increase in the number of IgM secreting B cells by 48 hours using the ELISA-spot assay.
- DBA/2 B cells were cultured with either no additive, 50 ⁇ g/ml LPS or the ODN 1; 1a; 4; or 4a at 20 ⁇ M. Cells were cultured and harvested at 4, 8, 24 and 48 hours. BXSB cells were cultured as in Example 1 with 5, 10, 20, 40 or 80 ⁇ M of ODN 1; 1a; 4; or 4a or LPS. In this experiment, wells with no ODN had 3833 cpm. Each experiment was performed at least three times with similar results. Standard deviations of the triplicate wells were ⁇ 5%.
- 10 ⁇ 10 6 C57BL/6 spleen cells were cultured in two ml RPMI (supplemented as described for Example 1) with or without 40 ⁇ M CpG or non-CpG ODN for forty-eight hours. Cells were washed, and then used as effector cells in a short term 51 Cr release assay with YAC-1 and 2C11, two NK sensitive target cell lines (Ballas, Z. K. et al. (1993) J. Immunol. 150:17). Effector cells were added at various concentrations to 10 4 51 Cr-labeled target cells in V-bottom microtiter plates in 0.2 ml, and incubated in 5% CO 2 for 4 hr. at 37° C.
- Percent specific lysis was determined by calculating the ratio of the 51 Cr released in the presence of effector cells minus the 51 Cr released when the target cells are cultured alone, over the total counts released after cell lysis in 2% acetic acid minus the 51 Cr cpm released when the cells are cultured alone.
- mice were weighed and injected IP with 0.25 ml of sterile PBS or the indicated phophorothioate ODN dissolved in PBS. Twenty four hours later, spleen cells were harvested, washed, and stained for flow cytometry using phycoerythrin conjugated 6B2 to gate on B cells in conjunction with biotin conjugated anti Ly-6A/E or anti-1a d (Pharmingen, San Diego, Calif.) or anti-Bla-1 (Hardy, R. R. et al., J. Exp. Med. 159:1169 (1984). Two mice were studied for each condition and analyzed individually.
- B cells were cultured with phosphorothioate ODN with the sequence of control ODN 1a or the CpG ODN 1d and 3 Db and then either pulsed after 20 hr with 3 H uridine or after 44 hr with 3 H thymidine before harvesting and determining cpm.
- WEHI-231 cells (5 ⁇ 10 4 /well) were cultured for 1 hr. at 37 C. in the presence or absence of LPS or the control ODN 1a or the CpG ODN 1d and 3 Db before addition of anti-IgM (1 ⁇ /ml). Cells were cultured for a further 20 hr. before a 4 hr. pulse with 2 ⁇ Ci/well 3 H thymidine. In this experiment, cells with no ODN or anti-IgM gave 90.4 ⁇ 10 3 cpm of 3 H thymidine incorporation by addition of anti-IgM.
- the phosphodiester ODN shown in Table 1 gave similar protection, though with some nonspecific suppression due to ODN degradation. Each experiment was repeated at least 3 times with similar results.
- mice DBA/2 female mice (2 mos. old) were injected IP with 500 ⁇ g CpG or control phosphorothioate ODN. At various time points after injection, the mice were bled. Two mice were studied for each time point. IL-6 was measured by Elisa, and IL-6 concentration was calculated by comparison to a standard curve generated using recombinant IL-6. The sensitivity of the assay was 10 pg/ml. Levels were undetectable after 8 hr.
- mice and cell lines DBA/2, BALB/c, and C3H/HeJ mice at 5-10 wk of age were used as a source of lymphocytes. All mice were obtained from The Jackson Laboratory (Bar Harbor, Me.), and bred and maintained under specific pathogen-free conditions in the University of Iowa Animal Care Unit. The mouse B cell line CH12.LX was kindly provided by Dr. G. Bishop (University of Iowa, Iowa City).
- mice were killed by cervical dislocation. Single cell suspensions were prepared aseptically from the spleens from mice. T cell depleted mouse splenocytes were prepared by using anti-Thy-1.2 and complement and centrifugation over lympholyte M (Cedarlane Laboratories, Hornby, Ontario, Canada) as described (Krieg, A. M. et al., (1989) A role for endogenous retroviral sequences in the regulation of lymphocyte activation. J. Immunol. 143:2448).
- ODN and DNA Phosphodiester oligonucleotides (O-ODN) and the backbone modified phosphorothioate oligonucleotides (S-ODN) were obtained from the DNA Core facility at the University of Iowa or from Operon Technologies (Alameda, Calif.).
- E. coli DNA (Strain B) and calf thymus DNA were purchased from Sigma (St. Louis, Mo.). All DNA and ODN were purified by extraction with phenol:chloroform:isoamyl alcohol (25:24:1) and/or ethanol precipitation.
- E. coli and calf thymus DNA were single stranded prior to use by boiling for 10 min. followed by cooling on ice for 5 min. For some experiments, E.
- E. coli and calf thymus DNA were digested with DNAse I (2 U/ ⁇ g of DNA) at 37° C. for 2 hr in 1 ⁇ SSC with 5 mM MgCl 2 .
- DNAse I (2 U/ ⁇ g of DNA)
- E. coli DNA was treated with CpG methylase (M. SssI; 2 U/ ⁇ g of DNA) in NEBuffer 2 supplemented with 160 ⁇ M S-adenosyl methionine and incubated overnight at 37° C.
- Methylated DNA was purified as above. Efficiency of methylation was confirmed by Hpa II digestion followed by analysis by gel electrophoresis.
- LPS level in ODN was less than 12.5 ng/mg and E. coli and calf thymus DNA contained less than 2.5 ng of LPS/mg of DNA by Limulus assay.
- cells were treated with CpG O-DN along with various concentrations (1-10 ⁇ g/ml) of neutralizing rat IgG1 antibody against murine IL-6 (hybridoma MP5-20F3) or control rat IgG1 mAb to E. coli ⁇ -galactosidase (hybridoma GL113; ATCC, Rockville, Md.) (20) for 5 days.
- culture supernatant fractions were analyzed by ELISA as below.
- mice were injected intravenously (iv) with PBS, calf thymus DNA (200 ⁇ g/100 ⁇ l/100 PBS/mouse), E. coli DNA (200 ⁇ g/100 ⁇ l PBS/mouse), or CpG or non-CpG S-ODN (200 ⁇ g/100 ⁇ l PBS/mouse).
- Mice two/group were bled by retroorbital puncture and sacrificed by cervical dislocation at various time points. Liver, spleen, thymus, and bone marrow were removed and RNA was prepared from those organs using RNAzol B (Tel-Test, Friendswood, Tex.) according to the manufacturers protocol.
- RNAzol B Tel-Test, Friendswood, Tex.
- TPBS 0.5 mM MgCl 2 o6H 2 O, 2.68 mM KCl, 1.47 mM KH 2 PO 4 , 0.14 M NaCl, 6.6 mM K 2 HPO 4 , 0.5% Tween 20
- TPBS 0.5 mM MgCl 2 o6H 2 O, 2.68 mM KCl, 1.47 mM KH 2 PO 4 , 0.14 M NaCl, 6.6 mM K 2 HPO 4 , 0.5% Tween 20
- the plates were washed and 100 ⁇ l/well of biotinylated rat anti-mouse IL-6 monoclonal antibodies (MP5-32C11, Pharmingen, San Diego, Calif.) (1 ⁇ g/ml in 10% FCS) or biotinylated anti-mouse Ig (Sigma, St. Louis, Mo.) were added and incubated for 45 min. at room temperature following washes with TPBS. Horseradish peroxidase (HRP) conjugated avid in (Bio-rad Laboratories, Hercules, Calif.) at 1:4000 dilution in 10% FCS (100 ⁇ l/well) was added and incubated at room temperature for 30 min.
- HRP horseradish peroxidase
- the plates were washed and developed with o-phenylendiamine dihydrochloride (OPD; Sigma, St. Louis Mo.) 0.05 M phosphate-citrate buffer, pH 5.0, for 30 min.
- OPD o-phenylendiamine dihydrochloride
- the reaction was stopped with 0.67 N H 2 SO 4 and plates were read on a microplate reader (Cambridge Technology, Inc., Watertown, Mass.) at 490-600 nm. The results are shown in FIGS. 1 and 2 .
- RT-PCR A sense primer, an antisense primer, and an internal oligonucleotide probe for IL6 were synthesized using published sequences (Montgomery, R. A. and M. S. Dallman (1991), Analysis of cytokine gene expression during fetal thymic ontogeny using the polymerase chain reaction ( J. Immunol .) 147:554).
- cDNA synthesis and IL-6 PCR was done essentially as described by Montgomery and Dallman (Montgomery, R. A. and M. S. Dallman (1991), Analysis of cytokine gene expression during fetal thymic ontogeny using the polymerase chain reaction ( J.
- the gel was dried and prehybridized at 47° C. for 2 hr. hybridization buffer (5 ⁇ SSPE, 0.1% SDS) containing 10 ⁇ g/ml denatured salmon sperm DNA.
- hybridization buffer 5 ⁇ SSPE, 0.1% SDS
- the gel was hybridized with 2 ⁇ 10 6 cpm/ml ⁇ -[ 32 P]ATP end-labeled internal oligonucleotide probe for IL-6 (5′CATTTCCACGATTTCCCA3′) SEQ ID NO:56) overnight at 47° C., washed 4 times (2 ⁇ SSC, 0.2% SDS) at room temperature and autoradiographed.
- the results are shown in FIG. 3 .
- DBA/2 mice spleen B cells (5 ⁇ 10 4 cells/100 ⁇ l/well) were treated with media, CpG or non-CpG S-ODN (0.5 ⁇ M) or O-ODN (20 ⁇ M) for 24 hr at 37° C. Cells were pulsed for the last four hr. with either [ 3 H] Thymidine or [ 3 H] Uridine (1 ⁇ Ci/well). Amounts of [ 3 H] incorporated were measured using Liquid Scintillation Analyzer (Packard Instrument Co., Downers Grove, Ill.).
- Chloramphenicol acetyltransferase (CAT) activity was measured by a solution assay (Seed, B. and J. Y. Sheen (1988) A single phase-extraction assay for chloramphenicol acetyl transferase activity. Gene 76:271) 16 hr. after transfection. The results are presented in FIG. 5 .
- ODN were synthesized on an Applied Biosystems Inc. (Foster City, Calif.) model 380A, 380B, or 394 DNA synthesizer using standard procedures (Beacage and Caruthers (1981) Deoxynucleoside phosphoramidites—A new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Letters 22, 1859-1862.).
- Phosphodiester ODN were synthesized using standard beta-cyanoethyl phosphoramidite chemistry. Phosphorothioate linkages were introduced by oxidizing the phosphite linkage with elemental sulfur instead of the standard iodine oxidation.
- the four common nucleoside phosphoramidites were purchased from Applied Biosystems. All phosphodiester and thioate containing ODN were deprotected by treatment with concentrated ammonia at 55° C. for 12 hours. The ODN were purified by gel exclusion chromatography and lyophilized to dryness prior to use. Phosphorodithioate linkages were introduced by using deoxynucleoside S-(b-benzoylmercaptoethyl) pyrrolidino thiophosphoramidites (Wiesler, W. T. et al., (1993) In Methods in Molecular Biology: Protocols for Oligonucleotides and Analogs-Synthesis and Properties, Agrawal, S. (ed.), Humana Press, 191-206.). Dithioate containing ODN were deprotected by treatment with concentrated ammonia at 55° C. for 12 hours followed by reverse phase HPLC purification.
- the methylphosphinodiester is treated with the sulfurizing reagent (5% elemental sulfur, 100 millimolar N,N-diamethylaminopyridine in carbon disulfide/pyridine/triethylamine), four consecutive times for 450 seconds each to produce methylphosphonothioates.
- the methylphosphinodiester is treated with standard oxidizing reagent (0.1 M iodine in tetrahydrofuran/2,6-lutidine/water).
- silica gel bound oligomer was treated with distilled pyridine/concentrated ammonia, 1:1, (v/v) for four days at 4 degrees centigrade.
- the supernatant was dried in vacuo, dissolved in water and chromatographed on a G50/50 Sephadex column.
- O-ODN refers to ODN which are phosphodiester; S-ODN are completely phosphorothioate modified; S-O-ODN are chimeric ODN in which the central linkages are phosphodiester, but the two 5′ and five 3′ linkages are phosphorothioate modified; S 2 -O-ODN are chimeric ODN in which the central linkages are phosphodiester, but the two 5′ and five 3′ linkages are phosphorodithioate modified; and MP-O-ODN are chimeric ODN in which the central linkages are phosphodiester, but the two 5′ and five 3′ linkages are methylphosphonate modified.
- the ODN sequences studied include: 3D (5′GAGAA CG CTGGACCTTCCAT),; (SEQ ID NO:14) 3M (5′TCCATGT CG GTCCTGATGCT),; (SEQ ID NO:22) 5 (5′GG CG TTATTCCTGACT CG CC),; (SEQ ID NO:57) and 6(5′CCTA CG TTGTATG CG CCCAGCT),. (SEQ ID NO:58). These sequences are representative of literally hundreds of CpG and non-CpG ODN that have been tested in the course of these studies.
- mice DBA/2, or BXSB mice obtained from The Jackson Laboratory (Bar Harbor, Me.), and maintained under specific pathogen-free conditions were used as a source of lymphocytes at 5-10 wk of age with essentially identical results.
- mouse spleen cells (5 ⁇ 10 4 cells/100 ⁇ l/well) were cultured at 37° C. in a 5% CO 2 humidified incubator in RPMI-1640 supplemented with 10% (v/v) heat inactivated fetal calf serum (heated to 65° C. for experiments with O-ODN, or 56° C. for experiments using only modified ODN), 1.5 ⁇ M L-glutamine, 50 ⁇ M 2-mercaptoethanol, 100 U/ml penicillin and 100 ⁇ g/ml streptomycin for 24 hr or 48 hr as indicated.
- Phosphodiester ODN were purchased from Operon Technologies (Alameda, Calif.). Phosphorothioate ODN were purchased from the DNA core facility, University of Iowa, or from The Midland Certified Reagent Company (Midland Tex.). E. coli (strain B) DNA and calf thymus DNA were purchased from Sigma (St. Louis, Mo.). All DNA and ODN were purified by extraction with phenol:chloroform:isoamyl alcohol (25:24:1) and/or ethanol precipitation. The LPS level in ODN was less than 12.5 ng/mg and E. coli and calf thymus DNA contained less than 2.5 ng of LPS/mg of DNA by Limulus assay.
- Virus-free, 4-6 week old, DBA/2, C57BU6 (B6) and congenitally athymic BALB/C mice were obtained on contract through the Veterans Affairs from the National Cancer Institute (Bethesda, Md.). C57BU6 SCID mice were bred in the SPF barrier facility at the University of Iowa Animal Care Unit.
- PBMC peripheral mononuclear blood leukocytes
- 1 LU was defined as the number of cells needed to effect 30% specific lysis.
- neutralizing antibodies against IFN- ⁇ Lee Biomolecular, San Diego, Calif.
- IL-12 C15.1, C15.6, C17.8, and C17.15; provided by Dr. Giorgio Trinchieri, The Wistar Institute, Philadelphia, Pa.
- isotype controls were added at the initiation of cultures to a concentration of 10 ⁇ g/ml.
- 10 ⁇ g of each of the 4 MAB (or isotype controls) were added simultaneously.
- Recombinant human IL-2 was used at a concentration of 100 U/ml.
- Schistosoma mansoni eggs contain an antigen ( Schistosoma mansoni egg antigen (SEA)) that induces a Th2 immune response (e.g. production of IgE antibody).
- SEA Schistosoma mansoni egg antigen
- mice were then treated with oligonucleotides (30 ⁇ g in 200 ⁇ l saline by i.p. injection), which either contained an unmethylated CpG motif (i.e. TCCATGA CG TTCCTGA CG TT SEQ ID NO.10) or did not (i.e. control, TCCATGAGCTTCCTGAGTCT; SEQ ID NO.11).
- Soluble SEA (10 ⁇ g in 25 ⁇ l of saline) was administered by intranasal instillation on days 14 and 21. Saline was used as a control.
- mice were sacrificed at various times after airway challenge.
- Whole lung lavage was performed to harvest airway and alveolar inflammatory cells.
- Cytokine levels were measured from lavage fluid by ELISA.
- RNA was isolated from whole lung for Northern analysis and RT-PCR studies using CsCl gradients. Lungs were inflated and perfused with 4% paraformaldehyde for histologic examination.
- FIG. 9 shows that when the mice are initially injected with the eggs i.p., and then inhale the egg antigen (open circle), many inflammatory cells are present in the lungs. However, when the mice are initially given a nucleic acid containing an unmethylated CpG motif along with the eggs, the inflammatory cells in the lung are not increased by subsequent inhalation of the egg antigen (open triangles).
- FIG. 10 shows that the same results are obtained when only eosinophils present in the lung lavage are measured.
- Eosinophils are the type of inflammatory cell most closely associated with asthma.
- FIG. 11 shows that when the mice are treated with a control oligo at the time of the initial exposure to the egg, there is little effect on the subsequent influx of eosinophils into the lungs after inhalation of SEA.
- mice inhale the eggs on days 14 or 21 they develop an acute inflammatory response in the lungs.
- giving a CpG oligo along with the eggs at the time of initial antigen exposure on days 0 and 7 almost completely abolishes the increase in eosinophils when the mice inhale the egg antigen on day 14.
- FIG. 12 shows that very low doses of oligonucleotide ( ⁇ 10 ⁇ g) can give this protection.
- FIG. 13 shows that the resultant inflammatory response correlates with the levels of the Th2 cytokine IL-4 in the lung.
- FIG. 14 shows that administration of an oligonucleotide containing an unmethylated CpG motif can actually redirect the cytokine response of the lung to production of II-12, indicating a Th1 type of immune response.
- FIG. 15 shows that administration of an oligonucleotide containing an unmethylated CpG motif can also redirect the cytokine response of the lung to production of IFN- ⁇ , indicating a Th1 type of immune response.
- CDG Otlionucteotides Induce Human PBMC to Secrete Cytokines
- Human PBMC were prepared from whole blood by standard centrifugation over ficoll hypaque.
- Cells (5 ⁇ 10 5 /ml) were cultured in 10% autologous serum in 96 well microtiter plates with CpG or control oligodeoxynucleotides (24 ⁇ g/ml for phosphodiester oligonucleotides; 6 ⁇ g/ml for nuclease resistant phosphorothioate oligonucleotides) for 4 hr in the case of TNF- ⁇ or 24 hr.
- CpG or control oligodeoxynucleotides 24 ⁇ g/ml for phosphodiester oligonucleotides; 6 ⁇ g/ml for nuclease resistant phosphorothioate oligonucleotides
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Epidemiology (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Mycology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Physics & Mathematics (AREA)
- Pulmonology (AREA)
- Plant Pathology (AREA)
- Dermatology (AREA)
- Analytical Chemistry (AREA)
- Physical Education & Sports Medicine (AREA)
- Virology (AREA)
- Hematology (AREA)
- Diabetes (AREA)
Abstract
Description
- This application is a divisional of co-pending U.S. patent application Ser. No. 08/738,652, filed Oct. 30, 1996, which is a continuation-in-part of U.S. patent application Ser. No. 08/386,063, filed Feb. 7, 1995, now issued as U.S. Pat. No. 6,194,388, which is a continuation-in-part of U.S. patent application Ser. No. 08/276,358, filed Jul. 15, 1994, now abandoned.
- The work resulting in this invention was supported in part by National Institute of Health Grant No. R29-AR42556-01. The U.S. Government may therefore be entitled to certain rights in the invention.
- DNA Binds to Cell Membranes and is Internalized
- In the 1970's, several investigators reported the binding of high molecular weight DNA to cell membranes (Lerner, R. A., W. Meinke, and D. A. Goldstein. 1971. “Membrane-associated DNA in the cytoplasm of diploid human lymphocytes”. Proc. Natl. Acad. Sci. USA 68:1212; Agrawal, S. K., R. W. Wagner, P. K. McAllister, and B. Rosenberg. 1975. “Cell-surface-associated nucleic acid in tumorigenic cells made visible with platinum-pyrimidine complexes by electron microscopy”. Proc. Nail. Acad. Sci. USA 72:928). In 1985, Bennett et al. presented the first evidence that DNA binding to lymphocytes is similar to a ligand receptor interaction: binding is saturable, competitive, and leads to DNA endocytosis and degradation into oligonucleotides (Bennett, R. M., G. T. Gabor, and M. M. Merritt. 1985. “DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradation of DNA”. J. Clin. Invest. 76:2182). Like DNA, oligodeoxyribonucleotides (ODNs) are able to enter cells in a saturable, sequence independent, and temperature and energy dependent fashion (reviewed in Jaroszewski, J. W., and J. S. Cohen. 1991. “Cellular uptake of antisense oligodeoxynucleotides”. Advanced Drug Delivery Reviews 6:235; Akhtar, S., Y. Shoji, and R. L. Juliano. 1992. “Pharmaceutical aspects of the biological stability and membrane transport characteristics of antisense oligonucleotides”. In: Gene Regulation: Biology of Antisense RNA and DNA. R. P. Erickson, and J. G. Izant, eds. Raven Press, Ltd. New York, pp. 133; and Zhao, Q., T. Waldschmidt, E. Fisher, C. J. Herrera, and A. M. Krieg., 1994. “Stage specific oligonucleotide uptake in murine bone marrow B cell precursors”. Blood, 84:3660). No receptor for DNA or ODN uptake has yet been cloned, and it is not yet clear whether ODN binding and cell uptake occurs through the same or a different mechanism from that of high molecular weight DNA.
- Lymphocyte ODN uptake has been shown to be regulated by cell activation. Spleen cells stimulated with the B cell mitogen LPS had dramatically enhanced ODN uptake in the B cell population, while spleen cells treated with the T cell mitogen Con A showed enhanced ODN uptake by T but not B cells (Krieg, A. M., F. Gmelig-Meyling, M. F. Gourley, W. J. Kisch, L. A. Chrisey, and A. D. Steinberg. 1991. “Uptake of oligodeoxyribonucleotides by lymphoid cells is heterogeneous and inducible”. Antisense Research and Development 1:161).
- Immune Effects of Nucleic Acids
- Several polynucleotides have been extensively evaluated as biological response modifiers. Perhaps the best example is poly (I,C) which is a potent inducer of IFN production as well as a macrophage activator and inducer of NK activity (Talmadge, J. E., J. Adams, H. Phillips, M. Collins, B. Lenz, M. Schneider, E. Schlick, R. Ruffmann, R. H. Wiltrout, and M. A. Chirigos. 1985. “Immunomodulatory effects in mice of polyinosinic-polycytidylic acid complexed with poly-L-lysine and carboxymethylcellulose”. Cancer Res. 45:1058; Wiltrout, R. H., R. R. Salup, T. A. Twilley, and J. E. Talmadge. 1985. “Immunomodulation of natural killer activity by polyribonucleotides”. J. Biol. Resp. Mod 4:512; Krown, S. E. 1986. “Interferons and interferon inducers in cancer treatment”. Sem. Oncol. 13:207; and Ewel, C. H., S. J. Urba, W. C. Kopp, J. W. Smith II, R. G. Steis, J. L. Rossio, D. L. Longo, M. J. Jones, W. G. Alvord, C. M. Pinsky, J. M. Beveridge, K. L. McNitt, and S. P. Creekmore. 1992. “Polyinosinic-polycytidylic acid complexed with poly-L-lysine and carboxymethylcellulose in combination with interleukin-2 in patients with cancer: clinical and immunological effects”. Canc. Res. 52:3005). It appears that this murine NK activation may be due solely to induction of IFN-β secretion (Ishikawa, R., and C. A. Biron. 1993. “IFN induction and associated changes in splenic leukocyte distribution”. J. Immunol. 150:3713). This activation was specific for the ribose sugar since deoxyribose was ineffective. Its potent in vitro antitumor activity led to several clinical trials using poly (I,C) complexed with poly-L-lysine and carboxyinethylcellulose (to reduce degradation by RNAse) (Talmadge, J. E., et al., 1985. cited supra; Wiltrout, R. H., et al., 1985. cited supra); Krown, S. E., 1986. cited supra); and Ewel, C. H., et al., 1992. cited supra). Unfortunately, toxic side effects have thus far prevented poly (I,C) from becoming a useful therapeutic agent.
- Guanine ribonucleotides substituted at the C8 position with either a bromine or a thiol group are B cell mitogens and may replace “B cell differentiation factors” (Feldbush, T. L., and Z. K. Ballas. 1985. “Lymphokine-like activity of 8-mercaptoguanosine: induction of T and B cell differentiation”. J. Immunol. 134:3204; and Goodman, M. G. 1986. “Mechanism of synergy between T cell signals and C8-substituted guanine nucleosides in humoral immunity: B lymphotropic cytokines induce responsiveness to 8-mercaptoguanosine”. J. Immunol. 136:3335). 8-mercaptoguanosine and 8-bromoguanosine also can substitute for the cytokine requirement for the generation of MHC restricted CTL (Feldbush, T. L., 1985. cited supra), augment murine NK activity (Koo, G. C., M. E. Jewell, C. L. Manyak, N. H. Sigal, and L. S. Wicker. 1988. “Activation of murine natural killer cells and macrophages by 8-bromoguanosine”. J. Immunol. 140:3249), and synergize with IL-2 in inducing murine LAK generation (Thompson, R. A., and Z. K. Ballas. 1990. “Lymphokine-activated killer (LAK) cells. V. 8-Mercaptoguanosine as an IL-2-sparing agent in LAK generation”. J. Immunol. 145:3524). The NK and LAK augmenting activities of these C8-substituted guanosines appear to be due to their induction of IFN (Thompson, R. A., et al. 1990. cited supra). Recently, a 5′ triphosphorylated thymidine produced by a mycobacterium was found to be mitogenic for a subset of human γδ T cells (Constant, P., F. Davodeau, M.-A. Peyrat, Y. Poquet, G. Puzo, M. Bonneville, and J.-J. Fournie. 1994. “Stimulation of human γδ T cells by nonpeptidic mycobacterial ligands” Science 264:267). This report indicated the possibility that the immune system may have evolved ways to preferentially respond to microbial nucleic acids.
- Several observations suggest that certain DNA structures may also have the potential to activate lymphocytes. For example, Bell et al. reported that nucleosomal protein-DNA complexes (but not naked DNA) in spleen cell supernatants caused B cell proliferation and immunoglobulin secretion (Bell, D. A., B. Morrison, and P. VandenBygaart. 1990. “Immunogenic DNA-related factors”. J. Clin. Invest. 85:1487). In other cases, naked DNA has been reported to have immune effects. For example, Messina et al. have recently reported that 260 to 800 bp fragments of poly (dG)•(dC) and poly (dG•dC) were mitogenic for B cells (Messina, J. P., G. S. Gilkeson, and D. S. Pisetsky. 1993. “The influence of DNA structure on the in vitro stimulation of murine lymphocytes by natural and synthetic polynucleotide antigens”. Cell. Immunol. 147:148). Tokunaga, et al. have reported that dG•dC induces IFN-γ and NK activity (Tokunaga, S. Yamamoto, and K. Namba. 1988. “A synthetic single-stranded DNA, poly(dG,dC), induces interferon-α/β, and -γ, augments natural killer activity, and suppresses tumor growth” Jpn. J. Cancer Res. 79:682). Aside from such artificial homopolymer sequences, Pisetsky et al. reported that pure mammalian DNA has no detectable immune effects, but that DNA from certain bacteria induces B cell activation and immunoglobulin secretion (Messina, J. P., G. S. Gilkeson, and D. S. Pisetsky. 1991. “Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA”. J. Immunol. 147:1759). Assuming that these data did not result from some unusual contaminant, these studies suggested that a particular structure or other characteristic of bacterial DNA renders it capable of triggering B cell activation. Investigations of mycobacterial DNA sequences have demonstrated that ODN which contain certain palindrome sequences can activate NK cells (Yamamoto, S., T. Yamamoto, T. Kataoka, E. Kuramoto, O. Yano, and T. Tokunaga 1992. “Unique palindromic sequences in synthetic oligonucleotides are required to induce INF and augment INF-mediated natural killer activity”. J. Immunol. 148:4072; Kuramoto, E., O. Yano, Y. Kimura, M. Baba, T. Makino, S. Yamamoto, T. Yamamoto, T. Kataoka, and T. Tokunaga. 1992. “Oligonucleotide sequences required for natural killer cell activation”. Jpn. J. Cancer Res. 83:1128).
- Several phosphorothioate modified ODN have been reported to induce in vitro or in vivo B cell stimulation (Tanaka, T., C. C. Chu, and W. E. Paul. 1992. “An antisense oligonucleotide complementary to a sequence in Iγ2b increases γ2b germline transcripts, stimulates B cell DNA synthesis, and inhibits immunoglobulin secretion”. J. Exp. Med. 175:597; Branda, R. F., A. L. Moore, L. Mathews, J. J. McCormack, and G. Zon. 1993. “Immune stimulation by an antisense oligomer complementary to the rev gene of HIV-I”. Biochem. Pharmacol. 45:2037; McIntyre, K. W., K. Lombard-Gillooly, J. R. Perez, C. Kunsch, U. M. Sarmiento, J. D. Larigan, K. T. Landreth, and R. Narayanan. 1993. “A sense phosphorothioate oligonucleotide directed to the initiation codon of transcription factor NFκB T65 causes sequence-specific immune stimulation”. Antisense Res. Develop. 3:309; and Pisetsky, D. S., and C. F. Reich. 1993. “Stimulation of murine lymphocyte proliferation by a phosphorothioate oligonucleotide with antisense activity for herpes simplex virus”. Life Sciences 54: 101). These reports do not suggest a common structural motif or sequence element in these ODN that might explain their effects.
- The CREB/ATF Family of Transcription Factors and Their Role in Replication
- The Camp Response Element Binding Protein (CREB) and Activating transcription factor (ATF) or CREB/ATF family of transcription factors is a ubiquitously expressed class of transcription factors of which 11 members have so far been cloned (reviewed in de Groot, R. P., and P. Sassone-Corsi: “Hormonal control of gene expression: Multiplicity and versatility of
cyclic adenosine 3′,5′-monophosphate-responsive nuclear regulators”. Mol. Endocrin. 7:145, 1993; Lee, K. A. W., and N. Masson: “Transcriptional regulation by CREB and its relatives”. Biochim. Biophys. Acta 1174:221, 1993.). They all belong to the basic region/leucine zipper (bZip) class of proteins. All cells appear to express one or more CREB/ATF proteins, but the members expressed and the regulation of mRNA splicing appear to be tissue-specific. Differential splicing of activation domains can determine whether a particular CREB/ATF protein will be a transcriptional inhibitor or activator. Many CREB/ATF proteins activate viral transcription, but some splicing variants which lack the activation domain are inhibitory. CREB/ATF proteins can bind DNA as homo- or hetero-dimers through the cAMP response element, the CRE, the consensus form of which is the unmethylated sequence TGACGTC (binding is abolished if the CpG is methylated) (Iguchi-Ariga, S. M. M., and W. Schaffner: “CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation”. Genes & Develop. 3:612, 1989.). - The transcriptional activity of the CRE is increased during B cell activation (Xie, H. T. C. Chiles, and T. L. Rothstein: “Induction of CREB activity via the surface Ig receptor of B cells”. J. Immunol. 151:880, 1993.). CREB/ATF proteins appear to regulate the expression of multiple genes through the CRE including immunologically important genes such as fos, jun B, Rb-1, IL6, IL-1 (Tsukada, J., K. Saito, W. R. Waterman, A. C. Webb, and P. E. Auron: “Transcription factors NF-IL6 and CREB recognize a common essential site in the human prointerleukin 1β gene”. Mol. Cell. Biol. 14:7285, 1994; Gray, G. D., O. M. Hernandez, D. Hebel, M. Root, J. M. Pow-Sang, and E. Wickstrom: “Antisense DNA inhibition of tumor growth induced by c-Ha-ras oncogene in nude mice”. Cancer Res. 53:577, 1993), IFN-β (Du, W., and T. Maniatis: “An ATF/CREB binding site protein is required for virus induction of the human interferon B gene”. Proc. Natl. Acad. Sci. USA 89:2150, 1992), TGF-β1 (Asiedu, C. K., L. Scott, R. K. Assoian, M. Ehrlich: “Binding of AP-1/CREB proteins and of MDBP to contiguous sites downstream of the human TGF-B1 gene”. Biochim. Biophys. Acta 1219:55, 1994.), TGF-β2, class II MHC (Cox, P. M., and C. R. Goding: “An ATF/CREB binding motif is required for aberrant constitutive expression of the MHC class II DRa promoter and activation by SV40 T-antigen”. Nucl. Acids Res. 20:4881, 1992.), E-selectin, GM-CSF, CD-8α, the germline Igα constant region gene, the TCR Vβ gene, and the proliferating cell nuclear antigen (Huang, D., P. M. Shipman-Appasamy, D. J. Orten, S. H. Hinrichs, and M. B. Prystowsky: “Promoter activity of the proliferating-cell nuclear antigen gene is associated with inducible CRE-binding proteins in interleukin 2-stimulated T lymphocytes”. Mol. Cell. Biol. 14:4233, 1994.). In addition to activation through the cAMP pathway, CREB can also mediate transcriptional responses to changes in intracellular Ca++ concentration (Sheng, M., G. McFadden, and M. E. Greenberg: “Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB”. Neuron 4:571, 1990).
- The role of protein-protein interactions in transcriptional activation by CREB/ATF proteins appears to be extremely important. There are several published studies reporting direct or indirect interactions between NFKB proteins and CREB/ATF proteins (Whitley, et. al., (1994) Mol. & Cell. Biol. 14:6464; Cogswell, et al., (1994) J. Immun. 153:712; Hines, et al., (1993) Oncogene 8:3189; and Du, et al., (1993) Cell 74:887. Activation of CREB through the cyclic AMP pathway requires protein kinase A (PKA), which phosphorylates CREB341 on sera133 and allows it to bind to a recently cloned protein, CBP (Kwok, R. P. S., J. R. Lundblad, J. C. Chrivia, J. P. Richards, H. P. Bachinger, R. G. Brennan, S. G. E. Roberts, M. R. Green, and R. H. Goodman: “Nuclear protein CBP is a coactivator for the transcription factor CREB”. Nature 370:223, 1994; Arias, J., A. S. Alberts, P. Brindle, F. X. Claret, T. Smea, M. Karin, J. Feramisco, and M. Montminy: “Activation of cAMP and mitogen responsive genes relies on a common nuclear factor”. Nature 370:226, 1994.). CBP in turn interacts with the basal transcription factor TFIIB causing increased transcription. CREB also has been reported to interact with
dTAFII 110, a TATA binding protein-associated factor whose binding may regulate transcription (Ferreri, K., G. Gill, and M. Montminy: “The cAMP-regulated transcription factor CREB interacts with a component of the TFIID complex”. Proc. Natl. Acad. Sci. USA 91:1210, 1994.). In addition to these interactions, CREB/ATF proteins can specifically bind multiple other nuclear factors (Hoeffler, J. P., J. W. Lustbader, and C.-Y. Chen: “Identification of multiple nuclear factors that interact withcyclic adenosine 3′,5′-monophosphate response element-binding protein and activating transcription factor-2 by protein-protein interactions”. Mol. Endocrinol. 5:256, 1991) but the biologic significance of most of these interactions is unknown. CREB is normally thought to bind DNA either as a homodimer or as a heterodimer with several other proteins. Surprisingly, CREB monomers constitutively activate transcription (Krajewski, W., and K. A. W. Lee: “A monomeric derivative of the cellular transcription factor CREB functions as a constitutive activator”. Mol. Cell. Biol. 14:7204, 1994.). - Aside from their critical role in regulating cellular transcription, it has recently been shown that CREB/ATF proteins are subverted by some infectious viruses and retroviruses, which require them for viral replication. For example, the cytomegalovirus immediate early promoter, one of the strongest known mammalian promoters, contains eleven copies of the CRE which are essential for promoter function (Chang, Y.-N., S. Crawford, J. Stall, D. R. Rawlins, K.-T. Jeang, and G. S. Hayward: “The
palindromic series 1 repeats in the simian cytomegalovirus major immediate-early promoter behave as both strong basal enhancers and cyclic AMP response elements”. J. Virol. 64:264, 1990). At least some of the transcriptional activating effects of the adenovirus E1A protein, which induces many promoters, are due to its binding to the DNA binding domain of the CREB/ATF protein, ATF-2, which mediates E1A inducible transcription activation (Liu, F., and M. R. Green: “Promoter targeting by adenovirus E1a through interaction with different cellular DNA-binding domains”. Nature 368:520, 1994). It has also been suggested that E1A binds to the CREB-binding protein, CBP (Arany, Z., W. R. Sellers, D. M. Livingston, and R. Eckner: “E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators”. Cell 77:799, 1994). Human T lymphotropic virus-1 (HTLV-1), the retrovirus which causes human T cell leukemia and tropical spastic paresis, also requires CREB/ATF proteins for replication. In this case, the retrovirus produces a protein, Tax, which binds to CREB/ATF proteins and redirects them from their normal cellular binding sites to different DNA sequences (flanked by G- and C-rich sequences) present within the HTLV transcriptional enhancer (Paca-Uccaralertkun, S., L.-J. Zhao, N. Adya, J. V. Cross, B. R. Cullen, I. M. Boros, and C.-Z. Giam: “In vitro selection of DNA elements highly responsive to the human T-celllymphotropic virus type 1 transcriptional activator, Tax”. Mol. Cell. Biol. 14:456, 1994; Adya, N., L.-J. Zhao, W. Huang, 1. Boros, and C.-Z. Giam: “Expansion of CREB's DNA recognition specificity by Tax results from interaction with Ala-Ala-Arg at positions 282-284 near the conserved DNA-binding domain of CREB”. Proc. Natl. Acad. Sci. USA 91:5642, 1994). - The instant invention is based on the finding that certain nucleic acids containing unmethylated cytosine-guanine (CpG) dinucleotides activate lymphocytes in a subject and redirect a subjects immune response from a Th2 to a Th1 (e.g. by inducing monocytic cells and other cells to produce Th1 cytokines, including IL-12, IFN-γ and GM-CSF). Based on this finding, the invention features, in one aspect, novel immunostimulatory nucleic acid compositions.
- In a preferred embodiment, the immunostimulatory nucleic acid contains a consensus mitogenic CpG motif represented by the formula:
5′X1CGX2 3′ -
- wherein X1 is selected from the group consisting of A,G and T; and X2 is C or T.
- In a particularly preferred embodiment an immunostimulatory nucleic acid molecule contains a consensus mitogenic CpG motif represented by the formula:
5′X1X2CGX3X4 3′ -
- wherein C and G are unmethylated; and X1, X2, X3 and X4 are nucleotides.
- Enhanced immunostimulatory activity of human cells occurs where X1X2 is selected from the group consisting of GpT, GpG, GpA and ApA and/or X3X4 is selected from the group consisting of TpT, CpT and GpT (Table 5). For facilitating uptake into cells, CpG containing immunostimulatory nucleic acid molecules are preferably in the range of 8 to 40 base pairs in size. However, nucleic acids of any size (even many kb long) are immunostimulatory if sufficient immunostimulatory motifs are present, since such larger nucleic acids are degraded into oligonucleotides inside of cells. Preferred synthetic oligonucleotides do not include a GCG trinucleotide sequence at or near the 5′ and/or 3′ terminals and/or the consensus mitogenic CpG motif is not a palindrome. Prolonged immunostimulation can be obtained using stabilized oligonucleotides, particularly phosphorothioate stabilized oligonucleotides.
- In a second aspect, the invention features useful therapies, which are based on the immunostimulatory activity of the nucleic acid molecules. For example, the immunostimulatory nucleic acid molecules can be used to treat, prevent or ameliorate an immune system deficiency (e.g., a tumor or cancer or a viral, fungal, bacterial or parasitic infection in a subject). In addition, immunostimulatory nucleic acid molecules can be administered to stimulate a subject's response to a vaccine.
- Further, by redirecting a subject's immune response from Th2 to Th1, the instant claimed nucleic acid molecules can be administered to treat or prevent the symptoms of asthma. In addition, the instant claimed nucleic acid molecules can be administered in conjunction with a particular allergen to a subject as a type of desensitization therapy to treat or prevent the occurrence of an allergic reaction.
- Further, the ability of immunostimulatory nucleic acid molecules to induce leukemic cells to enter the cell cycle supports the use of immunostimulatory nucleic acid molecules in treating leukemia by increasing the sensitivity of chronic leukemia cells and then administering conventional ablative chemotherapy, or combining the immunostimulatory nucleic acid molecules with another immunotherapy.
- Other features and advantages of the invention will become more apparent from the following detailed description and claims.
-
FIG. 1A -C are graphs plotting dose-dependent IL-6 production in response to various DNA sequences in T cell depleted spleen cell cultures. A. E. coli DNA (●) and calf thymus DNA (▪) sequences and LPS (at 10× the concentration of E. coli and calf thymus DNA) (♦). B. Control phosphodiester oligodeoxynucleotide (ODN) 5′ATGGAAGGTCCAGTGTTCTC3′ (SEQ ID NO:1) (▪) and two phosphodiester CpG ODN5′ATCGACCTACGTGCGTTCTC3′ (SEQ ID NO:2) (♦) and 5′TCCATAACGTTCCTGATGCT3′ (SEQ ID NO:3) (●). C. Control phosphorothioate ODN 5′GCTAGATGTTAGCGT3′ (SEQ ID NO:4) (▪) and two phosphorothioate CpG ODN 5′GAGAACGTCGACCTTCGAT3′ (SEQ ID NO:5) (♦) and 5′GCATGACGTTGAGCT3′ (SEQ ID NO:6) (●). Data present the mean±standard deviation of triplicates. -
FIG. 2 is a graph plotting IL-6 production induced by CpG DNA in vivo as determined 1-8 hrs after injection. Data represent the mean from duplicate analyses of sera from two mice. BALB/c mice (two mice/group) were injected iv. with 100 μl of PBS (□) or 200 μg ofCpG phosphorothioate ODN 5′TCCATGACGTTCCTGATGCT 3′ (SEQ ID NO:7) (▪) ornon-CpG phosphorothioate ODN 5′TCCATGAGCTTCCTGAGTCT 3′ (SEQ ID NO:8) (♦). -
FIG. 3 is an autoradiograph showing IL-6 mRNA expression as determined by reverse transcription polymerase chain reaction in liver, spleen, and thymus at various time periods after in vivo stimulation of BALB/c mice (two mice/group) injected iv with 100 μl of PBS, 200 μg ofCpG phosphorothioate ODN 5′TCCATGACGTTCCTGATGCT 3′ (SEQ [D NO:7) ornon-CpG phosphorothioate ODN 5′TCCATGAGCTTCCTGAGTCT 3′ (SEQ ID NO:8). -
FIG. 4A is a graph plotting dose-dependent inhibition of CpG-induced IgM production by anti-IL-6. Splenic B-cells from DBA/2 mice were stimulated with CpG ODN 5′TCCAAGACGTTCCTGATGCE (SEQ ID NO:9) in the presence of the indicated concentrations of neutralizing anti-IL-6 (♦) or isotype control Ab (●) and IgM levels in culture supernatants determined by ELISA. In the absence of CpG ODN, the anti-IL-6 Ab had no effect on IgM secretion (▪). -
FIG. 4B is a graph plotting the stimulation index of CpG-induced splenic B cells cultured with anti-IL-6 and CpG S-ODN 5′TCCATGACGTTCCTGATGCT 3′ (SEQ ID NO:7) (♦) or anti-IL-6 antibody only (▪). Data present the mean±standard deviation of triplicates. -
FIG. 5 is a bar graph plotting chloramphenicol acetyltransferase (CAT) activity in WEHI-231 cells transfected with a promoter-less CAT construct (pCAT), positive control plasmid (RSV), or IL-6 promoter-CAT construct alone or cultured withCpG 5′TCCATGACGTTCCTGATGCT 3′ (SEQ ID NO:7) or non-CpG 5′TCCATGAGCTTCCTGAGTCT 3′ (SEQ ID NO:8) phosphorothioate ODN at the indicated concentrations. Data present the mean of triplicates. -
FIG. 6 is a schematic overview of the immune effects of the immunostimulatory unmethylated CpG containing nucleic acids, which can directly activate both B cells and monocytic cells (including macrophages and dendritic cells) as shown. The immunostimulatory oligonucleotides do not directly activate purified NK cells, but render them competent to respond to IL-12 with a marked increase in their IFN1 production. By inducing 1]-12 production and the subsequent increased IFN-γ secretion by NK cells, the immunostimulatory nucleic acids promote a Th1 type immune response. No direct activation of proliferation of cytokine secretion by highly purified T cells has been found. However, the induction of Th1 cytokine secretion by the immunostimulatory oligonucleotides promotes the development of a cytotoxic lymphocyte response. -
FIG. 7 is an autoradiograph showing NFκB mRNA induction in monocytes treated with E. coli (EC) DNA (containing unmethylated CpG motifs), control (CT) DNA (containing no unmethylated CpG motifs) and lipopolysaccharide (LPS) at various measured times, 15 and 30 minutes after contact. -
FIG. 8A shows the results from a flow cytometry study using mouse B cells with the dihydrorhodamine 123 dye to determine levels of reactive oxygen species. The dye only sample in Panel A of the figure shows the background level of cells positive for the dye at 28.6%. This level of reactive oxygen species' was greatly increased to 80% in the cells treated for 20 minutes with PMA and ionomycin, a positive control (Panel B). The cells treated with the CpG oligo (TCCATGACGTTCCTGACGTT SEQ ID NO:10) also showed an increase in the level of reactive oxygen species such that more than 50% of the cells became positive (Panel D). However, cells treated with an oligonucleotide with the identical sequence except that the CpGs were switched (TCCATGAGCTTCCTGAGTGCT SEQ ID NO:11) did not show this significant increase in the level of reactive oxygen species (Panel E). -
FIG. 8B shows the results from a flow cytometry study using mouse B cells in the presence of chloroquine with the dihydrorhodamine 123 dye to determine levels of reactive oxygen species. Chloroquine slightly lowers the background level of reactive oxygen species in the cells such that the untreated cells in Panel A have only 4.3% that are positive. Chloroquine completely abolishes the induction of reactive oxygen species in the cells treated with CpG DNA (Panel B) but does not reduce the level of reactive oxygen species in the cells treated with PMA and ionomycin (Panel E). -
FIG. 9 is a graph plotting lung lavage cell count over time. The graph shows that when the mice are initially injected with Schistosoma mansoni eggs “egg”, which induces a Th2 immune response, and subsequently inhale Schistosoma mansoni egg antigen “SEA” (open circle), many inflammatory cells are present in the lungs. However, when the mice are initially given CpG oligo (SEQ ID NO:10) along with egg, the inflammatory cells in the lung are not increased by subsequent inhalation of SEA (open triangles). -
FIG. 10 is a graph plotting lung lavage eosinophil count over time. Again, the graph shows that when the mice are initially injected with egg and subsequently inhale SEA (open circle), many eosinophils are present in the lungs. However, when the mice are initially given CpG oligo (SEQ ID NO:10) along with egg, the inflammatory cells in the lung are not increased by subsequent inhalation of the SEA (open triangles). -
FIG. 11 is a bar graph plotting the effect on the percentage of macrophage, lymphocyte, neutrophil and eosinophil cells induced by exposure to saline alone; egg, then SEA; egg and SEQ ID NO:11, then SEA; and egg and control oligo (SEQ ID NO:11), then SEA. When the mice are treated with the control oligo at the time of the initial exposure to the egg, there is little effect on the subsequent influx of eosinophils into the lungs after inhalation of SEA. Thus, when mice inhale the eggs on days 14 or 21, they develop an acute inflammatory response in the lungs. However, giving a CpG oligo along with the eggs at the time of initial antigen exposure ondays 0 and 7 almost completely abolishes the increase in eosinophils when the mice inhale the egg antigen on day 14. -
FIG. 12 is a bar graph plotting eosinophil count in response to injection of various amounts of the protective oligo SEQ ID NO:10. -
FIG. 13 is a graph plotting interleukin 4 (IL4) production (pg/ml) in mice over time in response to injection of egg, then SEA (open diamond); egg and SEQ ID NO:10, then SEA (open circle); or saline, then saline (open square). The graph shows that the resultant inflammatory response correlates with the levels of the Th2 cytokine MLA in the lung. -
FIG. 14 is a bar graph plotting interleukin 12 (IL-12) production (pg/ml) in mice over time in response to injection of saline; egg, then SEA; or SEQ ID NO:10 and egg, then SEA. The graph shows that administration of an oligonucleotide containing an unmethylated CpG motif can actually redirect the cytokine response of the lung to production of IL-12, indicating a Th1 type of immune response. -
FIG. 15 is a bar graph plotting interferon gamma (IFN-γ) production (pg/ml) in mice over time in response to injection of saline; egg, then saline; or SEQ ID NO:10 and egg, then SEA. The graph shows that administration of an oligonucleotide containing an unmethylated CpG motif can also redirect the cytokine response of the lung to production of IFN-γ, indicating a Th1 type of immune response. - Definitions
- As used herein, the following terms and phrases shall have the meanings set forth below:
- An “allergen” refers to a substance that can induce an allergic or asthmatic response in a susceptible subject. The list of allergens is enormous and can include pollens, insect venoms, animal dander, dust, fungal spores and drugs (e.g. penicillin). Examples of natural, animal and plant allergens include proteins specific to the following genera: Canine (Canis familiaris); Dermatophagoides (e.g. Dermatophagoides farinae); Felis (Felis domesticus); Ambrosia (Ambrosia artemiisfolia; Lolium (e.g. Lolium perenne or Lolium multiflorum); Cryptomeria (Cryptomeria japonica); Alternaria (Alternaria alternata); Alder; Alnus (Alnus gultinosa); Betula (Betula verrucosa); Quercus (Quercus alba); Olea (Olea europa); Arlemisia (Artemisia vulgaris); Plantago (e.g. Plantago lanceolata); Parietaria (e.g. Parietaria officinalis or Parietariajudaica); Blattella (e.g. Blattella germanica); Apis (e.g. Apis multiflorum); Cupressus (e.g. Cupressus sempervirens, Cupressus arizonica and Cupressus macrocarpa); Juniperus (e.g. Juniperus sabinoides, Juniperus virginiana, Juniperus communis and Juniperus asheq); Thuya (e.g. Thuya orientalis); Chamaecyparis (e.g. Chamaecyparis obtusa); Periplaneta (e.g. Periplaneta americana); Agropyron (e.g. Agropyron repens); Secale (e.g. Secale cereale); Triticum (e.g. Triticum aestivum); Dactylis (e.g. Dactylis glomerata); Festuca (e.g. Festuca elatior); Poa (e.g. Poa pratensis or Poa compressa); Avena (e.g. Avena sativa); Holcus (e.g. Holcus lanatus); Anthoxanthum (e.g. Anthoxanthum odoratum); Arrhenatherum (e.g. Arrhenatherum elatius); Agrostis (e.g. Agrostis alba); Phleum (e.g. Phleum pratense); Phalaris (e.g. Phalaris arundinacea); Paspalum (e.g. Paspalum notatum); Sorghum (e.g. Sorghum halepensis); and Bromus (e.g. Bromus inermis).
- An “allergy” refers to acquired hypersensitivity to a substance (allergen). Allergic conditions include eczema, allergic rhinitis or coryza, hay fever, bronchial asthma, urticaria (hives) and food allergies, and other atopic conditions.
- “Asthma”—refers to a disorder of the respiratory system characterized by inflammation, narrowing of the airways and increased reactivity of the airways to inhaled agents. Asthma is frequently, although not exclusively associated with atopic or allergic symptoms.
- An “immune system deficiency” shall mean a disease or disorder in which the subject's immune system is not functioning in normal capacity or in which it would be useful to boost a subject's immune response for example to eliminate a tumor or cancer (e.g. tumors of the brain, lung (e.g. small cell and non-small cell), ovary, breast, prostate, colon, as well as other carcinomas and sarcomas) or an infection in a subject.
- Examples of infectious virus include: Retroviridae (e.g., human immunodeficiency viruses, such as HIV-I (also referred to as HTLV-III, LAV or HTLV-III/LAV, or HIV-III; and other isolates, such as HIV-LP; Picornaviridae (e.g., polio viruses, hepatitis A virus; enteroviruses, human coxsackie viruses, rhinoviruses, echoviruses); Calciviridae (e.g., strains that cause gastroenteritis); Togaviridae (e.g., equine encephalitis viruses, rubella viruses); Flaviridae (e.g., dengue viruses, encephalitis viruses, yellow fever viruses); Coronaviridae (e.g., coronaviruses); Rhabdoviridae (e.g., vesicular stomatitis viruses, rabies viruses); Flaviridae (e.g., ebola viruses); Paramyxoviridae (e.g., parainfluenza viruses, mumps virus, measles virus, respiratory syncytial virus); Orthomyxoviridae (e.g., influenza viruses); Bungaviridae (e.g., Hantaan viruses, bunga viruses, phleboviruses and Nairo viruses); Arena viridae (hemorrhagic fever viruses); Reoviridae (e.g., reoviruses, orbiviurses and rotaviruses); Birnaviridae; Hepadnaviridae (Hepatitis B virus); Parvoviridae (parvoviruses); Papovaviridae (papilloma viruses, polyoma viruses); Adenoviridae (most adenoviruses); Herpesviridae (herpes simplex virus (HSV) 1 and 2, varicella zoster virus, cytomegalovirus (CMV), herpes viruses); Poxyiridae (variola viruses, vaccinia viruses, pox viruses); and Iridoviridae (e.g., African swine fever virus); and unclassified viruses (e.g., the etiological agents of Spongiform encephalopathies, the agent of delta hepatitis (thought to be a defective satellite of hepatitis B virus), the agents of non-A, non-B hepatitis (class 1=internally transmitted; class 2=parenterally transmitted (i.e., Hepatitis C); Norwalk and related viruses, and astroviruses).
- Examples of infectious bacteria include: Helicobacter pyloris, Borelia burgdorferi, Legionella pneumophilia, Mycobacteria spp. (e.g., M. luberculosis, M. avium, M. intracellulare, M. kansasii, M. gordonae), Staphylococcus aureus, Neisseria gonorrhoeae, Neisseria meningitidis, Listeria monocytogenes, Streptococcus pyogenev (Group A Streptococcus), Streptococcus agalactiae (Group B Streptococcus), Streptococcus (viridans group), Streptococcus faecalis, Streptococcus bovis, Streptococcus (anaerobic spp.), Streptococcus pneumoniae, pathogenic Campylobacter sp., Enterococcus sp., Haemophilus influenzae, Bacillus anthracis, Corynebacterium diphtheriae, Corynebacterium sp., Erysipelothrix rhusiopaihiae, Closiridium perfringens, Clostridium tetani, Enterobacter aerogenes, Klebsiella pneumoniae, Pasturella multocida, Bacteroides sp., Fusobacterium nucleatum, Streptobacillus moniliformis, Treponema pallidum, Treponema pertenue, Leptospira, and Actinomyces israelli.
- Examples of infectious fungi include: Cryptococcus neoformans, Histoplasma capsulatum, Coccidioides immitis, Blastomyces dermatitidis, Chlamydia trachomatis, Candida albicans. Other infectious organisms (i.e., protists) include: Plasmodium falciparum and Toxoplasma gondii.
- An “immunostimulatory nucleic acid molecule” refers to a nucleic acid molecule, which contains an unmethylated cytosine, guanine dinucleotide sequence (i.e. “CpG DNA” or DNA containing a cytosine followed by guanosine and linked by a phosphate bond) and stimulates (e.g. has a mitogenic effect on, or induces or increases cytokine expression by) a vertebrate lymphocyte. An immunostimulatory nucleic acid molecule can be double-stranded or single-stranded. Generally, double-stranded molecules are more stable in vivo, while single-stranded molecules have increased immune activity.
- In a preferred embodiment, the immunostimulatory nucleic acid contains a consensus mitogenic CpG motif represented by the formula:
5′X1CGX2 3′ -
- wherein X1 is selected from the group consisting of A,G and T; and X2 is C or T.
- In a particularly preferred embodiment, immunostimulatory nucleic acid molecules are between 2 to 100 base pairs in size and contain a consensus mitogenic CpG motif represented by the formula:
5X1X2CGX3X4 3′ -
- wherein C and G are unmethylated, X1, X2, X3 and X4 are nucleotides.
- For economic reasons, preferably the immunostimulatory CpG DNA is in the range of between 8 to 40 base pairs in size if it is synthesized as an oligonucleotide. Alternatively, CpG dinucleotides can be produced on a large scale in plasmids, which after being administered to a subject are degraded into oligonucleotides. Preferred immunostimulatory nucleic acid molecules (e.g. for use in increasing the effectiveness of a vaccine or to treat an immune system deficiency by stimulating an antibody [humoral] response in a subject) have a relatively high stimulation index with regard to B cell, monocyte and/or natural killer cell responses (e.g. cytokine, proliferative, lytic or other responses).
- The stimulation index of a particular immunostimulatory CpG DNA can be tested in various immune cell assays. Preferably, the stimulation index of the immunostimulatory CpG DNA with regard to B-cell proliferation is at least about 5, preferably at least about 10, more preferably at least about 15 and most preferably at least about 20 as determined by incorporation of 3H uridine in a murine B cell culture, which has been contacted with a 20 μM of ODN for 20 h at 37° C. and has been pulsed with 1 Ci of 3H uridine; and harvested and counted 4h later as described in detail in Example 1. For use in vivo, for example to treat an immune system deficiency by stimulating a cell-mediated (local) immune response in a subject, it is important that the immunostimulatory CpG DNA be capable of effectively inducing cytokine secretion by monocytic cells and/or Natural Killer (NK) cell lytic activity.
- Preferred immunostimulatory CpG nucleic acids should effect at least about 500 pg/ml of TNF-α, 15 pg/ml IFN-γ, 70 pg/ml of GMCSF 275 pg/ml of IL-6, 200 pg/ml IL-12, depending on the therapeutic indication, as determined by the assays described in Example 12. Other preferred immunostimulatory CpG DNAs should effect at least about 10%, more preferably at least about 15% and most preferably at least about 20% YAC-1 cell specific lysis or at least about 30, more preferably at least about 35 and most preferably at least about 40% 2C11 cell specific lysis as determined by the assay described in detail in Example 4.
- A “nucleic acid” or “DNA” shall mean multiple nucleotides (i.e. molecules comprising a sugar (e.g. ribose or deoxyribose) linked to a phosphate group and to an exchangeable organic base, which is either a substituted pyrimidine (e.g. cytosine (C), thymine (T) or uracil (U)) or a substituted purine (e.g. adenine (A) or guanine (G)). As used herein, the term refers to ribonucleotides as well as oligodeoxyribonucleotides. The term shall also include polynucleosides (i.e. a polynucleotide minus the phosphate) and any other organic base containing polymer. Nucleic acid molecules can be obtained from existing nucleic acid sources (e.g. genomic or cDNA), but are preferably synthetic (e.g. produced by oligonucleotide synthesis).
- A “nucleic acid delivery complex” shall mean a nucleic acid molecule associated with (e.g. ionically or covalently bound to; or encapsulated within) a targeting means (e.g. a molecule that results in higher affinity binding to target cell (e.g. B-cell and natural killer (NK) cell) surfaces and/or increased cellular uptake by target cells). Examples of nucleic acid delivery complexes include nucleic acids associated with: a sterol (e.g. cholesterol), a lipid (e.g. a cationic lipid, virosome or liposome), or a target cell specific binding agent (e.g. a ligand recognized by target cell specific receptor). Preferred complexes must be sufficiently stable in vivo to prevent significant uncoupling prior to internalization by the target cell. However, the complex should be cleavable under appropriate conditions within the cell so that the nucleic acid is released in a functional form.
- “Palindromic sequence” shall mean an inverted repeat (i.e. a sequence such as ABCDEE′D′C′B′A′ in which A and A′ are bases capable of forming the usual Watson-Crick base pairs. In vivo, such sequences may form double stranded structures.
- A “stabilized nucleic acid molecule” shall mean a nucleic acid molecule that is relatively resistant to in vivo degradation (e.g. via an exo- or endo-nuclease). Stabilization can be a function of length or secondary structure. Unmethylated CpG containing nucleic acid molecules that are tens to hundreds of kbs long are relatively resistant to in vivo degradation. For shorter immunostimulatory nucleic acid molecules, secondary structure can stabilize and increase their effect. For example, if the 3′ end of a nucleic acid molecule has self-complementarity to an upstream region, so that it can fold back and form a sort of stem loop structure, then the nucleic acid molecule becomes stabilized and therefore exhibits more activity.
- Preferred stabilized nucleic acid molecules of the instant invention have a modified backbone. For use in immune stimulation, especially preferred stabilized nucleic acid molecules are phosphorothioate modified nucleic acid molecules (i.e. at least one of the phosphate oxygens of the nucleic acid molecule is replaced by sulfur). Preferably the phosphate modification occurs at or near the 5′ and/or 3′ end of the nucleic acid molecule. In addition to stabilizing nucleic acid molecules, as reported further herein, phosphorothioate-modified nucleic acid molecules (including phosphorodithioate-modified) can increase the extent of immune stimulation of the nucleic acid molecule, which contains an unmethylated CpG dinucleotide as shown herein. International Patent Application Publication Number: WO 95/26204 entitled “Immune Stimulation By Phosphorothioate Oligonucleotide Analogs” also reports on the non-sequence specific immunostimulatory effect of phosphorothioate modified oligonucleotides. As reported herein, unmethylated CpG containing nucleic acid molecules having a phosphorothioate backbone have been found to preferentially activate B-cell activity, while unmethylated CpG containing nucleic acid molecules having a phosphodiester backbone have been found to preferentially activate monocytic (macrophages, dendritic cells and monocytes) and NK cells. Phosphorothioate CpG oligonucleotides with preferred human motifs are also strong activators of monocytic and NK cells.
- Other stabilized nucleic acid molecules include: nonionic DNA analogs, such as alkyl- and aryl-phosphonates (in which the charged phosphonate oxygen is replaced by an alkyl or aryl group), phosphodiester and alkylphosphotriesters, in which the charged oxygen moiety is alkylated. Nucleic acid molecules which contain a diol, such as tetraethyleneglycol or hexaethyleneglycol, at either or both termini have also been shown to be substantially resistant to nuclease degradation.
- A “subject” shall mean a human or vertebrate animal including a dog, cat, horse, cow, pig, sheep, goat, chicken, monkey, rat, mouse, etc.
- As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. Preferred vectors are those capable of autonomous replication and expression of nucleic acids to which they are linked (e.g., an episome). Vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as “expression vectors.” In general, expression vectors of utility in recombinant DNA techniques are often in the form of “plasmids” which refer generally to circular double stranded DNA loops which, in their vector form, are not bound to the chromosome. In the present specification, “plasmid” and “vector” are used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors which serve equivalent functions and which become known in the art subsequently hereto.
- Certain Unmethylated CpG Containing Nucleic Acids Have B Cell Stimulator Activity as Shown In Vitro and In Vivo
- In the course of investigating the lymphocyte stimulatory effects of two antisense oligonucleotides specific for endogenous retroviral sequences, using protocols described in the attached Examples 1 and 2, it was surprisingly found that two out of twenty-four “controls” (including various scrambled, sense, and mismatch controls for a panel of “antisense” ODN) also mediated B cell activation and IgM secretion, while the other “controls” had no effect.
- Two observations suggested that the mechanism of this B cell activation by the “control” ODN may not involve antisense effects 1) comparison of vertebrate DNA sequences listed in GenBank showed no greater homology than that seen with non-stimulatory ODN and 2) the two controls showed no hybridization to Northern blots with 10 μg of spleen poly A+ RNA. Resynthesis of these ODN on a different synthesizer or extensive purification by polyacrylamide gel electrophoresis or high pressure liquid chromatography gave identical stimulation, eliminating the possibility of an impurity. Similar stimulation was seen using B cells from C3H/HeJ mice, eliminating the possibility that lipopolysaccharide (LPS) contamination could account for the results.
- The fact that two “control” ODN caused B cell activation similar to that of the two “antisense” ODN raised the possibility that all four ODN were stimulating B cells through some non-antisense mechanism involving a sequence motif that was absent in all of the other nonstimulatory control ODN. In comparing these sequences, it was discovered that all of the four stimulatory ODN contained CpG dinucleotides that were in a different sequence context from the nonstimulatory control.
- To determine whether the CpG motif present in the stimulatory ODN was responsible for the observed stimulation, over 300 ODN ranging in length from 5 to 42 bases that contained methylated, unmethylated, or no CpG dinucleotides in various sequence contexts were synthesized. These ODNs, including the two original “controls” (
ODN 1 and 2) and two originally synthesized as “antisense” (ODN 3D and 3M; Krieg, A. M. J. Immunol. 143:2448 (1989)), were then examined for in vitro effects on spleen cells (representative sequences are listed in Table 1). Several ODN that contained CpG dinucleotides induced B cell activation and IgM secretion; the magnitude of this stimulation typically could be increased by adding more CpG dinucleotides (Table 1; compareODN 2 to 2a or 3D to 3Da and 3 Db). Stimulation did not appear to result from an antisense mechanism or impurity. ODN caused no detectable proliferation of γδ or other T cell populations. - Mitogenic ODN sequences uniformly became nonstimulatory if the CpG dinucleotide was mutated (Table 1; compare
ODN 1 to 1a; 3D to 3Dc; 3M to 3Ma; and 4 to 4a) or if the cytosine of the CpG dinucleotide was replaced by 5-methylcytosine (Table 1; ODN 1b,2b,3Dd, and 3 Mb). Partial methylation of CpG motifs caused a partial loss of stimulatory effect (compare 2a to 2c, Table 1). In contrast, methylation of other cytosines did not reduce ODN activity (ODN 1c, 2d, 3De and 3Mc). These data confirmed that a CpG motif is the essential element present in ODN that activate B cells. - In the course of these studies, it became clear that the bases flanking the CpG dinucleotide played an important role in determining the murine B cell activation induced by an ODN. The optimal stimulatory motif was determined to consist of a CpG flanked by two 5′ purines (preferably a GpA dinucleotide) and two 3′ pyrimidines (preferably a TpT or TpC dinucleotide). Mutations of ODN to bring the CpG motif closer to this ideal improved stimulation (e.g. Table 1, compare
ODN 2 to 2e; 3M to 3Md) while mutations that disturbed the motif reduced stimulation (e.g. Table 1, compare ODN 3D to 3Df; 4 to 4b, 4c and 4d). On the other hand, mutations outside the CpG motif did not reduce stimulation (e.g. Table 1, compareODN 1 to 1d; 3D to 3Dg; 3M to 3Me). For activation of human cells, the best flanking bases are slightly different (See Table 5). - Of those tested, ODNs shorter than 8 bases were non-stimulatory (e.g. Table 1, ODN 4e). Among the forty-eight 8 base ODN tested, the most stimulatory sequence identified was TCAACGTT (ODN 4) which contains the self complementary “palindrome” AACGTT. In further optimizing this motif, it was found that ODN containing Gs at both ends showed increased stimulation, particularly if the ODN were rendered nuclease resistant by phosphorothioate modification of the terminal internucleotide linkages. ODN 1585 (5′
GGGTCAACGTTGAGGGGGG 3′ (SEQ ID NO:12)), in which the first two and last five internucleotide linkages are phosphorothioate modified caused an average 25.4 fold increase in mouse spleen cell proliferation compared to an average 3.2 fold increase in proliferation induced by ODN 1638, which has the same sequence as ODN 1585 except that the 10 Gs at the two ends are replaced by 10 As. The effect of the G-rich ends is cis; addition of an ODN with poly G ends but no CpG motif to cells along with 1638 gave no increased proliferation. For nucleic acid molecules longer than 8 base pairs, non-palindromic motifs containing an unmethylated CpG were found to be more immunostimulatory. - Other octamer ODN containing a 6 base palindrome with a TpC dinucleotide at the 5′ end were also active (e.g. Table 1, ODN 4b,4c). Other dinucleotides at the 5′ end gave reduced stimulation (e.g. ODN 4f; all sixteen possible dinucleotides were tested). The presence of a 3′ dinucleotide was insufficient to compensate for the lack of a 5′ dinucleotide (e.g. Table 1, ODN 4g). Disruption of the palindrome eliminated stimulation in octamer ODN (e-g. Table 1, ODN 4h), but palindromes were not required in longer ODN.
TABLE 1 Oligonucleotide Stimulation of Mouse B Cells ODN Stimulation Index′ Production Sequence (5′ to 3′)† 3 Uridine IgM 1 (SEQ ID NO:13) GCTAGACGTTAGCGT 6.1 ± 0.8 17.9 ± 3.6 1a (SEQ. ID NO:4) ......T........ 1.2 ± 0.2 1.7 ± 0.5 1b (SEQ ID NO:14) ......Z........ 1.2 ± 0.1 1.8 ± 0.0 1c (SEQ ID NO:15) ............Z.. 10.3 ± 4.4 9.5 ± 1.8 1d (SEQ ID NO:16) ..AT......GAGC. 13.0 ± 2.3 18.3 ± 7.5 2 (SEQ ID NO:17) ATGGAAGGTCCAGCGTTCTC 2.9 ± 0.2 13.6 ± 2.0 2a (SEQ ID NO:18) ..C..CTC..G......... 7.7 ± 0.8 24.2 ± 3.2 2b (SEQ ID NO:19) ..Z..CTC.ZG..Z...... 1.6 ± 0.5 2.8 ± 2.2 2c (SEQ ID NO:20) ..Z..CTC..G......... 3.1 ± 0.6 7.3 ± 1.4 2d (SEQ ID NO:21) ..C..CTC..G......Z.. 7.4 ± 1.4 27.7 ± 5.4 2e (SEQ ID NO:22) ............A....... 5.6 ± 2.0 ND 3D (SEQ ID NO:23) GAGAACGCTGGACCTTCCAT 4.9 ± 0.5 19.9 ± 3.6 3Da (SEQ ID NO:24) .........C.......... 6.6 ± 1.5 33.9 ± 6.8 3Db (SEQ ID NO:25) .........C......G.. 10.1 ± 2.8 25.4 ± 0.8 3Dc (SEQ ID NO:26) ...C.A.............. 1.0 ± 0.2 1.2 ± 0.5 3Dd (SEQ ID NO:27) .....Z.............. 1.2 ± 0.2 1.0 ± 0.4 3De (SEQ ID NO:28) .............Z...... 4.4 ± 1.2 18.8 ± 4.4 3Df (SEQ ID NO:29) .......A............ 1.6 ± 0.1 7.7 ± 0.4 3Dg (SEQ ID NO:30) .........CC.G.ACTG.. 6.1 ± 1.5 18.6 ± 1.5 3M (SEQ ID NO:31) TCCATGTCGGTCCTGATGCT 4.1 ± 0.2 23.2 ± 4.9 3Ma (SEQ ID NO:32) ......CT............ 0.9 ± 0.1 1.8 ± 0.5 3Mb (SEQ ID NO:33) .......Z............ 1.3 ± 0.3 1.5 ± 0.6 3Mc (SEQ ID NO:34) ...........Z........ 5.4 ± 1.5 8.5 ± 2.6 3Md (SEQ ID NO:35) ......A..T.......... 17.2 ± 9.4 ND 3Me (SEQ ID NO:36) ...............C..A. 3.6 ± 0.2 14.2 ± 5.2 4 TCAACGTT 6.1 ± 1.4 19.2 ± 5.2 4a ....GC.. 1.1 ± 0.2 1.5 ± 1.1 4b ...GCGC. 4.5.± 0.2 9.6 ± 3.4 4c ...TCGA. 2.7.± 1.0 ND 4d ..TT..AA 1.3 ± 0.2 ND 4e -....... 1.3 ± 0.2 1.1 ± 0.5 4f C....... 3.9 ± 1.4 ND 4g --......CT 1.4 ± 0.3 ND 4h .......C 1.2 ± 0.2 ND LPS 7.8 ± 2.5 4.8 ± 1.0
′Stimulation indexes are the means and std. dev. derived from at least 3 separate experiments, and are compared to wells cultured with no added ODN.
ND = not done.
CpG dinucleotides are underlined.
Dots indicate identity; dashes indicate deletions.
Z indicates 5 methyl cytosine.
-
TABLE 2 Identification of the optimal CpG motif for Murine IL-6 production and B cell activation. IL-6 (pg/ml)a SEQUENCE SPLENIC B ODN (5′-3′) CH12.LX CELL SIb IgM (ng/ml)c 512 (SEQ ID NO:37) TCCATGTCGGTCCTGATGCT 1300 ± 106 627 ± 43 5.8 ± 0.3 7315 ± 1324 1637 (SEQ ID NO:38) ......C............. 136 ± 27 46 ±6 1.7 ± 0.2 770 ± 72 1615 (SEQ ID NO:39) ......G............. 1201 ± 155 850 ± 202 3.7 ± 0.3 3212 ± 617 1614 (SEQ ID NO:40) ......A............. 1533 ± 321 1812 ± 103 10.8 ± 0.6 7558 ± 414 1636 (SEQ ID NO:41) .........A.......... 1181 ± 76 947 ± 132 5.4 ± 0.4 3983 ± 485 1634 (SEQ ID NO:42) .........C.......... 1049 ± 223 1671 ± 175 9.2 ± 0.9 6256 ± 261 1619 (SEQ ID NO:43) .........T.......... 1555 ± 304 2908 ± 129 12.5 ± 1.0 8243 ± 698 1618 (SEQ ID NO:44) ......A..T.......... 2109 ± 291 2596 ± 166 12.9 ± 0.7 10425 ± 674 1639 (SEQ ID NO:45) .....AA..T.......... 1827 ± 83 2012 ± 132 11.5 ± 0.4 9489 ± 103 1707 (SEQ ID NO:46) ......A..TC......... ND 1147 ± 175 4.0 ± 0.2 3534 ± 217 1708 (SEQ ID NO:47) .....CA..TG......... ND 59 ± 3 1.5 ± 0.1 466 ± 109
Dots indicate identity; CpG dinucleotides are underlined; ND = not done
aThe experiment was done at least three times with similar results. The level of IL-6 of unstimulated control cultures of both CH12.LX and splenic B cells was ≦10 pg/ml. The IgM level of unstimulated culture was 547 ± 82 ng/ml. CpG dinucleotides are underlined and dots indicate identity.
b[3H] Uridine uptake was indicated as a fold increase (SI: stimulation index) from unstimulated control (2322.67 ± 213.68 cpm). Cells were stimulated with 20 μM of various CpG O-ODN. Data present the mean ±SD of triplicates
cMeasured by ELISA.
- The kinetics of lymphocyte activation were investigated using mouse spleen cells. When the cells were pulsed at the same time as ODN addition and harvested just four hours later, there was already a two-fold increase in 3H uridine incorporation. Stimulation peaked at 12-48 hours and then decreased. After 24 hours, no intact ODN were detected, perhaps accounting for the subsequent fall in stimulation when purified B cells with or without anti-IgM (at a submitogenic dose) were cultured with CpG ODN, proliferation was found to synergistically increase about 10-fold by the two mitogens in combination after 48 hours. The magnitude of stimulation was concentration dependent and consistently exceeded that of LPS under optimal conditions for both. Oligonucleotides containing a nuclease resistant phosphorothioate backbone were approximately two hundred times more potent than unmodified oligonucleotides.
- Cell cycle analysis was used to determine the proportion of B cells activated by CpG-ODN. CpG-ODN induced cycling in more than 95% of B cells. Splenic B lymphocytes sorted by flow cytometry into CD23− (marginal zone) and CD23+ (follicular) subpopulations were equally responsive to ODN-induced stimulation, as were both resting and activated populations of B cells isolated by fractionation over Percoll gradients. These studies demonstrated that CpGODN induce essentially all B cells to enter the cell cycle.
- Immunostimulatory Nucleic Acid Molecules Block Murine B Cell Apoptosis
- Certain B cell lines such as WEHI-231 are induced to undergo growth arrest and/or apoptosis in response to crosslinking of their antigen receptor by anti-IgM (Jakway, J. P. et al., “Growth regulation of the B lymphoma cell line WEHI-231 by anti-immunoglobulin, lipopolysaccharide and other bacterial products” J. Immunol. 137: 2225 (1986); Tsubata, T., J. Wu and T. Honjo: B-cell apoptosis induced by antigen receptor crosslinking is blocked by a T-cell signal through CD40.” Nature 364: 645 (1993)). WEHI-231 cells are rescued from this growth arrest by certain stimuli such as LPS and by the CD40 ligand. ODN containing the CpG motif were also found to protect WEHI-231 from anti-IgM induced growth arrest, indicating that accessory cell populations are not required for the effect. Subsequent work indicates that CpG ODN induce Bcl-x and myc expression, which may account for the protection from apoptosis. Also, CpG nucleic acids have been found to block apoptosis in human cells. This inhibition of apoptosis is important, since it should enhance and prolong immune activation by CpG DNA.
- Induction of Murine Cytokine Secretion by C G motifs in Bacterial DNA or Oligonucleotides.
- As described in Example 9, the amount of IL-6 secreted by spleen cells after CpG DNA stimulation was measured by ELISA. T cell depleted spleen cell cultures rather than whole spleen cells were used for in vitro studies following preliminary studies showing that T cells contribute little or nothing to the IL-6 produced by CpG DNA-stimulated spleen cells. As shown in Table 3, ILL production was markedly increased in cells cultured with E. coli DNA but not in cells cultured with calf thymus DNA. To confirm that the increased IL-6 production observed with E. coli DNA was not due to contamination by other bacterial products, the DNA was digested with DNAse prior to analysis. DNAse pretreatment abolished IL-6 production induced by E. coli DNA (Table 3). In addition, spleen cells from LPS-nonresponseive C3H/HeJ mouse produced similar levels of IL-6 in response to bacterial DNA. To analyze whether the IL-6 secretion induced by E. coli DNA was mediated by the unmethylated CpG dinucleotides in bacterial DNA, methylated E. coli DNA and a panel of synthetic ODN were examined. As shown in Table 3, CpG ODN significantly induced IL-6 secretion (ODN 5a, 5b, 5c) while CpG methylated E. coli DNA, or ODN containing methylated CpG (ODN 5f) or no CpG (ODN 5d) did not. Changes at sites other than CpG dinucleotides (ODN 5b) or methylation of other cytosines (ODN 5g) did not reduce the effect of CpG ODN. Methylation of a single CpG in an ODN with three CpGs resulted in a partial reduction in the stimulation (compare ODN 5c to 5e; Table 3).
TABLE 3 Induction of Murine IL-6 secretion by CpG motifs in bacterial DNA or oligonucleotides. Treatment IL-6 (pg/ml) calf thymus DNA ≦10 calf thymus DNA + DNase ≦10 E.coli DNA 1169.5 ± 94.1 E. coil DNA + DNase ≦10 CpG methylated E. coli DNA <10 LPS 280.1 ± 17.1 Media (no DNA) ≦10 ODN 5a SEQ ID NO:1 ATGGACTCTCCAGCGTTCTC 1096.4 ± 372.0 5b SEQ ID NO:2 .....AGG....A....... 1124.5 ±126.2 5c SEQ ID NO:3 ..C.......G......... 1783.0 ± 189.5 5d SEQ ID NO:4 .....AGG..C..T...... ≦10 5e SEQ ID NO:5 ..C.......G..Z...... 851.1 ± 114.4 5f SEQ ID NO:6 ..Z......ZG..Z...... <10 5g SEQ ID NO:7 ..C.......G......Z.. 1862.3 ± 87.26
T cell depleted spleen cells from DBA/2 mice were stimulated with phosphodiester modified oligonucleotides (O-ODN) (20 μM), calf thymus DNA (50 μg/li) or E. coli DNA (50 μg/ml) with or without enzyme treatment, or LPS (10 μg/ml) for 24 hr. Data represent the mean (pg/ml) ± SD of triplicates. CpG dinucleotides are underlined and dots indicate identity. Z indicates 5-methylcytosine.
- Identification of the Optimal CpG Motif for Induction of Murine IL-6 and IgM Secretion and B Cell Proliferation.
- To evaluate whether the optimal B cell stimulatory CpG motif was identical with the optimal CpG motif for IL-6 secretion, a panel of ODN in which the bases flanking the CpG dinucleotide were progressively substituted was studied. This ODN panel was analyzed for effects on B cell proliferation, Ig production, and IL-6 secretion, using both splenic B cells and CH12.LX cells. As shown in Table 2, the optimal stimulatory motif is composed of an unmethylated CpG flanked by two 5′ purines and two 3′ pyrimidines. Generally a mutation of either 5′ purine to pyrimidine or 3′ pyrimidine to purine significantly reduced its effects. Changes in 5′ purines to C were especially deleterious, but changes in 5′ purines to T or 3′ pyrimidines to purines had less marked effects. Based on analyses of these and scores of other ODN, it was determined that the optimal CpG motif for induction of IL-6 secretion is TGACGTT, which is identical with the optimal mitogenic and IgM-inducing CpG motif (Table 2). This motif was more stimulatoiy than any of the palindrome containing sequences studied (1639, 1707 and 1708).
- Titration of Induction of Murine IL-6 Secretion by CpG Motifs.
- Bacterial DNA and CpG ODN induced IL-6 production in T cell depleted murine spleen cells in a dose-dependent manner, but vertebrate DNA and non-CpG ODN did not (
FIG. 1 ). IL-6 production plateaued at approximately 50 μg/ml of bacterial DNA or 40 μM of CpG O-ODN. The maximum levels of IL-6 induced by bacterial DNA and CpG ODN were 1-1.5 ng/ml and 24 ng/ml respectively. These levels were significantly greater than those seen after stimulation by LPS (0.35 ng/ml) (FIG. 1A ). To evaluate whether CpG ODN with a nuclease-resistant DNA backbone would also induce IL6 production, S-ODN were added to T cell depleted murine spleen cells. CpG S-ODN also induced IL-6 production in a dose-dependent manner to approximately the same level as CpG O-ODN while non-CpG S-ODN failed to induce IL-6 (FIG. 1C ). CpG S-ODN at a concentration of 0.05 μM could induce maximal IL-6 production in these cells. This result indicated that the nuclease-resistant DNA backbone modification retains the sequence specific ability of CpG DNA to induce IL-6 secretion and that CpG S-ODN are more than 80-fold more potent than CpG O-ODN in this assay system. - Induction of Murine IL-6 Secretion by CpG DNA In Vivo.
- To evaluate the ability of bacterial DNA and CpG S-ODN to induce IL-6 secretion in vivo, BALB/c mice were injected iv. with 100 μg of E. coli DNA, calf thymus DNA, or CpG or non-stimulatory S-ODN and bled 2 hr after stimulation. The level of IL-6 in the sera from the E. coli DNA injected group was approximately 13 ng/ml while IL-6 was not detected in the sera from calf thymus DNA or PBS injected groups (Table 4). CpG S-ODN also induced IL-6 secretion in viva. The IL6 level in the sera from CpG S-ODN injected groups was approximately 20 ng/ml. In contrast, IL-6 was not detected in the sera from non-stimulatory S-ODN stimulated group (Table 4).
TABLE 4 Secretion of Murine IL-6 induced by CpG DNA stimulation in vivo. Stimulant IL-6 (pg/ml) PBS <50 E. coli DNA 13858 ± 3143 Calf Thymus DNA <50 CpG S-ODN 20715 ± 606 non-CpG S-ODN <50
Mice (2 mice/group) were i.v. injected with 100 μl of PBS, 200 μg of E. coli DNA or calf thymus DNA, or 500 μg of CpG S-ODN or non-CpG control S-ODN. Mice were bled 2 hr after injection and 1:10 dilution of each serum was analyzed by IL-6 ELISA. Sensitivity limit of IL-6 ELISA was 5 pg/ml. Sequences of the CpG S-ODN is 5′GCATGACGTTGAGCT3′ (SEQ ID NO:48) and of the non-stimulatory S-ODN is 5′GCTAGATGTTAGCGT3′ (SEQ ID NO:49). Note that although there is a CpG in sequence 48, it is too close to the 3′ end to effect stimulation, as explained herein. Data represent mean±SD of duplicates. The experiment was done at least twice with similar results. - Kinetics of Murine IL-6 Secretion after Stimulation by CpG Motifs In Vivo.
- To evaluate the kinetics of induction of IL-6 secretion by CpG DNA in vivo, BALB/c mice were injected iv. with CpG or control non-CpG S-ODN. Serum IL-6 levels were significantly increased within 1 hr and peaked at 2 hr to a level of approximately 9 ng/ml in the CpG S-ODN injected group (
FIG. 2 ). IL-6 protein in sera rapidly decreased after 4 hr and returned to basal level by 12 hr after stimulation. In contrast to CpG DNA stimulated groups, no significant increase of IL-6 was observed in the sera from the non-stimulatory S-ODN or PBS injected groups (FIG. 2 ). - Tissue Distribution and Kinetics of Il-6 Mrna Expression Induced by CpG Motifs In Vivo.
- As shown in
FIG. 2 , the level of serum IL-6 increased rapidly after CpG DNA stimulation. To investigate the possible tissue origin of this serum IL-6, and the kinetics of IL-6 gene expression in vivo after CpG DNA stimulation, BALB/c mice were injected iv with CpG or non-CpG S-ODN and RNA was extracted from liver, spleen, thymus, and bone marrow at various time points after stimulation. As shown inFIG. 3A , the level of IL-6 mRNA in liver, spleen, and thymus was increased within 30 min. after injection of CpG S-ODN. The liver IL-6 mRNA peaked at 2 hr post-injection and rapidly decreased and reachedbasal level 8 hr after stimulation (FIG. 3A ). Splenic IL-6 mRNA peaked at 2 hr after stimulation and then gradually decreased (FIG. 3A ). Thymus IL-6 mRNA peaked at 1 hr post-injection and then gradually decreased (FIG. 3A ). IL-6 mRNA was significantly increased in bone marrow within 1 hr after CpG S-ODN injection but then returned to basal level. In response to CpG S-ODN, liver, spleen and thymus showed more substantial increases in IL-6 mRNA expression than the bone marrow. - Patterns of Murine Cytokine Expression Induced by CpG DNA
- In vivo or in whole spleen cells, no significant increase in the protein levels of the following interleukins: IL-2, IL-3, IL4, IL-5, or IL-10 was detected within the first six hours (Klinman, D. M. et al., (1996) Proc. Nail. Acad. Sci. USA 93:2879-2883). However, the level of TNF-α is increased within 30 minutes and the level of IL-6 increased strikingly within 2 hours in the serum of Mice injected with CpG ODN. Increased expression of IL-12 and interferon gamma (IFN-γ) mRNA by spleen cells was also detected within the first two hours.
TABLE 5 Induction of human PBMC cytokine secrtetion by CpG oligos ODN Sequence (5′-3′) IL-6′ TNF-α1 IFN-γ1 GM-CSF IL-12 512 TCCATGTCGGTCCTGATGCT 500 140 15.6 70 250 SEQ ID NO:37 1637 ......C............. 550 16 7.8 15.6 35 SEQ ID NO:38 1615 ......G............. 600 145 7.8 45 250 SEQ ID NO:39 1614 ......A............. 550 31 0 50 250 SEQ ID NO:40 1636 .........A.......... 325 250 35 40 0 SEQ ID NO:41 1634 .........C.......... 300 400 40 85 200 SEQ ID NO:42 1619 .........T.......... 275 450 200 80 >500 SEQ ID NO:43 1618 ......A..T.......... 300 60 15.6 15.6 62 SEQ ID NO:44 1639 .....AA..T.......... 625 220 15.6 40 60 SEQ ID NO:45 1707 ......A..TC......... 300 70 17 0 0 SEQ ID NO:46 1708 .....CA..TG......... 270 10 17 0 0 SEQ ID NO:47
dots indicate identity; CpG dinucleotides are underlined
1measured by ELISA using Quantikine kits from R&D Systems (pg/ml) Cells were cultured in 10% autologous serum with the indicated oligodeoxynucleotides (12 μg/ml) for 4 hr in the case of TNF-α or 24 hr for the other cytokines before supernatant harvest and assay. Data are presented as the level of cytokine above that in wells with no added oligodeoxynucleotide.
- CpG Induces Cytokine Secretion by Human PBMC, Specifically Monocytes.
- The same panels of ODN used for studying mouse cytokine expression were used to determine whether human cells also are induced by CpG motifs to express cytokine (or proliferate), and to identify the CpG motif(s) responsible. Oligonucleotide 1619 (GTCGTT) was the best inducer of TNF-α and IFN-γ secretion, and was closely followed by a nearly identical motif in oligonucleotide 1634 (GTCGCT) (Table 5). The motifs in oligodeoxynucleotides 1637 and 1614 (GCCGGT and GACGGT) led to strong IL-6 secretion with relatively little induction of other cytokines. Thus, it appears that human lymphocytes, like murine lymphocytes, secrete cytokines differentially in response to CpG dinucleotides, depending on the surrounding bases. Moreover, the motifs that stimulate murine cells best differ from those that are most effective with human cells. Certain CpG oligodeoxynucleotides are poor at activating human cells (oligodeoxynucleotides 1707, 1708, which contain the palindrome forming sequences GACGTC and CACGTG respectively).
- The cells responding to the DNA appear to be monocytes, since the cytokine secretion is abolished by treatment of the cells with L-leucyl-L-leucine methyl ester (L-LME), which is selectively toxic to monocytes (but also to cytotoxic T lymphocytes and NK cells), and does not affect B cell Ig secretion (Table 6, and data not shown). The cells surviving L-LME treatment had >95% viability by trypan blue exclusion, indicating that the lack of a cytokine response among these cells did not simply reflect a nonspecific death all all cell types. Cytokine secretion in response to E. coli (EC) DNA requires unmethylated CpG motifs, since it is abolished by methylation of the EC DNA (next to the bottom row, Table 6). LPS contamination of the DNA cannot explain the results since the level of contamination was identical in the native and methylated DNA, and since addition of twice the highest amount of contaminating LPS had no effect (not shown).
TABLE 6 CpG DNA induces cytokine secretion by human PBMC TNF-α IL-6 IFN-γ RANTES DNA (pg/ml)1 (pg/ml) (pg/ml) (pg/ml) EC DNA (50 μg/ml) 900 12,000 700 1560 EC DNA (5 μg/ml) 850 11,000 400 750 EC DNA (0.5 μg/ml) 500 ND 200 0 EC DNA (0.05 μg/ml) 62.5 10,000 15.6 0 EC DNA (50 μg/ml) + L- LME 20 ND ND ND EC DNA (10 μg/ml) Methyl.3 0 5 ND ND CT DNA (50 μg/ml) 0 600 0 0
1Levels of all cytokines were determined by ELISA using Quantikine kits from R&D Systems as described in the previous table. Results are representative using PBMC from different donors.
2Cells were pretreated for 15 min. with L-leucyl-L-leucine methyl ester (M-LME) to determine whether the cytokine production under these conditions was from monocytes (or other L-LME-sensitive cells).
3EC DNA was methylated using 2 U/μg DNA of CpG methylase (New England Biolabs) according to the manufacturer's directions, and methylation confirmed by digestion with Hpa-II and Msp-I. As a negative control, samples were included containing twice the maximal amount of LPS contained in the highest concentration of EC DNA which failed to induce detectable cytokine production under these experimental conditions.
ND = not done
- The loss of cytokine production in the PBMC treated with L-LME suggested that monocytes may be responsible for cytokine production in response to CpG DNA. To test this hypothesis more directly, the effects of CpG DNA on highly purified human monocytes and macrophages was tested. As hypothesized, CpG DNA directly activated production of the cytokines IL-6, GM-CSF, and TNF-α by human macrophages, whereas non-CpG DNA did not (Table 7).
TABLE 7 CpG DNA induces cytokine expression in purified human macrophages IL-6 (pg/ml) GM-CSF (pg/ml) TNF-α (pg/ml) Cells alone 0 0 0 CT DNA (50 μg/ml) 0 0 0 EC DNA (50 μg/ml) 2000 15.6 1000 - Biological Role of IL-6 in Inducing Murine IgM Production in Response to CRG Motifs.
- The kinetic studies described above revealed that induction of IL-6 secretion, which occurs within 1 hr post CpG stimulation, precedes IgM secretion. Since the optimal CpG motif for ODN inducing secretion of IL-6 is the same as that for IgM (Table 2), whether the CpG motifs independently induce IgM and IL-6 production or whether the IgM production is dependent on prior IL-6 secretion was examined. The addition of neutralizing anti-IL-6 antibodies inhibited in vitro IgM production mediated by CpG ODN in a dose-dependent manner but a control antibody did not (
FIG. 4A ). In contrast, anti-IL-6 addition did not affect either the basal level or the CpG-induced B cell proliferation (FIG. 4B ). - Increased Transcriptional Activity of the Il-6 Promoter in Response to CpG DNA.
- The increased level of IL-6 mRNA and protein after CpG DNA stimulation could result from transcriptional or post-transcriptional regulation. To determine if the transcriptional activity of the IL-6 promoter was upregulated in B cells cultured with CpG ODN, a murine B cell line, WEHI-231, which produces IL-6 in response to CpG DNA, was transfected with an ILL promoter-CAT construct (pIL-6/CAT) (Pottratz, S. T. et al., 17B-estradiol) inhibits expression of human interleukin-6-promoter-reporter constructs by a receptor-dependent mechanism. J. Clin. Invest. 93:944). CAT assays were performed after stimulation with various concentrations of CpG or non-CpG ODN. As shown in
FIG. 5 , CpG ODN induced increased CAT activity in dose-dependent manner while non-CpG ODN failed to induce CAT activity. This confirms that CpG induces the transcriptional activity of the IL-6 promoter. - Dependence of B Cell Activation by CpG ODN on the Number of 5′ and 3′ Phosphorothioate Internucleotide Linkages.
- To determine whether partial sulfur modification of the ODN backbone would be sufficient to enhance B cell activation, the effects of a series of ODN with the same sequence, but with differing numbers of S internucleotide linkages at the 5′ and 3′ ends were tested. Based on previous studies of nuclease degradation of ODN, it was determined that at least two phosphorothioate linkages at the 5′ end of ODN were required to provide optimal protection of the ODN from degradation by intracellular exo- and endo-nucleases. Only chimeric ODN containing two 5′ phosphorothioate-modified linkages, and a variable number of 3′ modified linkages were therefore examined.
- The lymphocyte stimulating effects of these ODN were tested at three concentrations (3.3, 10, and 30 μM) by measuring the total levels of RNA synthesis (by 3H uridine incorporation) or DNA synthesis (by 3H thymidine incorporation) in treated spleen cell cultures (Example 10). O-ODN (0/0 phosphorothioate modifications) bearing a CpG motif caused no spleen cell stimulation unless added to the cultures at concentrations of at least 10 μM (Example 10). However, when this sequence was modified with two S linkages at the 5′ end and at least three S linkages at the 3′ end, significant stimulation was seen at a dose of 3.3 μM. At this low dose, the level of stimulation showed a progressive increase as the number of 3′ modified bases was increased, until this reached or exceeded six, at which point the stimulation index began to decline. In general, the optimal number of 3′ S linkages for spleen cell stimulation was five. At all three concentrations tested in these experiments, the S-ODN was less stimulatory than the optimal chimeric compounds.
- Dependence of CpG-Mediated Lymphocyte Activation on the Type of Backbone Modification.
- Phosphorothioate modified ODN (S-ODN) are far more nuclease resistant than phosphodiester modified ODN (O-ODN). Thus, the increased immune stimulation caused by S-ODN and S-O-ODN (i.e. chimeric phosphorothioate ODN in which the central linkages are phosphodiester, but the two 5′ and five 3′ linkages are phosphorothioate modified) compared to O-ODN may result from the nuclease resistance of the former. To determine the role of ODN nuclease resistance in immune stimulation by CpG ODN, the stimulatory effects of chimeric ODN in which the 5′ and 3′ ends were rendered nuclease resistant with either methylphosphonate (MP-), methylphosphorothioate (MPS-), phosphorothioate (S-), or phosphorodithioate (S2-) internucleotide linkages were tested (Example 10). These studies showed that despite their nuclease resistance, MP-O-ODN were actually less immune stimulatory than O-ODN. However, combining the MP and S modifications by replacing both nonbridging O molecules with 5′ and 3′ MPS internucleotide linkages restored immune stimulation to a slightly higher level than that triggered by O-ODN.
- S-O-ODN were far more stimulatory than O-ODN, and were even more stimulatory than S-ODN, at least at concentrations above 3.3 μM. At concentrations below 3 μM, the S-ODN with the 3M sequence was more potent than the corresponding S-O-ODN, while the S-ODN with the 3D sequence was less potent than the corresponding S-O-ODN (Example 10). In comparing the stimulatory CpG motifs of these two sequences, it was noted that the 3D sequence is a perfect match for the stimulatory motif in that the CpG is flanked by two 5′ purines and two 3′ pyrimidines. However, the bases immediately flanking the CpG in ODN 3D are not optimal; it has a 5′ pyrimidine and a 3′ purine. Based on further testing, it was found that the sequence requirement for immune stimulation is more stringent for S-ODN than for S-O- or O-ODN. S-ODN with poor matches to the optimal CpG motif cause little or no lymphocyte activation (e.g. Sequence 3D). However, S-ODN with good matches to the motif, most critically at the positions immediately flanking the CpG, are more potent than the corresponding S-O-ODN (e.g. Sequence 3M,
Sequences 4 and 6), even though at higher concentrations (greater than 3 μM) the peak effect from the S-ODN is greater (Example 10). - S2-O-ODN were remarkably stimulatory, and caused substantially greater lymphocyte activation than the corresponding S-ODN or S-O-ODN at every tested concentration.
- The increased B cell stimulation seen with CpG ODN bearing S or S2 substitutions could result from any or all of the following effects: nuclease resistance, increased cellular uptake, increased protein binding, and altered intracellular localization. However, nuclease resistance can not be the only explanation, since the MP-O-ODN were actually less stimulatory than the O-ODN with CpG motifs. Prior studies have shown that ODN uptake by lymphocytes is markedly affected by the backbone chemistry (Zhao et al., (1993) Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides. (Antisense Research and
Development 3, 53-66; Zhao et al., (1994) Stage specific oligonucleotide uptake in murine bone marrow B cell precursors. Blood 84, 3660-3666.) The highest cell membrane binding and uptake was seen with S-ODN, followed by S-O-ODN, O-ODN, and MP-ODN. This differential uptake correlates well with the degree of immune stimulation. - Unmethylated CDG Containing Oligos Have NK Cell Stimulatory Activity
- Experiments were conducted to determine whether CpG containing oligonucleotides stimulated the activity of natural killer (NK) cells in addition to B cells. As shown in Table 8, a marked induction of NK activity among spleen cells cultured with
CpG ODN 1 and 3Dd was observed. In contrast, there was relatively no induction in effectors that had been treated with non-CpG control ODN.TABLE 8 Induction Of NK Activity By CpG Oligodeoxynucleotides (ODN) % YAC-1 Specific Lysis* % 2C11 Specific Lysis Effector:Target Effector:Target ODN 50:1 100:1 50:1 100:1 None −1.1 −1.4 15.3 16.6 1 16.1 24.5 38.7 47.2 3Dd 17.1 27.0 37.0 40.0 non-CpG ODN −1.6 −1.7 14.8 15.4 - Induction of Nk Activity by DNA Containing CpG Motifs, but not by Non-CpG DNA.
- Bacterial DNA cultured for 18 hrs. at 37° C. and then assayed for killing of K562 (human) or Yac-1 (mouse) target cells induced NK lytic activity in both mouse spleen cells depleted of B cells and human PBMC, but vertebrate DNA did not (Table 9). To determine whether the stimulatory activity of bacterial DNA may bc a consequence of its increased level of unmethylated CpG dinucleotides, the activating properties of more than 50 synthetic ODN containing unmethylated, methylated, or no CpG dinucleotides was tested. The results, summarized in Table 9, demonstrate that synthetic ODN can stimulate significant NK activity, as long as they contain at least one unmethylated CpG dinucleotide. No difference was observed in the stimulatory effects of ODN in which the CpG was within a palindrome (such as ODN 1585, which contains the palindrome AACGTT) from those ODN without palindromes (such as 1613 or 1619), with the caveat that optimal stimulation was generally seen with ODN in which the CpG was flanked by two 5′ purines or a 5′ GpT dinucleotide and two 3′ pyrimidines. Kinetic experiments demonstrated that NK activity peaked around 18 hrs. after addition of the ODN. The data indicates that the murine NK response is dependent on the prior activation of monocytes by CpG DNA, leading to the production of IL-12, TNF-α, and IFN-α/β (Example 11).
TABLE 9 Induction of NK Activity by DNA Containing CpG Motifs but not by Non-CpG DNA LU/106 Mouse Human DNA or Cytokine Added Cells Cells Expt. 1 None 0.00 0.00 IL-2 16.68 15.82 E. coli DNA 7.23 5.05 Calf thymus DNA 0.00 0.00 Expt. 2 None 0.00 3.28 1585 gggGTCAACGTTGAgggggG (SEQ ID NO:12) 7.38 17.98 1629 .......gtc.......... (SEQ ID NO:50) 0.00 4.4 Expt. 3 None 0.00 1613 GCTAGACGTTAGTGT (SEQ ID NO:51) 5.22 1769 .......Z....... (SEQ ID NO:52) 0.02 ND 1619 TCCATGTCGTTCCTGATGCT (SEQ ID NQ:43) 3.35 1765 .......Z............ (SEQ ID NO:53) 0.11
CpG dinucleotides in ODN sequences are indicated by underlying; Z indicates methylcytosine. Lower case letters indicate nuclease resistant phosphorothioate modified internucleotide linkages which, in titration experiments, were more than 20 times as potent as non-modified ODN, depending on the flanking bases. Poly G ends (g) were used in some ODN, because they significantly increase the level of ODN uptake. - From all of these studies, a more complete understanding of the immune effects of CpG DNA has been developed, which is summarized in
FIG. 6 . - Identification of B Cell and Monocyte/NK Cell-Specific Oligonucleotides
- As shown in
FIG. 6 , CpG DNA can directly activate highly purified B cells and monocytic cells. There are many similarities in the mechanism through which CpG DNA activates these cell types. For example, both require NFκB activation as explained further below. - In further studies of different immune effects of CpG DNA, it was found that there is more than one type of CpG motif Specifically, oligo 1668, with the best mouse B cell motif, is a strong inducer of both B cell and natural killer (NK) cell activation, while oligo 1758 is a weak B cell activator, but still induces excellent NK responses (Table 10).
TABLE 10 Different CpG motifs stimulate optimal murine B cell and NK activation B cell NK ODN Sequence activation1 activation2 1668 TCCATGACGTTCCTGATGCT (SEQ ID NO:54) 42,849 2.52 1758 TCTCCCAGCGTGCGCCAT (SEQ ID NO:55) 1,747 6.66 NONE 367 0.00
CpG dinucleotides are underlined; oligonucleotides were synthesized with phosphorothioate modified backbones to improve their nuclease resistance. 1Measured by 3H thymidine incorporation after 48 hr culture with oligodeoxynucleotides at a 200 nM concentration as described in Example 1. 2Measured in lytic units. - Teleological Basis of Immunostimulatory, Nucleic Acids
- Vertebrate DNA is highly methylated and CpG dinucleotides are underrepresented. However, the stimulatory CpG motif is common in microbial genomic DNA, but quite rare in vertebrate DNA. In addition, bacterial DNA has been reported to induce B cell proliferation and immunoglobulin (Ig) production, while mammalian DNA does not (Messina, J. P. et al., J. Immunol. 147:1759 (1991)). Experiments further described in Example 3, in which methylation of bacterial DNA with CpG methylase was found to abolish mitogenicity, demonstrates that the difference in CpG status is the cause of B cell stimulation by bacterial DNA. This data supports the following conclusion: that unmethylated CpG dinucleotides present within bacterial DNA are responsible for the stimulatory effects of bacterial DNA.
- Teleologically, it appears likely that lymphocyte activation by the CpG motif represents an immune defense mechanism that can thereby distinguish bacterial from host DNA. Host DNA, which would commonly be present in many anatomic regions and areas of inflammation due to apoptosis (cell death), would generally induce little or no lymphocyte activation due to CpG suppression and methylation. However, the presence of bacterial DNA containing unmethylated CpG motifs can cause lymphocyte activation precisely in infected anatomic regions, where it is beneficial. This novel activation pathway provides a rapid alternative to T cell dependent antigen specific B cell activation. Since the CpG pathway synergizes with B cell activation through the antigen receptor, B cells bearing antigen receptor specific for bacterial antigens would receive one activation signal through cell membrane Ig and a second signal from bacterial DNA, and would therefore tend to be preferentially activated. The interrelationship of this pathway with other pathways of B cell activation provide a physiologic mechanism employing a polyclonal antigen to induce antigen-specific responses.
- However, it is likely that B cell activation would not be totally nonspecific. B cells bearing antigen receptors specific for bacterial products could receive one activation signal through cell membrane Ig, and a second from bacterial DNA, thereby more vigorously triggering antigen specific immune responses. As with other immune defense mechanisms, the response to bacterial DNA could have undesirable consequences in some settings. For example, autoimmune responses to self antigens would also tend to be preferentially triggered by bacterial infections, since autoantigens could also provide a second activation signal to autoreactive B cells triggered by bacterial DNA. Indeed the induction of autoimmunity by bacterial infections is a common clinical observance. For example, the autoimmune disease systemic lupus erythematosus, which is: i) characterized by the production of anti-DNA antibodies; ii) induced by drugs which inhibit DNA methyltransferase (Cornacchia, E. J. et al., J. Clin. Invest. 92:38 (1993)); and iii) associated with reduced DNA methylation (Richardson, B. L. et al., Arth. Rheum 35:647 (1992)), is likely triggered at least in part by activation of DNA-specific B cells through stimulatory signals provided by CpG motifs, as well as by binding of bacterial DNA to antigen receptors.
- Further, sepsis, which is characterized by high morbidity and mortality due to massive and nonspecific activation of the immune system may be initiated by bacterial DNA and other products released from dying bacteria that reach concentrations sufficient to directly activate many lymphocytes. Further evidence of the role of CpG DNA in the sepsis syndrome is described in Cowdery, J., et. al., (1996) The Journal of Immunology 156:4570-4575.
- Proposed Mechanisms of Action
- Unlike antigens that trigger B cells through their surface Ig receptor, CpG-ODN did not induce any detectable Ca2+ flux, changes in protein tyrosine phosphorylation, or
IP 3 generation. Flow cytometry with FITC-conjugated ODN with or without a CpG motif was performed as described in Zhao, Q et al., (Antisense Research and Development 3:53-66 (1993)), and showed equivalent membrane binding, cellular uptake, efflux, and intracellular localization. This suggests that there may not be cell membrane proteins specific for CpG ODN. Rather than acting through the cell membrane, that data suggests that unmethylated CpG containing oligonucleotides require cell uptake for activity: ODN covalently linked to a solid Teflon support were nonstimulatory, as were biotinylated ODN immobilized on either avidin beads or avidin coated petri dishes. CpG ODN conjugated to either FITC or biotin retained full mitogenic properties, indicating no steric hindrance. - Recent data indicate the involvement of the transcription factor NFκB as a direct or indirect mediator of the CpG effect. For example, within 15 minutes of treating B cells or monocytes with CpG DNA, the level of NFκB binding activity is increased (
FIG. 7 ). However, it is not increased by DNA that does not contain CpG motifs. In addition, it was found that two different inhibitors of NFκB activation, PDTC and gliotoxin, completely block the lymphocyte stimulation by CpG DNA as measured by B cell proliferation or monocytic cell cytokine secretion, suggesting that NFκB activation is required for both cell types. - There are several possible mechanisms through which NFκB can be activated. These include through activation of various protein kinases, or through the generation of reactive oxygen species. No evidence for protein kinase activation induced immediately after CpG DNA treatment of B cells or monocytic cells have been found, and inhibitors of protein kinase A, protein kinase C, and protein tyrosine kinases had no effects on the CpG induced activation. However, CpG DNA causes a rapid induction of the production of reactive oxygen species in both B cells and monocytic cells, as detected by the sensitive fluorescent dye dihydrorhodamine 123 as described in Royall, J. A., and Ischiropoulos, H. (Archives of Biochemistry and Biophysics 302:348-355 (1993)). Moreover, inhibitors of the generation of these reactive oxygen species completely block the induction of NFκB and the later induction of cell proliferation and cytokine secretion by CpG DNA.
- Working backwards, the next question was how CpG DNA leads to the generation of reactive oxygen species so quickly. Previous studies by the inventors demonstrated that oligonucleotides and plasmid or bacterial DNA are taken up by cells into endosomes. These endosomes rapidly become acidified inside the cell. To determine whether this acidification step may be important in the mechanism through which CpG DNA activates reactive oxygen species, the acidification step was blocked with specific inhibitors of endosome acidification including chloroquine, monensin, and bafilomycin, which work through different mechanisms.
FIG. 8A shows the results from a flow cytometry study using mouse B cells with the dihydrorhodamine 123 dye to determine levels of reactive oxygen species. The dye only sample in Panel A of the figure shows the background level of cells positive for the dye at 28.6%. As expected, this level of reactive oxygen species was greatly increased to 80% in the cells treated for 20 minutes with PMA and ionomycin, a positive control (Panel B). The cells treated with the CpG oligo also showed an increase in the level of reactive oxygen species such that more than 50% of the cells became positive (Panel D). However, cells treated with an oligonucleotide with the identical sequence except that the CpG was switched did not show this significant increase in the level of reactive oxygen species (Panel E). - In the presence of chloroquine, the results are very different (
FIG. 8B ). Chloroquine slightly lowers the background level of reactive oxygen species in the cells such that the untreated cells in Panel A have only 4.3% that are positive. Chloroquine completely abolishes the induction of reactive oxygen species in the cells treated with CpG DNA (Panel B) but does not reduce the level of reactive oxygen species in the cells treated with PMA and ionomycin (Panel E). This demonstrates that unlike the PMA plus ionomycin, the generation of reactive oxygen species following treatment of B cells with CpG DNA requires that the DNA undergo an acidification step in the endosomes. This is a completely novel mechanism of leukocyte activation. Chloroquine, monensin, and bafilomycin also appear to block the activation of NFκB by CpG DNA as well as the subsequent proliferation and induction of cytokine secretion. - Presumably, there is a protein in or near the endosomes that specifically recognizes DNA containing CpG motifs and leads to the generation of reactive oxygen species. To detect any protein in the cell cytoplasm that may specifically bind CpG DNA, we used electrophoretic mobility shift assays (EMSA) with 5′ radioactively labeled oligonucleotides with or without CpG motifs. A band was found that appears to represent a protein binding specifically to single stranded oligonucleotides that have CpG motifs, but not to oligonucleotides that lack CpG motifs or to oligonucleotides in which the CpG motif has been methylated. This binding activity is blocked if excess of oligonucleotides that contain the NFκB binding site was added. This suggests that an NFKB or related protein is a component of a protein or protein complex that binds the stimulatory CpG oligonucleotides.
- No activation of CREB/ATF proteins was found at time points where NFκB was strongly activated. These data therefore do not provide proof that NFκB proteins actually bind to the CpG nucleic acids, but rather that the proteins are required in some way for the CpG activity. It is possible that a CREB/ATF or related protein may interact in some way with NFkB proteins or other proteins thus explaining the remarkable similarity in the binding motifs for CREB proteins and the optimal CpG motif. It remains possible that the oligos bind to a CREB/ATF or related protein, and that this leads to NFκB activation.
- Alternatively, it is very possible that the CpG nucleic acids may bind to one of the TRAF proteins that bind to the cytoplasmic region of CD40 and mediate NFκB activation when CD40 is cross-linked. Examples of such TRAF proteins include TRAF-2 and TRAF-5.
- Method for Making Immunostimulatory Nucleic Acids
- For use in the instant invention, nucleic acids can be synthesized de novo using any of a number of procedures well known in the art. For example, the β-cyanoethyl phosphoramidite method (S. L. Beaucage and M. H. Caruthers, (1981) Tet. Let. 22:1859); nucleoside H-phosphonate method (Garegg et. al., (1986) Tet. Let. 27: 40514054; Froehler et al., (1986) Nucl. Acid Res. 14: 5399-5407; Garegg et al., (1986) Tet. Let. 27: 40554058, Gaffney et al., (1988) Tet. Let. 29:2619-2622). These chemistries can be performed by a variety of automated oligonucleotide synthesizers available in the market. Alternatively, oligonucleotides can be prepared from existing nucleic acid sequences (e.g. genomic or cDNA) using known techniques, such as those employing restriction enzymes, exonucleases or endonucleases.
- For use in vivo, nucleic acids are preferably relatively resistant to degradation (e.g. via endo- and exo-nucleases). Secondary structures, such as stem loops, can stabilize nucleic acids against degradation. Alternatively, nucleic acid stabilization can be accomplished via phosphate backbone modifications. A preferred stabilized nucleic acid has at least a partial phosphorothioate modified backbone. Phosphorothioates may be synthesized using automated techniques employing either phosphoramidate or H-phosphonate chemistries. Aryl- and alkyl-phosphonates can be made e.g. as described in U.S. Pat. No. 4,469,863; and alkylphosphotriesters (in which the charged oxygen moiety is alkylated as described in U.S. Pat. No. 5,023,243 and European Patent No. 092,574) can be prepared by automated solid phase synthesis using commercially available reagents. Methods for making other DNA backbone modifications and substitutions have been described (Uhlmann, E. and Peyman, A. (1990) Chem. Rev. 90:544; Goodchild, J. (1990) Bioconjugate Chem. 1:165). 2′-O-methyl nucleic acids with CpG motifs also cause immune activation, as do ethoxy-modified CpG nucleic acids. In fact, no backbone modifications have been found that completely abolish the CpG effect, although it is greatly reduced by replacing the C with a 5-methyl C.
- For administration in vivo, nucleic acids may be associated with a molecule that results in higher affinity binding to target cell (e.g. B-cell, monocytic cell and natural killer (NK) cell) surfaces and/or increased cellular uptake by target cells to form a “nucleic acid delivery complex”. Nucleic acids can be ionically, or covalently associated with appropriate molecules using techniques which are well known in the art. A variety of coupling or crosslinking agents can be used e.g. protein A, carbodiimide, and N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP). Nucleic acids can alternatively be encapsulated in liposomes or virosomes using well-known techniques
- Therapeutic Uses of Immunostimulatory Nucleic Acid Molecules
- Based on their immunostimulatory properties, nucleic acid molecules containing at least one unmethylated CpG dinucleotide can be administered to a subject in vivo to treat an “immune system deficiency”. Alternatively, nucleic acid molecules containing at least one unmethylated CpG dinucleotide can be contacted with lymphocytes (e.g. B cells, monocytic cells or NK cells) obtained from a subject having an immune system deficiency ex vivo and activated lymphocytes can then be reimplanted in the subject.
- As reported herein, in response to unmethylated CpG containing nucleic acid molecules, an increased number of spleen cells secrete IL-6, IL-12, IFN-γ, IFN-α, IFN-β, IL-1, IL-3, IL-10, TNF-α, TNF-β, GM-CSF, RANTES, and probably others. The increased IL-6 expression was found to occur in B cells, CD4+ T cells and monocytic cells.
- Immunostimulatory nucleic acid molecules can also be administered to a subject in conjunction with a vaccine to boost a subject's immune system and thereby effect a better response from the vaccine. Preferably the immunostimulatory nucleic acid molecule is administered slightly before or at the same time as the vaccine. A conventional adjuvant may optionally be administered in conjunction with the vaccine, which is minimally comprised of an antigen, as the conventional adjuvant may further improve the vaccination by enhancing antigen absorption.
- When the vaccine is a DNA vaccine at least two components determine its efficacy. First, the antigen encoded by the vaccine determines the specificity of the immune response. Second, if the backbone of the plasmid contains CpG motifs, it functions as an adjuvant for the vaccine. Thus, CpG DNA acts as an effective “danger signal” and causes the immune system to respond vigorously to new antigens in the area. This mode of action presumably results primarily from the stimulatory local effects of CpG DNA on dendritic cells and other “professional” antigen presenting cells, as well as from the costimulatory effects on B cells.
- Immunostimulatory oligonucleotides and unmethylated CpG containing vaccines, which directly activate lymphocytes and co-stimulate an antigen-specific response, are fundamentally different from conventional adjuvants (e.g. aluminum precipitates), which are inert when injected alone and are thought to work through absorbing the antigen and thereby presenting it more effectively to immune cells. Further, conventional adjuvants only work for certain antigens, only induce an antibody (humoral) immune response (Th2), and are very poor at inducing cellular immune responses (Th 1). For many pathogens, the humoral response contributes little to protection, and can even be detrimental.
- In addition, an immunostimulatory oligonucleotide can be administered prior to, along with or after administration of a chemotherapy or immunotherapy to increase the responsiveness of the malignant cells to subsequent chemotherapy or immunotherapy or to speed the recovery of the bone marrow through induction of restorative cytokines such as GM-CSF. CpG nucleic acids also increase natural killer cell lytic activity and antibody dependent cellular cytotoxicity (ADCC). Induction of NK activity and ADCC may likewise be beneficial in cancer immunotherapy, alone or in conjunction with other treatments.
- Another use of the described immunostimulatory nucleic acid molecules is in desensitization therapy for allergies, which are generally caused by IgE antibody generation against harmless allergens. The cytokines that are induced by unmethylated CpG nucleic acids are predominantly of a class called “Th1” which is most marked by a cellular immune response and is associated with IL-12 and IFN-γ. The other major type of immune response is termed a Th2 immune response, which is associated with more of an antibody immune response and with the production of IL4, IL-5 and IL-10. In general, it appears that allergic diseases are mediated by Th2 type immune responses and autoimmune diseases by Th1 immune response. Based on the ability of the immunostimulatory nucleic acid molecules to shift the immune response in a subject from a Th2 (which is associated with production of IgE antibodies and allergy) to a Th1 response (which is protective against allergic reactions), an effective dose of an immunostimulatory nucleic acid (or a vector containing a nucleic acid) alone or in conjunction with an allergen can be administered to a subject to treat or prevent an allergy.
- Nucleic acids containing unmethylated CpG motifs may also have significant therapeutic utility in the treatment of asthma. Th2 cytokines, especially IL-4 and IL-5 are elevated in the airways of asthmatic subjects. These cytokines promote important aspects of the asthmatic inflammatory response, including IgE isotype switching, eosinophil chemotaxis and activation and mast cell growth. Th1 cytokines, especially IFN-γ and IL-12, can suppress the formation of Th2 clones and production of Th2 cytokines.
- As described in detail in the following Example 12, oligonucleotides containing an unmethylated CpG motif (i.e. TCCATGACGTTCCTGACGTT; SEQ ID NO:10), but not a control oligonucleotide (TCCATGAGCTTCCTGAGTCT; SEQ ID NO:11) prevented the development of an inflammatory cellular infiltrate and eosinophilia in a murine model of asthma. Furthermore, the suppression of eosinophilic inflammation was associated with a suppression of a Th2 response and induction of a Th1 response.
- For use in therapy, an effective amount of an appropriate immunostimulatory nucleic acid molecule alone or formulated as a delivery complex can be administered to a subject by any mode allowing the oligonucleotide to be taken up by the appropriate target cells (e.g., B-cells and monocytic cells). Preferred routes of administration include oral and transdermal (e.g., via a patch). Examples of other routes of administration include injection (subcutaneous, intravenous, parenteral, intraperitoneal, intrathecal, etc.). The injection can be in a bolus or a continuous infusion.
- A nucleic acid alone or as a nucleic acid delivery complex can be administered in conjunction with a pharmaceutically acceptable carrier. As used herein, the phrase “pharmaceutically acceptable carrier” is intended to include substances that can be coadministered with a nucleic acid or a nucleic acid delivery complex and allows the nucleic acid to perform its indicated function. Examples of such carriers include solutions, solvents, dispersion media, delay agents, emulsions and the like. The use of such media for pharmaceutically active substances are well known in the art. Any other conventional carrier suitable for use with the nucleic acids falls within the scope of the instant invention.
- The language “effective amount” of a nucleic acid molecule refers to the amount necessary or sufficient to realize a desired biologic effect. For example, an effective amount of a nucleic acid containing at least one unmethylated CpG for treating an immune system deficiency could be that amount necessary to eliminate a tumor, cancer, or bacterial, viral or fungal infection. An effective amount for use as a vaccine adjuvant could be that amount useful for boosting a subjects immune response to a vaccine. An “effective amount” for treating asthma can be that amount useful for redirecting a Th2 type of immune response that is associated with asthma to a Th1 type of response. The effective amount for any particular application can vary depending on such factors as the disease or condition being treated, the particular nucleic acid being administered (e.g. the number of unmethylated CpG motifs or their location in the nucleic acid), the size of the subject, or the severity of the disease or condition. One of ordinary skill in the art can empirically determine the effective amount of a particular oligonucleotide without necessitating undue experimentation.
- The present invention is further illustrated by the following Examples which in no way should be construed as further limiting. The entire contents of all of the references (including literature references, issued patents, published patent applications, and co-pending patent applications) cited throughout this application are hereby expressly incorporated by reference.
- B cells were purified from spleens obtained from 6-12 wk old specific pathogen free DBA/2 or BXSB mice (bred in the University of Iowa animal care facility; no substantial strain differences were noted) that were depleted of T cells with anti-Thy-1.2 and complement and centrifugation over lympholyte M (Cedarlane Laboratories, Hornby, Ontario, Canada) (“B cells”). B cells contained fewer than 1% CD4+ or CD8+ cells. 8×104 B cells were dispensed in triplicate into 96 well microtiter plates in 100 μl RPMI containing 10% FBS (heat inactivated to 65° C. for 30 min.), 50 μM 2-mercaptoethanol, 100 U/ml penicillin, 100 ug/ml streptomycin, and 2 mM L-glutamate. 20 μM ODN were added at the start of culture for 20 h at 37° C., cells pulsed with 1 μCi of 3H uridine, and harvested and counted 4 hr later. Ig secreting B cells were enumerated using the ELISA spot assay after culture of whole spleen cells with ODN at 20 μM for 48 hr. Data, reported in Table 1, represent the stimulation index compared to cells cultured without ODN. 3H thymidine incorporation assays showed similar results, but with some nonspecific inhibition by thymidine released from degraded ODN (Matson. S and A. M. Krieg (1992) Nonspecific suppression of 3H-thymidine incorporation by control oligonucleotides. Antisense Research and Development 2:325).
- Single cell suspensions from the spleens of freshly killed mice were treated with anti-Thyl, anti-CD4, and anti-CD8 and complement by the method of Leibson et al., J. Exp. Med. 154:1681 (1981)). Resting B cells (<0.2% T cell contamination) were isolated from the 63-70% band of a discontinuous Percoll gradient by the procedure of DeFranco et al, J. Exp. Med. 155:1523 (1982). These were cultured as described above in 30 μM ODN or 20 μg/ml LPS for 48 hr. The number of B cells actively secreting IgM was maximal at this time point, as determined by ELIspot assay (Klinman, D. M. et al. J. Immunol. 144:506 (1990)). In that assay, B cells were incubated for 6 hrs on anti-1 g coated microtiter plates. The Ig they produced (>99% IgM) was detected using phosphatase-labelled anti-Ig (Southern Biotechnology Associated, Birmingham, Ala.). The antibodies produced by individual B cells were visualized by addition of BCIP (Sigma Chemical Co., St. Louis Mo.) which forms an insoluble blue precipitate in the presence of phosphatase. The dilution of cells producing 20-40 spots/well was used to determine the total number of antibody-secreting B cells/sample. All assays were performed in triplicate (data reported in Table 1). In some experiments, culture supernatants were assayed for IgM by ELISA, and showed similar increases in response to CpG-ODN.
- DBA/2 B cells were cultured with no DNA or 50 μg/ml of a) Micrococcus lysodeikticus; b) NZB/N mouse spleen; and c) NFS/N mouse spleen genomic DNAs for 48 hours, then pulsed with 3H thymidine for 4 hours prior to cell harvest. Duplicate DNA samples were digested with DNAse I for 30 minutes at 37 C. prior to addition to cell cultures. E coli DNA also induced an 8.8 fold increase in the number of IgM secreting B cells by 48 hours using the ELISA-spot assay.
- DBA/2 B cells were cultured with either no additive, 50 μg/ml LPS or the
ODN 1; 1a; 4; or 4a at 20 μM. Cells were cultured and harvested at 4, 8, 24 and 48 hours. BXSB cells were cultured as in Example 1 with 5, 10, 20, 40 or 80 μM ofODN 1; 1a; 4; or 4a or LPS. In this experiment, wells with no ODN had 3833 cpm. Each experiment was performed at least three times with similar results. Standard deviations of the triplicate wells were <5%. - 10×106 C57BL/6 spleen cells were cultured in two ml RPMI (supplemented as described for Example 1) with or without 40 μM CpG or non-CpG ODN for forty-eight hours. Cells were washed, and then used as effector cells in a short term 51Cr release assay with YAC-1 and 2C11, two NK sensitive target cell lines (Ballas, Z. K. et al. (1993) J. Immunol. 150:17). Effector cells were added at various concentrations to 104 51Cr-labeled target cells in V-bottom microtiter plates in 0.2 ml, and incubated in 5% CO2 for 4 hr. at 37° C. Plates were then centrifuged, and an aliquot of the supernatant counted for radioactivity. Percent specific lysis was determined by calculating the ratio of the 51Cr released in the presence of effector cells minus the 51Cr released when the target cells are cultured alone, over the total counts released after cell lysis in 2% acetic acid minus the 51Cr cpm released when the cells are cultured alone.
- Mice were weighed and injected IP with 0.25 ml of sterile PBS or the indicated phophorothioate ODN dissolved in PBS. Twenty four hours later, spleen cells were harvested, washed, and stained for flow cytometry using phycoerythrin conjugated 6B2 to gate on B cells in conjunction with biotin conjugated anti Ly-6A/E or anti-1ad (Pharmingen, San Diego, Calif.) or anti-Bla-1 (Hardy, R. R. et al., J. Exp. Med. 159:1169 (1984). Two mice were studied for each condition and analyzed individually.
- B cells were cultured with phosphorothioate ODN with the sequence of control ODN 1a or the
CpG ODN 1d and 3 Db and then either pulsed after 20 hr with 3H uridine or after 44 hr with 3H thymidine before harvesting and determining cpm. - WEHI-231 cells (5×104/well) were cultured for 1 hr. at 37 C. in the presence or absence of LPS or the control ODN 1a or the
CpG ODN 1d and 3 Db before addition of anti-IgM (1μ/ml). Cells were cultured for a further 20 hr. before a 4 hr. pulse with 2 μCi/well 3H thymidine. In this experiment, cells with no ODN or anti-IgM gave 90.4×103 cpm of 3H thymidine incorporation by addition of anti-IgM. The phosphodiester ODN shown in Table 1 gave similar protection, though with some nonspecific suppression due to ODN degradation. Each experiment was repeated at least 3 times with similar results. - DBA/2 female mice (2 mos. old) were injected IP with 500 μg CpG or control phosphorothioate ODN. At various time points after injection, the mice were bled. Two mice were studied for each time point. IL-6 was measured by Elisa, and IL-6 concentration was calculated by comparison to a standard curve generated using recombinant IL-6. The sensitivity of the assay was 10 pg/ml. Levels were undetectable after 8 hr.
- Mice and cell lines. DBA/2, BALB/c, and C3H/HeJ mice at 5-10 wk of age were used as a source of lymphocytes. All mice were obtained from The Jackson Laboratory (Bar Harbor, Me.), and bred and maintained under specific pathogen-free conditions in the University of Iowa Animal Care Unit. The mouse B cell line CH12.LX was kindly provided by Dr. G. Bishop (University of Iowa, Iowa City).
- Cell preparation. Mice were killed by cervical dislocation. Single cell suspensions were prepared aseptically from the spleens from mice. T cell depleted mouse splenocytes were prepared by using anti-Thy-1.2 and complement and centrifugation over lympholyte M (Cedarlane Laboratories, Hornby, Ontario, Canada) as described (Krieg, A. M. et al., (1989) A role for endogenous retroviral sequences in the regulation of lymphocyte activation. J. Immunol. 143:2448).
- ODN and DNA. Phosphodiester oligonucleotides (O-ODN) and the backbone modified phosphorothioate oligonucleotides (S-ODN) were obtained from the DNA Core facility at the University of Iowa or from Operon Technologies (Alameda, Calif.). E. coli DNA (Strain B) and calf thymus DNA were purchased from Sigma (St. Louis, Mo.). All DNA and ODN were purified by extraction with phenol:chloroform:isoamyl alcohol (25:24:1) and/or ethanol precipitation. E. coli and calf thymus DNA were single stranded prior to use by boiling for 10 min. followed by cooling on ice for 5 min. For some experiments, E. coli and calf thymus DNA were digested with DNAse I (2 U/μg of DNA) at 37° C. for 2 hr in 1×SSC with 5 mM MgCl2. To methylate the cytosine in CpG dinucleotides in E. coli DNA, E. coli DNA was treated with CpG methylase (M. SssI; 2 U/μg of DNA) in
NEBuffer 2 supplemented with 160 μM S-adenosyl methionine and incubated overnight at 37° C. Methylated DNA was purified as above. Efficiency of methylation was confirmed by Hpa II digestion followed by analysis by gel electrophoresis. All enzymes were purchased from New England Biolabs (Beverly, Mass.). LPS level in ODN was less than 12.5 ng/mg and E. coli and calf thymus DNA contained less than 2.5 ng of LPS/mg of DNA by Limulus assay. - Cell Culture. All cells were cultured at 37° C. in a 5% CO2 humidified incubator maintained in RPMI-1640 supplemented with 10% (v/v) heat inactivated fetal calf serum (FCS), 1.5 mM L-glutamine, 50 μg/ml), CpG or non-CpG phosphodiester ODN (O-ODN) (20 μM), phosphorothioate ODN (S-ODN) (0.5 μM), or E. coli or calf thymus DNA (50 μg/ml) at 37° C. for 24 hr. (for IL-6 production) or 5 days (for IgM production). Concentrations of stimulants were chosen based on preliminary studies with titrations. In some cases, cells were treated with CpG O-DN along with various concentrations (1-10 μg/ml) of neutralizing rat IgG1 antibody against murine IL-6 (hybridoma MP5-20F3) or control rat IgG1 mAb to E. coli β-galactosidase (hybridoma GL113; ATCC, Rockville, Md.) (20) for 5 days. At the end of incubation, culture supernatant fractions were analyzed by ELISA as below.
- In vivo induction of IL-6 and IgM. BALB/c mice were injected intravenously (iv) with PBS, calf thymus DNA (200 μg/100 μl/100 PBS/mouse), E. coli DNA (200 μg/100 μl PBS/mouse), or CpG or non-CpG S-ODN (200 μg/100 μl PBS/mouse). Mice (two/group) were bled by retroorbital puncture and sacrificed by cervical dislocation at various time points. Liver, spleen, thymus, and bone marrow were removed and RNA was prepared from those organs using RNAzol B (Tel-Test, Friendswood, Tex.) according to the manufacturers protocol.
- ELISA. Flat-bottomed
Immun 1 plates (Dynatech Laboratories, Inc., Chantilly, Va.) were coated with 100 μl/well of anti-mouse IL-6 mAb (MP5-20F3) (2 μg/ml) or anti-mouse IgM μ-chain specific (5 μg/ml; Sigma, St. Louis, Mo.) in carbonate-bicarbonate, pH 9.6 buffer (15 nM Na2CO3, 35 mM NaHCO3) overnight at 4° C. The plates were then washed with TPBS (0.5 mM MgCl2o6H2O, 2.68 mM KCl, 1.47 mM KH2PO4, 0.14 M NaCl, 6.6 mM K2HPO4, 0.5% Tween 20) and blocked with 10% FCS in TPBS for 2 hr at room temperature and then washed again. Culture supernatants, mouse sera, recombinant mouse IL-6 (Pharmingen, San Diego, Calif.) or purified mouse IgM (Calbiochem, San Diego, Calif.) were appropriately diluted in 10% FCS and incubated in triplicate wells for 6 hr at room temperature. The plates were washed and 100 μl/well of biotinylated rat anti-mouse IL-6 monoclonal antibodies (MP5-32C11, Pharmingen, San Diego, Calif.) (1 μg/ml in 10% FCS) or biotinylated anti-mouse Ig (Sigma, St. Louis, Mo.) were added and incubated for 45 min. at room temperature following washes with TPBS. Horseradish peroxidase (HRP) conjugated avid in (Bio-rad Laboratories, Hercules, Calif.) at 1:4000 dilution in 10% FCS (100 μl/well) was added and incubated at room temperature for 30 min. The plates were washed and developed with o-phenylendiamine dihydrochloride (OPD; Sigma, St. Louis Mo.) 0.05 M phosphate-citrate buffer, pH 5.0, for 30 min. The reaction was stopped with 0.67 N H2SO4 and plates were read on a microplate reader (Cambridge Technology, Inc., Watertown, Mass.) at 490-600 nm. The results are shown inFIGS. 1 and 2 . - RT-PCR. A sense primer, an antisense primer, and an internal oligonucleotide probe for IL6 were synthesized using published sequences (Montgomery, R. A. and M. S. Dallman (1991), Analysis of cytokine gene expression during fetal thymic ontogeny using the polymerase chain reaction (J. Immunol.) 147:554). cDNA synthesis and IL-6 PCR was done essentially as described by Montgomery and Dallman (Montgomery, R. A. and M. S. Dallman (1991), Analysis of cytokine gene expression during fetal thymic ontogeny using the polymerase chain reaction (J. Immunol.) 147:554) using RT-PCR reagents from Perkin-Elmer Corp. (Hayward, Calif.). Samples were analyzed after 30 cycles of amplification by gel electrophoresis followed by unblot analysis (Stoye, J. P. et al., (1991) DNA hybridization in dried gels with fragmented probes: an improvement over blotting techniques, Techniques 3:123). Briefly, the gel was hybridized at room temperature for 30 min. in denaturation buffer (0.05 M NaOH, 1.5 M NaCl) followed by incubation for 30 min. in renaturation buffer (1.5 M NaCl, 1 M Tris, pH 8) and a 30 min. wash in double distilled water. The gel was dried and prehybridized at 47° C. for 2 hr. hybridization buffer (5× SSPE, 0.1% SDS) containing 10 μg/ml denatured salmon sperm DNA. The gel was hybridized with 2×106 cpm/ml γ-[32 P]ATP end-labeled internal oligonucleotide probe for IL-6 (5′CATTTCCACGATTTCCCA3′) SEQ ID NO:56) overnight at 47° C., washed 4 times (2×SSC, 0.2% SDS) at room temperature and autoradiographed. The results are shown in
FIG. 3 . - Cell Proliferation assay. DBA/2 mice spleen B cells (5×104 cells/100 μl/well) were treated with media, CpG or non-CpG S-ODN (0.5 μM) or O-ODN (20 μM) for 24 hr at 37° C. Cells were pulsed for the last four hr. with either [3H] Thymidine or [3H] Uridine (1 μCi/well). Amounts of [3H] incorporated were measured using Liquid Scintillation Analyzer (Packard Instrument Co., Downers Grove, Ill.).
- Transfections and CAT assays. WEHI-231 cells (107 cells) were electroporated with 20 μg of control or human IL-6 promoter-CAT construct (kindly provided by S. Manolagas, Univ. of Arkansas) (Pottratz, S. T. et al., (1994) 17B-estradiol inhibits expression of human interleukin6 promoter-reporter constructs by a receptor-dependent mechanism. J. Clin. Invest 93:944) at 250 mV and 960 μF. Cells were stimulated with various concentrations or CpG or non-CpG ODN after electroporation. Chloramphenicol acetyltransferase (CAT) activity was measured by a solution assay (Seed, B. and J. Y. Sheen (1988) A single phase-extraction assay for chloramphenicol acetyl transferase activity. Gene 76:271) 16 hr. after transfection. The results are presented in
FIG. 5 . - ODN were synthesized on an Applied Biosystems Inc. (Foster City, Calif.) model 380A, 380B, or 394 DNA synthesizer using standard procedures (Beacage and Caruthers (1981) Deoxynucleoside phosphoramidites—A new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Letters 22, 1859-1862.). Phosphodiester ODN were synthesized using standard beta-cyanoethyl phosphoramidite chemistry. Phosphorothioate linkages were introduced by oxidizing the phosphite linkage with elemental sulfur instead of the standard iodine oxidation. The four common nucleoside phosphoramidites were purchased from Applied Biosystems. All phosphodiester and thioate containing ODN were deprotected by treatment with concentrated ammonia at 55° C. for 12 hours. The ODN were purified by gel exclusion chromatography and lyophilized to dryness prior to use. Phosphorodithioate linkages were introduced by using deoxynucleoside S-(b-benzoylmercaptoethyl) pyrrolidino thiophosphoramidites (Wiesler, W. T. et al., (1993) In Methods in Molecular Biology: Protocols for Oligonucleotides and Analogs-Synthesis and Properties, Agrawal, S. (ed.), Humana Press, 191-206.). Dithioate containing ODN were deprotected by treatment with concentrated ammonia at 55° C. for 12 hours followed by reverse phase HPLC purification.
- In order to synthesize oligomers containing methylphosphonothioates or methylphosphonates as well as phosphodiesters at any desired internucleotide linkage, two different synthetic cycles were used. The major synthetic differences in the two cycles are the coupling reagent where dialkylaminomethylnucleoside phosphines are used and the oxidation reagents in the case of methylphosphonothioates. In order to synthesize either derivative, the condensation time has been increased for the dialkylaminomethylnucleoside phosphines due to the slower kinetics of coupling (Jager and Engels, (1984) Synthesis of deoxynucleoside methylphosphonates via a phosphonamidite approach.
Tetrahedron Letters 24, 1437-1440). After the coupling step has been completed, the methylphosphinodiester is treated with the sulfurizing reagent (5% elemental sulfur, 100 millimolar N,N-diamethylaminopyridine in carbon disulfide/pyridine/triethylamine), four consecutive times for 450 seconds each to produce methylphosphonothioates. To produce methylphosphonate linkages, the methylphosphinodiester is treated with standard oxidizing reagent (0.1 M iodine in tetrahydrofuran/2,6-lutidine/water). - The silica gel bound oligomer was treated with distilled pyridine/concentrated ammonia, 1:1, (v/v) for four days at 4 degrees centigrade. The supernatant was dried in vacuo, dissolved in water and chromatographed on a G50/50 Sephadex column.
- As used herein, O-ODN refers to ODN which are phosphodiester; S-ODN are completely phosphorothioate modified; S-O-ODN are chimeric ODN in which the central linkages are phosphodiester, but the two 5′ and five 3′ linkages are phosphorothioate modified; S2-O-ODN are chimeric ODN in which the central linkages are phosphodiester, but the two 5′ and five 3′ linkages are phosphorodithioate modified; and MP-O-ODN are chimeric ODN in which the central linkages are phosphodiester, but the two 5′ and five 3′ linkages are methylphosphonate modified. The ODN sequences studied (with CpG dinucleotides indicated by underlining) include:
3D (5′GAGAACGCTGGACCTTCCAT),; (SEQ ID NO:14) 3M (5′TCCATGTCGGTCCTGATGCT),; (SEQ ID NO:22) 5 (5′GGCGTTATTCCTGACTCGCC),; (SEQ ID NO:57) and 6(5′CCTACGTTGTATGCGCCCAGCT),. (SEQ ID NO:58).
These sequences are representative of literally hundreds of CpG and non-CpG ODN that have been tested in the course of these studies. - Mice. DBA/2, or BXSB mice obtained from The Jackson Laboratory (Bar Harbor, Me.), and maintained under specific pathogen-free conditions were used as a source of lymphocytes at 5-10 wk of age with essentially identical results.
- Cell proliferation assay. For cell proliferation assays, mouse spleen cells (5×104 cells/100 μl/well) were cultured at 37° C. in a 5% CO2 humidified incubator in RPMI-1640 supplemented with 10% (v/v) heat inactivated fetal calf serum (heated to 65° C. for experiments with O-ODN, or 56° C. for experiments using only modified ODN), 1.5 μM L-glutamine, 50 μM 2-mercaptoethanol, 100 U/ml penicillin and 100 μg/ml streptomycin for 24 hr or 48 hr as indicated. 1 μCi of 3H uridine or thymidine (as indicated) was added to each well, and the cells harvested after an additional 4 hours of culture. Filters were counted by scintillation counting. Standard deviations of the triplicate wells were <S %. The results are presented in
FIGS. 6-8 . - Phosphodiester ODN were purchased from Operon Technologies (Alameda, Calif.). Phosphorothioate ODN were purchased from the DNA core facility, University of Iowa, or from The Midland Certified Reagent Company (Midland Tex.). E. coli (strain B) DNA and calf thymus DNA were purchased from Sigma (St. Louis, Mo.). All DNA and ODN were purified by extraction with phenol:chloroform:isoamyl alcohol (25:24:1) and/or ethanol precipitation. The LPS level in ODN was less than 12.5 ng/mg and E. coli and calf thymus DNA contained less than 2.5 ng of LPS/mg of DNA by Limulus assay.
- Virus-free, 4-6 week old, DBA/2, C57BU6 (B6) and congenitally athymic BALB/C mice were obtained on contract through the Veterans Affairs from the National Cancer Institute (Bethesda, Md.). C57BU6 SCID mice were bred in the SPF barrier facility at the University of Iowa Animal Care Unit.
- Human peripheral mononuclear blood leukocytes (PBMC) were obtained as previously described (Ballas, Z. K. et al., (1990) J. Allergy Clin. Immunol. 85:453; Ballas, Z. K. and W. Rasmussen (1990) J. Immunol. 145:1039; Ballas, Z. K. and W. Rasmussen (1993) J. Immunol. 150; 17). Human or murine cells were cultured at 5×106/well, at 37° C. in a 5% CO2 humidified atmosphere in 24-well plates (Ballas, Z. K. et al., (1990) J. Allergy Clin. Immunol. 85:453; Ballas, Z. K. and W. Rasmussen (1990) J. Immunol 145:1039; and Ballas, Z. K. and W. Rasmussen (1993) J. Immunol, 150:17), with medium alone or with CpG or non-CpG ODN at the indicated concentrations, or with E. coli or calf thymus (50 μg/ml) at 37° C. for 24 hr. All cultures were harvested at 18 hr. and the cells were used as effectors in a standard 4 hr. 51Cr-release assay against K562 (human) or YAC-1 (mouse) target cells as previously described. For calculation of lytic units (LU), 1 LU was defined as the number of cells needed to effect 30% specific lysis. Where indicated, neutralizing antibodies against IFN-β (Lee Biomolecular, San Diego, Calif.) or IL-12 (C15.1, C15.6, C17.8, and C17.15; provided by Dr. Giorgio Trinchieri, The Wistar Institute, Philadelphia, Pa.) or their isotype controls were added at the initiation of cultures to a concentration of 10 μg/ml. For anti-IL-12 addition, 10 μg of each of the 4 MAB (or isotype controls) were added simultaneously. Recombinant human IL-2 was used at a concentration of 100 U/ml.
- 6-8 week old C56BL/6 mice (from The Jackson Laboratory, Bar Harbor, Me.) were immunized with 5,000 Schistosoma mansoni eggs by intraperitoneal (i.p.) injection on
days 0 and 7. Schistosoma mansoni eggs contain an antigen (Schistosoma mansoni egg antigen (SEA)) that induces a Th2 immune response (e.g. production of IgE antibody). IgE antibody production is known to be an important cause of asthma. - The immunized mice were then treated with oligonucleotides (30 μg in 200 μl saline by i.p. injection), which either contained an unmethylated CpG motif (i.e. TCCATGACGTTCCTGACGTT SEQ ID NO.10) or did not (i.e. control, TCCATGAGCTTCCTGAGTCT; SEQ ID NO.11). Soluble SEA (10 μg in 25 μl of saline) was administered by intranasal instillation on days 14 and 21. Saline was used as a control.
- Mice were sacrificed at various times after airway challenge. Whole lung lavage was performed to harvest airway and alveolar inflammatory cells. Cytokine levels were measured from lavage fluid by ELISA. RNA was isolated from whole lung for Northern analysis and RT-PCR studies using CsCl gradients. Lungs were inflated and perfused with 4% paraformaldehyde for histologic examination.
-
FIG. 9 shows that when the mice are initially injected with the eggs i.p., and then inhale the egg antigen (open circle), many inflammatory cells are present in the lungs. However, when the mice are initially given a nucleic acid containing an unmethylated CpG motif along with the eggs, the inflammatory cells in the lung are not increased by subsequent inhalation of the egg antigen (open triangles). -
FIG. 10 shows that the same results are obtained when only eosinophils present in the lung lavage are measured. Eosinophils are the type of inflammatory cell most closely associated with asthma. -
FIG. 11 shows that when the mice are treated with a control oligo at the time of the initial exposure to the egg, there is little effect on the subsequent influx of eosinophils into the lungs after inhalation of SEA. Thus, when mice inhale the eggs on days 14 or 21, they develop an acute inflammatory response in the lungs. However, giving a CpG oligo along with the eggs at the time of initial antigen exposure ondays 0 and 7 almost completely abolishes the increase in eosinophils when the mice inhale the egg antigen on day 14. -
FIG. 12 shows that very low doses of oligonucleotide (<10 μg) can give this protection. -
FIG. 13 shows that the resultant inflammatory response correlates with the levels of the Th2 cytokine IL-4 in the lung. -
FIG. 14 shows that administration of an oligonucleotide containing an unmethylated CpG motif can actually redirect the cytokine response of the lung to production of II-12, indicating a Th1 type of immune response. -
FIG. 15 shows that administration of an oligonucleotide containing an unmethylated CpG motif can also redirect the cytokine response of the lung to production of IFN-γ, indicating a Th1 type of immune response. - Human PBMC were prepared from whole blood by standard centrifugation over ficoll hypaque. Cells (5×105/ml) were cultured in 10% autologous serum in 96 well microtiter plates with CpG or control oligodeoxynucleotides (24 μg/ml for phosphodiester oligonucleotides; 6 μg/ml for nuclease resistant phosphorothioate oligonucleotides) for 4 hr in the case of TNF-α or 24 hr. for the other cytokines before supernatant harvest and assay, measured by ELISA using Quantikine kits or reagents from R&D Systems (pg/ml) or cytokine ELISA kits from Biosource (for IL-12 assay). Assays were performed as per the manufacturer's instructions. Data are presented in Table 6 as the level of cytokine above that in wells with no added oligodeoxynucleotide.
- Equivalents
- Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents of the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/435,656 US20050277604A1 (en) | 1994-07-15 | 2003-05-09 | Immunostimulatory nucleic acid molecules |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US27635894A | 1994-07-15 | 1994-07-15 | |
US08/386,063 US6194388B1 (en) | 1994-07-15 | 1995-02-07 | Immunomodulatory oligonucleotides |
US08/738,652 US6207646B1 (en) | 1994-07-15 | 1996-10-30 | Immunostimulatory nucleic acid molecules |
US09/818,918 US20030050261A1 (en) | 1994-07-15 | 2001-03-27 | Immunostimulatory nucleic acid molecules |
US10/435,656 US20050277604A1 (en) | 1994-07-15 | 2003-05-09 | Immunostimulatory nucleic acid molecules |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/818,918 Continuation US20030050261A1 (en) | 1994-07-15 | 2001-03-27 | Immunostimulatory nucleic acid molecules |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050277604A1 true US20050277604A1 (en) | 2005-12-15 |
Family
ID=24968901
Family Applications (32)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/738,652 Expired - Lifetime US6207646B1 (en) | 1994-07-15 | 1996-10-30 | Immunostimulatory nucleic acid molecules |
US09/818,918 Abandoned US20030050261A1 (en) | 1994-07-15 | 2001-03-27 | Immunostimulatory nucleic acid molecules |
US10/435,656 Abandoned US20050277604A1 (en) | 1994-07-15 | 2003-05-09 | Immunostimulatory nucleic acid molecules |
US10/613,916 Abandoned US20050070491A1 (en) | 1994-07-15 | 2003-07-03 | Immunostimulatory nucleic acid molecules |
US10/679,710 Abandoned US20040147468A1 (en) | 1994-07-15 | 2003-10-03 | Immunostimulatory nucleic acid molecules |
US10/743,625 Abandoned US20040132685A1 (en) | 1994-07-15 | 2003-12-22 | Immunostimulatory nucleic acid |
US10/769,282 Expired - Fee Related US7674777B2 (en) | 1994-07-15 | 2004-01-30 | Immunostimulatory nucleic acid molecules |
US10/817,165 Abandoned US20040198688A1 (en) | 1994-07-15 | 2004-04-02 | Immunostimulatory nucleic acid molecules |
US10/831,647 Expired - Fee Related US7402572B2 (en) | 1994-07-15 | 2004-04-23 | Immunostimulatory nucleic acid molecules |
US10/847,642 Abandoned US20050004061A1 (en) | 1994-07-15 | 2004-05-17 | Immunostimulatory nucleic acid molecules |
US10/877,407 Abandoned US20040229835A1 (en) | 1994-07-15 | 2004-06-24 | Immunostimulatory nucleic acid molecules |
US10/884,852 Abandoned US20050059625A1 (en) | 1994-07-15 | 2004-07-02 | Immunostimulatory nucleic acid molecules |
US10/888,785 Expired - Fee Related US7517861B2 (en) | 1994-07-15 | 2004-07-09 | Immunostimulatory nucleic acid molecules |
US10/888,449 Abandoned US20050049215A1 (en) | 1994-07-15 | 2004-07-09 | Immunostimulatory nucleic acid molecules |
US10/894,862 Expired - Fee Related US8058249B2 (en) | 1994-07-15 | 2004-07-16 | Immunostimulatory nucleic acid molecules |
US10/894,657 Abandoned US20050054602A1 (en) | 1994-07-15 | 2004-07-16 | Immunostimulatory nucleic acid molecules |
US10/928,762 Abandoned US20050123523A1 (en) | 1994-07-15 | 2004-08-26 | Immunostimulatory nucleic acid molecules |
US10/956,494 Expired - Fee Related US7879810B2 (en) | 1994-07-15 | 2004-10-01 | Immunostimulatory nucleic acid molecules |
US10/956,745 Abandoned US20050239732A1 (en) | 1994-07-15 | 2004-10-01 | Immunostimulatory nucleic acid molecules |
US10/972,301 Abandoned US20050215500A1 (en) | 1994-07-15 | 2004-10-22 | Immunostimulatory nucleic acid molecules |
US10/987,146 Abandoned US20050148537A1 (en) | 1994-07-15 | 2004-11-12 | Immunostimulatory nucleic acid molecules |
US11/031,460 Expired - Fee Related US8158592B2 (en) | 1994-07-15 | 2005-01-07 | Immunostimulatory nucleic acid molecules |
US11/036,527 Expired - Fee Related US7723022B2 (en) | 1994-07-15 | 2005-01-14 | Immunostimulatory nucleic acid molecules |
US11/067,587 Expired - Fee Related US8129351B2 (en) | 1994-07-15 | 2005-02-25 | Immunostimulatory nucleic acid molecules |
US11/134,918 Abandoned US20050267064A1 (en) | 1994-07-15 | 2005-05-23 | Immunostimulatory nucleic acid molecules |
US11/296,572 Abandoned US20060089326A1 (en) | 1994-07-15 | 2005-12-07 | Immunostimulatory nucleic acid molecules |
US11/503,483 Expired - Fee Related US7723500B2 (en) | 1994-07-15 | 2006-08-11 | Immunostimulatory nucleic acid molecules |
US11/526,197 Abandoned US20070078104A1 (en) | 1994-07-15 | 2006-09-22 | Immunostimulatory nucleic acid molecules |
US11/598,207 Expired - Fee Related US8258106B2 (en) | 1994-07-15 | 2006-11-10 | Immunostimulatory nucleic acid molecules |
US11/810,353 Abandoned US20080026011A1 (en) | 1994-07-15 | 2007-06-05 | Immunostimulatory nucleic acid molecules |
US12/248,493 Abandoned US20090202575A1 (en) | 1994-07-15 | 2008-10-09 | Immunostimulatory nucleic acid molecules |
US12/383,824 Expired - Fee Related US7888327B2 (en) | 1994-07-15 | 2009-03-25 | Methods of using immunostimulatory nucleic acid molecules to treat allergic conditions |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/738,652 Expired - Lifetime US6207646B1 (en) | 1994-07-15 | 1996-10-30 | Immunostimulatory nucleic acid molecules |
US09/818,918 Abandoned US20030050261A1 (en) | 1994-07-15 | 2001-03-27 | Immunostimulatory nucleic acid molecules |
Family Applications After (29)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/613,916 Abandoned US20050070491A1 (en) | 1994-07-15 | 2003-07-03 | Immunostimulatory nucleic acid molecules |
US10/679,710 Abandoned US20040147468A1 (en) | 1994-07-15 | 2003-10-03 | Immunostimulatory nucleic acid molecules |
US10/743,625 Abandoned US20040132685A1 (en) | 1994-07-15 | 2003-12-22 | Immunostimulatory nucleic acid |
US10/769,282 Expired - Fee Related US7674777B2 (en) | 1994-07-15 | 2004-01-30 | Immunostimulatory nucleic acid molecules |
US10/817,165 Abandoned US20040198688A1 (en) | 1994-07-15 | 2004-04-02 | Immunostimulatory nucleic acid molecules |
US10/831,647 Expired - Fee Related US7402572B2 (en) | 1994-07-15 | 2004-04-23 | Immunostimulatory nucleic acid molecules |
US10/847,642 Abandoned US20050004061A1 (en) | 1994-07-15 | 2004-05-17 | Immunostimulatory nucleic acid molecules |
US10/877,407 Abandoned US20040229835A1 (en) | 1994-07-15 | 2004-06-24 | Immunostimulatory nucleic acid molecules |
US10/884,852 Abandoned US20050059625A1 (en) | 1994-07-15 | 2004-07-02 | Immunostimulatory nucleic acid molecules |
US10/888,785 Expired - Fee Related US7517861B2 (en) | 1994-07-15 | 2004-07-09 | Immunostimulatory nucleic acid molecules |
US10/888,449 Abandoned US20050049215A1 (en) | 1994-07-15 | 2004-07-09 | Immunostimulatory nucleic acid molecules |
US10/894,862 Expired - Fee Related US8058249B2 (en) | 1994-07-15 | 2004-07-16 | Immunostimulatory nucleic acid molecules |
US10/894,657 Abandoned US20050054602A1 (en) | 1994-07-15 | 2004-07-16 | Immunostimulatory nucleic acid molecules |
US10/928,762 Abandoned US20050123523A1 (en) | 1994-07-15 | 2004-08-26 | Immunostimulatory nucleic acid molecules |
US10/956,494 Expired - Fee Related US7879810B2 (en) | 1994-07-15 | 2004-10-01 | Immunostimulatory nucleic acid molecules |
US10/956,745 Abandoned US20050239732A1 (en) | 1994-07-15 | 2004-10-01 | Immunostimulatory nucleic acid molecules |
US10/972,301 Abandoned US20050215500A1 (en) | 1994-07-15 | 2004-10-22 | Immunostimulatory nucleic acid molecules |
US10/987,146 Abandoned US20050148537A1 (en) | 1994-07-15 | 2004-11-12 | Immunostimulatory nucleic acid molecules |
US11/031,460 Expired - Fee Related US8158592B2 (en) | 1994-07-15 | 2005-01-07 | Immunostimulatory nucleic acid molecules |
US11/036,527 Expired - Fee Related US7723022B2 (en) | 1994-07-15 | 2005-01-14 | Immunostimulatory nucleic acid molecules |
US11/067,587 Expired - Fee Related US8129351B2 (en) | 1994-07-15 | 2005-02-25 | Immunostimulatory nucleic acid molecules |
US11/134,918 Abandoned US20050267064A1 (en) | 1994-07-15 | 2005-05-23 | Immunostimulatory nucleic acid molecules |
US11/296,572 Abandoned US20060089326A1 (en) | 1994-07-15 | 2005-12-07 | Immunostimulatory nucleic acid molecules |
US11/503,483 Expired - Fee Related US7723500B2 (en) | 1994-07-15 | 2006-08-11 | Immunostimulatory nucleic acid molecules |
US11/526,197 Abandoned US20070078104A1 (en) | 1994-07-15 | 2006-09-22 | Immunostimulatory nucleic acid molecules |
US11/598,207 Expired - Fee Related US8258106B2 (en) | 1994-07-15 | 2006-11-10 | Immunostimulatory nucleic acid molecules |
US11/810,353 Abandoned US20080026011A1 (en) | 1994-07-15 | 2007-06-05 | Immunostimulatory nucleic acid molecules |
US12/248,493 Abandoned US20090202575A1 (en) | 1994-07-15 | 2008-10-09 | Immunostimulatory nucleic acid molecules |
US12/383,824 Expired - Fee Related US7888327B2 (en) | 1994-07-15 | 2009-03-25 | Methods of using immunostimulatory nucleic acid molecules to treat allergic conditions |
Country Status (14)
Country | Link |
---|---|
US (32) | US6207646B1 (en) |
EP (5) | EP1714969A3 (en) |
JP (5) | JP2001503267A (en) |
KR (1) | KR100689942B1 (en) |
CN (2) | CN100338086C (en) |
AT (1) | ATE332966T1 (en) |
AU (3) | AU5242498A (en) |
CA (1) | CA2270345C (en) |
DE (1) | DE69736331T2 (en) |
DK (1) | DK0948510T3 (en) |
ES (2) | ES2268736T3 (en) |
NZ (1) | NZ335397A (en) |
PT (1) | PT948510E (en) |
WO (1) | WO1998018810A1 (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030050261A1 (en) * | 1994-07-15 | 2003-03-13 | Krieg Arthur M. | Immunostimulatory nucleic acid molecules |
US20040087534A1 (en) * | 1994-07-15 | 2004-05-06 | University Of Iowa Research Foundation | Immunomodulatory oligonucleotides |
US7223741B2 (en) | 1994-07-15 | 2007-05-29 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US20080152662A1 (en) * | 2001-10-24 | 2008-06-26 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends |
US7410975B2 (en) | 2003-06-20 | 2008-08-12 | Coley Pharmaceutical Group, Inc. | Small molecule toll-like receptor (TLR) antagonists |
US20090010938A1 (en) * | 2003-02-07 | 2009-01-08 | Idera Pharmaceuticals, Inc. | Short immunomodulatory oligonucleotides |
US7488490B2 (en) | 1997-03-10 | 2009-02-10 | University Of Iowa Research Foundation | Method of inducing an antigen-specific immune response by administering a synergistic combination of adjuvants comprising unmethylated CpG-containing nucleic acids and a non-nucleic acid adjuvant |
US7524828B2 (en) | 1994-07-15 | 2009-04-28 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US7534772B2 (en) | 2000-06-22 | 2009-05-19 | University Of Iowa Research Foundation | Methods for enhancing antibody-induced cell lysis and treating cancer |
US7566703B2 (en) | 2004-10-20 | 2009-07-28 | Coley Pharmaceutical Group, Inc. | Semi-soft C-class immunostimulatory oligonucleotides |
US7569553B2 (en) | 2002-07-03 | 2009-08-04 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US7576066B2 (en) | 2002-07-03 | 2009-08-18 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US7585847B2 (en) | 2000-02-03 | 2009-09-08 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids for the treatment of asthma and allergy |
US7605138B2 (en) | 2002-07-03 | 2009-10-20 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US7662949B2 (en) | 2005-11-25 | 2010-02-16 | Coley Pharmaceutical Gmbh | Immunostimulatory oligoribonucleotides |
US7741300B2 (en) | 1998-06-25 | 2010-06-22 | National Jewish Medical And Research Center | Methods of using nucleic acid vector-lipid complexes |
US7776343B1 (en) | 1999-02-17 | 2010-08-17 | Csl Limited | Immunogenic complexes and methods relating thereto |
US7776344B2 (en) | 1999-09-27 | 2010-08-17 | University Of Iowa Research Foundation | Methods related to immunostimulatory nucleic acid-induced interferon |
US7807803B2 (en) | 2002-07-03 | 2010-10-05 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US7820379B2 (en) | 2000-09-15 | 2010-10-26 | Coley Pharmaceutical Gmbh | Process for high throughput screening of CpG-based immuno-agonist/antagonist |
US7956043B2 (en) | 2002-12-11 | 2011-06-07 | Coley Pharmaceutical Group, Inc. | 5′ CpG nucleic acids and methods of use |
US7998492B2 (en) | 2002-10-29 | 2011-08-16 | Coley Pharmaceutical Group, Inc. | Methods and products related to treatment and prevention of hepatitis C virus infection |
US8114419B2 (en) | 2002-07-03 | 2012-02-14 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US8153141B2 (en) | 2002-04-04 | 2012-04-10 | Coley Pharmaceutical Gmbh | Immunostimulatory G, U-containing oligoribonucleotides |
US8188254B2 (en) | 2003-10-30 | 2012-05-29 | Coley Pharmaceutical Gmbh | C-class oligonucleotide analogs with enhanced immunostimulatory potency |
US8283328B2 (en) | 2002-08-19 | 2012-10-09 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids |
US8574599B1 (en) | 1998-05-22 | 2013-11-05 | Ottawa Hospital Research Institute | Methods and products for inducing mucosal immunity |
US8580268B2 (en) | 2006-09-27 | 2013-11-12 | Coley Pharmaceutical Gmbh | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
US8834900B2 (en) | 2001-08-17 | 2014-09-16 | University Of Iowa Research Foundation | Combination motif immune stimulatory oligonucleotides with improved activity |
US8883174B2 (en) | 2009-03-25 | 2014-11-11 | The Board Of Regents, The University Of Texas System | Compositions for stimulation of mammalian innate immune resistance to pathogens |
US10286065B2 (en) | 2014-09-19 | 2019-05-14 | Board Of Regents, The University Of Texas System | Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds |
Families Citing this family (849)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL105325A (en) * | 1992-04-16 | 1996-11-14 | Minnesota Mining & Mfg | Immunogen/vaccine adjuvant composition |
US6498147B2 (en) * | 1992-05-22 | 2002-12-24 | The Scripps Research Institute | Suppression of nuclear factor-κb dependent processes using oligonucleotides |
CA2110946A1 (en) * | 1992-12-09 | 1994-06-10 | Elazar Rabbani | Induction of immunocompatibility by nucleic acid |
US5849719A (en) | 1993-08-26 | 1998-12-15 | The Regents Of The University Of California | Method for treating allergic lung disease |
US20030109469A1 (en) * | 1993-08-26 | 2003-06-12 | Carson Dennis A. | Recombinant gene expression vectors and methods for use of same to enhance the immune response of a host to an antigen |
US6727230B1 (en) | 1994-03-25 | 2004-04-27 | Coley Pharmaceutical Group, Inc. | Immune stimulation by phosphorothioate oligonucleotide analogs |
US6429199B1 (en) | 1994-07-15 | 2002-08-06 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules for activating dendritic cells |
US7034007B1 (en) * | 1995-06-07 | 2006-04-25 | East Carolina University | Low adenosine anti-sense oligonucleotide, compositions, kit & method for treatment of airway disorders associated with bronchoconstriction, lung inflammation, allergy(ies) & surfactant depletion |
US7422902B1 (en) * | 1995-06-07 | 2008-09-09 | The University Of British Columbia | Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer |
US5981501A (en) * | 1995-06-07 | 1999-11-09 | Inex Pharmaceuticals Corp. | Methods for encapsulating plasmids in lipid bilayers |
US6825174B2 (en) * | 1995-06-07 | 2004-11-30 | East Carolina University | Composition, formulations & method for prevention & treatment of diseases and conditions associated with bronchoconstriction, allergy(ies) & inflammation |
GB2324093A (en) | 1996-01-04 | 1998-10-14 | Rican Limited | Helicobacter pylori bacterioferritin |
WO1997028259A1 (en) * | 1996-01-30 | 1997-08-07 | The Regents Of The University Of California | Gene expression vectors which generate an antigen specific immune response and methods of using the same |
US20030078223A1 (en) * | 1996-01-30 | 2003-04-24 | Eyal Raz | Compositions and methods for modulating an immune response |
US9096636B2 (en) | 1996-06-06 | 2015-08-04 | Isis Pharmaceuticals, Inc. | Chimeric oligomeric compounds and their use in gene modulation |
US7812149B2 (en) | 1996-06-06 | 2010-10-12 | Isis Pharmaceuticals, Inc. | 2′-Fluoro substituted oligomeric compounds and compositions for use in gene modulations |
US20050119470A1 (en) * | 1996-06-06 | 2005-06-02 | Muthiah Manoharan | Conjugated oligomeric compounds and their use in gene modulation |
US5898031A (en) * | 1996-06-06 | 1999-04-27 | Isis Pharmaceuticals, Inc. | Oligoribonucleotides for cleaving RNA |
US20040171031A1 (en) * | 1996-06-06 | 2004-09-02 | Baker Brenda F. | Sugar surrogate-containing oligomeric compounds and compositions for use in gene modulation |
US20040147022A1 (en) * | 1996-06-06 | 2004-07-29 | Baker Brenda F. | 2'-methoxy substituted oligomeric compounds and compositions for use in gene modulations |
US6610661B1 (en) | 1996-10-11 | 2003-08-26 | The Regents Of The University Of California | Immunostimulatory polynucleotide/immunomodulatory molecule conjugates |
HUP9904665A3 (en) | 1996-10-25 | 2000-11-28 | Minnesota Mining And Mfg Co Sa | Immune response modifier compounds for treatment of th2 mediated and related diseases |
EP0855184A1 (en) * | 1997-01-23 | 1998-07-29 | Grayson B. Dr. Lipford | Pharmaceutical composition comprising a polynucleotide and an antigen especially for vaccination |
CA2279204C (en) * | 1997-01-30 | 2005-11-15 | Chiron Corporation | Use of microparticles with adsorbed antigen to stimulate immune responses |
US6884435B1 (en) * | 1997-01-30 | 2005-04-26 | Chiron Corporation | Microparticles with adsorbent surfaces, methods of making same, and uses thereof |
EP1039935A4 (en) * | 1997-02-28 | 2005-04-27 | Univ Iowa Res Found | USE OF NUCLEIC ACIDS CONTAINING NON-METHYLIC CpG DINUCLEOTIDES IN THE TREATMENT OF LIPOPOLYSACCHARIDE ASSOCIATED DISORDERS |
DE69841122D1 (en) * | 1997-03-10 | 2009-10-15 | Coley Pharm Gmbh | Use of non-methylated CpG dinucleotide in combination with aluminum as adjuvants |
US6426334B1 (en) * | 1997-04-30 | 2002-07-30 | Hybridon, Inc. | Oligonucleotide mediated specific cytokine induction and reduction of tumor growth in a mammal |
US20030104044A1 (en) * | 1997-05-14 | 2003-06-05 | Semple Sean C. | Compositions for stimulating cytokine secretion and inducing an immune response |
EP1027033B1 (en) | 1997-05-14 | 2009-07-22 | The University Of British Columbia | High efficiency encapsulation of nucleic acids in lipid vesicles |
ATE370740T1 (en) | 1997-05-20 | 2007-09-15 | Ottawa Health Research Inst | METHOD FOR PRODUCING NUCLEIC ACID CONSTRUCTS |
EP1374894A3 (en) * | 1997-06-06 | 2004-09-22 | Dynavax Technologies Corporation | Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof |
US6589940B1 (en) | 1997-06-06 | 2003-07-08 | Dynavax Technologies Corporation | Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof |
EP0986572B2 (en) * | 1997-06-06 | 2007-06-13 | Dynavax Technologies Corporation | Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof |
US20040006034A1 (en) * | 1998-06-05 | 2004-01-08 | Eyal Raz | Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof |
US6221882B1 (en) * | 1997-07-03 | 2001-04-24 | University Of Iowa Research Foundation | Methods for inhibiting immunostimulatory DNA associated responses |
WO1999011275A2 (en) * | 1997-09-05 | 1999-03-11 | The Regents Of The University Of California | Use of immunostimulatory oligonucleotides for preventing or reducing antigen-stimulated, granulocyte-mediated inflammation |
AU2003203948B2 (en) * | 1997-09-05 | 2005-12-22 | The Regents Of The University Of California | Use of immunostimulatory oligonucleotides for preventing or reducing antigen-stimulated, granulocyte-mediated inflammation |
EP1067956B1 (en) * | 1998-04-03 | 2007-03-14 | University Of Iowa Research Foundation | Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines |
WO1999056755A1 (en) * | 1998-05-06 | 1999-11-11 | University Of Iowa Research Foundation | Methods for the prevention and treatment of parasitic infections and related diseases using cpg oligonucleotides |
IL139646A0 (en) * | 1998-05-14 | 2002-02-10 | Coley Pharm Group Inc | Methods for regulating hematopoiesis using cpg-oligonucleotides |
IL139307A0 (en) | 1998-05-19 | 2001-11-25 | Res Dev Foundation | Triterpene compositions and methods for use thereof |
KR19990086271A (en) * | 1998-05-27 | 1999-12-15 | 손경식 | Novel endonucleases of immune cells and immunoadjuvant using the same |
US6562798B1 (en) | 1998-06-05 | 2003-05-13 | Dynavax Technologies Corp. | Immunostimulatory oligonucleotides with modified bases and methods of use thereof |
US20040247662A1 (en) * | 1998-06-25 | 2004-12-09 | Dow Steven W. | Systemic immune activation method using nucleic acid-lipid complexes |
US6693086B1 (en) * | 1998-06-25 | 2004-02-17 | National Jewish Medical And Research Center | Systemic immune activation method using nucleic acid-lipid complexes |
AU764532B2 (en) * | 1998-07-27 | 2003-08-21 | University Of Iowa Research Foundation, The | Stereoisomers of CpG oligonucleotides and related methods |
EP1104306B1 (en) * | 1998-08-10 | 2006-01-11 | Antigenics Inc. | Compositions of cpg and saponin adjuvants and methods of use thereof |
EP1113818B1 (en) * | 1998-09-18 | 2006-05-17 | Dynavax Technologies Corporation | METHODS OF TREATING IgE-ASSOCIATED DISORDERS AND COMPOSITIONS FOR USE THEREIN |
EP1117433A1 (en) * | 1998-10-09 | 2001-07-25 | Dynavax Technologies Corporation | Anti hiv compositions comprising immunostimulatory polynucleotides and hiv antigens |
US6867289B1 (en) * | 1998-10-26 | 2005-03-15 | Board Of Regents, The University Of Texas Systems | Thio-modified aptamer synthetic methods and compositions |
AU770464B2 (en) * | 1998-12-22 | 2004-02-19 | Seer Pharmaceuticals, Llc | Treatment of skin lesions |
US6558951B1 (en) * | 1999-02-11 | 2003-05-06 | 3M Innovative Properties Company | Maturation of dendritic cells with immune response modifying compounds |
DE60020677T2 (en) | 1999-02-26 | 2006-05-04 | Chiron Corp., Emeryville | MICROEMULSIONS WITH ADSORBED MACROMOLECULES AND MICROPARTICLES |
JP4812942B2 (en) * | 1999-02-26 | 2011-11-09 | ノバルティス ヴァクシンズ アンド ダイアグノスティクス エスアールエル | Enhancement of Neisseria antigen bactericidal activity using oligonucleotides containing CG motif |
GB2348132B (en) * | 1999-03-02 | 2004-08-04 | Nedaa Abdul-Ghani Nasif | Asthma/allergy therapy that targets t-lymphocytes and/or eosinophils |
FR2790955B1 (en) * | 1999-03-19 | 2003-01-17 | Assist Publ Hopitaux De Paris | USE OF STABILIZED OLIGONUCLEOTIDES AS ANTI-TUMOR ACTIVE INGREDIENT |
US6977245B2 (en) | 1999-04-12 | 2005-12-20 | The United States Of America As Represented By The Department Of Health And Human Services | Oligodeoxynucleotide and its use to induce an immune response |
WO2000061151A2 (en) | 1999-04-12 | 2000-10-19 | The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Oligodeoxynucleotide and its use to induce an immune response |
WO2000062803A2 (en) * | 1999-04-15 | 2000-10-26 | Board Of Regents, The University Of Texas System | ppGpp AND pppGpp AS IMMUNOMODULATORY AGENTS |
US6558670B1 (en) | 1999-04-19 | 2003-05-06 | Smithkline Beechman Biologicals S.A. | Vaccine adjuvants |
GB9908885D0 (en) * | 1999-04-19 | 1999-06-16 | Smithkline Beecham Biolog | Vccine |
ES2228497T3 (en) * | 1999-04-19 | 2005-04-16 | Glaxosmithkline Biologicals S.A. | ADJUTIVE COMPOSITION INCLUDING SAPONINA AND AN IMMUNO STIMULANT OLIGONUCLEOTIDE. |
AU762857B2 (en) * | 1999-04-20 | 2003-07-10 | Smithkline Beecham Biologicals (Sa) | Vaccine |
WO2001000232A2 (en) * | 1999-06-29 | 2001-01-04 | Smithkline Beecham Biologicals S.A. | Use of cpg as an adjuvant for hiv vaccine |
US20050002958A1 (en) * | 1999-06-29 | 2005-01-06 | Smithkline Beecham Biologicals Sa | Vaccines |
US6514948B1 (en) | 1999-07-02 | 2003-02-04 | The Regents Of The University Of California | Method for enhancing an immune response |
FR2795963A1 (en) * | 1999-07-08 | 2001-01-12 | Pasteur Merieux Serums Vacc | New polynucleotides are useful as vaccines for humans |
DE19935756A1 (en) * | 1999-07-27 | 2001-02-08 | Mologen Forschungs Entwicklung | Covalently closed nucleic acid molecule for immune stimulation |
US20050226890A1 (en) * | 1999-08-12 | 2005-10-13 | Cohen David I | Tat-based vaccine compositions and methods of making and using same |
US6476000B1 (en) * | 1999-08-13 | 2002-11-05 | Hybridon, Inc. | Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides |
DE60041335D1 (en) * | 1999-08-19 | 2009-02-26 | Dynavax Tech Corp | METHOD FOR MODULATING AN IMMUNE RESPONSE WITH IMMUNOSTIMULATING SEQUENCES AND COMPOSITIONS THEREFOR |
DE60036950T2 (en) * | 1999-08-27 | 2008-08-07 | Inex Pharmaceuticals Corp., Burnaby | COMPOSITIONS FOR STIMULATING CYTOKIN SECRETION AND INDUCING AN IMMUNE RESPONSE |
US20050249794A1 (en) * | 1999-08-27 | 2005-11-10 | Semple Sean C | Compositions for stimulating cytokine secretion and inducing an immune response |
TR200503031T2 (en) * | 1999-09-25 | 2005-09-21 | University Of Iowa Research Foundation | Immunostimulatory nucleic acids |
AU783118B2 (en) * | 1999-09-27 | 2005-09-29 | Coley Pharmaceutical Gmbh | Methods related to immunostimulatory nucleic acid-induced interferon |
EP1688147A1 (en) * | 1999-09-27 | 2006-08-09 | Coley Pharmaceutical Group, Inc. | Methods Related to Immunostimulatory Nucleic Acid-Induced Interferon |
CN1796404A (en) | 1999-10-29 | 2006-07-05 | 启龙有限公司 | Neisserial antigenic peptides |
US7223398B1 (en) | 1999-11-15 | 2007-05-29 | Dynavax Technologies Corporation | Immunomodulatory compositions containing an immunostimulatory sequence linked to antigen and methods of use thereof |
EP1322655B1 (en) * | 2000-01-14 | 2007-11-14 | The Government of the United States of America, as represented by the Secretary of the Department of Health and Human Services | Oligodeoxynucleotide and its use to induce an immune response |
EP1311288A1 (en) * | 2000-01-20 | 2003-05-21 | Ottawa Health Research Institute | Immunostimulatory nucleic acids for inducing a th2 immune response |
US6552006B2 (en) | 2000-01-31 | 2003-04-22 | The Regents Of The University Of California | Immunomodulatory polynucleotides in treatment of an infection by an intracellular pathogen |
US20030130217A1 (en) * | 2000-02-23 | 2003-07-10 | Eyal Raz | Method for treating inflammatory bowel disease and other forms of gastrointestinal inflammation |
EP1259264A4 (en) * | 2000-02-23 | 2005-08-31 | Univ California | METHOD FOR THE TREATMENT OF INFLAMMATORY ENDURANCE AND OTHER FORMS OF GASTROINTESTINAL DEFICIENCY |
WO2001062092A1 (en) * | 2000-02-25 | 2001-08-30 | Thomas Jefferson University | Formulations and methods for using the same to elicit an immune response |
US20040131628A1 (en) * | 2000-03-08 | 2004-07-08 | Bratzler Robert L. | Nucleic acids for the treatment of disorders associated with microorganisms |
US20030129251A1 (en) | 2000-03-10 | 2003-07-10 | Gary Van Nest | Biodegradable immunomodulatory formulations and methods for use thereof |
US20020098199A1 (en) | 2000-03-10 | 2002-07-25 | Gary Van Nest | Methods of suppressing hepatitis virus infection using immunomodulatory polynucleotide sequences |
US20010046967A1 (en) | 2000-03-10 | 2001-11-29 | Gary Van Nest | Methods of preventing and treating respiratory viral infection using immunomodulatory polynucleotide |
US7129222B2 (en) * | 2000-03-10 | 2006-10-31 | Dynavax Technologies Corporation | Immunomodulatory formulations and methods for use thereof |
US7157437B2 (en) | 2000-03-10 | 2007-01-02 | Dynavax Technologies Corporation | Methods of ameliorating symptoms of herpes infection using immunomodulatory polynucleotide sequences |
EP1278550A4 (en) * | 2000-04-07 | 2004-05-12 | Univ California | SYNERGISTIC IMPROVEMENTS IN POLYNUCLEOTIDE VACCINES |
KR100875003B1 (en) * | 2000-05-01 | 2008-12-19 | 이데라 파마슈티칼즈, 인코포레이티드 | Modulation of Oligonucleotide CV Mediated Immune Stimulation by Site Modification of Nucleosides |
US6696064B2 (en) * | 2000-06-20 | 2004-02-24 | The United States Of America As Represented By The Department Of Health And Human Services | Methods of protecting vasculature from damage by diphtheria toxin-and pseudomonas toxin-based immunotoxins during therapy |
WO2001098206A1 (en) | 2000-06-22 | 2001-12-27 | Rxkinetix, Inc. | Delivery vehicle composition and methods for delivering antigens and other drugs |
DK1294892T3 (en) * | 2000-06-23 | 2008-01-28 | Wyeth Corp | Aggregation of wild-type and chimeric influenza virus-like particles (VLPs) |
WO2002002172A1 (en) * | 2000-06-30 | 2002-01-10 | Univ Jefferson | Dna palindrome - oligoguanylic acid compositions and uses thereof |
KR100917101B1 (en) * | 2000-08-04 | 2009-09-15 | 도요 보세키 가부시키가이샤 | Flexible metal laminate and production method thereof |
US20080044435A1 (en) * | 2004-03-16 | 2008-02-21 | Cohen David I | Tat-Based Tolerogen Compositions and Methods of Making and Using Same |
JP2005503320A (en) * | 2000-08-25 | 2005-02-03 | イエダ・リサーチ・アンド・デベロツプメント・カンパニー・リミテツド | Methods for treating or preventing autoimmune diseases with CpG-containing polynucleotides |
US7262286B2 (en) * | 2000-09-26 | 2007-08-28 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory activity of immunostimulatory oligonucleotide analogs by positional chemical changes |
EP2277896A1 (en) | 2000-10-27 | 2011-01-26 | Novartis Vaccines and Diagnostics S.r.l. | Nucleic acids and proteins from streptococcus groups A & B |
US6677347B2 (en) * | 2000-12-08 | 2004-01-13 | 3M Innovative Properties Company | Sulfonamido ether substituted imidazoquinolines |
EP1850850A4 (en) * | 2000-12-08 | 2011-06-15 | 3M Innovative Properties Co | Compositions and methods for targeted delivery of immune response modifiers |
ATE398175T1 (en) * | 2000-12-08 | 2008-07-15 | Coley Pharmaceuticals Gmbh | CPG-TYPE NUCLEIC ACIDS AND METHODS OF USE THEREOF |
EP1364010B1 (en) * | 2000-12-27 | 2010-06-16 | Dynavax Technologies Corporation | Immunomodulatory polynucleotides and methods of using the same |
JPWO2002055090A1 (en) * | 2001-01-12 | 2004-05-13 | 天藤製薬株式会社 | Microbial infection protective agent |
US7264810B2 (en) * | 2001-01-19 | 2007-09-04 | Cytos Biotechnology Ag | Molecular antigen array |
WO2002060476A2 (en) * | 2001-01-31 | 2002-08-08 | Mologen Forschungs-, Entwicklungs- Und Vertriebs Gmbh | Tumor vaccine |
US20030050268A1 (en) * | 2001-03-29 | 2003-03-13 | Krieg Arthur M. | Immunostimulatory nucleic acid for treatment of non-allergic inflammatory diseases |
US20070128229A1 (en) * | 2002-04-12 | 2007-06-07 | Wyeth | Surface proteins of Streptococcus pyogenes |
IL158328A0 (en) * | 2001-04-13 | 2004-05-12 | Wyeth Corp | Surface proteins of streptococcus pyogenes |
EP2277897A1 (en) | 2001-04-16 | 2011-01-26 | Wyeth Holdings Corporation | Streptococcus pneumoniae open reading frames encoding polypeptide antigens and uses thereof |
US7034140B2 (en) * | 2001-04-24 | 2006-04-25 | E.I. Du Pont De Nemours And Company | Genes involved in isoprenoid compound production |
AU2002320762B2 (en) | 2001-05-21 | 2006-09-21 | Intercell Ag | Immunostimulatory oligodeoxynucleic molecules |
US6818787B2 (en) * | 2001-06-11 | 2004-11-16 | Xenoport, Inc. | Prodrugs of GABA analogs, compositions and uses thereof |
GB0115176D0 (en) | 2001-06-20 | 2001-08-15 | Chiron Spa | Capular polysaccharide solubilisation and combination vaccines |
US7785610B2 (en) * | 2001-06-21 | 2010-08-31 | Dynavax Technologies Corporation | Chimeric immunomodulatory compounds and methods of using the same—III |
ES2421532T3 (en) * | 2001-06-21 | 2013-09-03 | Dynavax Tech Corp | Chimeric immunomodulatory compounds and methods of use thereof |
WO2003002065A2 (en) * | 2001-06-29 | 2003-01-09 | Chiron Corporation | Hcv e1e2 vaccine compositions |
GB0118249D0 (en) | 2001-07-26 | 2001-09-19 | Chiron Spa | Histidine vaccines |
GB0121591D0 (en) | 2001-09-06 | 2001-10-24 | Chiron Spa | Hybrid and tandem expression of neisserial proteins |
US7666674B2 (en) | 2001-07-27 | 2010-02-23 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Use of sterically stabilized cationic liposomes to efficiently deliver CPG oligonucleotides in vivo |
AU2002318944A1 (en) * | 2001-08-01 | 2003-02-17 | Coley Pharmaceutical Gmbh | Methods and compositions relating to plasmacytoid dendritic cells |
JP2005518343A (en) * | 2001-08-03 | 2005-06-23 | メダレックス, インク. | Novel PGC-1 isoforms and their use to improve use-mediated immunotherapy |
WO2003014316A2 (en) | 2001-08-07 | 2003-02-20 | Dynavax Technologies Corporation | Immunomodulatory compositions, formulations, and methods for use thereof |
AU2002361468A1 (en) * | 2001-08-14 | 2003-03-18 | The Government Of The United States Of America As Represented By The Secretary Of Health And Human S | Method for rapid generation of mature dendritic cells |
AU2002331720B2 (en) | 2001-08-24 | 2007-10-11 | Johns Hopkins University | Proaerolysin containing protease activation sequences and methods of use for treatment of prostate cancer |
EP1427445A4 (en) * | 2001-08-30 | 2006-09-06 | 3M Innovative Properties Co | METHOD FOR MATURIZING PLASMACYTIDES DENDRITIC CELLS USING IMMUNE RESPONSE MODIFYING MOLECULES |
IL160561A0 (en) * | 2001-09-07 | 2004-07-25 | Univ Boston | Method and composition for treating immune complex associated disorders |
JP4516748B2 (en) | 2001-09-14 | 2010-08-04 | サイトス バイオテクノロジー アーゲー | Packaging immunostimulatory substances in virus-like particles: preparation and use |
US20030091593A1 (en) * | 2001-09-14 | 2003-05-15 | Cytos Biotechnology Ag | In vivo activation of antigen presenting cells for enhancement of immune responses induced by virus like particles |
WO2003027313A2 (en) | 2001-09-24 | 2003-04-03 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | SUPPRESSORS OF CpG OLIGONUCLEOTIDES AND METHODS OF USE |
US20030119774A1 (en) * | 2001-09-25 | 2003-06-26 | Marianna Foldvari | Compositions and methods for stimulating an immune response |
AR045702A1 (en) | 2001-10-03 | 2005-11-09 | Chiron Corp | COMPOSITIONS OF ASSISTANTS. |
WO2003031573A2 (en) * | 2001-10-05 | 2003-04-17 | Coley Pharmaceutical Gmbh | Toll-like receptor 3 signaling agonists and antagonists |
KR20050048539A (en) * | 2001-10-06 | 2005-05-24 | 메리얼엘엘씨 | CpG formulations and related methods |
EP1455593B1 (en) | 2001-10-06 | 2013-07-24 | Merial Limited | Methods and compositions for promoting growth and innate immunity in young animals |
MX339524B (en) | 2001-10-11 | 2016-05-30 | Wyeth Corp | Novel immunogenic compositions for the prevention and treatment of meningococcal disease. |
US20030139364A1 (en) * | 2001-10-12 | 2003-07-24 | University Of Iowa Research Foundation | Methods and products for enhancing immune responses using imidazoquinoline compounds |
AU2002340662B2 (en) * | 2001-11-07 | 2008-07-03 | Tekmira Pharmaceuticals Corporation | Mucosal adjuvants comprising an oligonucleotide and a cationic lipid |
WO2003039591A2 (en) * | 2001-11-09 | 2003-05-15 | Medigene Aktiengesellschaft | Allogenic vaccine that contains a costimulatory polypeptide-expressing tumor cell |
US7179798B2 (en) * | 2001-11-16 | 2007-02-20 | Russell R. Roby | Methods and compositions for the treatment of pain and other hormone-allergy-related symptoms using dilute hormone solutions |
AU2002343728A1 (en) * | 2001-11-16 | 2003-06-10 | 3M Innovative Properties Company | Methods and compositions related to irm compounds and toll-like receptor pathways |
AU2002358616A1 (en) * | 2001-12-07 | 2003-06-17 | Intercell Ag | Immunostimulatory oligodeoxynucleotides |
US7615227B2 (en) * | 2001-12-20 | 2009-11-10 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Use of CpG oligodeoxynucleotides to induce angiogenesis |
CA2365732A1 (en) * | 2001-12-20 | 2003-06-20 | Ibm Canada Limited-Ibm Canada Limitee | Testing measurements |
US8466116B2 (en) | 2001-12-20 | 2013-06-18 | The Unites States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Use of CpG oligodeoxynucleotides to induce epithelial cell growth |
WO2003055514A1 (en) * | 2001-12-21 | 2003-07-10 | Antigenics Inc. | Compositions comprising immunoreactive reagents and saponins, and methods of use thereof |
EP1474432A1 (en) * | 2002-02-04 | 2004-11-10 | Biomira Inc. | Immunostimulatory, covalently lipidated oligonucleotides |
US8088388B2 (en) * | 2002-02-14 | 2012-01-03 | United Biomedical, Inc. | Stabilized synthetic immunogen delivery system |
JP4646516B2 (en) | 2002-02-20 | 2011-03-09 | ノバルティス バクシンズ アンド ダイアグノスティックス,インコーポレーテッド | Fine particles with adsorbed polypeptide-containing molecules |
CA2475595C (en) * | 2002-02-22 | 2012-07-10 | 3M Innovative Properties Company | Method of reducing and preventing uvb-induced immunosuppression |
US6923958B2 (en) * | 2002-03-02 | 2005-08-02 | The Scripps Research Institute | DNA vaccines encoding CEA and a CD40 ligand and methods of use thereof |
CA2479118A1 (en) * | 2002-03-15 | 2003-09-25 | Wyeth Holdings Corporation | Mutants of the p4 protein of nontypable haemophilus influenzae with reduced enzymatic activity |
EP2258712A3 (en) | 2002-03-15 | 2011-05-04 | Multicell Immunotherapeutics, Inc. | Compositions and Methods to Initiate or Enhance Antibody and Major-histocompatibility Class I or Class II-restricted T Cell Responses by Using Immunomodulatory, Non-coding RNA Motifs |
EP1485403A4 (en) * | 2002-03-15 | 2007-08-08 | Multicell Immunotherapeutics I | COMPOSITIONS AND METHODS FOR INITIATING OR IMPROVING T-CELL RESPONSES LIMITED BY THE MAJOR CLAY I OR II HISTOCOMPATIBILITY COMPLEX AND ANTIBODY USING IMMUNOMODULATORY NON-CODING RNA PATTERNS |
US20030224013A1 (en) * | 2002-04-19 | 2003-12-04 | Cole Garry T. | Methods for protection against Coccidioides spp. infection using Coccidioides spp. urea amidohydrolase (Ure) protein |
US20040009943A1 (en) * | 2002-05-10 | 2004-01-15 | Inex Pharmaceuticals Corporation | Pathogen vaccines and methods for using the same |
US20040013649A1 (en) * | 2002-05-10 | 2004-01-22 | Inex Pharmaceuticals Corporation | Cancer vaccines and methods of using the same |
US20040009944A1 (en) * | 2002-05-10 | 2004-01-15 | Inex Pharmaceuticals Corporation | Methylated immunostimulatory oligonucleotides and methods of using the same |
WO2004042001A2 (en) * | 2002-05-17 | 2004-05-21 | Emory University | Virus-like particles, methods of preparation, and immonogenic compositions |
US9045727B2 (en) | 2002-05-17 | 2015-06-02 | Emory University | Virus-like particles, methods of preparation, and immunogenic compositions |
KR100456681B1 (en) * | 2002-05-22 | 2004-11-10 | 주식회사 대웅 | Immnune-stimulating and controlling Composition comprising bacterial chromosomal DNA fragments and detoxified lipopolysaccharides |
CA2388049A1 (en) * | 2002-05-30 | 2003-11-30 | Immunotech S.A. | Immunostimulatory oligonucleotides and uses thereof |
AU2003243409A1 (en) * | 2002-06-05 | 2003-12-22 | Coley Pharmaceutical Group, Inc. | Method for treating autoimmune or inflammatory diseases with combinations of inhibitory oligonucleotides and small molecule antagonists of immunostimulatory cpg nucleic acids |
PL375306A1 (en) * | 2002-06-20 | 2005-11-28 | Cytos Biotechnology Ag | Packaged virus-like particles for use as adjuvants: method of preparation and use |
CA2494508A1 (en) * | 2002-07-03 | 2004-01-15 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
AU2003255969A1 (en) * | 2002-07-17 | 2004-02-02 | Coley Pharmaceutical Gmbh | Use of cpg nucleic acids in prion-disease |
US20060270620A1 (en) * | 2002-07-23 | 2006-11-30 | University Of South Florida | Method of Enhancing Therapeutic Effect of Nucleic Acids |
CA2484941A1 (en) | 2002-07-24 | 2004-02-05 | Intercell Ag | Antigens encoded by alternative reading frame from pathogenic viruses |
AU2003263963A1 (en) | 2002-08-01 | 2004-02-23 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of | Method of treating inflammatory arthropathies with suppressors of cpg oligonucleotides |
EP1545597B1 (en) | 2002-08-15 | 2010-11-17 | 3M Innovative Properties Company | Immunostimulatory compositions and methods of stimulating an immune response |
US7785608B2 (en) * | 2002-08-30 | 2010-08-31 | Wyeth Holdings Corporation | Immunogenic compositions for the prevention and treatment of meningococcal disease |
GB0220194D0 (en) | 2002-08-30 | 2002-10-09 | Chiron Spa | Improved vesicles |
US7595303B1 (en) * | 2002-09-05 | 2009-09-29 | University Of South Florida | Genetic adjuvants for immunotherapy |
US20050196382A1 (en) * | 2002-09-13 | 2005-09-08 | Replicor, Inc. | Antiviral oligonucleotides targeting viral families |
EP1537208A1 (en) * | 2002-09-13 | 2005-06-08 | Replicor, Inc. | Non-sequence complementary antiviral oligonucleotides |
JP2006504687A (en) | 2002-09-13 | 2006-02-09 | インターツェル・アクチェンゲゼルシャフト | Method for isolating hepatitis C virus peptide |
US8263091B2 (en) * | 2002-09-18 | 2012-09-11 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Method of treating and preventing infections in immunocompromised subjects with immunostimulatory CpG oligonucleotides |
US7301554B2 (en) * | 2002-09-20 | 2007-11-27 | Ricoh Company, Ltd. | Light scanning device, scanning line adjusting method, scanning line adjusting control method, image forming apparatus, and image forming method |
AU2003268737A1 (en) * | 2002-10-02 | 2004-04-23 | Mochida Pharmaceutical Co., Ltd. | Novel method of constructing monoclonal antibody |
US8043622B2 (en) | 2002-10-08 | 2011-10-25 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Method of treating inflammatory lung disease with suppressors of CpG oligonucleotides |
US8663656B2 (en) | 2002-10-11 | 2014-03-04 | Novartis Ag | Polypeptide-vaccines for broad protection against hypervirulent meningococcal lineages |
CA2503457A1 (en) * | 2002-10-25 | 2004-05-06 | University Of Connecticut Health Center | Apparatus and method for immunotherapy of a cancer through controlled cell lysis |
JP4976653B2 (en) * | 2002-11-01 | 2012-07-18 | ザ ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ アズ リプレゼンティッド バイ ザ セクレタリー オブ ザ デパートメント オブ ヘルス アンド ヒューマン サービシス | Method for preventing infections caused by bioterrorism pathogens using immunostimulatory CpG oligonucleotides |
EP1560840B1 (en) * | 2002-11-05 | 2015-05-06 | Isis Pharmaceuticals, Inc. | Compositions comprising alternating 2'-modified nucleosides for use in gene modulation |
ATE466875T1 (en) | 2002-11-15 | 2010-05-15 | Novartis Vaccines & Diagnostic | UNEXPECTED SURFACE PROTEINS IN NEISSERIA MENINGITIDIS |
US10100316B2 (en) * | 2002-11-21 | 2018-10-16 | Archemix Llc | Aptamers comprising CPG motifs |
US20050124565A1 (en) * | 2002-11-21 | 2005-06-09 | Diener John L. | Stabilized aptamers to platelet derived growth factor and their use as oncology therapeutics |
ES2350576T3 (en) * | 2002-11-21 | 2011-01-25 | Bayhill Therapeutics, Inc. | METHODS AND COMPOSITIONS OF IMMUNOMODULATING NUCLEIC ACIDS TO PREVENT AND TREAT DISEASES. |
US8039443B2 (en) * | 2002-11-21 | 2011-10-18 | Archemix Corporation | Stabilized aptamers to platelet derived growth factor and their use as oncology therapeutics |
US8853376B2 (en) | 2002-11-21 | 2014-10-07 | Archemix Llc | Stabilized aptamers to platelet derived growth factor and their use as oncology therapeutics |
GB0227346D0 (en) | 2002-11-22 | 2002-12-31 | Chiron Spa | 741 |
WO2004053452A2 (en) * | 2002-12-11 | 2004-06-24 | 3M Innovative Properties Company | Assays relating to toll-like receptor activity |
US20040213808A1 (en) * | 2002-12-11 | 2004-10-28 | Michael Lieberman | Recombinant vaccine against flavivirus infection |
WO2004053057A2 (en) * | 2002-12-11 | 2004-06-24 | 3M Innovative Properties Company | Gene expression systems and recombinant cell lines |
US8158768B2 (en) | 2002-12-23 | 2012-04-17 | Dynavax Technologies Corporation | Immunostimulatory sequence oligonucleotides and methods of using the same |
JP2006516099A (en) * | 2002-12-23 | 2006-06-22 | ダイナバックス テクノロジーズ コーポレイション | Branched immunomodulatory compounds and methods of using the compounds |
ES2381309T3 (en) * | 2002-12-23 | 2012-05-25 | Dynavax Technologies Corporation | Sequence of immunostimulatory oligonucleotides and methods for using them |
AU2003299994A1 (en) | 2002-12-27 | 2004-07-29 | Chiron Corporation | Immunogenic compositions containing phospholpid |
CA2511538C (en) * | 2002-12-30 | 2013-11-26 | 3M Innovative Properties Company | Immunostimulatory combinations |
CA3042073C (en) | 2003-01-30 | 2022-09-13 | Novartis Vaccines And Diagnostics S.R.L. | Injectable vaccines against multiple meningococcal serogroups |
JP2006517974A (en) * | 2003-02-13 | 2006-08-03 | スリーエム イノベイティブ プロパティズ カンパニー | Methods and compositions for IRM compounds and Toll-like receptor 8 |
WO2004074454A2 (en) | 2003-02-20 | 2004-09-02 | University Of Connecticut Health Center | Methods and compositions for the treatment of cancer and infectious disease using alpha (2) macroglobulin-antigenic molecule complexes |
GB2398783A (en) | 2003-02-26 | 2004-09-01 | Antonio Lanzavecchia | A method for producing immortalised human B memory lymphocytes |
EP1599726A4 (en) * | 2003-02-27 | 2009-07-22 | 3M Innovative Properties Co | Selective modulation of tlr-mediated biological activity |
WO2004078138A2 (en) | 2003-03-04 | 2004-09-16 | 3M Innovative Properties Company | Prophylactic treatment of uv-induced epidermal neoplasia |
CN100439386C (en) * | 2003-03-05 | 2008-12-03 | 长春华普生物技术有限公司 | Deoxyoligonucleotide containing CpG single strand for strengthening immunological effect of Protein vaccine |
US7179253B2 (en) | 2003-03-13 | 2007-02-20 | 3M Innovative Properties Company | Method of tattoo removal |
BRPI0408476A (en) * | 2003-03-13 | 2006-04-04 | 3M Innovative Properties Co | methods to improve skin quality |
WO2004084938A1 (en) | 2003-03-24 | 2004-10-07 | Intercell Ag | Improved vaccines |
US20040192585A1 (en) * | 2003-03-25 | 2004-09-30 | 3M Innovative Properties Company | Treatment for basal cell carcinoma |
AU2004224762B2 (en) | 2003-03-26 | 2009-12-24 | Kuros Us Llc | Packaging of immunostimulatory oligonucleotides into virus-like particles: method of preparation and use |
US20060210588A1 (en) * | 2003-03-26 | 2006-09-21 | Cytos Biotechnology Ag | Hiv-peptide-carrier-conjugates |
US7537767B2 (en) | 2003-03-26 | 2009-05-26 | Cytis Biotechnology Ag | Melan-A- carrier conjugates |
CN1795274A (en) * | 2003-03-26 | 2006-06-28 | 多单元免疫治疗公司 | Selected rna motifs to include cell death and/or apoptosis |
WO2004087203A2 (en) * | 2003-04-02 | 2004-10-14 | Coley Pharmaceutical Group, Ltd. | Immunostimulatory nucleic acid oil-in-water formulations for topical application |
CA2522379C (en) | 2003-04-10 | 2012-10-23 | Chiron Corporation | The severe acute respiratory syndrome coronavirus |
US20040265351A1 (en) * | 2003-04-10 | 2004-12-30 | Miller Richard L. | Methods and compositions for enhancing immune response |
JP2007500210A (en) * | 2003-04-10 | 2007-01-11 | スリーエム イノベイティブ プロパティズ カンパニー | Delivery of immune response modifier compounds using metal-containing particulate carrier materials |
WO2004094614A2 (en) | 2003-04-21 | 2004-11-04 | Archemix Corp. | Stabilized aptamers to platelet derived growth factor and their use as oncology therapeutics |
US7871984B2 (en) * | 2003-04-23 | 2011-01-18 | Yukio Sato | Methylated CpG polynucleotide |
US20050250106A1 (en) * | 2003-04-24 | 2005-11-10 | David Epstein | Gene knock-down by intracellular expression of aptamers |
CA2523266A1 (en) * | 2003-04-25 | 2004-11-11 | Chiron Corporation | Compositions comprising cationic microparticles and hcv e1e2 dna and methods of use thereof |
US20040214851A1 (en) * | 2003-04-28 | 2004-10-28 | 3M Innovative Properties Company | Compositions and methods for induction of opioid receptors |
KR100872472B1 (en) * | 2003-05-15 | 2008-12-05 | 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 | Immunostimulant |
US8080642B2 (en) | 2003-05-16 | 2011-12-20 | Vical Incorporated | Severe acute respiratory syndrome DNA compositions and methods of use |
JP5557415B2 (en) | 2003-06-02 | 2014-07-23 | ノバルティス バクシンズ アンド ダイアグノスティックス,インコーポレーテッド | Immunogenic compositions based on microparticles containing adsorbed toxoid and polysaccharide-containing antigens |
AU2004252091B2 (en) | 2003-06-05 | 2010-06-10 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Poly-gamma-glutamic conjugates for eliciting immune responses directed against bacilli |
US8008267B2 (en) * | 2003-06-11 | 2011-08-30 | Idera Pharmaceuticals, Inc. | Stabilized immunomodulatory oligonucleotides |
US20060251623A1 (en) * | 2003-07-10 | 2006-11-09 | Caytos Biotechnology Ag | Packaged virus-like particles |
US20050013812A1 (en) * | 2003-07-14 | 2005-01-20 | Dow Steven W. | Vaccines using pattern recognition receptor-ligand:lipid complexes |
CA2533128A1 (en) * | 2003-07-31 | 2005-02-10 | 3M Innovative Properties Company | Bioactive compositions comprising triazines |
WO2005016273A2 (en) * | 2003-08-05 | 2005-02-24 | 3M Innovative Properties Company | Infection prophylaxis using immune response modifier compounds |
CA2535117A1 (en) * | 2003-08-12 | 2005-03-03 | 3M Innovative Properties Company | Oxime substituted imidazo-containing compounds |
US20060035242A1 (en) | 2004-08-13 | 2006-02-16 | Michelitsch Melissa D | Prion-specific peptide reagents |
US20050065136A1 (en) * | 2003-08-13 | 2005-03-24 | Roby Russell R. | Methods and compositions for the treatment of infertility using dilute hormone solutions |
US8071652B2 (en) * | 2003-08-21 | 2011-12-06 | The Board Of Regents Of The University Of Texas System | Method of treating irritable bowel syndrome |
EP1658035A4 (en) * | 2003-08-25 | 2007-08-22 | 3M Innovative Properties Co | Delivery of immune response modifier compounds |
AU2004266162A1 (en) * | 2003-08-25 | 2005-03-03 | 3M Innovative Properties Company | Immunostimulatory combinations and treatments |
NZ545412A (en) * | 2003-08-27 | 2008-12-24 | Coley Pharm Group Inc | Aryloxy and arylalkyleneoxy substituted imidazoquinolines |
US20060216333A1 (en) * | 2003-09-02 | 2006-09-28 | Miller Richard L | Methods related to the treatment of mucosal associated conditions |
JP2007504269A (en) * | 2003-09-05 | 2007-03-01 | スリーエム イノベイティブ プロパティズ カンパニー | Method for treating CD5 + B cell lymphoma |
US8541002B2 (en) | 2003-09-12 | 2013-09-24 | Agenus Inc. | Vaccine for treatment and prevention of herpes simplex virus infection |
AU2004275876B2 (en) * | 2003-09-25 | 2011-03-31 | Coley Pharmaceutical Gmbh | Nucleic acid-lipophilic conjugates |
EP1670506B1 (en) | 2003-10-02 | 2012-11-21 | Novartis AG | Liquid vaccines for multiple meningococcal serogroups |
GB0323103D0 (en) | 2003-10-02 | 2003-11-05 | Chiron Srl | De-acetylated saccharides |
US20090075980A1 (en) * | 2003-10-03 | 2009-03-19 | Coley Pharmaceutical Group, Inc. | Pyrazolopyridines and Analogs Thereof |
US7544697B2 (en) * | 2003-10-03 | 2009-06-09 | Coley Pharmaceutical Group, Inc. | Pyrazolopyridines and analogs thereof |
NZ546273A (en) * | 2003-10-03 | 2009-05-31 | Coley Pharm Group Inc | Alkoxy substituted imidazoquinolines |
CA2542099A1 (en) * | 2003-10-11 | 2005-04-21 | Inex Pharmaceuticals Corporation | Methods and compositions for enhancing innate immunity and antibody dependent cellular cytotoxicity |
GB0323965D0 (en) * | 2003-10-13 | 2003-11-19 | Glaxosmithkline Biolog Sa | Immunogenic compositions |
CA2543685A1 (en) * | 2003-10-31 | 2005-05-12 | 3M Innovative Properties Company | Neutrophil activation by immune response modifier compounds |
US20050239733A1 (en) * | 2003-10-31 | 2005-10-27 | Coley Pharmaceutical Gmbh | Sequence requirements for inhibitory oligonucleotides |
US20050100983A1 (en) * | 2003-11-06 | 2005-05-12 | Coley Pharmaceutical Gmbh | Cell-free methods for identifying compounds that affect toll-like receptor 9 (TLR9) signaling |
WO2005048933A2 (en) | 2003-11-14 | 2005-06-02 | 3M Innovative Properties Company | Oxime substituted imidazo ring compounds |
US8598192B2 (en) * | 2003-11-14 | 2013-12-03 | 3M Innovative Properties Company | Hydroxylamine substituted imidazoquinolines |
AU2004293078B2 (en) * | 2003-11-25 | 2012-01-19 | 3M Innovative Properties Company | Substituted imidazo ring systems and methods |
US20050287118A1 (en) * | 2003-11-26 | 2005-12-29 | Epitomics, Inc. | Bacterial plasmid with immunological adjuvant function and uses thereof |
US20050277127A1 (en) * | 2003-11-26 | 2005-12-15 | Epitomics, Inc. | High-throughput method of DNA immunogen preparation and immunization |
EP1689361A4 (en) * | 2003-12-02 | 2009-06-17 | 3M Innovative Properties Co | Therapeutic combinations and methods including irm compounds |
US20050226878A1 (en) * | 2003-12-02 | 2005-10-13 | 3M Innovative Properties Company | Therapeutic combinations and methods including IRM compounds |
US9090673B2 (en) | 2003-12-12 | 2015-07-28 | City Of Hope | Synthetic conjugate of CpG DNA and T-help/CTL peptide |
WO2005058940A2 (en) | 2003-12-17 | 2005-06-30 | Wyeth | Immunogenic peptide carrier conjugates and methods of producing same |
CA2549552A1 (en) | 2003-12-17 | 2005-06-30 | Elan Pharmaceuticals, Inc. | A.beta. immunogenic peptide carrier conjugates and methods of producing same |
JP4817599B2 (en) * | 2003-12-25 | 2011-11-16 | 独立行政法人科学技術振興機構 | Immune activity enhancer and method for enhancing immune activity using the same |
EP1701955A1 (en) * | 2003-12-29 | 2006-09-20 | 3M Innovative Properties Company | Arylalkenyl and arylalkynyl substituted imidazoquinolines |
EP1699398A4 (en) * | 2003-12-30 | 2007-10-17 | 3M Innovative Properties Co | Enhancement of immune responses |
EP1699788A2 (en) * | 2003-12-30 | 2006-09-13 | 3M Innovative Properties Company | Imidazoquinolinyl, imidazopyridinyl and imidazonaphthyridinyl sulfonamides |
KR100558851B1 (en) * | 2004-01-08 | 2006-03-10 | 학교법인연세대학교 | CJ oligodeoxynucleotide variants with increased immunomodulatory capacity |
WO2005072290A2 (en) * | 2004-01-23 | 2005-08-11 | Joslin Diabetes Center | Methods of treating, reducing, or preventing autoimmune conditions |
US20050181035A1 (en) * | 2004-02-17 | 2005-08-18 | Dow Steven W. | Systemic immune activation method using non CpG nucleic acids |
TW200533750A (en) | 2004-02-19 | 2005-10-16 | Coley Pharm Group Inc | Immunostimulatory viral RNA oligonucleotides |
CN1918293A (en) * | 2004-02-20 | 2007-02-21 | 莫洛根股份公司 | Substituted non-coding nucleic acid molecule for therapeutic or prophylaxis immunological stimulus for human and higher animal |
US20060193821A1 (en) * | 2004-03-05 | 2006-08-31 | Diener John L | Aptamers to the human IL-12 cytokine family and their use as autoimmune disease therapeutics |
WO2005107797A1 (en) | 2004-03-09 | 2005-11-17 | Chiron Corporation | Influenza virus vaccines |
US8569474B2 (en) | 2004-03-09 | 2013-10-29 | Isis Pharmaceuticals, Inc. | Double stranded constructs comprising one or more short strands hybridized to a longer strand |
WO2005090968A1 (en) * | 2004-03-16 | 2005-09-29 | Inist Inc. | Tat-based immunomodulatory compositions and methods of their discovery and use |
WO2005092360A1 (en) | 2004-03-19 | 2005-10-06 | Xiu-Min Li | Herbal therapy for the treatment of food allergy |
AU2005228150A1 (en) * | 2004-03-24 | 2005-10-13 | 3M Innovative Properties Company | Amide substituted imidazopyridines, imidazoquinolines, and imidazonaphthyridines |
TWI235440B (en) * | 2004-03-31 | 2005-07-01 | Advanced Semiconductor Eng | Method for making leadless semiconductor package |
WO2005111057A2 (en) * | 2004-04-02 | 2005-11-24 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids for inducing il-10 responses |
US20050260755A1 (en) * | 2004-04-06 | 2005-11-24 | Isis Pharmaceuticals, Inc. | Sequential delivery of oligomeric compounds |
US20050239758A1 (en) * | 2004-04-21 | 2005-10-27 | Roby Russell R | Hormone treatment of multiple sclerosis |
WO2005105106A2 (en) * | 2004-04-21 | 2005-11-10 | Roby Russell R | Hormone treatment of macular degeneration |
US7579450B2 (en) * | 2004-04-26 | 2009-08-25 | Archemix Corp. | Nucleic acid ligands specific to immunoglobulin E and their use as atopic disease therapeutics |
CA2564855A1 (en) * | 2004-04-28 | 2005-10-28 | 3M Innovative Properties Company | Compositions and methods for mucosal vaccination |
DK1740217T3 (en) | 2004-04-30 | 2011-09-26 | Novartis Ag | Meningococcal conjugate vaccination |
GB0409745D0 (en) | 2004-04-30 | 2004-06-09 | Chiron Srl | Compositions including unconjugated carrier proteins |
GB0500787D0 (en) | 2005-01-14 | 2005-02-23 | Chiron Srl | Integration of meningococcal conjugate vaccination |
US8895521B2 (en) * | 2004-05-06 | 2014-11-25 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Methods and compositions for the treatment of uveitis |
GB0410220D0 (en) | 2004-05-07 | 2004-06-09 | Kirkham Lea Ann | Mutant pneumolysin proteins |
GB0410866D0 (en) | 2004-05-14 | 2004-06-16 | Chiron Srl | Haemophilius influenzae |
CN1296378C (en) * | 2004-05-17 | 2007-01-24 | 中国人民解放军第三军医大学 | CpG-N ODN gene sequence with high immunological activity CpG-S ODN and antagonism CpG-N ODN and use thereof |
JP5331340B2 (en) | 2004-05-18 | 2013-10-30 | バイカル インコーポレイテッド | Influenza virus vaccine composition and method of use thereof |
JP4896021B2 (en) | 2004-05-21 | 2012-03-14 | ノバルティス ヴァクシンズ アンド ダイアグノスティクス, インコーポレイテッド | Alphavirus vector for respiratory pathogen vaccine |
BRPI0511429A (en) | 2004-05-21 | 2007-12-11 | Wyeth Corp | isolated fibronectin binding protein (fnb), altered from staphylococcal aureus (s. aureus); fnb isolated, altered; immunogenic composition; method for immunizing a vertebrate against s. aureus; expression vector; recombinant host cell; method for producing an altered fnb; method for inducing an immune response in a vertebrate; isolated, altered fibronectin binding protein (fnb) from staphylococcal aureus (s. aureus); and isolated nucleic acid molecule encoding an altered fnb of s. aureus |
US20050267145A1 (en) * | 2004-05-28 | 2005-12-01 | Merrill Bryon A | Treatment for lung cancer |
DK1765310T3 (en) | 2004-05-28 | 2016-01-11 | Oryxe | MIXING for transdermal delivery of LAV AND HØJMOLEKYLVÆGTFORBINDELSER |
US8394947B2 (en) | 2004-06-03 | 2013-03-12 | Isis Pharmaceuticals, Inc. | Positionally modified siRNA constructs |
AU2005252663B2 (en) * | 2004-06-03 | 2011-07-07 | Isis Pharmaceuticals, Inc. | Double strand compositions comprising differentially modified strands for use in gene modulation |
AU2005326144A1 (en) * | 2004-06-08 | 2006-08-03 | Coley Pharmaceutical Gmbh | Abasic oligonucleotide as carrier platform for antigen and immunostimulatory agonist and antagonist |
US8017779B2 (en) * | 2004-06-15 | 2011-09-13 | 3M Innovative Properties Company | Nitrogen containing heterocyclyl substituted imidazoquinolines and imidazonaphthyridines |
TW200613554A (en) | 2004-06-17 | 2006-05-01 | Wyeth Corp | Plasmid having three complete transcriptional units and immunogenic compositions for inducing an immune response to HIV |
US7915281B2 (en) * | 2004-06-18 | 2011-03-29 | 3M Innovative Properties Company | Isoxazole, dihydroisoxazole, and oxadiazole substituted imidazo ring compounds and method |
WO2006009832A1 (en) * | 2004-06-18 | 2006-01-26 | 3M Innovative Properties Company | Substituted imidazo ring systems and methods |
US8026366B2 (en) * | 2004-06-18 | 2011-09-27 | 3M Innovative Properties Company | Aryloxy and arylalkyleneoxy substituted thiazoloquinolines and thiazolonaphthyridines |
WO2006038923A2 (en) * | 2004-06-18 | 2006-04-13 | 3M Innovative Properties Company | Aryl substituted imidazonaphthyridines |
US7482158B2 (en) * | 2004-07-01 | 2009-01-27 | Mathison Brian H | Composite polynucleic acid therapeutics |
KR100958505B1 (en) | 2004-07-18 | 2010-05-17 | 씨에스엘 리미티드 | Oligonucleotide Preparations to Induce Immunostimulatory Complexes and Enhanced Interferon-gamma Responses |
US20060025390A1 (en) * | 2004-07-28 | 2006-02-02 | Roby Russell R | Treatment of hormone allergy and related symptoms and disorders |
JP2008508320A (en) | 2004-07-29 | 2008-03-21 | カイロン コーポレイション | Immunogenic composition against gram positive bacteria such as STREPTOCOCCUSAGALACTIAE |
AU2005270918B2 (en) | 2004-08-03 | 2011-03-03 | Innate Pharma S.A. | Therapeutic and diagnostic methods and compositions targeting 4Ig-B7-H3 and its counterpart NK cell receptor |
WO2006026470A2 (en) * | 2004-08-27 | 2006-03-09 | 3M Innovative Properties Company | Hiv immunostimulatory compositions |
WO2006026760A2 (en) * | 2004-09-02 | 2006-03-09 | 3M Innovative Properties Company | 1-amino imidazo-containing compounds and methods |
US7884086B2 (en) * | 2004-09-08 | 2011-02-08 | Isis Pharmaceuticals, Inc. | Conjugates for use in hepatocyte free uptake assays |
ATE465173T1 (en) | 2004-09-24 | 2010-05-15 | Intercell Ag | ALTERED VP-1CAPSID PROTEIN FROM PARVOVIRUS B19 |
JP2008000001A (en) * | 2004-09-30 | 2008-01-10 | Osaka Univ | Immunostimulatory oligonucleotide and its pharmaceutical use |
KR101346989B1 (en) | 2004-10-06 | 2014-02-06 | 메디뮨 엘엘씨 | Refrigerator-temperature stable influenza vaccine compositions |
US20070243215A1 (en) * | 2004-10-08 | 2007-10-18 | Miller Richard L | Adjuvant for Dna Vaccines |
CA2587084C (en) | 2004-10-08 | 2019-07-16 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention | Modulation of replicative fitness by using less frequently used synonym ous codons |
EP2298341A3 (en) | 2004-10-21 | 2011-07-13 | Wyeth LLC | Immunogenic compositions of staphylococcus epidermidis polypeptide and polynucleotide antigens |
GB0424092D0 (en) | 2004-10-29 | 2004-12-01 | Chiron Srl | Immunogenic bacterial vesicles with outer membrane proteins |
EP2436391A3 (en) | 2004-11-02 | 2012-07-04 | Archemix LLC | Stabilized aptamers to platelet derived growth factor and their use as oncology therapeutics |
WO2006065549A2 (en) | 2004-12-03 | 2006-06-22 | Medical University Of Ohio | Attenuated vaccine useful for immunizations against coccidioides spp. infections |
WO2006063072A2 (en) * | 2004-12-08 | 2006-06-15 | 3M Innovative Properties Company | Immunomodulatory compositions, combinations and methods |
US9809824B2 (en) * | 2004-12-13 | 2017-11-07 | The United States Of America, Represented By The Secretary, Department Of Health And Human Services | CpG oligonucleotide prodrugs, compositions thereof and associated therapeutic methods |
US8197817B2 (en) | 2004-12-17 | 2012-06-12 | Dana-Farber Cancer Institute, Inc. | Regulation of mink in thymocytes and T lymphocytes |
EP2351577A1 (en) * | 2004-12-29 | 2011-08-03 | Mannkind Corporation | Methods to trigger, maintain and manipulate immune responses by targeted administration of biological response modifiers into lymphoid organs |
EP1830876B1 (en) * | 2004-12-30 | 2015-04-08 | Meda AB | Use of imiquimod for the treatment of cutaneous metastases derived from a breast cancer tumor |
US7943609B2 (en) * | 2004-12-30 | 2011-05-17 | 3M Innovative Proprerties Company | Chiral fused [1,2]imidazo[4,5-C] ring compounds |
AU2005326708C1 (en) | 2004-12-30 | 2012-08-30 | 3M Innovative Properties Company | Substituted chiral fused [1,2]imidazo[4,5-c] ring compounds |
US9034345B2 (en) | 2005-01-27 | 2015-05-19 | Children's Hospital & Research Center Oakland | GNA1870-based vesicle vaccines for broad spectrum protection against diseases caused by Neisseria meningitidis |
EP1841777B1 (en) * | 2005-01-28 | 2015-09-30 | Kwon, Hyung-Joo | Oligonucleotides derived from mycobacterium for stimulating immune function, treating immune-related diseases, atopic dermatitis and/or protecting normal immune cell |
GB0502095D0 (en) | 2005-02-01 | 2005-03-09 | Chiron Srl | Conjugation of streptococcal capsular saccharides |
US9248127B2 (en) * | 2005-02-04 | 2016-02-02 | 3M Innovative Properties Company | Aqueous gel formulations containing immune response modifiers |
JP2008530113A (en) | 2005-02-11 | 2008-08-07 | コーリー ファーマシューティカル グループ,インコーポレイテッド | Oxime and hydroxyramine substituted imidazo [4,5-c] ring compounds and methods |
CA2598488A1 (en) | 2005-02-18 | 2006-08-31 | Novartis Vaccines And Diagnostics, Inc. | Immunogens from uropathogenic escherichia coli |
ES2595363T3 (en) | 2005-02-18 | 2016-12-29 | J. Craig Venter Institute, Inc. | Sepsis associated with meningitis proteins and nucleic acids / Escherichia coli |
JP2008531018A (en) * | 2005-02-24 | 2008-08-14 | コーリー ファーマシューティカル グループ,インコーポレイテッド | Immunostimulatory oligonucleotide |
NZ561144A (en) * | 2005-03-04 | 2009-09-25 | Dynavax Tech Corp | Vaccines comprising oligonucleotides having immunostimulatory sequences (ISS) wherein the ISS are conjugated to antigens and stabilized by buffer conditions and further excipients |
US8101345B1 (en) | 2005-03-25 | 2012-01-24 | Isis Pharmaceuticals, Inc. | Proinflammatory nucleic acids |
EP1869043A2 (en) | 2005-04-01 | 2007-12-26 | Coley Pharmaceutical Group, Inc. | Pyrazolopyridine-1,4-diamines and analogs thereof |
JP2008538550A (en) | 2005-04-01 | 2008-10-30 | コーリー ファーマシューティカル グループ,インコーポレイテッド | 1-Substituted pyrazolo (3,4-c) cyclic compounds as modulators of cytokine biosynthesis for treating viral infections and neoplastic diseases |
TWI386222B (en) | 2005-04-08 | 2013-02-21 | Wyeth Corp | Multivalent pneumococcal polysaccharide-protein conjugate composition |
US7709001B2 (en) | 2005-04-08 | 2010-05-04 | Wyeth Llc | Multivalent pneumococcal polysaccharide-protein conjugate composition |
WO2006110655A2 (en) | 2005-04-08 | 2006-10-19 | Chimerix, Inc. | Compounds, compositions and methods for the treatment of poxvirus infections |
BRPI0610449A2 (en) * | 2005-04-08 | 2012-01-10 | Coley Pharm Group Inc | Methods to Treat Asthma Exacerbated by Infectious Disease |
US20070003608A1 (en) * | 2005-04-08 | 2007-01-04 | Almond Merrick R | Compounds, compositions and methods for the treatment of viral infections and other medical disorders |
EP1868651A4 (en) | 2005-04-12 | 2010-10-06 | Univ Duke | METHOD FOR INDUCING ANTIBODIES THAT NEUTRALIZE THE HUMAN IMMUNODEFICIENCY VIRUS |
BRPI0610297A2 (en) | 2005-04-18 | 2010-06-08 | Novartis Vaccines & Diagnostic | Hepatitis B virus surface antigen expression for vaccine preparation |
JP2008539252A (en) * | 2005-04-25 | 2008-11-13 | スリーエム イノベイティブ プロパティズ カンパニー | Immune activation composition |
US20060241076A1 (en) * | 2005-04-26 | 2006-10-26 | Coley Pharmaceutical Gmbh | Modified oligoribonucleotide analogs with enhanced immunostimulatory activity |
CN101238145B (en) | 2005-06-14 | 2013-04-24 | 普罗陶克斯有限公司 | Use of modified pore-forming proteins in preparing medicine for treating or preventing benign prostatic hyperplasia |
US8101385B2 (en) | 2005-06-30 | 2012-01-24 | Archemix Corp. | Materials and methods for the generation of transcripts comprising modified nucleotides |
RU2008103346A (en) | 2005-06-30 | 2009-08-10 | Аркемикс Корп. (Us) | MATERIALS AND METHODS FOR PRODUCING FULLY 2-MODIFIED NUCLEIC ACIDS TRANSCRIPTS |
DK2269622T3 (en) | 2005-07-01 | 2014-03-24 | Index Pharmaceuticals Ab | CPG OLIGONUCLEOTIDES USED TO INCREASE STEROID ACTIVITY OF A STEROID DEPENDENT PATIENT |
ES2435531T3 (en) | 2005-07-01 | 2013-12-20 | Index Pharmaceuticals Ab | Modulation of steroid responsiveness |
NZ565311A (en) * | 2005-07-07 | 2009-10-30 | Pfizer | Anti-ctla-4 antibody and cpg-motif-containing synthetic oligodeoxynucleotide combination therapy for cancer treatment |
WO2007008904A2 (en) * | 2005-07-08 | 2007-01-18 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Targeting poly-gamma-glutamic acid to treat staphylococcus epidermidis and related infections |
US20100017895A1 (en) | 2005-07-18 | 2010-01-21 | Amy Weiner | Small animal model for hcv replication |
WO2007012285A1 (en) * | 2005-07-28 | 2007-02-01 | Changchun Huapu Biotechnology Co., Ltd. | Viral infection resistent single strand deoxynucleosides |
EP1945766A2 (en) * | 2005-09-16 | 2008-07-23 | Coley Pharmaceutical GmbH | Immunostimulatory single-stranded ribonucleic acid with phosphodiester backbone |
US20090306177A1 (en) * | 2005-09-16 | 2009-12-10 | Coley Pharmaceutical Gmbh | Modulation of Immunostimulatory Properties of Short Interfering Ribonucleic Acid (Sirna) by Nucleotide Modification |
WO2007041190A2 (en) * | 2005-09-30 | 2007-04-12 | The University Of Iowa Research Foundation | Polymer-based delivery system for immunotherapy of cancer |
EP1945247A1 (en) | 2005-10-18 | 2008-07-23 | Novartis Vaccines and Diagnostics, Inc. | Mucosal and systemic immunizations with alphavirus replicon particles |
EP1940472A1 (en) | 2005-10-28 | 2008-07-09 | Index Pharmaceuticals AB | Composition and method for the prevention, treatment and/or alleviation of an inflammatory disease |
JP2009514838A (en) | 2005-11-04 | 2009-04-09 | ノバルティス ヴァクシンズ アンド ダイアグノスティクス エスアールエル | Adjuvant vaccine containing non-virion antigen prepared from influenza virus grown in cell culture |
JP2009514850A (en) | 2005-11-04 | 2009-04-09 | ノバルティス ヴァクシンズ アンド ダイアグノスティクス エスアールエル | Influenza vaccine with reduced amount of oil-in-water emulsion as adjuvant |
WO2007052058A1 (en) | 2005-11-04 | 2007-05-10 | Novartis Vaccines And Diagnostics Srl | Influenza vaccines including combinations of particulate adjuvants and immunopotentiators |
NZ592713A (en) | 2005-11-04 | 2012-12-21 | Novartis Vaccines & Diagnostic | Adjuvanted influenza vaccines including a cytokine-inducing agents other than an agonist of Toll-Like Receptor 9 |
CN102864152B (en) * | 2005-11-07 | 2015-11-18 | 艾德拉药物股份有限公司 | Comprise the immunostimulatory properties of the compound based on oligonucleotide of modified immunostimulating dinucleotides |
CA2630220C (en) | 2005-11-22 | 2020-10-13 | Doris Coit | Norovirus and sapovirus antigens |
GB0524066D0 (en) | 2005-11-25 | 2006-01-04 | Chiron Srl | 741 ii |
AU2006325225B2 (en) | 2005-12-14 | 2013-07-04 | Cytos Biotechnology Ag | Immunostimulatory nucleic acid packaged particles for the treatment of hypersensitivity |
JP6087041B2 (en) | 2006-01-27 | 2017-03-08 | ノバルティス アーゲー | Influenza virus vaccine containing hemagglutinin and matrix protein |
EP1991678B2 (en) | 2006-02-15 | 2020-07-15 | Rechtsanwalt Thomas Beck | Compositions and methods for oligonucleotide formulations |
US8951528B2 (en) * | 2006-02-22 | 2015-02-10 | 3M Innovative Properties Company | Immune response modifier conjugates |
WO2007106560A2 (en) | 2006-03-14 | 2007-09-20 | Oregon Health & Science University | Methods for detecting a mycobacterium tuberculosis infection |
US8173657B2 (en) * | 2006-03-23 | 2012-05-08 | Novartis Ag | Imidazoquinoxaline compounds as immunomodulators |
ES2388556T3 (en) * | 2006-03-23 | 2012-10-16 | Novartis Ag | Immunopotentiating compounds |
CN101448523A (en) | 2006-03-24 | 2009-06-03 | 诺华疫苗和诊断有限两合公司 | Storage of influenza vaccines without refrigeration |
EP2382988A1 (en) | 2006-03-31 | 2011-11-02 | Novartis AG | Combined mucosal and parenteral immunization against HIV |
WO2007119815A1 (en) | 2006-04-14 | 2007-10-25 | Kyowa Hakko Kirin Co., Ltd. | Toll-like receptor 9 agonists |
TW200806315A (en) | 2006-04-26 | 2008-02-01 | Wyeth Corp | Novel formulations which stabilize and inhibit precipitation of immunogenic compositions |
KR101065760B1 (en) * | 2006-05-31 | 2011-09-19 | 오사카 유니버시티 | Immunostimulatory Oligonucleotides and Medical Uses thereof |
US20080026986A1 (en) * | 2006-06-05 | 2008-01-31 | Rong-Fu Wang | Reversal of the suppressive function of specific t cells via toll-like receptor 8 signaling |
EP2054431B1 (en) | 2006-06-09 | 2011-08-31 | Novartis AG | Conformers of bacterial adhesins |
CA2655108C (en) | 2006-06-12 | 2019-05-07 | Cytos Biotechnology Ag | Processes for packaging oligonucleotides into virus-like particles of rna bacteriophages |
WO2007147529A2 (en) | 2006-06-20 | 2007-12-27 | Transgene S.A. | Recombinant viral vaccine |
US8153116B2 (en) | 2006-07-11 | 2012-04-10 | University Of Connecticut | Use of conditional plasmodium strains lacking an essential gene in malaria vaccination |
US8128921B2 (en) * | 2006-07-11 | 2012-03-06 | University Of Connecticut | Use of conditional plasmodium strains lacking nutrient transporters in malaria vaccination |
US7906506B2 (en) * | 2006-07-12 | 2011-03-15 | 3M Innovative Properties Company | Substituted chiral fused [1,2] imidazo [4,5-c] ring compounds and methods |
GB0614460D0 (en) | 2006-07-20 | 2006-08-30 | Novartis Ag | Vaccines |
CA2659552A1 (en) | 2006-08-16 | 2008-02-21 | Novartis Ag | Immunogens from uropathogenic escherichia coli |
CA2663196A1 (en) | 2006-09-11 | 2008-03-20 | Novartis Ag | Making influenza virus vaccines without using eggs |
DE102006050655A1 (en) * | 2006-10-24 | 2008-04-30 | Halmon Beheer B.V. | Pharmaceutical composition useful for treating allergic diseases comprises RNA and an allergen |
WO2008139262A2 (en) * | 2006-10-26 | 2008-11-20 | Coley Pharmaceutical Gmbh | Oligoribonucleotides and uses thereof |
DK2444806T3 (en) | 2006-11-01 | 2014-07-21 | Ventana Med Syst Inc | Haptenes, hapten conjugates, compositions thereof and processes for their preparation and use |
US20090142362A1 (en) * | 2006-11-06 | 2009-06-04 | Avant Immunotherapeutics, Inc. | Peptide-based vaccine compositions to endogenous cholesteryl ester transfer protein (CETP) |
EP2094849B1 (en) * | 2006-11-09 | 2014-01-08 | Dynavax Technologies Corporation | Long term disease modification using immunostimulatory oligonucleotides |
EP2094279B1 (en) * | 2006-11-15 | 2015-01-07 | Eli Lilly and Company | Methods and compositions for treating influenza |
CA2976230A1 (en) | 2006-12-06 | 2008-06-12 | Seqirus UK Limited | Vaccines including antigen from four strains of influenza virus |
AR064642A1 (en) | 2006-12-22 | 2009-04-15 | Wyeth Corp | POLINUCLEOTIDE VECTOR THAT INCLUDES IT RECOMBINATING CELL THAT UNDERSTANDS THE VECTOR POLYPEPTIDE, ANTIBODY, COMPOSITION THAT UNDERSTANDS THE POLINUCLEOTIDE, VECTOR, RECOMBINATING CELL POLYPEPTIDE OR ANTIBODY, USE OF THE COMPOSITION AND A COMPOSITION AND A METHOD |
US20080149123A1 (en) * | 2006-12-22 | 2008-06-26 | Mckay William D | Particulate material dispensing hairbrush with combination bristles |
GB0700562D0 (en) | 2007-01-11 | 2007-02-21 | Novartis Vaccines & Diagnostic | Modified Saccharides |
JP5596980B2 (en) | 2007-02-28 | 2014-10-01 | アメリカ合衆国 | Brachyury polypeptides and methods of use |
JP2010523676A (en) * | 2007-04-13 | 2010-07-15 | デューク ユニバーシティ | Methods for inducing neutralizing antibodies against human immunodeficiency virus |
US8518903B2 (en) | 2007-04-19 | 2013-08-27 | University of Pittsburgh—of the Commonwealth System of Higher Education | Use of toll-like receptor-9 agonists |
US20100322949A1 (en) | 2007-04-26 | 2010-12-23 | Ludwig Institute For Cancer Research Ltd. | Methods for diagnosing and treating astrocytomas |
WO2008134077A1 (en) * | 2007-04-30 | 2008-11-06 | Archemix Corp. | Metabolic profile directed aptamer medicinal chemistry |
KR20100010509A (en) * | 2007-05-17 | 2010-02-01 | 콜레이 파마시티컬 그룹, 인코포레이티드 | Class a oligonucleotides with immunostimulatory potency |
HRP20150769T1 (en) * | 2007-05-18 | 2015-08-28 | Adiutide Pharmaceuticals Gmbh | Phosphate-modified oligonucleotide analogs with immunostimulatory activity |
EP3561513A1 (en) | 2007-05-23 | 2019-10-30 | Ventana Medical Systems, Inc. | Polymeric carriers for immunohistochemistry and in situ hybridization |
CL2008001491A1 (en) * | 2007-05-24 | 2008-11-28 | Glaxosmithkline Biolog Sa | Freeze-dried composition comprising one or more antigens and a toll 9 receptor agonist (tlr9); and preparation procedure. |
EA201070066A1 (en) | 2007-06-27 | 2010-06-30 | Новартис Аг | VACCINES AGAINST FLU WITH LOW CONTENT OF ADDITIVES |
GB0713880D0 (en) * | 2007-07-17 | 2007-08-29 | Novartis Ag | Conjugate purification |
GB0714963D0 (en) | 2007-08-01 | 2007-09-12 | Novartis Ag | Compositions comprising antigens |
US7879812B2 (en) | 2007-08-06 | 2011-02-01 | University Of Iowa Research Foundation | Immunomodulatory oligonucleotides and methods of use therefor |
CA2697049A1 (en) * | 2007-08-21 | 2009-02-26 | Dynavax Technologies Corporation | Composition and methods of making and using influenza proteins |
CN101969992B (en) | 2007-09-12 | 2014-10-01 | 诺华股份有限公司 | Gas57 mutant antigens and gas57 antibodies |
CN101820908A (en) | 2007-10-09 | 2010-09-01 | 科利制药公司 | Immunostimulatory oligonucleotide analogs comprising modified sugar moieties |
WO2009060440A1 (en) * | 2007-11-05 | 2009-05-14 | Mor Research Applications Ltd. | Anti-measles cancer immunotherapy |
EP2217716A4 (en) | 2007-11-09 | 2011-02-09 | Salk Inst For Biological Studi | USE OF TAM RECEPTOR INHIBITORS AS ANTIMICROBIALS |
GB0810305D0 (en) | 2008-06-05 | 2008-07-09 | Novartis Ag | Influenza vaccination |
EP2244695A1 (en) | 2007-12-07 | 2010-11-03 | Novartis AG | Compositions for inducing immune responses |
GB0818453D0 (en) | 2008-10-08 | 2008-11-12 | Novartis Ag | Fermentation processes for cultivating streptococci and purification processes for obtaining cps therefrom |
PE20091104A1 (en) * | 2007-12-21 | 2009-07-18 | Wyeth Corp | GENETICALLY MODIFIED ATTENUATED VESICULAR STOMATITIS VIRUS, COMPOSITIONS AND METHODS OF USE OF THE SAME |
PT2235046E (en) | 2007-12-21 | 2012-10-26 | Novartis Ag | Mutant forms of streptolysin o |
AU2009206673B2 (en) * | 2008-01-25 | 2015-04-23 | Chimerix, Inc. | Methods of treating viral infections |
US9226959B2 (en) * | 2008-01-31 | 2016-01-05 | Curevac Ag | Nucleic acids comprising formula (NuGlXmGnNv)a and derivatives thereof as immunostimulating agent/adjuvant |
CN102356089B (en) | 2008-02-21 | 2014-02-19 | 诺华股份有限公司 | Meningococcal fhbp polypeptides |
ES2557282T3 (en) | 2008-03-10 | 2016-01-25 | Children's Hospital & Research Center At Oakland | Chimeric H-factor binding proteins (fHBP) containing a heterologous B domain, and methods of use |
ES2535101T3 (en) | 2008-03-18 | 2015-05-05 | Novartis Ag | Improvements in the preparation of antigens in influenza virus vaccine |
US8815817B2 (en) * | 2008-05-15 | 2014-08-26 | Dynavax Technologies Corporation | Long term disease modification using immunostimulatory oligonucleotides |
US8222225B2 (en) | 2008-05-21 | 2012-07-17 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Method of treating pneumoconiosis with oligodeoxynucleotides |
WO2009149013A2 (en) | 2008-06-05 | 2009-12-10 | Ventana Medical Systems, Inc. | Compositions comprising nanomaterials and method for using such compositions for histochemical processes |
JP2011525113A (en) | 2008-06-20 | 2011-09-15 | ワイス・エルエルシー | Composition of ORF1358 from β-hemolytic Streptococcus strain and method of use |
US8580280B2 (en) | 2008-06-27 | 2013-11-12 | Zoetis Llc | Adjuvant compositions |
TWI351288B (en) * | 2008-07-04 | 2011-11-01 | Univ Nat Pingtung Sci & Tech | Cpg dna adjuvant in avian vaccines |
WO2010018583A1 (en) * | 2008-08-14 | 2010-02-18 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Toll-like receptor 9 agonists for the treatment of anxiety-related disorders and inflammatory disorders |
EP3301116A1 (en) | 2008-08-25 | 2018-04-04 | Dana Farber Cancer Institute, Inc. | Conserved influenza hemagglutinin epitope and antibodies thereto |
EP2331127A2 (en) | 2008-09-18 | 2011-06-15 | Novartis AG | Vaccine adjuvant combinations |
CN102187224A (en) | 2008-09-22 | 2011-09-14 | 俄勒冈健康科学大学 | Methods for detecting a mycobacterium tuberculosis infection |
NZ591925A (en) | 2008-10-16 | 2012-09-28 | Internat Vaccine Inst | Adjuvant composition comprising a host defense peptide, an immunostimulatory sequence and a polyanionic polymer |
US8691502B2 (en) | 2008-10-31 | 2014-04-08 | Tremrx, Inc. | T-cell vaccination with viral vectors via mechanical epidermal disruption |
DK2356135T3 (en) * | 2008-11-05 | 2017-12-04 | Wyeth Llc | IMMUNOGEN MULTICOMPONENT COMPOSITION FOR THE PREVENTION OF BETA-HAEMOLYTIC STRUCTURAL TOC (BHS) DISEASE |
US8329188B2 (en) * | 2008-11-12 | 2012-12-11 | Theraclone Sciences, Inc. | Human M2e peptide immunogens |
US9394333B2 (en) | 2008-12-02 | 2016-07-19 | Wave Life Sciences Japan | Method for the synthesis of phosphorus atom modified nucleic acids |
US8552165B2 (en) * | 2008-12-09 | 2013-10-08 | Heather Davis | Immunostimulatory oligonucleotides |
WO2010067262A1 (en) | 2008-12-09 | 2010-06-17 | Pfizer Inc. | Immunostimulatory oligonucleotides |
EP2865389A1 (en) * | 2008-12-09 | 2015-04-29 | Pfizer Vaccines LLC | IgE CH3 peptide vaccine |
US8425922B2 (en) | 2009-01-05 | 2013-04-23 | EpitoGenesis, Inc. | Adjuvant compositions and methods of use |
US20100233270A1 (en) | 2009-01-08 | 2010-09-16 | Northwestern University | Delivery of Oligonucleotide-Functionalized Nanoparticles |
US8465751B2 (en) | 2009-01-12 | 2013-06-18 | Novartis Ag | Cna—B domain antigens in vaccines against gram positive bacteria |
WO2010099472A2 (en) | 2009-02-27 | 2010-09-02 | The U.S.A. Of America, As Represented By The Secretary, Department Of Health And Human Services | Spanx-b polypeptides and their use |
EP2403526B1 (en) | 2009-03-06 | 2019-05-15 | GlaxoSmithKline Biologicals SA | Chlamydia antigens |
US8530431B2 (en) | 2009-03-23 | 2013-09-10 | Pin Pharma, Inc. | Treatment of cancers with immunostimulatory HIV TAT derivative polypeptides |
WO2010109323A1 (en) | 2009-03-24 | 2010-09-30 | Novartis Ag | Adjuvanting meningococcal factor h binding protein |
CA2757524A1 (en) | 2009-04-03 | 2010-10-07 | Agenus Inc. | Methods for preparing and using multichaperone-antigen complexes |
EP2413951A4 (en) | 2009-04-03 | 2015-05-20 | Univ Duke | COMPOSITION CAPABLE OF INDUCING THE PRODUCTION OF VERY REACTIVE NEUTRALIZING ANTIBODIES AGAINST HIV |
MX2011010735A (en) | 2009-04-14 | 2012-01-25 | Novartis Ag | Compositions for immunising against staphylococcus aerus. |
KR20120022984A (en) * | 2009-04-21 | 2012-03-12 | 셀렉타 바이오사이언시즈, 인크. | Immunonanotherapeutics providing a th1-biased response |
WO2010125480A1 (en) | 2009-04-30 | 2010-11-04 | Coley Pharmaceutical Group, Inc. | Pneumococcal vaccine and uses thereof |
BRPI1012036A2 (en) | 2009-05-27 | 2017-10-10 | Selecta Biosciences Inc | nanocarriers that have components with different release rates |
WO2010146414A1 (en) | 2009-06-15 | 2010-12-23 | National University Of Singapore | Influenza vaccine, composition, and methods of use |
US8568735B2 (en) | 2009-06-22 | 2013-10-29 | Wyeth Llc | Immunogenic compositions of Staphylococcus aureus antigens |
SG10201406432RA (en) | 2009-06-22 | 2014-11-27 | Wyeth Llc | Compositions and methods for preparing staphylococcus aureus serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions |
BR112012000828A8 (en) | 2009-07-06 | 2017-10-10 | Ontorii Inc | NEW NUCLEIC ACID PRO-DRUGS AND METHODS OF THEIR USE |
ES2563730T3 (en) | 2009-07-15 | 2016-03-16 | Glaxosmithkline Biologicals S.A. | RSV F protein compositions and manufacturing processes thereof |
JP2012532626A (en) | 2009-07-16 | 2012-12-20 | ノバルティス アーゲー | Detoxified Escherichia coli immunogen |
WO2011007961A2 (en) | 2009-07-17 | 2011-01-20 | Industry Academic Cooperation Foundation, Hallym University | Immunostimulatory compositions comprising liposome-encapsulated oligonucleotides and epitpoes |
US8614200B2 (en) | 2009-07-21 | 2013-12-24 | Chimerix, Inc. | Compounds, compositions and methods for treating ocular conditions |
EP2459214A1 (en) | 2009-07-30 | 2012-06-06 | Pfizer Vaccines LLC | Antigenic tau peptides and uses thereof |
US20110033515A1 (en) * | 2009-08-04 | 2011-02-10 | Rst Implanted Cell Technology | Tissue contacting material |
EP2467167B1 (en) * | 2009-08-18 | 2017-08-16 | Baxalta GmbH | Aptamers to tissue factor pathway inhibitor and their use as bleeding disorder therapeutics |
US8598327B2 (en) | 2009-08-18 | 2013-12-03 | Baxter International Inc. | Aptamers to tissue factor pathway inhibitor and their use as bleeding disorder therapeutics |
CN107617110A (en) | 2009-08-26 | 2018-01-23 | 西莱克塔生物科技公司 | The composition of inducing T cell auxiliary |
NZ598458A (en) | 2009-08-27 | 2014-03-28 | Novartis Ag | Hybrid polypeptides including meningococcal fhbp sequences |
US8858958B2 (en) | 2009-08-27 | 2014-10-14 | Novartis Ag | Adjuvant comprising aluminum, oligonucleotide and polycation |
WO2011026111A1 (en) | 2009-08-31 | 2011-03-03 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Oral delivery of a vaccine to the large intestine to induce mucosal immunity |
TR201808222T4 (en) | 2009-09-03 | 2018-07-23 | Pfizer Vaccines Llc | PCSK9 vaccine. |
CN102695523A (en) | 2009-09-10 | 2012-09-26 | 诺华有限公司 | Combination vaccines against respiratory tract diseases |
GB0917003D0 (en) | 2009-09-28 | 2009-11-11 | Novartis Vaccines Inst For Global Health Srl | Purification of bacterial vesicles |
GB0917002D0 (en) | 2009-09-28 | 2009-11-11 | Novartis Vaccines Inst For Global Health Srl | Improved shigella blebs |
US20130022639A1 (en) | 2009-09-30 | 2013-01-24 | Novartis Ag | Expression of meningococcal fhbp polypeptides |
US8974799B2 (en) | 2009-09-30 | 2015-03-10 | Novartis Ag | Conjugation of Staphylococcus aureus type 5 and type 8 capsular polysaccharides |
HUE029386T2 (en) | 2009-10-07 | 2017-02-28 | Uvic Ind Partnerships Inc | Vaccines comprising heat-sensitive transgenes |
WO2011047340A1 (en) | 2009-10-16 | 2011-04-21 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Insertion of foreign genes in rubella virus and their stable expression in a live, attenuated viral vaccine |
GB0918392D0 (en) | 2009-10-20 | 2009-12-02 | Novartis Ag | Diagnostic and therapeutic methods |
US20130022633A1 (en) | 2009-10-27 | 2013-01-24 | University Of Florence | MENINGOCOCCAL fHBP POLYPEPTIDES |
GB0919690D0 (en) | 2009-11-10 | 2009-12-23 | Guy S And St Thomas S Nhs Foun | compositions for immunising against staphylococcus aureus |
EP3360566B1 (en) | 2009-11-20 | 2019-12-25 | Oregon Health&Science University | Methods for detecting a mycobacterium tuberculosis infection |
KR20120120185A (en) | 2009-12-22 | 2012-11-01 | 셀덱스 쎄라퓨틱스, 인크. | Vaccine compositions |
US9006218B2 (en) | 2010-02-12 | 2015-04-14 | Chimerix Inc. | Nucleoside phosphonate salts |
GB201003333D0 (en) | 2010-02-26 | 2010-04-14 | Novartis Ag | Immunogenic proteins and compositions |
US8685416B2 (en) | 2010-03-02 | 2014-04-01 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Compositions and methods for the treatment of cancer |
JP2013521002A (en) | 2010-03-05 | 2013-06-10 | プレジデント アンド フェロウズ オブ ハーバード カレッジ | Induced dendritic cell composition and use thereof |
WO2011112599A2 (en) | 2010-03-12 | 2011-09-15 | The United States Of America, As Represented By The Secretary. Department Of Health & Human Services | Immunogenic pote peptides and methods of use |
US20130071422A1 (en) | 2010-03-18 | 2013-03-21 | Michele Pallaoro | Adjuvanted vaccines for serogroup b meningococcus |
US9827300B2 (en) | 2010-03-30 | 2017-11-28 | Children's Hospital & Research Center Oakland | Factor H binding proteins (FHBP) with altered properties and methods of use thereof |
GB201005625D0 (en) | 2010-04-01 | 2010-05-19 | Novartis Ag | Immunogenic proteins and compositions |
JP2013529894A (en) | 2010-04-07 | 2013-07-25 | ノバルティス アーゲー | Method for generating parvovirus B19 virus-like particles |
US9597326B2 (en) | 2010-04-13 | 2017-03-21 | Glaxosmithkline Biologicals Sa | Benzonapthyridine compositions and uses thereof |
EP2563367A4 (en) | 2010-04-26 | 2013-12-04 | Chimerix Inc | METHODS OF TREATING RETROVIRAL INFECTIONS AND ASSOCIATED DOSAGE REGIMES |
LT3351636T (en) | 2010-05-14 | 2020-10-12 | Oregon Health & Science University | RECOMBINANT HVAC AND RHCMV VECTORS CODED BY AND USE OF HETEROLOGICAL ANTIGEN EXTRACTED FROM PARAMYXOVIRIDAE VIRUS |
JP6324068B2 (en) | 2010-05-26 | 2018-05-23 | セレクタ バイオサイエンシーズ インコーポレーテッドSelecta Biosciences,Inc. | Synthetic nanocarrier combination vaccine |
PT2575878T (en) | 2010-05-28 | 2018-10-03 | Zoetis Belgium S A | Vaccines comprising cholesterol and cpg as sole adjuvant-carrier molecules |
KR20130121699A (en) | 2010-05-28 | 2013-11-06 | 테트리스 온라인, 인코포레이티드 | Interactive hybrid asynchronous computer game infrastructure |
EA031737B1 (en) | 2010-06-03 | 2019-02-28 | Фармасайкликс, Инк. | USE OF INHIBITORS OF BRUTON'S TYROSINE KINASE (Btk) FOR TREATING LEUKEMIA AND LYMPHOMA |
EP2575870B1 (en) | 2010-06-04 | 2016-12-07 | Wyeth LLC | Vaccine formulations |
EP2575868A1 (en) | 2010-06-07 | 2013-04-10 | Pfizer Vaccines LLC | Ige ch3 peptide vaccine |
GB201009861D0 (en) | 2010-06-11 | 2010-07-21 | Novartis Ag | OMV vaccines |
WO2011161653A1 (en) | 2010-06-25 | 2011-12-29 | Novartis Ag | Combinations of meningococcal factor h binding proteins |
US9192661B2 (en) | 2010-07-06 | 2015-11-24 | Novartis Ag | Delivery of self-replicating RNA using biodegradable polymer particles |
JP2013533745A (en) | 2010-07-06 | 2013-08-29 | ノバルティス アーゲー | Immunogenic compositions and methods derived from norovirus |
SI2608805T1 (en) | 2010-08-23 | 2017-08-31 | Wyeth Llc | STABLE FORMULATIONS OF NEISSERIA MENINGITIDIS rLP2086 ANTIGENS |
BR112013005329A2 (en) | 2010-09-10 | 2017-05-02 | Wyeth Llc | non-lipid variants of neisseria meningitidis orf2086 antigens |
EP3431100B1 (en) | 2010-09-14 | 2021-09-08 | University of Pittsburgh- Of the Commonwealth System of Higher Education | Computationally optimized broadly reactive antigens for influenza |
GB201101665D0 (en) | 2011-01-31 | 2011-03-16 | Novartis Ag | Immunogenic compositions |
US9072760B2 (en) | 2010-09-24 | 2015-07-07 | University of Pittsburgh—of the Commonwealth System of Higher Education | TLR4 inhibitors for the treatment of human infectious and inflammatory disorders |
JP5868324B2 (en) | 2010-09-24 | 2016-02-24 | 株式会社Wave Life Sciences Japan | Asymmetric auxiliary group |
US10668092B2 (en) | 2010-09-24 | 2020-06-02 | The John Hopkins University | Compositions and methods for treatment of inflammatory disorders |
GB201017519D0 (en) | 2010-10-15 | 2010-12-01 | Novartis Vaccines Inst For Global Health S R L | Vaccines |
EA201390660A1 (en) | 2010-11-05 | 2013-11-29 | Селекта Байосайенсиз, Инк. | MODIFIED NICOTINE COMPOUNDS AND RELATED METHODS |
WO2012072769A1 (en) | 2010-12-01 | 2012-06-07 | Novartis Ag | Pneumococcal rrgb epitopes and clade combinations |
EP2468866A1 (en) * | 2010-12-21 | 2012-06-27 | Index Pharmaceuticals AB | Biologically active oligonucleotides capable of modulating the immune system |
WO2012088425A2 (en) | 2010-12-22 | 2012-06-28 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Gap junction-enhancing agents for treatment of necrotizing enterocolitis and inflammatory bowel disease |
RU2606855C2 (en) | 2010-12-22 | 2017-01-10 | Байер Интеллектчуал Проперти Гмбх | Enhanced immune response in bovine species |
MX350170B (en) | 2010-12-22 | 2017-08-28 | Wyeth Llc | Stable immunogenic compositions of staphylococcus aureus antigens. |
GB201021867D0 (en) | 2010-12-23 | 2011-02-02 | Mologen Ag | Non-coding immunomodulatory DNA construct |
EP2655389A2 (en) | 2010-12-24 | 2013-10-30 | Novartis AG | Compounds |
EP2471926A3 (en) * | 2010-12-30 | 2012-07-11 | Intervet International BV | Immunostimulatory oligodeoxynucleotides |
EP3527224B1 (en) | 2011-01-26 | 2025-02-26 | GlaxoSmithKline Biologicals S.A. | Rsv immunization regimen |
EP2673364A1 (en) | 2011-02-11 | 2013-12-18 | Baxter International Inc | Aptamers to tissue factor pathway inhibitor and their use as bleeding disorder therapeutics |
WO2012131504A1 (en) | 2011-03-02 | 2012-10-04 | Pfizer Inc. | Pcsk9 vaccine |
BR112013025799A2 (en) | 2011-04-08 | 2016-12-20 | Immune Design Corp | method for inducing an immune response in a subject, and, preparing |
US9452212B2 (en) | 2011-04-14 | 2016-09-27 | Dynavax Technologies Corporation | Methods and compositions for eliciting an immune response against hepatitis B virus |
US20120288515A1 (en) | 2011-04-27 | 2012-11-15 | Immune Design Corp. | Synthetic long peptide (slp)-based vaccines |
PT3275892T (en) | 2011-05-13 | 2020-04-08 | Glaxosmithkline Biologicals Sa | Pre-fusion rsv f antigens |
FR2975600B1 (en) | 2011-05-24 | 2013-07-05 | Assist Publ Hopitaux De Paris | AGENTS FOR THE TREATMENT OF TUMORS |
US9315814B2 (en) * | 2011-05-26 | 2016-04-19 | Intervet Inc. | Immunostimulatory oligodeoxynucleotides |
EP2713737B1 (en) | 2011-06-01 | 2016-04-20 | Janus Biotherapeutics, Inc. | Novel immune system modulators |
KR102052215B1 (en) | 2011-06-01 | 2019-12-04 | 야누스 바이오테라퓨틱스, 인크. | Novel immune system modulators |
BR112013031028A2 (en) | 2011-06-03 | 2016-11-29 | 3M Innovative Properties Co | heterobifunctional connectors with polyethylene glycol segments and conjugates of immune response modifiers made from them |
AU2012261959B2 (en) | 2011-06-03 | 2015-12-03 | Solventum Intellectual Properties Company | Hydrazino 1H-imidazoquinolin-4-amines and conjugates made therefrom |
EP2720706B1 (en) | 2011-06-17 | 2020-08-05 | University of Tennessee Research Foundation | Group a streptococcus multivalent vaccine |
WO2012177760A1 (en) | 2011-06-20 | 2012-12-27 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Computationally optimized broadly reactive antigens for h1n1 influenza |
ITMI20111182A1 (en) | 2011-06-28 | 2012-12-29 | Canio Buonavoglia | VACCINE FOR CORONAVIRUS CANINO |
EP2729165B1 (en) | 2011-07-06 | 2017-11-08 | GlaxoSmithKline Biologicals SA | Immunogenic combination compositions and uses thereof |
WO2013006842A2 (en) | 2011-07-06 | 2013-01-10 | Novartis Ag | Immunogenic compositions and uses thereof |
EP2729178A1 (en) | 2011-07-08 | 2014-05-14 | Novartis AG | Tyrosine ligation process |
WO2013007703A1 (en) * | 2011-07-08 | 2013-01-17 | Universität Zürich | CLASS A CpG OLIGONUCLEOTIDES FOR PREVENTION OF VIRAL INFECTION IN CATS |
CA2842358C (en) | 2011-07-19 | 2020-07-14 | Wave Life Sciences Pte. Ltd. | Methods for the synthesis of functionalized nucleic acids |
US20130023736A1 (en) | 2011-07-21 | 2013-01-24 | Stanley Dale Harpstead | Systems for drug delivery and monitoring |
US10030052B2 (en) | 2011-07-25 | 2018-07-24 | Glaxosmithkline Biologicals Sa | Parvovirus Vp1 unique region polypeptides and compositions thereof |
US20130039954A1 (en) | 2011-07-29 | 2013-02-14 | Selecta Biosciences, Inc. | Control of antibody responses to synthetic nanocarriers |
GB201114923D0 (en) | 2011-08-30 | 2011-10-12 | Novartis Ag | Immunogenic proteins and compositions |
US20140348865A1 (en) | 2011-09-12 | 2014-11-27 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Ser. | Immunogens based on an hiv-1 v1v2 site-of-vulnerability |
TR201909110T4 (en) | 2011-09-14 | 2019-07-22 | Glaxosmithkline Biologicals Sa | Methods for making saccharide-protein glycoconjugates. |
US9511130B2 (en) | 2011-09-14 | 2016-12-06 | Glaxosmithkline Biologicals Sa | Escherichia coli vaccine combination |
WO2013049535A2 (en) | 2011-09-30 | 2013-04-04 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Influenza vaccine |
WO2013052550A2 (en) | 2011-10-04 | 2013-04-11 | Janus Biotherapeutics, Inc. | Novel imidazole quinoline-based immune system modulators |
EP3269728B1 (en) | 2011-10-20 | 2020-12-16 | The Government of The United States of America as represented by The Secretary, Department of Health and Human Services | Dengue virus e-glycoprotein polypeptides containing mutations that eliminate immunodominant cross-reactive epitopes |
EP2776069A1 (en) | 2011-11-07 | 2014-09-17 | Novartis AG | Carrier molecule comprising a spr0096 and a spr2021 antigen |
IN2014CN04071A (en) | 2011-12-08 | 2015-10-23 | Novartis Ag | |
US12268718B2 (en) | 2012-01-16 | 2025-04-08 | Labyrinth Holdings Llc | Control of cellular redox levels |
CA3208225A1 (en) | 2012-01-16 | 2013-07-25 | Elizabeth Mckenna | Compositions and methods for the treatment of hepatitic diseases and disorders |
WO2013108272A2 (en) | 2012-01-20 | 2013-07-25 | International Centre For Genetic Engineering And Biotechnology | Blood stage malaria vaccine |
WO2013119683A1 (en) | 2012-02-07 | 2013-08-15 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Computationally optimized broadly reactive antigens for h3n2, h2n2, and b influenza viruses |
WO2013122827A1 (en) | 2012-02-13 | 2013-08-22 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Computationally optimized broadly reactive antigens for human and avian h5n1 influenza |
JP2015509713A (en) | 2012-02-24 | 2015-04-02 | ノバルティス アーゲー | Pili protein and composition |
SA115360586B1 (en) | 2012-03-09 | 2017-04-12 | فايزر انك | Neisseria meningitidis compositions and methods thereof |
CA2960030C (en) | 2012-03-09 | 2020-02-25 | Pfizer Inc. | Neisseria meningitidis compositions and methods thereof |
US9421250B2 (en) | 2012-03-23 | 2016-08-23 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Pathogenic phlebovirus isolates and compositions and methods of use |
US9597385B2 (en) | 2012-04-23 | 2017-03-21 | Allertein Therapeutics, Llc | Nanoparticles for treatment of allergy |
WO2013160335A2 (en) | 2012-04-26 | 2013-10-31 | Novartis Ag | Antigens and antigen combinations |
US10279026B2 (en) | 2012-04-26 | 2019-05-07 | Glaxosmithkline Biologicals Sa | Antigens and antigen combinations |
US10076535B2 (en) | 2012-04-27 | 2018-09-18 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Use of CPG oligonucleotides co-formulated with an antibiotic to accelerate wound healing |
CN107746852B (en) | 2012-05-04 | 2021-10-08 | 辉瑞公司 | Prostate-Associated Antigen and Vaccine-Based Immunotherapy Therapies |
AU2013265336A1 (en) | 2012-05-22 | 2014-12-04 | Novartis Ag | Meningococcus serogroup X conjugate |
EP2852405B1 (en) | 2012-05-23 | 2019-03-13 | The United States of America, as represented by The Secretary, Department of Health and Human Services | Salmonella typhi ty21a expressing yersinia pestis f1-v fusion protein and uses thereof |
WO2013177397A1 (en) | 2012-05-24 | 2013-11-28 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Multivalent meningococcal conjugates and methods for preparing cojugates |
WO2013189506A1 (en) | 2012-06-19 | 2013-12-27 | Volvo Lastvagnar Ab | A device for controlling a gas flow, an exhaust aftertreatment system and a system for propelling a vehicle |
WO2013192144A2 (en) | 2012-06-19 | 2013-12-27 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Rift valley fever virus replicon particles and use thereof |
KR102057217B1 (en) | 2012-06-20 | 2020-01-22 | 에스케이바이오사이언스 주식회사 | Multivalent pneumococcal polysaccharide-protein conjugate composition |
EP2869842A1 (en) | 2012-07-06 | 2015-05-13 | Novartis AG | Immunogenic compositions and uses thereof |
ES2862073T3 (en) | 2012-07-13 | 2021-10-06 | Wave Life Sciences Ltd | Asymmetric auxiliary group |
RU2015104762A (en) | 2012-07-13 | 2018-08-31 | Уэйв Лайф Сайенсес Лтд. | CHIRAL CONTROL |
US9617547B2 (en) * | 2012-07-13 | 2017-04-11 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant |
AU2013292617A1 (en) | 2012-07-19 | 2015-01-22 | Zoetis Llc | Bovine influenza C virus compositions |
KR20150032340A (en) | 2012-07-24 | 2015-03-25 | 파마시클릭스, 인코포레이티드 | Mutations associated with resistance to inhibitors of bruton's tyrosine kinase (btk) |
WO2014018724A1 (en) | 2012-07-27 | 2014-01-30 | Zoetis Llc | Tick toxin compositions |
AU2013303826B2 (en) | 2012-08-16 | 2017-06-29 | Pfizer Inc. | Glycoconjugation processes and compositions |
EP3639851A1 (en) | 2012-09-04 | 2020-04-22 | Bavarian Nordic A/S | Methods and compositions for enhancing vaccine immune responses |
WO2014043535A1 (en) | 2012-09-14 | 2014-03-20 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Compositions for the treatment of cancer |
EP2895191B1 (en) | 2012-09-14 | 2019-06-05 | The U.S.A. as represented by the Secretary, Department of Health and Human Services | Brachyury protein, adenoviral vectors encoding brachyury protein, and their use |
WO2014044728A1 (en) | 2012-09-18 | 2014-03-27 | Novartis Ag | Outer membrane vesicles |
BR112015006264A2 (en) | 2012-09-21 | 2017-07-04 | Mckenna Elizabeth | naturally occurring cpg oligonucleotide compositions and their therapeutic applications |
WO2014052453A1 (en) * | 2012-09-25 | 2014-04-03 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Oral therapy of necrotizing enterocolitis |
EP3482770B1 (en) | 2012-10-03 | 2020-11-25 | GlaxoSmithKline Biologicals S.A. | Immunogenic compositions |
BR112015010059A2 (en) | 2012-11-02 | 2017-07-11 | Pharmacyclics Inc | adjuvant therapy with the tec family kinase inhibitor |
WO2014074785A1 (en) | 2012-11-08 | 2014-05-15 | Ludwig Institute For Cancer Research Ltd. | Methods of predicting outcome and treating breast cancer |
KR20140075196A (en) | 2012-12-11 | 2014-06-19 | 에스케이케미칼주식회사 | Multivalent pneumococcal polysaccharide-protein conjugate composition |
KR20140075201A (en) | 2012-12-11 | 2014-06-19 | 에스케이케미칼주식회사 | Multivalent pneumococcal polysaccharide-protein conjugate composition |
TWI465241B (en) | 2012-12-19 | 2014-12-21 | Ind Tech Res Inst | Use of an extract of juniperus chinensis or lignan for manufacturing a medicament for inhibiting angiogenesis |
SI3363806T1 (en) | 2012-12-20 | 2023-04-28 | Pfizer Inc. | Glycoconjugation process |
JP2016507520A (en) | 2013-01-23 | 2016-03-10 | ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー | Stabilized hepatitis B core polypeptide |
EP4272750A3 (en) | 2013-02-07 | 2024-01-24 | Children's Medical Center, Corp. | Protein antigens that provide protection against pneumococcal colonization and/or disease |
EP2964665B1 (en) | 2013-03-08 | 2018-08-01 | Pfizer Inc | Immunogenic fusion polypeptides |
AU2014236340B2 (en) | 2013-03-14 | 2019-01-17 | Massachusetts Institute Of Technology | Nanoparticle-based compositions |
EP2983703A1 (en) | 2013-03-15 | 2016-02-17 | Zoetis Services LLC | Cross-protection of bovines against b. trehalosi infection by a multi-valent vaccine |
DE102013004595A1 (en) | 2013-03-15 | 2014-09-18 | Emergent Product Development Germany Gmbh | RSV vaccines |
CN105188741A (en) | 2013-04-03 | 2015-12-23 | 阿勒丁医疗公司 | Novel nanoparticle compositions |
US20160083698A1 (en) | 2013-04-19 | 2016-03-24 | The Regents Of The University Of California | Lone star virus |
AR095882A1 (en) | 2013-04-22 | 2015-11-18 | Hoffmann La Roche | ANTIBODY COMBINATION THERAPY AGAINST HUMAN CSF-1R WITH A TLR9 AGONIST |
CN103550783A (en) * | 2013-04-27 | 2014-02-05 | 中国人民解放军军事医学科学院放射与辐射医学研究所 | Nucleic acid drug targeting delivery system and preparation method thereof |
EP2996718B1 (en) | 2013-05-15 | 2020-01-15 | The Governors of the University of Alberta | E1e2 hcv vaccines and methods of use |
WO2014201245A1 (en) | 2013-06-12 | 2014-12-18 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Tlr-9 agonist with tlr-7 and/or tlr-8 agonist for treating tumors |
US20160168571A1 (en) * | 2013-07-19 | 2016-06-16 | National Health Research Institutes | CpG-OLIGODEOXYNUCLEOTIDE, IMMUNOGENIC COMPOSITION COMPRISING THE SAME, AND METHODS FOR PREPARING THE COMPOSITION AND STIMULATING IMMUNE RESPONSE THEREBY |
WO2015013673A1 (en) | 2013-07-25 | 2015-01-29 | Aurasense Therapeutics, Llc | Spherical nucleic acid-based constructs as immunostimulatory agents for prophylactic and therapeutic use |
EP3024476A1 (en) | 2013-07-26 | 2016-06-01 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for the treatment of bacterial infections |
RU2662968C2 (en) | 2013-09-08 | 2018-07-31 | Пфайзер Инк. | Immunogenic composition for neisseria meningitidis (options) |
AR097584A1 (en) | 2013-09-12 | 2016-03-23 | Hoffmann La Roche | ANTIBODY COMBINATION THERAPY AGAINST HUMAN CSF-1R AND ANTIBODIES AGAINST HUMAN PD-L1 |
CA3005608C (en) | 2013-09-19 | 2020-06-30 | Zoetis Services Llc | Water-in-oil emulsions comprising immunostimulatory oligonucleotides |
US10076567B2 (en) | 2013-09-27 | 2018-09-18 | Duke University | MPER-liposome conjugates and uses thereof |
ES2957209T3 (en) | 2013-09-30 | 2024-01-15 | Triad Nat Security Llc | Conserved region HIV mosaic immunogenic polypeptides |
CN105705164A (en) | 2013-10-04 | 2016-06-22 | 品诺制药公司 | Treatment of cancers with immunostimulatory HIV TAT derivative polypeptides |
AU2014343321B2 (en) | 2013-11-01 | 2020-02-06 | Pfizer Inc. | Vectors for expression of prostate-associated antigens |
EP2870974A1 (en) | 2013-11-08 | 2015-05-13 | Novartis AG | Salmonella conjugate vaccines |
ES2895977T3 (en) | 2013-11-28 | 2022-02-23 | Bavarian Nordic As | Compositions and methods of inducing an enhanced immune response using poxvirus vectors |
CA2932122C (en) | 2013-12-03 | 2022-04-19 | Northwestern University | Liposomal particles, methods of making same and uses thereof |
WO2015089469A1 (en) | 2013-12-13 | 2015-06-18 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Multi-epitope tarp peptide vaccine and uses thereof |
US11708411B2 (en) | 2013-12-20 | 2023-07-25 | Wake Forest University Health Sciences | Methods and compositions for increasing protective antibody levels induced by pneumococcal polysaccharide vaccines |
EP3095461A4 (en) * | 2014-01-15 | 2017-08-23 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant having immunity induction activity, and immunity induction activator |
JPWO2015108046A1 (en) * | 2014-01-15 | 2017-03-23 | 株式会社新日本科学 | Chiral nucleic acid adjuvant and antiallergic agent having antiallergic action |
WO2015108048A1 (en) * | 2014-01-15 | 2015-07-23 | 株式会社新日本科学 | Chiral nucleic acid adjuvant having antitumor effect and antitumor agent |
SG10201912897UA (en) | 2014-01-16 | 2020-02-27 | Wave Life Sciences Ltd | Chiral design |
EP3096783B1 (en) | 2014-01-21 | 2021-07-07 | Pfizer Inc. | Streptococcus pneumoniae capsular polysaccharides and conjugates thereof |
KR20230021167A (en) | 2014-01-21 | 2023-02-13 | 화이자 인코포레이티드 | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof |
EP3096764A1 (en) | 2014-01-21 | 2016-11-30 | Immune Design Corp. | Compositions for use in the treatment of allergic conditions |
HRP20211288T1 (en) | 2014-01-21 | 2021-11-26 | Pfizer Inc. | Streptococcus pneumoniae capsular polysaccharides and conjugates thereof |
US11160855B2 (en) | 2014-01-21 | 2021-11-02 | Pfizer Inc. | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof |
WO2016130569A1 (en) | 2015-02-09 | 2016-08-18 | Mj Biologics, Inc. | A composition comprising pedv antigens and methods for making and using the composition |
WO2015123291A1 (en) | 2014-02-11 | 2015-08-20 | The Usa, As Represented By The Secretary, Dept. Of Health And Human Services | Pcsk9 vaccine and methods of using the same |
ES2930318T3 (en) | 2014-02-14 | 2022-12-09 | Pfizer | Immunogenic glycoprotein conjugates |
GB2523187A (en) | 2014-02-18 | 2015-08-19 | Mologen Ag | Covalently closed non-coding immunomodulatory DNA construct |
WO2015130584A2 (en) | 2014-02-25 | 2015-09-03 | Merck Sharp & Dohme Corp. | Lipid nanoparticle vaccine adjuvants and antigen delivery systems |
US10155950B2 (en) * | 2014-02-28 | 2018-12-18 | Bayer Animal Health Gmbh | Immunostimulatory plasmids |
EP3116539B1 (en) | 2014-03-11 | 2018-10-10 | Regents of the University of Minnesota | Porcine epidemic diarrhea virus vaccines and methods of use thereof |
US9885086B2 (en) | 2014-03-20 | 2018-02-06 | Pharmacyclics Llc | Phospholipase C gamma 2 and resistance associated mutations |
KR20160132109A (en) | 2014-03-26 | 2016-11-16 | 글락소스미스클라인 바이오로지칼즈 에스.에이. | Mutant staphylococcal antigens |
US9549914B2 (en) | 2014-04-03 | 2017-01-24 | The Johns Hopkins University | Treatment of human cytomegalovirus by modulating Wnt |
WO2015164798A1 (en) | 2014-04-25 | 2015-10-29 | Tria Bioscience Corp. | Synthetic hapten carrier compositions and methods |
US20150335731A1 (en) * | 2014-05-23 | 2015-11-26 | Gregory Cauchon | Coating Method and Materials |
WO2015184272A2 (en) | 2014-05-30 | 2015-12-03 | Sanofi Pasteur Biologics Llc | Expression and conformational analysis of engineered influenza hemagglutinin |
US10434064B2 (en) | 2014-06-04 | 2019-10-08 | Exicure, Inc. | Multivalent delivery of immune modulators by liposomal spherical nucleic acids for prophylactic or therapeutic applications |
EA201692512A1 (en) | 2014-06-25 | 2017-07-31 | Селекта Байосайенсиз, Инк. | METHODS AND COMPOSITIONS FOR THE TREATMENT BY SYNTHETIC NANOSEMS AND INHIBITORS OF THE IMMUNE CONTROL POINT |
US20170196954A1 (en) | 2014-07-15 | 2017-07-13 | Immune Design Corp. | Prime-boost regimens with a tlr4 agonist adjuvant and a lentiviral vector |
EP3183251A4 (en) | 2014-08-22 | 2017-12-27 | Janus Biotherapeutics, Inc. | Novel n2, n4, n7, 6-tetrasubstituted pteridine-2,4,7-triamine and 2, 4, 6, 7-tetrasubstituted pteridine compounds and methods of synthesis and use thereof |
BR112017007012A2 (en) | 2014-10-06 | 2018-03-06 | Exicure Inc | anti-tnf compounds |
US20160129097A1 (en) * | 2014-11-06 | 2016-05-12 | Jeremy Delk | Method of processing a veterinary tumor vaccine and a veterinary tumor vaccine processing kit |
AU2015349680A1 (en) | 2014-11-21 | 2017-06-08 | Northwestern University | The sequence-specific cellular uptake of spherical nucleic acid nanoparticle conjugates |
WO2016103531A1 (en) * | 2014-12-26 | 2016-06-30 | 国立研究開発法人医薬基盤・健康・栄養研究所 | Use of nucleic acid-polysaccharide complexes having immunopotentiating activity as anti-tumor drug |
MX393750B (en) | 2014-12-31 | 2025-03-24 | Checkmate Pharmaceuticals Inc | COMBINED ANTITUMOR IMMUNOTHERAPY. |
PL3244917T3 (en) | 2015-01-15 | 2023-07-17 | Pfizer Inc. | Immunogenic compositions for use in pneumococcal vaccines |
PL3244920T3 (en) | 2015-01-16 | 2023-09-25 | Zoetis Services Llc | Foot-and-mouth disease vaccine |
US20180036334A1 (en) | 2015-02-13 | 2018-02-08 | Icahn School Of Medicine At Mount Sinai | Rna containing compositions and methods of their use |
CN107249626A (en) | 2015-02-19 | 2017-10-13 | 辉瑞大药厂 | Neisseria meningitidis compositions and methods thereof |
MX380387B (en) | 2015-03-12 | 2025-03-12 | Zoetis Services Llc | PYOLYSIN METHODS AND COMPOSITIONS. |
AU2016258284C1 (en) | 2015-05-04 | 2020-09-03 | Pfizer Inc. | Group B Streptococcus polysaccharide-protein conjugates, methods for producing conjugates, immunogenic compositions comprising conjugates, and uses thereof |
WO2016180852A1 (en) | 2015-05-12 | 2016-11-17 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for preparing antigen-specific t cells from an umbilical cord blood sample |
WO2016183371A1 (en) | 2015-05-13 | 2016-11-17 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Methods for the treatment or prevention of ischemic tissue damage |
HK1252873A1 (en) | 2015-05-13 | 2019-06-06 | 艾吉纳斯公司 | Vaccines for treatment and prevention of cancer |
AU2016270979B2 (en) | 2015-06-02 | 2020-11-12 | Sanofi Pasteur Inc. | Engineered influenza antigenic polypeptides and immunogenic compositions thereof |
EP3650043A3 (en) | 2015-06-09 | 2020-07-29 | The Board of Regents of the University of Oklahoma | Compositions and treatments for haemophilus influenzae |
CN108291210B (en) | 2015-06-10 | 2022-03-11 | 美国政府(由卫生和人类服务部的部长所代表) | Methods for producing and purifying nucleic acid-containing compositions |
AU2016281904B2 (en) | 2015-06-26 | 2022-08-11 | Seqirus UK Limited | Antigenically matched influenza vaccines |
US10449212B2 (en) | 2015-07-09 | 2019-10-22 | National Institute For Materials Science | Immunostimulating oligonucleotide complex |
KR102225282B1 (en) | 2015-07-21 | 2021-03-10 | 화이자 인코포레이티드 | Immunogenic composition comprising conjugated capsular saccharide antigen, kit comprising same, and use thereof |
WO2017011919A1 (en) | 2015-07-22 | 2017-01-26 | University Of Saskatchewan | Mycoplasma vaccines and uses thereof |
WO2017021266A1 (en) | 2015-07-31 | 2017-02-09 | Bayer Animal Health Gmbh | Enhanced immune response in porcine species |
US11389518B2 (en) | 2015-08-14 | 2022-07-19 | Zoetis Services Llc | Mycoplasma bovis compositions |
EP4480544A3 (en) | 2015-08-25 | 2025-03-26 | Babita Agrawal | Immunomodulatory compositions andmethods of use thereof |
EP3344276B1 (en) | 2015-09-03 | 2020-04-22 | The Board of Regents of the University of Oklahoma | Peptide inhibitors of clostridium difficile tcdb toxin |
LU92821B1 (en) | 2015-09-09 | 2017-03-20 | Mologen Ag | Combination comprising immunostimulatory oligonucleotides |
WO2017048807A1 (en) | 2015-09-17 | 2017-03-23 | Jrx Biotechnology, Inc. | Approaches for improving skin hydration or moisturization |
GB2542425A (en) | 2015-09-21 | 2017-03-22 | Mologen Ag | Means for the treatment of HIV |
WO2017059280A1 (en) | 2015-10-02 | 2017-04-06 | The University Of North Carolina At Chapel Hill | Novel pan-tam inhibitors and mer/axl dual inhibitors |
CN108431214B (en) | 2015-10-05 | 2022-03-01 | 美国政府(由卫生和人类服务部的部长所代表) | Human rotavirus G9P[6] strain and use as vaccine |
JP7098519B2 (en) | 2015-10-08 | 2022-07-11 | ザ ガバナーズ オブ ザ ユニバーシティ オブ アルバータ | Hepatitis C virus E1 / E2 heterodimer and method for producing it |
JP7171433B2 (en) | 2015-10-30 | 2022-11-15 | ザ ユナイテッド ステイツ オブ アメリカ, アズ リプレゼンテッド バイ ザ セクレタリー, デパートメント オブ ヘルス アンド ヒューマン サービシーズ | Compositions and methods for treatment of HER-2 expressing solid tumors |
WO2017085586A1 (en) | 2015-11-20 | 2017-05-26 | Pfizer Inc. | Immunogenic compositions for use in pneumococcal vaccines |
CN108601951B (en) | 2015-12-09 | 2022-11-22 | 金港医疗(澳大利亚)私人有限公司 | Immunomodulatory compositions for treatment |
WO2017123201A1 (en) | 2016-01-11 | 2017-07-20 | Zoetis Services Llc | Novel cross protective vaccine compositions for porcine epidemic diarrhea virus |
EP3407910B1 (en) | 2016-01-29 | 2022-04-13 | Bavarian Nordic A/S | Recombinant modified vaccinia virus ankara (mva) equine encephalitis virus vaccine |
WO2017189448A1 (en) | 2016-04-25 | 2017-11-02 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Bivalent immunogenic conjugate for malaria and typhoid |
WO2017192874A1 (en) | 2016-05-04 | 2017-11-09 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Albumin-binding immunomodulatory compositions and methods of use thereof |
US11173207B2 (en) | 2016-05-19 | 2021-11-16 | The Regents Of The University Of Michigan | Adjuvant compositions |
US11033615B2 (en) | 2016-05-31 | 2021-06-15 | The Government of the United States, As Represented by the Secretary of the Army Fort Detrick, Maryland | Zika virus vaccine and methods of production |
CA3026096A1 (en) | 2016-06-02 | 2017-12-07 | Sanofi Pasteur Inc. | Engineered influenza antigenic polypeptides and immunogenic compositions thereof |
BR112018075078A2 (en) | 2016-06-03 | 2019-03-06 | Sanofi Pasteur Inc. | modification of manipulated influenza hemagglutinin polypeptides |
EP3468590B1 (en) | 2016-06-13 | 2025-01-01 | The United States of America, as represented by the Secretary, Department of Health and Human Services | Nucleic acids encoding zika virus-like particles and their use in zika virus vaccines and diagnostic assays |
EP3474890A1 (en) | 2016-06-22 | 2019-05-01 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften E. V. | Pneumococcal polysaccharide-protein conjugate composition |
EP3269385A1 (en) | 2016-07-12 | 2018-01-17 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Pneumococcal polysaccharide-protein conjugate composition |
WO2018009604A1 (en) | 2016-07-08 | 2018-01-11 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Chimeric dengue/zika viruses live-attenuated zika virus vaccines |
WO2018009603A1 (en) | 2016-07-08 | 2018-01-11 | The United State of America, as represented by the Secretary, Department of Health and Human Service | Chimeric west nile/zika viruses and methods of use |
MY199342A (en) | 2016-08-05 | 2023-10-24 | Sanofi Pasteur Inc | Multivalent pneumococcal polysaccharide-protein conjugate composition |
CN109862908B (en) | 2016-08-05 | 2023-05-02 | 圣诺菲·帕斯图尔公司 | Multivalent pneumococcal polysaccharide-protein conjugate compositions |
US10182146B2 (en) * | 2016-08-22 | 2019-01-15 | Nice Ltd. | System and method for dynamic redundant call recording |
WO2018039629A2 (en) | 2016-08-25 | 2018-03-01 | Northwestern University | Micellar spherical nucleic acids from thermoresponsive, traceless templates |
CN109790220A (en) | 2016-08-25 | 2019-05-21 | 豪夫迈·罗氏有限公司 | The anti-CSF-1R antibody combined with macrophage activation agent is administered intermittently |
US10172933B2 (en) | 2016-10-31 | 2019-01-08 | The United States Of America, As Represented By The Secretary Of Agriculture | Mosaic vaccines for serotype a foot-and-mouth disease virus |
US10751402B2 (en) | 2016-11-09 | 2020-08-25 | Pfizer Inc. | Immunogenic compositions and uses thereof |
CN110072553B (en) | 2016-12-22 | 2023-09-15 | 豪夫迈·罗氏有限公司 | Treatment of tumors with anti-CSF-1R antibodies in combination with anti-PD-L1 antibodies after failure of anti-PD-L1/PD 1 treatment |
CA3050622A1 (en) | 2017-01-20 | 2018-07-26 | Pfizer Inc. | Immunogenic compositions for use in pneumococcal vaccines |
MX372587B (en) | 2017-01-31 | 2020-04-17 | Pfizer | Neisseria meningitidis compositions and methods thereof |
EP3576759A4 (en) | 2017-01-31 | 2020-11-11 | Merck Sharp & Dohme Corp. | PROCESS FOR THE PREPARATION OF CAPSULE POLYSACCHARIDE PROTEIN CONJUGATES FROM STREPTOCOCCUS PNEUMONIAE SEROTYPE 19F |
CN110225764A (en) | 2017-01-31 | 2019-09-10 | 默沙东公司 | The method for preparing polysaccharide-protein conjugate |
US11623945B2 (en) | 2017-02-06 | 2023-04-11 | The United States Of America, As Represented By The Secretary Of Agriculture | Immunostimulating compositions and uses therefore |
KR102701633B1 (en) | 2017-02-24 | 2024-09-02 | 머크 샤프 앤드 돔 엘엘씨 | Pneumococcal conjugate vaccine preparation |
GB201703529D0 (en) | 2017-03-06 | 2017-04-19 | Cambridge Entpr Ltd | Vaccine composition |
US10525119B2 (en) | 2017-03-31 | 2020-01-07 | Boston Medical Center Corporation | Methods and compositions using highly conserved pneumococcal surface proteins |
WO2018201090A1 (en) | 2017-04-28 | 2018-11-01 | Exicure, Inc. | Synthesis of spherical nucleic acids using lipophilic moieties |
US20200115324A1 (en) | 2017-06-11 | 2020-04-16 | Molecular Express, Inc. | Methods and compositions for substance use disorder vaccine formulations and uses thereof |
AU2018290298B2 (en) | 2017-06-23 | 2024-03-28 | Affinivax, Inc. | Immunogenic compositions |
WO2019018744A1 (en) | 2017-07-21 | 2019-01-24 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Neisseria meningitidis immunogenic compositions |
ES2994040T3 (en) | 2017-09-07 | 2025-01-16 | Merck Sharp & Dohme Llc | Pneumococcal polysaccharides and their use in immunogenic polysaccharide-carrier protein conjugates |
TW201920669A (en) | 2017-09-08 | 2019-06-01 | 英商美納治療公司 | HNF4a saRNA compositions and methods of use |
EP3690030A4 (en) | 2017-09-28 | 2021-06-23 | Industry-Academic Cooperation Foundation, Yonsei University | METHOD FOR MANUFACTURING MYELOID-DERIVED SUPPRESSOR CELLS, SUPPRESSOR CELLS MANUFACTURED FROM MYEOLID AND USES THEREOF |
CN111556757A (en) | 2017-10-31 | 2020-08-18 | 西方溶瘤细胞有限公司 | Platform Oncolytic Carriers for Systemic Delivery |
WO2019090138A2 (en) | 2017-11-04 | 2019-05-09 | Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno | Immunogenic conjugates and methods of use thereof |
MX2020005779A (en) | 2017-12-06 | 2020-10-28 | Merck Sharp & Dohme | COMPOSITIONS COMPRISING CONJUGATES OF STREPTOCOCCUS PNEUMONIAE POLYSACCHARIDE WITH PROTEIN AND METHODS OF USE THEREOF. |
WO2019126197A1 (en) | 2017-12-18 | 2019-06-27 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Bacterial polysaccharide-conjugated carrier proteins and use thereof |
KR20200101954A (en) | 2017-12-19 | 2020-08-28 | 메사추세츠 인스티튜트 오브 테크놀로지 | Antigen-adjuvant coupling reagents and methods of use |
EP3743107A1 (en) | 2018-01-22 | 2020-12-02 | The United States of America, as represented by the Secretary, Department of Health and Human Services | Broadly protective inactivated influenza virus vaccine |
EP3752194A4 (en) | 2018-02-13 | 2022-03-16 | Checkmate Pharmaceuticals, Inc. | COMPOSITIONS AND METHODS FOR TUMOR IMMUNOTHERAPY |
WO2019166946A1 (en) | 2018-02-28 | 2019-09-06 | Pfizer Inc. | Il-15 variants and uses thereof |
US12138301B2 (en) * | 2018-03-02 | 2024-11-12 | Elicio Therapeutics, Inc. | Compounds including a mutant KRAS sequence and a lipid and uses thereof |
WO2019173438A1 (en) | 2018-03-06 | 2019-09-12 | Stc. Unm | Compositions and methods for reducing serum triglycerides |
US11576964B2 (en) | 2018-03-28 | 2023-02-14 | Sanofi Pasteur Inc. | Methods of generating broadly protective vaccine compositions comprising hemagglutinin |
WO2019195316A1 (en) | 2018-04-03 | 2019-10-10 | Sanofi | Ferritin proteins |
CA3095174A1 (en) | 2018-04-03 | 2019-10-10 | Sanofi | Antigenic ospa polypeptides |
EP3773704A1 (en) | 2018-04-03 | 2021-02-17 | Sanofi | Antigenic respiratory syncytial virus polypeptides |
EP3773708A2 (en) | 2018-04-03 | 2021-02-17 | Sanofi | Antigenic epstein barr virus polypeptides |
JP2021519600A (en) | 2018-04-03 | 2021-08-12 | サノフイSanofi | Antigenic influenza-ferritin polypeptide |
IL277680B1 (en) | 2018-04-09 | 2025-04-01 | Checkmate Pharmaceuticals Inc | Packaging oligonucleotides into virus-like particles |
KR102602329B1 (en) | 2018-05-23 | 2023-11-16 | 화이자 인코포레이티드 | Antibodies specific for CD3 and their uses |
TWI816396B (en) | 2018-05-23 | 2023-09-21 | 美商輝瑞大藥廠 | Antibodies specific for gucy2c and uses thereof |
EP3574915A1 (en) | 2018-05-29 | 2019-12-04 | Neovacs | Immunogenic product comprising il-4 and/or il-13 for treating disorders associated with aberrant il-4 and/or il 13 expression or activity |
CA3106400A1 (en) | 2018-07-13 | 2020-01-16 | University Of Georgia Research Foundation | Broadly reactive immunogens of influenza h3 virus, compositions and methods of use thereof |
CN110004150B (en) * | 2018-08-01 | 2023-03-10 | 中国农业科学院兰州兽医研究所 | CpG oligonucleotide sequence with immune enhancement activity and application thereof |
US11260119B2 (en) | 2018-08-24 | 2022-03-01 | Pfizer Inc. | Escherichia coli compositions and methods thereof |
US12156910B2 (en) | 2018-11-16 | 2024-12-03 | Versitech Limited | Live attenuated influenza B virus compositions methods of making and using thereof |
WO2020117590A1 (en) | 2018-12-04 | 2020-06-11 | The Rockefeller University | Hiv vaccine immunogens |
WO2020123777A1 (en) | 2018-12-12 | 2020-06-18 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Recombinant mumps virus vaccine expressing genotype g fusion and hemagglutinin-neuraminidase proteins |
US20220016229A1 (en) | 2018-12-12 | 2022-01-20 | Pfizer Inc. | Immunogenic Multiple Hetero-Antigen Polysaccharide-Protein Conjugates and uses thereof |
US20220023410A1 (en) | 2018-12-14 | 2022-01-27 | University Of Georgia Research Foundation, Inc. | Crimean-congo hemorrhagic fever virus replicon particles and use thereof |
US11642406B2 (en) | 2018-12-19 | 2023-05-09 | Merck Sharp & Dohme Llc | Compositions comprising Streptococcus pneumoniae polysaccharide-protein conjugates and methods of use thereof |
WO2020128893A1 (en) | 2018-12-21 | 2020-06-25 | Pfizer Inc. | Combination treatments of cancer comprising a tlr agonist |
WO2020205986A1 (en) | 2019-04-02 | 2020-10-08 | Sanofi | Antigenic multimeric respiratory syncytial virus polypeptides |
WO2020208502A1 (en) | 2019-04-10 | 2020-10-15 | Pfizer Inc. | Immunogenic compositions comprising conjugated capsular saccharide antigens, kits comprising the same and uses thereof |
WO2020228606A1 (en) * | 2019-05-10 | 2020-11-19 | Microbio (Shanghai) Co., Ltd. | Dimeric cpg oligonucleotides for use in modulating immune responses |
CN114450014A (en) * | 2019-06-14 | 2022-05-06 | G科技生物有限责任公司 | Activation of lymphocytic cells and methods of using the same to treat cancer and infectious disorders |
WO2021015987A1 (en) | 2019-07-19 | 2021-01-28 | Merck Sharp & Dohme Corp. | Antigenic glycoprotein e polypeptides, compositions, and methods of use thereof |
CN114222584A (en) | 2019-07-30 | 2022-03-22 | 辉宝动物保健公司 | Composition for mucosal administration to poultry |
KR20220042378A (en) | 2019-07-31 | 2022-04-05 | 사노피 파스퇴르 인코포레이티드 | Polyvalent pneumococcal polysaccharide-protein conjugate composition and method of use thereof |
US20220280491A1 (en) | 2019-08-30 | 2022-09-08 | University Of Rochester | Septin inhibitors for treatment of cancers |
US20230020894A1 (en) | 2019-09-18 | 2023-01-19 | Children's Medical Center Corporation | An anaplastic lymphoma kinase (alk) cancer vaccine and methods of use |
CN110646557A (en) * | 2019-10-12 | 2020-01-03 | 北京航空航天大学 | Urine metabolic markers in glioblastoma patients with IDH gene mutation and their uses |
IL292494A (en) | 2019-11-01 | 2022-06-01 | Pfizer | Preparations of Escherichia coli and their methods |
US20230039456A1 (en) | 2019-12-17 | 2023-02-09 | The U.S.A., As Represented By The Secretary, Department Of Health And Human Services | Live attenuated leishmania parasite vaccines with enhanced safety characteristics |
PH12022551298A1 (en) | 2019-12-17 | 2023-11-20 | Pfizer | Antibodies specific for cd47, pd-l1, and uses thereof |
US20230241196A1 (en) | 2020-01-27 | 2023-08-03 | Oregon State University | Gonorrhea subunit vaccine |
CA3167346A1 (en) | 2020-02-13 | 2021-08-19 | Ramaswamy Kalyanasundaram | Vaccine and methods for detecting and preventing filariasis |
CN115605498A (en) | 2020-02-23 | 2023-01-13 | 辉瑞公司(Us) | Escherichia coli composition and method thereof |
CN115175924A (en) | 2020-02-26 | 2022-10-11 | 港大科桥有限公司 | PD-1 based vaccines against coronavirus infection |
US20230121059A1 (en) | 2020-02-28 | 2023-04-20 | Sanofi Pasteur Inc. | High dose flu vaccine in pediatric subjects |
US11213482B1 (en) | 2020-03-05 | 2022-01-04 | University of Pittsburgh—Of the Commonwealth System of Higher Educat | SARS-CoV-2 subunit vaccine and microneedle array delivery system |
US20230146256A1 (en) | 2020-04-17 | 2023-05-11 | Regents Of The University Of Minnesota | SARS-CoV-2 SPIKE RECEPTOR BINDING DOMAIN AND COMPOSITIONS AND METHODS THEREOF |
EP4138894A4 (en) | 2020-04-20 | 2024-06-26 | The University of Saskatchewan | COMPOSITIONS AND METHODS FOR THE PREVENTION, CONTROL AND DIAGNOSIS OF MYCOBACTERIAL INFECTIONS |
EP3900739A1 (en) | 2020-04-21 | 2021-10-27 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Synthetic streptococcus pneumoniae saccharide conjugates to conserved membrane protein |
US20230226218A1 (en) | 2020-05-11 | 2023-07-20 | Erytech Pharma | Red Cell Extracellular Vesicles (RCEVs) Containing Cargoes and Methods of Use and Production Thereof |
KR20230022246A (en) | 2020-07-17 | 2023-02-14 | 화이자 인코포레이티드 | Therapeutic Antibodies and Uses Thereof |
CA3192786A1 (en) | 2020-08-26 | 2022-03-03 | Pfizer Inc. | Group b streptococcus polysaccharide-protein conjugates, methods for producing conjugates, immunogenic compositions comprising conjugates, and uses thereof |
CA3192500A1 (en) | 2020-09-17 | 2022-03-24 | Laurent REBER | Immunogenic product comprising an ige fragment for treating ige-mediated inflammatory disorders |
WO2022066973A1 (en) | 2020-09-24 | 2022-03-31 | Fred Hutchinson Cancer Research Center | Immunotherapy targeting pbk or oip5 antigens |
WO2022066965A2 (en) | 2020-09-24 | 2022-03-31 | Fred Hutchinson Cancer Research Center | Immunotherapy targeting sox2 antigens |
EP4237428A2 (en) | 2020-10-27 | 2023-09-06 | Pfizer Inc. | Escherichia coli compositions and methods thereof |
US12138302B2 (en) | 2020-10-27 | 2024-11-12 | Pfizer Inc. | Escherichia coli compositions and methods thereof |
WO2024110839A2 (en) | 2022-11-22 | 2024-05-30 | Pfizer Inc. | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof |
US20240000912A1 (en) | 2020-11-04 | 2024-01-04 | Pfizer Inc. | Immunogenic compositions for use in pneumococcal vaccines |
JP2023549736A (en) | 2020-11-10 | 2023-11-29 | ファイザー・インク | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof |
US12357681B2 (en) | 2020-12-23 | 2025-07-15 | Pfizer Inc. | E. coli FimH mutants and uses thereof |
WO2022147373A1 (en) | 2020-12-31 | 2022-07-07 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Antibody-guided pcsk9-mimicking immunogens lacking 9-residue sequence overlap with human proteins |
CA3206754A1 (en) | 2021-02-03 | 2022-08-11 | Ramaswamy Kalyanasundaram | Vaccine and methods for preventing filariasis and dirofilariasis |
KR20240004764A (en) | 2021-04-30 | 2024-01-11 | 칼리버 임뮤노쎄라퓨틱스, 인크. | Oncolytic viruses for modified MHC expression |
TW202306969A (en) | 2021-05-28 | 2023-02-16 | 美商輝瑞大藥廠 | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof |
PE20240090A1 (en) | 2021-05-28 | 2024-01-16 | Pfizer | IMMUNOGENIC COMPOSITIONS COMPRISING CONJUGATED CAPSULAR SACCHARIDE ANTIGENS AND THEIR USES |
WO2022261251A1 (en) | 2021-06-08 | 2022-12-15 | Glyde Bio Inc. | Immunogenic compositions comprising tumour-associated antigen |
EP4104830A1 (en) | 2021-06-16 | 2022-12-21 | Burghardt Wittig | Sequential innate and adaptive immune modulation for cancer treatment |
EP4362934A1 (en) * | 2021-06-28 | 2024-05-08 | Mast Pharma AB | New use of monensin |
WO2023288263A1 (en) | 2021-07-16 | 2023-01-19 | The Board Of Trustees Of The University Of Illinois | Universal vaccine for influenza virus based on tetrameric m2 protein incorporated into nanodiscs |
JP2024532763A (en) | 2021-08-11 | 2024-09-10 | サノフィ パスツール インコーポレイテッド | Truncated influenza neuraminidase and methods of using same - Patents.com |
WO2023059857A1 (en) | 2021-10-08 | 2023-04-13 | Sanofi Pasteur Inc. | Multivalent influenza vaccines |
CZ309696B6 (en) * | 2021-10-20 | 2023-08-02 | Ústav organické chemie a biochemie AV ČR, v. v. i. | Isosteric Isopolar Phosphate Analogues of Phosphorothioate CpG Oligonucleotide ODN 2006 |
MX2024005482A (en) | 2021-11-05 | 2024-05-22 | Sanofi Sa | Hybrid multivalent influenza vaccines comprising hemagglutinin and neuraminidase and methods of using the same. |
IL312545A (en) | 2021-11-05 | 2024-07-01 | Sanofi Pasteur Inc | Multivalent influenza vaccines comprising recombinant hemagglutinin and neuraminidase and methods of using the same |
US20230302112A1 (en) | 2021-11-05 | 2023-09-28 | Sanofi | Respiratory synctial virus rna vaccine |
WO2023102373A1 (en) | 2021-11-30 | 2023-06-08 | Sanofi Pasteur Inc. | Human metapneumovirus vaccines |
JP2024544054A (en) | 2021-11-30 | 2024-11-27 | サノフィ パスツール インコーポレイテッド | Viral vector-based vaccine for human metapneumovirus |
CA3242439A1 (en) | 2021-12-17 | 2023-06-22 | Sanofi | Lyme disease rna vaccine |
EP4463186A1 (en) | 2022-01-13 | 2024-11-20 | Pfizer Inc. | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof |
CN118591621A (en) | 2022-01-27 | 2024-09-03 | 赛诺菲巴斯德有限公司 | Modified Vero cells and methods for using them in virus production |
WO2023161817A1 (en) | 2022-02-25 | 2023-08-31 | Pfizer Inc. | Methods for incorporating azido groups in bacterial capsular polysaccharides |
US20250191693A1 (en) | 2022-03-14 | 2025-06-12 | Sanofi Pasteur, Inc. | Machine-learning techniques in protein design for vaccine generation |
AU2023254171A1 (en) | 2022-04-15 | 2024-10-24 | Stradefy Biosciences, Inc. | Exatecan formulation. |
TW202408567A (en) | 2022-05-06 | 2024-03-01 | 法商賽諾菲公司 | Signal sequences for nucleic acid vaccines |
AU2023268745A1 (en) | 2022-05-11 | 2024-11-07 | Pfizer Inc. | Process for producing of vaccine formulations with preservatives |
EP4547273A1 (en) | 2022-06-29 | 2025-05-07 | Bavarian Nordic A/S | Recombinant modified sarna (vrp) and vaccinia virus ankara (mva) prime-boost regimen |
KR20250054810A (en) | 2022-09-29 | 2025-04-23 | 화이자 인코포레이티드 | Immunogenic composition comprising RSV F protein trimer |
AU2023374764A1 (en) | 2022-11-04 | 2025-06-19 | Sanofi Pasteur Inc. | Respiratory syncytial virus rna vaccination |
WO2024100235A1 (en) | 2022-11-10 | 2024-05-16 | Université Libre de Bruxelles | Group a streptococcus vaccine antigen |
WO2024110827A1 (en) | 2022-11-21 | 2024-05-30 | Pfizer Inc. | Methods for preparing conjugated capsular saccharide antigens and uses thereof |
AU2023403045A1 (en) | 2022-12-01 | 2025-06-12 | Pfizer Inc. | Pneumococcal conjugate vaccine formulations |
WO2024121380A1 (en) | 2022-12-08 | 2024-06-13 | Pierre Fabre Medicament | Vaccinal composition and adjuvant |
US20240189410A1 (en) | 2022-12-13 | 2024-06-13 | Pfizer Inc. | Immunogenic compositions and methods for eliciting an immune response against clostridioides (clostridium) difficile |
TW202438514A (en) | 2022-12-20 | 2024-10-01 | 法商賽諾菲公司 | Rhinovirus mrna vaccine |
AU2024208643A1 (en) | 2023-01-12 | 2025-06-26 | Bavarian Nordic A/S | RECOMBINANT MODIFIED saRNA (VRP) FOR CANCER VACCINE |
WO2024163327A1 (en) | 2023-01-30 | 2024-08-08 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Epstein-barr virus glycoprotein 42 immunogens for vaccination and antibody discovery |
WO2024166008A1 (en) | 2023-02-10 | 2024-08-15 | Pfizer Inc. | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof |
AR132053A1 (en) | 2023-03-02 | 2025-05-21 | Sanofi Pasteur | COMPOSITIONS FOR USE IN THE TREATMENT OF CHLAMYDIA |
WO2024201324A2 (en) | 2023-03-30 | 2024-10-03 | Pfizer Inc. | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof |
WO2024214016A1 (en) | 2023-04-14 | 2024-10-17 | Pfizer Inc. | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof |
WO2024224266A1 (en) | 2023-04-24 | 2024-10-31 | Pfizer Inc. | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof |
TW202500750A (en) | 2023-05-05 | 2025-01-01 | 法商賽諾菲公司 | Compositions for use in treatment of acne |
US20250009865A1 (en) | 2023-05-10 | 2025-01-09 | Sanofi | Combination respiratory mrna vaccines |
TW202508621A (en) | 2023-05-11 | 2025-03-01 | 美商賽諾菲巴斯德公司 | Respiratory syncytial virus vaccine and methods of use |
WO2024241172A2 (en) | 2023-05-19 | 2024-11-28 | Glaxosmithkline Biologicals Sa | Methods for eliciting an immune response to respiratory syncycial virus and streptococcus pneumoniae infection |
WO2024246358A1 (en) | 2023-06-01 | 2024-12-05 | Sanofi | Thermostable compositions comprising mrna lipid nanoparticles |
WO2025006737A1 (en) | 2023-06-30 | 2025-01-02 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Genetically detoxified mutant of neisseria and outer membrane vesicle (omv) vaccine |
WO2025017202A2 (en) | 2023-07-19 | 2025-01-23 | Sanofi | Porphyromonas gingivalis antigenic constructs |
WO2025051975A1 (en) | 2023-09-06 | 2025-03-13 | Sanofi | Modified influenza b hemagglutinin polypeptides and nucleic acids and uses thereof |
WO2025057078A1 (en) | 2023-09-14 | 2025-03-20 | Pfizer Inc. | Adjuvanted immunogenic compositions comprising conjugated pneumococcal capsular saccharide antigens and uses thereof |
WO2025073874A1 (en) | 2023-10-05 | 2025-04-10 | Institut National De Recherche Pour L'agriculture, L'alimentation Et L'environnement | Vaccine composition comprising m2e nanoparticles and ha1 protein |
WO2025106603A1 (en) | 2023-11-16 | 2025-05-22 | Merck Sharp & Dohme Llc | Peptide conjugate vaccine compositions and methods for the treatment of alzheimer's disease |
WO2025106787A1 (en) | 2023-11-17 | 2025-05-22 | Sanofi Pasteur Inc. | Trehalose vaccine formulation |
WO2025133971A1 (en) | 2023-12-23 | 2025-06-26 | Pfizer Inc. | Improved methods for producing bacterial capsular saccharide glycoconjugates |
Citations (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4452775A (en) * | 1982-12-03 | 1984-06-05 | Syntex (U.S.A.) Inc. | Cholesterol matrix delivery system for sustained release of macromolecules |
US5023243A (en) * | 1981-10-23 | 1991-06-11 | Molecular Biosystems, Inc. | Oligonucleotide therapeutic agent and method of making same |
US5595756A (en) * | 1993-12-22 | 1997-01-21 | Inex Pharmaceuticals Corporation | Liposomal compositions for enhanced retention of bioactive agents |
US5629158A (en) * | 1989-03-22 | 1997-05-13 | Cemu Bitecknik Ab | Solid phase diagnosis of medical conditions |
US5705385A (en) * | 1995-06-07 | 1998-01-06 | Inex Pharmaceuticals Corporation | Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer |
US5723335A (en) * | 1994-03-25 | 1998-03-03 | Isis Pharmaceuticals, Inc. | Immune stimulation by phosphorothioate oligonucleotide analogs |
US5753613A (en) * | 1994-09-30 | 1998-05-19 | Inex Pharmaceuticals Corporation | Compositions for the introduction of polyanionic materials into cells |
US5766920A (en) * | 1982-08-11 | 1998-06-16 | Cellcor, Inc. | Ex vivo activation of immune cells |
US5785992A (en) * | 1994-09-30 | 1998-07-28 | Inex Pharmaceuticals Corp. | Compositions for the introduction of polyanionic materials into cells |
US5786189A (en) * | 1989-11-29 | 1998-07-28 | Smithkline Beecham Biologicals (S.A.) | Vaccine |
US5856462A (en) * | 1996-09-10 | 1999-01-05 | Hybridon Incorporated | Oligonucleotides having modified CpG dinucleosides |
US6027726A (en) * | 1994-09-30 | 2000-02-22 | Inex Phamaceuticals Corp. | Glycosylated protein-liposome conjugates and methods for their preparation |
US6030954A (en) * | 1991-09-05 | 2000-02-29 | University Of Connecticut | Targeted delivery of poly- or oligonucleotides to cells |
US6030955A (en) * | 1996-03-21 | 2000-02-29 | The Trustees Of Columbia University In The City Of New York And Imclone Systems, Inc. | Methods of affecting intracellular phosphorylation of tyrosine using phosphorothioate oligonucleotides, and antiangiogenic and antiproliferative uses thereof |
US6090791A (en) * | 1998-01-22 | 2000-07-18 | Taisho Pharmaceutical Co., Ltd. | Method for inducing mucosal immunity |
US6191257B1 (en) * | 1993-04-27 | 2001-02-20 | Baylor College Of Medicine | Natural or recombinant DNA binding proteins as carriers for gene transfer or gene therapy |
US6194388B1 (en) * | 1994-07-15 | 2001-02-27 | The University Of Iowa Research Foundation | Immunomodulatory oligonucleotides |
US6207646B1 (en) * | 1994-07-15 | 2001-03-27 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US6214806B1 (en) * | 1997-02-28 | 2001-04-10 | University Of Iowa Research Foundation | Use of nucleic acids containing unmethylated CPC dinucleotide in the treatment of LPS-associated disorders |
US6218371B1 (en) * | 1998-04-03 | 2001-04-17 | University Of Iowa Research Foundation | Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines |
US6239116B1 (en) * | 1994-07-15 | 2001-05-29 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US6248720B1 (en) * | 1996-07-03 | 2001-06-19 | Brown University Research Foundation | Method for gene therapy using nucleic acid loaded polymeric microparticles |
US6339068B1 (en) * | 1997-05-20 | 2002-01-15 | University Of Iowa Research Foundation | Vectors and methods for immunization or therapeutic protocols |
US20020028784A1 (en) * | 2000-03-10 | 2002-03-07 | Nest Gary Van | Methods of preventing and treating viral infections using immunomodulatory polynucleotide sequences |
US20020042387A1 (en) * | 2000-02-23 | 2002-04-11 | Eyal Raz | Method for treating inflammatory bowel disease and other forms of gastrointestinal inflammation |
US20020055477A1 (en) * | 2000-03-10 | 2002-05-09 | Nest Gary Van | Immunomodulatory formulations and methods for use thereof |
US6406705B1 (en) * | 1997-03-10 | 2002-06-18 | University Of Iowa Research Foundation | Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant |
US20020086839A1 (en) * | 1997-06-06 | 2002-07-04 | Eyal Raz | Inhibitors of DNA immunostimulatory sequence activity |
US20020091097A1 (en) * | 2000-09-07 | 2002-07-11 | Bratzler Robert L. | Nucleic acids for the prevention and treatment of sexually transmitted diseases |
US20020098199A1 (en) * | 2000-03-10 | 2002-07-25 | Gary Van Nest | Methods of suppressing hepatitis virus infection using immunomodulatory polynucleotide sequences |
US20030022852A1 (en) * | 2000-03-10 | 2003-01-30 | Nest Gary Van | Biodegradable immunomodulatory formulations and methods for use thereof |
US6514948B1 (en) * | 1999-07-02 | 2003-02-04 | The Regents Of The University Of California | Method for enhancing an immune response |
US20030026801A1 (en) * | 2000-06-22 | 2003-02-06 | George Weiner | Methods for enhancing antibody-induced cell lysis and treating cancer |
US20030026782A1 (en) * | 1995-02-07 | 2003-02-06 | Arthur M. Krieg | Immunomodulatory oligonucleotides |
US20030049266A1 (en) * | 2000-12-27 | 2003-03-13 | Fearon Karen L. | Immunomodulatory polynucleotides and methods of using the same |
US20030050263A1 (en) * | 1994-07-15 | 2003-03-13 | The University Of Iowa Research Foundation | Methods and products for treating HIV infection |
US20030050268A1 (en) * | 2001-03-29 | 2003-03-13 | Krieg Arthur M. | Immunostimulatory nucleic acid for treatment of non-allergic inflammatory diseases |
US6534062B2 (en) * | 2000-03-28 | 2003-03-18 | The Regents Of The University Of California | Methods for increasing a cytotoxic T lymphocyte response in vivo |
US20030055014A1 (en) * | 2000-12-14 | 2003-03-20 | Bratzler Robert L. | Inhibition of angiogenesis by nucleic acids |
US20030064064A1 (en) * | 1998-09-18 | 2003-04-03 | Dino Dina | Methods of treating IgE-associated disorders and compositions for use therein |
US6544518B1 (en) * | 1999-04-19 | 2003-04-08 | Smithkline Beecham Biologicals S.A. | Vaccines |
US6552006B2 (en) * | 2000-01-31 | 2003-04-22 | The Regents Of The University Of California | Immunomodulatory polynucleotides in treatment of an infection by an intracellular pathogen |
US20030078223A1 (en) * | 1996-01-30 | 2003-04-24 | Eyal Raz | Compositions and methods for modulating an immune response |
US20030087848A1 (en) * | 2000-02-03 | 2003-05-08 | Bratzler Robert L. | Immunostimulatory nucleic acids for the treatment of asthma and allergy |
US6562798B1 (en) * | 1998-06-05 | 2003-05-13 | Dynavax Technologies Corp. | Immunostimulatory oligonucleotides with modified bases and methods of use thereof |
US20030092663A1 (en) * | 1997-09-05 | 2003-05-15 | Eyal Raz | Immunization-free methods for treating antigen-stimulated inflammation in a mammalian host and shifting the host's antigen immune responsiveness to a Th1 phenotype |
US20030100527A1 (en) * | 1994-07-15 | 2003-05-29 | The University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules for activating dendritic cells |
US20030104044A1 (en) * | 1997-05-14 | 2003-06-05 | Semple Sean C. | Compositions for stimulating cytokine secretion and inducing an immune response |
US20030104523A1 (en) * | 2000-09-15 | 2003-06-05 | Stefan Bauer | Process for high throughput screening of CpG-based immuno-agonist/antagonist |
US20030109469A1 (en) * | 1993-08-26 | 2003-06-12 | Carson Dennis A. | Recombinant gene expression vectors and methods for use of same to enhance the immune response of a host to an antigen |
US20030119774A1 (en) * | 2001-09-25 | 2003-06-26 | Marianna Foldvari | Compositions and methods for stimulating an immune response |
US20030125284A1 (en) * | 2000-05-05 | 2003-07-03 | Eyal Raz | Agents that modulate DNA-PK activity and methods of use thereof |
US20030125279A1 (en) * | 1999-07-27 | 2003-07-03 | Claas Junghans | Covalently closed nucleic acid molecules for immunostimulation |
US20030130217A1 (en) * | 2000-02-23 | 2003-07-10 | Eyal Raz | Method for treating inflammatory bowel disease and other forms of gastrointestinal inflammation |
US20030133988A1 (en) * | 2001-08-07 | 2003-07-17 | Fearon Karen L. | Immunomodulatory compositions, formulations, and methods for use thereof |
US20040006010A1 (en) * | 1996-10-11 | 2004-01-08 | Carson Dennis A. | Immunostimulatory polynucleotide/immunomodulatory molecule conjugates |
US20040006034A1 (en) * | 1998-06-05 | 2004-01-08 | Eyal Raz | Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof |
US20040004062A1 (en) * | 2002-05-08 | 2004-01-08 | Devendra Kumar | Plasma-assisted joining |
US20040009942A1 (en) * | 2000-03-10 | 2004-01-15 | Gary Van Nest | Methods of preventing and treating respiratory viral infection using immunomodulatory polynucleotide sequences |
US20040009949A1 (en) * | 2002-06-05 | 2004-01-15 | Coley Pharmaceutical Group, Inc. | Method for treating autoimmune or inflammatory diseases with combinations of inhibitory oligonucleotides and small molecule antagonists of immunostimulatory CpG nucleic acids |
US20040030118A1 (en) * | 1998-05-14 | 2004-02-12 | Hermann Wagner | Methods for regulating hematopoiesis using CpG-oligonucleotides |
US6693086B1 (en) * | 1998-06-25 | 2004-02-17 | National Jewish Medical And Research Center | Systemic immune activation method using nucleic acid-lipid complexes |
US20040053880A1 (en) * | 2002-07-03 | 2004-03-18 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US20040067905A1 (en) * | 2002-07-03 | 2004-04-08 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US6727230B1 (en) * | 1994-03-25 | 2004-04-27 | Coley Pharmaceutical Group, Inc. | Immune stimulation by phosphorothioate oligonucleotide analogs |
US20040092472A1 (en) * | 2002-07-03 | 2004-05-13 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US20050042203A1 (en) * | 1993-10-22 | 2005-02-24 | Institut Pasteur | Nucleotide vector, composition containing such vector and vaccine for immunization against hepatitis |
US20050054601A1 (en) * | 1997-01-23 | 2005-03-10 | Coley Pharmaceutical Gmbh | Pharmaceutical composition comprising a polynucleotide and optionally an antigen especially for vaccination |
US20050059619A1 (en) * | 2002-08-19 | 2005-03-17 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids |
US20050080034A1 (en) * | 2002-09-13 | 2005-04-14 | David Standring | Beta-L-2'-deoxynucleosides for the treatment of resistant HBV strains and combination therapies |
US20060058254A1 (en) * | 2002-12-23 | 2006-03-16 | Dino Dina | Immunostimulatory sequence oligonucleotides and methods of using the same |
US7514414B2 (en) * | 2001-09-24 | 2009-04-07 | The United States Of America As Represented By The Department Of Health And Human Services | Suppressors of CpG oligonucleotides and methods of use |
US7514415B2 (en) * | 2002-08-01 | 2009-04-07 | The United States Of America As Represented By The Department Of Health And Human Services | Method of treating inflammatory arthropathies with suppressors of CpG oligonucleotides |
US7521063B2 (en) * | 2000-01-14 | 2009-04-21 | The United States Of America As Represented By The Department Of Health And Human Services | Multiple CPG oligodeoxynucleotides and their use to induce an immune response |
US7524828B2 (en) * | 1994-07-15 | 2009-04-28 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
Family Cites Families (449)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2010A (en) * | 1841-03-18 | Machine foe | ||
US2005A (en) * | 1841-03-16 | Improvement in the manner of constructing molds for casting butt-hinges | ||
US2004A (en) * | 1841-03-12 | Improvement in the manner of constructing and propelling steam-vessels | ||
US2003A (en) * | 1841-03-12 | Improvement in horizontal windivhlls | ||
US2002A (en) * | 1841-03-12 | Tor and planter for plowing | ||
US3521637A (en) * | 1967-11-28 | 1970-07-28 | Nelson J Waterbury | Tampon or similar sanitary napkin containing vitamin a |
US3627874A (en) | 1969-07-16 | 1971-12-14 | Merck & Co Inc | Vaccine preparation |
US3761585A (en) | 1971-04-05 | 1973-09-25 | Beecham Group Ltd | Vaccines containing modified allergenic material |
US3906092A (en) | 1971-11-26 | 1975-09-16 | Merck & Co Inc | Stimulation of antibody response |
DE2643213C2 (en) * | 1976-09-25 | 1985-02-21 | Bayer Ag, 5090 Leverkusen | Process for attenuating or inactivating microorganisms |
US4469863A (en) | 1980-11-12 | 1984-09-04 | Ts O Paul O P | Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof |
JP2547714B2 (en) | 1981-10-23 | 1996-10-23 | モルキユラ− バイオシステムズ インコ−ポレテツド | Oligonucleotide therapeutic agent and method for producing the same |
ES8301593A1 (en) | 1981-11-16 | 1983-01-01 | Union Ind Y Agro Ganader S A U | Nucleotide enriched humanized milk and process for its preparation |
SE8205892D0 (en) | 1982-10-18 | 1982-10-18 | Bror Morein | IMMUNOGENT MEMBRANE PROTEIN COMPLEX, SET FOR PREPARATION AND USE THEREOF |
SE8405493D0 (en) | 1984-11-01 | 1984-11-01 | Bror Morein | IMMUNOGENT COMPLEX AND KITCHEN FOR PREPARING IT AND USING IT AS IMMUNOSTIMENTING AGENTS |
US5308626A (en) * | 1985-06-28 | 1994-05-03 | Toni N. Mariani | Lymphokine activated effector cells for antibody-dependent cellular cytotoxicity (ADCC) treatment of cancer and other diseases |
ATE71303T1 (en) | 1986-01-14 | 1992-01-15 | Nederlanden Staat | PROCESS FOR THE PREPARATION OF IMMUNOLOGICAL COMPLEXES AND PHARMACEUTICAL COMPOSITION CONTAINING THEM. |
US4806463A (en) | 1986-05-23 | 1989-02-21 | Worcester Foundation For Experimental Biology | Inhibition of HTLV-III by exogenous oligonucleotides |
US5194428A (en) | 1986-05-23 | 1993-03-16 | Worcester Foundation For Experimental Biology | Inhibition of influenza virus replication by oligonucleotide phosphorothioates |
US5059519A (en) | 1986-07-01 | 1991-10-22 | University Of Massachusetts Medical School | Oligonucleotide probes for the determination of the proclivity for development of autoimmune diseases |
US5075109A (en) * | 1986-10-24 | 1991-12-24 | Southern Research Institute | Method of potentiating an immune response |
US5276019A (en) | 1987-03-25 | 1994-01-04 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibitors for replication of retroviruses and for the expression of oncogene products |
US5264423A (en) | 1987-03-25 | 1993-11-23 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibitors for replication of retroviruses and for the expression of oncogene products |
ES2007350A6 (en) | 1987-05-29 | 1989-06-16 | Ganadera Union Ind Agro | FOOD PRODUCTS ENRICHED WITH NUCLEOSIDES AND NOT NUCLEOTIDES FOR THE NUTRITION OF CHILDREN AND ADULTS, AND PROCEDURE FOR THEIR PREPARATION. |
CA1339596C (en) | 1987-08-07 | 1997-12-23 | New England Medical Center Hospitals, Inc. | Viral expression inhibitors |
NZ230747A (en) | 1988-09-30 | 1992-05-26 | Bror Morein | Immunomodulating matrix comprising a complex of at least one lipid and at least one saponin; certain glycosylated triterpenoid saponins derived from quillaja saponaria molina |
US5004810A (en) | 1988-09-30 | 1991-04-02 | Schering Corporation | Antiviral oligomers |
US5087617A (en) * | 1989-02-15 | 1992-02-11 | Board Of Regents, The University Of Texas System | Methods and compositions for treatment of cancer using oligonucleotides |
US5112605A (en) * | 1989-03-17 | 1992-05-12 | Genentech, Inc. | Temporal gamma-interferon administration for allergies |
US5693622A (en) | 1989-03-21 | 1997-12-02 | Vical Incorporated | Expression of exogenous polynucleotide sequences cardiac muscle of a mammal |
US5703055A (en) | 1989-03-21 | 1997-12-30 | Wisconsin Alumni Research Foundation | Generation of antibodies through lipid mediated DNA delivery |
US4958013A (en) | 1989-06-06 | 1990-09-18 | Northwestern University | Cholesteryl modified oligonucleotides |
US5399346A (en) | 1989-06-14 | 1995-03-21 | The United States Of America As Represented By The Department Of Health And Human Services | Gene therapy |
US4981684A (en) * | 1989-10-24 | 1991-01-01 | Coopers Animal Health Limited | Formation of adjuvant complexes |
US5178860A (en) * | 1989-09-01 | 1993-01-12 | Coopers Animal Health Limited | Adjuvant complexes and vaccine made therefrom |
US5399676A (en) * | 1989-10-23 | 1995-03-21 | Gilead Sciences | Oligonucleotides with inverted polarity |
US5676954A (en) | 1989-11-03 | 1997-10-14 | Vanderbilt University | Method of in vivo delivery of functioning foreign genes |
US5457189A (en) | 1989-12-04 | 1995-10-10 | Isis Pharmaceuticals | Antisense oligonucleotide inhibition of papillomavirus |
US5587361A (en) | 1991-10-15 | 1996-12-24 | Isis Pharmaceuticals, Inc. | Oligonucleotides having phosphorothioate linkages of high chiral purity |
US5514788A (en) * | 1993-05-17 | 1996-05-07 | Isis Pharmaceuticals, Inc. | Oligonucleotide modulation of cell adhesion |
US5514577A (en) | 1990-02-26 | 1996-05-07 | Isis Pharmaceuticals, Inc. | Oligonucleotide therapies for modulating the effects of herpes viruses |
US5248670A (en) | 1990-02-26 | 1993-09-28 | Isis Pharmaceuticals, Inc. | Antisense oligonucleotides for inhibiting herpesviruses |
US5166195A (en) | 1990-05-11 | 1992-11-24 | Isis Pharmaceuticals, Inc. | Antisense inhibitors of the human immunodeficiency virus phosphorothioate oligonucleotides |
EP0533838B1 (en) | 1990-06-11 | 1997-12-03 | NeXstar Pharmaceuticals, Inc. | Nucleic acid ligands |
EP0468520A3 (en) | 1990-07-27 | 1992-07-01 | Mitsui Toatsu Chemicals, Inc. | Immunostimulatory remedies containing palindromic dna sequences |
US5245022A (en) * | 1990-08-03 | 1993-09-14 | Sterling Drug, Inc. | Exonuclease resistant terminally substituted oligonucleotides |
HUT63430A (en) | 1990-08-16 | 1993-08-30 | Isis Pharmaceuticals Inc | Process for producing oligonucleotides influencing the effect of cytomegalovirus infection |
US6042838A (en) * | 1991-02-15 | 2000-03-28 | Uab Research Foundation | immunogenic compositions for mucosal administration of pneumococcal surface protein A (PspA) |
AU643141B2 (en) * | 1991-03-15 | 1993-11-04 | Amgen, Inc. | Pulmonary administration of granulocyte colony stimulating factor |
CA2106386A1 (en) | 1991-04-18 | 1992-10-19 | Barbara C. F. Chu | Oligodeoxynucleotides and oligonucleotides useful as decoys for proteins which selectively bind to defined dna sequences |
US5498410A (en) * | 1991-04-22 | 1996-03-12 | Gleich; Gerald J. | Method for the treatment of eosinophil-associated conditions with anionic polymers |
US5681555A (en) | 1991-04-22 | 1997-10-28 | Gleich; Gerald J. | Method for the treatment of bronchial asthma by parenteral administration of anionic polymers |
WO1994008003A1 (en) | 1991-06-14 | 1994-04-14 | Isis Pharmaceuticals, Inc. | ANTISENSE OLIGONUCLEOTIDE INHIBITION OF THE ras GENE |
WO1992021353A1 (en) | 1991-05-31 | 1992-12-10 | Genta Incorporated | Compositions and delivery systems for transdermal administration of neutral oligomers |
US5582986A (en) | 1991-06-14 | 1996-12-10 | Isis Pharmaceuticals, Inc. | Antisense oligonucleotide inhibition of the ras gene |
US5576302A (en) | 1991-10-15 | 1996-11-19 | Isis Pharmaceuticals, Inc. | Oligonucleotides for modulating hepatitis C virus having phosphorothioate linkages of high chiral purity |
EP0667778A4 (en) | 1991-11-15 | 1997-04-16 | Univ Temple | TREATMENT OF MELANOMAS WITH ANTISENSE OLIGONUCLEOTIDES AGAINST THE C-MYB PROTOONCOGEN. |
WO1993010138A1 (en) | 1991-11-18 | 1993-05-27 | Tanox Biosystems, Inc. | Anti-sense oligonucleotides for isotype-specific suppression of immunoglobulin production |
US5858784A (en) | 1991-12-17 | 1999-01-12 | The Regents Of The University Of California | Expression of cloned genes in the lung by aerosol- and liposome-based delivery |
AU3610293A (en) | 1992-02-04 | 1993-09-01 | Chiron Viagene, Inc. | Hepatitis therapeutics |
US5643578A (en) | 1992-03-23 | 1997-07-01 | University Of Massachusetts Medical Center | Immunization by inoculation of DNA transcription unit |
WO1994022468A1 (en) | 1993-04-02 | 1994-10-13 | Anticancer, Inc. | Method for delivering beneficial compositions to hair follicles |
US6498147B2 (en) | 1992-05-22 | 2002-12-24 | The Scripps Research Institute | Suppression of nuclear factor-κb dependent processes using oligonucleotides |
IL105914A0 (en) | 1992-06-04 | 1993-10-20 | Univ California | Methods and compositions for in vivo gene therapy |
US5726518A (en) * | 1992-07-22 | 1998-03-10 | Nikon Corporation | Supporting device of relative moving element of vibration actuator or vibration motor |
US5585479A (en) | 1992-07-24 | 1996-12-17 | The United States Of America As Represented By The Secretary Of The Navy | Antisense oligonucleotides directed against human ELAM-I RNA |
AU678769B2 (en) | 1992-07-27 | 1997-06-12 | Hybridon, Inc. | Oligonucleotide alkylphosphonothioates |
US6107062A (en) * | 1992-07-30 | 2000-08-22 | Inpax, Inc. | Antisense viruses and antisense-ribozyme viruses |
WO1994004196A1 (en) | 1992-08-14 | 1994-03-03 | Imperial Cancer Research Technology Limited | Tumour therapy |
US5429199A (en) * | 1992-08-26 | 1995-07-04 | Kennametal Inc. | Cutting bit and cutting insert |
EP0664833B1 (en) | 1992-10-05 | 1996-12-27 | HYBRIDON, Inc. | Therapeutic anti-hiv oligonucleotide and pharmaceutical |
US5593972A (en) | 1993-01-26 | 1997-01-14 | The Wistar Institute | Genetic immunization |
US5567604A (en) | 1993-04-23 | 1996-10-22 | Aronex Pharmaceuticals, Inc. | Anti-viral guanosine-rich oligonucleotides |
WO1994029461A1 (en) | 1993-06-11 | 1994-12-22 | Commonwealth Scientific And Industrial Research Organisation | Method for specific silencing of genes by dna methylation |
EP0705335A1 (en) * | 1993-06-23 | 1996-04-10 | Genesys Pharma Inc. | Antisense oligonucleotides and therapeutic use thereof in human immunodeficiency virus infection |
JPH09501562A (en) | 1993-07-19 | 1997-02-18 | ジェン−プローブ・インコーポレイテッド | Oligonucleotide having activity against human immunodeficiency virus |
US6004534A (en) | 1993-07-23 | 1999-12-21 | Massachusetts Institute Of Technology | Targeted polymerized liposomes for improved drug delivery |
US6605708B1 (en) | 1993-07-28 | 2003-08-12 | Hybridon, Inc. | Building blocks with carbamate internucleoside linkages and oligonucleotides derived therefrom |
AU705889B2 (en) | 1993-08-26 | 1999-06-03 | Regents Of The University Of California, The | Method, compositions and devices for administration of naked polynucleotides which encode antigens and immunostimulatory peptides |
US5985847A (en) | 1993-08-26 | 1999-11-16 | The Regents Of The University Of California | Devices for administration of naked polynucleotides which encode biologically active peptides |
US5849719A (en) | 1993-08-26 | 1998-12-15 | The Regents Of The University Of California | Method for treating allergic lung disease |
US5679647A (en) | 1993-08-26 | 1997-10-21 | The Regents Of The University Of California | Methods and devices for immunizing a host against tumor-associated antigens through administration of naked polynucleotides which encode tumor-associated antigenic peptides |
US5830877A (en) | 1993-08-26 | 1998-11-03 | The Regents Of The University Of California | Method, compositions and devices for administration of naked polynucleotides which encode antigens and immunostimulatory |
US5804566A (en) | 1993-08-26 | 1998-09-08 | The Regents Of The University Of California | Methods and devices for immunizing a host through administration of naked polynucleotides with encode allergenic peptides |
DE4338704A1 (en) * | 1993-11-12 | 1995-05-18 | Hoechst Ag | Stabilized oligonucleotides and their use |
US6365345B1 (en) | 1993-12-23 | 2002-04-02 | Biognostik Gesellscahft Für Biomokekulare Diagnostik mbH | Antisense nucleic acids for the prevention and treatment of disorders in which expression of c-erbB plays a role |
US5712384A (en) | 1994-01-05 | 1998-01-27 | Gene Shears Pty Ltd. | Ribozymes targeting retroviral packaging sequence expression constructs and recombinant retroviruses containing such constructs |
US5728518A (en) * | 1994-01-12 | 1998-03-17 | The Immune Response Corporation | Antiviral poly-and oligonucleotides |
US5646126A (en) | 1994-02-28 | 1997-07-08 | Epoch Pharmaceuticals | Sterol modified oligonucleotide duplexes having anticancer activity |
CA2190121A1 (en) | 1994-03-15 | 1995-09-21 | Edith Mathiowitz | Polymeric gene delivery system |
US5596091A (en) * | 1994-03-18 | 1997-01-21 | The Regents Of The University Of California | Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleotides |
US5451569A (en) | 1994-04-19 | 1995-09-19 | Hong Kong University Of Science And Technology R & D Corporation Limited | Pulmonary drug delivery system |
US5696248A (en) | 1994-06-15 | 1997-12-09 | Hoechst Aktiengesellschaft | 3'-modified oligonucleotide derivatives |
US5741516A (en) | 1994-06-20 | 1998-04-21 | Inex Pharmaceuticals Corporation | Sphingosomes for enhanced drug delivery |
US5543152A (en) | 1994-06-20 | 1996-08-06 | Inex Pharmaceuticals Corporation | Sphingosomes for enhanced drug delivery |
JPH10502820A (en) | 1994-07-18 | 1998-03-17 | ユニバーシティ・オブ・ノース・カロライナ・アット・チャペル・ヒル | Oligonucleoside compounds and methods for inhibiting tumor growth, invasion and metastasis |
US5646262A (en) * | 1994-07-28 | 1997-07-08 | Georgetown University | Antisense oligonucleotides against hepatitis B viral replication |
WO1996012008A1 (en) | 1994-10-13 | 1996-04-25 | Merck & Co., Inc. | Synthesis of methylase-resistant genes |
US6630455B1 (en) | 1995-01-13 | 2003-10-07 | Vanderbilt University | Methods for inducing mucosal immune responses |
US6008202A (en) * | 1995-01-23 | 1999-12-28 | University Of Pittsburgh | Stable lipid-comprising drug delivery complexes and methods for their production |
US5795587A (en) * | 1995-01-23 | 1998-08-18 | University Of Pittsburgh | Stable lipid-comprising drug delivery complexes and methods for their production |
US5674483A (en) * | 1995-01-31 | 1997-10-07 | National Jewish Medical And Research Center | Treatment for diseases involving inflammation |
DE19502912A1 (en) | 1995-01-31 | 1996-08-01 | Hoechst Ag | G-Cap Stabilized Oligonucleotides |
US5932556A (en) | 1995-09-17 | 1999-08-03 | Tam; Robert C | Methods and compositions for regulation of CD28 expression |
EP0810882A4 (en) | 1995-02-09 | 1999-05-19 | Icn Pharmaceuticals | Methods and compositions for regulation of cd28 expression |
GB9505438D0 (en) | 1995-03-17 | 1995-05-03 | Sod Conseils Rech Applic | Antisense oligonucleotides |
US5703057A (en) | 1995-04-07 | 1997-12-30 | Board Of Regents The University Of Texas System | Expression library immunization |
US6096721A (en) * | 1995-04-13 | 2000-08-01 | Milkhaus Laboratory, Inc. | Method for treating mucositis by sublingual administration of DNA |
CA2192674C (en) | 1995-04-13 | 2001-02-13 | John Mcmichael | Methods for treating respiratory disease |
UA56132C2 (en) | 1995-04-25 | 2003-05-15 | Смітклайн Бічем Байолоджікалс С.А. | Vaccine composition (variants), method for stabilizing qs21 providing resistance against hydrolysis (variants), method for manufacturing vaccine |
US5858987A (en) * | 1995-05-05 | 1999-01-12 | Mitotix, Inc. | E6AP antisense constructs and methods of use |
WO1996035782A1 (en) | 1995-05-11 | 1996-11-14 | Applied Research Systems | Il-6 activity inhibitor |
US5955059A (en) * | 1995-06-06 | 1999-09-21 | Trustees Of Boston University | Use of locally applied DNA fragments |
US7034007B1 (en) * | 1995-06-07 | 2006-04-25 | East Carolina University | Low adenosine anti-sense oligonucleotide, compositions, kit & method for treatment of airway disorders associated with bronchoconstriction, lung inflammation, allergy(ies) & surfactant depletion |
US6040296A (en) * | 1995-06-07 | 2000-03-21 | East Carolina University | Specific antisense oligonucleotide composition & method for treatment of disorders associated with bronchoconstriction and lung inflammation |
US5981501A (en) | 1995-06-07 | 1999-11-09 | Inex Pharmaceuticals Corp. | Methods for encapsulating plasmids in lipid bilayers |
US5994315A (en) | 1995-06-07 | 1999-11-30 | East Carolina University | Low adenosine agent, composition, kit and method for treatment of airway disease |
US5830878A (en) | 1995-06-07 | 1998-11-03 | Megabios Corporation | Cationic lipid: DNA complexes for gene targeting |
EP0832271B8 (en) | 1995-06-07 | 2005-03-02 | INEX Pharmaceuticals Corp. | Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer |
US6025339A (en) * | 1995-06-07 | 2000-02-15 | East Carolina University | Composition, kit and method for treatment of disorders associated with bronchoconstriction and lung inflammation |
CA2225460A1 (en) | 1995-06-23 | 1997-01-09 | Winston Campbell Patterson | Transcriptional regulation of genes encoding vascular endothelial growth factor receptors |
US5985662A (en) | 1995-07-13 | 1999-11-16 | Isis Pharmaceuticals Inc. | Antisense inhibition of hepatitis B virus replication |
EP0840623B1 (en) | 1995-07-21 | 2007-07-18 | Brown University Research Foundation | Compositions for gene therapy comprising nucleic acid loaded polymeric microparticles |
US5968909A (en) | 1995-08-04 | 1999-10-19 | Hybridon, Inc. | Method of modulating gene expression with reduced immunostimulatory response |
US6667293B1 (en) * | 1995-09-12 | 2003-12-23 | Hybridon, Inc. | Use of cyclodextrins to modulate gene expression with reduced immunostimulatory response |
ATE432085T1 (en) | 1995-10-04 | 2009-06-15 | Immunex Corp | STIMULATION FACTOR FOR DENDRITES |
US5736152A (en) * | 1995-10-27 | 1998-04-07 | Atrix Laboratories, Inc. | Non-polymeric sustained release delivery system |
US5780448A (en) | 1995-11-07 | 1998-07-14 | Ottawa Civic Hospital Loeb Research | DNA-based vaccination of fish |
WO1997028259A1 (en) | 1996-01-30 | 1997-08-07 | The Regents Of The University Of California | Gene expression vectors which generate an antigen specific immune response and methods of using the same |
SE9600647D0 (en) | 1996-02-21 | 1996-02-21 | Bror Morein | New use |
US5994316A (en) | 1996-02-21 | 1999-11-30 | The Immune Response Corporation | Method of preparing polynucleotide-carrier complexes for delivery to cells |
SE9600648D0 (en) * | 1996-02-21 | 1996-02-21 | Bror Morein | Receptor binding unit |
US5843770A (en) | 1996-03-11 | 1998-12-01 | The Immune Response Corporation | Antisense constructs directed against viral post-transcriptional regulatory sequences |
US6620805B1 (en) | 1996-03-14 | 2003-09-16 | Yale University | Delivery of nucleic acids by porphyrins |
US6121247A (en) | 1996-03-29 | 2000-09-19 | The Johns Hopkins University | Therapy for allergic diseases |
US6184037B1 (en) | 1996-05-17 | 2001-02-06 | Genemedicine, Inc. | Chitosan related compositions and methods for delivery of nucleic acids and oligonucleotides into a cell |
NZ333607A (en) | 1996-07-10 | 2000-08-25 | Immunex Corp | Method of stimulating the immune system by transfecting dendritic cells |
EP0819758B1 (en) | 1996-07-16 | 2006-09-20 | Archibald James Mixson | Cationic vehicle: DNA complexes and their use in gene therapy |
US5854418A (en) | 1996-07-25 | 1998-12-29 | The Trustees Of Columbia University In The City Of New York | Kaposi's sarcoma-associated herpesvirus (KSHV) viral macrophage inflammatory protein-1α II (vMIP-1α II) and uses thereof |
DE19637223A1 (en) * | 1996-09-13 | 1998-04-09 | Beiersdorf Ag | Removable, self-adhesive device |
US6562345B1 (en) * | 1996-11-12 | 2003-05-13 | City Of Hope | Immuno-reactive peptide CTL epitopes of human cytomegalovirus |
US6797276B1 (en) * | 1996-11-14 | 2004-09-28 | The United States Of America As Represented By The Secretary Of The Army | Use of penetration enhancers and barrier disruption agents to enhance the transcutaneous immune response |
US20060002959A1 (en) * | 1996-11-14 | 2006-01-05 | Government Of The United States | Skin-sctive adjuvants for transcutaneous immuization |
US20060002949A1 (en) * | 1996-11-14 | 2006-01-05 | Army Govt. Of The Usa, As Rep. By Secretary Of The Office Of The Command Judge Advocate, Hq Usamrmc. | Transcutaneous immunization without heterologous adjuvant |
SE9604296D0 (en) | 1996-11-22 | 1996-11-22 | Astra Ab | New pharmaceutical formulation of polypeptides |
AU5720098A (en) | 1996-12-27 | 1998-07-31 | Icn Pharmaceuticals, Inc. | G-rich oligo aptamers and methods of modulating an immune response |
FR2757876B1 (en) | 1996-12-27 | 1999-04-09 | Biovector Therapeutics Sa | CONJUGATES OF A PARTICULATE VECTOR AND OLIGONUCLEOTIDES, THEIR PREPARATION METHOD AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
US20030064945A1 (en) * | 1997-01-31 | 2003-04-03 | Saghir Akhtar | Enzymatic nucleic acid treatment of diseases or conditions related to levels of epidermal growth factor receptors |
GB9702021D0 (en) | 1997-01-31 | 1997-03-19 | Imperial College | Medicaments |
US7517952B1 (en) * | 1997-02-25 | 2009-04-14 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of prostate cancer |
DE69841122D1 (en) * | 1997-03-10 | 2009-10-15 | Coley Pharm Gmbh | Use of non-methylated CpG dinucleotide in combination with aluminum as adjuvants |
US5965542A (en) | 1997-03-18 | 1999-10-12 | Inex Pharmaceuticals Corp. | Use of temperature to control the size of cationic liposome/plasmid DNA complexes |
US6426334B1 (en) | 1997-04-30 | 2002-07-30 | Hybridon, Inc. | Oligonucleotide mediated specific cytokine induction and reduction of tumor growth in a mammal |
US6835395B1 (en) | 1997-05-14 | 2004-12-28 | The University Of British Columbia | Composition containing small multilamellar oligodeoxynucleotide-containing lipid vesicles |
EP1027033B1 (en) * | 1997-05-14 | 2009-07-22 | The University Of British Columbia | High efficiency encapsulation of nucleic acids in lipid vesicles |
CA2289741A1 (en) | 1997-05-19 | 1998-11-26 | Merck & Co., Inc. | Oligonucleotide adjuvant |
US6589940B1 (en) | 1997-06-06 | 2003-07-08 | Dynavax Technologies Corporation | Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof |
US6221882B1 (en) * | 1997-07-03 | 2001-04-24 | University Of Iowa Research Foundation | Methods for inhibiting immunostimulatory DNA associated responses |
US6110745A (en) | 1997-07-24 | 2000-08-29 | Inex Pharmaceuticals Corp. | Preparation of lipid-nucleic acid particles using a solvent extraction and direct hydration method |
US5877309A (en) * | 1997-08-13 | 1999-03-02 | Isis Pharmaceuticals, Inc. | Antisense oligonucleotides against JNK |
DE69833438T2 (en) | 1997-08-19 | 2006-10-26 | Idera Pharmaceuticals, Inc., Cambridge | HIV-SPECIFIC OLIGONUCLEOTIDES AND METHOD FOR THEIR USE |
US6749856B1 (en) | 1997-09-11 | 2004-06-15 | The United States Of America, As Represented By The Department Of Health And Human Services | Mucosal cytotoxic T lymphocyte responses |
HUP0101139A3 (en) * | 1997-12-02 | 2003-11-28 | Powderject Vaccines Inc Madiso | Transdermal delivery of particulate vaccine compositions |
WO1999030686A1 (en) | 1997-12-12 | 1999-06-24 | Inex Pharmaceuticals Corp. | Cationic drugs encapsulated in anionic liposomes |
US7393630B2 (en) * | 1997-12-16 | 2008-07-01 | Novartis Vaccines And Diagnostics, Inc. | Use of microparticles combined with submicron oil-in-water emulsions |
ATE322255T1 (en) | 1997-12-23 | 2006-04-15 | Inex Pharmaceuticals Corp | POLYAMIDE OLIGOMERS |
GB9727262D0 (en) | 1997-12-24 | 1998-02-25 | Smithkline Beecham Biolog | Vaccine |
US20050031638A1 (en) * | 1997-12-24 | 2005-02-10 | Smithkline Beecham Biologicals S.A. | Vaccine |
EP2286834A3 (en) | 1998-02-25 | 2012-01-25 | THE GOVERNMENT OF THE UNITED STATES, as represented by THE SECRETARY OF THE ARMY | Use of skin penetration enhancers and barrier disruption agents to enhance transcutaneous immune response |
ATE271565T1 (en) * | 1998-03-12 | 2004-08-15 | Lucite Int Uk Ltd | POLYMER COMPOSITION |
NZ506603A (en) | 1998-04-09 | 2002-10-25 | Smithkline Beecham Biolog S | Adjuvant compositions comprising polyoxyethylene ether or polyoxyethylene ester |
ATE331739T1 (en) | 1998-04-28 | 2006-07-15 | Inex Pharmaceuticals Corp | POLYANIONIC POLYMERS WITH IMPROVED FUSOGEN CAPACITY |
WO1999056755A1 (en) | 1998-05-06 | 1999-11-11 | University Of Iowa Research Foundation | Methods for the prevention and treatment of parasitic infections and related diseases using cpg oligonucleotides |
ES2272069T3 (en) | 1998-05-22 | 2007-04-16 | Ottawa Health Research Institute | METHODS AND PRODUCTS TO INDUCE IMMUNITY IN MUCOSAS. |
US6881561B1 (en) | 1998-05-27 | 2005-04-19 | Cheil Jedang Corporation | Endonuclease of immune cell, process for producing the same and immune adjuvant using the same |
US6248329B1 (en) * | 1998-06-01 | 2001-06-19 | Ramaswamy Chandrashekar | Parasitic helminth cuticlin nucleic acid molecules and uses thereof |
CA2334960C (en) | 1998-06-10 | 2012-01-03 | Biognostik Gesellschaft Fur Biomolekulare Diagnostik Mbh | Combination of tgf-.beta. inhibition and immune stimulation to treat hyperproliferative diseases |
WO1999066947A1 (en) * | 1998-06-23 | 1999-12-29 | The Board Of Trustees Of The Leland Stanford Junior University | Adjuvant therapy |
US20030022854A1 (en) | 1998-06-25 | 2003-01-30 | Dow Steven W. | Vaccines using nucleic acid-lipid complexes |
US20040247662A1 (en) | 1998-06-25 | 2004-12-09 | Dow Steven W. | Systemic immune activation method using nucleic acid-lipid complexes |
DE69906977T2 (en) | 1998-07-20 | 2004-05-19 | Protiva Biotherapeutics Inc., Burnaby | NUCLEIC ACID COMPLEXES ENCLOSED IN LIPOSOMES |
AU764532B2 (en) | 1998-07-27 | 2003-08-21 | University Of Iowa Research Foundation, The | Stereoisomers of CpG oligonucleotides and related methods |
GB9817052D0 (en) | 1998-08-05 | 1998-09-30 | Smithkline Beecham Biolog | Vaccine |
EP0979869A1 (en) | 1998-08-07 | 2000-02-16 | Hoechst Marion Roussel Deutschland GmbH | Short oligonucleotides for the inhibition of VEGF expression |
EP1104306B1 (en) * | 1998-08-10 | 2006-01-11 | Antigenics Inc. | Compositions of cpg and saponin adjuvants and methods of use thereof |
US20010034330A1 (en) | 1998-08-10 | 2001-10-25 | Charlotte Kensil | Innate immunity-stimulating compositions of CpG and saponin and methods thereof |
ATE507297T1 (en) * | 1998-08-20 | 2011-05-15 | Du Pont | GENES FOR FATTY ACID MODIFYING ENZYMES OF PLANT AND ASSOCIATED FORMATION OF CONJUGATE DOUBLE BONDS |
AU777225B2 (en) | 1998-09-03 | 2004-10-07 | Coley Pharmaceutical Gmbh | G-motif oligonucleotides and uses thereof |
US20020065236A1 (en) * | 1998-09-09 | 2002-05-30 | Yew Nelson S. | CpG reduced plasmids and viral vectors |
FR2783170B1 (en) * | 1998-09-11 | 2004-07-16 | Pasteur Merieux Serums Vacc | IMMUNOSTIMULATING EMULSION |
EP1671646A3 (en) | 1998-09-18 | 2007-08-29 | Dynavax Technologies Corporation | Methods of treating IgE-associated disorders and compositions for use therein |
AU776288B2 (en) | 1998-10-05 | 2004-09-02 | Regents Of The University Of California, The | Methods and adjuvants for stimulating mucosal immunity |
EP1117433A1 (en) | 1998-10-09 | 2001-07-25 | Dynavax Technologies Corporation | Anti hiv compositions comprising immunostimulatory polynucleotides and hiv antigens |
NZ511113A (en) | 1998-10-16 | 2002-09-27 | Smithkline Beecham Biolog S | Adjuvant systems containing an immunostimulant absorbed on to a metal salt particle and vaccines thereof |
AUPP807399A0 (en) | 1999-01-08 | 1999-02-04 | Csl Limited | Improved immunogenic lhrh composition and methods relating thereto |
JP2003520568A (en) | 1999-02-02 | 2003-07-08 | バイオカシェ ファーマシューティカルズ, インコーポレイテッド | Advanced antigen presentation platform |
US6887464B1 (en) * | 1999-02-02 | 2005-05-03 | Biocache Pharmaceuticals, Inc. | Advanced antigen presentation platform |
EP1146907A2 (en) | 1999-02-05 | 2001-10-24 | Genzyme Corporation | Use of cationic lipids to generate anti-tumor immunity |
US6207819B1 (en) | 1999-02-12 | 2001-03-27 | Isis Pharmaceuticals, Inc. | Compounds, processes and intermediates for synthesis of mixed backbone oligomeric compounds |
WO2000054803A2 (en) * | 1999-03-16 | 2000-09-21 | Panacea Pharmaceuticals, Llc | Immunostimulatory nucleic acids and antigens |
FR2790955B1 (en) | 1999-03-19 | 2003-01-17 | Assist Publ Hopitaux De Paris | USE OF STABILIZED OLIGONUCLEOTIDES AS ANTI-TUMOR ACTIVE INGREDIENT |
KR20020000785A (en) | 1999-03-19 | 2002-01-05 | 장 스테판느 | Vaccine |
US6625426B2 (en) * | 1999-03-22 | 2003-09-23 | Ronald Baratono | Combined rear view mirror and telephone |
US6977245B2 (en) * | 1999-04-12 | 2005-12-20 | The United States Of America As Represented By The Department Of Health And Human Services | Oligodeoxynucleotide and its use to induce an immune response |
WO2000061151A2 (en) * | 1999-04-12 | 2000-10-19 | The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Oligodeoxynucleotide and its use to induce an immune response |
WO2000062787A1 (en) | 1999-04-15 | 2000-10-26 | The Regents Of The University Of California | Methods and compositions for use in potentiating antigen presentation by antigen presenting cells |
US6558670B1 (en) * | 1999-04-19 | 2003-05-06 | Smithkline Beechman Biologicals S.A. | Vaccine adjuvants |
AU4978100A (en) | 1999-04-29 | 2000-11-17 | Coley Pharmaceutical Gmbh | Screening for immunostimulatory dna functional modifyers |
WO2000067787A2 (en) | 1999-05-06 | 2000-11-16 | The Immune Response Corporation | Hiv immunogenic compositions and methods |
US6737066B1 (en) * | 1999-05-06 | 2004-05-18 | The Immune Response Corporation | HIV immunogenic compositions and methods |
EP1196558A1 (en) | 1999-06-08 | 2002-04-17 | Aventis Pasteur | Immunostimulant oligonucleotide |
US6479504B1 (en) | 1999-06-16 | 2002-11-12 | The University Of Iowa Research Foundation | Antagonism of immunostimulatory CpG-oligonucleotides by 4-aminoquinolines and other weak bases |
WO2001000232A2 (en) | 1999-06-29 | 2001-01-04 | Smithkline Beecham Biologicals S.A. | Use of cpg as an adjuvant for hiv vaccine |
US20050002958A1 (en) * | 1999-06-29 | 2005-01-06 | Smithkline Beecham Biologicals Sa | Vaccines |
GB9915204D0 (en) | 1999-06-29 | 1999-09-01 | Smithkline Beecham Biolog | Vaccine |
FR2795963A1 (en) * | 1999-07-08 | 2001-01-12 | Pasteur Merieux Serums Vacc | New polynucleotides are useful as vaccines for humans |
US6476000B1 (en) | 1999-08-13 | 2002-11-05 | Hybridon, Inc. | Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides |
DE60041335D1 (en) | 1999-08-19 | 2009-02-26 | Dynavax Tech Corp | METHOD FOR MODULATING AN IMMUNE RESPONSE WITH IMMUNOSTIMULATING SEQUENCES AND COMPOSITIONS THEREFOR |
US20050249794A1 (en) | 1999-08-27 | 2005-11-10 | Semple Sean C | Compositions for stimulating cytokine secretion and inducing an immune response |
US6395678B1 (en) * | 1999-09-01 | 2002-05-28 | Aero-Terra-Aqua Technologies Corporation | Bead and process for removing dissolved metal contaminants |
GB9921147D0 (en) | 1999-09-07 | 1999-11-10 | Smithkline Beecham Biolog | Novel composition |
GB9921146D0 (en) | 1999-09-07 | 1999-11-10 | Smithkline Beecham Biolog | Novel composition |
TR200503031T2 (en) | 1999-09-25 | 2005-09-21 | University Of Iowa Research Foundation | Immunostimulatory nucleic acids |
AU783118B2 (en) * | 1999-09-27 | 2005-09-29 | Coley Pharmaceutical Gmbh | Methods related to immunostimulatory nucleic acid-induced interferon |
US6949520B1 (en) * | 1999-09-27 | 2005-09-27 | Coley Pharmaceutical Group, Inc. | Methods related to immunostimulatory nucleic acid-induced interferon |
WO2001030812A2 (en) * | 1999-10-27 | 2001-05-03 | Chiron Corporation | Activation of hcv-specific t cells |
US7223398B1 (en) | 1999-11-15 | 2007-05-29 | Dynavax Technologies Corporation | Immunomodulatory compositions containing an immunostimulatory sequence linked to antigen and methods of use thereof |
AU772617B2 (en) | 1999-11-19 | 2004-05-06 | Csl Limited | Vaccine compositions |
US20010031262A1 (en) * | 1999-12-06 | 2001-10-18 | Michael Caplan | Controlled delivery of antigens |
WO2001045750A1 (en) | 1999-12-21 | 2001-06-28 | The Regents Of The University Of California | Method for preventing an anaphylactic reaction |
WO2001051083A2 (en) | 2000-01-13 | 2001-07-19 | Antigenics Inc. | Innate immunity-stimulating compositions of cpg and saponin and methods thereof |
EP1311288A1 (en) * | 2000-01-20 | 2003-05-21 | Ottawa Health Research Institute | Immunostimulatory nucleic acids for inducing a th2 immune response |
US6852705B2 (en) * | 2000-01-21 | 2005-02-08 | Merial | DNA vaccines for farm animals, in particular bovines and porcines |
CA2398432C (en) | 2000-01-26 | 2012-06-19 | Hybridon, Inc. | Modulation of oligonucleotide cpg-mediated immune stimulation by positional modification of nucleosides |
AT409085B (en) | 2000-01-28 | 2002-05-27 | Cistem Biotechnologies Gmbh | PHARMACEUTICAL COMPOSITION FOR IMMUNULATING AND PRODUCING VACCINES |
KR100808348B1 (en) | 2000-01-31 | 2008-02-27 | 글락소스미스클라인 바이오로지칼즈 에스.에이. | Vaccines for Immunization for Prevention or Treatment of HIV |
FR2805265B1 (en) | 2000-02-18 | 2002-04-12 | Aventis Pasteur | IMMUNOSTIMULATING OLIGONUCLEOTIDES |
EP1261366A4 (en) | 2000-02-24 | 2003-06-18 | Univ Leland Stanford Junior | ADJUVANT TREATMENT BY ACTIVATING DENDRITIC CELLS IN VIVO |
US20020156033A1 (en) | 2000-03-03 | 2002-10-24 | Bratzler Robert L. | Immunostimulatory nucleic acids and cancer medicament combination therapy for the treatment of cancer |
US20040131628A1 (en) * | 2000-03-08 | 2004-07-08 | Bratzler Robert L. | Nucleic acids for the treatment of disorders associated with microorganisms |
US20020107212A1 (en) | 2000-03-10 | 2002-08-08 | Nest Gary Van | Methods of reducing papillomavirus infection using immunomodulatory polynucleotide sequences |
US7157437B2 (en) * | 2000-03-10 | 2007-01-02 | Dynavax Technologies Corporation | Methods of ameliorating symptoms of herpes infection using immunomodulatory polynucleotide sequences |
US6851845B2 (en) * | 2000-03-10 | 2005-02-08 | The Maitland Company, Inc. | Method and apparatus for processing waste material |
US8246945B2 (en) * | 2000-04-06 | 2012-08-21 | University Of Arkansas | Methods and reagents for decreasing clinical reaction to allergy |
EP1278550A4 (en) | 2000-04-07 | 2004-05-12 | Univ California | SYNERGISTIC IMPROVEMENTS IN POLYNUCLEOTIDE VACCINES |
US7524826B2 (en) | 2000-04-14 | 2009-04-28 | Mcmaster University And Hamilton Health Sciences Corporation | Method of inhibiting the generation of active thrombin on the surface of a cell within an atherosclerotic plaque |
US6321873B1 (en) * | 2000-04-21 | 2001-11-27 | Tra-Lor-Mate, Inc. | Ladder mounting system |
KR100875003B1 (en) | 2000-05-01 | 2008-12-19 | 이데라 파마슈티칼즈, 인코포레이티드 | Modulation of Oligonucleotide CV Mediated Immune Stimulation by Site Modification of Nucleosides |
WO2001085751A1 (en) | 2000-05-09 | 2001-11-15 | Reliable Biopharmaceutical, Inc. | Polymeric compounds useful as prodrugs |
ES2243497T3 (en) * | 2000-05-12 | 2005-12-01 | PHARMACIA & UPJOHN COMPANY LLC | VACCINE COMPOSITION, SAME PREPARATION PROCEDURE AND VERTEBRATE VACCINATION PROCEDURE. |
GB0011903D0 (en) * | 2000-05-18 | 2000-07-05 | Astrazeneca Ab | Combination chemotherapy |
US6339630B1 (en) * | 2000-05-18 | 2002-01-15 | The United States Of America As Represented By The United States Department Of Energy | Sealed drive screw operator |
US20040052763A1 (en) * | 2000-06-07 | 2004-03-18 | Mond James J. | Immunostimulatory RNA/DNA hybrid molecules |
US20020165178A1 (en) * | 2000-06-28 | 2002-11-07 | Christian Schetter | Immunostimulatory nucleic acids for the treatment of anemia, thrombocytopenia, and neutropenia |
EP1322328B1 (en) | 2000-07-27 | 2014-08-20 | Children's Hospital & Research Center at Oakland | Vaccines for broad spectrum protection against diseases caused by neisseria meningitidis |
CA2418036A1 (en) | 2000-07-31 | 2002-02-07 | Yale University | Innate immune system-directed vaccines |
US20020198165A1 (en) * | 2000-08-01 | 2002-12-26 | Bratzler Robert L. | Nucleic acids for the prevention and treatment of gastric ulcers |
JP2004516821A (en) | 2000-09-01 | 2004-06-10 | エピゲノミクス アーゲー | Method for quantifying the degree of methylation of specific cytosine in sequence context 5-CpG-3 on genomic DNA |
AU2002212187A1 (en) * | 2000-09-01 | 2002-03-13 | Epigenomics Ag | Diagnosis of illnesses or predisposition to certain illnesses |
GB0023008D0 (en) | 2000-09-20 | 2000-11-01 | Glaxo Group Ltd | Improvements in vaccination |
US6787524B2 (en) * | 2000-09-22 | 2004-09-07 | Tanox, Inc. | CpG oligonucleotides and related compounds for enhancing ADCC induced by anti-IgE antibodies |
US7262286B2 (en) | 2000-09-26 | 2007-08-28 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory activity of immunostimulatory oligonucleotide analogs by positional chemical changes |
SE0003538D0 (en) * | 2000-09-29 | 2000-09-29 | Isconova Ab | New immunogenic complex |
US7537772B1 (en) * | 2000-10-02 | 2009-05-26 | Emergent Product Development Gaithersburg Inc. | Chlamydia protein, gene sequence and the uses thereof |
FR2814958B1 (en) | 2000-10-06 | 2003-03-07 | Aventis Pasteur | VACCINE COMPOSITION |
DE60131670T2 (en) * | 2000-10-18 | 2008-10-30 | Glaxosmithkline Biologicals S.A. | Vaccines against cancer diseases |
GB0025577D0 (en) | 2000-10-18 | 2000-12-06 | Smithkline Beecham Biolog | Vaccine |
AU2002214868A1 (en) | 2000-11-02 | 2002-05-15 | Inex Pharmaceuticals Corporation | Therapeutic oligonucleotides of reduced toxicity |
CA2430206A1 (en) * | 2000-12-08 | 2002-06-13 | 3M Innovative Properties Company | Screening method for identifying compounds that selectively induce interferon alpha |
ATE398175T1 (en) * | 2000-12-08 | 2008-07-15 | Coley Pharmaceuticals Gmbh | CPG-TYPE NUCLEIC ACIDS AND METHODS OF USE THEREOF |
US7337306B2 (en) * | 2000-12-29 | 2008-02-26 | Stmicroelectronics, Inc. | Executing conditional branch instructions in a data processor having a clustered architecture |
US7713942B2 (en) | 2001-04-04 | 2010-05-11 | Nordic Vaccine Technology A/S | Cage-like microparticle complexes comprising sterols and saponins for delivery of polynucleotides |
US7176296B2 (en) | 2001-04-30 | 2007-02-13 | Idera Pharmaceuticals, Inc. | Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides |
US7105495B2 (en) | 2001-04-30 | 2006-09-12 | Idera Pharmaceuticals, Inc. | Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides |
US20030129605A1 (en) | 2001-05-04 | 2003-07-10 | Dong Yu | Immunostimulatory activity of CpG oligonucleotides containing non-ionic methylphosophonate linkages |
US7314624B2 (en) * | 2001-06-05 | 2008-01-01 | The Regents Of The University Of Michigan | Nanoemulsion vaccines |
AU2002312487A1 (en) | 2001-06-15 | 2003-01-02 | Ribapharm | Nucleoside vaccine adjuvants |
US20040132677A1 (en) | 2001-06-21 | 2004-07-08 | Fearon Karen L. | Chimeric immunomodulatory compounds and methods of using the same-IV |
US7785610B2 (en) | 2001-06-21 | 2010-08-31 | Dynavax Technologies Corporation | Chimeric immunomodulatory compounds and methods of using the same—III |
ES2421532T3 (en) | 2001-06-21 | 2013-09-03 | Dynavax Tech Corp | Chimeric immunomodulatory compounds and methods of use thereof |
AU2002311617A1 (en) | 2001-06-25 | 2003-01-08 | The Regents Of The University Of California | Method for preparation of vesicles loaded with immunostimulatory oligodeoxynucleotides |
US20030003970A1 (en) | 2001-06-28 | 2003-01-02 | Alan Johnson | Portable communications device |
WO2003002065A2 (en) | 2001-06-29 | 2003-01-09 | Chiron Corporation | Hcv e1e2 vaccine compositions |
US6982033B2 (en) * | 2001-07-13 | 2006-01-03 | Donald Hubbard H | Aerobic treatment plant with filter pipe |
WO2003040308A2 (en) | 2001-07-27 | 2003-05-15 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Use of sterically stabilized cationic liposomes to efficiently deliver cpg oligonucleotides in vivo |
US7666674B2 (en) | 2001-07-27 | 2010-02-23 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Use of sterically stabilized cationic liposomes to efficiently deliver CPG oligonucleotides in vivo |
AU2002318944A1 (en) * | 2001-08-01 | 2003-02-17 | Coley Pharmaceutical Gmbh | Methods and compositions relating to plasmacytoid dendritic cells |
CA2456201A1 (en) | 2001-08-10 | 2003-02-27 | Dynavax Technologies Corporation | Immunomodulatory oligonucleotide formulations and methods for use thereof |
AU2002361468A1 (en) * | 2001-08-14 | 2003-03-18 | The Government Of The United States Of America As Represented By The Secretary Of Health And Human S | Method for rapid generation of mature dendritic cells |
CN1604795B (en) * | 2001-08-17 | 2010-05-26 | 科勒制药股份公司 | Combinatorial motif immunostimulatory oligopeptides with increased activity |
EP1427445A4 (en) | 2001-08-30 | 2006-09-06 | 3M Innovative Properties Co | METHOD FOR MATURIZING PLASMACYTIDES DENDRITIC CELLS USING IMMUNE RESPONSE MODIFYING MOLECULES |
DK1434603T3 (en) | 2001-09-28 | 2010-04-26 | Purdue Research Foundation | Method of treatment using ligand-immunogen conjugates |
WO2003031573A2 (en) * | 2001-10-05 | 2003-04-17 | Coley Pharmaceutical Gmbh | Toll-like receptor 3 signaling agonists and antagonists |
KR20050048539A (en) | 2001-10-06 | 2005-05-24 | 메리얼엘엘씨 | CpG formulations and related methods |
EP1455593B1 (en) | 2001-10-06 | 2013-07-24 | Merial Limited | Methods and compositions for promoting growth and innate immunity in young animals |
US20030139364A1 (en) * | 2001-10-12 | 2003-07-24 | University Of Iowa Research Foundation | Methods and products for enhancing immune responses using imidazoquinoline compounds |
US7276489B2 (en) | 2002-10-24 | 2007-10-02 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends |
WO2003035836A2 (en) | 2001-10-24 | 2003-05-01 | Hybridon Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends |
AU2002340662B2 (en) | 2001-11-07 | 2008-07-03 | Tekmira Pharmaceuticals Corporation | Mucosal adjuvants comprising an oligonucleotide and a cationic lipid |
AU2002343728A1 (en) | 2001-11-16 | 2003-06-10 | 3M Innovative Properties Company | Methods and compositions related to irm compounds and toll-like receptor pathways |
TW200303759A (en) * | 2001-11-27 | 2003-09-16 | Schering Corp | Methods for treating cancer |
CA2469082A1 (en) * | 2001-12-04 | 2003-06-12 | Raj K. Puri | Chimeric molecule for the treatment of th2-like cytokine mediated disorders |
DE10161755B4 (en) * | 2001-12-15 | 2005-12-15 | Infineon Technologies Ag | Contact pin for testing microelectronic components with spherical contacts |
US8466116B2 (en) * | 2001-12-20 | 2013-06-18 | The Unites States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Use of CpG oligodeoxynucleotides to induce epithelial cell growth |
US7615227B2 (en) * | 2001-12-20 | 2009-11-10 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Use of CpG oligodeoxynucleotides to induce angiogenesis |
WO2003055514A1 (en) | 2001-12-21 | 2003-07-10 | Antigenics Inc. | Compositions comprising immunoreactive reagents and saponins, and methods of use thereof |
EP1474432A1 (en) | 2002-02-04 | 2004-11-10 | Biomira Inc. | Immunostimulatory, covalently lipidated oligonucleotides |
US8088388B2 (en) | 2002-02-14 | 2012-01-03 | United Biomedical, Inc. | Stabilized synthetic immunogen delivery system |
US20030232443A1 (en) | 2002-06-18 | 2003-12-18 | Isis Pharmaceuticals Inc. | Antisense modulation of centromere protein B expression |
RU2302865C2 (en) | 2002-04-04 | 2007-07-20 | Коли Фармасьютикал Гмбх | Immunostimulating g,u-containing olygoribonucleotides |
IL164214A0 (en) * | 2002-04-11 | 2005-12-18 | Zymogenetics Inc | Use of interleukin-24 to treat ovarian cancer |
KR20050009697A (en) * | 2002-04-22 | 2005-01-25 | 바이오니취 라이프 사이언시즈 인코포레이티드 | Oligonucleotide compositions and their use for the modulation of immune responses |
US6948271B2 (en) * | 2002-05-06 | 2005-09-27 | Innovative Supply, Inc. | Identification and tracking system for deceased bodies |
CA2485400A1 (en) | 2002-05-10 | 2003-11-20 | Inex Pharmaceuticals Corporation | Methylated immunostimulatory oligonucleotides and methods of using the same |
WO2003094829A2 (en) | 2002-05-10 | 2003-11-20 | Inex Pharmaceuticals Corporation | Pathogen vaccines and methods for using the same |
US20040009944A1 (en) | 2002-05-10 | 2004-01-15 | Inex Pharmaceuticals Corporation | Methylated immunostimulatory oligonucleotides and methods of using the same |
US20060228342A1 (en) | 2002-05-28 | 2006-10-12 | Robinson Ramirez-Pineda | Method for generating antigen-presenting cells |
CA2388049A1 (en) | 2002-05-30 | 2003-11-30 | Immunotech S.A. | Immunostimulatory oligonucleotides and uses thereof |
US20040013688A1 (en) | 2002-07-03 | 2004-01-22 | Cambridge Scientific, Inc. | Vaccines to induce mucosal immunity |
US7807803B2 (en) * | 2002-07-03 | 2010-10-05 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US7605138B2 (en) | 2002-07-03 | 2009-10-20 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
AU2003255969A1 (en) | 2002-07-17 | 2004-02-02 | Coley Pharmaceutical Gmbh | Use of cpg nucleic acids in prion-disease |
CN1468957A (en) | 2002-07-19 | 2004-01-21 | 中国人民解放军第二军医大学 | A plasmid used as an adjuvant for human therapeutic vaccines |
US20050209183A1 (en) | 2002-07-25 | 2005-09-22 | Phenion Gmbh & Co. Kg | Cosmetic or pharmaceutical preparations comprising nucleic acids based on non-methylated CPG motifs |
EP1393745A1 (en) | 2002-07-29 | 2004-03-03 | Hybridon, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5'ends |
EP1551376A4 (en) | 2002-08-12 | 2010-10-06 | Dynavax Tech Corp | Immunomodulatory compositions, methods of making, and methods of use thereof |
US6928476B2 (en) * | 2002-08-23 | 2005-08-09 | Mirra, Inc. | Peer to peer remote data storage and collaboration |
US6744084B2 (en) * | 2002-08-29 | 2004-06-01 | Micro Technology, Inc. | Two-transistor pixel with buried reset channel and method of formation |
US6994870B2 (en) * | 2002-09-18 | 2006-02-07 | Jaw-Ji Tsai | Local nasal immunotherapy with allergen strip for allergic rhinitis |
US8263091B2 (en) * | 2002-09-18 | 2012-09-11 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Method of treating and preventing infections in immunocompromised subjects with immunostimulatory CpG oligonucleotides |
WO2004026888A2 (en) | 2002-09-19 | 2004-04-01 | Coley Pharmaceutical Gmbh | Toll-like receptor 9 (tlr9) from various mammalian species |
US6988995B2 (en) * | 2002-09-30 | 2006-01-24 | Carl Zeiss Meditec, Inc. | Method and system for detecting the effects of Alzheimer's disease in the human retina |
US8043622B2 (en) * | 2002-10-08 | 2011-10-25 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Method of treating inflammatory lung disease with suppressors of CpG oligonucleotides |
WO2004039829A2 (en) | 2002-10-29 | 2004-05-13 | Coley Pharmaceutical Group, Ltd. | Use of cpg oligonucleotides in the treatment of hepatitis c virus infection |
JP4976653B2 (en) * | 2002-11-01 | 2012-07-18 | ザ ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ アズ リプレゼンティッド バイ ザ セクレタリー オブ ザ デパートメント オブ ヘルス アンド ヒューマン サービシス | Method for preventing infections caused by bioterrorism pathogens using immunostimulatory CpG oligonucleotides |
US20040248837A1 (en) | 2002-11-01 | 2004-12-09 | Eyal Raz | Methods of treating pulmonary fibrotic disorders |
AU2003300919A1 (en) * | 2002-12-11 | 2004-06-30 | Coley Pharmaceutical Gmbh | 5' cpg nucleic acids and methods of use |
KR100525321B1 (en) | 2002-12-13 | 2005-11-02 | 안웅식 | Pharmaceutical composition for prophylaxis and treatment of papillomavirus-derived diseases comprising papillomavirus antigen protein and CpG-oligodeoxynucleotide |
JP2006516099A (en) | 2002-12-23 | 2006-06-22 | ダイナバックス テクノロジーズ コーポレイション | Branched immunomodulatory compounds and methods of using the compounds |
JP4726630B2 (en) | 2003-01-16 | 2011-07-20 | イデラ ファーマシューティカルズ インコーポレイテッド | Modulating the immunostimulatory properties of oligonucleotide-based compounds by using modified immunostimulatory dinucleotides |
US7189781B2 (en) * | 2003-03-13 | 2007-03-13 | H.B. Fuller Licensing & Finance Inc. | Moisture curable, radiation curable sealant composition |
CA2519922A1 (en) | 2003-03-24 | 2004-10-07 | Intercell Ag | Use of alum and a th1 immune response inducing adjuvant for enhancing immune responses |
AU2004224762B2 (en) | 2003-03-26 | 2009-12-24 | Kuros Us Llc | Packaging of immunostimulatory oligonucleotides into virus-like particles: method of preparation and use |
WO2004087203A2 (en) * | 2003-04-02 | 2004-10-14 | Coley Pharmaceutical Group, Ltd. | Immunostimulatory nucleic acid oil-in-water formulations for topical application |
US20050004144A1 (en) * | 2003-04-14 | 2005-01-06 | Regents Of The University Of California | Combined use of IMPDH inhibitors with toll-like receptor agonists |
WO2004094671A2 (en) | 2003-04-22 | 2004-11-04 | Coley Pharmaceutical Gmbh | Methods and products for identification and assessment of tlr ligands |
JP3887346B2 (en) * | 2003-04-28 | 2007-02-28 | 株式会社東芝 | Video signal processing apparatus, video signal processing method, and video display apparatus |
KR20060012622A (en) | 2003-05-16 | 2006-02-08 | 하이브리돈, 인코포레이티드 | Synergistic Cancer Treatment Using Immunomers with Chemotherapy |
EP1484336A1 (en) * | 2003-06-02 | 2004-12-08 | Pevion Biotech Ltd. | Methods for synthesizing conformationally constrained peptides, peptidometics and the use thereof as synthetic vaccines |
US8008267B2 (en) | 2003-06-11 | 2011-08-30 | Idera Pharmaceuticals, Inc. | Stabilized immunomodulatory oligonucleotides |
KR20060018267A (en) * | 2003-06-13 | 2006-02-28 | 다이이치 아스비오파마 가부시키가이샤 | Pharmaceutical composition for the prevention or treatment of Th1 type immune disease |
ES2350043T3 (en) * | 2003-06-17 | 2011-01-17 | Mannkind Corporation | COMPOSITIONS TO PRODUCE, INCREASE AND MAINTAIN IMMUNE RESPONSES AGAINST RESTRICTED MHC CLASS I EPITOPES, FOR PROPHYLACTIC OR THERAPEUTIC PURPOSES. |
BRPI0411514A (en) | 2003-06-20 | 2006-08-01 | Coley Pharm Gmbh | small molecule toll-like receptor antagonists |
US20040265833A1 (en) | 2003-06-23 | 2004-12-30 | Cathy Lofton-Day | Methods and nucleic acids for the analysis of colorectal cell proliferative disorders |
US20060251623A1 (en) | 2003-07-10 | 2006-11-09 | Caytos Biotechnology Ag | Packaged virus-like particles |
EP1648502B1 (en) | 2003-07-11 | 2010-12-01 | Intercell AG | Hcv vaccines |
US20050013812A1 (en) * | 2003-07-14 | 2005-01-20 | Dow Steven W. | Vaccines using pattern recognition receptor-ligand:lipid complexes |
EP2363141A1 (en) | 2003-07-15 | 2011-09-07 | Idera Pharmaceuticals, Inc. | Compsition comprising two oligonucleotides linked directly at their 3'ends wherein at leat one oligonucleotide has an accessible 5'end and the compound further comprising IL-2 used for synergistically stimulating an immune response in a patient. |
EP1646427A1 (en) * | 2003-07-22 | 2006-04-19 | Cytos Biotechnology AG | Cpg-packaged liposomes |
CA2535527A1 (en) | 2003-08-28 | 2005-03-10 | The Immune Response Corporation | Immunogenic hiv compositions and related methods |
DE602004026891D1 (en) * | 2003-09-05 | 2010-06-10 | Anadys Pharmaceuticals Inc | TLR7 LIGANDS FOR THE TREATMENT OF HEPATITIS C |
EP1671643A1 (en) | 2003-09-08 | 2006-06-21 | Intellectual Property Consulting Inc. | Medicinal composition for treating chronic hepatitis c |
GB0321615D0 (en) * | 2003-09-15 | 2003-10-15 | Glaxo Group Ltd | Improvements in vaccination |
WO2005027920A1 (en) * | 2003-09-19 | 2005-03-31 | Pfizer Products Inc. | 2-alkylidene-19-nor-vitamin d derivatives for the treatment of rickets or vitamin d deficiency |
AU2004275876B2 (en) * | 2003-09-25 | 2011-03-31 | Coley Pharmaceutical Gmbh | Nucleic acid-lipophilic conjugates |
CA2542099A1 (en) | 2003-10-11 | 2005-04-21 | Inex Pharmaceuticals Corporation | Methods and compositions for enhancing innate immunity and antibody dependent cellular cytotoxicity |
US20050087538A1 (en) * | 2003-10-23 | 2005-04-28 | Wolfe Darrell R. | Iceless multiple can cooler |
US20050215501A1 (en) | 2003-10-24 | 2005-09-29 | Coley Pharmaceutical Group, Inc. | Methods and products for enhancing epitope spreading |
EP1728863A3 (en) | 2003-10-30 | 2006-12-20 | Coley Pharmaceutical GmbH | C-class oligonucleotide analogs with enhanced immunostimulatory potency |
US20050239733A1 (en) | 2003-10-31 | 2005-10-27 | Coley Pharmaceutical Gmbh | Sequence requirements for inhibitory oligonucleotides |
US20050100983A1 (en) * | 2003-11-06 | 2005-05-12 | Coley Pharmaceutical Gmbh | Cell-free methods for identifying compounds that affect toll-like receptor 9 (TLR9) signaling |
JP4088246B2 (en) * | 2003-12-05 | 2008-05-21 | 富士通株式会社 | Ring network master setting method and apparatus |
EP2060269A3 (en) | 2003-12-08 | 2009-08-19 | Hybridon, Inc. | Modulation of immunostimulatory properties by small oligonucleotide-based compounds |
US9090673B2 (en) | 2003-12-12 | 2015-07-28 | City Of Hope | Synthetic conjugate of CpG DNA and T-help/CTL peptide |
US20070172315A1 (en) * | 2003-12-18 | 2007-07-26 | Barrett Robert K | Method and Apparatus for Creating Soil or Rock Subsurface Support |
EP1550458A1 (en) | 2003-12-23 | 2005-07-06 | Vectron Therapeutics AG | Synergistic liposomal adjuvants |
KR100558851B1 (en) | 2004-01-08 | 2006-03-10 | 학교법인연세대학교 | CJ oligodeoxynucleotide variants with increased immunomodulatory capacity |
AU2005213460A1 (en) * | 2004-02-06 | 2005-08-25 | Mayo Foundation For Medical Education And Research | Complexed polypeptide and adjuvant for improved vaccines |
US20050181035A1 (en) | 2004-02-17 | 2005-08-18 | Dow Steven W. | Systemic immune activation method using non CpG nucleic acids |
TW200533750A (en) | 2004-02-19 | 2005-10-16 | Coley Pharm Group Inc | Immunostimulatory viral RNA oligonucleotides |
CN1918293A (en) | 2004-02-20 | 2007-02-21 | 莫洛根股份公司 | Substituted non-coding nucleic acid molecule for therapeutic or prophylaxis immunological stimulus for human and higher animal |
US20050266015A1 (en) | 2004-03-12 | 2005-12-01 | Hybridon, Inc. | Enhanced activity of HIV vaccine using a second generation immunomodulatory oligonucleotide |
WO2005111057A2 (en) * | 2004-04-02 | 2005-11-24 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids for inducing il-10 responses |
US7303881B2 (en) * | 2004-04-30 | 2007-12-04 | Pds Biotechnology Corporation | Antigen delivery compositions and methods of use |
WO2005115449A1 (en) * | 2004-05-28 | 2005-12-08 | Alk-Abelló A/S | Method of treating allergy and infection by eliciting an iga antibody response |
US8399025B2 (en) * | 2004-06-04 | 2013-03-19 | Board Of Regents, The University Of Texas System | Polyamine modified particles |
AU2005326144A1 (en) * | 2004-06-08 | 2006-08-03 | Coley Pharmaceutical Gmbh | Abasic oligonucleotide as carrier platform for antigen and immunostimulatory agonist and antagonist |
US7756043B1 (en) * | 2004-06-09 | 2010-07-13 | Sprint Communications Company L.P. | Method for identifying high traffic origin-destination node pairs in a packet based network |
US7498425B2 (en) | 2004-06-15 | 2009-03-03 | Idera Pharmaceuticals, Inc. | Immunostimulatory oligonucleotide multimers |
KR20070028537A (en) | 2004-06-15 | 2007-03-12 | 이데라 파마슈티칼즈, 인코포레이티드 | Immunostimulatory oligonucleotide multimers |
US8175282B2 (en) * | 2004-06-25 | 2012-05-08 | The Tc Group A/S | Method of evaluating perception intensity of an audio signal and a method of controlling an input audio signal on the basis of the evaluation |
JP2008512350A (en) * | 2004-07-01 | 2008-04-24 | イェール ユニバーシティ | Polymeric substances that are targeted and loaded with drugs at high density |
JP2008506683A (en) * | 2004-07-18 | 2008-03-06 | コーリー ファーマシューティカル グループ, リミテッド | Methods and compositions for inducing innate immune responses |
KR100958505B1 (en) | 2004-07-18 | 2010-05-17 | 씨에스엘 리미티드 | Oligonucleotide Preparations to Induce Immunostimulatory Complexes and Enhanced Interferon-gamma Responses |
WO2006015560A1 (en) | 2004-08-09 | 2006-02-16 | Mologen Ag | Immunomodulating agent used in conjunction with chemotherapy |
US20060058261A1 (en) * | 2004-09-15 | 2006-03-16 | Andre Aube | Chitin derivatives for hyperlipidemia |
MY159370A (en) | 2004-10-20 | 2016-12-30 | Coley Pharm Group Inc | Semi-soft-class immunostimulatory oligonucleotides |
KR100721928B1 (en) * | 2004-11-05 | 2007-05-28 | 주식회사 바이오씨에스 | Pharmaceutical composition for the treatment or prevention of skin diseases containing CJ oligodeoxynucleotide |
WO2006053090A2 (en) | 2004-11-08 | 2006-05-18 | Idera Pharmaceuticals | Synergistic inhibition of vegf and modulation of the immune response |
US20060171968A1 (en) | 2005-01-07 | 2006-08-03 | Alk-Abello A/S | Method of preventive treatment of allergy by oromucosal administration of an allergy vaccine |
JP2008531018A (en) * | 2005-02-24 | 2008-08-14 | コーリー ファーマシューティカル グループ,インコーポレイテッド | Immunostimulatory oligonucleotide |
BRPI0610449A2 (en) | 2005-04-08 | 2012-01-10 | Coley Pharm Group Inc | Methods to Treat Asthma Exacerbated by Infectious Disease |
US20060241076A1 (en) | 2005-04-26 | 2006-10-26 | Coley Pharmaceutical Gmbh | Modified oligoribonucleotide analogs with enhanced immunostimulatory activity |
US7325152B2 (en) * | 2005-06-30 | 2008-01-29 | Infineon Technologies Ag | Synchronous signal generator |
NZ565311A (en) * | 2005-07-07 | 2009-10-30 | Pfizer | Anti-ctla-4 antibody and cpg-motif-containing synthetic oligodeoxynucleotide combination therapy for cancer treatment |
AU2006284889B2 (en) * | 2005-08-31 | 2011-08-18 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Methods of altering an immune response induced by CpG oligodeoxynucleotides |
US20090306177A1 (en) | 2005-09-16 | 2009-12-10 | Coley Pharmaceutical Gmbh | Modulation of Immunostimulatory Properties of Short Interfering Ribonucleic Acid (Sirna) by Nucleotide Modification |
EP1945766A2 (en) | 2005-09-16 | 2008-07-23 | Coley Pharmaceutical GmbH | Immunostimulatory single-stranded ribonucleic acid with phosphodiester backbone |
EA200800943A1 (en) | 2005-09-27 | 2008-12-30 | Коли Фармасьютикал Гмбх | MODULATION OF TLR-MEDIATED IMMUNE RESPONSES WITH THE USE OF OLIGONUCLEOTIDE ADAPTERS |
EP1937812A2 (en) * | 2005-10-12 | 2008-07-02 | Cancer Research Technology Limited | Methods and compositions for treating immune disorders |
US20070093439A1 (en) | 2005-10-25 | 2007-04-26 | Idera Pharmaceuticals, Inc. | Short immunomodulatory oligonucleotides |
US20070243209A1 (en) * | 2005-10-28 | 2007-10-18 | Health Research, Inc. | Compositions and methods for prevention and treatment of fungal diseases |
EP1940472A1 (en) * | 2005-10-28 | 2008-07-09 | Index Pharmaceuticals AB | Composition and method for the prevention, treatment and/or alleviation of an inflammatory disease |
WO2007052058A1 (en) | 2005-11-04 | 2007-05-10 | Novartis Vaccines And Diagnostics Srl | Influenza vaccines including combinations of particulate adjuvants and immunopotentiators |
NZ592713A (en) | 2005-11-04 | 2012-12-21 | Novartis Vaccines & Diagnostic | Adjuvanted influenza vaccines including a cytokine-inducing agents other than an agonist of Toll-Like Receptor 9 |
US7776834B2 (en) | 2005-11-07 | 2010-08-17 | Idera Pharmaceuticals, Inc. | Immunostimulatory properties of oligonucleotide-based compounds comprising modified immunostimulatory dinucleotides |
CA2628306C (en) | 2005-11-07 | 2014-06-17 | Sudhir Agrawal | Immunostimulatory oligonucleotide-based compounds with glycerol-linked dinucleotides and modified guanosines at cpg and uses thereof |
CA2630118A1 (en) | 2005-11-07 | 2007-05-18 | Sudhir Agrawal | Immunostimulatory properties of oligonucleotide-based compounds comprising modified immunostimulatory dinucleotides |
US7470674B2 (en) | 2005-11-07 | 2008-12-30 | Idera Pharmaceuticals, Inc. | Immunostimulatory properties of oligonucleotide-based compounds comprising modified immunostimulatory dinucleotides |
PL1957647T3 (en) * | 2005-11-25 | 2015-07-31 | Zoetis Belgium S A | Immunostimulatory oligoribonucleotides |
CN101379195B (en) | 2005-12-20 | 2012-05-09 | 艾德拉药物股份有限公司 | Palindromic Immune Modulatory Oligonucleotides (IMOs) containing palindromic fragments of varying lengthsTM) Immunostimulating activity of |
EP1991678B2 (en) * | 2006-02-15 | 2020-07-15 | Rechtsanwalt Thomas Beck | Compositions and methods for oligonucleotide formulations |
DE102006007433A1 (en) | 2006-02-17 | 2007-08-23 | Curevac Gmbh | Adjuvant in the form of a lipid-modified nucleic acid |
WO2008019018A2 (en) * | 2006-08-03 | 2008-02-14 | William Soo Hoo | Bioactive molecular matrix and methods of use in the treatment of disease |
US20080124366A1 (en) * | 2006-08-06 | 2008-05-29 | Ohlfest John R | Methods and Compositions for Treating Tumors |
US20080171716A1 (en) * | 2006-08-16 | 2008-07-17 | Protiva Biotherapeutics, Inc. | Nucleic acid modulation of toll-like receptor-mediated immune stimulation |
US8027888B2 (en) | 2006-08-31 | 2011-09-27 | Experian Interactive Innovation Center, Llc | Online credit card prescreen systems and methods |
WO2008033432A2 (en) | 2006-09-12 | 2008-03-20 | Coley Pharmaceutical Group, Inc. | Immune modulation by chemically modified ribonucleosides and oligoribonucleotides |
ES2387327T5 (en) * | 2006-09-26 | 2024-11-19 | Access To Advanced Health Inst | Vaccine composition containing a synthetic adjuvant |
US20090181078A1 (en) * | 2006-09-26 | 2009-07-16 | Infectious Disease Research Institute | Vaccine composition containing synthetic adjuvant |
PT2078080E (en) | 2006-09-27 | 2015-09-18 | Coley Pharm Gmbh | Cpg oligonucleotide analogs containing hydrophobic t analogs with enhanced immunostimulatory activity |
BRPI0719445A2 (en) | 2006-09-27 | 2013-12-10 | Coley Pharm Group Inc | COMPOSITIONS OF TLR AND ANTIVIAL LIGANDS. |
WO2008139262A2 (en) * | 2006-10-26 | 2008-11-20 | Coley Pharmaceutical Gmbh | Oligoribonucleotides and uses thereof |
US20090142362A1 (en) * | 2006-11-06 | 2009-06-04 | Avant Immunotherapeutics, Inc. | Peptide-based vaccine compositions to endogenous cholesteryl ester transfer protein (CETP) |
BRPI0718360A2 (en) * | 2006-12-04 | 2013-11-12 | Univ Illinois | "COMPOSITIONS AND METHODS FOR CANCER TREATMENT WITH COUPREDOXINS AND RICH DNA IN CPG" |
US8057804B2 (en) * | 2006-12-28 | 2011-11-15 | The Trustees Of The University Of Pennsylvania | Herpes simplex virus combined subunit vaccines and methods of use thereof |
WO2008085486A1 (en) * | 2006-12-28 | 2008-07-17 | The Trustees Of The University Of Pennsylvania | Herpes simplex virus combined subunit vaccines and methods of use thereof |
US9452209B2 (en) * | 2007-04-20 | 2016-09-27 | Glaxosmithkline Biologicals Sa | Influenza vaccine |
KR20100010509A (en) | 2007-05-17 | 2010-02-01 | 콜레이 파마시티컬 그룹, 인코포레이티드 | Class a oligonucleotides with immunostimulatory potency |
CA2696460A1 (en) * | 2007-08-13 | 2009-02-19 | Pfizer Inc. | Combination motif immune stimulatory oligonucleotides with improved activity |
CA2697049A1 (en) * | 2007-08-21 | 2009-02-26 | Dynavax Technologies Corporation | Composition and methods of making and using influenza proteins |
US9370531B2 (en) * | 2007-08-31 | 2016-06-21 | New York University | Method of providing patient specific immune response in amyloidoses and protein aggregation disorders |
US7892567B2 (en) * | 2007-10-01 | 2011-02-22 | Board Of Regents, The University Of Texas System | Methods and compositions for immunization against chlamydial infection and disease |
CN101820908A (en) | 2007-10-09 | 2010-09-01 | 科利制药公司 | Immunostimulatory oligonucleotide analogs comprising modified sugar moieties |
AR069704A1 (en) * | 2007-12-18 | 2010-02-10 | Alcon Res Ltd | SYSTEM OF ADMINISTRATION OF RNAI OF INTERFERENCE AND USES OF THE SAME |
US7720322B2 (en) * | 2008-06-30 | 2010-05-18 | Intuitive Surgical, Inc. | Fiber optic shape sensor |
TWI351288B (en) * | 2008-07-04 | 2011-11-01 | Univ Nat Pingtung Sci & Tech | Cpg dna adjuvant in avian vaccines |
US20100166782A1 (en) * | 2008-07-25 | 2010-07-01 | Martha Karen Newell | Clip inhibitors and methods of modulating immune function |
US8053422B2 (en) * | 2008-12-04 | 2011-11-08 | The United States Of America As Represented By The Department Of Health And Human Services | Anti-cancer oligodeoxynucleotides |
-
1996
- 1996-10-30 US US08/738,652 patent/US6207646B1/en not_active Expired - Lifetime
-
1997
- 1997-10-30 EP EP06115792A patent/EP1714969A3/en not_active Withdrawn
- 1997-10-30 CN CNB971993521A patent/CN100338086C/en not_active Expired - Lifetime
- 1997-10-30 AU AU52424/98A patent/AU5242498A/en not_active Abandoned
- 1997-10-30 ES ES97947311T patent/ES2268736T3/en not_active Expired - Lifetime
- 1997-10-30 EP EP10186177.1A patent/EP2360252B8/en not_active Expired - Lifetime
- 1997-10-30 DE DE69736331T patent/DE69736331T2/en not_active Revoked
- 1997-10-30 EP EP06115801A patent/EP1746159A3/en not_active Withdrawn
- 1997-10-30 EP EP97947311A patent/EP0948510B1/en not_active Revoked
- 1997-10-30 ES ES10186177.1T patent/ES2624859T3/en not_active Expired - Lifetime
- 1997-10-30 CA CA2270345A patent/CA2270345C/en not_active Expired - Lifetime
- 1997-10-30 KR KR1019997003873A patent/KR100689942B1/en not_active Expired - Lifetime
- 1997-10-30 DK DK97947311T patent/DK0948510T3/en active
- 1997-10-30 JP JP52078498A patent/JP2001503267A/en active Pending
- 1997-10-30 WO PCT/US1997/019791 patent/WO1998018810A1/en active IP Right Grant
- 1997-10-30 EP EP10186108A patent/EP2322615A1/en not_active Withdrawn
- 1997-10-30 PT PT97947311T patent/PT948510E/en unknown
- 1997-10-30 AT AT97947311T patent/ATE332966T1/en active
- 1997-10-30 NZ NZ335397A patent/NZ335397A/en not_active IP Right Cessation
- 1997-10-30 CN CNA2007101300520A patent/CN101265285A/en active Pending
-
2001
- 2001-03-27 US US09/818,918 patent/US20030050261A1/en not_active Abandoned
- 2001-12-14 AU AU97249/01A patent/AU775185B2/en not_active Expired
-
2003
- 2003-03-03 JP JP2003056446A patent/JP2003286174A/en not_active Withdrawn
- 2003-05-09 US US10/435,656 patent/US20050277604A1/en not_active Abandoned
- 2003-07-03 US US10/613,916 patent/US20050070491A1/en not_active Abandoned
- 2003-09-10 JP JP2003319045A patent/JP2004041224A/en not_active Withdrawn
- 2003-10-03 US US10/679,710 patent/US20040147468A1/en not_active Abandoned
- 2003-12-22 US US10/743,625 patent/US20040132685A1/en not_active Abandoned
-
2004
- 2004-01-30 US US10/769,282 patent/US7674777B2/en not_active Expired - Fee Related
- 2004-04-02 US US10/817,165 patent/US20040198688A1/en not_active Abandoned
- 2004-04-23 US US10/831,647 patent/US7402572B2/en not_active Expired - Fee Related
- 2004-05-17 US US10/847,642 patent/US20050004061A1/en not_active Abandoned
- 2004-06-24 US US10/877,407 patent/US20040229835A1/en not_active Abandoned
- 2004-07-02 US US10/884,852 patent/US20050059625A1/en not_active Abandoned
- 2004-07-09 US US10/888,785 patent/US7517861B2/en not_active Expired - Fee Related
- 2004-07-09 US US10/888,449 patent/US20050049215A1/en not_active Abandoned
- 2004-07-16 US US10/894,862 patent/US8058249B2/en not_active Expired - Fee Related
- 2004-07-16 US US10/894,657 patent/US20050054602A1/en not_active Abandoned
- 2004-08-26 US US10/928,762 patent/US20050123523A1/en not_active Abandoned
- 2004-10-01 US US10/956,494 patent/US7879810B2/en not_active Expired - Fee Related
- 2004-10-01 US US10/956,745 patent/US20050239732A1/en not_active Abandoned
- 2004-10-13 AU AU2004218696A patent/AU2004218696B2/en not_active Expired
- 2004-10-22 US US10/972,301 patent/US20050215500A1/en not_active Abandoned
- 2004-11-12 US US10/987,146 patent/US20050148537A1/en not_active Abandoned
-
2005
- 2005-01-07 US US11/031,460 patent/US8158592B2/en not_active Expired - Fee Related
- 2005-01-14 US US11/036,527 patent/US7723022B2/en not_active Expired - Fee Related
- 2005-02-25 US US11/067,587 patent/US8129351B2/en not_active Expired - Fee Related
- 2005-05-23 US US11/134,918 patent/US20050267064A1/en not_active Abandoned
- 2005-12-07 US US11/296,572 patent/US20060089326A1/en not_active Abandoned
-
2006
- 2006-08-11 US US11/503,483 patent/US7723500B2/en not_active Expired - Fee Related
- 2006-09-22 US US11/526,197 patent/US20070078104A1/en not_active Abandoned
- 2006-11-10 US US11/598,207 patent/US8258106B2/en not_active Expired - Fee Related
-
2007
- 2007-06-05 US US11/810,353 patent/US20080026011A1/en not_active Abandoned
-
2008
- 2008-07-25 JP JP2008192729A patent/JP5082063B2/en not_active Expired - Lifetime
- 2008-10-09 US US12/248,493 patent/US20090202575A1/en not_active Abandoned
-
2009
- 2009-03-25 US US12/383,824 patent/US7888327B2/en not_active Expired - Fee Related
-
2010
- 2010-03-10 JP JP2010053784A patent/JP2010150280A/en active Pending
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5023243A (en) * | 1981-10-23 | 1991-06-11 | Molecular Biosystems, Inc. | Oligonucleotide therapeutic agent and method of making same |
US5766920A (en) * | 1982-08-11 | 1998-06-16 | Cellcor, Inc. | Ex vivo activation of immune cells |
US4452775A (en) * | 1982-12-03 | 1984-06-05 | Syntex (U.S.A.) Inc. | Cholesterol matrix delivery system for sustained release of macromolecules |
US5629158A (en) * | 1989-03-22 | 1997-05-13 | Cemu Bitecknik Ab | Solid phase diagnosis of medical conditions |
US5786189A (en) * | 1989-11-29 | 1998-07-28 | Smithkline Beecham Biologicals (S.A.) | Vaccine |
US6030954A (en) * | 1991-09-05 | 2000-02-29 | University Of Connecticut | Targeted delivery of poly- or oligonucleotides to cells |
US6191257B1 (en) * | 1993-04-27 | 2001-02-20 | Baylor College Of Medicine | Natural or recombinant DNA binding proteins as carriers for gene transfer or gene therapy |
US20030109469A1 (en) * | 1993-08-26 | 2003-06-12 | Carson Dennis A. | Recombinant gene expression vectors and methods for use of same to enhance the immune response of a host to an antigen |
US20050042203A1 (en) * | 1993-10-22 | 2005-02-24 | Institut Pasteur | Nucleotide vector, composition containing such vector and vaccine for immunization against hepatitis |
US5595756A (en) * | 1993-12-22 | 1997-01-21 | Inex Pharmaceuticals Corporation | Liposomal compositions for enhanced retention of bioactive agents |
US5723335A (en) * | 1994-03-25 | 1998-03-03 | Isis Pharmaceuticals, Inc. | Immune stimulation by phosphorothioate oligonucleotide analogs |
US6727230B1 (en) * | 1994-03-25 | 2004-04-27 | Coley Pharmaceutical Group, Inc. | Immune stimulation by phosphorothioate oligonucleotide analogs |
US20050009774A1 (en) * | 1994-07-15 | 2005-01-13 | University Of Iowa Research Foundation | Immunomodulatory oligonucleotides |
US20050123523A1 (en) * | 1994-07-15 | 2005-06-09 | The University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US7524828B2 (en) * | 1994-07-15 | 2009-04-28 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US20050037403A1 (en) * | 1994-07-15 | 2005-02-17 | University Of Iowa Research Foundation | Immunomodulatory oligonucleotides |
US6194388B1 (en) * | 1994-07-15 | 2001-02-27 | The University Of Iowa Research Foundation | Immunomodulatory oligonucleotides |
US6207646B1 (en) * | 1994-07-15 | 2001-03-27 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US20030100527A1 (en) * | 1994-07-15 | 2003-05-29 | The University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules for activating dendritic cells |
US7517861B2 (en) * | 1994-07-15 | 2009-04-14 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US6239116B1 (en) * | 1994-07-15 | 2001-05-29 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US20050004061A1 (en) * | 1994-07-15 | 2005-01-06 | The University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US20040106568A1 (en) * | 1994-07-15 | 2004-06-03 | University Of Iowa Research Foundation | Methods for treating and preventing infectious disease |
US20030050261A1 (en) * | 1994-07-15 | 2003-03-13 | Krieg Arthur M. | Immunostimulatory nucleic acid molecules |
US20050059625A1 (en) * | 1994-07-15 | 2005-03-17 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US20050037985A1 (en) * | 1994-07-15 | 2005-02-17 | Krieg Arthur M. | Methods and products for treating HIV infection |
US20050054602A1 (en) * | 1994-07-15 | 2005-03-10 | The University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US20050032736A1 (en) * | 1994-07-15 | 2005-02-10 | The University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US20040087538A1 (en) * | 1994-07-15 | 2004-05-06 | University Of Iowa Research Foundation | Methods of treating cancer using immunostimulatory oligonucleotides |
US20050049215A1 (en) * | 1994-07-15 | 2005-03-03 | The University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US20050049216A1 (en) * | 1994-07-15 | 2005-03-03 | The University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US20030050263A1 (en) * | 1994-07-15 | 2003-03-13 | The University Of Iowa Research Foundation | Methods and products for treating HIV infection |
US20040087534A1 (en) * | 1994-07-15 | 2004-05-06 | University Of Iowa Research Foundation | Immunomodulatory oligonucleotides |
US5753613A (en) * | 1994-09-30 | 1998-05-19 | Inex Pharmaceuticals Corporation | Compositions for the introduction of polyanionic materials into cells |
US5785992A (en) * | 1994-09-30 | 1998-07-28 | Inex Pharmaceuticals Corp. | Compositions for the introduction of polyanionic materials into cells |
US6027726A (en) * | 1994-09-30 | 2000-02-22 | Inex Phamaceuticals Corp. | Glycosylated protein-liposome conjugates and methods for their preparation |
US20030026782A1 (en) * | 1995-02-07 | 2003-02-06 | Arthur M. Krieg | Immunomodulatory oligonucleotides |
US5705385A (en) * | 1995-06-07 | 1998-01-06 | Inex Pharmaceuticals Corporation | Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer |
US20030078223A1 (en) * | 1996-01-30 | 2003-04-24 | Eyal Raz | Compositions and methods for modulating an immune response |
US6030955A (en) * | 1996-03-21 | 2000-02-29 | The Trustees Of Columbia University In The City Of New York And Imclone Systems, Inc. | Methods of affecting intracellular phosphorylation of tyrosine using phosphorothioate oligonucleotides, and antiangiogenic and antiproliferative uses thereof |
US6248720B1 (en) * | 1996-07-03 | 2001-06-19 | Brown University Research Foundation | Method for gene therapy using nucleic acid loaded polymeric microparticles |
US5856462A (en) * | 1996-09-10 | 1999-01-05 | Hybridon Incorporated | Oligonucleotides having modified CpG dinucleosides |
US20040006010A1 (en) * | 1996-10-11 | 2004-01-08 | Carson Dennis A. | Immunostimulatory polynucleotide/immunomodulatory molecule conjugates |
US20050054601A1 (en) * | 1997-01-23 | 2005-03-10 | Coley Pharmaceutical Gmbh | Pharmaceutical composition comprising a polynucleotide and optionally an antigen especially for vaccination |
US6214806B1 (en) * | 1997-02-28 | 2001-04-10 | University Of Iowa Research Foundation | Use of nucleic acids containing unmethylated CPC dinucleotide in the treatment of LPS-associated disorders |
US20050043529A1 (en) * | 1997-03-10 | 2005-02-24 | Coley Pharmaceutical Gmbh | Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant |
US6406705B1 (en) * | 1997-03-10 | 2002-06-18 | University Of Iowa Research Foundation | Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant |
US20030091599A1 (en) * | 1997-03-10 | 2003-05-15 | Coley Pharmaceutical Gmbh | Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant |
US20030104044A1 (en) * | 1997-05-14 | 2003-06-05 | Semple Sean C. | Compositions for stimulating cytokine secretion and inducing an immune response |
US20050032734A1 (en) * | 1997-05-20 | 2005-02-10 | Krieg Arthur M. | Vectors and methods for immunization or therapeutic protocols |
US6339068B1 (en) * | 1997-05-20 | 2002-01-15 | University Of Iowa Research Foundation | Vectors and methods for immunization or therapeutic protocols |
US20020086839A1 (en) * | 1997-06-06 | 2002-07-04 | Eyal Raz | Inhibitors of DNA immunostimulatory sequence activity |
US20030092663A1 (en) * | 1997-09-05 | 2003-05-15 | Eyal Raz | Immunization-free methods for treating antigen-stimulated inflammation in a mammalian host and shifting the host's antigen immune responsiveness to a Th1 phenotype |
US6090791A (en) * | 1998-01-22 | 2000-07-18 | Taisho Pharmaceutical Co., Ltd. | Method for inducing mucosal immunity |
US6218371B1 (en) * | 1998-04-03 | 2001-04-17 | University Of Iowa Research Foundation | Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines |
US20020064515A1 (en) * | 1998-04-03 | 2002-05-30 | Krieg Arthur M. | Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines |
US20040030118A1 (en) * | 1998-05-14 | 2004-02-12 | Hermann Wagner | Methods for regulating hematopoiesis using CpG-oligonucleotides |
US6562798B1 (en) * | 1998-06-05 | 2003-05-13 | Dynavax Technologies Corp. | Immunostimulatory oligonucleotides with modified bases and methods of use thereof |
US20040092468A1 (en) * | 1998-06-05 | 2004-05-13 | David Schwartz | Immunostimulatory oligonucleotides with modified bases and methods of use thereof |
US20040006034A1 (en) * | 1998-06-05 | 2004-01-08 | Eyal Raz | Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof |
US6693086B1 (en) * | 1998-06-25 | 2004-02-17 | National Jewish Medical And Research Center | Systemic immune activation method using nucleic acid-lipid complexes |
US20030064064A1 (en) * | 1998-09-18 | 2003-04-03 | Dino Dina | Methods of treating IgE-associated disorders and compositions for use therein |
US6544518B1 (en) * | 1999-04-19 | 2003-04-08 | Smithkline Beecham Biologicals S.A. | Vaccines |
US20030119773A1 (en) * | 1999-07-02 | 2003-06-26 | Raz Eyal R. | Method for enhancing an immune response |
US6514948B1 (en) * | 1999-07-02 | 2003-02-04 | The Regents Of The University Of California | Method for enhancing an immune response |
US20030125279A1 (en) * | 1999-07-27 | 2003-07-03 | Claas Junghans | Covalently closed nucleic acid molecules for immunostimulation |
US7521063B2 (en) * | 2000-01-14 | 2009-04-21 | The United States Of America As Represented By The Department Of Health And Human Services | Multiple CPG oligodeoxynucleotides and their use to induce an immune response |
US6552006B2 (en) * | 2000-01-31 | 2003-04-22 | The Regents Of The University Of California | Immunomodulatory polynucleotides in treatment of an infection by an intracellular pathogen |
US20030087848A1 (en) * | 2000-02-03 | 2003-05-08 | Bratzler Robert L. | Immunostimulatory nucleic acids for the treatment of asthma and allergy |
US20020042387A1 (en) * | 2000-02-23 | 2002-04-11 | Eyal Raz | Method for treating inflammatory bowel disease and other forms of gastrointestinal inflammation |
US20030130217A1 (en) * | 2000-02-23 | 2003-07-10 | Eyal Raz | Method for treating inflammatory bowel disease and other forms of gastrointestinal inflammation |
US20020028784A1 (en) * | 2000-03-10 | 2002-03-07 | Nest Gary Van | Methods of preventing and treating viral infections using immunomodulatory polynucleotide sequences |
US20030022852A1 (en) * | 2000-03-10 | 2003-01-30 | Nest Gary Van | Biodegradable immunomodulatory formulations and methods for use thereof |
US20040009942A1 (en) * | 2000-03-10 | 2004-01-15 | Gary Van Nest | Methods of preventing and treating respiratory viral infection using immunomodulatory polynucleotide sequences |
US20020098199A1 (en) * | 2000-03-10 | 2002-07-25 | Gary Van Nest | Methods of suppressing hepatitis virus infection using immunomodulatory polynucleotide sequences |
US20020055477A1 (en) * | 2000-03-10 | 2002-05-09 | Nest Gary Van | Immunomodulatory formulations and methods for use thereof |
US20030059773A1 (en) * | 2000-03-10 | 2003-03-27 | Gary Van Nest | Immunomodulatory formulations and methods for use thereof |
US20030129251A1 (en) * | 2000-03-10 | 2003-07-10 | Gary Van Nest | Biodegradable immunomodulatory formulations and methods for use thereof |
US7183111B2 (en) * | 2000-03-10 | 2007-02-27 | Dynavax Technologies Corporation | Immunomodulatory formulations and methods for use thereof |
US6534062B2 (en) * | 2000-03-28 | 2003-03-18 | The Regents Of The University Of California | Methods for increasing a cytotoxic T lymphocyte response in vivo |
US20030125284A1 (en) * | 2000-05-05 | 2003-07-03 | Eyal Raz | Agents that modulate DNA-PK activity and methods of use thereof |
US20030026801A1 (en) * | 2000-06-22 | 2003-02-06 | George Weiner | Methods for enhancing antibody-induced cell lysis and treating cancer |
US20020091097A1 (en) * | 2000-09-07 | 2002-07-11 | Bratzler Robert L. | Nucleic acids for the prevention and treatment of sexually transmitted diseases |
US20030104523A1 (en) * | 2000-09-15 | 2003-06-05 | Stefan Bauer | Process for high throughput screening of CpG-based immuno-agonist/antagonist |
US20030055014A1 (en) * | 2000-12-14 | 2003-03-20 | Bratzler Robert L. | Inhibition of angiogenesis by nucleic acids |
US20030049266A1 (en) * | 2000-12-27 | 2003-03-13 | Fearon Karen L. | Immunomodulatory polynucleotides and methods of using the same |
US20030050268A1 (en) * | 2001-03-29 | 2003-03-13 | Krieg Arthur M. | Immunostimulatory nucleic acid for treatment of non-allergic inflammatory diseases |
US20030133988A1 (en) * | 2001-08-07 | 2003-07-17 | Fearon Karen L. | Immunomodulatory compositions, formulations, and methods for use thereof |
US7514414B2 (en) * | 2001-09-24 | 2009-04-07 | The United States Of America As Represented By The Department Of Health And Human Services | Suppressors of CpG oligonucleotides and methods of use |
US20030119774A1 (en) * | 2001-09-25 | 2003-06-26 | Marianna Foldvari | Compositions and methods for stimulating an immune response |
US20040004062A1 (en) * | 2002-05-08 | 2004-01-08 | Devendra Kumar | Plasma-assisted joining |
US20040009949A1 (en) * | 2002-06-05 | 2004-01-15 | Coley Pharmaceutical Group, Inc. | Method for treating autoimmune or inflammatory diseases with combinations of inhibitory oligonucleotides and small molecule antagonists of immunostimulatory CpG nucleic acids |
US20040067905A1 (en) * | 2002-07-03 | 2004-04-08 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US20040092472A1 (en) * | 2002-07-03 | 2004-05-13 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US20040053880A1 (en) * | 2002-07-03 | 2004-03-18 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US7514415B2 (en) * | 2002-08-01 | 2009-04-07 | The United States Of America As Represented By The Department Of Health And Human Services | Method of treating inflammatory arthropathies with suppressors of CpG oligonucleotides |
US20050059619A1 (en) * | 2002-08-19 | 2005-03-17 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids |
US20050080034A1 (en) * | 2002-09-13 | 2005-04-14 | David Standring | Beta-L-2'-deoxynucleosides for the treatment of resistant HBV strains and combination therapies |
US20060058254A1 (en) * | 2002-12-23 | 2006-03-16 | Dino Dina | Immunostimulatory sequence oligonucleotides and methods of using the same |
Cited By (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7674777B2 (en) | 1994-07-15 | 2010-03-09 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US7713529B2 (en) | 1994-07-15 | 2010-05-11 | University Of Iowa Research Foundation | Methods for treating and preventing infectious disease |
US7223741B2 (en) | 1994-07-15 | 2007-05-29 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US8129351B2 (en) * | 1994-07-15 | 2012-03-06 | The University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US7402572B2 (en) | 1994-07-15 | 2008-07-22 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US8058249B2 (en) | 1994-07-15 | 2011-11-15 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US8008266B2 (en) | 1994-07-15 | 2011-08-30 | University Of Iowa Foundation | Methods of treating cancer using immunostimulatory oligonucleotides |
US7935675B1 (en) | 1994-07-15 | 2011-05-03 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US7517861B2 (en) | 1994-07-15 | 2009-04-14 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US7723500B2 (en) | 1994-07-15 | 2010-05-25 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US8114848B2 (en) | 1994-07-15 | 2012-02-14 | The United States Of America As Represented By The Department Of Health And Human Services | Immunomodulatory oligonucleotides |
US8148340B2 (en) | 1994-07-15 | 2012-04-03 | The United States Of America As Represented By The Department Of Health And Human Services | Immunomodulatory oligonucleotides |
US7888327B2 (en) | 1994-07-15 | 2011-02-15 | University Of Iowa Research Foundation | Methods of using immunostimulatory nucleic acid molecules to treat allergic conditions |
US20090202575A1 (en) * | 1994-07-15 | 2009-08-13 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US8309527B2 (en) | 1994-07-15 | 2012-11-13 | University Of Iowa Research Foundation | Immunomodulatory oligonucleotides |
US8158592B2 (en) | 1994-07-15 | 2012-04-17 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acid molecules |
US20030050261A1 (en) * | 1994-07-15 | 2003-03-13 | Krieg Arthur M. | Immunostimulatory nucleic acid molecules |
US8258106B2 (en) | 1994-07-15 | 2012-09-04 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US20040087534A1 (en) * | 1994-07-15 | 2004-05-06 | University Of Iowa Research Foundation | Immunomodulatory oligonucleotides |
US7879810B2 (en) | 1994-07-15 | 2011-02-01 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US7524828B2 (en) | 1994-07-15 | 2009-04-28 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US7723022B2 (en) | 1994-07-15 | 2010-05-25 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US8202688B2 (en) | 1997-03-10 | 2012-06-19 | University Of Iowa Research Foundation | Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant |
US7488490B2 (en) | 1997-03-10 | 2009-02-10 | University Of Iowa Research Foundation | Method of inducing an antigen-specific immune response by administering a synergistic combination of adjuvants comprising unmethylated CpG-containing nucleic acids and a non-nucleic acid adjuvant |
US8574599B1 (en) | 1998-05-22 | 2013-11-05 | Ottawa Hospital Research Institute | Methods and products for inducing mucosal immunity |
US7741300B2 (en) | 1998-06-25 | 2010-06-22 | National Jewish Medical And Research Center | Methods of using nucleic acid vector-lipid complexes |
US8173141B2 (en) | 1999-02-17 | 2012-05-08 | Csl Limited | Immunogenic complexes and methods relating thereto |
US7776343B1 (en) | 1999-02-17 | 2010-08-17 | Csl Limited | Immunogenic complexes and methods relating thereto |
US7776344B2 (en) | 1999-09-27 | 2010-08-17 | University Of Iowa Research Foundation | Methods related to immunostimulatory nucleic acid-induced interferon |
US7585847B2 (en) | 2000-02-03 | 2009-09-08 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids for the treatment of asthma and allergy |
US7534772B2 (en) | 2000-06-22 | 2009-05-19 | University Of Iowa Research Foundation | Methods for enhancing antibody-induced cell lysis and treating cancer |
US7820379B2 (en) | 2000-09-15 | 2010-10-26 | Coley Pharmaceutical Gmbh | Process for high throughput screening of CpG-based immuno-agonist/antagonist |
US8834900B2 (en) | 2001-08-17 | 2014-09-16 | University Of Iowa Research Foundation | Combination motif immune stimulatory oligonucleotides with improved activity |
US7812000B2 (en) * | 2001-10-24 | 2010-10-12 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends |
US20080152662A1 (en) * | 2001-10-24 | 2008-06-26 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends |
US8153141B2 (en) | 2002-04-04 | 2012-04-10 | Coley Pharmaceutical Gmbh | Immunostimulatory G, U-containing oligoribonucleotides |
US8658607B2 (en) | 2002-04-04 | 2014-02-25 | Zoetis Belgium | Immunostimulatory G, U-containing oligoribonucleotides |
US9428536B2 (en) | 2002-04-04 | 2016-08-30 | Zoetis Belgium Sa | Immunostimulatory G, U-containing oligoribonucleotides |
US7605138B2 (en) | 2002-07-03 | 2009-10-20 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US7569553B2 (en) | 2002-07-03 | 2009-08-04 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US7807803B2 (en) | 2002-07-03 | 2010-10-05 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US8114419B2 (en) | 2002-07-03 | 2012-02-14 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US7576066B2 (en) | 2002-07-03 | 2009-08-18 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US8283328B2 (en) | 2002-08-19 | 2012-10-09 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids |
US8304396B2 (en) | 2002-08-19 | 2012-11-06 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids |
US7998492B2 (en) | 2002-10-29 | 2011-08-16 | Coley Pharmaceutical Group, Inc. | Methods and products related to treatment and prevention of hepatitis C virus infection |
US7956043B2 (en) | 2002-12-11 | 2011-06-07 | Coley Pharmaceutical Group, Inc. | 5′ CpG nucleic acids and methods of use |
US7851454B2 (en) * | 2003-02-07 | 2010-12-14 | Idera Pharmaceutials, Inc. | Short immunomodulatory oligonucleotides |
US20090010938A1 (en) * | 2003-02-07 | 2009-01-08 | Idera Pharmaceuticals, Inc. | Short immunomodulatory oligonucleotides |
US7410975B2 (en) | 2003-06-20 | 2008-08-12 | Coley Pharmaceutical Group, Inc. | Small molecule toll-like receptor (TLR) antagonists |
US8188254B2 (en) | 2003-10-30 | 2012-05-29 | Coley Pharmaceutical Gmbh | C-class oligonucleotide analogs with enhanced immunostimulatory potency |
US7795235B2 (en) | 2004-10-20 | 2010-09-14 | Coley Pharmaceutical Gmbh | Semi-soft c-class immunostimulatory oligonucleotides |
US7566703B2 (en) | 2004-10-20 | 2009-07-28 | Coley Pharmaceutical Group, Inc. | Semi-soft C-class immunostimulatory oligonucleotides |
US8354522B2 (en) | 2005-11-25 | 2013-01-15 | Coley Pharmaceutical Gmbh | Immunostimulatory oligoribonucleotides |
US7662949B2 (en) | 2005-11-25 | 2010-02-16 | Coley Pharmaceutical Gmbh | Immunostimulatory oligoribonucleotides |
US8580268B2 (en) | 2006-09-27 | 2013-11-12 | Coley Pharmaceutical Gmbh | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
US9382545B2 (en) | 2006-09-27 | 2016-07-05 | Coley Pharmaceutical Gmbh | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
US10260071B2 (en) | 2006-09-27 | 2019-04-16 | Coley Pharmaceutical Gmbh | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
US8883174B2 (en) | 2009-03-25 | 2014-11-11 | The Board Of Regents, The University Of Texas System | Compositions for stimulation of mammalian innate immune resistance to pathogens |
US9186400B2 (en) | 2009-03-25 | 2015-11-17 | The Board Of Regents, The University Of Texas System | Compositions for stimulation of mammalian innate immune resistance to pathogens |
US9504742B2 (en) | 2009-03-25 | 2016-11-29 | The Board Of Regents, The University Of Texas System | Compositions for stimulation of mammalian innate immune resistance to pathogens |
US10722573B2 (en) | 2009-03-25 | 2020-07-28 | The Board Of Regents, The University Of Texas System | Compositions for stimulation of mammalian innate immune resistance to pathogens |
US12201684B2 (en) | 2009-03-25 | 2025-01-21 | The Board Of Regents, The University Of Texas System | Compositions for stimulation of mammalian innate immune resistance to pathogens |
US10286065B2 (en) | 2014-09-19 | 2019-05-14 | Board Of Regents, The University Of Texas System | Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7723022B2 (en) | Immunostimulatory nucleic acid molecules | |
US7524828B2 (en) | Immunostimulatory nucleic acid molecules | |
US8008266B2 (en) | Methods of treating cancer using immunostimulatory oligonucleotides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNIVERSITY OF IOWA RESEARCH FOUNDATION, THE, IOWA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRIEG, ARTHUR M.;KLINE, JOEL;REEL/FRAME:013999/0565;SIGNING DATES FROM 20030709 TO 20030805 |
|
AS | Assignment |
Owner name: HEALTH AND HUMAN SERVICES, THE UNITED STATES OF AM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KLINMAN, DENNIS;REEL/FRAME:014024/0319 Effective date: 20030728 |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF IOWA;REEL/FRAME:021670/0917 Effective date: 20030701 |
|
AS | Assignment |
Owner name: CPG IMMUNOPHARMACEUTICALS, INC.,MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STEINBERG, ALFRED D.;REEL/FRAME:024224/0015 Effective date: 19981030 |
|
AS | Assignment |
Owner name: COLEY PHARMACEUTICAL GROUP, INC.,NEW YORK Free format text: CHANGE OF NAME;ASSIGNOR:CPG IMMUNOPHARMACEUTICALS, INC.;REEL/FRAME:024230/0941 Effective date: 20000121 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |