US1547242A - Carrier transmission over power circuits - Google Patents
Carrier transmission over power circuits Download PDFInfo
- Publication number
- US1547242A US1547242A US709850A US70985024A US1547242A US 1547242 A US1547242 A US 1547242A US 709850 A US709850 A US 709850A US 70985024 A US70985024 A US 70985024A US 1547242 A US1547242 A US 1547242A
- Authority
- US
- United States
- Prior art keywords
- power
- carrier
- condensers
- conductors
- withstand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/54—Systems for transmission via power distribution lines
- H04B3/56—Circuits for coupling, blocking, or by-passing of signals
Definitions
- This invention relates to the use of power circuits for the transmission of signaling currents, and more particularly to arrange.- ments whereby ,carrier transmission channels may be capacitatively related to the conductors of av power system.
- a carrier channel is conductively connected to the conductors of a power circuitin such a mannerthat the carrier apparatus will be protected from the high voltages impressed upon the power conductors.
- the conductive connection is .preferably obtained through a ca acity coupling, the condensers forming tlie coupling'being so designed as to offer a very large impedance at the relatively low frequencies employed in power transmission but being mechanically constructed so as to withstand the high voltages of the power conductors.
- an inductive shunt is connected across the carrier conductors to form a low impedance path for the low frequency currents employed in power transmission so that any current of power frequency passing through the condenser will to the frequency used for carrier transmis-l be by-passed through the low impedance path.
- the inductance of the low impedance path and the capacity of the condensers will be so. proportioned with respect sion that these elements will constitute the first section of a high-pass filter included in the carrier circuit to separate the power frequencies from the carrier frequencies.
- T designates a two-phase transformer of the type ordinarily employed in powertransmission, the windings of the transformer being connected in the usual manner to the power conductors to conductors l and 3.
- a high-pass filter TF is included between the carrier apparatus T and the power conductors as indicated.
- This filter which is preferably of the well yknown Campbell y' of the inductance 12 is made verylow -so this should appear-acrossthe terminals of that the shunt path offers a very low impedf frequency ance to the low frequency power currents which ordinarily have afrequency of about 60 cycles.
- the inductance of the shunt 12 andthe capacities of the condensers 7 and 8 are so proportioned that at the carrier section of the high-pass lter TF.
- these elements may form the firsty -and its ope-ration will be the same, so that vno detailed-discussion thereof is necessary.
- tors is 2700 volts.
- the condensers 7 and 8 because of the large separation between their plates andthe eiiicient dielectrics employed, will withstand ⁇ these high voltages without breaking down and arcing between the plates, and their impedance at the'power frequency will be vso large that only avery small current Vof the power frequency flows through them.-
- the normal current flow ⁇ of power frequency through these condensers and across the shunt 12 may be in the neighborhood of one-tenth of an ampere.
- the impedance of the coil 12 at 60 cycles Iis 5 ohms the voltage drop across the terminals of the inductance 12 will only be one-half a volt. Consequently the voltage across the' terminals of the highpass-filter TF will onlypbe one-half of a volt, and thesignaling conductors will consequently not 'be exposed to the high voltages transmitted over the power conductors.
- the fuses such as 4 and 6,v are designed to lblow as soon as the'current builds up'to a value materially higher than that normallypermitted to flow through the inductance 12. For example, these fuses may be made to blow as soon as the current reaches a valueof 3 amperes. A current flow of 3 amperes through the inductance (12.
- the inductance 12 should be so designed as to .carry a somewhat larger current 'than that vvat which the fuses 4 and 6 breakdown.
- the inductance 12 might be designed to carry 5 amperes. Even for a current iiow of 5 amperes the voltage drop across the terminals of the inductance 12v would only be 25 volts at the power fre.
- the choke coils 13, 14 and 15 may be included in the power conductors between the carrier transmitting terminals and thel generator to prevent the carrier currents pling said carrier apparatus to said power 'conductors comprising condensers so designed mechanically as to withstand high voltages, a high-pass filter for preventing the transmission of power frequencies and harmonics thereof to the carrier apparatus,
- a power source power conduc-y ⁇ torsfo-r transmitting power from said source to a load
- carrier apparatus means for coupling said carrier apparatus to said power conductors comprising condensers Aso de signed mechanically as to withstand high voltages, said condensers being included in power frequencies transmitted through said condensers, a high-pass filter included in sald carrler circuit to prevent the transmlsv sion of power frequencies and vharmonics thereof to the carrier apparatus, the capacity of said condensers at the carrier frequency being such and the inductance of said by ⁇ pass at the carrier frequency being such that said elements may constitute a section of said filter, and fuses included in the carrier 15 conductors between said condensers and the power conductors, saidy fuses being so designed as to open-said conductors upon one of the condensers breaking down, before the current builds up in. said by-pass to produce a greater voltage drop acrossl its terminals than that which the carrier
- a power source power conduc ⁇ tors for transmitting power-from said source to a load
- carrier apparatus means for coupling said carrier apparatus to said power conductors ⁇ comprising condensers so designed mechanically as to withstand high power voltages, said condensers beingincluded in the carrier conductors, a shunt inductance bridged across said carrier conductors, said inductance constituting a low ,impedance by-pass for the relatively small currents of power frequencies transmitted through said condensers, a high-pass ⁇ filter 4included in said carrier circuit to prevent the transmission of power frequencies and harmonics thereof to the carrier apparatus, the capacity of said condensers at the carrier frequency being such and the inductan'ce of said by-pass at the carrier frequency being such that said elements may constitute a section of said filter, fuses included in the carrier conductors between said condensers andv the power conductors, said fuses being so designed as toopen said conductors, upon one
- a power transmission line a high frequency wave translating system, and a broad band filter
- said filter com-J prising a group of impedance elements ada ted to withstand the normal voltage of sai power line and a second group. of impedance elements adapted to withstand the lower voltages of signal transmission'.
- a power transmission line comprising a plurality of impedance elements and being terminated at on ⁇ e end in series elements adapted to withstand the normal voltage of saidpower line, the others of said elements being adapted to withstand the lower voltages of signal transmission.
- a power transmission line comprising a plurality of sections each including series and shunt impedance elements, and being terminated at one end in a series termination, said series termination Yincluding a condenser adapted to withstand high voltage and the others of said impedance elements being adapted to withstand the lower voltages of signal transmission.
- a power transmission line comprising a group of impedance elements including series elements adapted to with- -stand high voltages, a second group of eleed to withstand the. normal voltage of said power line, and a second network connected thereto comprising impedance elements adaptedto withstand the lower voltages of said high frequency source, the elements of said networks being arranged to cooperate with each other to constitute a broad band filter.
- a broad band filter comprising impedance elements adapted to the low voltages of speech transmission, and terminal' impedance elements adapted to withstand the normal voltages of power transmission.
- a broad band filter comprising impedance elements adapted tothe low voltages of speech transmission, and terminal condensers adapted to withstand the voltages of high voltage power transmission and including voltage operated protective. devices.
- a broad band filter comprising a plurality of sectionseach including series and shunt impedance elements, and being terminated at one end in a series termination, said series termination including ya condenser adaptedto Withstandhigh voltage age operated piotective device, said. protecand the others of said impedance elements tive device ⁇ being vconnected vbetween .said l0.'
- a broad band filter comprising a ments of said second group. group-of impedance elements including se- In testimony whereof, I have signed my ries elements adapted to withstand highv lname to this speciiication-this 26th day of K voltagesP a second group of elements adaptp-i'il 1924. ed to withstand lower/voltages, and a voltt MAURICE E. STRIEBY.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Description
July 28, 1925. 1,547,242
M, E. STRIEBY CARRIER TRANSMISSION OVER POWER CIRCUITS Filed April 29, 1924 fwn/ A TTORNEY Patented July 28, 1925.
UNITED STATES PATENT vori-Ica MAURICE E. STRIEBY, OF MILLBURN, NEW JERSEY, ASSIGNOR T0 AMERICAN TELE- t PHONE AND TELEGRAPH COMPANY,
A CORPORATION 0F' NEW YORK.
CARRIER TRANSMISSION OVER 4POWER CIRCUITS.
To all whom t may concern.'
. Be it known that I, MAURICE E. STRIEBY, residing at Millburn, in the county of Essex and State of `New Jersey, have invented certain Improvements in Carrier Transmission Over Power Circuits, of which the following is a specification.
This invention relates to the use of power circuits for the transmission of signaling currents, and more particularly to arrange.- ments whereby ,carrier transmission channels may be capacitatively related to the conductors of av power system.
In accordance with the present invention, a carrier channel is conductively connected to the conductors of a power circuitin such a mannerthat the carrier apparatus will be protected from the high voltages impressed upon the power conductors. The conductive connection is .preferably obtained through a ca acity coupling, the condensers forming tlie coupling'being so designed as to offer a very large impedance at the relatively low frequencies employed in power transmission but being mechanically constructed so as to withstand the high voltages of the power conductors. Between the condensers and the carrier apparatus an inductive shunt is connected across the carrier conductors to form a low impedance path for the low frequency currents employed in power transmission so that any current of power frequency passing through the condenser will to the frequency used for carrier transmis-l be by-passed through the low impedance path. Preferably the inductance of the low impedance path and the capacity of the condensers will be so. proportioned with respect sion that these elements will constitute the first section of a high-pass filter included in the carrier circuit to separate the power frequencies from the carrier frequencies.
The invention will now be'more fully understood from the following detailed description thereof when read in connection with the accompanying drawing, the figure of which illustrates an embodiment of the invention.
Referring to Figure l, T, designates a two-phase transformer of the type ordinarily employed in powertransmission, the windings of the transformer being connected in the usual manner to the power conductors to conductors l and 3.
can be connected to any two of the three conductors. In the sketch connection is made l Coupling capacities 7 and 8 are included in the connections.
E These capacities comprise condensers which are so constructed as to withstand the high voltages of the low frequency power transmission currents which are impressed upon the conductors 1, 2 and 3,- and the capacities of these condensers are so propo-rtioned .that they will form elements of a high-pass filter as hereinafter described. In order to withstand the high voltages, the plates of the condensers have a Wide separation, and speclal dielectric materials are einployed in a manner well known in the art. Inorder that the desired capacity may be obtained, it therefore becomes necessary to make the elements of the condensers mechanically quite large as compared with the type of condenser ordinarily employed in signaling circuits. Below the condensers 7 and 8 protectors of a type well known in the art are employed, these protectors comprising fuses 9 and 10 included in the conductors l and 3 and the usual carbon block type of lightning protector l1. The outer terminals of the device 11 are connected to the conductors l and 3 while the third conductor 2 is connected to ground through the third terminal of the device l1 in order to balance the circuit to ground.
A high-pass filter TF is included between the carrier apparatus T and the power conductors as indicated. This filter, which is preferably of the well yknown Campbell y' of the inductance 12 is made verylow -so this should appear-acrossthe terminals of that the shunt path offers a very low impedf frequency ance to the low frequency power currents which ordinarily have afrequency of about 60 cycles. The inductance of the shunt 12 andthe capacities of the condensers 7 and 8 are so proportioned that at the carrier section of the high-pass lter TF.
. Let .us assume that the power currents have a frequency of 60 cycles and that -,the
these elements may form the firsty -and its ope-ration will be the same, so that vno detailed-discussion thereof is necessary.
voltage impressed .uponthe power conduc.
tors is 2700 volts. The condensers 7 and 8, because of the large separation between their plates andthe eiiicient dielectrics employed, will withstand `these high voltages without breaking down and arcing between the plates, and their impedance at the'power frequency will be vso large that only avery small current Vof the power frequency flows through them.- For eXampleLthe normal current flow` of power frequency through these condensers and across the shunt 12 may be in the neighborhood of one-tenth of an ampere.- If the impedance of the coil 12 at 60 cycles Iis 5 ohms, the voltage drop across the terminals of the inductance 12 will only be one-half a volt. Consequently the voltage across the' terminals of the highpass-filter TF will onlypbe one-half of a volt, and thesignaling conductors will consequently not 'be exposed to the high voltages transmitted over the power conductors.
\ Suppose, now, one of the condensers, for
example, the. condenser .8,'breaks down so up in the by-pass through the inductance 12.'- In order to protectthe carrier circuit, the fuses, such as 4 and 6,v are designed to lblow as soon as the'current builds up'to a value materially higher than that normallypermitted to flow through the inductance 12. For example, these fuses may be made to blow as soon as the current reaches a valueof 3 amperes. A current flow of 3 amperes through the inductance (12. will be 'equival lent to a voltage drop 'across its terminals of only 15 volts at the 60 cycle frequency, and as this is below the maximum voltage which can be impressed upon the carrier con'ductors at the power frequency,no harm lcan occur in the carrier apparatus.` The inductance 12 should be so designed as to .carry a somewhat larger current 'than that vvat which the fuses 4 and 6 breakdown.
Forexample, iflthe fuses are designed, to blow at 3 amperes,.the inductance 12 might be designed to carry 5 amperes. Even for a current iiow of 5 amperes the voltage drop across the terminals of the inductance 12v would only be 25 volts at the power fre.
quency, and this would bea safe voltage for the inductance 12, the fuses 9 and 10'of the protector will become effectiveand prevent damage to the carrier apparatus. Y
The apparatus for connecting a carrier receiving channel to the power conductors, as indicated at vthegright of the diagram,
will be similar tol that already described,
If desired, the choke coils 13, 14 and 15 may be included in the power conductors between the carrier transmitting terminals and thel generator to prevent the carrier currents pling said carrier apparatus to said power 'conductors comprising condensers so designed mechanically as to withstand high voltages, a high-pass filter for preventing the transmission of power frequencies and harmonics thereof to the carrier apparatus,
the capacity of said condensers at the carrier frequencies being` such thatsaid condensers may constitute elements of said filter.
that it is, in effect, short-circuited, the '60. -cycle power current at once begins to buildthe carrier conductors, a shunt inductance' bridged across said carrier conductors,`said inductance'constituting a low impedance b ypass for the relatively small currents of power frequenciestransmitted through said condensers, a Ahigh-pass filter included in lsaid carrier circuit to prevent the transmission of power frequencies and harmonics' thereof to the carrier apparatus, the .capacity of said condensers at the carrier frequency being such'and the inductance of said bypass at the carrier frequency being such that said elements may constitute a sectionV of said filter.
3. In a systemfor signaling over power conductors, a power source, power conduc-y `torsfo-r transmitting power from said source to a load, carrier apparatus, means for coupling said carrier apparatus to said power conductors comprising condensers Aso de signed mechanically as to withstand high voltages, said condensers being included in power frequencies transmitted through said condensers, a high-pass filter included in sald carrler circuit to prevent the transmlsv sion of power frequencies and vharmonics thereof to the carrier apparatus, the capacity of said condensers at the carrier frequency being such and the inductance of said by` pass at the carrier frequency being such that said elements may constitute a section of said filter, and fuses included in the carrier 15 conductors between said condensers and the power conductors, saidy fuses being so designed as to open-said conductors upon one of the condensers breaking down, before the current builds up in. said by-pass to produce a greater voltage drop acrossl its terminals than that which the carrier apparatus is designed to withstand. c
4. In a system for signaling over power conductors, a power source, power conduc` tors for transmitting power-from said source to a load, carrier apparatus, means for coupling said carrier apparatus to said power conductors` comprising condensers so designed mechanically as to withstand high power voltages, said condensers beingincluded in the carrier conductors, a shunt inductance bridged across said carrier conductors, said inductance constituting a low ,impedance by-pass for the relatively small currents of power frequencies transmitted through said condensers, a high-pass `filter 4included in said carrier circuit to prevent the transmission of power frequencies and harmonics thereof to the carrier apparatus, the capacity of said condensers at the carrier frequency being such and the inductan'ce of said by-pass at the carrier frequency being such that said elements may constitute a section of said filter, fuses included in the carrier conductors between said condensers andv the power conductors, said fuses being so designed as toopen said conductors, upon one of the condensers breaking down, before the current builds up in said by-pass to produce a greater voltage drop across its terminals than that which the carrier apparatus is designed to withstand, and fuses-included in the carrier conductors between said bypass and the succeeding section of the highpass filter designed to blow4 if the voltage drop. across said by-pass should become greater than the maximum voltage which it is desired to impress across the terminals of the carrier apparatus.
5. In combination, a power transmission line, a high frequency wave translating system, and a broad band filter, said filter com-J prising a group of impedance elements ada ted to withstand the normal voltage of sai power line and a second group. of impedance elements adapted to withstand the lower voltages of signal transmission'.
6. In combination, a power transmission line, a high frequency wave translating system, and a broad band filter, said filter comprising a plurality of impedance elements and being terminated at on`e end in series elements adapted to withstand the normal voltage of saidpower line, the others of said elements being adapted to withstand the lower voltages of signal transmission.
7. In combination, a power transmission line, a high frequency wave translating system, and a broad band filter, said filter comprising a plurality of sections each including series and shunt impedance elements, and being terminated at one end in a series termination, said series termination Yincluding a condenser adapted to withstand high voltage and the others of said impedance elements being adapted to withstand the lower voltages of signal transmission.
8. In combination, a power transmission line, a high frequency wave translating system, and a broad band lilter, said filter comprising a group of impedance elements including series elements adapted to with- -stand high voltages, a second group of eleed to withstand the. normal voltage of said power line, and a second network connected thereto comprising impedance elements adaptedto withstand the lower voltages of said high frequency source, the elements of said networks being arranged to cooperate with each other to constitute a broad band filter.
10. A broad band filter comprising impedance elements adapted to the low voltages of speech transmission, and terminal' impedance elements adapted to withstand the normal voltages of power transmission.
11. A broad band filter comprising impedance elements adapted tothe low voltages of speech transmission, and terminal condensers adapted to withstand the voltages of high voltage power transmission and including voltage operated protective. devices.
' 12. A broad band filter comprising a plurality of sectionseach including series and shunt impedance elements, and being terminated at one end in a series termination, said series termination including ya condenser adaptedto Withstandhigh voltage age operated piotective device, said. protecand the others of said impedance elements tive device` being vconnected vbetween .said l0.'
being adapted to withstand lower voltages. groups' and being adapted to protect the ele- 13. A broad band filter comprising a ments of said second group. group-of impedance elements including se- In testimony whereof, I have signed my ries elements adapted to withstand highv lname to this speciiication-this 26th day of K voltagesP a second group of elements adaptp-i'il 1924. ed to withstand lower/voltages, and a voltt MAURICE E. STRIEBY.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US709850A US1547242A (en) | 1924-04-29 | 1924-04-29 | Carrier transmission over power circuits |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US709850A US1547242A (en) | 1924-04-29 | 1924-04-29 | Carrier transmission over power circuits |
Publications (1)
Publication Number | Publication Date |
---|---|
US1547242A true US1547242A (en) | 1925-07-28 |
Family
ID=24851528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US709850A Expired - Lifetime US1547242A (en) | 1924-04-29 | 1924-04-29 | Carrier transmission over power circuits |
Country Status (1)
Country | Link |
---|---|
US (1) | US1547242A (en) |
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2624794A (en) * | 1950-07-08 | 1953-01-06 | Okonite Co | Electric power cable with carrier coupling |
US2663867A (en) * | 1950-09-13 | 1953-12-22 | Favara Louis | Detecting apparatus |
US2777094A (en) * | 1954-02-09 | 1957-01-08 | Allied Electric Products Inc | Protective grounding device for a high frequency antenna |
US2835852A (en) * | 1954-09-22 | 1958-05-20 | Radion Corp | Lightning arrestor and attachment therefor |
US2886744A (en) * | 1956-03-21 | 1959-05-12 | Jr William E Mcnatt | Electrical protective apparatus |
US3308311A (en) * | 1964-01-21 | 1967-03-07 | Collins Radio Co | Transient suppression circuit |
US3388389A (en) * | 1964-06-09 | 1968-06-11 | Davis Foreman | Alarm systems |
US3654483A (en) * | 1970-02-06 | 1972-04-04 | Westinghouse Electric Corp | Apparatus for transferring intelligence between two voltage levels |
US4321581A (en) * | 1978-03-10 | 1982-03-23 | Siemens Aktiengesellschaft | Powerline carrier control system |
US4384215A (en) * | 1980-07-21 | 1983-05-17 | Fujitsu Limited | Capacitor element |
WO1994009572A1 (en) * | 1992-10-22 | 1994-04-28 | Norweb Plc | Transmission network and filter therefor |
US5572438A (en) * | 1995-01-05 | 1996-11-05 | Teco Energy Management Services | Engery management and building automation system |
US5924486A (en) * | 1997-10-29 | 1999-07-20 | Tecom, Inc. | Environmental condition control and energy management system and method |
US5949327A (en) * | 1994-08-26 | 1999-09-07 | Norweb Plc | Coupling of telecommunications signals to a balanced power distribution network |
US6037678A (en) * | 1997-10-03 | 2000-03-14 | Northern Telecom Limited | Coupling communications signals to a power line |
US6144292A (en) * | 1992-10-22 | 2000-11-07 | Norweb Plc | Powerline communications network employing TDMA, FDMA and/or CDMA |
US6282405B1 (en) | 1992-10-22 | 2001-08-28 | Norweb Plc | Hybrid electricity and telecommunications distribution network |
US20020110311A1 (en) * | 2001-02-14 | 2002-08-15 | Kline Paul A. | Apparatus and method for providing a power line communication device for safe transmission of high-frequency, high-bandwidth signals over existing power distribution lines |
US20020110310A1 (en) * | 2001-02-14 | 2002-08-15 | Kline Paul A. | Method and apparatus for providing inductive coupling and decoupling of high-frequency, high-bandwidth data signals directly on and off of a high voltage power line |
US20020121963A1 (en) * | 2001-02-14 | 2002-09-05 | Kline Paul A. | Data communication over a power line |
US20040003934A1 (en) * | 2002-06-24 | 2004-01-08 | Cope Leonard David | Power line coupling device and method of using the same |
US20040056734A1 (en) * | 2001-05-18 | 2004-03-25 | Davidow Clifford A. | Medium voltage signal coupling structure for last leg power grid high-speed data network |
US20040117330A1 (en) * | 2002-03-28 | 2004-06-17 | Ehlers Gregory A. | System and method for controlling usage of a commodity |
US20050200459A1 (en) * | 2002-12-10 | 2005-09-15 | White Melvin J.Ii | Power line communication apparatus and method of using the same |
US6965302B2 (en) | 2000-04-14 | 2005-11-15 | Current Technologies, Llc | Power line communication system and method of using the same |
US6965303B2 (en) | 2002-12-10 | 2005-11-15 | Current Technologies, Llc | Power line communication system and method |
US6977578B2 (en) | 2000-01-20 | 2005-12-20 | Current Technologies, Llc | Method of isolating data in a power line communications network |
US6980089B1 (en) | 2000-08-09 | 2005-12-27 | Current Technologies, Llc | Non-intrusive coupling to shielded power cable |
US6980090B2 (en) | 2002-12-10 | 2005-12-27 | Current Technologies, Llc | Device and method for coupling with electrical distribution network infrastructure to provide communications |
US6980091B2 (en) | 2002-12-10 | 2005-12-27 | Current Technologies, Llc | Power line communication system and method of operating the same |
US7046124B2 (en) | 2003-01-21 | 2006-05-16 | Current Technologies, Llc | Power line coupling device and method of using the same |
US7053756B2 (en) | 2001-12-21 | 2006-05-30 | Current Technologies, Llc | Facilitating communication of data signals on electric power systems |
US20060125609A1 (en) * | 2000-08-09 | 2006-06-15 | Kline Paul A | Power line coupling device and method of using the same |
US7064654B2 (en) | 2002-12-10 | 2006-06-20 | Current Technologies, Llc | Power line communication system and method of operating the same |
US7075414B2 (en) * | 2003-05-13 | 2006-07-11 | Current Technologies, Llc | Device and method for communicating data signals through multiple power line conductors |
US7102478B2 (en) | 2002-06-21 | 2006-09-05 | Current Technologies, Llc | Power line coupling device and method of using the same |
US7113134B1 (en) | 2004-03-12 | 2006-09-26 | Current Technologies, Llc | Transformer antenna device and method of using the same |
US20060244571A1 (en) * | 2005-04-29 | 2006-11-02 | Yaney David S | Power line coupling device and method of use |
US7132819B1 (en) | 2002-11-12 | 2006-11-07 | Current Technologies, Llc | Floating power supply and method of using the same |
US20070002772A1 (en) * | 2005-04-04 | 2007-01-04 | Berkman William H | Power Line Communication Device and Method |
US20070043478A1 (en) * | 2003-07-28 | 2007-02-22 | Ehlers Gregory A | System and method of controlling an HVAC system |
US7245201B1 (en) | 2000-08-09 | 2007-07-17 | Current Technologies, Llc | Power line coupling device and method of using the same |
US7308103B2 (en) | 2003-05-08 | 2007-12-11 | Current Technologies, Llc | Power line communication device and method of using the same |
US20070287405A1 (en) * | 2006-06-09 | 2007-12-13 | Radtke William O | Method and Device for Providing Broadband Over Power Line Communications |
US20080056338A1 (en) * | 2006-08-28 | 2008-03-06 | David Stanley Yaney | Power Line Communication Device and Method with Frequency Shifted Modem |
US7460467B1 (en) | 2003-07-23 | 2008-12-02 | Current Technologies, Llc | Voice-over-IP network test device and method |
US20090002094A1 (en) * | 2007-06-26 | 2009-01-01 | Radtke William O | Power Line Coupling Device and Method |
US20090002137A1 (en) * | 2007-06-26 | 2009-01-01 | Radtke William O | Power Line Coupling Device and Method |
US20090085726A1 (en) * | 2007-09-27 | 2009-04-02 | Radtke William O | Power Line Communications Coupling Device and Method |
US20100109862A1 (en) * | 2008-11-06 | 2010-05-06 | Manu Sharma | System, Device and Method for Communicating over Power Lines |
US20100109907A1 (en) * | 2008-11-06 | 2010-05-06 | Manu Sharma | System, Device and Method for Communicating over Power Lines |
US20100111199A1 (en) * | 2008-11-06 | 2010-05-06 | Manu Sharma | Device and Method for Communicating over Power Lines |
US20100207743A1 (en) * | 2009-02-19 | 2010-08-19 | Verne Stephen Jackson | Control of devices by way of power wiring |
US20110130887A1 (en) * | 2002-03-28 | 2011-06-02 | Ehlers Sr Gregory Allen | Refrigeration monitor unit |
US9143112B2 (en) | 2011-06-30 | 2015-09-22 | Silicon Laboratories Inc. | Circuits and methods for providing an impedance adjustment |
-
1924
- 1924-04-29 US US709850A patent/US1547242A/en not_active Expired - Lifetime
Cited By (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2624794A (en) * | 1950-07-08 | 1953-01-06 | Okonite Co | Electric power cable with carrier coupling |
US2663867A (en) * | 1950-09-13 | 1953-12-22 | Favara Louis | Detecting apparatus |
US2777094A (en) * | 1954-02-09 | 1957-01-08 | Allied Electric Products Inc | Protective grounding device for a high frequency antenna |
US2835852A (en) * | 1954-09-22 | 1958-05-20 | Radion Corp | Lightning arrestor and attachment therefor |
US2886744A (en) * | 1956-03-21 | 1959-05-12 | Jr William E Mcnatt | Electrical protective apparatus |
US3308311A (en) * | 1964-01-21 | 1967-03-07 | Collins Radio Co | Transient suppression circuit |
US3388389A (en) * | 1964-06-09 | 1968-06-11 | Davis Foreman | Alarm systems |
US3654483A (en) * | 1970-02-06 | 1972-04-04 | Westinghouse Electric Corp | Apparatus for transferring intelligence between two voltage levels |
US4321581A (en) * | 1978-03-10 | 1982-03-23 | Siemens Aktiengesellschaft | Powerline carrier control system |
US4384215A (en) * | 1980-07-21 | 1983-05-17 | Fujitsu Limited | Capacitor element |
US5933071A (en) * | 1992-10-22 | 1999-08-03 | Norweb Plc | Electricity distribution and/or power transmission network and filter for telecommunication over power lines |
WO1994009572A1 (en) * | 1992-10-22 | 1994-04-28 | Norweb Plc | Transmission network and filter therefor |
US6172597B1 (en) | 1992-10-22 | 2001-01-09 | Norweb Plc | Electricity distribution and/or power transmission network and filter for telecommunication over power lines |
AU673388B2 (en) * | 1992-10-22 | 1996-11-07 | Amperion, Inc. | Transmission network and filter therefor |
US6144292A (en) * | 1992-10-22 | 2000-11-07 | Norweb Plc | Powerline communications network employing TDMA, FDMA and/or CDMA |
US6282405B1 (en) | 1992-10-22 | 2001-08-28 | Norweb Plc | Hybrid electricity and telecommunications distribution network |
US5929750A (en) * | 1992-10-22 | 1999-07-27 | Norweb Plc | Transmission network and filter therefor |
US5949327A (en) * | 1994-08-26 | 1999-09-07 | Norweb Plc | Coupling of telecommunications signals to a balanced power distribution network |
US5696695A (en) * | 1995-01-05 | 1997-12-09 | Tecom Inc. | System for rate-related control of electrical loads |
US5684710A (en) * | 1995-01-05 | 1997-11-04 | Tecom Inc. | System for measuring electrical power interruptions |
US5572438A (en) * | 1995-01-05 | 1996-11-05 | Teco Energy Management Services | Engery management and building automation system |
US6037678A (en) * | 1997-10-03 | 2000-03-14 | Northern Telecom Limited | Coupling communications signals to a power line |
US6216956B1 (en) * | 1997-10-29 | 2001-04-17 | Tocom, Inc. | Environmental condition control and energy management system and method |
US5924486A (en) * | 1997-10-29 | 1999-07-20 | Tecom, Inc. | Environmental condition control and energy management system and method |
US6977578B2 (en) | 2000-01-20 | 2005-12-20 | Current Technologies, Llc | Method of isolating data in a power line communications network |
US6998962B2 (en) | 2000-04-14 | 2006-02-14 | Current Technologies, Llc | Power line communication apparatus and method of using the same |
US7245212B2 (en) | 2000-04-14 | 2007-07-17 | Current Technologies, Llc | Power line communication apparatus and method of using the same |
US6965302B2 (en) | 2000-04-14 | 2005-11-15 | Current Technologies, Llc | Power line communication system and method of using the same |
US7248148B2 (en) | 2000-08-09 | 2007-07-24 | Current Technologies, Llc | Power line coupling device and method of using the same |
US7245201B1 (en) | 2000-08-09 | 2007-07-17 | Current Technologies, Llc | Power line coupling device and method of using the same |
US6980089B1 (en) | 2000-08-09 | 2005-12-27 | Current Technologies, Llc | Non-intrusive coupling to shielded power cable |
US20060125609A1 (en) * | 2000-08-09 | 2006-06-15 | Kline Paul A | Power line coupling device and method of using the same |
US6950567B2 (en) | 2001-02-14 | 2005-09-27 | Current Technologies, Llc | Method and apparatus for providing inductive coupling and decoupling of high-frequency, high-bandwidth data signals directly on and off of a high voltage power line |
US20020121963A1 (en) * | 2001-02-14 | 2002-09-05 | Kline Paul A. | Data communication over a power line |
US7103240B2 (en) | 2001-02-14 | 2006-09-05 | Current Technologies, Llc | Method and apparatus for providing inductive coupling and decoupling of high-frequency, high-bandwidth data signals directly on and off of a high voltage power line |
US7414518B2 (en) | 2001-02-14 | 2008-08-19 | Current Technologies, Llc | Power line communication device and method |
US7453352B2 (en) | 2001-02-14 | 2008-11-18 | Current Technologies, Llc | Data communication over a power line |
US7042351B2 (en) | 2001-02-14 | 2006-05-09 | Current Technologies, Llc | Data communication over a power line |
US20020110311A1 (en) * | 2001-02-14 | 2002-08-15 | Kline Paul A. | Apparatus and method for providing a power line communication device for safe transmission of high-frequency, high-bandwidth signals over existing power distribution lines |
US6933835B2 (en) | 2001-02-14 | 2005-08-23 | Current Technologies, Llc | Data communication over a power line |
US20020110310A1 (en) * | 2001-02-14 | 2002-08-15 | Kline Paul A. | Method and apparatus for providing inductive coupling and decoupling of high-frequency, high-bandwidth data signals directly on and off of a high voltage power line |
US7218219B2 (en) | 2001-02-14 | 2007-05-15 | Current Technologies, Llc | Data communication over a power line |
US7245472B2 (en) | 2001-05-18 | 2007-07-17 | Curretn Grid, Llc | Medium voltage signal coupling structure for last leg power grid high-speed data network |
US7773361B2 (en) | 2001-05-18 | 2010-08-10 | Current Grid, Llc | Medium voltage signal coupling structure for last leg power grid high-speed data network |
US20040056734A1 (en) * | 2001-05-18 | 2004-03-25 | Davidow Clifford A. | Medium voltage signal coupling structure for last leg power grid high-speed data network |
US20070222637A1 (en) * | 2001-05-18 | 2007-09-27 | Davidow Clifford A | Medium Voltage Signal Coupling Structure For Last Leg Power Grid High-Speed Data Network |
US7053756B2 (en) | 2001-12-21 | 2006-05-30 | Current Technologies, Llc | Facilitating communication of data signals on electric power systems |
US7379997B2 (en) | 2002-03-28 | 2008-05-27 | Robertshaw Controls Company | System and method of controlling delivery and/or usage of a commodity |
US20050033707A1 (en) * | 2002-03-28 | 2005-02-10 | Ehlers Gregory A. | Configurable architecture for controlling delivery and/or usage of a commodity |
US20110130887A1 (en) * | 2002-03-28 | 2011-06-02 | Ehlers Sr Gregory Allen | Refrigeration monitor unit |
US7516106B2 (en) | 2002-03-28 | 2009-04-07 | Robert Shaw Controls Company | System and method for controlling usage of a commodity |
US20040117330A1 (en) * | 2002-03-28 | 2004-06-17 | Ehlers Gregory A. | System and method for controlling usage of a commodity |
US7130719B2 (en) | 2002-03-28 | 2006-10-31 | Robertshaw Controls Company | System and method of controlling an HVAC system |
US7418428B2 (en) | 2002-03-28 | 2008-08-26 | Robertshaw Controls Company | System and method for controlling delivering of a commodity |
US20040133314A1 (en) * | 2002-03-28 | 2004-07-08 | Ehlers Gregory A. | System and method of controlling an HVAC system |
US20040139038A1 (en) * | 2002-03-28 | 2004-07-15 | Ehlers Gregory A. | System and method for controlling delivering of a commodity |
US7343226B2 (en) | 2002-03-28 | 2008-03-11 | Robertshaw Controls Company | System and method of controlling an HVAC system |
US20070043477A1 (en) * | 2002-03-28 | 2007-02-22 | Ehlers Gregory A | System and method of controlling an HVAC system |
US7102478B2 (en) | 2002-06-21 | 2006-09-05 | Current Technologies, Llc | Power line coupling device and method of using the same |
US7224243B2 (en) | 2002-06-24 | 2007-05-29 | Current Technologies, Llc | Power line coupling device and method of using the same |
US6982611B2 (en) | 2002-06-24 | 2006-01-03 | Current Technologies, Llc | Power line coupling device and method of using the same |
US20040003934A1 (en) * | 2002-06-24 | 2004-01-08 | Cope Leonard David | Power line coupling device and method of using the same |
US7132819B1 (en) | 2002-11-12 | 2006-11-07 | Current Technologies, Llc | Floating power supply and method of using the same |
US6980091B2 (en) | 2002-12-10 | 2005-12-27 | Current Technologies, Llc | Power line communication system and method of operating the same |
US6980090B2 (en) | 2002-12-10 | 2005-12-27 | Current Technologies, Llc | Device and method for coupling with electrical distribution network infrastructure to provide communications |
US6965303B2 (en) | 2002-12-10 | 2005-11-15 | Current Technologies, Llc | Power line communication system and method |
US20050200459A1 (en) * | 2002-12-10 | 2005-09-15 | White Melvin J.Ii | Power line communication apparatus and method of using the same |
US7250848B2 (en) | 2002-12-10 | 2007-07-31 | Current Technologies, Llc | Power line communication apparatus and method of using the same |
US7301440B2 (en) | 2002-12-10 | 2007-11-27 | Current Technologies, Llc | Power line communication system and method |
US7064654B2 (en) | 2002-12-10 | 2006-06-20 | Current Technologies, Llc | Power line communication system and method of operating the same |
US7701325B2 (en) | 2002-12-10 | 2010-04-20 | Current Technologies, Llc | Power line communication apparatus and method of using the same |
US7046124B2 (en) | 2003-01-21 | 2006-05-16 | Current Technologies, Llc | Power line coupling device and method of using the same |
US7308103B2 (en) | 2003-05-08 | 2007-12-11 | Current Technologies, Llc | Power line communication device and method of using the same |
US7075414B2 (en) * | 2003-05-13 | 2006-07-11 | Current Technologies, Llc | Device and method for communicating data signals through multiple power line conductors |
US7460467B1 (en) | 2003-07-23 | 2008-12-02 | Current Technologies, Llc | Voice-over-IP network test device and method |
US20070043478A1 (en) * | 2003-07-28 | 2007-02-22 | Ehlers Gregory A | System and method of controlling an HVAC system |
US7113134B1 (en) | 2004-03-12 | 2006-09-26 | Current Technologies, Llc | Transformer antenna device and method of using the same |
US20070002772A1 (en) * | 2005-04-04 | 2007-01-04 | Berkman William H | Power Line Communication Device and Method |
US7804763B2 (en) | 2005-04-04 | 2010-09-28 | Current Technologies, Llc | Power line communication device and method |
US7307512B2 (en) | 2005-04-29 | 2007-12-11 | Current Technologies, Llc | Power line coupling device and method of use |
US20060244571A1 (en) * | 2005-04-29 | 2006-11-02 | Yaney David S | Power line coupling device and method of use |
US7671701B2 (en) | 2006-06-09 | 2010-03-02 | Current Technologies, Llc | Method and device for providing broadband over power line communications |
US20070287405A1 (en) * | 2006-06-09 | 2007-12-13 | Radtke William O | Method and Device for Providing Broadband Over Power Line Communications |
US20080056338A1 (en) * | 2006-08-28 | 2008-03-06 | David Stanley Yaney | Power Line Communication Device and Method with Frequency Shifted Modem |
US7876174B2 (en) | 2007-06-26 | 2011-01-25 | Current Technologies, Llc | Power line coupling device and method |
US7795994B2 (en) | 2007-06-26 | 2010-09-14 | Current Technologies, Llc | Power line coupling device and method |
US20090002137A1 (en) * | 2007-06-26 | 2009-01-01 | Radtke William O | Power Line Coupling Device and Method |
US20090002094A1 (en) * | 2007-06-26 | 2009-01-01 | Radtke William O | Power Line Coupling Device and Method |
US20090085726A1 (en) * | 2007-09-27 | 2009-04-02 | Radtke William O | Power Line Communications Coupling Device and Method |
US20100109907A1 (en) * | 2008-11-06 | 2010-05-06 | Manu Sharma | System, Device and Method for Communicating over Power Lines |
US20100111199A1 (en) * | 2008-11-06 | 2010-05-06 | Manu Sharma | Device and Method for Communicating over Power Lines |
US20100109862A1 (en) * | 2008-11-06 | 2010-05-06 | Manu Sharma | System, Device and Method for Communicating over Power Lines |
US8188855B2 (en) | 2008-11-06 | 2012-05-29 | Current Technologies International Gmbh | System, device and method for communicating over power lines |
US8279058B2 (en) | 2008-11-06 | 2012-10-02 | Current Technologies International Gmbh | System, device and method for communicating over power lines |
US20100207743A1 (en) * | 2009-02-19 | 2010-08-19 | Verne Stephen Jackson | Control of devices by way of power wiring |
US9143112B2 (en) | 2011-06-30 | 2015-09-22 | Silicon Laboratories Inc. | Circuits and methods for providing an impedance adjustment |
US9793873B2 (en) | 2011-06-30 | 2017-10-17 | Silicon Laboratories Inc. | Circuits and methods for providing an impedance adjustment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US1547242A (en) | Carrier transmission over power circuits | |
US3771069A (en) | Coupling unit to couple carrier frequencies from high voltage transmission lines | |
US2000441A (en) | Filter | |
US1831338A (en) | Protective apparatus for electrical systems | |
US2032360A (en) | Power line carrier system | |
US3753189A (en) | Combined isolating and neutralizing transformer | |
US2308013A (en) | Filter circuit | |
US1745378A (en) | High-frequency-control system | |
US1770705A (en) | Railway-traffic controlling apparatus | |
US2165886A (en) | Arrangement for suppressing high frequency interference | |
US1539902A (en) | Carrier transmission over power circuits | |
US1607668A (en) | Carrier transmission over power circuits | |
US2300940A (en) | Coupling system for carrier currents | |
US1865273A (en) | Protective arrangement | |
US2272701A (en) | Electric wave transmission system | |
US1728534A (en) | Telephone protective system | |
US1230615A (en) | Protective device. | |
US1314827A (en) | osborne | |
US2238260A (en) | Electric filter arrangement | |
US2113708A (en) | Transmission system | |
US1839301A (en) | Polyphase filter circuit | |
US1438989A (en) | High-frequency translating circuits | |
US2272731A (en) | Electric wave system | |
US2272712A (en) | Electric wave transmission system | |
US2855574A (en) | Interference suppressor units |