US10673071B2 - Positive electrode active material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same - Google Patents
Positive electrode active material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same Download PDFInfo
- Publication number
- US10673071B2 US10673071B2 US16/083,765 US201716083765A US10673071B2 US 10673071 B2 US10673071 B2 US 10673071B2 US 201716083765 A US201716083765 A US 201716083765A US 10673071 B2 US10673071 B2 US 10673071B2
- Authority
- US
- United States
- Prior art keywords
- active material
- secondary battery
- lithium secondary
- positive active
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052744 lithium Inorganic materials 0.000 title claims description 59
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims description 55
- 239000007774 positive electrode material Substances 0.000 title claims description 55
- 238000000034 method Methods 0.000 title claims description 12
- 230000003647 oxidation Effects 0.000 claims abstract description 17
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 17
- 238000004611 spectroscopical analysis Methods 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 30
- 150000001875 compounds Chemical class 0.000 claims description 22
- 229910052782 aluminium Inorganic materials 0.000 claims description 21
- 239000011247 coating layer Substances 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 20
- 229910052749 magnesium Inorganic materials 0.000 claims description 18
- 229910052719 titanium Inorganic materials 0.000 claims description 18
- 229910052726 zirconium Inorganic materials 0.000 claims description 18
- 238000005245 sintering Methods 0.000 claims description 17
- 229910052759 nickel Inorganic materials 0.000 claims description 16
- 229910052723 transition metal Inorganic materials 0.000 claims description 15
- 150000003624 transition metals Chemical class 0.000 claims description 15
- 229910052796 boron Inorganic materials 0.000 claims description 12
- 229910052791 calcium Inorganic materials 0.000 claims description 12
- 229910052748 manganese Inorganic materials 0.000 claims description 12
- 229910052712 strontium Inorganic materials 0.000 claims description 12
- 229910052718 tin Inorganic materials 0.000 claims description 12
- 229910052804 chromium Inorganic materials 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 11
- 229910052758 niobium Inorganic materials 0.000 claims description 11
- 229910052698 phosphorus Inorganic materials 0.000 claims description 11
- 229910052700 potassium Inorganic materials 0.000 claims description 11
- 229910052708 sodium Inorganic materials 0.000 claims description 11
- 229910052720 vanadium Inorganic materials 0.000 claims description 11
- 229910052731 fluorine Inorganic materials 0.000 claims description 10
- 239000007773 negative electrode material Substances 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 229910052717 sulfur Inorganic materials 0.000 claims description 10
- 239000003792 electrolyte Substances 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 8
- 238000007580 dry-mixing Methods 0.000 claims description 8
- 239000002243 precursor Substances 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 63
- 239000000843 powder Substances 0.000 description 18
- 239000011572 manganese Substances 0.000 description 17
- -1 LiCoO2 Chemical class 0.000 description 14
- 239000002131 composite material Substances 0.000 description 14
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 12
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 239000010936 titanium Substances 0.000 description 12
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 11
- 229910001416 lithium ion Inorganic materials 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000004020 conductor Substances 0.000 description 9
- 239000004698 Polyethylene Substances 0.000 description 7
- 239000004743 Polypropylene Substances 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 229920000573 polyethylene Polymers 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 5
- 239000003575 carbonaceous material Substances 0.000 description 5
- 125000004093 cyano group Chemical group *C#N 0.000 description 5
- 229910003002 lithium salt Inorganic materials 0.000 description 5
- 159000000002 lithium salts Chemical class 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910032387 LiCoO2 Inorganic materials 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 239000003660 carbonate based solvent Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 4
- 239000011356 non-aqueous organic solvent Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000013077 target material Substances 0.000 description 4
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000006258 conductive agent Substances 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 229910021382 natural graphite Inorganic materials 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- GOYDNIKZWGIXJT-UHFFFAOYSA-N 1,2-difluorobenzene Chemical compound FC1=CC=CC=C1F GOYDNIKZWGIXJT-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 229910002993 LiMnO2 Inorganic materials 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 0 [1*]C1=C([2*])C([3*])=C([4*])C([5*])=C1[6*] Chemical compound [1*]C1=C([2*])C([3*])=C([4*])C([5*])=C1[6*] 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 229920005993 acrylate styrene-butadiene rubber polymer Polymers 0.000 description 2
- 239000005456 alcohol based solvent Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 239000000010 aprotic solvent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052795 boron group element Inorganic materials 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 229910052800 carbon group element Inorganic materials 0.000 description 2
- 239000005466 carboxylated polyvinylchloride Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000009831 deintercalation Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 239000011267 electrode slurry Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000005430 electron energy loss spectroscopy Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000003759 ester based solvent Substances 0.000 description 2
- 239000004210 ether based solvent Substances 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- QKBJDEGZZJWPJA-UHFFFAOYSA-N ethyl propyl carbonate Chemical compound [CH2]COC(=O)OCCC QKBJDEGZZJWPJA-UHFFFAOYSA-N 0.000 description 2
- 125000003709 fluoroalkyl group Chemical group 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 229910001679 gibbsite Inorganic materials 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 239000005453 ketone based solvent Substances 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920002620 polyvinyl fluoride Polymers 0.000 description 2
- 229920000973 polyvinylchloride carboxylated Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N propyl acetate Chemical compound CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- JYVXNLLUYHCIIH-UHFFFAOYSA-N (+/-)-mevalonolactone Natural products CC1(O)CCOC(=O)C1 JYVXNLLUYHCIIH-UHFFFAOYSA-N 0.000 description 1
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 description 1
- AJKNNUJQFALRIK-UHFFFAOYSA-N 1,2,3-trifluorobenzene Chemical compound FC1=CC=CC(F)=C1F AJKNNUJQFALRIK-UHFFFAOYSA-N 0.000 description 1
- RIWAPWDHHMWTRA-UHFFFAOYSA-N 1,2,3-triiodobenzene Chemical compound IC1=CC=CC(I)=C1I RIWAPWDHHMWTRA-UHFFFAOYSA-N 0.000 description 1
- PEBWOGPSYUIOBP-UHFFFAOYSA-N 1,2,4-trifluorobenzene Chemical compound FC1=CC=C(F)C(F)=C1 PEBWOGPSYUIOBP-UHFFFAOYSA-N 0.000 description 1
- KSXFNGRHPAHIQJ-UHFFFAOYSA-N 1,2,4-triiodobenzene Chemical compound IC1=CC=C(I)C(I)=C1 KSXFNGRHPAHIQJ-UHFFFAOYSA-N 0.000 description 1
- BBOLNFYSRZVALD-UHFFFAOYSA-N 1,2-diiodobenzene Chemical compound IC1=CC=CC=C1I BBOLNFYSRZVALD-UHFFFAOYSA-N 0.000 description 1
- ZPQOPVIELGIULI-UHFFFAOYSA-N 1,3-dichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1 ZPQOPVIELGIULI-UHFFFAOYSA-N 0.000 description 1
- UEMGWPRHOOEKTA-UHFFFAOYSA-N 1,3-difluorobenzene Chemical compound FC1=CC=CC(F)=C1 UEMGWPRHOOEKTA-UHFFFAOYSA-N 0.000 description 1
- SFPQFQUXAJOWNF-UHFFFAOYSA-N 1,3-diiodobenzene Chemical compound IC1=CC=CC(I)=C1 SFPQFQUXAJOWNF-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- QUGUFLJIAFISSW-UHFFFAOYSA-N 1,4-difluorobenzene Chemical compound FC1=CC=C(F)C=C1 QUGUFLJIAFISSW-UHFFFAOYSA-N 0.000 description 1
- LFMWZTSOMGDDJU-UHFFFAOYSA-N 1,4-diiodobenzene Chemical compound IC1=CC=C(I)C=C1 LFMWZTSOMGDDJU-UHFFFAOYSA-N 0.000 description 1
- WGPNJZYOHABTAS-UHFFFAOYSA-N 1,5,6-trichloro-5-methylcyclohexa-1,3-diene Chemical compound CC1(Cl)C=CC=C(Cl)C1Cl WGPNJZYOHABTAS-UHFFFAOYSA-N 0.000 description 1
- HLXVPOUBXXSTNB-UHFFFAOYSA-N 1,5,6-trifluoro-5-methylcyclohexa-1,3-diene Chemical compound CC1(F)C=CC=C(F)C1F HLXVPOUBXXSTNB-UHFFFAOYSA-N 0.000 description 1
- BCIXPTYBPVDLSF-UHFFFAOYSA-N 1,5,6-triiodo-5-methylcyclohexa-1,3-diene Chemical compound CC1(I)C=CC=C(I)C1I BCIXPTYBPVDLSF-UHFFFAOYSA-N 0.000 description 1
- CXKUBSWJMNSYFO-UHFFFAOYSA-N 1,5-dichloro-5-methylcyclohexa-1,3-diene Chemical compound CC1(Cl)CC(Cl)=CC=C1 CXKUBSWJMNSYFO-UHFFFAOYSA-N 0.000 description 1
- PXMUFZLVYDRMJG-UHFFFAOYSA-N 1,5-difluoro-5-methylcyclohexa-1,3-diene Chemical compound CC1(F)CC(F)=CC=C1 PXMUFZLVYDRMJG-UHFFFAOYSA-N 0.000 description 1
- OLXMSYKIKJDKRQ-UHFFFAOYSA-N 1,5-diiodo-5-methylcyclohexa-1,3-diene Chemical compound CC1(I)CC(I)=CC=C1 OLXMSYKIKJDKRQ-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- MMZYCBHLNZVROM-UHFFFAOYSA-N 1-fluoro-2-methylbenzene Chemical compound CC1=CC=CC=C1F MMZYCBHLNZVROM-UHFFFAOYSA-N 0.000 description 1
- RINOYHWVBUKAQE-UHFFFAOYSA-N 1-iodo-2-methylbenzene Chemical compound CC1=CC=CC=C1I RINOYHWVBUKAQE-UHFFFAOYSA-N 0.000 description 1
- YWWOHROKOFWJSP-UHFFFAOYSA-N 2,5,6-trichloro-5-methylcyclohexa-1,3-diene Chemical compound CC1(Cl)C=CC(Cl)=CC1Cl YWWOHROKOFWJSP-UHFFFAOYSA-N 0.000 description 1
- ZMTGTJVJFGMZKJ-UHFFFAOYSA-N 2,5,6-trifluoro-5-methylcyclohexa-1,3-diene Chemical compound CC1(F)C=CC(F)=CC1F ZMTGTJVJFGMZKJ-UHFFFAOYSA-N 0.000 description 1
- ZDWSTYFJZZKEFV-UHFFFAOYSA-N 2,5,6-triiodo-5-methylcyclohexa-1,3-diene Chemical compound CC1(I)C=CC(I)=CC1I ZDWSTYFJZZKEFV-UHFFFAOYSA-N 0.000 description 1
- OPNQJIWBFJUXNO-UHFFFAOYSA-N 2,5-dichloro-5-methylcyclohexa-1,3-diene Chemical compound CC1(Cl)CC=C(Cl)C=C1 OPNQJIWBFJUXNO-UHFFFAOYSA-N 0.000 description 1
- UTWYQAQAMJSNCX-UHFFFAOYSA-N 2,5-difluoro-5-methylcyclohexa-1,3-diene Chemical compound CC1(F)CC=C(F)C=C1 UTWYQAQAMJSNCX-UHFFFAOYSA-N 0.000 description 1
- KCUSDLHJLRGFAK-UHFFFAOYSA-N 2,5-diiodo-5-methylcyclohexa-1,3-diene Chemical compound CC1(I)CC=C(I)C=C1 KCUSDLHJLRGFAK-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- DNMSBVYZDQGYLU-UHFFFAOYSA-N 2-oxo-1,3-dioxolane-4-carbonitrile Chemical compound O=C1OCC(C#N)O1 DNMSBVYZDQGYLU-UHFFFAOYSA-N 0.000 description 1
- HIGQQEOWQNDHJD-UHFFFAOYSA-N 4,4-dichloro-1,3-dioxolan-2-one Chemical compound ClC1(Cl)COC(=O)O1 HIGQQEOWQNDHJD-UHFFFAOYSA-N 0.000 description 1
- RKDNQLPSWHNCFU-UHFFFAOYSA-N 4,5-dibromo-1,3-dioxolan-2-one Chemical compound BrC1OC(=O)OC1Br RKDNQLPSWHNCFU-UHFFFAOYSA-N 0.000 description 1
- DSMUTQTWFHVVGQ-UHFFFAOYSA-N 4,5-difluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1F DSMUTQTWFHVVGQ-UHFFFAOYSA-N 0.000 description 1
- KQDOUXAQOUQPQW-UHFFFAOYSA-N 4-bromo-1,3-dioxolan-2-one Chemical compound BrC1COC(=O)O1 KQDOUXAQOUQPQW-UHFFFAOYSA-N 0.000 description 1
- OYOKPDLAMOMTEE-UHFFFAOYSA-N 4-chloro-1,3-dioxolan-2-one Chemical compound ClC1COC(=O)O1 OYOKPDLAMOMTEE-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- GPSZQZDENOVTHL-UHFFFAOYSA-N 4-nitro-1,3-dioxolan-2-one Chemical compound [O-][N+](=O)C1COC(=O)O1 GPSZQZDENOVTHL-UHFFFAOYSA-N 0.000 description 1
- PCEVCXPUGOBVFG-UHFFFAOYSA-N 5,6-dichloro-5-methylcyclohexa-1,3-diene Chemical compound CC1(Cl)C=CC=CC1Cl PCEVCXPUGOBVFG-UHFFFAOYSA-N 0.000 description 1
- CMTFMQAGUXZMHD-UHFFFAOYSA-N 5,6-difluoro-5-methylcyclohexa-1,3-diene Chemical compound CC1(F)C=CC=CC1F CMTFMQAGUXZMHD-UHFFFAOYSA-N 0.000 description 1
- DTWXIVZRKZIBPP-UHFFFAOYSA-N 5,6-diiodo-5-methylcyclohexa-1,3-diene Chemical compound CC1(I)C=CC=CC1I DTWXIVZRKZIBPP-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 229910010092 LiAlO2 Inorganic materials 0.000 description 1
- 229910013188 LiBOB Inorganic materials 0.000 description 1
- 229910001559 LiC4F9SO3 Inorganic materials 0.000 description 1
- 229910021447 LiN(CxF2x+1SO2)(CyF2y+1SO2) Inorganic materials 0.000 description 1
- 229910003005 LiNiO2 Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- JYVXNLLUYHCIIH-ZCFIWIBFSA-N R-mevalonolactone, (-)- Chemical compound C[C@@]1(O)CCOC(=O)C1 JYVXNLLUYHCIIH-ZCFIWIBFSA-N 0.000 description 1
- 229910008326 Si-Y Inorganic materials 0.000 description 1
- 229910006773 Si—Y Inorganic materials 0.000 description 1
- 229910020997 Sn-Y Inorganic materials 0.000 description 1
- 229910008859 Sn—Y Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- RLTFLELMPUMVEH-UHFFFAOYSA-N [Li+].[O--].[O--].[O--].[V+5] Chemical compound [Li+].[O--].[O--].[O--].[V+5] RLTFLELMPUMVEH-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- YCOXTKKNXUZSKD-UHFFFAOYSA-N as-o-xylenol Natural products CC1=CC=C(O)C=C1C YCOXTKKNXUZSKD-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 229910021475 bohrium Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229920005994 diacetyl cellulose Polymers 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000619 electron energy-loss spectrum Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Chemical group CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011326 fired coke Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 229910021473 hassium Inorganic materials 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- SNHMUERNLJLMHN-UHFFFAOYSA-N iodobenzene Chemical compound IC1=CC=CC=C1 SNHMUERNLJLMHN-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 1
- 150000002641 lithium Chemical class 0.000 description 1
- 229910001547 lithium hexafluoroantimonate(V) Inorganic materials 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910001537 lithium tetrachloroaluminate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- 229910000686 lithium vanadium oxide Inorganic materials 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011302 mesophase pitch Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 229940057061 mevalonolactone Drugs 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- GHZRKQCHJFHJPX-UHFFFAOYSA-N oxacycloundecan-2-one Chemical compound O=C1CCCCCCCCCO1 GHZRKQCHJFHJPX-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910021481 rutherfordium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 229910021477 seaborgium Inorganic materials 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical class O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
- C01G53/44—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- a positive active material for a lithium secondary battery and a method of producing the positive active material for a lithium secondary battery are disclosed.
- Batteries generate electrical power using an electrochemical reaction material for a positive electrode and a negative electrode.
- Lithium secondary batteries generate electrical energy due to chemical potential changes during intercalation/deintercalation of lithium ions at positive and negative electrodes.
- the lithium secondary batteries include a material reversibly intercalating or deintercalating lithium ions during charge and discharge reactions as both positive and negative active materials, and are filled with an organic electrolyte or a polymer electrolyte between the positive and negative electrodes.
- composite metal compounds For the positive active material for a lithium secondary battery, composite metal compounds has been used, and as examples thereof, composite metal oxides such as LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiMnO 2 , and the like are researched.
- a manganese-based positive active material such as LiMn 2 O 4 and LiMnO 2 is easy to synthesize, costs less than other materials, has excellent thermal stability compared to other active materials, and is environmentally friendly.
- this manganese-based material has relatively low capacity.
- LiCoO 2 has good electrical conductivity, a high cell voltage of about 3.7 V, and excellent cycle-life, stability, and discharge capacity, and thus is a presently-commercialized representative material. However, LiCoO 2 is so expensive that makes up more than 30% of the cost of a battery, and thus may reduce price competitiveness.
- LiCoO 2 has the highest discharge capacity among the above positive active materials, but is hard to synthesize. Furthermore, nickel therein is highly oxidized and may deteriorate the cycle-life of a battery and an electrode, and thus may have severe self-discharge and deterioration of reversibility. Further, it may be difficult to commercialize due to incomplete stability.
- a positive active material for a lithium secondary battery having high capacity and excellent cycle-life characteristics and a lithium secondary battery including the positive active material are provided.
- a positive active material for a lithium secondary battery is represented by Formula 1, and includes a core including a compound having a core portion and a surface portion, and the compound has a lower L3/L2 intensity ratio of Ni in the surface portion than an L3/L2 intensity ratio of Ni in the core portion.
- A is Ni ⁇ Co ⁇ Mn ⁇
- D is at least one element selected from the group consisting of Na, K, Mg, Ca, Sr, Ni, Co, Ti, Al, B, Si, Sn, Mn, Cr, Fe, V, Zr, Nb, and Mo
- E is at least one element selected from the group consisting of P, F, and S, —0.05 ⁇ z ⁇ 0.1, 0 ⁇ a ⁇ 0.05, 0 ⁇ b ⁇ 0.05, 0.3 ⁇ 0.9, 0.05 ⁇ 0.4, and 0.05 ⁇ 0.4.
- the L3/L2 intensity ratio of Ni is the oxidation number of Ni measured by electronic energy loss spectroscopy (EELS).
- D may be one element selected from the group consisting of Zr, Ti, Mg, Al, and combinations thereof.
- a mole doping ratio of D may be 0.001.
- a coating layer may be further located outside the core.
- a weight ratio of the coating layer to the total weight of the entire positive active material may be 0.05 to 0.5.
- the coating layer may further include F.
- the core portion may be represented by the following Formula 2, and the surface portion may be represented by Formula 3.
- A is Ni ⁇ Co ⁇ Mn ⁇
- D is at least one element selected from the group consisting of Na, K, Mg, Ca, Sr, Ni, Co, Ti, Al, B, Si, Sn, Mn, Cr, Fe, V, Zr, Nb, and Mo
- E is at least one element selected from the group consisting of P, F, and S, ⁇ 0.05 ⁇ z ⁇ 0.1, 0 ⁇ a ⁇ 0.01, 0 ⁇ b ⁇ 0.05, 0.3 ⁇ 0.9, 0.05 ⁇ 0.4, and 0.05 ⁇ 0.4.
- A is Ni ⁇ Co ⁇ Mn ⁇
- D is at least one element selected from the group consisting of Na, K, Mg, Ca, Sr, Ni, Co, Ti, Al, B, Si, Sn, Mn, Cr, Fe, V, Zr, Nb, and Mo
- E is at least one element selected from the group consisting of P, F, and S, ⁇ 0.05 ⁇ z ⁇ 0.1, 0.03 ⁇ a ⁇ 0.05, 0 ⁇ b ⁇ 0.05, 0.3 ⁇ 0.9, 0.05 ⁇ 0.4, and 0.05 ⁇ 0.4.
- An L3/L2 intensity ratio of Ni in the core portion may be 1.5 to 1.6, and an L3/L2 intensity ratio of Ni in the surface portion may be 1.2 to 1.4.
- a method of producing a positive active material for a lithium secondary battery includes: uniformly adhering a D supply material to a surface of a transition metal precursor by dry mixing the transition metal precursor and the D supply material; adding a lithium supply material to the mixture and dry mixing the same; and obtaining a core represented by the following Formula 1 and including a compound including a core portion and a surface portion by sintering the mixture.
- A is Ni ⁇ Co ⁇ Mn ⁇
- D is at least one element selected from the group consisting of Na, K, Mg, Ca, Sr, Ni, Co, Ti, Al, B, Si, Sn, Mn, Cr, Fe, V, Zr, Nb, and Mo
- E is at least one element selected from the group consisting of P, F, and S, ⁇ 0.05 ⁇ z ⁇ 0.1, 0 ⁇ a ⁇ 0.05 8, 0 ⁇ b ⁇ 0.05, 0.3 ⁇ 0.9, 0.05 ⁇ 0.4, and 0.05 ⁇ 0.4.
- the obtaining a core it may further include dry mixing the core and the coating layer forming material, and forming the coating layer on a surface of the core by sintering the mixture.
- a temperature of the sintering may be 800 to 1050° C.
- the temperature of the sintering may be 300 to 450° C.
- the D supply material may include Zr, Ti, Mg, Al, or combinations thereof.
- the coating layer forming material may include Al and/or B.
- the compound may have a lower L3/L2 intensity ratio of Ni in the surface portion than an L3/L2 intensity ratio of Ni in the core portion.
- a lithium secondary battery in another embodiment, includes a positive electrode including a positive active material for lithium secondary battery, a negative electrode including a negative active material, and an electrolyte.
- a positive active material for a lithium secondary battery having excellent battery characteristics, a method for producing the same, and a lithium secondary battery including the same, are provided.
- FIG. 1 is a schematic view of a lithium secondary battery.
- FIG. 2 is TEM result of Example 1.
- FIG. 3 is TEM result of Example 2.
- FIG. 4 is TEM result of Comparative Example 1.
- a positive active material for a lithium secondary battery is represented by Formula 1, and includes a core including a compound having a core portion and a surface portion, and the compound has a lower L3/L2 intensity ratio of Ni in the surface portion than an L3/L2 intensity ratio of Ni in the core portion.
- A is Ni ⁇ Co ⁇ Mn ⁇
- D is at least one element selected from the group consisting of Na, K, Mg, Ca, Sr, Ni, Co, Ti, Al, B, Si, Sn, Mn, Cr, Fe, V, Zr, Nb, and Mo
- E is at least one element selected from the group consisting of P, F, and S, ⁇ 0.05 ⁇ z ⁇ 0.1, 0 ⁇ a ⁇ 0.05, 0 ⁇ b ⁇ 0.05, 0.3 ⁇ 0.9, 0.05 ⁇ 0.4, and 0.05 ⁇ 0.4.
- the L3/L2 intensity ratio of Ni is the oxidation number of Ni measured by electronic energy loss spectroscopy (EELS).
- D may be one element selected from the group consisting of Zr, Ti, Mg, Al, and a combination thereof.
- a mole doping ratio of D may be 0.001.
- the positive active material can improve the battery characteristics of the lithium secondary battery. More specifically, in an embodiment of the present invention, it can provide a positive active material having improved cycle-life characteristics.
- the cycle-life characteristics of the battery can be improved and thermal stability can be improved. If the content of the doping element is too small, the effect is not sufficiently exhibited, and if the content is too large, the cycle-life characteristic deteriorates extremely.
- Ni 2+ distribution is increased on the surface portion. As NiO is formed through Ni 2+ , battery characteristics are deteriorated.
- a coating layer may be further located outside the core.
- the coating layer may include Al and/or B.
- a weight ratio of the coating layer to the total weight of the entire positive active material may be 0.05 to 0.5.
- the positive active material of Formula 1 including the coating layer further improves battery characteristics by suppressing side reactions with the electrolyte through surface modification.
- the coating layer may include F
- the wettability with the electrolyte is lowered, so that the side reaction can be suppressed to further stabilize the surface.
- the positive active material may be a positive active material in which the oxidation number of Ni is controlled by doping or coating.
- the positive active material may be a positive active material in which an L3/L2 intensity ratio of Ni in the surface portion is lower than an L3/L2 intensity ratio of Ni in the core portion by doping.
- the L3/L2 intensity ratio of Ni is a value measured through the TEM-EELS spectrum of Ni measured by electronic energy loss spectroscopy (EELS).
- the EELS measures the amount of loss by changing the energy of the incident electrons or measures the scattering angle distribution of electrons scattered after the electrons are incident to investigate the interaction of the target material and the electrons or investigate the energy state and the electron state of the ‘target material.
- EELS when an electron beam of a constant energy is applied to a target material such as an atom, a molecule, or a solid, loss of incident electron energy due to interaction between the target material, and the energy loss is referred to as electron energy loss.
- the oxidation number of Ni is controlled by doping. Specifically, by controlling the doping amount of D, the oxidation number of Ni can be controlled. More specifically, the value of a in Formula 1 in the core portion may be 0 to 0.01, and the value of a in the surface portion may be 0.03 to 0.05.
- An L3/L2 intensity ratio of Ni in this controlled core portion may be 1.5 to 1.6, and an L3/L2 intensity ratio of Ni in the surface portion may be 1.2 to 1.4.
- a method of producing a positive active material for a lithium secondary battery includes: uniformly adhering a D supply material to a surface of a transition metal precursor by dry mixing the transition metal precursor and the D supply material; adding a lithium supply material to the mixture and dry mixing the same; and obtaining a core represented by the following Formula 1 and including a compound including a core portion and a surface portion by sintering the mixture.
- A is Ni ⁇ Co ⁇ Mn ⁇
- D is at least one element selected from the group consisting of Na, K, Mg, Ca, Sr, Ni, Co, Ti, Al, B, Si, Sn, Mn, Cr, Fe, V, Zr, Nb, and Mo
- E is at least one element selected from the group consisting of P, F, and S, ⁇ 0.05 ⁇ z ⁇ 0.1, 0 ⁇ a ⁇ 0.05, 0 ⁇ b ⁇ 0.05, 0.3 ⁇ 0.9, 0.05 ⁇ 0.4, and 0.05 ⁇ 0.4.
- a temperature of the sintering may be 800 to 1050° C.
- the D supply material may include Zr, Ti, Mg, Al, or combinations thereof.
- the temperature of the sintering may be 300 to 450° C.
- the temperature of the sintering is less than 300° C., the reactivity between the coating material and the positive active material is low, and the coating material is loose, so that the coating effect is difficult to expect.
- the temperature of the sintering is higher than 450° C., the Al and B supply materials are excessively adhered to the compound, so that the initial capacity of the battery may be decreased and the cycle-life characteristics may be deteriorated at room temperature, high temperature, and low temperature.
- the description of the manufactured positive active material is the same as in the above-described embodiment of the present invention and its description is not additionally provided.
- a lithium secondary battery in yet another embodiment, includes a positive electrode, a negative electrode, and an electrolyte, wherein the positive electrode includes a current collector and a positive active material layer formed on the current collector, and the positive active material layer includes the positive active material.
- the positive active material is the same as in the above-described embodiment of the present invention, and its description is not additionally provided.
- the positive active material layer includes a binder and a conductive material.
- the binder improves binding properties of positive active material particles with one another and with a current collector, and examples thereof may be polyvinyl alcohol, carboxylmethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinylchloride, carboxylated polyvinylchloride, polyvinylfluoride, an ethylene oxide-containing polymer, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, a styrene-butadiene rubber, an acrylated styrene-butadiene rubber, an epoxy resin, nylon, and the like, but are not limited thereto.
- the conductive material improves electrical conductivity of a negative electrode.
- Any electrically conductive material can be used as a conductive agent unless it causes a chemical change, and examples of the conductive material include a carbon-based material such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fiber, a metal-based material such as a metal powder or a metal fiber of copper, nickel, aluminum, silver, and the like, and a conductive polymer such as a polyphenylene derivative, or a mixture thereof
- the negative electrode includes a current collector and a negative active material layer formed on the current collector, and the negative active material layer includes a negative active material.
- the negative active material includes a material that reversibly intercalates/deintercalates lithium ions, a lithium metal, a lithium metal alloy, a material being capable of doping and dedoping lithium, or a transition metal oxide.
- the material that can reversibly intercalate/deintercalate lithium ions includes a carbon material.
- the carbon material may be any generally-used carbon-based negative active material in a lithium ion rechargeable battery.
- Examples of the carbon material include crystalline carbon, amorphous carbon, and mixtures thereof.
- the crystalline carbon may be non-shaped, or sheet, flake, spherical, or fiber shaped natural graphite or artificial graphite.
- the amorphous carbon may be a soft carbon (low temperature fired carbon), a hard carbon, a mesophase pitch carbonized product, fired coke, and the like.
- the lithium metal alloy include lithium and a metal selected from the group consisting of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn.
- the material being capable of doping and dedoping lithium may include Si, SiO x (0 ⁇ x ⁇ 2), a Si—Y alloy (wherein Y is an element selected from the group consisting of an alkali metal, an alkaline-earth metal, a Group 13 element, a Group 14 element, a transition metal, a rare earth element, and a combination thereof, and is not Si), Sn, SnO 2 , or Sn—Y (wherein Y is an element selected from the group consisting of an alkali metal, an alkaline-earth metal, a Group 13 element, a Group 14 element, a transition metal, a rare earth element, and a combination thereof, and is not Sn). At least one of these materials may be mixed with SiO 2 .
- the element Y may be selected from the group consisting of Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, and a combination thereof.
- the transition metal oxide may include vanadium oxide, lithium vanadium oxide, and the like.
- the negative active material layer may include a binder, and optionally a conductive material.
- the binder improves binding properties of negative active material particles with one another and with a current collector, and examples thereof may be polyvinyl alcohol, carboxylmethyl cellulose, hydroxypropyl cellulose, polyvinylchloride, carboxylated polyvinylchloride, polyvinylfluoride, an ethylene oxide-containing polymer, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, a styrene-butadiene rubber, an acrylated styrene-butadiene rubber, an epoxy resin, nylon, and the like, but are not limited thereto.
- the conductive material improves electrical conductivity of a negative electrode, and any electrically conductive material may be used as a conductive agent unless it causes a chemical change, and examples of the conductive material include: a carbon-based material such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fiber; a metal-based material such as a metal powder or a metal fiber of copper, nickel, aluminum, silver, and the like; a conductive polymer such as a polyphenylene derivative; or a mixture thereof.
- a carbon-based material such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fiber
- a metal-based material such as a metal powder or a metal fiber of copper, nickel, aluminum, silver, and the like
- a conductive polymer such as a polyphenylene derivative
- the current collector may be selected from the group consisting of a copper foil, a nickel foil, a stainless steel foil, a titanium foil, a nickel foam, a copper foam, a conductive polymer substrate coated with a metal, and a combination thereof.
- the current collector may be Al, but is not limited thereto.
- the negative electrode and the positive electrode may be manufactured by a method including mixing each active material, a conductive material, and a binder into an active material composition and coating the composition on a current collector.
- the electrode manufacturing method is well known, and thus is not described in detail in the present specification.
- the solvent includes N-methylpyrrolidone and the like, but is not limited thereto.
- the electrolyte includes a non-aqueous organic solvent and a lithium salt.
- the non-aqueous organic solvent serves as a medium for transmitting ions taking part in the electrochemical reaction of a battery.
- the organic solvent may further include one selected from an ester-based, ether-based, ketone-based, or alcohol-based solvent, and an aprotic solvent.
- the carbonate-based solvent may include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and the like
- the ester-based solvent may include methyl acetate, ethyl acetate, n-propyl acetate, dimethylacetate, methylpropionate, ethylpropionate, ⁇ -butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone, and the like.
- the ether-based solvent may include dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, and the like, and the ketone-based solvent may include cyclohexanone and the like.
- the alcohol-based solvent may include ethyl alcohol, isopropyl alcohol, and the like, and examples of the aprotic solvent include nitriles such as R—CN (where R is a C2 to C20 linear, branched, or cyclic hydrocarbon, a double bond, an aromatic ring, or an ether bond), amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolanes, and the like.
- R—CN where R is a C2 to C20 linear, branched, or cyclic hydrocarbon, a double bond, an aromatic ring, or an ether bond
- amides such as dimethylformamide
- dioxolanes such as 1,3-dioxolane
- sulfolanes and the like.
- the non-aqueous organic solvent may be used alone or in a mixture, and when the organic solvent is used in a mixture, the mixture ratio may be controlled in accordance with desirable battery performance.
- the carbonate-based solvent is prepared by mixing a cyclic carbonate and a linear carbonate.
- the cyclic carbonate and linear carbonate are mixed together in a volume ratio of 1:1 to 1:9, which may produce enhanced performance.
- the non-aqueous organic solvent according to an embodiment of the present invention may further include an aromatic hydrocarbon-based organic solvent in addition to the carbonate-based solvent.
- the carbonate-based solvent and aromatic hydrocarbon-based solvent may be mixed together in a volume ratio of 1:1 to 30:1.
- the aromatic hydrocarbon-based organic solvent may be an aromatic hydrocarbon-based compound represented by Formula 4.
- R 1 to R 6 are independently hydrogen, a halogen, a C1 to C10 alkyl group, a haloalkyl group, or a combination thereof.
- the aromatic hydrocarbon-based organic solvent may be selected from the group consisting of benzene, fluorobenzene, 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene, 1,2,3-trifluorobenzene, 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, iodobenzene, 1,2-diiodobenzene, 1,3-diiodobenzene, 1,4-diiodobenzene, 1,2,3-triiodobenzene, 1,2,4-triiodobenzene, toluene, fluorotoluene, 1,2-difluorotoluene, 1,3-
- the non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate-based compound represented by Chemical Formula 5 to improve the cycle-life.
- R 7 and R 8 are independently hydrogen, a halogen, a cyano group (CN), a nitro group (NO 2 ), or a C1 to C5 fluoroalkyl group, provided that at least one of R 7 and R 8 is a halogen, a cyano group (CN), a nitro group (NO 2 ), or a C1 to C5 fluoroalkyl group.
- Examples of the ethylene carbonate-based compound include difluoroethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, and fluoroethylene carbonate.
- the amount of the additive for improving the cycle-life may be desirably used within an appropriate range.
- the lithium salt dissolved in an organic solvent supplies a battery with lithium ions, basically operates the lithium secondary battery, and improves transportation of the lithium ions between positive and negative electrodes.
- the lithium salt include one or more supporting salts selected from LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN(C x F 2x+1 SO 2 )(C y F 2y+1 SO 2 ), wherein x and y are natural numbers, LiCl, LiI, and LiB(C 2 O 4 ) 2 (lithium bis(oxalato) borate; LiBOB).
- a concentration of the lithium salt may be in a range of about 0.1 M to about 2.0 M.
- an electrolyte may have excellent performance and lithium ion mobility due to optimal electrolyte conductivity and viscosity.
- the lithium secondary battery may further include a separator between the negative electrode and the positive electrode.
- the separator includes polyethylene, polypropylene, or polyvinylidene fluoride, and multi-layers thereof such as a polyethylene/polypropylene double-layered separator, a polyethylene/polypropylene/polyethylene triple-layered separator, and a polypropylene/polyethylene/polypropylene triple-layered separator may be used.
- the lithium secondary battery may be classified into a lithium ion battery, a lithium ion polymer battery, and a lithium polymer battery depending on kinds of a separator and an electrolyte. It also may be classified to be cylindrical, prismatic, coin-type, pouch-type, and the like depending on its shape. In addition, it may be a bulk type and a thin film type depending on size. Structures and manufacturing methods for lithium ion batteries pertaining to this disclosure are well known in the art.
- FIG. 1 shows a representative structure of a lithium secondary battery of the present invention.
- the lithium secondary battery 1 includes a battery case 5 including an electrolyte solution impregnated in a positive electrode 3 , a negative electrode 2 , and a separator 4 between the positive electrode 3 and the negative electrode 2 , and a sealing member 6 sealing the battery case 5 .
- the Zr and Ti-doped lithium composite compound, an Al(OH) 3 powder, and a B 2 O 3 powder were dry-mixed at a weight ratio of 100:0.4:0.2 and then sintered, so that the Al(OH) 3 powder and the B 2 O 3 powder might be uniformly attached on the surface of the lithium composite compound.
- the dry-mixed powder was heat-treated at 400° C. for 6 hours to manufacture a positive active material.
- the dry-mixed powder was heat-treated at 800° C. for 8 hours to manufacture a lithium composite compound.
- the positive electrode slurry was coated to be 20 to 40 ⁇ m thick on an aluminum (Al) thin film as a positive electrode current collector, vacuum-dried, and roll-pressed, manufacturing a positive electrode.
- a Li-metal As for a negative electrode, a Li-metal was used.
- the positive electrode, the Li-metal as a counter electrode, and a 1.15 M LiPF 6 EC:DMC (1:1 vol %) as an electrolyte solution were used to manufacture a coin cell type of half-cell.
- Table 1 shows initial formation at 4.5 V and 45° C., and then capacity at each 1 st cycle, 20 th cycle, and 30 th cycle and cycle-life characteristic data of the examples and comparative example.
- the doped Example 1 showed excellent battery characteristics as compared with Comparative Example 1.
- Example 1 in which the core portion is doped has excellent cycle-life characteristics at a high temperature and a high voltage as compared with Comparative Example 1 which is not doped.
- Example 2 including a coating layer on the surface portion, excellent battery characteristics can be confirmed.
- Table 2 shows the relative values of the oxidation number of Ni measured by TEM-EELS of the positive active materials prepared in the examples and comparative example.
- FIG. 2 and FIG. 4 are TEM results for the examples and comparative example in Table 2.
- Table 2 shows the numerical value of the relative oxidation number of Ni, which means that the lower the value of Ni L3/L2, the higher the oxidation number of Ni.
- Example 1 and Example 2 it is confirmed in Example 1 and Example 2 that the value of Ni L3/L2 is lower and the oxidation number of Ni is higher in the surface portions (1, 2) than in the core portion (3).
- Comparative Example 1 it can be seen that the value of Ni L3/L2 is high and the oxidation number of Ni is low in the surface portions (1, 2).
- Ni 2+ distribution is increased on the surface portion.
- Example 1 and Example 2 it is confirmed that Ni 2+ is controlled by doping and/or coating, and as a result, the oxidation number of Ni in the surface portion is relatively high.
- Lithium secondary battery 2 Negative electrode 3: Positive electrode 4: Separator 5: Battery case 6: Sealing member
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
Li[LizA(1-z-a)Da]EbO2-b [Formula 1]
- In Formula 1, it may be that −0.05≤z≤0.05, 0.6≤α≤0.9, 0.05≤β≤0.2, and 0.05≤γ≤0.2.
- In addition, the coating layer may include Al and/or B.
Li[LizA(1-z-a)Da]EbO2-b [Formula 2]
Li[LizA(1-z-a)Da]EbO2-b [Formula 3]
Li[LizA(1-z-a)Da]EbO2-b [Formula 1]
Li[LizA(1-z-a)Da]EbO2-b [Formula 1]
Li[LizA(1-z-a)Da]EbO2-b [Formula 1]
TABLE 1 | |||||||
Cycle- | Cycle- | ||||||
Formation | 1CY | 20CY | 30CY | life | life | ||
Discharge | discharge | discharge | discharge | (20CY/ | (30CY/ | ||
capacity (mAh/g) | Efficiency | capacity | capacity | capacity | 1CY, %) | 1CY, %) | |
Example 1 | 220.01 | 90.12 | 217.91 | 195.04 | 178.04 | 89.50 | 81.70 |
Example 2 | 219.27 | 90.24 | 215.43 | 194.89 | 181.18 | 90.47 | 84.10 |
Comparative | 221.17 | 88.81 | 216.46 | 179.24 | 160.27 | 82.81 | 74.04 |
Example 1 | |||||||
TABLE 2 | |||||||
Example | Ni | Example | Ni | Comparative | Ni | ||
1 | L3/ |
2 | L3/L2 | Example 1 | L3/L2 | ||
1 | 1.26 | 1 | 1.36 | 1 | 1.50 | ||
2 | 1.29 | 2 | 1.38 | 2 | 1.35 | ||
3 | 1.54 | 3 | 1.53 | 3 | 1.28 | ||
1: Lithium secondary battery | 2: Negative electrode | ||
3: Positive electrode | 4: Separator | ||
5: Battery case | 6: Sealing member | ||
Claims (16)
Li[LizA(1-z-a)Da]EbO2-b [Formula 1]
Li[LizA(1-z-a)Da]EbO2-b [Formula 2]
Li[LizA(1-z-a)Da]EbO2-b [Formula 3]
Li[LizA(1-z-a)Da]EbO2-b [Formula 1]
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160028367A KR102085247B1 (en) | 2016-03-09 | 2016-03-09 | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same |
KR10-2016-0028367 | 2016-03-09 | ||
PCT/KR2017/002271 WO2017155240A1 (en) | 2016-03-09 | 2017-03-02 | Positive electrode active material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190131624A1 US20190131624A1 (en) | 2019-05-02 |
US10673071B2 true US10673071B2 (en) | 2020-06-02 |
Family
ID=59790608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/083,765 Active US10673071B2 (en) | 2016-03-09 | 2017-03-02 | Positive electrode active material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same |
Country Status (3)
Country | Link |
---|---|
US (1) | US10673071B2 (en) |
KR (1) | KR102085247B1 (en) |
WO (1) | WO2017155240A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020049803A1 (en) * | 2018-09-05 | 2020-03-12 | パナソニックIpマネジメント株式会社 | Positive electrode active material and battery provided with same |
CN111446433A (en) * | 2020-04-23 | 2020-07-24 | 华鼎国联四川电池材料有限公司 | Positive electrode composite material for lithium battery and preparation method thereof |
JP2025500564A (en) * | 2022-01-07 | 2025-01-09 | エルジー エナジー ソリューション リミテッド | Positive electrode active material, its manufacturing method, positive electrode and lithium secondary battery including the same |
KR20230117818A (en) * | 2022-02-03 | 2023-08-10 | 에스케이온 주식회사 | Cathode active material for lithium secondary battery and lithium secondary battery including the same |
CN114477318A (en) * | 2022-04-15 | 2022-05-13 | 宜宾锂宝新材料有限公司 | High-aspect-ratio ternary positive electrode material, and preparation method and application thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120099375A (en) | 2009-08-27 | 2012-09-10 | 엔비아 시스템즈 인코포레이티드 | Metal oxide coated positive electrode materials for lithium-based batteries |
JP2012190731A (en) | 2011-03-14 | 2012-10-04 | Hitachi Maxell Energy Ltd | Nonaqueous electrolyte secondary battery, and method for manufacturing the same |
KR20150063955A (en) | 2013-12-02 | 2015-06-10 | 주식회사 엘앤에프신소재 | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same |
KR20150090862A (en) | 2014-01-29 | 2015-08-06 | 주식회사 엘앤에프신소재 | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same |
KR101577180B1 (en) | 2013-12-30 | 2015-12-15 | 주식회사 에코프로 | Positive electrode active material with improved energy density |
WO2016032290A1 (en) | 2014-08-29 | 2016-03-03 | 주식회사 엘앤에프신소재 | Cathode active material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same |
-
2016
- 2016-03-09 KR KR1020160028367A patent/KR102085247B1/en active Active
-
2017
- 2017-03-02 WO PCT/KR2017/002271 patent/WO2017155240A1/en active Application Filing
- 2017-03-02 US US16/083,765 patent/US10673071B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120099375A (en) | 2009-08-27 | 2012-09-10 | 엔비아 시스템즈 인코포레이티드 | Metal oxide coated positive electrode materials for lithium-based batteries |
JP2012190731A (en) | 2011-03-14 | 2012-10-04 | Hitachi Maxell Energy Ltd | Nonaqueous electrolyte secondary battery, and method for manufacturing the same |
KR20150063955A (en) | 2013-12-02 | 2015-06-10 | 주식회사 엘앤에프신소재 | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same |
KR101577180B1 (en) | 2013-12-30 | 2015-12-15 | 주식회사 에코프로 | Positive electrode active material with improved energy density |
KR20150090862A (en) | 2014-01-29 | 2015-08-06 | 주식회사 엘앤에프신소재 | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same |
WO2016032290A1 (en) | 2014-08-29 | 2016-03-03 | 주식회사 엘앤에프신소재 | Cathode active material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same |
Non-Patent Citations (2)
Title |
---|
Nurpeissova et al "Effect of Titanium Addition as Nickel Oxide Formation Inhibitor in Nickel-Rich Cathode Material for Lithium-Ion Batteries" Journal of Power Sources vol. 299, pp. 425-433, 2015. |
Sun et al "A Novel Cathode Material with a Concentration-Gradient for High-Energy and Safe Lithium-Ion Batteries" Advanced Functional Materials vol. 20, pp. 485-491, 2010. |
Also Published As
Publication number | Publication date |
---|---|
WO2017155240A1 (en) | 2017-09-14 |
US20190131624A1 (en) | 2019-05-02 |
KR20170105307A (en) | 2017-09-19 |
KR102085247B1 (en) | 2020-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10903486B2 (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
US8389162B2 (en) | Electrolyte for rechargeable lithium battery including additives, and rechargeable lithium battery including the same | |
US9209482B2 (en) | Positive active material for rechargeable lithium battery, method of manufacturing the same and rechargeable lithium battery using the same | |
US9293761B2 (en) | Positive active material layer composition for rechargeable lithium battery and rechargeable lithium battery using the same | |
US20120045693A1 (en) | Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same | |
US20090325072A1 (en) | Rechargeable lithium battery | |
KR20150063956A (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
KR20150063955A (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
KR101309149B1 (en) | Method for manufacturing positive active material for rechargeable lithium battery and rechargeable lithium battery using the same | |
US8802300B2 (en) | Rechargeable lithium battery | |
KR101788561B1 (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
KR20100002107A (en) | Lithium secondary battery | |
US8435680B2 (en) | Rechargeable lithium battery | |
US10673071B2 (en) | Positive electrode active material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same | |
US10177384B2 (en) | Positive active material for rechargeable lithium battery, method of manufacturing the same and rechargeable lithium battery using the same | |
KR20150109669A (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
US20160028082A1 (en) | Cathode Active Material for Lithium Secondary Battery, and Lithium Secondary Battery Using Same | |
US8877382B2 (en) | Method for manufacturing positive active material for rechargeable lithium battery and rechargeable lithium battery using same | |
KR20170106810A (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
KR102114229B1 (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
KR101878920B1 (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
US20180026266A1 (en) | Positive Active Material For Lithium Secondary Battery, Method For Producing Same, And Lithium Secondary Battery Comprising Same | |
KR101673178B1 (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
US10026961B2 (en) | Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same | |
KR101668799B1 (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
AS | Assignment |
Owner name: L&F CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHOI, SU AN;JEON, SANG HOON;KWON, SU YOUN;AND OTHERS;SIGNING DATES FROM 20200421 TO 20200424;REEL/FRAME:052490/0819 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |