[go: up one dir, main page]

KR101577180B1 - Positive electrode active material with improved energy density - Google Patents

Positive electrode active material with improved energy density Download PDF

Info

Publication number
KR101577180B1
KR101577180B1 KR1020140005533A KR20140005533A KR101577180B1 KR 101577180 B1 KR101577180 B1 KR 101577180B1 KR 1020140005533 A KR1020140005533 A KR 1020140005533A KR 20140005533 A KR20140005533 A KR 20140005533A KR 101577180 B1 KR101577180 B1 KR 101577180B1
Authority
KR
South Korea
Prior art keywords
composite oxide
active material
lithium composite
cathode active
energy density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020140005533A
Other languages
Korean (ko)
Other versions
KR20150080390A (en
Inventor
최문호
김직수
정재용
이승호
전석용
Original Assignee
주식회사 에코프로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로 filed Critical 주식회사 에코프로
Publication of KR20150080390A publication Critical patent/KR20150080390A/en
Application granted granted Critical
Publication of KR101577180B1 publication Critical patent/KR101577180B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 혼합 양극활물질에 관한 것으로서, 더욱 상세하게는 고에너지 밀도를 나타내도록 혼합된 양극활물질에 관한 것이다.
본 발명에 의한 혼합 양극활물질은 에너지 밀도가 높은 농도구배부를 포함하는 양극활물질과 상대적으로 안정성이 높은 층상구조의 리튬니켈코발트망간 복합 산화물을 입경을 조절하면서 혼합함으로써 높은 에너지 밀도를 나타내면서도 높은 안정성을 나타낸다.
The present invention relates to a mixed cathode active material, and more particularly, to a mixed cathode active material exhibiting a high energy density.
The mixed cathode active material according to the present invention exhibits high energy density and high stability by mixing a cathode active material having a concentration gradient with a high energy density and a layered lithium nickel cobalt manganese composite oxide having a relatively high stability while controlling the particle size .

Description

고에너지 밀도의 혼합 양극활물질{Positive electrode active material with improved energy density}{Positive electrode active material with improved energy density}

본 발명은 혼합 양극활물질에 관한 것으로서, 더욱 상세하게는 고에너지 밀도를 나타내도록 혼합된 양극활물질에 관한 것이다.
The present invention relates to a mixed cathode active material, and more particularly, to a mixed cathode active material exhibiting a high energy density.

모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차 전지 중 높은 에너지 밀도와 전압을 갖고 사이클 수명이 길며, 자기 방전율이 낮은 리튬이차전지가 상용화 되어 널리 사용되고 있다. 또한, 환경문제에 대한 관심이 커짐에 따라 대기 오염의 주요 원인 중 하나인 가솔린 차량, 디젤 차량 등 화석 연료를 사용하는 차량을 대체할 수 있는 전기 자동차, 하이브리드 전기 자동차 등에 대한 연구가 많이 진행되고 있다. 최근에는 이러한 전기 자동차, 하이브리드 전기자동차 등의 동력원으로도 높은 에너지 밀도와 방전 전압을 갖는 리튬이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 단계에 있다.As technology development and demand for mobile devices increase, the demand for secondary batteries as energy sources is rapidly increasing. Among these secondary batteries, a lithium secondary battery having a high energy density and voltage, a long cycle life, and a low self-discharge rate has been commercialized and widely used. In addition, as the interest in environmental issues grows, researches on electric vehicles and hybrid electric vehicles that can replace fossil fuel-based vehicles such as gasoline vehicles and diesel vehicles, which are one of the main causes of air pollution, . In recent years, studies on the use of lithium secondary batteries having high energy density and discharge voltage as power sources for electric vehicles and hybrid electric vehicles have been actively conducted, and some of them are in the commercialization stage.

기존의 대표적인 양극물질인 LiCoO2의 경우 에너지 밀도 및 출력 특성이 실용 한계치에 도달하고 있고 특히, 고에너지 밀도 응용 분야에 사용될 경우 그 구조적 불안정성으로 인하여 고온 충전상태에서 구조 변성과 더불어 구조내의 산소를 방출하여 전지내의 전해질과 발열 반응을 일으켜 전지 폭발의 주원인이 된다. 이러한 LiCoO2의 불안전성을 개선하기 위하여 층상 결정구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 함유 망간 산화물과 리튬 함유 니켈 산화물(LiNiO2)의 사용이 고려되어 왔으며, 최근에는 Ni, Mn, Co의 3성분계 층상 산화물을 사용하는 것에 대한 연구가 꾸준히 진행되어 왔다.In the case of LiCoO 2 , which is a typical anode material, the energy density and output characteristics reach practical limits. Especially, when used for high energy density applications, due to the structural instability, Thereby generating an exothermic reaction with the electrolyte in the cell, thereby causing the explosion of the battery. In order to improve the instability of LiCoO 2 , the use of lithium-containing manganese oxide such as LiMnO 2 having a layered crystal structure and LiMn 2 O 4 having a spinel crystal structure and lithium-containing nickel oxide (LiNiO 2 ) has been considered. Mn, and Co have been continuously studied.

상기 3성분계 층상 산화물 중 가장 대표적인 Li[Ni1/3Co1/3Mn1/3]O2는 충전시 Ni2+ 에서 충전심도에 따라 Ni3+ 나 Ni4+ 로 변한다. 그러나 안정한 Ni2+ 와는 달리 Ni3+ 나 Ni4+ 는 불안정성으로 인해 격자 산소를 잃어 Ni2+ 로 환원되고, 이 격자산소는 전해액과 반응하여 전극의 표면성질을 바꾸거나 표면의 전하이동(charge transfer) 임피던스를 증가시켜 용량감소나 고율특성 등을 저하시켜서 에너지 밀도가 낮다는 문제가 있다. The most representative Li [Ni 1/3 Co 1/3 Mn 1/3 ] O 2 among the above three-component layered oxides changes to Ni 3+ or Ni 4+ according to the depth of filling in Ni 2+ upon charging. However, unlike stable Ni 2+ , Ni 3+ or Ni 4+ lose the lattice oxygen due to instability and are reduced to Ni 2+ . This lattice oxygen reacts with the electrolyte to change the surface properties of the electrode, transfer impedance to decrease capacity and high-rate characteristics, resulting in low energy density.

일반적으로 이러한 물질들은 입자표면과 벌크에서의 금속의 조성이 균일하다. 우수한 양극 성능을 갖기 위해서는 양극 분말 입자의 내부와 표면에서의 작용하는 기능이 서로 달라야 한다. 즉 입자 내부에서의 조성은 리튬의 삽입탈리 자리가 많고 구조적으로 안정해야 하나, 표면에서는 전해액과의 반응을 최소화시켜야 한다.In general, these materials are uniform in the composition of the metal on the particle surface and in the bulk. In order to have good anodic performance, the function of the inside and the surface of the anode powder particle must be different from each other. In other words, the composition in the particle should be structurally stable with a lot of lithium intercalation sites, but the reaction with the electrolyte should be minimized on the surface.

이를 위해 대한민국 특허공개 제2005-0083869호에는 금속 조성의 농도 구배를 갖는 리튬전이금속 산화물이 제안되어 있다. 이 방법은 내부 물질을 합성한 후에 외부에 다른 조성을 갖는 물질을 입혀 이중층으로 제조한 후 리튬염과 혼합하여 열처리하는 방법이다. 이 방법은 합성 시 내부 층과 외부 층의 금속 조성을 다르게 합성할 수 있으나, 생성된 양극활물질에서 금속 조성이 연속적으로 점진적으로 변하지 않는다. 즉, 열처리 과정을 통하여 금속 조성의 점진적인 구배가 이루어질 수는 있으나, 850 ℃ 이상의 높은 열처리 온도에서는 금속이온들의 열 확산으로 인해 농도 구배차가 거의 생기지 않는다. 또한 이 발명으로 합성된 분말은 킬레이팅제인 암모니아를 사용하지 않기 때문에 분말의 탭 밀도가 낮아 리튬이차전지용 양극활물질로 사용하기에는 부적합하며, 내부 물질로 리튬 전이금속 산화물을 사용할 경우 외부 층의 리튬 양 제어가 곤란하여 재현성이 떨어진다. For this purpose, Korean Patent Laid-Open Publication No. 2005-0083869 proposes a lithium transition metal oxide having a concentration gradient of a metal composition. This method is a method of synthesizing an internal material and then forming a double layer by applying a material having a different composition to the outside, followed by heat treatment by mixing with a lithium salt. In this method, the metal composition of the inner layer and the outer layer can be differently synthesized at the time of synthesis, but the metal composition of the produced cathode active material does not change continuously. That is, although the gradual gradation of the metal composition can be achieved through the heat treatment process, at a high heat treatment temperature of 850 ° C or more, the concentration gradient of the metal ions hardly occurs due to thermal diffusion of the metal ions. Also, since the powder synthesized by the present invention does not use ammonia as a chelating agent, the powder has a low tap density and is not suitable for use as a cathode active material for a lithium secondary battery. When a lithium transition metal oxide is used as an internal material, And the reproducibility is low.

이러한 점을 개선하기 위해 대한민국 특허 공개 제2007-0097923호에서는 내부 벌크부와 외부 벌크부를 두고 외부 벌크부에서 금속 성분들이 위치에 따라 연속적인 농도 분포를 가지는 양극활물질이 제안되어 있다.In order to solve this problem, Korean Patent Laid-Open Publication No. 2007-0097923 proposes a cathode active material having internal bulk portions and external bulk portions, and metal components in the external bulk portion have a continuous concentration distribution depending on positions.

한편, 일본특허 제2002-001724호에 따르면 Ni계 양극활물질의 열적 안정성과 수명특성을 향상시키기 위해 수명특성과 열적 안정성은 우수하나 전도성과 방전용량이 떨어지는 고안정성 복합산화물, Li1.02Ni0.65Mn0.35O2와 전도성과 방전 용량 특성은 우수하나 수명특성과 열적 안정성이 열악한 고전도성 복합산화물 Li1.02Ni0.7Co0.3O2를 혼합한 양극활물질이 보고되고 있다. On the other hand, according to Japanese Patent Application No. 2002-001724, a high-stability composite oxide, Li 2 O 2 .2 Ni 0.65 Mn 0.35 , which is excellent in lifetime characteristics and thermal stability but has a low conductivity and discharge capacity in order to improve the thermal stability and life- O 2 and a cathode active material mixed with Li 1.02 Ni 0.7 Co 0.3 O 2 having a high conductivity and discharge capacity characteristics but a poor life characteristic and thermal stability have been reported.

그러나, 이 혼합 양극활물질의 경우 고안정성 복합 산화물의 혼합비가 증가할수록 수명 특성이 우수하였으며, 고전도성 복합산화물의 혼합비가 증가할수록 고율 특성이 우수하였다. 즉, 고율과 수명 특성이 모두 우수한 양극활물질을 얻을 수가 없었다.
However, as the mixing ratio of the high - stability composite oxide increased, the life characteristics of the mixed cathode active material were improved. As the mixing ratio of the high - conductivity composite oxide increased, the high - rate characteristics were excellent. That is, it was impossible to obtain a cathode active material having both a high rate and a long life characteristic.

대한민국 공개특허 제2005-0083869호Korea Patent Publication No. 2005-0083869 대한민국 공개특허 제2007-0097923호Korea Patent Publication No. 2007-0097923 일본 공개특허 제2002-001724호Japanese Patent Laid-Open No. 2002-001724

본 발명은 고에너지 밀도 특성 및 안전성 수명 특성이 모두 개선된 새로운 혼합 양극활물질을 제공하는 것을 목적으로 한다.
It is an object of the present invention to provide a novel mixed cathode active material having improved both high energy density characteristics and safety life characteristics.

본 발명은 상기와 같은 과제를 해결하기 위하여 The present invention has been made to solve the above problems

아래 [화학식 1]로 표시되는 코어부; A core portion represented by the following Chemical Formula 1;

아래 [화학식 2]으로 표시되는 쉘부; 및 A shell part represented by the following formula (2); And

상기 코어부와 상기 쉘부 사이에 상기 코어부 조성으로부터 상기 쉘부 조성까지 금속 이온의 농도가 점진적으로 변하는 농도구배부를 포함하는 제 1 리튬복합산화물; 및 A first lithium composite oxide including a concentration gradient portion between the core portion and the shell portion, the concentration of the metal ions gradually changing from the composition of the core portion to the composition of the shell portion; And

[화학식 1] Lix1[Ni1-y1-z1-w1Coy1Mnz1Mw1]O2 ???????? Li x1 [Ni 1-y1-z1-w1 Co y1 Mn z1 M w1 ] O 2

(상기 화학식 1에서 0.9≤x1≤1.3, 0.0≤y1≤0.3, 0.0≤z1≤0.3, 0≤w1≤0.1, 0.7≤1-y1-z1-w1<1.0 이고 M은 Mg, Ba, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, 및 Sn 으로 이루어진 그룹에서 선택되는 1종 이상의 금속임)Wherein M is at least one element selected from the group consisting of Mg, Ba, Zn, Ca (where x is at least one element selected from the group consisting of Mg, Ba, Zn, , At least one metal selected from the group consisting of Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr,

[화학식 2] Lix2[Ni1-y2-z2-w2Coy2Mnz2Mw2]O2 ???????? Li x 2 [Ni 1-y 2-z 2 -w 2 Co y 2 Mn z 2 M w 2 ] O 2

(상기 화학식 2에서 0.9≤x2≤1+z2, 0≤y2≤0.33, 0≤z2≤0.5, 0≤w2≤0.1, 0.3≤1-y2-z2-w2<0.7 이고, M은 Mg, Ba, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, 및 Sn 으로 이루어진 그룹에서 선택되는 1종 이상의 금속임)0.5, 0? W2? 0.1, 0.3? 1-y2-z2-w2 <0.7, M is at least one element selected from the group consisting of Mg, Ba, At least one metal selected from the group consisting of Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge,

입자 전체에서 금속 이온의 농도가 일정하고 아래 [화학식 3]으로 표시되는 제 2 리튬복합산화물; A second lithium composite oxide having a constant metal ion concentration throughout the particle and represented by the following Chemical Formula 3;

을 포함하는 것을 특징으로 하는 고에너지 밀도 혼합 양극활물질을 제공한다.And a high-energy density mixed cathode active material.

[화학식 3] Lix3Niy3Mnz3Co1-y3-z3MsO2 ???????? Li x 3 Ni y 3 Mn z 3 Co 1 -y 3 -z 3 M s O 2

(상기 화학식 3에서 0.9≤x3≤1.3, 0.3≤y3≤0.8, 0.01≤z3<0.4, 0≤s≤0.3, M은 Mg, Ti, Ba, Ca, B, Al, Cr, F, Mo, P, Sr 및 Zr 으로 이루어진 그룹에서 선택되는 어느 하나임)
M, Mg, Ti, Ba, Ca, B, Al, Cr, F, Mo, P (where 0 &amp;le; , Sr, and Zr)

본 발명에 의한 고에너지 밀도 혼합 양극활물질에 있어서, 상기 혼합 양극활물질은 상기 제 1 리튬복합산화물 100 중량부당 상기 제 2 리튬복합산화물 0.001 내지 50 중량부의 비율로 혼합되는 것을 특징으로 한다.In the high energy density mixed cathode active material according to the present invention, the mixed cathode active material is mixed in a ratio of 0.001 to 50 parts by weight of the second lithium composite oxide per 100 parts by weight of the first lithium composite oxide.

본 발명에 의한 고에너지 밀도 혼합 양극활물질에 있어서, 상기 제 1 리튬복합산화물의 입경 R1은 10 내지 15 ㎛ 인 것을 특징으로 한다.In the high energy density mixed cathode active material according to the present invention, the first lithium composite oxide has a particle diameter R1 of 10 to 15 mu m.

본 발명에 의한 고에너지 밀도 혼합 양극활물질에 있어서, 상기 제 2 리튬복합산화물의 입경 R2 는 1 내지 6 ㎛ 인 것을 특징으로 한다. In the high energy density mixed cathode active material according to the present invention, the second lithium composite oxide has a particle diameter R 2 of 1 to 6 탆.

본 발명에 의한 고에너지 밀도 혼합 양극활물질에 있어서, 상기 제 1 리튬복합산화물의 입경과 상기 제 2 리튬복합산화물의 입경의 비 R1/R2 는 2 내지 15 인 것을 특징으로 한다. In the high energy density mixed cathode active material according to the present invention, the ratio of the particle diameter of the first lithium composite oxide to the particle diameter of the second lithium composite oxide is 2 to 15.

본 발명에 의한 고에너지 밀도 혼합 양극활물질에 있어서, 상기 제 2 리튬복합산화물은 Li[Ni1/3Mn1/3Co1/3]O2, Li[Ni0.5Mn0.2Co0.3]O2, 또는 Li[Ni0.6Mn0.2Co0.2]O2 인 것을 특징으로 한다. In the high energy density positive electrode active material mixture according to the invention, the second lithium composite oxide is Li [Ni 1/3 Mn 1/3 Co 1/3 ] O 2, Li [Ni 0.5 Mn 0.2 Co 0.3] O 2, Or Li [Ni 0.6 Mn 0.2 Co 0.2 ] O 2 .

본 발명은 또한, 본 발명에 의한 혼합 양극활물질을 포함하는 양극을 제공한다. The present invention also provides a positive electrode comprising the mixed cathode active material according to the present invention.

본 발명은 또한, 본 발명에 따른 양극을 포함하는 리튬이차전지를 제공한다.The present invention also provides a lithium secondary battery comprising a positive electrode according to the present invention.

본 발명은 또한, 본 발명에 따른 리튬이차전지를 포함하는 것을 특징으로 하는 중대형 디바이스를 제공한다. The present invention also provides a middle- or large-sized device characterized by comprising a lithium secondary battery according to the present invention.

본 발명에 있어서, 상기 중대형 디바이스는 파워 툴(power tool), 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 및 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; E-bike, E-scooter를 포함하는 전기 이륜차; 전기 골프 카트(Electric golf cart); 전기트럭; 전기 상용차 또는 전력 저장용 시스템인 것을 특징으로 한다.
In the present invention, the middle- or large-sized device may be a power tool, an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid electric vehicle , PHEV); Electric motorcycle including E-bike, E-scooter; Electric golf cart; Electric truck; An electric commercial vehicle or a system for electric power storage.

본 발명에 의한 혼합 양극활물질은 에너지 밀도가 높은 농도구배부를 포함하는 양극활물질과 상대적으로 안정성이 높은 층상구조의 리튬니켈코발트망간 복합 산화물을 입경을 조절하면서 혼합함으로써 높은 에너지 밀도를 나타내면서도 높은 안정성을 나타낸다.
The mixed cathode active material according to the present invention exhibits high energy density and high stability by mixing a cathode active material having a concentration gradient with a high energy density and a layered lithium nickel cobalt manganese composite oxide having a relatively high stability while controlling the particle size .

도 1 및 도 2는 본 발명의 실시예 및 비교예에서 제조된 활물질의 pellet 밀도 및 에너지 밀도를 측정한 결과이다.
도 3 및 도 4는 본 발명의 실시예 및 비교예에서 제조된 활물질을 포함하는 전지의 수명 특성 및 에너지 특성을 측정한 결과이다.
1 and 2 show the results of measuring the pellet density and the energy density of the active material prepared in Examples and Comparative Examples of the present invention.
FIGS. 3 and 4 are measurement results of life characteristics and energy characteristics of a battery including the active material prepared in Examples and Comparative Examples of the present invention.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.

< 제조예 1> 농도 구배를 갖는 제 1 리튬복합산화물의 합성 PREPARATION EXAMPLE 1 Synthesis of first lithium composite oxide having a concentration gradient

Ni:Co:Mn의 몰비가 80:20:0이 되도록 2.5 M의 황산니켈 6수화물(NiSO4·6H2O)과 황산코발트 7수화물(CoSO4·7H2O) 혼합 금속용액을 제조하였다. 암모니아 수용액을 채운 내용적 90 L를 가지는 연속반응기를 이용하였으며 초기 용액의 pH는 11~12 범위로 하였다. 상기 제조된 2.5 M의 니켈/코발트혼합금속용액과 28 % 암모니아수 및 25 % 수산화나트륨 용액을 300~600 rpm의 속도로 교반하면서 정량펌프를 이용하여 동시에 연속적으로 투입하였다. A mixed metal solution of 2.5 M nickel sulfate hexahydrate (NiSO 4 .6H 2 O) and cobalt sulfate heptahydrate (CoSO 4 .7H 2 O) was prepared so that the molar ratio of Ni: Co: Mn was 80: 20: A continuous reactor having a volume of 90 L filled with ammonia solution was used. The pH of the initial solution was in the range of 11 to 12. The prepared 2.5 M nickel / cobalt mixed metal solution, 28% ammonia water, and 25% sodium hydroxide solution were continuously and continuously injected at a rate of 300 to 600 rpm using a metering pump while stirring.

정상 상태에 도달한 상기 복합금속수산화물의 입자 크기가 10~15 μm가 되면, 이후 표면 형성을 위한 수용액과 상기 코아 형성을 위한 금속 수용액을 혼합하면서 공급하여 전이 금속의 농도가 연속적인 농도 구배를 나타내도록 하였다. 즉, 황산니켈, 황산코발트 및 황산망간 금속 수용액의 몰 비가 80:20:0 에서 33.3:33.3:33.3 이 될 때 까지 농도 변화를 주면서, 변화되는 금속 수용액을 이용하여 반응을 계속하였다. 금속 수용액의 몰비가 33.3:33.3:33.3 에 이르면 그 몰비를 유지한 상태로 정상 상태에 도달할 때까지 반응을 지속하여 농도 구배를 가지는 구형의 니켈망간코발트 복합 수산화물을 얻었다.When the particle size of the composite metal hydroxide reaches a steady state, the aqueous solution for forming the surface and the aqueous metal solution for forming the core are mixed and supplied so that the concentration of the transition metal exhibits a continuous concentration gradient Respectively. That is, the reaction was continued using the aqueous metal solution while changing the concentration until the molar ratio of nickel sulfate, cobalt sulfate and manganese sulfate aqueous solution was changed from 80: 20: 0 to 33.3: 33.3: 33.3. When the molar ratio of the metal aqueous solution reached 33.3: 33.3: 33.3, the reaction was continued until the steady state was reached while maintaining the molar ratio. Thus, spherical nickel manganese cobalt complex hydroxide having a concentration gradient was obtained.

상기 금속 복합수산화물을 여과하고, 물 세척한 후에 110 ℃ 온풍건조기에서 15 시간 건조 후, Li과 전이 금속 이온과의 몰비가 0.95~1.05가 되도록 상기 금속 복합 수산화물과 수산화리튬(LiOH)을 혼합하여 700~1000 ℃에서 4~20 시간 소성시켜 농도구배를 나타내는 쉘부를 포함하는 양극활물질 분말을 얻었다.
The metal complex hydroxide was filtered and washed with water, dried in a hot air drier at 110 ° C for 15 hours, and then mixed with lithium hydroxide (LiOH) to obtain a molar ratio of Li to transition metal ion of 0.95 to 1.05 And calcined at ~ 1000 ° C for 4 to 20 hours to obtain a cathode active material powder including a shell portion exhibiting a concentration gradient.

<제조예 2> 제 2 리튬복합산화물의 합성PREPARATION EXAMPLE 2 Synthesis of second lithium composite oxide

황산니켈, 황산코발트, 및 황산망간 몰비가 0.333:0.333:0.333 비율로 혼합된 2.5 M 농도의 금속 수용액을 2.5 L/hr, 암모니아 수용액을 반응기에 [암모니아 용액의 농도/금속 수용액의 농도]가 0.5~1.0을 유지하도록 연속적으로 투입하였다. pH 조정을 위해 25 % 농도의 수산화나트륨 수용액을 공급하여 pH가 11-12로 유지되도록 하였으며, 용액의 평균 체류시간은 10~15 시간 정도로 유량을 조절하였고, 반응조의 평균 온도는 40~60 ℃로 유지하였다.A 2.5 M aqueous solution of metal at a molar ratio of 0.333: 0.333: 0.333 of nickel sulfate, cobalt sulfate and manganese sulfate in a ratio of 2.5 L / hr, an aqueous ammonia solution to the reactor [concentration of ammonia solution / concentration of aqueous metal solution] of 0.5 RTI ID = 0.0 &gt; 1.0. &Lt; / RTI &gt; The pH was adjusted to 11-12 by supplying a 25% aqueous solution of sodium hydroxide to adjust the pH. The average residence time of the solution was adjusted to 10 ~ 15 hours and the average temperature of the reaction tank was 40 ~ 60 ℃ Respectively.

얻어진 복합수산화물에 pH 12.5가 될 때까지 가성소다를 투입하여 미반응 금속염을 제거한 후 여과 및 물 세척 후 100~150 ℃ 온풍건조기에서 10~20 시간 건조시켜 복합수산화물 형태의 전구체를 얻었다. 탄산리튬(Li2CO3)을 상기 금속염의 농도와의 비가 0.95~1.2가 되도록 혼합한 후, 1~20 ℃/min 승온 속도로 가열한 후 700~1000 ℃에서 4~20 시간 소성시켜 상술한 방법으로 열처리를 행하여 Li[Ni1/3Mn1/3Co1/3]O2로 표시되는 양극활물질 분말을 얻었다.To the obtained complex hydroxide was added caustic soda until pH 12.5 was reached to remove unreacted metal salt, followed by filtration and washing with water, followed by drying in a hot air drier at 100-150 ° C for 10-20 hours to obtain a complex hydroxide type precursor. (Li 2 CO 3 ) to a concentration of the metal salt of 0.95 to 1.2, heating at a heating rate of 1 to 20 ° C / min, and calcining at 700 to 1000 ° C for 4 to 20 hours, To obtain a positive electrode active material powder represented by Li [Ni 1/3 Mn 1/3 Co 1/3 ] O 2 .

황산니켈, 황산코발트, 및 황산망간의 몰비를 조절하는 것 외에는 상기와 동일하게 하여 Li[Ni0.5Mn0.2Co0.3]O2, Li[Ni0.6Mn0.2Co0.2]O2로 표시되는 제 2 리튬복합산화물분말을 얻었다.
Represented by Li [Ni 0.5 Mn 0.2 Co 0.3 ] O 2 , Li [Ni 0.6 Mn 0.2 Co 0.2 ] O 2, was prepared in the same manner as above except that the molar ratio of nickel sulfate, nickel sulfate, cobalt sulfate and manganese sulfate was controlled. To obtain a composite oxide powder.

<실시예> 혼합 양극활물질의 제조<Examples> Preparation of mixed cathode active material

상기 제조예 1 및 제조예 2에서 제조된 제 1 리튬복합산화물 및 제 2 리튬복합산화물의 혼합비를 아래 표 1과 같이 하여 혼합 양극활물질을 제조하였다. The mixing ratio of the first lithium composite oxide and the second lithium composite oxide prepared in Preparation Example 1 and Preparation Example 2 was as shown in Table 1 below to prepare a mixed cathode active material.

Figure 112014004582716-pat00001
Figure 112014004582716-pat00001

<실험예> 입자 특성 측정<Experimental Example> Measurement of particle characteristics

상기 표 1에서와 같이 제조된 혼합 양극활물질들에 대해 pellet density 및 에너지 밀도를 측정하고 도 1, 도 2 및 아래 표 2 에 나타내었다. The pellet density and the energy density of the mixed cathode active materials prepared as shown in Table 1 were measured and shown in FIG. 1, FIG. 2, and Table 2 below.

도 1, 도 2 및 표 2에서 입자내에서 금속 이온의 농도가 일정한 제 2 리튬복합산화물의 혼합 비율이 증가할수록 pellet density 및 에너지 밀도가 증가하다가 감소하는 것을 알 수 있다. 1, 2, and Table 2, it can be seen that as the mixing ratio of the second lithium composite oxide having a constant metal ion concentration in the particles increases, the pellet density and energy density increase and decrease.

Figure 112014004582716-pat00002
Figure 112014004582716-pat00002

<제조예><Production Example>

상기 실시예 및 비교예 각각에 따라 제조된 리튬이차전지용 양극활물질과 도전재로서 아세틸렌블랙, 결합제로는 폴리비닐리덴플루오라이드(PVdF 제품명: solef6020)를 90:5:5의 중량비로 혼합하여 슬러리를 제조하였다. 상기 슬러리를 20 ㎛ 두께의 알루미늄박에 균일하게 도포하고, 130 ℃에서 진공 건조하여 리튬이차전지용 양극을 제조하였다.Acetylene black as a conductive material and polyvinylidene fluoride (solef 6020, a product name: solef6020) as a binder were mixed at a weight ratio of 90: 5: 5 to prepare a cathode active material for a lithium secondary battery manufactured according to each of the above Examples and Comparative Examples, . The slurry was uniformly coated on an aluminum foil having a thickness of 20 占 퐉 and vacuum-dried at 130 占 폚 to prepare a positive electrode for a lithium secondary battery.

상기 양극과, 리튬 호일을 상대 전극으로 하며, 두께가 25 ㎛인 다공성 폴리에틸렌막을 세퍼레이터로 하고, 에틸렌 카보네이트와 에틸 메틸카보네이트가 3:7 의 부피비로 혼합된 용매에 LiPF6를 1M 농도로 녹인 전해액을 사용하여 통상의 방법으로 코인 전지를 제조하였다.
An electrolytic solution obtained by dissolving LiPF 6 at a concentration of 1 M in a solvent mixed with ethylene carbonate and ethyl methyl carbonate in a volume ratio of 3: 7 was used as a separator, using the above anode and lithium foil as counter electrodes and a porous polyethylene film having a thickness of 25 탆 as a separator. A coin cell was produced by a conventional method.

<실험예> 전지 특성 평가&Lt; Experimental Example >

상기 실시예 및 비교예의 양극활물질을 사용하여 제조된 코인 전지에 대해 수명 특성 및 에너지 밀도를 평가하고 표 2, 도 3 및 도 4에 나타내었다. The life characteristics and the energy density of the coin battery manufactured using the cathode active materials of the above Examples and Comparative Examples were evaluated and shown in Tables 2, 3 and 4.

표 2, 도 3 및 도 4에서 보는 바와 같이 본 발명의 실시예에 의하여 제 1 리튬복합산화물과 제 2 리튬복합산화물을 혼합한 경우 제 2 리튬복합산화물 단독 비교예 6 및 비교예 7에 비하여 에너지 밀도가 약 30% 개선되는 효과를 나타내었다. As shown in Table 2, FIG. 3, and FIG. 4, when the first lithium composite oxide and the second lithium composite oxide were mixed according to the embodiment of the present invention, energy compared to the second lithium composite oxide only Comparative Example 6 and Comparative Example 7 And the density was improved by about 30%.

Claims (10)

아래 [화학식 1]로 표시되는 코어부;
아래 [화학식 2]으로 표시되는 쉘부; 및
상기 코어부와 상기 쉘부 사이에 상기 코어부 조성으로부터 상기 쉘부 조성까지 금속 이온의 농도가 점진적으로 변하는 농도구배부를 포함하는 제 1 리튬복합산화물; 및
[화학식 1] Lix1[Ni1-y1-z1-w1Coy1Mnz1Mw1]O2
(상기 화학식 1에서 0.9≤x1≤1.3, 0.0≤y1≤0.3, 0.0≤z1≤0.3, 0≤w1≤0.1, 0.7≤1-y1-z1-w1<1.0 이고 M은 Mg, Ba, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, 및 Sn 으로 이루어진 그룹에서 선택되는 1종 이상의 금속임)
[화학식 2]Lix2[Ni1-y2-z2-w2Coy2Mnz2Mw2]O2
(상기 화학식 2에서 0.9≤x2≤1+z2, 0≤y2≤0.33, 0≤z2≤0.5, 0≤w2≤0.1, 0.3≤1-y2-z2-w2 < 0.7 이고, M은 Mg, Ba, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, 및 Sn 으로 이루어진 그룹에서 선택되는 1종 이상의 금속임)
입자 전체에서 금속 이온의 농도가 일정하고 아래 [화학식 3]으로 표시되는 제 2 리튬복합산화물;
을 포함하는 것을 특징으로 하는 고에너지 밀도 혼합 양극활물질.
[화학식 3] Lix3Niy3Mnz3Co1-y3-z3MsO2
(상기 화학식 3에서 0.9≤x3≤1.3, 0.3≤y3≤0.8, 0.01≤z3<0.4, 0≤s≤0.3, M은 Mg, Ti, Ba, Ca, B, Al, Cr, F, Mo, P, Sr 및 Zr 으로 이루어진 그룹에서 선택되는 어느 하나임)
A core portion represented by the following Chemical Formula 1;
A shell part represented by the following formula (2); And
A first lithium composite oxide including a concentration gradient portion between the core portion and the shell portion, the concentration of the metal ions gradually changing from the composition of the core portion to the composition of the shell portion; And
???????? Li x1 [Ni 1-y1-z1-w1 Co y1 Mn z1 M w1 ] O 2
Wherein M is at least one element selected from the group consisting of Mg, Ba, Zn, Ca (where x is at least one element selected from the group consisting of Mg, Ba, Zn, , At least one metal selected from the group consisting of Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr,
???????? Li x 2 [Ni 1-y 2-z 2 -w 2 Co y 2 Mn z 2 M w 2 ] O 2
0.5, 0? W2? 0.1, 0.3? 1-y2-z2-w2 <0.7, M is at least one element selected from the group consisting of Mg, Ba, At least one metal selected from the group consisting of Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge,
A second lithium composite oxide having a constant metal ion concentration throughout the particle and represented by the following Chemical Formula 3;
And a high-energy-density mixed cathode active material.
???????? Li x 3 Ni y 3 Mn z 3 Co 1 -y 3 -z 3 M s O 2
M, Mg, Ti, Ba, Ca, B, Al, Cr, F, Mo, P (where 0 &amp;le; , Sr, and Zr)
제1항에 있어서,
상기 혼합 양극활물질은 상기 제 1 리튬복합산화물 100 중량부당 상기 제 2 리튬복합산화물 0.001 내지 50 중량부의 비율로 혼합되는 것을 특징으로 하는 혼합 양극활물질.
The method according to claim 1,
Wherein the mixed cathode active material is mixed in a ratio of 0.001 to 50 parts by weight of the second lithium composite oxide per 100 parts by weight of the first lithium composite oxide.
제1항에 있어서,
상기 제 1 리튬복합산화물의 입경 R1은 10 내지 15 ㎛ 인 것을 특징으로 하는 혼합 양극활물질.
The method according to claim 1,
Wherein the first lithium composite oxide has a particle diameter R1 of 10 to 15 占 퐉.
제1항에 있어서,
상기 제 2 리튬복합산화물의 입경 R2는 1 내지 6 ㎛ 인 것을 특징으로 하는 혼합 양극활물질.
The method according to claim 1,
And the second lithium composite oxide has a particle size R 2 of 1 to 6 탆.
제1항에 있어서,
상기 제 1 리튬복합산화물의 입경과 상기 제 2 리튬복합산화물의 입경의 비 R1/R2 는 2 내지 15인 것을 특징으로 하는 혼합 양극활물질.
The method according to claim 1,
Wherein a ratio R1 / R2 of a particle diameter of the first lithium composite oxide to a particle diameter of the second lithium composite oxide is 2-15.
제1항에 있어서,
상기 제 2 리튬복합산화물은 Li[Ni1/3Mn1/3Co1/3]O2, Li[Ni0.5Mn0.2Co0.3]O2, 또는 Li[Ni0.6Mn0.2Co0.2]O2인 것을 특징으로 하는 혼합 양극활물질.
The method according to claim 1,
The second lithium composite oxide may be Li [Ni 1/3 Mn 1/3 Co 1/3 ] O 2 , Li [Ni 0.5 Mn 0.2 Co 0.3 ] O 2 , or Li [Ni 0.6 Mn 0.2 Co 0.2 ] O 2 Lt; RTI ID = 0.0 &gt; 1, &lt; / RTI &gt;
제1항 내지 제6항 중 어느 한 항에 따른 혼합 양극활물질을 포함하는 양극.
An anode comprising the mixed cathode active material according to any one of claims 1 to 6.
제7항에 따른 양극을 포함하는 것을 특징으로 하는 리튬이차전지.
A lithium secondary battery comprising the positive electrode according to claim 7.
제8항에 따른 리튬이차전지를 포함하는 것을 특징으로 하는 중대형 디바이스.
A medium- or large-sized device characterized by comprising the lithium secondary battery according to claim 8.
제9항에 있어서,
상기 중대형 디바이스는 파워 툴(power tool), 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 및 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; E-bike, E-scooter를 포함하는 전기 이륜차; 전기 골프 카트(Electric golf cart); 전기트럭; 전기 상용차 또는 전력 저장용 시스템인 것을 특징으로 하는 중대형 디바이스.
10. The method of claim 9,
The middle- to large-sized devices include a power tool, an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid electric vehicle (PHEV) Electric cars; Electric motorcycle including E-bike, E-scooter; Electric golf cart; Electric truck; An electric commercial vehicle or a system for power storage.
KR1020140005533A 2013-12-30 2014-01-16 Positive electrode active material with improved energy density Active KR101577180B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130167635 2013-12-30
KR20130167635 2013-12-30

Publications (2)

Publication Number Publication Date
KR20150080390A KR20150080390A (en) 2015-07-09
KR101577180B1 true KR101577180B1 (en) 2015-12-15

Family

ID=53792203

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140005533A Active KR101577180B1 (en) 2013-12-30 2014-01-16 Positive electrode active material with improved energy density

Country Status (1)

Country Link
KR (1) KR101577180B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155240A1 (en) * 2016-03-09 2017-09-14 주식회사 엘 앤 에프 Positive electrode active material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same
US10741872B2 (en) 2015-10-20 2020-08-11 Lg Chem, Ltd. Positive electrode active material for lithium secondary battery comprising lithium metal oxides having multilayered structure and positive electrode comprising the same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106207140B (en) * 2016-09-28 2019-02-12 荆门市格林美新材料有限公司 A kind of preparation method of multiple core-shell structure nickel cobalt aluminium compound
KR102467457B1 (en) * 2016-11-18 2022-11-14 에스케이온 주식회사 Lithium secondary battery
KR102467458B1 (en) * 2016-11-18 2022-11-14 에스케이온 주식회사 Lithium secondary battery
US10199650B2 (en) * 2016-11-18 2019-02-05 Sk Innovation Co., Ltd. Lithium secondary battery and method of fabricating the same
US10756331B2 (en) * 2016-11-18 2020-08-25 Sk Innovation Co., Ltd. Lithium secondary battery and method of fabricating the same
KR102446269B1 (en) * 2017-09-19 2022-09-21 에스케이온 주식회사 Lithium secondary battery
KR102449152B1 (en) * 2017-09-19 2022-09-28 에스케이온 주식회사 Lithium secondary battery and manufacturing method thereof
US11936041B2 (en) 2016-12-16 2024-03-19 Sk On Co., Ltd. Lithium secondary battery
KR102446270B1 (en) * 2017-11-23 2022-09-21 에스케이온 주식회사 Lithium secondary battery
CN110178253B (en) 2016-12-22 2022-05-10 株式会社Posco Positive electrode active material, method of preparing the same, and lithium secondary battery including the same
KR102457285B1 (en) * 2018-01-15 2022-10-19 에스케이온 주식회사 Lithium secondary battery
KR102472882B1 (en) * 2018-01-18 2022-11-30 에스케이온 주식회사 Lithium secondary battery
WO2019227016A1 (en) * 2018-05-24 2019-11-28 24M Technologies, Inc. High energy-density composition-gradient electrodes and methods of making the same
KR102513950B1 (en) * 2018-07-06 2023-03-23 에스케이온 주식회사 Lithium secondary battery
KR102513949B1 (en) * 2018-07-06 2023-03-23 에스케이온 주식회사 Lithium secondary battery
CN110690418B (en) 2018-07-06 2023-07-25 Sk新能源株式会社 lithium secondary battery
CN109473652B (en) * 2018-11-15 2021-07-09 合肥国轩高科动力能源有限公司 A kind of preparation method of lithium ion battery high nickel ternary material
CN115036466B (en) * 2022-06-02 2025-02-11 深圳市德方纳米科技股份有限公司 Polyphosphate positive electrode material and preparation method thereof, and secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318926A (en) 1998-07-02 2006-11-24 Nippon Chem Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery
JP2011113783A (en) 2009-11-26 2011-06-09 Sony Corp Positive electrode active material for nonaqueous electrolyte battery, nonaqueous electrolyte battery, high-output electronic equipment, and automobile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318926A (en) 1998-07-02 2006-11-24 Nippon Chem Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery
JP2011113783A (en) 2009-11-26 2011-06-09 Sony Corp Positive electrode active material for nonaqueous electrolyte battery, nonaqueous electrolyte battery, high-output electronic equipment, and automobile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10741872B2 (en) 2015-10-20 2020-08-11 Lg Chem, Ltd. Positive electrode active material for lithium secondary battery comprising lithium metal oxides having multilayered structure and positive electrode comprising the same
WO2017155240A1 (en) * 2016-03-09 2017-09-14 주식회사 엘 앤 에프 Positive electrode active material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same
US10673071B2 (en) 2016-03-09 2020-06-02 L&F Co., Ltd. Positive electrode active material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same

Also Published As

Publication number Publication date
KR20150080390A (en) 2015-07-09

Similar Documents

Publication Publication Date Title
KR101577180B1 (en) Positive electrode active material with improved energy density
KR101587293B1 (en) Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP2023129573A (en) Lithium secondary battery cathode active material
KR101458676B1 (en) Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery using the same
KR101970201B1 (en) Manufacturing method of cathod active material for lithium rechargeable battery and cathod active material made by the same
KR20150134161A (en) Composite cathode active material, lithium battery comprising the same, and preparation method thereof
CN108807928B (en) Synthesis of a metal oxide and lithium-ion battery
KR20140119621A (en) Precusor for lithium rich active material and lithium rich active material made by the same
JP6493757B2 (en) Lithium ion secondary battery
JP2019096612A (en) Cathode active material for lithium secondary battery
JP2012033389A (en) Cathode active material and manufacturing method thereof, and lithium ion secondary battery
KR20100013673A (en) Positive active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery using same
KR102152370B1 (en) Cathode active material and lithium secondary batteries comprising the same
CN112242506B (en) Nonaqueous electrolyte secondary battery
CN112242508B (en) Nonaqueous electrolyte secondary battery
KR101776896B1 (en) Cathode active material for lithium secondary battery and a method of making the same
KR101991254B1 (en) Positive Active material with high Power density and longevity
KR101554692B1 (en) Precursor of positive active material, positive active material, method for manufacturing the same and lithium secondary battery using the same
CN112242509B (en) Nonaqueous electrolyte secondary battery
KR20150059820A (en) Manufacturing method of cathod active material for lithium rechargible battery by coprecipitation, and cathod active material for lithium rechargeable battery made by the same
KR101909317B1 (en) Cathode active material for lithium secondary battery and method of making the same
JP7163624B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode active material
KR102381520B1 (en) Positive active material for lithium rechargeable battery, lithium rechargeable battery including the same, and manufacturing method for the same
KR101506680B1 (en) Cathode active material for lithium secondary battery and manufacturing method of the same
KR101657265B1 (en) Porous manganese-based cathode active material, a method of making the same and lithium secondary battery comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20140116

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20150521

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20151130

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20151208

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20151209

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20180816

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20180816

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20191004

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20191004

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20210825

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20221019

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20230905

Start annual number: 9

End annual number: 9