US10451176B2 - Planetary gearing for a wind turbine having mounted planetary gears - Google Patents
Planetary gearing for a wind turbine having mounted planetary gears Download PDFInfo
- Publication number
- US10451176B2 US10451176B2 US15/758,767 US201615758767A US10451176B2 US 10451176 B2 US10451176 B2 US 10451176B2 US 201615758767 A US201615758767 A US 201615758767A US 10451176 B2 US10451176 B2 US 10451176B2
- Authority
- US
- United States
- Prior art keywords
- planetary gear
- bearing
- bolt
- planetary
- axial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/08—General details of gearing of gearings with members having orbital motion
- F16H57/082—Planet carriers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/10—Sliding-contact bearings for exclusively rotary movement for both radial and axial load
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
- F03D15/10—Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
- F03D15/101—Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members of the epicyclic or planetary type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/70—Bearing or lubricating arrangements
- F03D80/705—Lubrication circuits; Lubrication delivery means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/1045—Details of supply of the liquid to the bearing
- F16C33/1055—Details of supply of the liquid to the bearing from radial inside, e.g. via a passage through the shaft and/or inner sleeve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C35/00—Rigid support of bearing units; Housings, e.g. caps, covers
- F16C35/02—Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C43/00—Assembling bearings
- F16C43/02—Assembling sliding-contact bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/70—Bearing or lubricating arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/26—Systems consisting of a plurality of sliding-contact bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2226/00—Joining parts; Fastening; Assembling or mounting parts
- F16C2226/50—Positive connections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2226/00—Joining parts; Fastening; Assembling or mounting parts
- F16C2226/50—Positive connections
- F16C2226/52—Positive connections with plastic deformation, e.g. caulking or staking
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/31—Wind motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/08—Attachment of brasses, bushes or linings to the bearing housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/02—Gearboxes; Mounting gearing therein
- F16H2057/02039—Gearboxes for particular applications
- F16H2057/02078—Gearboxes for particular applications for wind turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/08—General details of gearing of gearings with members having orbital motion
- F16H2057/085—Bearings for orbital gears
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the invention relates to a planetary gearing and to a wind turbine fitted with the planetary gearing.
- a generic planetary gearing is known from WO2013/106878A1 of the same applicant.
- a sliding bearing is arranged between a planetary shaft and the planetary carrier, wherein the planetary gear is connected to the planetary shaft in a rotationally secure manner.
- two run-on discs are provided, which are arranged on both sides of the planetary gear between the planetary gear and planetary carrier.
- the underlying objective of the invention is to provide a planetary gearing with improved bearing of the planetary gear.
- a planetary gearing for a wind turbine is formed.
- the planetary gearing comprises a sun gear, a hollow gear, a planetary carrier with a first bolt receiving element, which comprises at least one first bolt seat and at least one planetary gear bolt, which is mounted in the first bolt seat in a rotationally secure manner, at least one planetary gear, which is mounted rotatably on the planetary gear bolt by means of a bearing assembly relative to the planetary gear bolt, wherein the planetary gear is in engagement both with the sun gear and with the hollow gear.
- the bearing assembly comprises a first planetary gear receiving bushing and a second planetary gear receiving bushing, which planetary gear receiving bushings are coupled to the planetary gear in a rotationally secure manner and between which planetary gear receiving bushings an axial bearing gap is formed.
- the bearing assembly comprises at least one bearing running sleeve, which is mounted on the planetary gear bolt in a rotationally secure manner and on which an axial positioning flange is formed, which is mounted in the axial bearing gap between the planetary gear receiving bushings and in this way an axial position fixing, in particular an axial bearing, of the planetary gear on the planetary gear bolt is carried out.
- the design of the planetary gearing according to the invention has the advantage that the axial bearing of the planetary gear is arranged in the planetary gearing in a space-saving manner and that a planetary gearing designed in this way, in particular a planetary gear, is easy to maintain. Furthermore, it is also possible that in an existing planetary gearing an originally provided roller bearing can be replaced by a sliding bearing designed in this way.
- the bearing assembly comprises a first radial sliding bearing bush which is mounted in the first planetary gear receiving bushing in a rotationally secure manner and comprises a second radial sliding bearing bush, which is mounted in the second planetary gear receiving bushing in a rotationally secure manner, wherein the first and the second radial sliding bearing bush have a sliding surface for the relative movement on a contact surface with the bearing running sleeve.
- a sliding bearing bush can be easily replaced in case of wear and such sliding bearing bushes can be produced so that they are adapted to the requirements of the respective planetary gearing.
- the bearing assembly can comprise a first axial sliding bearing disc which is arranged between the first planetary gear receiving bushing and axial positioning flange of the bearing running sleeve and the bearing assembly comprises a second axial sliding bearing disc, which is arranged between the second planetary gear receiving bushing and axial positioning flange of the bearing running sleeve.
- first axial sliding bearing disc is secured by fastening means onto the first planetary gear receiving bushing and that the second axial sliding bearing disc is secured by fastening means onto the second planetary gear receiving bushing. It is an advantage here that the axial sliding bearing discs can be mounted securely inside the bearing assembly and thus the sliding surfaces of the axial sliding bearing discs can be predetermined exactly.
- the planetary carrier comprises a second bolt receiving element on which at least one second bolt seat is formed, wherein the planetary gear is arranged on the planetary gear bolt between the first bolt seat and second bolt seat.
- the bearing running sleeve comprises a first bearing running sleeve part and a second bearing running sleeve part, wherein on one of the two bearing running sleeve parts the axial positioning flange is formed at the end side and the two bearing running sleeve parts are positioned relative to one another so that the axial positioning flange is arranged on the interior between the two bearing running sleeve parts.
- At least one of the planetary gear receiving bushings comprises a graduation on an end side which forms the axial bearing gap, wherein the two planetary gear receiving bushings contact one another at an end face. It is an advantage, here that in this way the axial extension of the axial bearing gap can be defined precisely. In this way an axial bearing play can be determined.
- FIG. 1 is a perspective view of an embodiment of a planetary carrier for a planetary gearing
- FIG. 2 is a cross-sectional view of the planetary carrier according to the section line II-II of FIG. 3 ;
- FIG. 3 is a cross-sectional view of the planetary carrier according to the section line III-III of FIG. 2 ;
- FIG. 4 is a cross-sectional view of the planetary carrier according to the section line IV-IV of FIG. 3 ;
- FIG. 5 is a cross-sectional view of a planetary carrier with an overhanging planet bolt
- FIG. 6 is a cross-sectional view of a planetary carrier with an integrated planet bolt.
- FIG. 1 is a perspective view of the interior of a planetary gearing 1 for a wind turbine.
- FIG. 2 shows a cross-section of the planetary gearing 1 , wherein for a better overview only a portion of the planetary gearing 1 above a central axis 2 is shown.
- wind turbines comprise a tower with a gondola arranged at the upper end in which the rotor with rotor blades is mounted. Said rotor is operatively connected via the planetary gearing 1 to a generator, which is also located in the gondola, wherein by means of the planetary gearing 1 the low speed of the rotor is converted into a higher speed of the generator rotor.
- a generator which is also located in the gondola
- the planetary gearing 1 comprises a sun gear 3 , which is coupled with movement to a shaft 4 , which leads to the generator rotor.
- the sun gear 3 is surrounded by a plurality of planetary gears 5 , for example two, preferably three or four.
- Both the sun gear 3 and the planetary gears 5 have external spur gearings 6 , 7 , which intermeshing with one another, wherein said spur gearings 6 , 7 are shown schematically in FIG. 2 .
- the planetary gears 5 are mounted by means of planetary gear bolts 8 in a planetary carrier 9 , wherein in the planetary carrier 9 a first bolt receiving element 10 and a second bolt receiving element 11 are provided. In the bolt receiving elements 10 , 11 a first bolt seat 12 and a second bolt seat 13 are formed in which the planetary gear bolt 8 is mounted.
- the planetary gear bolt 8 can be secured in the planetary carrier 9 by additional securing means, such as fastening means for example.
- the planetary carrier 9 in particular the bolt receiving elements 10 , 11 can be made in one piece from a cast material piece.
- the second bolt receiving element 11 can be secured by fastening means onto the first bolt receiving element 10 and the two bolt receiving elements 10 , 11 can thus be disassembled.
- guide pins can be provided, by means of which the position of the second bolt receiving element 11 is fixed relative to the first bolt receiving element 10 .
- the first bolt seat 12 can be designed in the form of a blind bore and the second bolt seat 13 is designed in the form of a through bore.
- the planetary gear bolt 8 can be inserted from the side of the second bolt seat 13 into the two bolt receiving elements 10 , 11 .
- the planetary gear 5 is mounted approximately centrally between the two bolt receiving elements 10 , 11 , wherein an axial free space 16 is formed between a first end face 14 of the planetary gear 5 and the first bolt receiving element 10 and also between a second end face 15 of the planetary gear 5 and the second bolt receiving element 11 , so that the planetary gear 5 can run freely in the planetary carrier 9 .
- a hollow gear 17 is arranged which has internal toothing 18 which intermeshes with the spur gearing 7 of the planetary gears 5 .
- the hollow gear 17 is coupled with movement with a rotor shaft of the rotor of the wind turbine.
- the spur gearings 6 , 7 and the internal toothing 18 can be designed in the form of a spur gear, a helical gear or as a double helical gear for example.
- the planetary gear 5 is supported by means of a bearing assembly 19 on the planetary gear bolt 8 and in this way can be rotated relative to the planetary gear bolt 8 . Furthermore, by means of the bearing assembly 19 it is possible for the axial free space 16 between the planetary gear 5 and the bolt receiving elements 10 , 11 to also be maintained during operation and in this way the planetary gear 5 is freely rotatable.
- the bearing assembly 19 comprises a first planetary gear receiving bushing 20 and a second planetary gear receiving bushing 21 , which are mounted in a rotationally secure manner in the planetary gear 5 .
- This can be achieved for example in that the planetary gear receiving bushings 20 , 21 are inserted into an inner cylinder surface 22 of the planetary gear 5 .
- the inner cylinder surface 22 of the planetary gear 5 can also comprise graduations which are used as a stop.
- the planetary gear receiving bushings 20 , 21 can be secured in the planetary gear 5 by means of fastening means, such as a setscrew.
- the planetary gear receiving bushings 20 , 21 can be secured in the planetary gear 5 by means of a material-bonded connection such as an adhesive bond or a weld.
- At least one of the two planetary gear receiving bushings 20 , 21 has a graduation 24 on one end face 23 , by means of which an axial bearing gap 25 is formed.
- the planetary gear receiving bushings 20 , 21 are preferably designed in the form of a hollow cylinder, wherein the graduation 24 is formed in the inner cylinder surface of the planetary gear receiving bushing 20 , 21 .
- end faces 23 of the planetary gear receiving bushings 20 , 21 adjoin one another in the finally installed stated.
- a shoulder is arranged in the center of the cylinder surface 22 of the planetary gear 5 , on which the planetary gear receiving bushings 20 , 21 bear, whereby the axial bearing gap 25 is formed.
- one of the two planetary gear receiving bushings 20 , 21 can be connected in one piece with the planetary gear 5 , or one of the two planetary gear receiving bushings 20 , 21 can be formed in one piece with the planetary gear 5 .
- a first radial sliding bearing bush 26 can be mounted and on the inner casing surface of the second planetary gear receiving bushing 21 a second radial sliding bearing bush 27 can be arranged.
- the two radial sliding bearing bushes 26 , 27 are preferably mounted by means of a press-connection in the planetary gear receiving bushings 20 , 21 .
- the radial sliding bearing bushes 26 , 27 are preferably mounted in a rotationally secure manner in the planetary gear receiving bushings 20 , 21 .
- a shoulder can be formed in the planetary gear receiving bushings 20 , 21 on which shoulder the radial sliding bearing bushes 26 , 27 are mounted. In this way the axial position of the radial sliding bearing bushes 26 , 27 can be secured.
- a bearing running sleeve 28 is provided which is preferably secured by means of a press-connection onto the planetary gear bolt 8 .
- the bearing running sleeve 28 can also be secured in its seat on the planetary gear bolt 8 .
- the bearing running sleeve 28 comprises an axial positioning flange 29 which is mounted in the axial bearing gap 25 . By means of the axial positioning flange 29 and the axial bearing gap 25 the planetary gear 5 can be secured in its axial position.
- the first and the second radial sliding bearing bush 26 , 27 can have a sliding surface 30 , by means of which the latter bear on the bearing running sleeve 28 and whereby the sliding bearing of the planetary gear 5 is formed.
- the sliding surface 30 can be arranged not on the inner cylinder surface of the radial sliding bearing bushes 26 , 27 but it can be arranged on the outer cylinder surface of the radial sliding bearing bushes 26 , 27 .
- the radial sliding bearing bush 26 , 27 is pressed in a rotationally secure manner on the bearing running sleeve 28 and the relative movement takes place between the radial sliding bearing bush 26 , 27 and the planetary gear receiving bushings 20 , 21 .
- a first axial sliding bearing disc 31 can be arranged between the axial positioning flange 29 and the first planetary gear receiving bushing 20 and similarly a second axial sliding bearing disc 32 can be arranged between the axial positioning flange 29 and the second planetary gear receiving bushing 21 .
- the axial sliding bearing discs 31 , 32 can be arranged by means of fastening means 33 on the first or second planetary gear receiving bushing 20 , 21 .
- the relative movement thus takes place between the axial sliding bearing discs 31 , 32 and the axial positioning flange 29 .
- Such fastening means can consist of an Allen screw or countersunk screw for example.
- the axial sliding bearing discs 31 , 32 can be secured to the axial positioning flange 29 by fastening means 33 or an adhesive bond and there can be a relative movement between the axial sliding bearing discs 31 , 32 and the planetary gear receiving bushings 20 , 21 .
- the axial sliding bearing discs 31 , 32 can be fixed either by their outer or inner circumferential surface radially inside the axial bearing gap 25 and the axial sliding bearing discs 31 , 32 can thus be inserted loosely in the axial bearing gap 25 .
- the bearing running sleeve 28 can be formed by a first bearing running sleeve part 34 and a second bearing running sleeve part 35 .
- Such an embodiment of the bearing running sleeve 28 has the advantage that the individual bearing running sleeve parts 34 , 35 are simple to manufacture and can be installed separately from one another. With such a divided configuration the axial positioning flange 29 is formed on one of the bearing running sleeve parts 34 , 35 .
- the two bearing running sleeve parts 34 , 35 are positioned relative to one another in the installed state so that the axial positioning flange 29 is arranged approximately in the center of the two bearing running sleeve parts 34 , 35 .
- the bearing running sleeve 28 can have a similar form to the bearing running sleeve parts 34 , 35 shown in FIG. 2 in a joined state, but is designed in one piece.
- a lubricant inlet 36 can be formed in the planetary gear bolt 8 , by means of which lubricant, such as oil, can be supplied to the sliding surfaces 30 of the two sliding bearing bushes 26 , 27 .
- the bearing running sleeve 28 can comprise at least one bore, which is congruent with the opening in the circumferential area of the planetary gear bolt 8 and thus the lubricant can be guided directly to the sliding surface 30 .
- several bores or openings of the lubricant inlet 36 are formed distributed around the circumference so that the radial sliding bearing bushes 26 , 27 can be supplied with lubricant in several places.
- a lubricant outlet 37 can be provided, by means of which the lubricant pushed into the axial bearing gap 25 can be removed from the axial bearing gap 25 .
- FIG. 3 shows a cross-sectional view of the planetary carrier according to the section line III-III of FIG. 2 , wherein the same reference numerals and component names are used for the same parts as in the preceding FIGS. 1 to 2 . To avoid unnecessary repetition reference is made to the detailed description of the preceding FIGS. 1 to 2 .
- FIG. 4 shows a cross-sectional view of the planetary carrier according to the section line IV-IV of FIG. 3 , wherein the same reference numerals and component names are used for the same parts as in the preceding FIGS. 1 to 3 . To avoid unnecessary repetition reference is made to the detailed description of the preceding FIGS. 1 to 3 .
- the lubricant outlet 37 is pulled outwards into preferably a plurality of openings.
- the bearing running sleeve 28 it is possible for the bearing running sleeve 28 to have radial bores in the area of the axial positioning flange 29 , which bores are congruent with the lubricant outlet 37 of the planetary gear bolt and thus the lubricant can be removed from the axial bearing gap 25 .
- the lubricant inlet 36 or the lubricant outlet 37 it is possible for both the radial sliding bearing bushes 26 , 27 and also the axial sliding bearing discs 31 , 32 to be supplied with sufficient lubricant.
- first method step the first planetary gear receiving bushing 20 is pressed into the planetary gear 5 and secured if necessary.
- first radial sliding bearing bush 26 is then pressed into the first planetary gear receiving bushing 20 .
- the first radial sliding bearing bush 26 it is also possible for the first radial sliding bearing bush 26 to be already pressed with the first planetary gear receiving bushing 20 prior to inserting the first planetary gear receiving bushing 20 into the planetary gear 5 .
- the first axial sliding bearing disc 31 is then inserted into the axial bearing gap 25 .
- the bearing running sleeve 28 can be inserted into the first radial sliding bearing bush 26 so that the axial positioning flange 29 is mounted in the axial bearing gap 25 .
- the second radial sliding bearing bush 27 can be pressed into the second planetary gear receiving bushing 21 and the second axial sliding bearing disc 32 can be positioned on the latter.
- the second planetary gear receiving bushing 21 can now be pressed into the planetary gear 5 and if necessary secured in the latter.
- the planetary gear 5 forms a unit with the planetary gear receiving bushings 20 , 21 of the bearing running sleeve 28 and the radial sliding bearing bushes 26 , 27 arranged between the individual parts and axial sliding bearing discs 31 , 32 .
- said unit can now be inserted into the planetary carrier 9 and the planetary gear bolt 8 can be pushed from the side of the second bolt seat 13 into the two bolt seats 12 , 13 and can then be secured as necessary.
- FIG. 5 shows a further and possibly independent embodiment of the planetary gearing 1 , wherein the same reference numerals and component names are used for the same parts as in the preceding FIGS. 1 to 4 . To avoid unnecessary repetition reference is made to the detailed description in the preceding FIGS. 1 to 4 .
- the first bolt receiving element 10 is provided for receiving the planetary gear bolt 8 .
- the planetary gear bolt 8 is mounted in an overhanging manner in the first bolt seat 12 .
- the planetary gear bolt 8 is mounted in a rotationally secure manner in the first bolt seat 12 .
- the fastening elements 38 can be designed in the form of screws for example. Furthermore, it is possible for the planetary gear bolt 8 to have a shoulder 39 . In particular, it is possible that the bearing running sleeve parts 34 , 35 are clamped between the shoulder 39 and the first bolt receiving element 10 . This type of clamping can be achieved by tightening the fastening elements 38 .
- FIG. 6 shows a further and possibly independent embodiment of the planetary gearing 1 , wherein the same reference numerals and component names are used for the same parts as in the preceding FIGS. 1 to 5 . To avoid unnecessary repetition reference is made to the detailed description in the preceding FIGS. 1 to 5 .
- the planetary gear bolt 8 is designed in one piece or integrally with the first bolt receiving element 10 .
- the first bolt seat 12 is formed by the material-bonded connection.
- an axial securing element 40 can be provided, by means of which the bearing running sleeve parts 34 , 35 can be clamped.
- the axial securing element 40 can be designed as shown in the form of a disc, which can be secured by means of a further fastening means 41 , such as a screw, onto the planetary gear bolt 8 .
- the axial securing element 40 is designed in the form of a shaft nut, which is screwed directly onto the planetary gear bolt 8 .
- the axial securing element 40 it is also possible for the axial securing element 40 to be designed in the form of an axial securing ring, which is secured directly onto the planetary gear bolt 8 .
- the axial securing element 40 can also be used.
- a lubricant supply can be formed in the planetary gear bolt 8 .
- FIGS. 1, 2, 3, 4, 5, 6 Mainly the individual embodiments shown in FIGS. 1, 2, 3, 4, 5, 6 can form the subject matter of independent solutions according to the invention.
- the objectives and solutions according to the invention relating thereto can be taken from the detailed descriptions of these figures.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Combustion & Propulsion (AREA)
- Retarders (AREA)
- General Details Of Gearings (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA50789/2015A AT517719B1 (de) | 2015-09-15 | 2015-09-15 | Planetengetriebe für eine Windkraftanlage |
ATA50789/2015 | 2015-09-15 | ||
PCT/EP2016/071749 WO2017046194A1 (fr) | 2015-09-15 | 2016-09-15 | Train planétaire destiné à une éolienne, muni de pignons satellites montés sur palier lisse |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180299006A1 US20180299006A1 (en) | 2018-10-18 |
US10451176B2 true US10451176B2 (en) | 2019-10-22 |
Family
ID=56936408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/758,767 Active US10451176B2 (en) | 2015-09-15 | 2016-09-15 | Planetary gearing for a wind turbine having mounted planetary gears |
Country Status (8)
Country | Link |
---|---|
US (1) | US10451176B2 (fr) |
EP (1) | EP3350464B1 (fr) |
KR (1) | KR20180054685A (fr) |
CN (1) | CN108026975B (fr) |
AT (1) | AT517719B1 (fr) |
DK (1) | DK3350464T3 (fr) |
ES (1) | ES2774507T3 (fr) |
WO (1) | WO2017046194A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11174895B2 (en) * | 2019-04-30 | 2021-11-16 | General Electric Company | Bearing for a wind turbine drivetrain having an elastomer support |
US11808247B2 (en) | 2018-12-13 | 2023-11-07 | Miba Gleitlager Austria Gmbh | Planetary gear set for a wind turbine |
US11940006B2 (en) | 2018-12-13 | 2024-03-26 | Miba Gleitlager Austria Gmbh | Method for changing a sliding bearing element of a rotor bearing of a wind turbine, and nacelle for a wind turbine |
US12110874B2 (en) | 2018-12-13 | 2024-10-08 | Miba Gleitlager Austria Gmbh | Nacelle for a wind turbine |
US12196184B2 (en) | 2018-12-13 | 2025-01-14 | Miba Gleitlager Austria Gmbh | Nacelle for a wind turbine |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK3480495T3 (da) | 2017-11-07 | 2020-07-06 | Moventas Gears Oy | Planethjulsanordning for et planetgear |
DE102018216618A1 (de) * | 2018-09-27 | 2020-04-02 | Zf Friedrichshafen Ag | Messanordnung für Schmierstoff |
GB201820399D0 (en) * | 2018-12-14 | 2019-01-30 | Rolls Royce Plc | Planet carrier and method of assembling of a planet carrier |
DE102019207100A1 (de) * | 2019-05-16 | 2020-11-19 | Zf Friedrichshafen Ag | Planetenträger mit flexiblen Bolzen und Versteifungsrippe |
US11209045B2 (en) * | 2020-02-14 | 2021-12-28 | Pratt & Whitney Canada Corp. | Dual land journal bearings for a compound planetary system |
CN111648920B (zh) * | 2020-06-23 | 2022-03-04 | 湘电风能有限公司 | 一种超紧凑型中速永磁风力发电机组 |
DE102022105911A1 (de) | 2022-03-14 | 2023-09-14 | Eickhoff Antriebstechnik Gmbh | Planetengetriebe mit axialer Lauffläche am Planetenträger |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2010415A (en) | 1977-11-25 | 1979-06-27 | Gkn Group Services Ltd | Vehicle Bearing |
WO2009141140A2 (fr) | 2008-05-20 | 2009-11-26 | Urs Giger | Éolienne, transmission pour une éolienne et arbre flexible |
EP2383480A1 (fr) | 2010-04-30 | 2011-11-02 | Winergy AG | Train épicycloïdal pour une éolienne |
US20120051915A1 (en) | 2010-08-31 | 2012-03-01 | Mitsubishi Heavy Industries, Ltd. | Planetary gear train with improved bearing structure and manufacture method of the same |
DE102011087568A1 (de) | 2011-12-01 | 2013-06-06 | Schaeffler Technologies AG & Co. KG | Bolzenlagerung mit Absatz |
WO2013106878A1 (fr) | 2012-01-16 | 2013-07-25 | Miba Gleitlager Gmbh | Éolienne |
AT512436A1 (de) * | 2012-01-16 | 2013-08-15 | Miba Gleitlager Gmbh | Windkraftanlage |
EP2662598A1 (fr) | 2012-05-08 | 2013-11-13 | ZF Wind Power Antwerpen NV | Étage d'engrenage planétaire avec des paliers lisses en tant que roulements planétaires |
CN103791039A (zh) | 2012-10-30 | 2014-05-14 | 吴小杰 | 轴承用脂润滑风电复合行星齿轮箱 |
DE102012213971A1 (de) | 2012-08-07 | 2014-05-22 | Zf Friedrichshafen Ag | Planetengetriebe mit Ring zur Aufnahme von Axialkräften |
CA2926220A1 (fr) * | 2013-10-15 | 2015-04-23 | Fm Energie Gmbh & Co.Kg | Douille elastique pour palier satellite |
US20150345591A1 (en) * | 2014-05-27 | 2015-12-03 | Ge Avio S.R.L | Epicyclic transmission |
US20150369352A1 (en) * | 2013-01-30 | 2015-12-24 | Miba Gleitlager Gmbh | Wind power plant gear mechanism |
-
2015
- 2015-09-15 AT ATA50789/2015A patent/AT517719B1/de not_active IP Right Cessation
-
2016
- 2016-09-15 DK DK16766286.5T patent/DK3350464T3/da active
- 2016-09-15 CN CN201680053454.2A patent/CN108026975B/zh active Active
- 2016-09-15 KR KR1020187010281A patent/KR20180054685A/ko not_active Ceased
- 2016-09-15 WO PCT/EP2016/071749 patent/WO2017046194A1/fr active Application Filing
- 2016-09-15 EP EP16766286.5A patent/EP3350464B1/fr active Active
- 2016-09-15 US US15/758,767 patent/US10451176B2/en active Active
- 2016-09-15 ES ES16766286T patent/ES2774507T3/es active Active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2010415A (en) | 1977-11-25 | 1979-06-27 | Gkn Group Services Ltd | Vehicle Bearing |
WO2009141140A2 (fr) | 2008-05-20 | 2009-11-26 | Urs Giger | Éolienne, transmission pour une éolienne et arbre flexible |
US20120114488A1 (en) | 2008-05-20 | 2012-05-10 | Urs Giger | Wind power plant, transmission for a wind power plant and flexpin |
EP2383480A1 (fr) | 2010-04-30 | 2011-11-02 | Winergy AG | Train épicycloïdal pour une éolienne |
US20120108380A1 (en) | 2010-04-30 | 2012-05-03 | Winergy Ag | Planetary gear mechanism for a wind power plant |
US20120051915A1 (en) | 2010-08-31 | 2012-03-01 | Mitsubishi Heavy Industries, Ltd. | Planetary gear train with improved bearing structure and manufacture method of the same |
CN102575750A (zh) | 2010-08-31 | 2012-07-11 | 三菱重工业株式会社 | 行星齿轮机构、轴承结构、风力发电装置及行星齿轮的制造方法 |
DE102011087568A1 (de) | 2011-12-01 | 2013-06-06 | Schaeffler Technologies AG & Co. KG | Bolzenlagerung mit Absatz |
WO2013106878A1 (fr) | 2012-01-16 | 2013-07-25 | Miba Gleitlager Gmbh | Éolienne |
AT512436A1 (de) * | 2012-01-16 | 2013-08-15 | Miba Gleitlager Gmbh | Windkraftanlage |
US20140378261A1 (en) | 2012-01-16 | 2014-12-25 | Miba Gleitlager Gmbh | Wind turbine |
EP2662598A1 (fr) | 2012-05-08 | 2013-11-13 | ZF Wind Power Antwerpen NV | Étage d'engrenage planétaire avec des paliers lisses en tant que roulements planétaires |
US20150133260A1 (en) | 2012-05-08 | 2015-05-14 | Zf Wind Power Antwerpen N.V. | Planetary gear stage with plain bearings as planet bearings and use thereof |
DE102012213971A1 (de) | 2012-08-07 | 2014-05-22 | Zf Friedrichshafen Ag | Planetengetriebe mit Ring zur Aufnahme von Axialkräften |
CN103791039A (zh) | 2012-10-30 | 2014-05-14 | 吴小杰 | 轴承用脂润滑风电复合行星齿轮箱 |
US20150369352A1 (en) * | 2013-01-30 | 2015-12-24 | Miba Gleitlager Gmbh | Wind power plant gear mechanism |
CA2926220A1 (fr) * | 2013-10-15 | 2015-04-23 | Fm Energie Gmbh & Co.Kg | Douille elastique pour palier satellite |
US20150345591A1 (en) * | 2014-05-27 | 2015-12-03 | Ge Avio S.R.L | Epicyclic transmission |
Non-Patent Citations (1)
Title |
---|
International Search Report of PCT/EP2016/071749, dated Dec. 20, 2016. |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11808247B2 (en) | 2018-12-13 | 2023-11-07 | Miba Gleitlager Austria Gmbh | Planetary gear set for a wind turbine |
US11940006B2 (en) | 2018-12-13 | 2024-03-26 | Miba Gleitlager Austria Gmbh | Method for changing a sliding bearing element of a rotor bearing of a wind turbine, and nacelle for a wind turbine |
US12110874B2 (en) | 2018-12-13 | 2024-10-08 | Miba Gleitlager Austria Gmbh | Nacelle for a wind turbine |
US12196184B2 (en) | 2018-12-13 | 2025-01-14 | Miba Gleitlager Austria Gmbh | Nacelle for a wind turbine |
US11174895B2 (en) * | 2019-04-30 | 2021-11-16 | General Electric Company | Bearing for a wind turbine drivetrain having an elastomer support |
Also Published As
Publication number | Publication date |
---|---|
ES2774507T3 (es) | 2020-07-21 |
CN108026975B (zh) | 2019-06-21 |
US20180299006A1 (en) | 2018-10-18 |
KR20180054685A (ko) | 2018-05-24 |
AT517719B1 (de) | 2017-04-15 |
EP3350464B1 (fr) | 2019-11-27 |
AT517719A4 (de) | 2017-04-15 |
WO2017046194A1 (fr) | 2017-03-23 |
CN108026975A (zh) | 2018-05-11 |
EP3350464A1 (fr) | 2018-07-25 |
DK3350464T3 (da) | 2020-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10451176B2 (en) | Planetary gearing for a wind turbine having mounted planetary gears | |
US10294926B2 (en) | Wind power plant gear mechanism | |
CN106122383B (zh) | 行星传动装置 | |
EP2072858B1 (fr) | Unité d'engrenage de type planétaire comprenant un porte-satellites avec une plaque bogie planétaire | |
CN104364562B (zh) | 具有作为行星轴承的滑动轴承的行星齿轮级及其用途 | |
US8246505B2 (en) | Planetary type gear unit comprising a planet carrier with a planet bogie plate | |
CN113039379B (zh) | 风力发电设备的行星齿轮传动装置 | |
US10598272B2 (en) | Spur gear arrangement, gearing system and wind power plant | |
US20160091082A1 (en) | Planetary gear | |
US8169095B2 (en) | Wind energy plant with a rotor | |
CN103307258A (zh) | 销限位器 | |
KR20170070182A (ko) | 풍력 터빈용 유성 기어 트레인 | |
US9920830B2 (en) | Sliding bearing for planet carrier | |
WO2009025206A1 (fr) | Dispositif de réduction équipé d'un engrenage de sortie et son procédé d'assemblage | |
GB2537240A (en) | Planetary gear assembly | |
KR20120139585A (ko) | 유성 기어 장치 | |
US10961867B2 (en) | Turboshaft engine embeddable in a reduction gearbox | |
US20160003299A1 (en) | Roller bearing and method for producing a roller bearing | |
US9617861B2 (en) | Guide vane arrangement and method for mounting a guide vane | |
US10900515B2 (en) | Yaw bearing arrangement | |
US20190211911A1 (en) | Spur gear differential with non-destructively demountable sun gears | |
CN105114172B (zh) | 用于飞行器的集成式发动机总成 | |
DE102010043817A1 (de) | Planetengetriebe für eine Windkraftanlage | |
CN212225893U (zh) | 一种用于安检门的行星减速电机 | |
WO2004013516A1 (fr) | Unite de transmission par engrenages comprenant un porte-pignons satellites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MIBA GLEITLAGER AUSTRIA GMBH, AUSTRIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOELZL, JOHANNES SEBASTIAN;REEL/FRAME:045156/0657 Effective date: 20180214 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |