TWM611188U - Optical length measuring apparatus - Google Patents
Optical length measuring apparatus Download PDFInfo
- Publication number
- TWM611188U TWM611188U TW109215163U TW109215163U TWM611188U TW M611188 U TWM611188 U TW M611188U TW 109215163 U TW109215163 U TW 109215163U TW 109215163 U TW109215163 U TW 109215163U TW M611188 U TWM611188 U TW M611188U
- Authority
- TW
- Taiwan
- Prior art keywords
- module
- length
- image
- measured
- optical
- Prior art date
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
本創作係關於一種量測裝置;特別關於一種可量測立體物件線形軌跡長度的裝置,該裝置係利用光學方法對待測物進行取像,經由偵測影像移動而得到位移訊號,計算出長度之量測值,並作顯示;特別是可用於直線、折線或任意曲線之長度量測,更可提供路徑或軌跡之方向資訊。 This creation is about a measuring device; especially about a device that can measure the length of the linear trajectory of a three-dimensional object. The device uses an optical method to take an image of the object to be measured. The displacement signal is obtained by detecting the movement of the image, and the length is calculated. Measure the value and display it; especially it can be used to measure the length of a straight line, a polyline or an arbitrary curve, and it can also provide the direction information of the path or trajectory.
長度量測是非常基本但重要的技術,傳統的方式是採用尺規進行量測,若為硬式尺規,僅能量測平面的直線距離;若為軟式尺規,例如皮尺,雖可以量測非平面或非直線的長度,但因為尺規需與待測物貼合,故兩者間是否緊密吻合,會影響量測結果的精確與否。隨著科技的發展,利用尺規的接觸式量測方式漸漸被非接觸式的光學量測所取代,例如以計算光束飛行時間(time of flight)的雷射測距裝置,可以直接將光束照射目標處即可計算出直線距離,但是因為光束是直線前進,故這類的量測裝置通常僅能量測直線長度,無法對任何非直線之物件進行量測。 Length measurement is a very basic but important technique. The traditional method is to use a ruler to measure. If it is a rigid ruler, only the energy is used to measure the straight line distance of the plane; if it is a soft ruler, such as a tape, it can be measured. The length of non-planar or non-linear, but because the ruler needs to fit the object to be measured, whether the two are closely matched will affect the accuracy of the measurement result. With the development of technology, the contact measurement method using rulers has gradually been replaced by non-contact optical measurement. For example, a laser distance measuring device that calculates the time of flight of the beam can directly illuminate the beam. The straight-line distance can be calculated at the target, but because the beam travels in a straight line, this type of measuring device usually only measures the length of a straight line and cannot measure any non-linear objects.
非直線物件的量測常常是工程上不可避免的需求,特別是針對具有任意外型之立體物件,表面之軌跡長度量測並不容易。雖可透過光學掃描得到物件立體外型進而分析待測物之線形軌跡長度,然而其架構 複雜,處理過程繁瑣,並不實用。例如:有利用擷取光學干涉條紋(interference fringe),經相位還原後得到待測物之立體形貌、或以投射結構光束(structured light),經相移(phase shift)或計算條紋變形量而得到待測物之立體形貌、更有利用視差(parallax)原理,以多個取像裝置擷取多張影像,並經三角量測原理計算出待測物之立體形貌等技術。這些方法主要是用於立體物件之三維掃描,若僅用於線形軌跡長度量測,則顯得複雜而不實用。因此,發展專用的量測工具更顯務實且必要。 The measurement of non-linear objects is often an unavoidable requirement in engineering. Especially for three-dimensional objects with arbitrary shapes, it is not easy to measure the track length of the surface. Although the three-dimensional appearance of the object can be obtained through optical scanning and the length of the linear trajectory of the object under test can be analyzed, its structure Complex, cumbersome processing process, not practical. For example: the use of optical interference fringes (interference fringe) is used to obtain the three-dimensional shape of the object to be measured after phase restoration, or the structured light is projected, and the phase shift (phase shift) or the amount of fringe deformation is calculated. Obtain the three-dimensional shape of the object to be measured, and use the parallax principle to capture multiple images with multiple imaging devices, and calculate the three-dimensional shape of the object to be measured by the principle of triangulation measurement. These methods are mainly used for 3D scanning of three-dimensional objects. If they are only used to measure the length of linear trajectories, they are complicated and impractical. Therefore, the development of dedicated measurement tools is more pragmatic and necessary.
為達成上述的線形軌跡長度量測目的,曾有國外研究者發展出接觸式的量測方法,利用一特定滾輪機構連結計數器,藉由滾輪繞行待測物之轉動圈數以計算出對應的長度量測值。例如揭露於2018年5月3日公告的美國專利申請案第US2018/0120081A1號即是一例,請參照「圖1」,說明習知長度量測裝置10設計滾輪11架構於筆式裝置的一端,利用裝置端點觸壓待測物件且移動裝置來帶動滾輪11之旋轉,所移動之軌跡長度可以由內部計數器計算滾輪11轉動圈數乘上滾輪圓周而得到。此技術具有量測任意物件之立體表面線形軌跡長度的特點,滾輪11可以繞行任何表面,不受直線量測之約束,只要裝置所掃過的軌跡,其路徑長度皆可被計算出來。然而,該創作之滾輪11需與待測物表面接觸方可運作,故表面特性影響量測結果甚鉅,存在若干缺點,例如,若待測物件過於光滑導致與滾輪11間摩擦力不足,則滾輪11繞行移動時發生滑行、待測物之表面粗糙度太大或起伏變化劇烈,亦可能造成與滾輪11無法緊密接觸貼合。這些情形得到的量測值無法呈現待測物的真實路徑長度,使得該創作的使用場合受到限制。此外,以滾輪11繞行的量測方式,僅能得到路徑之長度量測值,無法
提供軌跡之方向資訊。因此,為解決這些問題,採用非接觸式的量測方式,特別是採用光學架構應是可行的方法。
In order to achieve the above-mentioned linear trajectory length measurement purpose, some foreign researchers have developed a contact measurement method, which uses a specific roller mechanism to connect the counter, and calculates the corresponding number of rotations by the roller circling the object under test. The measured value of the length. For example, the U.S. Patent Application No. US2018/0120081A1 published on May 3, 2018 is an example. Please refer to "Figure 1" to illustrate that the conventional
鑑於上述說明,已知的長度量測裝置無法量測立體物件之線形軌跡長度,雖有國外創作提出利用滾輪11架構,以繞行待測物的方法計算滾輪圓周掃過的軌跡長度值,但因滾輪11與物件接觸面間的摩擦力與表面特性等因素,該創作量測精度受使用場合所限制,且無法提供路徑或軌跡之方向資訊,因此需發展一創新的非接觸式量測架構,以解決這些問題。
In view of the above description, the known length measuring device cannot measure the linear trajectory length of a three-dimensional object. Although some foreign creations propose to use the
本創作係關於一種量測裝置;特別關於一種可量測立體物件線形軌跡長度的裝置,該裝置係利用光學方法對待測物進行取像,經由偵測影像移動而得到位移訊號,計算出長度之量測值,並作顯示;特別是可用於直線、折線或任意曲線之長度量測,更可提供路徑或軌跡之方向資訊。 This creation is about a measuring device; especially about a device that can measure the length of the linear trajectory of a three-dimensional object. The device uses an optical method to take an image of the object to be measured. The displacement signal is obtained by detecting the movement of the image, and the length is calculated. Measure the value and display it; especially it can be used to measure the length of a straight line, a polyline or an arbitrary curve, and it can also provide the direction information of the path or trajectory.
請參照「圖2」,其說明本創作利用非接觸式的光學方法設計之光學長度量測裝置20基本架構,包括一光源模組21,用以投射照明光束22照亮待測表面23;一光學取像模組24,內含一或多個光學鏡片24a,用以將受照亮之待測表面圖案因漫射(diffuse)之反射光25聚焦在特定成像面;一感測模組26,包含影像感測元件26a與影像處理元件26b,用以將光學取像模組24所會聚的圖案影像作偵測並計算影像移動之方向與位置變化量,轉換成數位訊號輸出;一控制模組27,可驅動光源模組21與感測模組26之運作,並取得感測模組26輸出的數位訊號,經計算後得到長度與方向
之量測數值,再將此數值揭示於此裝置顯示模組28上,或藉由無線傳輸模組27a(例如藍芽或Wifi等)將資訊傳送至外部裝置顯示介面29上。
Please refer to "Figure 2", which illustrates the basic structure of the optical
請參照「圖3」,其揭露本創作長度量測之基本原理。「圖3a」說明光學長度量測裝置20最初放置於待測起始位置時,經光源模組21照亮待測表面23,表面上長度為h之圖案23a發出的圖案反射光25經光學鏡片24a在影像感測元件26a上會聚成長度為h’之實像23b,根據成像原理,該成像系統有固定的放大倍率M,
請再參照「圖4」,該圖說明影像感測元件26a上畫素陣列26c,以及會聚在其上的實像23b之起始聚焦光點23c與移動後聚焦光點23d關係。畫素陣列26c的每一畫素長寬尺寸分別為p x 與p y ,聚焦兩光點23c與23d在x軸上相距n x 個畫素(距離Δx’),y軸相距n y 個畫素(距離Δy’),可以求出影像感測元件26a上的移動距離L’與實際量距離L分別為:
L'=[(Δx')2+(Δy')2]½=[(n x p x )2+(n y p y )2]½ (2)
Please refer to "FIG. 4" again, which illustrates the relationship between the
由於光學長度量測裝置20在運作時為持續移動以量測待測物長度,故影像處理元件26b需在實像23b尚未離開影像感測元件26a之感測範圍內前即分析出移動距離與方向,並重新選取新的圖案23a所對應的起始實像23b,並重複上述分析步驟,直到該長度量測任務結束。每次分析得到的長度與方向數值經由輸出端為控制模組27所接收,分析的取樣頻率可以固定,或依裝置的移動速度作改變,可透過控制模組27作聯繫與溝通。控制模組27可將接收到的移動距離值作累計,即可獲得完整路徑的實際總長度。亦可紀錄每次取樣的位移與方向角之量值,作為完整路徑的描述,可提供線形軌跡之路徑與方向分析用途。
Since the optical
由於上述之角度計算僅能獲得平面之移動方向,若待測物為三維物件,則平面之方向計算無法真實描述該立體軌跡與路徑,可藉由加入一方向感測元件(例如以微機電技術所製作的陀螺儀傳感器或角度計)以偵測空間方位,便可以將立體軌跡與路徑之方向資訊完整取得。 Since the above-mentioned angle calculation can only obtain the movement direction of the plane, if the object to be measured is a three-dimensional object, the direction calculation of the plane cannot truly describe the three-dimensional trajectory and path. You can add a direction sensing element (such as micro-electromechanical technology) The manufactured gyroscope sensor or goniometer) can detect the spatial orientation, and then the direction information of the three-dimensional trajectory and path can be obtained completely.
本創作效果可改善習知技術的缺點,能量測的物件長度不受形狀所限制,亦不受物件表面特性所影響,具有可量測立體物件線形軌 跡之特點,包含直線、折線或任意曲線之長度。此外,本創作更可提供線形軌跡之路徑與方向資訊,作為軌跡描繪之用途。 This creative effect can improve the shortcomings of the conventional technology. The length of the energy-measured object is not limited by the shape, nor is it affected by the surface characteristics of the object. It has a linear track that can measure a three-dimensional object The characteristics of the trace include the length of a straight line, a polyline or an arbitrary curve. In addition, this creation can also provide the path and direction information of the linear trajectory for the purpose of trajectory drawing.
10:習知長度量測裝置 10: Conventional length measuring device
11:滾輪 11: Roller
20:光學長度量測裝置 20: Optical length measuring device
21:光源模組 21: Light source module
22:照明光束 22: Illumination beam
23:待測表面 23: Surface to be measured
23a:圖案 23a: pattern
23b:實像 23b: Real image
23c:起始聚焦光點 23c: initial focus spot
23d:移動後聚焦光點 23d: Focus the light spot after moving
24:光學取像模組 24: Optical imaging module
24a:光學鏡片 24a: Optical lens
25:圖案反射光 25: Pattern reflected light
26:感測模組 26: Sensing module
26a:影像感測元件 26a: Image sensor
26b:影像處理元件 26b: Image processing components
26c:畫素陣列 26c: pixel array
26d:方向感測元件 26d: Direction sensing element
27:控制模組 27: Control module
27a:無線傳輸模組 27a: Wireless transmission module
28:裝置顯示模組 28: Device display module
29:外部裝置顯示介面 29: External device display interface
30:光纖耦合模組 30: Fiber coupling module
31:光纖導光模組 31: Optical fiber light guide module
32:記憶儲存模組 32: Memory storage module
33:支撐及指示機構 33: Support and Indication Organization
〔圖1〕係美國專利申請案第US2018/0120081A1揭露之長度量測裝置示意圖。 [Figure 1] is a schematic diagram of the length measuring device disclosed in the US Patent Application No. US2018/0120081A1.
〔圖2〕係本光學長度量測裝置基本架構圖。 [Figure 2] is the basic structure diagram of the optical length measuring device.
〔圖3〕係本創作之長度量測基本原理介紹。 [Figure 3] is an introduction to the basic principles of length measurement in this creation.
〔圖4〕係本創作之影像感測元件上影像位移說明。 [Figure 4] is the description of the image displacement on the image sensor element of this creation.
〔圖5〕係本創作之第一實施例架構圖。 [Figure 5] is the architecture diagram of the first embodiment of this creation.
〔圖6〕係本創作之第二實施例架構圖。 [Figure 6] is the architecture diagram of the second embodiment of this creation.
〔圖7〕係本創作之第三實施例架構圖。 [Figure 7] is the architecture diagram of the third embodiment of this creation.
〔圖8〕係本創作之第四實施例架構圖。 [Figure 8] is the architecture diagram of the fourth embodiment of this creation.
〔圖9〕係本創作之第一實施例附加支撐及指示機構圖。 [Figure 9] is a diagram of the additional support and indication mechanism of the first embodiment of this creation.
請參照「圖5」,其說明本創作之第一實施例,光學長度量測裝置20包括一光源模組21,可以是採用發光二極體(light emitting diode,LED)或雷射二極體(laser diode,LD)元件(波長可為任意值,並不受限),搭配光學鏡片以有效收集發光元件發散之光線成為照明光束22,投射至待測表面23,並使待測表面23產生各方向之反射光,部分圖案反射光25經光學取像模組24所收集。該光學取像模組24內含一或多個光學鏡片24a,用以將受照亮之圖案反射光25聚焦在感測模組26之影像感測元件26a上面,經影像感
測元件26a之光電訊號轉換後,影像處理元件26b進行影像處理,將光學取像模組24所會聚的圖案影像作偵測並計算影像移動之方向與位置變化量,轉換成數位訊號輸出。控制模組27,可驅動光源模組21與感測模組26之運作,並取得感測模組26輸出的數位訊號,經計算後得到長度與方向之量測數值,再將此數值揭示於此裝置顯示模組28上。裝置顯示模組28可顯示經計算的長度值,或每次移動的x軸與y軸位移量及方向角度值。
Please refer to "Figure 5", which illustrates the first embodiment of this creation. The optical
請參照「圖6」,其說明本創作之第二實施例,光學長度量測裝置20包括一光源模組21,可以是採用發光二極體或雷射二極體元件(波長可為任意值,並不受限),搭配光學鏡片以有效收集發光元件發散之光線成為照明光束22,投射至待測表面23,並使待測表面23產生各方向之反射光,部分圖案反射光25經光學取像模組24所收集。該光學取像模組24內含一或多個光學鏡片24a,用以將受照亮之圖案反射光25聚焦在感測模組26之影像感測元件26a上面,經影像感測元件26a之光電訊號轉換後,影像處理元件26b進行影像處理,將光學取像模組24所會聚的圖案影像作偵測並計算影像移動之方向與位置變化量,轉換成數位訊號輸出。控制模組27,可驅動光源模組21與感測模組26之運作,並取得感測模組26輸出的數位訊號,經計算後得到長度與方向之量測數值,再將此數值藉由無線傳輸模組27a將資訊傳送至外部裝置顯示介面29上。外部裝置顯示介面29可顯示經計算的長度值,或每次移動的x軸與y軸位移量及方向角度值。
Please refer to "Figure 6", which illustrates the second embodiment of this creation. The optical
請參照「圖7」,其說明本創作之第三實施例,光學長度量測裝置20包括一光源模組21,可以是採用發光二極體或雷射二極體元件(波長可為任意值,並不受限),搭配光學鏡片以有效收集發光元件發散之光線
成為照明光束22,該照明光束22經由光纖耦合模組30導入光纖導光模組31內,最後投射至待測表面23,並使待測表面23產生各方向之反射光,部分圖案反射光25經光纖導光模組31之引導至光纖耦合模組30後,為光學取像模組24所收集。該光學取像模組24內含一或多個光學鏡片24a,用以將受照亮之圖案反射光25聚焦在感測模組26之影像感測元件26a上面,經影像感測元件26a之光電訊號轉換後,影像處理元件26b進行影像處理,將光學取像模組24所會聚的圖案影像作偵測並計算影像移動之方向與位置變化量,轉換成數位訊號輸出。控制模組27,可驅動光源模組21與感測模組26之運作,並取得感測模組26輸出的數位訊號,經計算後得到長度與方向之量測數值,再將此數值揭示於此裝置顯示模組28上。裝置顯示模組28可顯示經計算的長度值,或每次移動的x軸與y軸位移量及方向角度值。本實施例有別於前述第一與第二實施例,只要藉由光纖導光模組31掃描待測表面23,不須移動光學長度量測裝置20本體即可獲得量測結果。
Please refer to "Figure 7", which illustrates the third embodiment of this creation. The optical
請參照「圖8」,其說明本創作之第四實施例。本實施例主要目的是為了取得完整的三維移動方向資訊,在第一實施例之感測模組26中額外加入一方向感測元件26d,該方向感測元件26d可以偵測空間方位,並經由控制模組27的驅動,將計算出來的長度與方向資料存放於記憶儲存模組32內,並於裝置顯示模組28上作顯示。
Please refer to "Figure 8", which illustrates the fourth embodiment of this creation. The main purpose of this embodiment is to obtain complete three-dimensional movement direction information. An additional
請參照「圖9」,由於光學取像模組24之成像物距在路徑掃描之量測過程需保持定值方能使放大倍率維持不變,進而穩定量測數值之精確程度,故可在前述各實施例之光學長度量測裝置20最前端照明光束22之出光口處設計支撐及指示機構33,除可穩定光學取像模組24之物像關係
外,亦可作為路徑掃描之軌跡定位或標示,其外型可為各種形式,在此不多詳述。
Please refer to "Figure 9". Since the imaging object distance of the
雖然本創作已以較佳之實施例揭露如上,然其並非用以限定本創作,任何熟習此技藝者,在不脫離本創作之精神和範圍內,當可作各種之更動與潤飾,因此本創作之保護範圍當視後附之申請專利範圍所界定者為準。 Although this creation has been disclosed as above in a preferred embodiment, it is not intended to limit this creation. Anyone who is familiar with this art can make various changes and modifications without departing from the spirit and scope of this creation. Therefore, this creation The scope of protection shall be subject to the scope of the attached patent application.
20:光學長度量測裝置 20: Optical length measuring device
21:光源模組 21: Light source module
22:照明光束 22: Illumination beam
23:待測表面 23: Surface to be measured
24:光學取像模組 24: Optical imaging module
24a:光學鏡片 24a: Optical lens
25:圖案反射光 25: Pattern reflected light
26:感測模組 26: Sensing module
26a:影像感測元件 26a: Image sensor
26b:影像處理元件 26b: Image processing components
27:控制模組 27: Control module
28:裝置顯示模組 28: Device display module
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109215163U TWM611188U (en) | 2020-11-18 | 2020-11-18 | Optical length measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109215163U TWM611188U (en) | 2020-11-18 | 2020-11-18 | Optical length measuring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM611188U true TWM611188U (en) | 2021-05-01 |
Family
ID=77037452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109215163U TWM611188U (en) | 2020-11-18 | 2020-11-18 | Optical length measuring apparatus |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM611188U (en) |
-
2020
- 2020-11-18 TW TW109215163U patent/TWM611188U/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10302413B2 (en) | Six degree-of-freedom laser tracker that cooperates with a remote sensor | |
US9476695B2 (en) | Laser tracker that cooperates with a remote camera bar and coordinate measurement device | |
US7274461B2 (en) | Optical lens system and position measurement system using the same | |
US6268923B1 (en) | Optical method and system for measuring three-dimensional surface topography of an object having a surface contour | |
US20150015701A1 (en) | Triangulation scanner having motorized elements | |
CN105051488A (en) | Diagnosing multipath interference and eliminating multipath interference in 3D scanners by directed probing | |
TW201120687A (en) | Method and system for positioning by using optical speckle | |
CN110455221B (en) | Optical path structure and equipment for rapidly measuring curvature radius of optical lens | |
CN105960569A (en) | Methods of inspecting a 3d object using 2d image processing | |
CN1831469A (en) | Dynamic photoelectric autocollimator based on PSD | |
JP3435019B2 (en) | Lens characteristic measuring device and lens characteristic measuring method | |
CN109520446A (en) | A kind of measurement method of revolution at a high speed shafting dynamic inclination error | |
CN106767545A (en) | A kind of high accuracy high-space resolution angel measuring instrument and angle measurement method | |
CN108827186A (en) | A kind of interior thorax contour measuring method of long and narrow cavity | |
CN101556143A (en) | Three-dimensional measurement and detection device and method | |
CN106338259A (en) | Rod curvature measuring apparatus and measuring method | |
TWM611188U (en) | Optical length measuring apparatus | |
TWI764379B (en) | Optical length measuring apparatus | |
CN203163695U (en) | A displacement sensor based on a digital image fast matching algorithm | |
JP3162364B2 (en) | Optical sensor device | |
CN206339204U (en) | The flexibility measurement apparatus of bar | |
JP5251218B2 (en) | Measuring apparatus and measuring method | |
RU2437058C2 (en) | Digital two-axis dynamic autocollimator | |
CN103196376B (en) | Displacement transducer based on digital picture Fast Match Algorithm | |
JPH08233545A (en) | Hole shape measuring method and measuring device |