CN106767545A - A kind of high accuracy high-space resolution angel measuring instrument and angle measurement method - Google Patents
A kind of high accuracy high-space resolution angel measuring instrument and angle measurement method Download PDFInfo
- Publication number
- CN106767545A CN106767545A CN201710043906.5A CN201710043906A CN106767545A CN 106767545 A CN106767545 A CN 106767545A CN 201710043906 A CN201710043906 A CN 201710043906A CN 106767545 A CN106767545 A CN 106767545A
- Authority
- CN
- China
- Prior art keywords
- light
- light source
- lens
- beam splitter
- measuring instrument
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000691 measurement method Methods 0.000 title abstract description 4
- 238000012545 processing Methods 0.000 claims abstract description 11
- 230000008859 change Effects 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 16
- 239000013307 optical fiber Substances 0.000 claims description 11
- 230000001427 coherent effect Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 230000004888 barrier function Effects 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 3
- 238000001454 recorded image Methods 0.000 claims description 3
- 238000003384 imaging method Methods 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 abstract description 19
- 238000005259 measurement Methods 0.000 abstract description 14
- 238000012360 testing method Methods 0.000 abstract description 7
- 230000004075 alteration Effects 0.000 abstract description 2
- 230000011514 reflex Effects 0.000 abstract 1
- 238000005070 sampling Methods 0.000 description 7
- 238000005286 illumination Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 238000009827 uniform distribution Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004556 laser interferometry Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001303 quality assessment method Methods 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/26—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及基于光学手段的角度计量,可拓展用于镜面面形测量,特别涉及一种高精度高空间分辨的角度测量仪及角度测量方法。The invention relates to angle measurement based on optical means, which can be expanded to measure mirror surface shape, and in particular relates to an angle measuring instrument with high precision and high spatial resolution and an angle measuring method.
背景技术Background technique
高精度的角度测量技术在许多工程领域有非常重要的应用价值,例如高精密的设备需要高精度的姿态装调,特别在同步辐射领域,通过对表面的倾斜度测量并积分可以获得元件的表面面形等。基于光学方法的测角设备具有无接触,不影响工件/系统特征的巨大优势,而受到广泛应用。主要的测角设备包括电子自准直仪和基于激光干涉的角度测量方法。由于它们使用准直光束扫描样品,为了保证足够的信噪比及定位精度,这种扫描光束的光斑尺寸或者说样品表面的采样光斑尺寸一般比较大。例如,长程面形仪中的光学头结构使用的是激光干涉的角度测量方法,由于采样光斑的尺寸为1–2mm,因此对每一个采样点,测量的角度是该光斑照明区域内的平均结果。High-precision angle measurement technology has very important application value in many engineering fields. For example, high-precision equipment requires high-precision attitude adjustment. Especially in the field of synchrotron radiation, the surface of the component can be obtained by measuring and integrating the inclination of the surface Face shape etc. Angle measuring devices based on optical methods have the great advantage of being non-contact and not affecting the characteristics of the workpiece/system, and are widely used. The main angle measurement equipment includes electronic autocollimator and angle measurement method based on laser interferometry. Since they use a collimated beam to scan the sample, in order to ensure sufficient signal-to-noise ratio and positioning accuracy, the spot size of the scanning beam or the sampling spot size on the sample surface is generally relatively large. For example, the optical head structure in the long-range surface profiler uses the angle measurement method of laser interference. Since the size of the sampling spot is 1–2mm, for each sampling point, the measured angle is the average result of the illumination area of the spot .
简而言之,如果面形变化的横向周期小于1mm(快变),这种变化是无法被准确测量的。从频率角度来说,更高频的表面信息无法被测量。然而这些信息对镜面面形的质量评估,以及其所应用的系统的性能评估都非常重要。In short, if the lateral period of the profile change is less than 1mm (rapid change), this change cannot be accurately measured. From a frequency perspective, higher frequency surface information cannot be measured. However, this information is very important for the quality assessment of the specular surface shape and the performance assessment of the system to which it is applied.
发明内容Contents of the invention
针对现有技术中存在的技术问题,本发明的目的在于提供一种高精度高空间分辨角度测量仪及角度测量方法。本发明的光学系统架构包括:Aiming at the technical problems existing in the prior art, the object of the present invention is to provide a high-precision and high-spatial-resolution angle measuring instrument and an angle measuring method. The optical system architecture of the present invention includes:
光源11,产生位置空间及角空间都均匀的光场。实现方式:(1)对于非相干光源,如LED,利用光纤或其他方式匀光,产生空间分布均匀,出射角分布均匀的光;利用小孔限制光源的面积。(2)相干光源,通过单模保偏光纤传输并输出。The light source 11 generates a light field that is uniform in position space and angular space. Realization methods: (1) For incoherent light sources, such as LEDs, use optical fiber or other methods to uniformly light to produce light with uniform spatial distribution and uniform distribution of exit angles; use small holes to limit the area of the light source. (2) The coherent light source is transmitted and output through a single-mode polarization-maintaining optical fiber.
光栏12,限制光束口径;Light barrier 12, limiting beam aperture;
透镜14,用于聚焦照明光束,产生小的采样光斑,并收集从待测反射镜15折返的光束;The lens 14 is used to focus the illumination beam, generate a small sampling spot, and collect the beam returned from the reflector 15 to be tested;
待测反射镜15,位置可以随意调整,可以在透镜14的成像面,此时测试采样光斑最小,因此空间分辨率更高。也可以在其它离焦平面,仅会改变空间分辨率,不影响测试精度;The position of the mirror 15 to be tested can be adjusted at will, and can be on the imaging surface of the lens 14. At this time, the test sampling spot is the smallest, so the spatial resolution is higher. It can also be used in other defocus planes, only the spatial resolution will be changed, and the test accuracy will not be affected;
分光镜13,分离照明光路和探测光路,即照明光束透射,折返光束反射到探测单元平面;The beam splitter 13 separates the illumination light path and the detection light path, that is, the illumination light beam is transmitted, and the reentrant light beam is reflected to the detection unit plane;
探测器单元16为一探测器阵列,位于透镜的前焦平面上,用于记录折返光束的图像;The detector unit 16 is a detector array, located on the front focal plane of the lens, for recording the image of the reentrant light beam;
数据处理组件17,根据记录的图像计算得到待测镜角度变化导致的光斑相对位移,进而基于此反推待测镜角度变化,并对最终测量结果进行显示。The data processing component 17 calculates the relative displacement of the light spot caused by the angle change of the mirror under test according to the recorded image, and then deduces the angle change of the mirror under test based on this, and displays the final measurement result.
功能实现机理:Function realization mechanism:
光源发出的发散光线首先通过位置固定的光栏,然后一定口径的照明光束透过分光镜后到达透镜,经过透镜的聚焦,并照射待测反射镜表面。待测反射镜的位置对于汇聚点的远近,决定了采样光斑的尺寸。The divergent light emitted by the light source first passes through the fixed aperture, and then the illuminating beam of a certain caliber passes through the beam splitter and reaches the lens. After being focused by the lens, it irradiates the surface of the mirror to be tested. The distance between the position of the mirror to be tested and the distance of the converging point determines the size of the sampling spot.
被反射镜折返的光束,透过透镜后,被分光镜反射,最终到达探测器平面并被光电转换成电子图像。根据待测反射镜角度变化前后,探测器探测图像中光斑的位移(Δx,Δy),可以获得测试反射镜的角度变化信息(Δx/2f,Δy/2f),其中,f是透镜焦距。The light beam returned by the reflector passes through the lens, is reflected by the beam splitter, and finally reaches the detector plane and is photoelectrically converted into an electronic image. According to the displacement (Δx, Δy) of the light spot in the image detected by the detector before and after the angle change of the mirror to be tested, the angle change information (Δx/2f, Δy/2f) of the test mirror can be obtained, where f is the focal length of the lens.
与现有技术相比,本发明的积极效果为:Compared with prior art, positive effect of the present invention is:
该结构能够解决现有光学角度测量仪(如自准直仪等)所面临的样品表面处测量光斑尺寸大的问题,进一步地,可将此设备用于长程面形扫描,从而得到待测样品的面形数据。同时,该系统对样品的位置或者离焦误差,透镜像差不敏感,适合小范围内的高精度测量。This structure can solve the problem of large measurement spot size on the sample surface faced by existing optical angle measuring instruments (such as autocollimators, etc.), and further, this device can be used for long-distance surface scanning to obtain the sample surface data. At the same time, the system is insensitive to sample position or defocus error, lens aberration, and is suitable for high-precision measurement in a small range.
如图4所示,本发明具有更高的空间分辨能力,实例使用的光斑尺寸0.1mm,采样步长0.1mm,可以明显观察到这种小空间尺度上的角度分布。As shown in FIG. 4 , the present invention has higher spatial resolution capability. The spot size used in the example is 0.1mm, and the sampling step is 0.1mm. The angular distribution on such a small spatial scale can be clearly observed.
附图说明Description of drawings
图1为本发明的角度测量仪;Fig. 1 is angle measuring instrument of the present invention;
其中,10-扫描光学头,11-光源,12-光栏,13-分光镜,14-透镜,15-待测反射镜,16-探测单元,17-数据处理组件,18-照明光线,19-折返光束;Among them, 10-scanning optical head, 11-light source, 12-optical barrier, 13-beam splitter, 14-lens, 15-mirror to be tested, 16-detection unit, 17-data processing component, 18-illumination light, 19 - return beam;
图2为本发明光源的结构图;Fig. 2 is a structural diagram of the light source of the present invention;
(a)为一种相干光源系统,其中,21-激光器,22-耦合透镜,23-光纤;(a) is a coherent light source system, wherein, 21-laser, 22-coupling lens, 23-optical fiber;
(b)为一种非相干光源系统,其中,24-发光二极管,小孔光栏-25;(b) is an incoherent light source system, wherein, 24-light-emitting diodes, small hole aperture-25;
图3为面形仪扫描系统;Fig. 3 is the surface profiler scanning system;
其中,31-待测物体、32-高精密气浮平移台、33-大口径反射镜、34-电子自准直仪;Among them, 31-object to be measured, 32-high-precision air bearing translation stage, 33-large-diameter mirror, 34-electronic autocollimator;
图4为面形仪测量结果;Figure 4 is the measurement result of the surface profiler;
(a)测量的表面倾斜度曲线,(b)曲线进行积分处理结果。(a) The measured surface slope curve, (b) the result of the integral processing of the curve.
具体实施方式detailed description
下面结合附图对本发明进行进一步详细描述:The present invention is described in further detail below in conjunction with accompanying drawing:
本发明的高精度高空间分辨的角度测量仪如图1所示,其结构包括:光源11,产生位置空间及角空间都均匀的光场;光栏12,限制光束口径;透镜14,用于聚焦照明光束及收集折返的光束;待测反射镜;分光镜13,用于将折返光束反射到探测器平面;探测器阵列16,用于记录前焦平面上折返光束形貌的图像;数据处理组件17,根据记录的图像计算得到待测镜角度变化导致的光斑相对位移,进而基于此反推待测反射镜15的角度变化,并对最终测量结果进行显示;可以采用质心法、相关算法等方法计算质心变化,本发明采用基于质心的算法。The angle measuring instrument with high precision and high spatial resolution of the present invention is as shown in Figure 1, and its structure comprises: light source 11, produces the all uniform light field of position space and angle space; Focusing the illumination beam and collecting the returned beam; the reflector to be tested; the spectroscope 13, used to reflect the returned beam to the detector plane; the detector array 16, used to record the image of the returned beam shape on the front focal plane; data processing Component 17 calculates the relative displacement of the spot caused by the angle change of the mirror to be measured according to the recorded image, and then deduces the angle change of the mirror 15 to be tested based on this, and displays the final measurement result; centroid method, correlation algorithm, etc. can be used The method calculates the change of the center of mass, and the present invention adopts an algorithm based on the center of mass.
位移和角度算法:记录待测反射镜角度变化前后的图像A,B。使用质心方法分别计算光斑的质心,即计算Displacement and angle algorithm: record the images A, B before and after the angle change of the mirror to be tested. Use the centroid method to calculate the centroid of the spot separately, that is, calculate
其中Ii,j是第(i,j)像素点的光信号强度,xi,j和yi,j是第(i,j)像素点的空间坐标,M和N是用于数据处理的图像横向和纵向像素数目。依次方法计算得到图像A和图像B中质心分别为(xA,yA)和(xB,yB),最终可以获得测试反射镜的角度为:Where I i,j is the optical signal intensity of the (i,j)th pixel, x i,j and y i,j are the spatial coordinates of the (i,j)th pixel, M and N are used for data processing The number of horizontal and vertical pixels of the image. The centroids in image A and image B are (x A , y A ) and (x B , y B ) calculated sequentially, and finally the angle of the test mirror can be obtained as:
其中,f是透镜焦距。where f is the focal length of the lens.
本发明的光源11具体结构如图2所示,实现方式:(1)采用相干光源如图2(a),包括激光器21、耦合透镜22和光纤23,直接将激光器21的光耦合到光纤中,通过光纤传输并输出,保证光纤足够长,端面光滑的前提下,就可以产生这种光场。(2)采用非相干光源如图2(b),包括发光二极管24和小孔光栏25。或者利用光纤或其他方式匀光,产生空间分布均匀,出射角分布均匀的光;利用小孔限制光源的面积。The specific structure of the light source 11 of the present invention is as shown in Figure 2, and the implementation method: (1) adopt a coherent light source as shown in Figure 2 (a), including a laser 21, a coupling lens 22 and an optical fiber 23, and directly couple the light of the laser 21 into the optical fiber , is transmitted and output through the optical fiber, and the optical field can be generated under the premise that the optical fiber is long enough and the end surface is smooth. (2) Adopting an incoherent light source as shown in FIG. 2( b ), including a light emitting diode 24 and an aperture diaphragm 25 . Or use optical fiber or other methods to homogenize the light to produce light with uniform spatial distribution and uniform distribution of exit angles; use small holes to limit the area of the light source.
应用实例:Applications:
(1)角度测量(原理上,仅测角)(1) Angle measurement (in principle, only angle measurement)
如前所述,测量目标反射镜的转动角度Measure the angle of rotation of the target mirror as previously described
(2)面形测量(应用上,测角,积分从而得到)(2) Surface shape measurement (application, angle measurement, integration to obtain)
参照图3,该高空间分辨长程面形检测系统包括:待测物体31、高精密气浮平移台32、扫描光学头10、大口径反射镜33、电子自准直仪34。Referring to FIG. 3 , the high spatial resolution long-range surface shape detection system includes: an object to be measured 31 , a high-precision air bearing translation stage 32 , a scanning optical head 10 , a large-diameter mirror 33 , and an electronic autocollimator 34 .
扫描光学头10如图3所示。扫描光学头10和大口径反射镜33随高精密气浮平移台32运动。经过扫描光学头10内部光路结构形成聚焦光束35扫描待测物体31,折返光束36重新进入扫描光学头10后被探测。电子自准直仪34固定于扫描光学头10外部,电子自准直仪34测量其发射的光束经大口径反射镜33反射后的角度变化,从而得到扫描光学头10的转动角度误差βOH。光学头内探测器测量的光束位置变化可以表达为:The scanning optical head 10 is shown in FIG. 3 . The scanning optical head 10 and the large-aperture mirror 33 move with the high-precision air bearing translation stage 32 . The focused light beam 35 formed by the internal optical path structure of the scanning optical head 10 scans the object 31 to be measured, and the returned light beam 36 enters the scanning optical head 10 again and is detected. The electronic autocollimator 34 is fixed outside the scanning optical head 10 , and the electronic autocollimator 34 measures the angle change of the beam emitted by the electronic autocollimator 34 after being reflected by the large-aperture mirror 33 , so as to obtain the rotation angle error β OH of the scanning optical head 10 . The beam position change measured by the detector in the optical head can be expressed as:
xsamp=2x0,samp+2f(βsut+βOH)x samp = 2x 0, samp +2f(β sut +β OH )
在扫描过程过程中,常量Const=2x0,samp不会反映待测物体31表面倾斜度的变化。最终,可以得到待测物体11表面的倾斜度变化为:During the scanning process, the constant Const=2× 0, samp will not reflect the change of the surface inclination of the object 31 to be measured. Finally, the inclination change of the surface of the object 11 to be measured can be obtained as:
图4给出了一个样品的倾斜度测量结果,扫描步长为0.1mm。图4(a)是测量的表面倾斜度曲线,图4(b)是对图4(a)的曲线进行差别计算,统计标准差为40nrad rms。Figure 4 shows the results of a sample inclination measurement with a scan step of 0.1 mm. Figure 4(a) is the measured surface inclination curve, and Figure 4(b) is the differential calculation of the curve in Figure 4(a), the statistical standard deviation is 40nrad rms.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710043906.5A CN106767545A (en) | 2017-01-19 | 2017-01-19 | A kind of high accuracy high-space resolution angel measuring instrument and angle measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710043906.5A CN106767545A (en) | 2017-01-19 | 2017-01-19 | A kind of high accuracy high-space resolution angel measuring instrument and angle measurement method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106767545A true CN106767545A (en) | 2017-05-31 |
Family
ID=58945189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710043906.5A Pending CN106767545A (en) | 2017-01-19 | 2017-01-19 | A kind of high accuracy high-space resolution angel measuring instrument and angle measurement method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106767545A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107643057A (en) * | 2017-11-07 | 2018-01-30 | 中航国画(上海)激光显示科技有限公司 | A kind of lens assembling vertical detection device and its detection method |
CN108226902A (en) * | 2018-02-28 | 2018-06-29 | 北京瑞特森传感科技有限公司 | A kind of face battle array lidar measurement system |
CN108692729A (en) * | 2018-05-04 | 2018-10-23 | 北京空间飞行器总体设计部 | A kind of space non-cooperative target Relative Navigation covariance adaptive correction filtering method |
CN109489691A (en) * | 2018-12-07 | 2019-03-19 | 银河航天(北京)通信技术有限公司 | Optical calibrating system and scaling method |
CN109668512A (en) * | 2018-12-21 | 2019-04-23 | 清华大学深圳研究生院 | The beam directing mechanisms and alignment methods for the laser displacement sensor being arranged symmetrically |
CN109974583A (en) * | 2019-04-11 | 2019-07-05 | 南京信息工程大学 | Device and method for measuring surface shape of non-contact optical element |
CN110702036A (en) * | 2019-08-27 | 2020-01-17 | 广东工业大学 | A complex beam angle sensor and a small aspheric topography detection method |
CN111354500A (en) * | 2020-03-16 | 2020-06-30 | 中国科学院高能物理研究所 | Synchrotron radiation X-ray double-reflector |
CN113238374A (en) * | 2020-09-30 | 2021-08-10 | 南京航空航天大学 | Design method of high-power laser collimation system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201322609Y (en) * | 2008-12-29 | 2009-10-07 | 西安工业大学 | Photoelectric collimator |
CN102175186A (en) * | 2011-01-24 | 2011-09-07 | 上海理工大学 | Portable photoelectric autocollimator based on area array CCD image sensor and working method of portable photoelectric autocollimator |
CN102226690A (en) * | 2011-03-29 | 2011-10-26 | 浙江大学 | Method and device for high-precision small-angle measurement |
CN102865835A (en) * | 2012-09-29 | 2013-01-09 | 中国科学院西安光学精密机械研究所 | Vernier slit type photoelectric autocollimator |
CN202938795U (en) * | 2012-11-30 | 2013-05-15 | 西安昂科光电有限公司 | Laser measuring device for measuring micro angles |
CN106052596A (en) * | 2016-06-03 | 2016-10-26 | 北京理工大学 | High-precision photoelectric auto-collimator based on far exit pupil and small diameter ratio design |
-
2017
- 2017-01-19 CN CN201710043906.5A patent/CN106767545A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201322609Y (en) * | 2008-12-29 | 2009-10-07 | 西安工业大学 | Photoelectric collimator |
CN102175186A (en) * | 2011-01-24 | 2011-09-07 | 上海理工大学 | Portable photoelectric autocollimator based on area array CCD image sensor and working method of portable photoelectric autocollimator |
CN102226690A (en) * | 2011-03-29 | 2011-10-26 | 浙江大学 | Method and device for high-precision small-angle measurement |
CN102865835A (en) * | 2012-09-29 | 2013-01-09 | 中国科学院西安光学精密机械研究所 | Vernier slit type photoelectric autocollimator |
CN202938795U (en) * | 2012-11-30 | 2013-05-15 | 西安昂科光电有限公司 | Laser measuring device for measuring micro angles |
CN106052596A (en) * | 2016-06-03 | 2016-10-26 | 北京理工大学 | High-precision photoelectric auto-collimator based on far exit pupil and small diameter ratio design |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107643057A (en) * | 2017-11-07 | 2018-01-30 | 中航国画(上海)激光显示科技有限公司 | A kind of lens assembling vertical detection device and its detection method |
CN108226902A (en) * | 2018-02-28 | 2018-06-29 | 北京瑞特森传感科技有限公司 | A kind of face battle array lidar measurement system |
CN108692729A (en) * | 2018-05-04 | 2018-10-23 | 北京空间飞行器总体设计部 | A kind of space non-cooperative target Relative Navigation covariance adaptive correction filtering method |
CN108692729B (en) * | 2018-05-04 | 2019-05-24 | 北京空间飞行器总体设计部 | A kind of space non-cooperative target Relative Navigation covariance adaptive correction filtering method |
CN109489691A (en) * | 2018-12-07 | 2019-03-19 | 银河航天(北京)通信技术有限公司 | Optical calibrating system and scaling method |
CN109668512B (en) * | 2018-12-21 | 2024-06-04 | 清华大学深圳研究生院 | Light beam alignment device and alignment method for symmetrically arranged laser displacement sensors |
CN109668512A (en) * | 2018-12-21 | 2019-04-23 | 清华大学深圳研究生院 | The beam directing mechanisms and alignment methods for the laser displacement sensor being arranged symmetrically |
CN109974583A (en) * | 2019-04-11 | 2019-07-05 | 南京信息工程大学 | Device and method for measuring surface shape of non-contact optical element |
CN109974583B (en) * | 2019-04-11 | 2024-03-26 | 南京信息工程大学 | Non-contact optical element surface shape measuring device and method |
CN110702036A (en) * | 2019-08-27 | 2020-01-17 | 广东工业大学 | A complex beam angle sensor and a small aspheric topography detection method |
CN111354500A (en) * | 2020-03-16 | 2020-06-30 | 中国科学院高能物理研究所 | Synchrotron radiation X-ray double-reflector |
CN111354500B (en) * | 2020-03-16 | 2022-03-22 | 中国科学院高能物理研究所 | Synchrotron radiation X-ray double-reflector |
CN113238374A (en) * | 2020-09-30 | 2021-08-10 | 南京航空航天大学 | Design method of high-power laser collimation system |
CN113238374B (en) * | 2020-09-30 | 2022-08-05 | 南京航空航天大学 | Design method of high-power laser collimation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106767545A (en) | A kind of high accuracy high-space resolution angel measuring instrument and angle measurement method | |
US10330466B2 (en) | Compensation of light intensity across a line of light providing improved measuring quality | |
CN106679940B (en) | A kind of high-precision laser angle of divergence parameter calibration device | |
CN109099859B (en) | Apparatus and method for measuring three-dimensional topography of surface defects of large aperture optical components | |
US7064817B1 (en) | Method to determine and adjust the alignment of the transmitter and receiver fields of view of a LIDAR system | |
US20040109170A1 (en) | Confocal distance sensor | |
CN110542542B (en) | Device and method for detecting consistency of optical axis of optical simulator under condition of moving platform | |
CN114323571B (en) | Multi-optical-axis consistency detection method for photoelectric aiming system | |
JPH01502849A (en) | distance measuring device | |
CN106052585B (en) | A kind of surface shape detection apparatus and detection method | |
CN104034352B (en) | Method for measuring field curvature of space camera by adopting laser tracker and interference check | |
US20150177160A1 (en) | Non-Imaging Coherent Line Scanner Systems and Methods for Optical Inspection | |
CN102087483A (en) | Optical system for focal plane detection in projection lithography | |
CN102840964A (en) | Large-caliber long-focus collimator focal point real-time monitoring system | |
JPH10311779A (en) | Equipment for measuring characteristics of lens | |
JP2001108417A (en) | Optical shape measuring instrument | |
CN111366088B (en) | Laser confocal height measuring method | |
CN209147932U (en) | A kind of laser imaging range-measurement system | |
CN109253867B (en) | Optical system focal length measuring system and method | |
CN112284984B (en) | Solid surface energy measuring device and method based on light reflection | |
Cattini et al. | Optical characterization of the beams generated by 3-D LiDARs: Proposed procedure and preliminary results on MRS1000 | |
TWI764801B (en) | Method and system for measuring geometric parameters of through holes | |
JP2008026049A (en) | Flange focal distance measuring instrument | |
JP3162364B2 (en) | Optical sensor device | |
KR20100068953A (en) | Apparatus and method for inspecting driving characteristic of scanner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170531 |
|
RJ01 | Rejection of invention patent application after publication |