TWM394680U - Thermal conducting device for prestressed clamping type multi-layered structure - Google Patents
Thermal conducting device for prestressed clamping type multi-layered structure Download PDFInfo
- Publication number
- TWM394680U TWM394680U TW98214503U TW98214503U TWM394680U TW M394680 U TWM394680 U TW M394680U TW 98214503 U TW98214503 U TW 98214503U TW 98214503 U TW98214503 U TW 98214503U TW M394680 U TWM394680 U TW M394680U
- Authority
- TW
- Taiwan
- Prior art keywords
- heat
- thermal
- conductor
- interface
- relay
- Prior art date
Links
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
Description
M394680 五、新型說明: 【新型所屬之技術領域】 本新型為藉由熱傳導係數較佳之中繼導熱體,與單位熱容量 值或熱輻射係數(emissivity)兩者或至少其中之一為優於中繼 導熱體之界面導熱體,以共同構成具預力包夾之至少兩層呈特定 結合型態之溫能傳導結構體或散熱結構體,藉以提升溫能傳輸效 能,以及避免複層結構材料因不同熱膨脹係數造成鬆脫或變形, 造成熱傳導面結合不良而不利於熱傳導者。 【先前技術】 埒既欢热羝構體逋常猎單一材料構成溫能傳導結構,由於 作為第-溫能體之致冷源或熱源,除熱f内部或其他在封閉空間 内致冷或致熱可以全面積作熱傳導接觸外,常為偈促耗合於溫能 傳導裝置之-較小熱傳導面積,例如作為第—溫能體之執源,若 為電腦之巾錢理ϋ鋪之熱能,或功钟㈣熱損之熱能,或M394680 V. New description: [New technical field] The new type is a relay thermal conductor with better thermal conductivity, and either or both of the unit heat capacity value or emissivity is better than relay. The interface heat conductor of the heat conductor forms a temperature-conducting structure or a heat-dissipating structure with at least two layers of a pre-bonded package in a specific combination type, thereby improving the heat transfer performance and avoiding the difference in the structure of the composite layer. The coefficient of thermal expansion causes looseness or deformation, resulting in poor heat transfer surface bonding and is not conducive to heat conduction. [Prior Art] 埒 欢 羝 羝 羝 逋 逋 逋 逋 逋 逋 逋 逋 逋 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一 单一Heat can be used as a heat conduction contact in the whole area, which is often used to promote the heat transfer area of the temperature-conducting device. For example, as the source of the first-temperature energy body, if it is the heat energy of the computer towel, Or the clock (4) heat loss, or
熱狀餘’當藉上述溫能料結構體或散熱 作战魏運作時’若溫能料結構體或散熱結構體採用 :容值=,則即使單一材料本身熱傳導係數較佳,但其單位 體m 例如以崎製成中域理11、或功率半導 :"―極體之散熱器’其重量較重且昂貴,熱 但早位熱容值及熱輻射係數(放射率,emissivity^於紹; 若採用單位熱容值或及熱輻射 ·、 ’ 較佳之單—㈣,其重量較輕且較低價者,:丰,嶋⑽⑺ 熱器,則其單⑽容值及料射伽It例如⑽材所製成散 高,但材料太“ 射率,emissivity)雖較 傳導結構時,崎’故採用單一材料製成溫能 傳輸效果較㈣制,此外,亦須考量避免複 3 M394680 層結構材料因不同熱膨脹係數造成鬆脫或變形,造成熱傳導面結 合不良而不利於熱傳導者。 【新型内容】 本新型為創新揭示一種具預力包失之複層結構熱導裝置,為 藉不同導熱特性材料構成複合層之溫能傳導結構體或散熱結構 體’而有別於由單—材料構成之溫能傳導結構體或散熱結構體, 此項具預力包失之複層結構熱導裝置,為以具較良好熱傳導係數 之材料作為中繼導熱體,中繼導熱體之一端或面,供與發熱或致 _ 冷之第—溫㈣作熱料耗合,而在巾繼導熱體之另-端或面, 供與界面導熱體耦合,界面導熱體為具有相對於中繼導熱體 具有較咼單位熱容值,或(2)相對於中繼導熱體對第二溫能體具 有較良好之熱輻射係數(放射率,emissivi 其中之兩種熱傳導 特性’或至少其巾之-種較優於巾畴熱體之熱傳導特性,以作 為中繼導熱體與第;能體間之熱傳導載體者;^第—溫能體與 第二溫能體之間具有溫差時可利於傳導溫能者 ,本新型進—步之 特徵,為各結構層之間呈預力包夾狀之結合結構以減少體積以 • 及具有預力縫隙(_以供產生包夾或外樓之預力,以確保良好 導熱接觸’錢職複層結構材料因*同熱雜雜造成鬆脫 變形’造成熱傳導面結合不良而不利於熱傳導者^ 【實施方式】 本新型為以與第1能體之間具較良好熱傳導特性 之材料作為中繼導熱體,供與第—溫能體作非封閉式之溫 能傳導搞合’而在中繼導熱體與第二溫能體之間,設有= 面導熱體供與第二溫能體及中繼導熱體Μ合以傳導兩者 間之温能者,界面導熱體為具有⑴相對於中繼導熱體具 4 =;;谷!,或(2)相對於中繼導熱_二溫能 =IT射係數(放射率—⑼,其中 ==之—種較優於中繼導熱體之熱傳導特性,以 複體及第二溫能體間之熱傳導體者,以及避免 料因不同熱膨腸係數造成鬆脫或變形,造成熱 傳導面、,’σ σ不良而不利於熱傳導者。 此項具預力包夹之複層結構熱導裝置之構成如圖! r:圖1所示為為本新型熱管之釋熱端或吸熱端之導熱 外…-溫能體之預力包夹結合結構示意圖,其主要構 成含: --溫能傳導結構體或散熱結構體總成(⑽)為由至少兩 層不同熱特性之熱導材料所構成,其中具較佳熱傳導係數 之中繼導熱體(102),為輕合於第—溫能體(1()1),具較高 …、谷值之界面導熱體(1〇3)為柄合於中繼導熱體(I。〗)與 第-溫能體(104)之間’進而構成溫能傳導結構體或散熱 結構體總成(1〇〇)者; ㈣旎傳導結構體或散熱結構體總成(100)為供設置 於第一溫能體(101)與第二溫能體(1〇4)之間者;溫能傳導 結構體或散熱結構體總成(100)之構成含由中繼導熱體 (102)與界面導熱體(1〇3)所構成,其中 第一溫能體(101):可為呈非封閉之固體、或氣態、 或液態、或膠狀物體、或粉粒狀物體構成之主動致冷或致 熱之溫能體’或被動吸熱或釋熱之溫能體者;或為呈來自 熱管之釋熱端之導熱外殼、或吸熱端之導熱外殼所構成之 溫能體者; 一―中繼導熱體(102):為由至少一層相對具有較良好熱 傳導係數之固態、或氣態、或液態、或膠狀物體、或粉粒 狀之物體構成中繼導熱體,中繼導熱體(102)之一端或一 面為供與呈開放之第一溫能體(101)接觸結合,中繼導熱 體(102)之另一端或另一面為供結合於界面導熱體(丨〇3) 以作溫能傳導者,包括於熱管之釋熱端之外殼或吸熱端之 導熱外殼所構成之第一溫能體(1〇1)與界面導熱體(丨03) 之間,設置中繼導熱體(1 〇2)以作溫能傳導者(參閱圖1、 圖2 );或於供流通具溫能流體之導管之導熱外殼所構成 之第一溫能體(101)與介面導熱體(103)之間,設置呈預力 包夾之中繼導熱體(102)以作溫能傳導者(參閱圖3);中 繼導熱體與第一溫能體(101)之熱傳導係數優於界面導熱 體(103),即其熱傳導速度快於界面導熱體(1〇3),中繼導 熱體(102)與界面導熱體(1〇3)之熱傳導麵合面之面積,為 大於或等於中繼導熱體(1〇2)與第一溫能體(101)之熱傳 導耗合面之面積者; 界面導熱體(103):為由至少一層固態、或氣態、或 液態、或膠狀物體、或粉粒狀之物體所構成,其材料之熱 特性中(1)單位熱容值或(2)與第二溫能體(1〇4)間之熱輕 射係數(放射率’ emissivity),以上兩種或其中之一種熱 傳導特性為優於中繼導熱體(102),界面導熱體(1〇3)為供 設置於中繼導熱體(1〇2)與第二溫能體(1〇4)之間以作溫 能傳導者’包括於熱管之釋熱端之導熱外殼或吸熱端之導 熱外殼所構成之第一溫能體設置呈預力包夾之中繼 導熱體(102)’並將介面導熱體(1〇3)設置於中繼導熱體 (102)與第二溫能體(104)之間,以作溫能傳導者(參閱 圖1、圖2);或於供流通具溫能流體之導管導熱外殼所 M394680 成之第一溫能體(101)設置中繼導熱體(102),並將介面導 熱體(103)設置於中繼導熱體(1〇2)與第二溫能體(1〇4)之 間,以作溫能傳導者(參„ 3);界面導熱體⑴3)與第 一溫能體(104)之熱傳導耦合面之面積,為大於或等於中 繼導熱體(102)與界面導熱體(1〇3)之熱傳導耦合面之面 積者; 上述各結構層之間為呈預力包夹狀之結合結構以減 少體積,以及具有預力縫隙(5〇〇)以供產生包夾或外撐之 預力,以確保良好導熱接觸,以及避免複層結構材料因不 同熱膨脹係數造成鬆脫或變形,造成熱傳導面結合不良而 不利於熱傳導者; ——第二溫能體(104广含由固態、或氣態、或液態、或 膠狀物體、或粉粒狀之物體所構成之主動致冷或致熱之溫 能體’或被動吸熱或釋熱之溫能體者; 此項具預力包夾之複層結構熱導裝置,其中第一溫 能體(101)與中繼導熱體(102)之熱傳導耦合面,及界面導 熱體(103)與第二溫能體(104)之熱傳導耦合面,可依需要 選擇其幾何形狀者; 藉上述特定結構以降低第一溫能體(丨〇丨)與第二溫 能體(104)間之熱阻者。 此項具預力包夾之複層結構熱導裝置,其第一溫能 體(101)、中繼導熱體(102)、界面導熱體(103)、第二溫 能體(104)之間具有以下相對關係: 第一溫能體(101)與第二溫能體(1〇4)之間設有溫能 傳導結構體或散熱結構體總成(100); 溫能傳導結構體或散熱結構體總成(1〇〇)由至少兩層 7 M394680 不同熱特性材料構成之導熱體所構成,其中中繼導熱體 (102)相對於界面導熱體(1〇3)對第一溫能體(ι〇ι)具較佳 熱傳導係數,中繼導熱體(102)為耦合於第一溫能體 (101) ’界面導熱體(103),為耦合於中繼導熱體(102)與 第二溫能體(104)間,界面導熱體(1〇3)為(1)相對於中繼 導熱體(102)具較高單位熱容值或相對於中繼導熱體 (102) 對第二溫能體(1〇4)之具有較良好之熱輻射係數(放 射率,emissivity)’即界面導熱體(1〇3)之上述兩種或其 中之一種熱傳導特性,為優於中繼導熱體(1〇2)者; ——構成中繼導熱體(102)之材料熱傳導係數為優於界面 導熱體(103); ——構成界面導熱體(103)之材料熱容值或對第二溫能體 (1〇4)之熱輻射係數(放射率emissivity)’以上兩種或其 中之一種熱傳導特性,為優於中繼導熱體(102)者; —一中繼導熱體(102)對界面導熱體(103)之熱傳導耦合 面之面積,為大於或等於中繼導熱體(102)與第一溫能體 (101)間之熱傳導耦合面之面積,藉以降低熱阻抗者; 界面導熱體(103)對第二溫能體(1〇4)之熱傳導輕合 面之面積,為大於或等於中繼導熱體(102)與界面導熱體 (103)之熱傳導耦合面之面積,藉以降低熱阻抗者; 上述結構中,當在第一溫能體(101)之溫度為高於第 二溫能體(104)時,第一溫能體(1〇1)之熱能,經第一溫能 體(101)與中繼導熱體(102)之間面積較小之熱傳導耦合 面,向外作擴散性熱傳導至熱傳導係數較良好之中繼導熱 體(102),而藉由以下至少其中之一種作用協助傳輸溫 能,包括(1)經中繼導熱體(102)與界面導熱體(103)耦合 8 之較大面積之熱傳導耦合面,將熱能擴散至單位熱容值較 大之界面導熱體(103);或(2)再由界面導熱體U〇3)以相 同或更大面積之熱傳導耦合面積對第二溫能體(1〇4)釋放 熱能者,或(3)以更好的熱輻射係數(放射率emissivity) 之特性對第二溫能體(1〇4)釋放熱能者; 上述結構中,當在第一溫能體(1〇1)之溫度為低於第 二溫能體(104)時,第二溫能體(1〇4)之熱能,經第二溫能 體(104)與界面導熱體(1〇3)之間面積較大之熱傳導耦合 面,擴散性將熱能傳導至單位熱容值較大之界面導熱體 (1〇3),而經界面導熱體(1〇3)與中繼導熱體(1〇2)耦合之 較小面積之熱傳導輕合面,將熱能傳導至中繼導熱體 (102),再經由熱傳導係數較良好之中繼導熱體(I”)較小 面積之熱傳導耦合面對第一溫能體(1〇1)釋放熱能者。 此項具預力包夾之複層結構熱導裝置中,其構成依 需要可進一步作成以下結構,包括·· ——若第一溫能體(101)或第二溫能熱體(102)或界面導 熱體(103)或第二溫能體(104),至少其中之一為氣態、或 液態、或膠狀物體 '或粉粒狀物體時,可設置容器結構以 供置入者’構成容器之結構可為熱良導體或非導熱體,或 由熱傳導係數較良好之材料製成容器並構成中繼導熱體 (1〇2),或由單位熱容值較大之材料製成容器並構成界面 導熱體(103)之功能者。 此項具預力包夾之複層結構熱導裝置,其中中繼導 熱體(1G2)與界面導熱體(1G3)之熱傳導輕合面及結合 面’可依需要選擇為藉由以下一種或—種以上之結合結構 方式,包括凹凸形作預力包夾結合'或以鸿尾槽形作預力 M394680 ==、或1型槽型作預力包夾結合、或孔柱狀作預力 包夾:口、或呈…翼狀作預力包夹結合,或以其他習 用熱傳導面之預六4士人士人 預力己夾、.Ό。方式結合以增加傳導面積者。 "ΓΓ1所不為本新型熱管之釋熱端或吸熱端之導熱 外忒為第-溫能體之預力包夾結合結構示意圖。 如圖2所示為圖1之俯視示意圖。 如圖3所示為本新型中繼導熱體(1〇2)與界面導熱體 ()之,’、、傳導耦合面及結合面呈凹凸形狀預力包夾結合 結構示意圖。 如圖4所示為本新型中繼導熱體(1〇2)與界面導熱體 (103)之熱傳導輕合面及結合面呈預力包夾結合結構示意 圖。 如圖5所示為本新型中繼導熱體(1〇2)與界面導埶體 (_之熱傳導輕合面及結合面呈从槽形預力包炎結合 結構不意圖。 如圖6所不為本新型中繼導熱體(1〇2)與界面導熱體 (103)之熱傳導輕合面及結合面呈τ型槽型預力包爽結合 結構示意圖。 如圖7所不為本新型中繼導熱體(1〇2)與界面導熱體 (103)之熱傳導耦合面及結合面呈孔柱狀預力包夾結合結 構示意圖。 如圖8所示為本新型辛繼導熱體(102)與界面導熱體 (103)之熱傳導耦合面及結合面呈凹凸多翼狀預力包夹結 合結構示意圖。 前述具預力包夾之複層結構熱導裝置之各實施例 中,中繼導熱體(102)與界面導熱體(1〇3)之間,可設置至 10 >'一層導熱夾層(110),而呈多層結構,其中所增加之導 熱夾層(110)與中繼導熱體(1〇2)及界面導熱體(1〇3)之關 係如下: —導熱失層(110)之單位熱容值為大於中繼導熱體(102) 之單位熱容值,而小於界面導熱體(1〇3)之單位熱容值 者’而於採用設置多層導熱夾層(11〇)之結構時,則愈接 近中繼導熱體(102)之導熱夾層(110),其單位熱容值愈 小,唯仍大於中繼導熱體(102)者; —導熱夾層(no)之熱傳導係數為優於界面導熱體 (103)’中間導熱體(102)之熱傳導係數優於導熱夾層(11〇) 者;而於採用設置多層導熱夾層(11〇)之結構時,則愈接 近中繼導熱體(1〇2)之導熱夾層〇1〇),其熱傳導係數愈良 好’唯仍略次於中繼導熱體(1〇2)者; —一中繼導熱體(102)與導熱夾層(110)之熱傳導耦合面 積大於導熱夾層(11〇)與界面導熱體(1〇3)之熱傳導耦合 面積,而於選擇性設置多層導熱夾層(11〇)之結構時,愈 接近界面導熱體(1〇3)之夾層間之熱傳導耦合面積為相同 或愈大者; 如上述導熱夾層(110)為兩個或兩個以上,則其熱特 性中熱傳導係數及單位熱容值之選擇,以及導熱夾層(110) 與兩側熱傳導之耦合面積大小之選擇,為由第一溫能體 (101)至中繼導熱體(102)、至導熱夾層(11〇)、至界面導 熱體(103)、至第二溫能體(1〇4)所結合構成之各層熱傳導 面積,為依序而逐層相同或增大之結構原則者; 上述各結構層之間為呈預力包夾狀之結合結構以減 少體積’以及具有預力缝隙(5〇〇)以供產生包夾或外撐之 M394680 預力’以確保良好導熱接觸,以及避免複層結構材料因不 同熱膨脹係數造成鬆脫或變形,造成熱傳導面結合不良而 不利於熱傳導者。 此項具預力包夾之複層結構熱導裝置,其中中繼導 熱體(102)與導熱失層(11〇)之熱傳導耦合面及結合面,可 依需要選擇為藉由以下一種或一種以上之結合結構方 式’包括凹凸形作預力包夾結合、或以鳩尾槽形作預力包 夾結合、或T型槽型作預力包夾結合、或孔柱狀作預力包 夾結合、或呈凹凸多翼狀作預力包夾結合,或以其他習用 熱傳導面之預力包夾結合方式結合以增加傳導面積者。 此項具預力包夾之複層結構熱導裝置,其中導熱夾 層(110)與界面導熱體(1〇3)之熱傳導耦合面及結合面,可 依需要選擇為藉由以下一種或一種以上之結合結構方 式’包括凹凸形作預力包失結合、或以鳩尾槽形作預力包 夾結合、或T型槽型作預力包夾結合、或孔柱狀作預力包 夾結合、或呈凹凸多翼狀作預力包夾結合,或以其他習用 熱傳導面之預力包夾結合方式結合以增加傳導面積者。 如圖9所示為本新型設置導熱夾層(uo)與中繼導熱 體(102)及界面導熱體(1〇3),並以熱管之釋熱端或吸熱端 之導熱外殼為第一溫能體之預力包夾結合結構示意圖。 如圖10所示為圖9之俯視圖。 如圖11所示為本新型導熱夾層(11〇)與中繼導熱體 (102)及界面導熱體(103)之熱傳導耦合面及結合面呈凹 凸形狀預力包夾結合結構示意圖。 如圖12所示為本新型導熱夾層(110)與中繼導熱體 (102)及界面導熱體(103)之熱傳導耦合面及結合面呈預 12 M394680 力包夾結合結構示意圖。 如圖13所示為本新型導熱夾層(110)與中繼導熱體 (102)及界面導熱體(103)之熱傳導耦合面及結合面呈鸠 尾槽形預力包夾結合結構示意圖。 如圖14所示為本新型導熱夾層(110)與中繼導熱體 (102)及界面導熱體(103)之熱傳導耦合面及結合面呈T 型槽型預力包夾結合結構示意圖。If the heat energy structure or the heat dissipation structure is used, the heat energy coefficient is better, but the unit body m is better. For example, it is made of Saki, or power semi-conductor: "The radiator of the polar body, which is heavier and more expensive, hot but early heat capacity and thermal emissivity (emissivity, emissivity^ Yu Shao If the unit heat capacity value or heat radiation, 'better single-(four), the lighter weight and lower price,: Feng, 嶋 (10) (7) heat exchanger, then its single (10) capacitance and feed gamma It (10) The material is made to have a high dispersion, but the material is too "emissivity". Although it is more conductive than the conductive structure, it is better to use a single material to make the temperature transmission effect (4). In addition, it is necessary to consider the complex 3 M394680 layer structure. The material is loose or deformed due to different thermal expansion coefficients, resulting in poor heat conduction surface bonding and is not conducive to heat conduction. [New content] This new type reveals a multi-layer structure thermal conduction device with pre-load loss for different innovations. Material composition The temperature-conducting structure or the heat-dissipating structure is different from the temperature-conducting structure or the heat-dissipating structure composed of a single-material, and the multi-layer structure thermal conduction device with pre-load loss is A material with a good heat transfer coefficient acts as a relay heat conductor, relaying one end or face of the heat conductor for heating or heating the first-temperature (four) for heat consumption, and the other end or face of the heat conductor And the interface heat conductor is coupled, the interface heat conductor has a relative heat capacity value relative to the relay heat conductor, or (2) has a better heat emissivity coefficient to the second warm energy body relative to the relay heat conductor (Emission rate, emissivi two of the heat transfer characteristics' or at least the towel type is better than the heat transfer characteristics of the towel domain heat body, as the heat transfer carrier between the relay heat conductor and the energy body; ^第When the temperature difference between the warm energy body and the second warm energy body is favorable for conducting the temperature, the novel step of the present invention is a pre-clamp-like combination structure between the structural layers to reduce the volume to be Pre-stress gap (_ for the production of a double or outer building Pre-strength, to ensure good thermal contact with 'the structure of the multi-layer structure of the material due to * the same with the heat and impurities caused by loose deformation' caused by poor heat conduction surface bonding is not conducive to heat conduction ^ [Embodiment] This new type is with the first energy A material having a relatively good heat conduction property between the bodies is used as a relay heat conductor for the non-closed temperature energy conduction of the first temperature body, and between the relay heat conductor and the second warm energy body The surface heat conductor is coupled with the second warm energy body and the relay heat conductor to conduct the temperature between the two, and the interface heat conductor has (1) relative to the relay heat conductor body 4 =; valley!, or (2) Relative to the relay heat conduction _ two temperature energy = IT coefficient of radiation (emissivity - (9), where == is better than the heat conduction characteristics of the relay heat conductor, between the complex and the second warm energy body The heat conductor, as well as avoiding loose or deformed due to different thermal expansion coefficient, resulting in heat conduction surface, 'σ σ is not good for heat conduction. The composition of the multi-layer structure thermal guide with pre-clamping is shown in the figure! r: FIG. 1 is a schematic diagram showing the combined structure of the pre-stressed package of the heat-conducting outer-heat-absorbing body of the heat pipe or the heat-absorbing end of the new heat pipe, and the main components thereof include: - a warm energy conducting structure or a heat dissipating structure The body assembly ((10)) is composed of at least two layers of thermal conductive materials having different thermal characteristics, wherein the relay heat conductor (102) having a better heat transfer coefficient is lightly coupled to the first temperature body (1()1 ), the interface heat conductor (1〇3) with a higher... and a valley value is a shank between the relay heat conductor (I.) and the first-temperature energy body (104), and further constitutes a thermoelectric conduction structure. Or a heat dissipating structure assembly (1〇〇); (4) a crucible conducting structure or a heat dissipating structure assembly (100) for providing the first warm energy body (101) and the second warm energy body (1〇4) The composition of the warm energy conducting structure or the heat dissipating structure assembly (100) comprises a relay heat conductor (102) and an interface heat conductor (1〇3), wherein the first warm energy body (101) : can be an uncooled solid, or a gaseous, or liquid, or gelatinous or powdery object of the active cooling or heating of the warm energy body' or passive endothermic or release a warm body of heat; or a warm body formed by a heat-conducting shell from the heat-dissipating end of the heat pipe or a heat-conductive shell of the heat-absorbing end; a relay heat conductor (102): having at least one layer opposite A solid, or gaseous, or liquid, or gel-like or powder-like object having a better thermal conductivity constitutes a relay heat conductor, and one end or one side of the relay heat conductor (102) is the first temperature for opening and opening. The body (101) is in contact with the other end or the other side of the relay heat conductor (102) for bonding to the interface heat conductor (丨〇3) for heat conduction, including the outer casing of the heat pipe of the heat pipe or Between the first warm energy body (1〇1) and the interface heat conductor (丨03) formed by the heat-conducting end of the heat-absorbing end, a relay heat conductor (1 〇 2) is arranged for the heat conduction (see Figure 1 Figure 2); or between the first warm energy body (101) and the interface heat conductor (103) formed by the heat-conducting outer casing of the conduit for circulating the warm energy fluid, a relay heat conductor (for example) is provided 102) for the heat conduction (see Figure 3); the thermal conduction between the relay heat conductor and the first warm energy body (101) The number is better than the interface heat conductor (103), that is, the heat conduction speed is faster than the interface heat conductor (1〇3), and the area of the heat conduction surface of the relay heat conductor (102) and the interface heat conductor (1〇3) is Greater than or equal to the area of the thermal conduction surface of the relay thermal conductor (1〇2) and the first thermal energy body (101); the interface thermal conductor (103): being at least one layer of solid, or gaseous, or liquid, or a gel-like object or a powder-like object, the thermal properties of the material (1) unit heat capacity value or (2) thermal diffusivity coefficient (radiation ratio) between the second temperature energy body (1〇4) 'emissivity>, the above two or one of the heat conduction characteristics is superior to the relay heat conductor (102), and the interface heat conductor (1〇3) is provided for the relay heat conductor (1〇2) and the second temperature energy Between the body (1〇4), the first thermal energy body composed of the heat conducting outer shell or the heat conducting outer shell of the heat radiating end of the heat pipe is disposed as a relay heat conductor of the pre-force clamping (102) 'Setting the interface heat conductor (1〇3) between the relay heat conductor (102) and the second warm energy body (104) for use as a heat conductor (Refer to Fig. 1 and Fig. 2); or to provide a relay heat conductor (102) and a dielectric heat conductor (103) for the first heat energy body (101) of the conduit heat conduction housing M394680 for circulation of warm energy fluid Between the relay heat conductor (1〇2) and the second warm energy body (1〇4) for the temperature energy conduction (refer to „3); the interface heat conductor (1) 3) and the first warm energy body (104 The area of the heat conduction coupling surface is greater than or equal to the area of the heat conduction coupling surface of the relay heat conductor (102) and the interface heat conductor (1〇3); the above structural layers are pre-packaged Combining the structure to reduce the volume, and having a pre-force gap (5〇〇) for generating a pre-stress of the bundling or bracing to ensure good thermal contact, and to avoid loosening or deformation of the composite material due to different thermal expansion coefficients, Causes the heat conduction surface to be poorly coupled and is not conducive to heat conduction; - The second warm energy body (104 contains active or cold, or consists of solid, or gaseous, or liquid, or gelatinous or powdery objects a warm body of heat or a passive body that absorbs heat or releases heat; a multi-layer structure thermal conduction device, wherein a heat conduction coupling surface of the first warm energy body (101) and the relay heat conductor (102), and a heat conduction between the interface heat conductor (103) and the second warm energy body (104) The coupling surface can be selected according to the needs of the geometry; the specific structure is used to reduce the thermal resistance between the first warm energy body (丨〇丨) and the second warm energy body (104). The multi-layer structure thermal conduction device with pre-clamping between the first warm energy body (101), the relay heat conductor (102), the interface heat conductor (103), and the second warm energy body (104) The relationship has the following relationship: a first temperature energy body (101) and a second temperature energy body (1〇4) are provided with a temperature-conducting structure or a heat dissipation structure assembly (100); a temperature-conducting structure or heat dissipation The structural assembly (1〇〇) is composed of at least two layers of 7 M394680 heat-conducting materials composed of different thermal properties, wherein the relay thermal conductor (102) is opposite to the interface thermal conductor (1〇3) to the first warm energy body. (ι〇ι) has a preferred heat transfer coefficient, and the relay heat conductor (102) is coupled to the first warm energy body (101) 'interface heat conductor (103), coupled to the relay heat conductor (102) and the second Between the warm energy body (104), the interface heat conductor (1〇3) is (1) has a higher unit heat capacity value relative to the relay heat conductor (102) or a second temperature relative to the relay heat conductor (102) The heat transfer characteristic of the energy body (1〇4) having a relatively good thermal emissivity, ie, the interface thermal conductor (1〇3), or one of the heat conduction characteristics is Better than the relay heat conductor (1〇2); ——the thermal conductivity of the material forming the relay heat conductor (102) is better than the interface thermal conductor (103); ——the heat capacity of the material constituting the interface thermal conductor (103) The value or the thermal emissivity of the second warm energy body (1〇4) or both of them are better than those of the relay heat conductor (102); The area of the heat conduction coupling surface of the body (102) to the interface heat conductor (103) is greater than or equal to the area of the heat conduction coupling surface between the relay heat conductor (102) and the first temperature energy body (101), thereby reducing thermal impedance. The area of the heat conduction light interface of the interface thermal conductor (103) to the second warm energy body (1〇4) is greater than or equal to the heat conduction coupling surface of the relay heat conductor (102) and the interface heat conductor (103). The area, in order to reduce the thermal resistance; in the above structure, when the temperature of the first warm energy body (101) is higher than the second warm energy body (104), the thermal energy of the first warm energy body (1〇1), The heat conduction coupling surface having a small area between the first warm energy body (101) and the relay heat conductor (102) is expanded outward The thermal conduction is conducted to the relay thermal conductor (102) having a good thermal conductivity, and the transmission of the thermal energy is assisted by at least one of the following functions, including: (1) coupling of the relay thermal conductor (102) to the interface thermal conductor (103) a large area of thermally conductive coupling surface that diffuses thermal energy to an interfacial heat conductor (103) having a larger unit heat capacity value; or (2) a thermal conduction coupling of the same or larger area by an interface thermal conductor U〇3) The area releases heat to the second warm energy body (1〇4), or (3) releases heat energy to the second warm energy body (1〇4) with a better thermal emissivity (emissivity); In the structure, when the temperature of the first warm energy body (1〇1) is lower than the second warm energy body (104), the thermal energy of the second warm energy body (1〇4) passes through the second warm energy body ( 104) a thermally conductive coupling surface with a large area between the interface heat conductor (1〇3), the diffusion conducts heat energy to the interface heat conductor (1〇3) having a large heat capacity value, and the interface heat conductor (1) 〇3) A small area of heat conduction light coupling surface coupled with the relay heat conductor (1〇2), conducting heat energy to the relay heat conductor (102) Then via a relatively good thermal conductivity of the relay thermal conductor (I ") of smaller area thermal conduction coupling face by the first thermal energy body (1〇1) heat energy is released. In the multi-layer structure thermal conduction device with pre-clamping, the structure may further be made into the following structure as needed, including: if the first warm energy body (101) or the second warm energy hot body (102) Or the interface heat conductor (103) or the second warm energy body (104), at least one of which is in a gaseous state, or a liquid state, or a gel-like object or a powder-like object, may be provided with a container structure for the implanter' The structure of the container may be a good heat conductor or a non-thermal conductor, or a container made of a material having a good heat transfer coefficient and constitute a relay heat conductor (1〇2), or a container made of a material having a large heat capacity value and The function of the interface heat conductor (103). The multi-layer structure thermal guide device with pre-clamping, wherein the heat conduction light joint surface and the joint surface of the relay heat conductor (1G2) and the interface heat conductor (1G3) can be selected by the following one or The above combined structure, including the concave-convex shape, the pre-clamping combination or the pre-force M394680 ==, or the 1-type groove type for pre-clamping, or the column-shaped pre-package Clip: mouth, or ... wing for pre-carrying combination, or other conventional heat conduction surface of the pre-6 4 people pre-clamp, Ό. The way to combine to increase the conduction area. "ΓΓ1 is not the heat conduction end of the new heat pipe or the heat conduction end of the heat absorption end. The external enthalpy is a schematic diagram of the combined structure of the pre-force pack of the first-temperature energy body. FIG. 2 is a top plan view of FIG. 1 . As shown in FIG. 3, the schematic structure of the prior art relay heat conductor (1〇2) and the interface heat conductor (), the conductive coupling surface and the joint surface are in a concave-convex shape pre-clamping structure. As shown in Fig. 4, a schematic diagram of the heat-conducting light-conducting surface and the joint surface of the new type of relay heat conductor (1〇2) and the interface heat conductor (103) is a pre-clamping structure. As shown in Fig. 5, the new type of relay heat conductor (1〇2) and the interface guide body (the heat conduction surface of the heat conduction surface and the joint surface are not intended to be combined with the groove shape pre-encapsulation structure. The thermal conduction light joint surface and the joint surface of the new relay heat conductor (1〇2) and the interface heat conductor (103) are schematic diagrams of the τ-type groove type pre-stress package combination structure. The heat conduction coupling surface and the joint surface of the heat conductor (1〇2) and the interface heat conductor (103) are combined with a columnar pre-clamping structure. As shown in Fig. 8, the new Xin relay (102) and interface are shown. The thermal conduction coupling surface and the joint surface of the heat conductor (103) are schematic structures of the concave-convex multi-wing pre-clamping structure. In each of the embodiments of the multi-layer structure thermal conduction device with the pre-clamping, the relay thermal conductor (102) Between the interface thermal conductor (1〇3), it can be set to 10 > a layer of thermal interlayer (110), and in a multi-layer structure, the added thermal interlayer (110) and relay thermal conductor (1〇2) The relationship between the interface and the thermal conductor (1〇3) is as follows: - The thermal capacity loss of the thermal loss (110) is greater than the thermal conductivity of the relay. The unit heat capacity value of (102) is smaller than the unit heat capacity value of the interface heat conductor (1〇3), and the closer to the relay heat conductor (102) when the structure of the multilayer heat conduction interlayer (11〇) is used. The thermal conductivity interlayer (110) has a smaller unit heat capacity value, which is still greater than the relay heat conductor (102); the thermal conductivity of the thermal interlayer (no) is superior to that of the interface thermal conductor (103) 'intermediate thermal conductor (102) The heat transfer coefficient is better than that of the thermal conductive interlayer (11 〇); and when the structure with the multilayer thermal conductive interlayer (11 〇) is used, the closer to the thermal conductive interlayer of the relay thermal conductor (1〇2) 〇1〇) The better the heat transfer coefficient is only slightly lower than the relay heat conductor (1〇2); the heat conduction coupling area of a relay heat conductor (102) and the thermal conductive interlayer (110) is larger than that of the thermal conductive interlayer (11〇) The thermal conduction coupling area of the interface thermal conductor (1〇3), and when the structure of the multilayer thermal conduction interlayer (11〇) is selectively disposed, the heat conduction coupling area between the interlayers of the interface thermal conductor (1〇3) is the same or more If the above thermal conductive interlayer (110) is two or more, then The selection of the heat transfer coefficient and the unit heat capacity value in the thermal characteristics, and the coupling area of the heat conductive interlayer (110) and the heat conduction on both sides are selected from the first warm energy body (101) to the relay heat conductor (102), to The thermal conduction area of each layer formed by the combination of the thermal conductive interlayer (11 〇), the interface thermal conductor (103), and the second thermal energy body (1 〇 4) is a structural principle in which the layers are the same or increased layer by layer; Between the structural layers is a pre-clamp-like combination to reduce the volume 'and the pre-force gap (5 〇〇) for the generation of the M394680 pre-force for the clamping or bracing to ensure good thermal contact and avoid The composite structural material is loosened or deformed due to different thermal expansion coefficients, resulting in poor heat conduction surface bonding and is not conducive to heat conduction. The multi-layer structure thermal conduction device with pre-clamping, wherein the thermal conduction coupling surface and the bonding surface of the relay thermal conductor (102) and the thermal conduction loss layer (11〇) can be selected by one or the following The above combined structure method includes the combination of the concavo-convex shape and the pre-clamping combination, or the pre-clamping combination of the dovetail shape, or the T-slot type for the pre-clamping combination, or the columnar shape for the pre-clamping combination. Or in the form of a concave-convex multi-wing for pre-clamping, or combined with other conventional heat-conducting surfaces to increase the conduction area. The multi-layer structure thermal conduction device with pre-clamping, wherein the thermal conduction coupling surface and the bonding surface of the thermal conductive interlayer (110) and the interface thermal conductor (1〇3) can be selected by one or more of the following The combined structure method includes a concave-convex shape for pre-loading and loss of combination, or a combination of a pre-clamping with a dovetail shape, or a T-slot type for pre-clamping, or a column-like pre-loading combination. Or combined with a concave-convex multi-wing for pre-clamping, or combined with other conventional heat-conducting surfaces to increase the conduction area. As shown in FIG. 9 , the present invention is provided with a thermal conductive interlayer ( uo ) and a relay thermal conductor ( 102 ) and an interface thermal conductor ( 1 〇 3 ), and the heat-dissipating end of the heat pipe or the heat-absorbing outer casing of the heat pipe is the first temperature energy. The structure of the body pre-clamp combined structure. Figure 10 is a plan view of Figure 9. As shown in FIG. 11, the thermal conduction coupling surface (11〇) of the novel thermal conduction interlayer (11〇) and the relay thermal conductor (102) and the interface thermal conductor (103) are combined with a concave-convex pre-clamping structure. As shown in FIG. 12, the thermal conduction coupling surface (110) of the novel thermal conduction interlayer (110) and the relay thermal conductor (102) and the interface thermal conductor (103) are combined with a pre- 12 M394680 force-clamping structure. As shown in FIG. 13, the thermal conduction coupling surface (110) of the novel thermal conduction interlayer (110) and the relay thermal conductor (102) and the interface thermal conductor (103) and the joint surface of the interface are in the form of a combined structure of the tail-shaped groove pre-force. As shown in FIG. 14, the thermal conduction coupling surface (110) of the novel thermal conduction interlayer (110) and the relay thermal conductor (102) and the interface thermal conductor (103) and the joint surface are T-shaped groove type pre-force-clamping structure.
如圖15所示為本新型導熱夾層(11〇)與中繼導熱體 (102)及界面導熱體(1〇3)之熱傳導耦合面及結合面呈孔 柱狀預力包夾結合結構示意圖。 如圖16所示為本新型導熱夾層(no)與中繼導熱體 (102)及界面導熱體(1〇3)之熱傳導耦合面及結合面呈凹 凸多翼狀預力包夾結合結構示意圖。 此項具預力包夾之複層結構熱導裝置,於選擇設置 兩層或兩層以上之導熱夾層(11〇)時,其中至少兩層之導 熱夾層(110)與導熱夾層(11〇)之熱傳導耦合面及結合As shown in Fig. 15, the thermal conductive coupling surface (11〇) of the novel thermal conduction interlayer (11〇) and the relay thermal conductor (102) and the interface thermal conductor (1〇3) and the joint surface are combined with a cylindrical pre-clamping structure. As shown in Fig. 16, the heat conduction coupling surface (no) of the novel thermal conduction interlayer (no) and the relay thermal conductor (102) and the interface thermal conductor (1〇3) and the joint surface are combined with a concave and convex multi-wing pre-clamp. The multi-layer thermal guide device with pre-clamping, when two or more layers of thermal conductive interlayers (11 turns) are selected, at least two of the thermal conductive interlayers (110) and the thermal conductive interlayer (11 〇) Thermal conduction coupling surface and combination
••W ^ -¾. ^-r -v I 種或一種以上之結合結構方式,包括凹凸形作預力包夾結 合、或以鳩尾槽形作預力包夾結合、或了型槽型作預力包 夹結合'或孔柱狀作預力包夾結合、或呈凹凸多翼狀作預 力包夾結合’或以其他習用熱傳導面之作預力包夾結合方 式結合以增加傳導面積者。 此項具預力包夾之複層結構熱導裝置,為由第一溫 能體〇Q1)、中繼導熱體⑽)、界面導熱體(_、第二 溫能體(1 〇 4 )、或谁―牛.瞾抵 < 班,兹 次進步選擇设置導熱夾層(11〇)時,可由 依複層結構所需孰傳導转桃2 u * 而”,、得導特性呈漸層結構之導熱材料共同 13 M394680••W ^ -3⁄4. ^-r -v I or more combinations of structures, including concavo-convex pre-clamping, or pre-clamping with dovetail, or grooved The pre-clamping combination is combined with the 'or the columnar shape as the pre-clamping combination, or the concave-convex multi-wing shape is used as the pre-clamping combination' or combined with other conventional heat conduction surfaces as the pre-clamping combination to increase the conduction area. . The multi-layer structure thermal conduction device with pre-clamping is composed of a first warm energy body 1Q1), a relay heat conductor (10), an interface heat conductor (_, a second warm energy body (1 〇4), Or who--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Thermally conductive material common 13 M394680
構成溫能傳導結構體或散熱結構體總成(〗〇〇),若其供構 成溫能傳導結構體或散熱結構體總成(100)之全部、或部 分相鄰之導熱體皆為固態體,則其相鄰兩導熱體之間之結 合構造,為各結構層之間呈預力包夾狀之結合結構以減少 體積,以及具有預力縫隙(500)以供產生包夾或外撐之^ 力,以確保良好導熱接觸,以及避免複層結構材料因不同 熱膨脹係數造成鬆脫或變形,造成熱傳導面結合不良而不 利於熱傳導者;並含以下一種或一種以上裝置作結合,包 1. 以外加螺絲螺帽鎖合所構成;或 2. 以螺旋柱與螺旋孔結構相互旋合所構成;或 3·以螺旋柱與螺旋孔結構相互旋合,並設有預留縫隙 (500),而作預力夾合所構成;或 4. 鉚合所構成;或 5. 壓合所構成;或 6. 固鎖夾合所構成;或Forming a temperature-conducting structure or a heat-dissipating structure assembly (〗 〖), if it is a solid body for all or part of the heat-conducting body (100) constituting the temperature-conducting structure or the heat-dissipating structure assembly (100) The joint structure between the adjacent two heat conductors is a pre-clamp-like joint structure between the structural layers to reduce the volume, and has a pre-force gap (500) for generating a clip or an outer support. ^ Force, to ensure good thermal contact, and to avoid loose or deformation of the composite material due to different thermal expansion coefficients, resulting in poor heat transfer surface bonding is not conducive to heat conduction; and one or more of the following devices for combination, package 1. Or a screw nut lock; or 2. a spiral column and a spiral hole structure are mutually screwed together; or 3. a spiral column and a spiral hole structure are mutually screwed together, and a reserved slit (500) is provided. And consisting of pre-stressed clamps; or 4. riveted; or 5. pressed; or 6. fixed-locked; or
7. 黏合所構成;或 8·焊合所構成;或 9.磨擦溶接所構成;或 10.相鄰之導熱體為鑄合者所構成;或 .相鄰之導熱體為以錄層構成者所構成;或 12.相鄰熱導體與另一熱導體之間,具有固定貼合 合移動之熱傳導結構者所構成;或 〇 3.相鄰之導熱體為藉重力呈緊靠結合所構成;戈 4’相鄰之導熱體為藉磁鐵裝置之吸引力作緊靠 構成;或 或可貼 吸合所 14 M394680 15.相鄰之導熱體為呈包覆結構結合所構成。 此項具預力包夾之複層結構熱導裝置中,其第一溫 能體(101)與中繼導熱體(102)之間;或於設置導熱夾層 (110)時中繼導熱體(1〇2)與導熱失層(110)之間;或於設 置多層導熱夾層(110)時,其導熱夾層(11〇)與導熱夾層 (110)之間;或其導熱夾層(110)與界面導熱體(1〇3)之 間;或於未設置導熱夾層(11〇)時,其中繼導熱體(1〇2) 與界面導熱體(103)之間’·或界面導熱體(1 〇3)與第二溫能 Φ 體(丨04)之間之熱傳導耦合面,可由以下一種或一種以上 裝置作結合,其相鄰兩導熱體之間之結合構造,為各結構 層之間呈預力包夾狀之結合結構以減少體積,以及具有預 力縫隙(500)以供產生包夾或外撐之預力,以確保良好導 熱接觸,以及避免複層結構材料因不同熱膨脹係數造成鬆 脫或變形,造成熱傳導面結合不良而不利於熱傳導,並含 以下一種或一種以上裝置作結合,包括: 1.以外加螺絲螺帽鎖合所構成;或 . 2 ·以螺旋柱與螺旋孔結構相互旋合所構成;或 3_以螺餘與職孔結構相互旋合,並設有預留縫隙 (500),而作預力夾合所構成;或 4. 鉚合所構成;或 5. 壓合所構成;或 6. 固鎖夾合所構成;或 7 ·黏合所構成;或 8. 焊合所構成;或 9. 磨擦溶接所構成;或 10·相鄰之導熱體為鑄合者所構成;或 15 11.或相鄰之導熱體為以鍍層構成者所構成;或 12·相鄰熱導體與另—熱導鱧之間,具有固定貼合或可 貼合移動之熱料結構相構成;或 13.相鄰之導熱體為藉重力呈緊靠結合所構成;或 U.相鄰之導熱體為藉磁鐵裳置之吸引力作緊靠吸合所 構成;或 15·相鄰之導熱體為呈包覆結構結合所構成。 於其固態導熱體相鄰之導熱體為由氣態、或液態、 或膠狀物H、或粉粒狀物體所構成《導熱冑,則其之熱傳 導耦合面之溫能傳導包括以下一種或一種以上裝置所構 成者,含: 1.以固態導熱體之受熱面傳輸相鄰之氣態、或液態、 或膠狀物體、或粉粒狀物體之溫能者所構成;或 2·以液泵、或風扇泵動較高溫之氣態、或液態、或膠 狀物體、或粉粒狀物體,隨機與固態導熱體表面接觸,以 對相鄰之固態導熱體傳輸溫能者所構成; 此項具預力包夾之複層結構熱導裝置中,若第一溫 月b體(1 〇 1)或第二溫能體(丨〇4)為燃燒狀態之熱源,則其與 相鄰之固態導熱結構體之熱傳導方式含:以固態導熱體之 受熱面傳輸相鄰燃燒狀態發熱體之溫能者。 如圖17所示為中繼導熱體(1〇2)之受熱面傳輸相鄰 燃燒狀發熱體之炊具應用例示意圖。 此項具預力包夾之複層結構熱導裝置中,若第一溫 能體(101)為氣態 '或液態、或膠狀物體、或粉粒狀物體, 則其熱傳導方式,含:以人力、或電力、或機力驅動撥動 機構以撥動膠狀物體或粉粒狀物體,供隨機將膠狀物體或 粉粒狀物體之溫能傳輸至相鄰之固態導熱體者。 此項具預力包夾之複層結構熱導裝置,其界面導熱 體(103)與第二溫能體(1〇4)之間之熱傳導方式含:… 於第二溫能體(104)為固態受熱體,則其與呈固態之 界面導熱體(103)之熱傳導耦合面可由以下一種或一種以 上裝置作結合,其相鄰兩導熱體之間之結合構造,為各結 構層之間呈預力包失狀之結合結構以減少體積,以及具有 預力縫隙(500)以供產生包夾或外樓之預力,以確保良好 • ㈣接觸,以及避免複層結構材料因不同熱膨脹係數造成 脫或變形,造成熱傳導面結合不良而不利於熱傳導,並 含以下一種或一種以上裝置作結合,包括: 1 · 以外加螺絲螺帽鎖合所構成;或 2.以螺旋柱與螺旋孔結構相互旋合所構成;或 3'以螺旋柱與螺旋孔結構相互旋合,並設有預留縫隙 (500),而作預力夾合所構成;或 4. 鉚合所構成;或 | 5. 壓合所構成;或 6. 固鎖夾合所構成;或 7. 黏合所構成;或 8. 焊合所構成;或 9. 磨擦溶接所構成;或 10. 第二溫能體(1〇4)為鑄合者所構成;或 Π.第二溫能體(1〇4)為以鍍層構成於界面導熱體(1〇3) 者所構成;或 12.第一溫能體(1〇4)與界面熱導體(1〇3)之間,具有固 定貼合或可貼合移動之溫能傳導結構者所構成;或 17 M394680 13·相鄰之導熱體為藉重力呈緊靠結合所構成;或 14.相鄰之導熱體為藉磁鐵裝置之吸引力作緊靠 或 15.相鄰之導熱體為呈包覆結構結合所構成; ――於第二溫能體(104)為氣態,則其與呈固態 熱體(103)之熱傳導耗合,可由以下一種或一種 作耗合,含:7. Adhesive; or 8·welded; or 9. Friction-dissolved; or 10. Adjacent thermal conductor is composed of casters; or adjacent thermal conductors are composed of recording layers Or 12; between adjacent heat conductors and another heat conductor, having a fixed heat transfer structure for bonding and moving; or 3. The adjacent heat conductors are formed by abutting by gravity; The adjacent heat conductor of Ge 4' is formed by the attraction of the magnet device; or it can be attached to the suction joint 14 M394680 15. The adjacent heat conductor is composed of a combined structure. In the multi-layer thermal conductivity device with pre-clamping, the first warm energy body (101) and the relay heat conductor (102) are arranged; or when the thermal conductive interlayer (110) is disposed, the thermal conductor is relayed ( 1〇2) between the thermal loss delamination layer (110); or when the multi-layer thermal conduction interlayer (110) is disposed, between the thermal conduction interlayer (11 〇) and the thermal conduction interlayer (110); or its thermal conduction interlayer (110) and interface Between the thermal conductors (1〇3) or between the thermal conductors (1〇2) and the interface thermal conductors (103) or the interface thermal conductors (1 〇3) The heat conduction coupling surface with the second warm energy Φ body (丨04) may be combined by one or more of the following devices, and the joint structure between the adjacent two heat conductors is a pre-force between the structural layers a clip-like combination to reduce volume and a pre-force gap (500) for pre-stressing of the clamping or bracing to ensure good thermal contact and to avoid loosening of the composite material due to different coefficients of thermal expansion or Deformation, resulting in poor bonding of the heat conduction surface, which is not conducive to heat conduction, and includes one or more of the following The combination includes: 1. the addition of a screw nut lock; or 2. The spiral column and the spiral hole structure are mutually screwed together; or the 3_ screw and the hole structure are mutually screwed and set. There is a reserved gap (500), which is composed of pre-stressed clamping; or 4. Riveted; or 5. Pressed; or 6. Built-in clamping; or 7 · Bonded; Or 8. welded joints; or 9. friction stirs; or 10. adjacent heat conductors are made of casters; or 15 11. or adjacent heat conductors are made of plating; or 12. Between the adjacent heat conductor and the other heat guide ,, having a fixed-fit or conformable movement of the hot material structure; or 13. the adjacent heat-conducting body is formed by the close combination of gravity; or U. Adjacent heat conductors are formed by suction of the attractive force of the magnets; or 15. The adjacent heat conductors are formed by a combination of cladding structures. The heat conductor adjacent to the solid heat conductor is composed of a gaseous state, or a liquid state, or a jelly H, or a powdery particle, and the thermal conduction of the heat conduction coupling surface includes one or more of the following: The device comprises: 1. a heat-transfer surface of a solid heat-conducting body to transport an adjacent gaseous state, or a liquid, or a gel-like object, or a powder-like object; or 2. a liquid pump, or The fan pumps a relatively warm gaseous state, or a liquid, or a gel-like object, or a powder-like object, which is randomly in contact with the surface of the solid heat-conducting body, and is configured to transmit heat to the adjacent solid heat-conducting body; In the multi-layer structure thermal conduction device of the double-layer structure, if the first warm-moon b body (1 〇 1) or the second warm energy body (丨〇 4) is a heat source in a combustion state, the adjacent solid-state heat-conducting structure body The heat conduction mode includes: a heat source that transmits the heating body of the adjacent combustion state by the heating surface of the solid heat conductor. Fig. 17 is a schematic view showing an application example of a cooker for transmitting a heat-generating surface of a relay heat conductor (1〇2) to an adjacent combustion-like heat generating body. In the multi-layer structure thermal conduction device with pre-clamping, if the first warm energy body (101) is in a gaseous state or a liquid state, or a gel-like object, or a powder-like object, the heat conduction mode includes: Manpower, or electric power, or force to drive the dialing mechanism to move the glue or powder object to randomly transfer the temperature of the gel or powder to the adjacent solid heat conductor. The thermal conduction device of the multi-layer structure thermal conduction device with pre-clamping, the interface between the interface thermal conductor (103) and the second warm energy body (1〇4) includes: ... in the second warm energy body (104) In the case of a solid-state heat-receiving body, the heat-conducting coupling surface with the solid-state interface heat conductor (103) may be combined by one or more of the following devices, and the joint structure between the adjacent two heat-conducting bodies is between the structural layers. Pre-loaded combination of lost structure to reduce volume, and pre-force gap (500) for pre-stressing of the stack or outer building to ensure good • (4) contact and avoiding the multi-layer structure material due to different thermal expansion coefficients De-deformation, resulting in poor heat-conducting surface bonding and is not conducive to heat conduction, and combined with one or more of the following devices, including: 1 · plus screw nut lock; or 2. spiral column and spiral hole structure Rotating; or 3' is screwed to the spiral hole structure and provided with a reserved slit (500) for pre-stress clamping; or 4. Riveting; or 5. Compressed; or 6. fixed-locking Constituted; or 7. bonded; or 8. welded; or 9. frictional fusion; or 10. second warm body (1〇4) is composed of casters; or Π. The second warm energy body (1〇4) is composed of a plating layer formed on the interface heat conductor (1〇3); or 12. between the first warm energy body (1〇4) and the interface heat conductor (1〇3) , which has a fixed-fit or conformable moving temperature-conducting structure; or 17 M394680 13·the adjacent heat-conducting body is formed by the close combination of gravity; or 14. the adjacent heat-conducting body is a magnet The attraction of the device is close to or 15. The adjacent heat conductor is formed by a combination of cladding structures; - when the second warm energy body (104) is in a gaseous state, the heat conduction with the solid heat body (103) Combined, can be used by one or the other, including:
•以呈固態之界面導熱體(103)之受熱面,傳輸呈氣態 之第一溫能體(1 〇 4 )之溫能者所構成;或 2.以風扇吹送氣態之第二溫能體(1〇4),通過界面導熱 體(103)以傳輸溫能者所構成;• consisting of a warm surface of the solid interface heat conductor (103) that transmits the first warm energy body (1 〇 4 ) in a gaseous state; or 2. a second warm energy body that blows the gaseous state by a fan ( 1〇4), composed of an interface thermal conductor (103) for transmitting warm energy;
之界面導 以上構造 於第二溫能體(104)為液態,則其與界面導熱體(1〇3) 之熱傳導耦合,可由以下一種或一種以上構造作耦合,含: 1·以將界面導熱體(103)泡浸於液態第二溫能體(1〇4) 以自由傳導方式作溫能傳輸者所構成;或 2.以泵浦泵送液態之第二溫能體(1〇4),以通過界面導 熱體(103)之表面,而與界面導熱體(1〇3)作溫能傳 輸者所構成。 於第二溫能體(104)為膠狀物體、或粉粒狀物體,則 其與呈固態之界面導熱體(103)之熱傳導輕合方式,含: 以人力、或電力、或機力驅動撥動機構以撥動膠狀物體、 或粉粒狀物體’以隨機通過界面導熱體(103)以傳輸溫能 者0 此項具預力包夾之複層結構熱導裝置,其第一溫能 體(101)與中繼導熱趙(102)之間;或中繼導熱體(102)與 18 界面導熱體(103)之間;或界面導熱體(1〇3)與第二溫能體 G04)之間;或於設置導熱夾層(11〇)時,在中繼導熱體 (102)與導熱夹層(no)之間;或於設置多層導熱夾層(ho) 時,在導熱夾層(110)與導熱夾層(11〇)之間;或在導熱夾 層(110)與界面導熱體(103)之間,可依需要選擇以下一種 或一種以上裝置以辅助作熱能傳導者,包括: 由設置絕緣性導熱片所構成;或 2. 由塗抹導熱脂所構成;或 3. 由設置絕緣性導熱片及塗抹導熱脂所構成。 此項具預力包夾之複層結構熱導裝置,可供應用於 各種吸熱或散熱或致冷之熱傳導應用裝置,例如各種機殼 之吸熱或散熱熱管結構殼體之吸熱或散熱、各種結構殼體 之吸熱或散熱、各種半導體元件之吸熱或散熱、各種通風 裝置、或資訊裝置、或音響或影像裝置之吸熱或散熱或溫 能傳輸、各種燈具或發光二極體(LED)之散熱、空調裝置 之吸熱或散熱或溫能傳輸、電機或引擎之吸熱或散熱或溫 能傳輸、或機械裝置之溫能傳輸磨擦熱損之散熱、或電暖 器或其他電熱之家電裝置或電熱炊具之散熱或溫能傳 輸、或火焰加熱之爐具或炊具之吸熱或溫能傳輸、或地層 或水中溫能之吸熱或散熱或溫能傳輸、廠房或房舍建築體 或建築材料或建築結構裝置之吸熱或散熱或溫能傳輸、水 塔之吸熱或散熱、電瓶或燃料電池之吸熱或散熱或溫能傳 輸者; 以及應用於家電產品 '工業產品、電子產品、電機 或機械裝置、發電設備、建築體、空調裝置、生產設備或 M394680 產業製程中之溫能傳輸應用者。The interface is configured to be in a liquid state in the second warm energy body (104), and then coupled to the heat conduction of the interface heat conductor (1〇3), and may be coupled by one or more of the following structures, including: The body (103) is immersed in a liquid second warm energy body (1〇4) to be a free-conducting way for a warm energy transmitter; or 2. a second warm energy body pumped by a pump (1〇4) It is composed of the surface heat conductor (103) and the interface heat conductor (1〇3) as a heat energy transmitter. When the second warm energy body (104) is a gel-like object or a powder-like object, the light-conducting light-conducting method is combined with the solid-state interface heat conductor (103), including: driven by human power, electric power, or force. The dialing mechanism moves the glue object or the powder object to randomly pass the interface heat conductor (103) to transmit the warm energy. The first layer of the multi-layer thermal conductivity device with the pre-clamping, the first temperature Between the energy body (101) and the relay heat conduction Zhao (102); or between the relay heat conductor (102) and the 18 interface heat conductor (103); or the interface heat conductor (1〇3) and the second warm energy body Between G04); or between the thermal conductive interlayer (11〇), between the relay thermal conductor (102) and the thermal interlayer (no); or when the multilayer thermal interlayer (ho) is provided, in the thermal interlayer (110) Between the thermal conductive interlayer (11〇) or between the thermal conductive interlayer (110) and the interface thermal conductor (103), one or more of the following devices may be selected as needed to assist the thermal energy conductor, including: Or a thermally conductive sheet; or 2. consisting of a thermal grease; or 3. by providing an insulating thermally conductive sheet and applying heat conduction Posed. The multi-layer structure thermal conduction device with pre-clamping can be applied to various heat-transfer or heat-dissipating or cooling heat conduction application devices, such as heat absorption or heat dissipation of various heat-absorbing or heat-dissipating heat pipe structural shells of various casings, various structures Heat absorption or heat dissipation of the casing, heat absorption or heat dissipation of various semiconductor components, heat absorption or heat dissipation or temperature transmission of various ventilation devices or information devices, or audio or imaging devices, heat dissipation of various lamps or light-emitting diodes (LEDs), Heat absorption or heat dissipation or warm energy transmission of air conditioning units, heat absorption or heat dissipation or temperature transmission of motor or engine, or thermal transmission of mechanical devices, heat dissipation by friction heat loss, or electric heaters or other electric appliances or electric cookers Heat or temperature transfer, or endothermic or warm energy transfer of a stove or cooker heated by flame, or heat or heat or heat transfer of warm energy in the formation or water, plant or building construction or building materials or building structures Heat absorption or heat dissipation or warm energy transmission, heat absorption or heat dissipation of water tower, heat absorption or heat dissipation or temperature energy transmission of battery or fuel cell; Products' industrial products, electronic products, electrical or mechanical devices, power generation equipment, construction material, air conditioner, industrial equipment, or M394680 manufacturing process by the application of thermal energy transfer.
20 【圖式簡單說明】 圖1為本新型熱管之釋熱端或吸熱端之導熱外殼為 第''溫能體之預力包夾結合結構示意圖。 圖2為圖1之俯視示意圖。 圖3為本新型中繼導熱體(102)與界面導熱體(103) 之熱傳導耦合面及結合面呈凹凸形狀預力包夾結合結構示 尽圖〇 圖4為本新型中繼導熱體(102)與界面導熱體(1〇3) 之熱傳導耦合面及結合面呈預力包夾結合結構示意圖。 圖5為本新型中繼導熱體(102)與界面導熱體(1〇3) 之熱傳導耦合面及結合面呈鳩尾槽形預力包夾結合結構示 意圖。 圖6為本新型中繼導熱體(1〇2)與界面導熱體(1〇3) 之熱傳導耦合面及結合面呈ΐ型槽型預力包夾結合結構示 意圖。 圖7為本新型中繼導熱體(1〇2)與界面導熱體(1〇3) 之熱傳導耦合面及結合面呈孔柱狀預力包夾結合結構示意 圖。 圖8為本新型中繼導熱體(1〇2)與界面導熱體(1〇3) 之熱傳導耦合面及結合面呈凹凸多翼狀預力包夾結合結構 示意圖。 圓9為本新型設置導熱夾層(110)與中繼導熱體(1〇2) 及界面導熱體(1〇3),並以熱管之釋熱端或吸熱端之導熱外 殼為第一溫能體之預力包夾結合結構示意圖。 圖10為圖9之俯視圖。 21 M394680 圖11為本新型導熱夾層(110)與中繼導熱體(1〇2)及 界面導熱體(103)之熱傳導耦合面及結合面呈凹凸形狀預 力包夾結合結構示意圖。 圖12為本新型導熱夾層(11〇)與中繼導熱體(〗〇2)及 界面導熱體(103)之熱傳導耦合面及結合面呈預力包夾結 合結構示意圖。 圖13為本新型導熱夾層(11〇)與中繼導熱體(1〇2)及 界面導熱體(103)之熱傳導耦合面及結合面呈鳩尾槽形預 力包炎結合結構示意圖。 圖14為本新型導熱夾層(11〇)與中繼導熱體〇〇2)及 界面導熱體(103)之熱傳導耦合面及結合面呈τ型槽型預 力包夾結合結構示意圖。 圖15為本新型導熱夾層(11〇)與中繼導熱體(1〇2)及 界面導熱體(103)之熱傳導耦合面及結合面呈孔柱狀預力 包失結合結構示意圖。 圖16為本新型導熱夾層(110)與中繼導熱體(102)及 界面導熱體(103)之熱傳導耦合面及結合面呈凹凸多翼狀 預力包夾結合結構示意圖。 圖17為中繼導熱體(1〇2)呈預力包夾結合於作為界 面導熱體之炊具結構示意圖。 22 M394680 【主要元件符號說明】 100 :溫能傳導結構體或散熱結構體總成 101 :第一溫能體 102 :中繼導熱體 103 :界面導熱體 104 :第二溫能體 110 :導熱夾層 500 :缝隙20 [Simple description of the diagram] Figure 1 is a schematic diagram of the combined structure of the pre-stressed package of the ''temperature body'' of the heat-dissipating end of the heat pipe or the heat-absorbing end of the new heat pipe. Figure 2 is a top plan view of Figure 1. FIG. 3 is a schematic diagram of the thermal conduction coupling surface and the joint surface of the novel relay heat conductor (102) and the interface heat conductor (103) in a concave-convex shape pre-clamping structure. FIG. 4 is a new type of relay heat conductor (102). The thermal conduction coupling surface and the joint surface of the interface thermal conductor (1〇3) are in a pre-clamped joint structure. Fig. 5 is a schematic view showing a heat transfer coupling surface of the relay heat conductor (102) and the interface heat conductor (1〇3) and a joint structure of the tail groove shape pre-clamping. Fig. 6 is a schematic view showing the heat transfer coupling surface of the relay heat conductor (1〇2) and the interface heat conductor (1〇3) and the joint surface of the joint type groove type pre-clamping structure. Fig. 7 is a schematic view showing the joint structure of the thermal conduction coupling surface and the joint surface of the novel relay heat conductor (1〇2) and the interface heat conductor (1〇3) in the form of a hole-like pre-clamp. Fig. 8 is a schematic view showing a heat-conducting coupling surface of the relay heat conductor (1〇2) and the interface heat conductor (1〇3) and a joint structure of the concave-convex multi-wing pre-clamp. Circle 9 is a new type of thermal interlayer (110) and relay thermal conductor (1〇2) and interface thermal conductor (1〇3), and the heat-conducting end of the heat pipe or the heat-absorbing end of the heat pipe is the first warm energy body. The pre-stressed package is combined with the structural schematic. Figure 10 is a plan view of Figure 9. 21 M394680 Figure 11 is a schematic diagram showing the thermal conduction coupling surface of the thermal conduction interlayer (110), the relay thermal conductor (1〇2) and the interface thermal conductor (103), and the joint surface of the joint surface in a concave-convex shape. Fig. 12 is a schematic view showing the thermal conduction coupling surface and the joint surface of the thermal conduction interlayer (11〇) and the relay thermal conductor (〖〇2) and the interface thermal conductor (103) in a pre-clamped joint structure. Fig. 13 is a schematic view showing a heat-transfer coupling surface of the thermal conduction interlayer (11〇) and the relay thermal conductor (1〇2) and the interface thermal conductor (103), and a joint structure of the dovetail-shaped pre-encapsulation. Fig. 14 is a schematic view showing a thermal conductive coupling surface of the novel thermal conductive interlayer (11〇) and the relay thermal conductor 〇〇2) and the interface thermal conductor (103) and a joint structure of the τ-type groove type pre-clamp. Fig. 15 is a schematic view showing the heat-conducting coupling surface of the thermal conduction interlayer (11〇) and the relay thermal conductor (1〇2) and the interface thermal conductor (103), and the joint surface of the joint of the thermal conduction interlayer (11〇). Fig. 16 is a schematic view showing a heat-conducting coupling surface (110) of the thermal conduction interlayer (110), a relay heat conductor (102) and an interface thermal conductor (103), and a joint structure of a concave-convex multi-wing pre-clamp. Fig. 17 is a schematic view showing the structure of a relay heat conductor (1〇2) which is pre-loaded and bonded to a heat conductor as an interface heat conductor. 22 M394680 [Description of main component symbols] 100: Thermal energy conduction structure or heat dissipation structure assembly 101: First warm energy body 102: Relay thermal conductor 103: Interface thermal conductor 104: Second warm energy body 110: Thermal interlayer 500: gap
23twenty three
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98214503U TWM394680U (en) | 2009-08-06 | 2009-08-06 | Thermal conducting device for prestressed clamping type multi-layered structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98214503U TWM394680U (en) | 2009-08-06 | 2009-08-06 | Thermal conducting device for prestressed clamping type multi-layered structure |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM394680U true TWM394680U (en) | 2010-12-11 |
Family
ID=45083460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98214503U TWM394680U (en) | 2009-08-06 | 2009-08-06 | Thermal conducting device for prestressed clamping type multi-layered structure |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM394680U (en) |
-
2009
- 2009-08-06 TW TW98214503U patent/TWM394680U/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201852509U (en) | Cross structure heat conduction device with different thermal characteristics | |
JP6435507B2 (en) | COMPOSITE SHEET, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE USING COMPOSITE SHEET | |
JP5956444B2 (en) | Distributed thermoelectric strings and insulation panels and their application in local heating, local cooling, and thermoelectric generation | |
TW201041195A (en) | Split-thermo-electric structures | |
TW201115094A (en) | Heat absorbing or dissipating device with double-scroll piping transmitting temperature difference fluid | |
TWM282235U (en) | Improved structure of a heat dissipating device using heat pipes | |
CN205723871U (en) | An aluminum plate etching chip battery heater | |
TWM300003U (en) | Improved circuit board structure capable of combining heat sink | |
TWM394680U (en) | Thermal conducting device for prestressed clamping type multi-layered structure | |
CN102548064A (en) | Electric heating piece, electric heating device and equipment | |
TW201105921A (en) | Thermal conducting principle and device for prestressed clamping type multi-layered structure | |
CN202018233U (en) | Multi-layer structure heat conduction device with pre-stressed sandwich | |
CN219834827U (en) | Power generation structure using graphite multi-layer base material | |
CN207067925U (en) | A kind of computerized information processing module attachment structure | |
TWI305132B (en) | ||
TW200909760A (en) | Manufacturing method and product of heat-pipe type heat sink | |
CN218955559U (en) | Graphene metal composite radiating fin | |
TWM414064U (en) | Thermal conduction device for intercrossed structure having different thermal characteristics | |
TWI618910B (en) | Thermal conduction device for intercrossed structure having different thermal characteristics | |
CN109747232A (en) | A kind of graphite heat radiation fin | |
TWI566723B (en) | Thermal conduction device for intercrossed structure having different thermal characteristics | |
JP2011238830A (en) | Heat conduction device having a prestressed multi-layer structure | |
TWM427767U (en) | Fixing structure of cooling module | |
TWI267726B (en) | Improved structure and manufacturing method of heat collector sheet | |
TWM302867U (en) | Heat radiator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4K | Annulment or lapse of a utility model due to non-payment of fees |