M266446 八、新型說明: 【新型所屬之技術領域】 本創作係屬於一種光學檢測系統,尤其是屬於一種自 動化光學檢測基板上之缺陷之光學檢測系統。 【先前技術】 對於平面顯示器產業而言,為提高產品品質與降低成 本’廠商必須在生產流程完成前或完成後進行缺陷檢測, 以期發現產生缺陷之原因而加以解決。這些缺陷檢測作業 除電性檢測外,外觀及表面瑕疵檢測也是必要項目,而隨 著電子元件大型化和細線化的趨勢,以及生產線速度需求 愈來愈快,人工目視檢測已無法符合品質與速度的要求。 此時’自動化光學檢測(Automatic Optical Inspection,AOI) 即成為快速檢測外觀及表面瑕疵之利器。自動化光學檢測 技術不僅可用做終端產品品管,也能協助製程監控,以早 期採取補正措施。 雖然自動化光學檢測技術是以追求檢測作業之全自動 化為目標所研發,但仍不能脫離以人(操作者)為中心來 心考研發。先别技術有些AOI系統標榜其為全自動化檢測 而完全不需要操作者,但這些先前技術最終無法實現其目 的,而最後僅以理論宣告終結。此外,先前技術之A〇I系 統大部分僅以數值輸入來製作被檢測物件(例如連續之多面 基板)的檢測區域,而不能顯示這些基板的全面影像。因為 ’又有基板的全面景々像,所以先則技術就沒辦法確認檢測區 域是否設定正確,從而無法保證檢測之正確性。 M266446 因此,有必要提供一種除能自動化檢測外,尚能適合 由人操作的AOI系統;同時,此一 AOI系統必須能提供操 作者關於被檢測物件之全面影像,以供進行缺陷評估作業。 【新型内容】 鑑於先前技術所存在之問題,本創作乃提供一種能將 大規模影像透過高速匯流排傳送,並一次地將被檢測物件 之全面影像顯示在一台顯示器上之光學檢測系統。 本創作之光學檢測系統主要包含一影像處理單元以及 一顯示器。影像處理單元則包含複數個串列或並列之感光 耦合元件以及複數個影像處理板。在本創作之一實施例 中,每一塊影像處理板包含至少一記憶體以及至少一處理 器,並且每一塊影像處理板對應連接至一個感光耦合元 件。藉此,本創作可提供高容量影像記憶空間,以供記憶 感光耦合元件所取得之被檢測物件之全面影像,並可執行 高速度影像處理程序,以供對該全面影像執行數位信號處 理作業,以及將處理過後之全面影像及有關之缺陷資料顯 示在一台顯示器上,以供操作者進一步進行缺陷評估作業。 在本創作之一實施例中,本創作之光學檢測系統所能 檢測之物件包括:LCD顯示器基板、PDP顯示器基板、有機 電激發光(Organic EL)顯示器基板、彩色濾鏡基板、晶圓、 玻璃基板或其他相類似之基板。 在本創作之一實施例中,本創作所採用之匯流排為一 VME匯流排,以供影像處理單元將被檢測物件之全面影像 及相關缺陷資訊透過此VME匯流排,快速傳送並顯示在一 台顯示器上。 M266446 一在本創作之一實施例中,本創作尚包括一中央處理單 元,用以將影像處理單元產生之資訊藉由網路傳送至一 陷情報管理系統。 ' 在本創作之一實施例中,本創作進一步包括一電腦數 值控制(CNC)單元,其包含一 χγ軸平台,用以連續搬送被 檢測之物件;以及一檢視鏡頭,用以檢視並確認物件上之 缺陷。 【實施方式】 為讓本創作之上述和其他目的、特徵、和優點能更明# 顯易丨董,下文特舉出較佳實施例,並配合所附圖式,作詳 細說明如下。 請參考圖1關於依據本創作之一實施例之光學檢測系 統之系統架構圖。如圖1所示,在本創作之一實施例中,本 創作之光學檢測系統1〇具有以下幾個主要組成單元··影像 處理單元100、顯示器200、中央處理單元3〇〇、電腦數值控 制(CNC)單元400以及輸入/輸出(I/O)介面5〇〇。以上各個組 成單元並藉由一 VME匯流排600而從此電性連接。 孀 本創作藉由上述之架構,可將各個單元集結在VME匯 流排600上,並由中央處理單元3〇〇控制,而可以實現一個 可以因應任何使用者環境的光學檢測系統。 如圖1所示,在本創作之一實施例中,本創作之影像處 理單元100包含複數個串列或並列之感光耦合元件 (CCD) 11 〇以及複數個影像處理板120 〇其中,複數個感光輛 合元件110可用以取得被檢測物件7〇〇之全面影像。在本創 作之一實施例中,被檢測物件7〇〇可以是LCD顯示器基板、 7 M266446 PDP顯示器基板、有機電激發光(Organic EL)顯示器基板、 彩色滤鏡基板、晶圓、玻璃基板或者其他種類的基板。 在本創作之一實施例中,複數個影像處理板120之每一 塊影像處理板皆具有至少一記憶體以及至少一處理器。同 時,如圖1所示,每一塊影像處理板對應連接至複數個感光 耦合元件110之其中一個感光耦合元件。藉此,複數個影像 處理板120可提供一高容量影像記憶空間,以供記憶複數個 感光耦合元件110所取得之全面影像;並且複數個影像處理 板120亦可執行一高速度影像處理程序,以因應各種缺陷種 類(例如微小、巨大、明、暗等缺陷),而對該全面影像 執行各種高感度之數位信號處理檢測作業。 舉例而言,在本創作之一實施例中,本創作可提供32 個串列的感光耦合元件110以及相對應的32塊影像處理板 120。以每一塊影像處理板提供2GB(相當於5000晝素X40萬 條線)之影像記憶空間為例,全部32個影像處理板就可提供 64GB (相當於16萬晝素X40萬條線)之高容量記憶空間, 以供高速傳送所有的記憶影像,而如圖2所示一次性地在一 台顯示器200上顯示被檢測物件700之全面影像210。如此將 能大大地改善先前技術之光學檢測裝置記憶體容量不足之 問題。因為先前技術之光學檢測裝置所使用的影像處理元 件,其所搭載的記憶體較大者也只有約16MB影像( 4096晝 素X4096晝素),因此在同樣是20//m分解能力的條件下檢 測600mm X 750mm的物件時,先前技術之影像處理元件只 能顯示影像的450分之1,但本創作之光學檢測系統1〇則能 顯示物件700的全面影像210。因此,藉由本創作之光學檢 測系統10,操作者可以一面觀看被檢測物件700的全面影像 M266446 210 ’ 一面設定要檢測區域,並可看到缺陷之實際位置、顏 色及大小等;反之,先前技術之光學檢測裝置若要製作全 面影像的檢測區域則需要45〇個晝面才能完成。 再者’藉由本創作之複數個影像處理板120所提供之高 容量影像記憶空間,本創作可以因應日趨大型的被檢測物 件(例如LG.Philips的第七代LCD生產線已可生產1930mm X 2230mm的基板)之檢測作業,並整合顯示被檢測物件7〇〇之 全面影像210之功能,而提供與檢測精準度息息相關的高分 解月b力另外先别技術之檢測系統一直存在操作者之人 為問題,因為即使是全自動檢測系統,也必須進行數值管 理以及影像確認等作業。然而,先前技術之光學檢測裝置 由於無法像本創作一樣提供全面影像21〇,因此根本無從判 斷缺1¾問題發生之原因究竟為何。本創作則可藉由複數個 ,,處理板120,而如圖3所示,在一台顯示器2〇〇上留下大 谷里的影像身訊以及有關之缺陷資料,以供操作者只要看 -眼便能大致判斷出這些問題的原因是出在輸送系統或檢 測裝置或其他原因,而报容易進行進-步的缺陷評估作業。 此外,在本創作之一實施例中,本創作之光學檢測系 統10尚包含一中央處理單元300、一電腦數值控制單元4〇〇 ^及:輸入/輸出介面·。中央處理單元·可用以將影像 处理單it 1GG產生之資訊藉由網路31()傳送至—缺陷情報管 =320 ?供咼速進行資料管理、外部通信及統計處理 、立^電細數值控制單元400則包含Χγ軸平台41〇以及檢 頭420。其中Χγ轴平台41〇用以搬送物· 鏡頭侧用以檢視並確認物件上之缺陷是否正確。: 外,檢視鏡頭亦可用來確認物件700是否定位正確及/或 M266446 如明是否正確。本創作之輸 部控制作業。 入/輸出介面500則可用以 進行外 n 需注意的是’圖1僅以被檢測物件700為例,並 /表本創作之光學檢測⑽難能-次檢測-物件,事 貝上ΧΥ軸平台410可以進行連續複數個⑯彳的搬送作業, =本創作之光學亦可進行連續複數個 自動化檢測作業。 < —雖本I]作已以較佳實施例揭露如上,然其並非用以 限f本創作,任何熟習此技藝者,在不脫離本創作之精神_ =範圍内,當可作些許之更動與潤飾,因此本創作之保護 摩巳圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1為依據本創作之一實施例之光學檢測系統之系 架構圖。 y 圖2為依據本創作之一實施例之顯示器顯示一全面影 像之狀態圖。 〜 圖3為依據本創作之一實施例之顯示器顯示複數個全 面影像及其相關缺陷資料之狀態度。 【主要元件符號說明】 10 光學檢測系統 1〇〇 影像處理單元 110複數個感光耦合元件 120複數個影像處理板 200 顯示器 210全面影像 3〇〇中央處理單元 M266446 310 網路 320 缺陷情報管理系統 400 電腦數值控制單元 410 XY軸平台 420 檢視鏡頭 500 輸入/輸出介面 600 VME匯流排 700 被檢測物件M266446 8. Description of the new type: [Technical field to which the new type belongs] This creation belongs to an optical detection system, especially an automatic optical detection system for detecting defects on a substrate. [Previous technology] For the flat panel display industry, in order to improve product quality and reduce costs, manufacturers must perform defect detection before or after the production process is completed, in order to find the cause of the defect and solve it. In addition to electrical inspection, these defect inspection operations are also necessary for appearance and surface defect inspections. With the trend of large and thin electronic components and faster and faster production line requirements, manual visual inspection can no longer meet the requirements of quality and speed. Claim. At this time, ’Automatic Optical Inspection (AOI) has become a sharp tool to quickly detect appearance and surface defects. Automated optical inspection technology can not only be used for quality control of end products, but also assist process monitoring to take corrective measures early. Although the automated optical inspection technology was developed with the goal of achieving full automation of inspection operations, it cannot be separated from the human (operator) -centric research and development. Prior to other technologies, some AOI systems claim that they are fully automated and require no operators at all, but these previous technologies ultimately failed to achieve their goals and ended with theoretical declarations. In addition, most of the AOI systems of the prior art only use numerical input to make the detection area of the object to be detected (such as a continuous multi-sided substrate), and cannot display a comprehensive image of these substrates. Because there is a full-scale image of the substrate, the first technique cannot confirm whether the detection area is set correctly, and the accuracy of the detection cannot be guaranteed. M266446 Therefore, it is necessary to provide an AOI system that is suitable for human operation in addition to automated inspection. At the same time, this AOI system must be able to provide the operator with a comprehensive image of the object being inspected for defect assessment. [New content] In view of the problems existing in the prior art, this creation is an optical inspection system capable of transmitting large-scale images through a high-speed bus and displaying the full image of the object under inspection on a monitor at one time. The optical inspection system of this creation mainly includes an image processing unit and a display. The image processing unit includes a plurality of serial or parallel photosensitive coupling elements and a plurality of image processing boards. In one embodiment of the present invention, each image processing board includes at least one memory and at least one processor, and each image processing board is correspondingly connected to a photosensitive coupling element. In this way, this creation can provide a high-capacity image memory space for memorizing the comprehensive image of the detected object obtained by the photosensitive coupling element, and can execute a high-speed image processing program for performing digital signal processing operations on the comprehensive image. And the processed comprehensive image and related defect data are displayed on a display for the operator to further carry out defect evaluation operations. In one embodiment of the present invention, the objects that can be detected by the optical inspection system of the present invention include: LCD display substrate, PDP display substrate, Organic EL display substrate, color filter substrate, wafer, glass Substrate or other similar substrates. In one embodiment of this creation, the bus used in this creation is a VME bus, for the image processing unit to quickly transmit and display the comprehensive image and related defect information of the detected object through this VME bus. Desk monitor. M266446 In one embodiment of the present invention, the present invention also includes a central processing unit for transmitting information generated by the image processing unit to a trapped information management system through the network. '' In one embodiment of this creation, this creation further includes a computer numerical control (CNC) unit, which includes a χγ-axis platform for continuously transporting the detected objects; and a viewing lens for viewing and confirming the objects Defects. [Embodiment] In order to make the above and other objectives, features, and advantages of this creation clearer # 易易 丨 Dong, the following exemplifies the preferred embodiments and the accompanying drawings to make a detailed description as follows. Please refer to FIG. 1 for a system architecture diagram of an optical detection system according to an embodiment of the present invention. As shown in FIG. 1, in one embodiment of the present invention, the optical detection system 10 of the present invention has the following main constituent units: an image processing unit 100, a display 200, a central processing unit 300, and a computer numerical control (CNC) unit 400 and input / output (I / O) interface 500. Each of the above components is electrically connected from here through a VME bus 600.创作 With this architecture, each unit can be assembled on the VME bus 600 and controlled by the central processing unit 300, and an optical inspection system that can respond to any user environment can be realized. As shown in FIG. 1, in one embodiment of the present invention, the image processing unit 100 of the present invention includes a plurality of serially or side by side photosensitive coupling elements (CCD) 11 〇 and a plurality of image processing boards 120 〇 Among them, a plurality of The photo sensor 110 can be used to obtain a comprehensive image of the object under test 700. In an embodiment of the present invention, the object to be detected 700 may be an LCD display substrate, a 7 M266446 PDP display substrate, an Organic EL display substrate, a color filter substrate, a wafer, a glass substrate, or other Kind of substrate. In one embodiment of the present invention, each of the plurality of image processing boards 120 has at least one memory and at least one processor. At the same time, as shown in FIG. 1, each image processing board is correspondingly connected to one of the plurality of photosensitive coupling elements 110. Thereby, the plurality of image processing boards 120 can provide a high-capacity image memory space for memorizing the comprehensive images obtained by the plurality of photosensitive coupling elements 110; and the plurality of image processing boards 120 can also execute a high-speed image processing program, In order to respond to various types of defects (such as tiny, huge, bright, dark and other defects), various high-sensitivity digital signal processing and detection operations are performed on the comprehensive image. For example, in one embodiment of the present invention, the present invention can provide 32 series of photosensitive coupling elements 110 and corresponding 32 image processing boards 120. Take each image processing board as an example to provide 2GB (equivalent to 5000 day element X 400,000 lines) of image memory space, all 32 image processing boards can provide 64GB (equivalent to 160,000 day element X 400,000 lines) The capacity memory space is provided for high-speed transmission of all memory images, and as shown in FIG. 2, a full image 210 of the detected object 700 is displayed on one display 200 at a time. This will greatly improve the problem of insufficient memory capacity of the prior art optical detection devices. Because the image processing elements used in the optical detection devices of the prior art, the larger memory is only about 16MB image (4096 day element X4096 day element), so under the same 20 // m resolution capability When detecting 600mm X 750mm objects, the image processing elements of the prior art can only display 1/450 of the image, but the optical detection system 10 of this creation can display a full image 210 of the object 700. Therefore, with the optical inspection system 10 of this creation, the operator can view the full image M266446 210 of the inspected object 700 while setting the area to be inspected, and can see the actual position, color, and size of the defect; otherwise, the prior art If the optical detection device needs to make a comprehensive image detection area, it needs 45 days to complete. Furthermore, with the high-capacity image memory space provided by the multiple image processing boards 120 of this creation, this creation can respond to increasingly large-scale inspection objects (such as the seventh-generation LCD production line of LG.Philips which can already produce 1930mm X 2230mm Substrate) inspection operation, and integrated display of the full image 210 of the object under inspection 700 function, and to provide a high resolution month closely related to the detection accuracy. In addition, the detection system of the prior art has always had human operator problems. This is because even a fully automatic inspection system requires numerical management and image verification. However, the optical detection device of the prior art cannot provide a comprehensive image 21 as in this creation, so it is impossible to determine what exactly caused the problem. For this creation, a plurality of processing boards 120 can be used, and as shown in FIG. 3, the image body information and related defect data of Otari are left on a monitor 2000 for the operator to just watch- The eye can roughly judge that the cause of these problems is due to the conveying system or detection device or other reasons, and it is easy to perform further defect assessment operations. In addition, in one embodiment of the present invention, the optical detection system 10 of the present invention further includes a central processing unit 300, a computer numerical control unit 400, and: an input / output interface. Central processing unit · It can be used to transmit the information generated by the image processing order it 1GG to 31. through the network — defect information management = 320 — for rapid data management, external communication and statistical processing, and electrical fine numerical control The unit 400 includes a Xγ-axis stage 41 and a probe 420. Among them, the Xγ-axis stage 41 is used to carry objects. The lens side is used to inspect and confirm whether the defects on the objects are correct. : In addition, the viewing lens can also be used to confirm whether the object 700 is correctly positioned and / or M266446 is correct. The creative department controls the operation. The input / output interface 500 can be used for external n. Please note that 'Figure 1 only uses the object to be detected 700 as an example, and the optical detection of the sample creation is difficult-secondary detection-object, and it is on the X axis platform. 410 can carry out continuous multiple puppet transport operations, = the optical created by this creation can also carry out continuous multiple automatic detection operations. < —Although this I] work has been disclosed in the preferred embodiment as above, it is not intended to limit the creation of this work. Anyone who is familiar with this art can make some changes without departing from the spirit of this work. Changes and retouching, therefore, the protection of Capricorn in this creation shall be determined by the scope of the attached patent application. [Brief Description of the Drawings] FIG. 1 is a system architecture diagram of an optical detection system according to an embodiment of the present invention. y FIG. 2 is a state diagram of a display displaying a full image according to an embodiment of the present invention. Figure 3 shows the status of a display displaying a plurality of full-scale images and related defect data according to an embodiment of the present invention. [Description of main component symbols] 10 Optical inspection system 100 image processing unit 110 multiple photosensitive coupling elements 120 multiple image processing boards 200 display 210 full image 300 central processing unit M266446 310 network 320 defect information management system 400 computer Numerical control unit 410 XY axis stage 420 Viewing lens 500 Input / output interface 600 VME bus 700 Object under inspection