[go: up one dir, main page]

TWI872506B - Strengthened lithium-free aluminoborosilicate glass - Google Patents

Strengthened lithium-free aluminoborosilicate glass Download PDF

Info

Publication number
TWI872506B
TWI872506B TW112113566A TW112113566A TWI872506B TW I872506 B TWI872506 B TW I872506B TW 112113566 A TW112113566 A TW 112113566A TW 112113566 A TW112113566 A TW 112113566A TW I872506 B TWI872506 B TW I872506B
Authority
TW
Taiwan
Prior art keywords
glass
range
ions
ion exchange
lithium
Prior art date
Application number
TW112113566A
Other languages
Chinese (zh)
Other versions
TW202348573A (en
Inventor
吉藤德拉 西蓋爾
比斯瓦納斯 森
Original Assignee
日商安瀚視特控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商安瀚視特控股股份有限公司 filed Critical 日商安瀚視特控股股份有限公司
Publication of TW202348573A publication Critical patent/TW202348573A/en
Application granted granted Critical
Publication of TWI872506B publication Critical patent/TWI872506B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

The present invention describes a strengthened lithium-free aluminoborosilicate glass. The lithium-free aluminoborosilicate glass undergoes a double ion-exchange process to achieve a depth of compressive layer greater than 50 μm. The chemically strengthened aluminoborosilicate glass survives during a greater number of device drops before failure.

Description

經強化之無鋰之鋁硼矽酸鹽玻璃Strengthened lithium-free aluminum borosilicate glass

本發明描述一種鋁硼矽酸鹽玻璃。更特定言之,本發明聚焦於不含鋰之玻璃組合物。本發明描述一種藉由雙重離子交換強化製程展現較高強度之無鋰之玻璃組合物。 The present invention describes an aluminum borosilicate glass. More specifically, the present invention focuses on a lithium-free glass composition. The present invention describes a lithium-free glass composition that exhibits higher strength through a double ion exchange strengthening process.

近年來,已在廣泛使用配備有液晶顯示器、有機發光二極體顯示器或其類似者之電子裝置。由於玻璃材料具有高表面硬度,所以其廣泛用作用於此等電子裝置之顯示器之覆蓋玻璃材料。因為玻璃係典型之脆性材料,此類覆蓋玻璃通常經歷強化處理。存在對減小電子裝置之厚度及重量之持續關注,產生對更薄之覆蓋玻璃之需求。 In recent years, electronic devices equipped with liquid crystal displays, organic light-emitting diode displays or the like have been widely used. Since glass materials have high surface hardness, they are widely used as cover glass materials for displays of such electronic devices. Since glass is a typical brittle material, such cover glass is usually subjected to strengthening treatment. There is a continuous concern about reducing the thickness and weight of electronic devices, resulting in a demand for thinner cover glass.

化學強化係用於玻璃片之重要強化製程。對於諸如顯示器之覆蓋玻璃之薄玻璃片,通常使用化學強化來強化覆蓋玻璃。在化學強化製程中,在高溫下將在表面處含有單價鹼金屬離子之玻璃浸沒於熔融鹽浴中。在製程中,鹽浴中具有更大半徑之單價鹼金屬離子能夠替換玻璃表面上具有更小半徑之單價鹼金屬離子,從而在玻璃表面處形成壓縮應力層。玻璃表面處的更大之密集積壓之單價鹼金屬離子隨後產生高壓縮應力,這繼而提供更高之強度。壓縮層進一步用以抑制可導致玻璃故障(failure)之 缺陷,包括低抗張強度。 Chemical strengthening is an important strengthening process for glass sheets. For thin glass sheets such as cover glass for displays, chemical strengthening is often used to strengthen the cover glass. In the chemical strengthening process, glass containing monovalent alkali metal ions at the surface is immersed in a molten salt bath at high temperature. During the process, monovalent alkali metal ions with a larger radius in the salt bath are able to replace monovalent alkali metal ions with a smaller radius on the glass surface, thereby forming a compressive stress layer at the glass surface. The larger densely packed monovalent alkali metal ions at the glass surface then produce high compressive stress, which in turn provides higher strength. The compression layer further serves to suppress defects that can lead to glass failure, including low tensile strength.

近年來,鋰鋁矽酸鹽玻璃由於其優於無鋰之玻璃之優良機械特性而被廣泛用作用於電子裝置之顯示器之覆蓋玻璃。特定言之,優良之機械特性藉由以下來實現:鹼金屬離子之中最小之鋰離子能夠首先藉由為鋰離子之後下一更大離子之鈉離子經歷離子交換,且隨後,鈉離子在雙重離子交換(DIOX)製程中藉由下一更大離子,亦即鉀離子經歷另一離子交換。歸因於鋰離子之存在而可能之此整個DIOX製程產生增加之壓縮深度,同時可達成較大表面壓縮應力。然而,歸因於在為智慧手機、筆記本電腦、電動車及其類似者供電之電池組中廣泛使用,對鋰之需求巨大。對鋰之巨大需求已經超過其供應,導致鋰之採購成本增加。此外,已預測鋰即將不足以滿足其現有需求。因此,本發明聚焦於增強無鋰之鋁硼矽酸鹽玻璃之效能之方法或製程。因此,需要在經歷離子交換時展現所要表面壓縮應力及層深度之無鋰之鋁硼矽酸鹽玻璃。 In recent years, lithium aluminosilicate glass has been widely used as a cover glass for displays of electronic devices due to its superior mechanical properties over lithium-free glass. Specifically, the superior mechanical properties are achieved by the fact that the smallest lithium ion among alkali metal ions can first undergo ion exchange with the sodium ion, which is the next larger ion after the lithium ion, and then the sodium ion undergoes another ion exchange with the next larger ion, namely the potassium ion, in a double ion exchange (DIOX) process. This overall DIOX process produces an increased compression depth, made possible by the presence of lithium ions, while achieving greater surface compressive stress. However, due to its widespread use in battery packs that power smartphones, laptops, electric vehicles, and the like, the demand for lithium is enormous. The huge demand for lithium has outstripped its supply, resulting in increased procurement costs for lithium. Furthermore, it has been predicted that lithium will soon be insufficient to meet the current demand. Therefore, the present invention focuses on methods or processes for enhancing the performance of lithium-free aluminum borosilicate glass. Therefore, there is a need for lithium-free aluminum borosilicate glass that exhibits a desired surface compressive stress and layer depth when undergoing ion exchange.

發明目標Invention Goal

本文中描述本發明之一些目標。本發明之一個目標係提供一種鋁硼矽酸鹽玻璃組合物。本發明之另一個目標係提供一種實質上不含鋰之鋁硼矽酸鹽玻璃。 Some objects of the present invention are described herein. One object of the present invention is to provide an aluminum borosilicate glass composition. Another object of the present invention is to provide an aluminum borosilicate glass that is substantially free of lithium.

本發明之另一目標係使無鋰之鋁硼矽酸鹽玻璃經歷雙重離子交換製程,以實現大於50μm之壓縮層深度。 Another object of the present invention is to allow lithium-free aluminum borosilicate glass to undergo a double ion exchange process to achieve a compression layer depth greater than 50 μm.

本發明之另一個目標係提供具有較高強度及較佳使用壽命之無鋰之鋁硼矽酸鹽組合物。 Another object of the present invention is to provide a lithium-free aluminum borosilicate composition having higher strength and better service life.

本發明之其他目標及優勢將自以下描述更顯而易見,該描述並不意圖限制本發明之範疇。 Other objects and advantages of the present invention will become more apparent from the following description, which is not intended to limit the scope of the present invention.

在本發明之一實施例中,已揭示鋁硼矽酸鹽玻璃組合物。本發明揭示實質上不含鋰之鋁硼矽酸鹽玻璃組合物。 In one embodiment of the present invention, an aluminum borosilicate glass composition is disclosed. The present invention discloses an aluminum borosilicate glass composition that is substantially free of lithium.

在一實施例中,無鋰之鋁硼矽酸鹽玻璃之玻璃組合物包含約40重量%至約70重量%範圍內之SiO2、約5重量%至約35重量%範圍內之Al2O3以及約0.5重量%至約10重量%範圍內之B2O3。此外,其包含鹼金屬氧化物,諸如在約5重量%至約25重量%範圍內之Na2O及在約0重量%至約5重量%範圍內之K2O,以及鹼土金屬氧化物,諸如在約0重量%至約7重量%範圍內之MgO。另外,其包含約0重量%至約10重量%範圍內之P2O5、約0重量%至約6重量%範圍內之ZrO2、約0重量%至約2重量%範圍內之SnO2、約0重量%至約3重量%範圍內之Fe2O3、約0重量%至約3重量%範圍內之CeO2以及約0重量%至約5重量%範圍內之TiO2In one embodiment, the glass composition of the lithium-free aluminum borosilicate glass includes SiO2 in a range of about 40 wt% to about 70 wt%, Al2O3 in a range of about 5 wt% to about 35 wt%, and B2O3 in a range of about 0.5 wt% to about 10 wt %. In addition, it includes alkali metal oxides such as Na2O in a range of about 5 wt% to about 25 wt% and K2O in a range of about 0 wt% to about 5 wt%, and alkali earth metal oxides such as MgO in a range of about 0 wt% to about 7 wt%. In addition, it includes P2O5 in a range of about 0 wt% to about 10 wt %, ZrO2 in a range of about 0 wt% to about 6 wt%, SnO2 in a range of about 0 wt% to about 2 wt %, Fe2O3 in a range of about 0 wt% to about 3 wt%, CeO2 in a range of about 0 wt% to about 3 wt%, and TiO2 in a range of about 0 wt% to about 5 wt%.

在一實施例中,無鋰之鋁硼矽酸鹽玻璃可在其經歷雙重離子交換製程時展現較高強度。 In one embodiment, lithium-free aluminum borosilicate glass can exhibit higher strength when it undergoes a double ion exchange process.

在一實施例中,無鋰之鋁硼矽酸鹽玻璃經歷雙重離子交換製程以實現大於50μm之壓縮層深度。 In one embodiment, lithium-free aluminum borosilicate glass undergoes a double ion exchange process to achieve a compression layer depth greater than 50 μm.

在一實施例中,無鋰之鋁硼矽酸鹽玻璃具有較佳之使用耐久性、較高抗裂性及較高之尖銳衝擊強度。此外,玻璃可在發生故障之前在較大數目之裝置掉落過程中倖存下來。 In one embodiment, the lithium-free aluminum borosilicate glass has better durability in use, higher crack resistance, and higher sharp impact strength. In addition, the glass can survive a large number of device drops before failure occurs.

在一實施例中,無鋰之鋁硼矽酸鹽玻璃可用作用於觸摸面板顯示器之基板及用於此等顯示器之後蓋,該等顯示器諸如液晶顯示器(LCD)、場發射顯示器(FED)、電漿顯示器(PD)、電致發光顯示器(ELD)、有機發光二極體(OLED)顯示器、微型LED或其類似者。無鋰之 鋁硼矽酸鹽玻璃用作具有顯示螢幕之電子裝置,諸如行動電話、娛樂裝置、平板電腦、筆記本電腦、數位相機、可穿戴式裝置或其類似者之保護。 In one embodiment, the lithium-free aluminum borosilicate glass can be used as a substrate for a touch panel display and as a back cover for such displays, such as a liquid crystal display (LCD), a field emission display (FED), a plasma display (PD), an electroluminescent display (ELD), an organic light emitting diode (OLED) display, a micro-LED, or the like. The lithium-free aluminum borosilicate glass is used for protection of electronic devices with display screens, such as mobile phones, entertainment devices, tablet computers, laptops, digital cameras, wearable devices, or the like.

本發明之此等及其他態樣、優勢及突出特徵將自以下詳細描述變得顯而易見。 These and other aspects, advantages and salient features of the present invention will become apparent from the following detailed description.

優先權聲明Priority claim

本申請案主張2022年4月15日申請之印度臨時申請案序列號第202221022507號之優先權,該臨時申請案之全部內容以引用之方式併入本文中。 This application claims priority over Indian provisional application serial number 202221022507 filed on April 15, 2022, the entire contents of which are incorporated herein by reference.

在以下描述中,在圖式中示出之若干視圖中,相同之參考標號表示相同或對應之部分。亦應理解,除非另外規定,否則諸如「頂」、「底」、「外」、「內」及其類似術語的術語係為了方便之用詞,並且不應被解釋為限制性術語。此外,每當一個組被描述為包含一組要素中之至少一者及其組合時,應理解,該組可個別或彼此組合地包含任何數目之所述之彼等要素、基本上由其組成或由其組成。類似地,每當一個組被描述為由一組要素中之至少一者或其組合組成時,應理解,該組可個別或彼此組合地由任何數目之所述之彼等要素組成。除非另外說明,否則在列舉值之範圍時,其包括範圍之上限及下限以及其間之任何範圍。如本文所用,除非另外說明,否則不定冠詞「一(a/an)」及對應之定冠詞「該(the)」意指「至少一個」或「一或多個」。亦應理解,說明書及附圖中揭示之各種特徵可以任何及所有組合使用。 In the following description, in several views shown in the drawings, the same reference numerals represent the same or corresponding parts. It should also be understood that, unless otherwise specified, terms such as "top", "bottom", "outside", "inside" and the like are for convenient use and should not be interpreted as restrictive terms. In addition, whenever a group is described as comprising at least one of a set of elements and combinations thereof, it should be understood that the group may contain, consist essentially of or consist of any number of those elements, either individually or in combination with each other. Similarly, whenever a group is described as consisting of at least one of a set of elements or combinations thereof, it should be understood that the group may consist of any number of those elements, either individually or in combination with each other. Unless otherwise specified, when enumerating the range of values, it includes the upper and lower limits of the range and any range therebetween. As used herein, unless otherwise specified, the indefinite article "a/an" and the corresponding definite article "the" mean "at least one" or "one or more". It should also be understood that the various features disclosed in the specification and drawings can be used in any and all combinations.

如本文所用,術語「玻璃物件(glass article/glass articles)」以其最廣泛含義使用以包括完全或部分由玻璃製成之任何物品。除非另外規定,否則所有組合物都以重量百分比(重量%)表示。除非另外說明,否則所有溫度均以攝氏度(℃)表示。除非另外說明,否則熱膨脹係數(CTE)以10-7/℃表示,並且表示在約50℃至約300℃之溫度範圍內量測得之值。 As used herein, the term "glass article" is used in its broadest sense to include any article made entirely or partially of glass. Unless otherwise specified, all compositions are expressed in weight percent (wt %). Unless otherwise specified, all temperatures are expressed in degrees Celsius (° C.). Unless otherwise specified, the coefficient of thermal expansion (CTE) is expressed in 10 -7 /° C. and represents a value measured in a temperature range of about 50° C. to about 300° C.

應注意,術語「實質上」及「約」可在本文中用來表示可歸因於任何定量比較、值、量測或其他表示之固有之不確定性程度。此等術語亦在本文中用於表示定量表示可不同於所陳述參考而不導致所論述主題之基本功能變化之程度。舉例而言,「實質上不含Li2O」之玻璃為Li2O未主動地添加或分批地添加至玻璃中,但可作為來自原材料之污染物以極小量存在之玻璃。 It should be noted that the terms "substantially" and "approximately" may be used herein to represent the degree of inherent uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. Such terms are also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue. For example, a glass that is "substantially free of Li2O " is one to which Li2O has not been actively added or batch-added to the glass, but may be present in minimal amounts as a contaminant from the raw materials.

近來,隨著技術之進步,廣泛地使用諸如行動電話、平板電腦、可穿戴裝置、數位相機或其類似者之電子裝置。此等電子裝置具有由不同組成之覆蓋玻璃保護之顯示螢幕。本發明描述一種無鋰之鋁硼矽酸鹽玻璃組合物,其提供具有較佳之使用壽命之顯示螢幕。 Recently, with the advancement of technology, electronic devices such as mobile phones, tablet computers, wearable devices, digital cameras or the like are widely used. These electronic devices have display screens protected by cover glasses of different compositions. The present invention describes a lithium-free aluminum borosilicate glass composition that provides a display screen with a better service life.

本發明詳細地描述各種無鋰之鋁硼矽酸鹽玻璃組合物。本發明主要描述無鋰之鋁硼矽酸鹽玻璃及其組合物。玻璃組合物包括一或多種化學組分,諸如SiO2、Al2O3及B2O3。玻璃組合物進一步包括選自由Na2O及K2O組成之群之鹼金屬氧化物。此外,玻璃組合物包括一或多種鹼性氧化物,諸如MgO、CaO、SrO及BaO。其亦可包含其他化學組分,諸如ZrO2、Fe2O3、CeO2、P2O5、TiO2或其類似物。此外,其亦可包含精煉劑,諸如SnO2、氯化物、硫酸鹽或其類似物。無鋰之鋁硼矽酸鹽玻璃之特性高度受玻璃組合物之組分之含量數量影響。 The present invention describes various lithium-free aluminum borosilicate glass compositions in detail. The present invention mainly describes lithium-free aluminum borosilicate glasses and compositions thereof. The glass composition includes one or more chemical components, such as SiO2 , Al2O3 and B2O3 . The glass composition further includes an alkali metal oxide selected from the group consisting of Na2O and K2O . In addition, the glass composition includes one or more alkaline oxides, such as MgO, CaO, SrO and BaO. It may also contain other chemical components, such as ZrO2 , Fe2O3 , CeO2 , P2O5 , TiO2 or the like. In addition, it may also contain refining agents such as SnO 2 , chlorides, sulfates or the like. The properties of lithium-free aluminoborosilicate glass are highly affected by the amounts of the components of the glass composition.

在一實施例中,SiO2為形成玻璃網狀結構之組分。在SiO2含量過高之情況下,此玻璃難以熔融並且成型,或此玻璃具有過低之熱膨脹係數,並且難以具有與周邊材料相同之熱膨脹係數。另一方面,在SiO2含量過低之情況下,難以玻璃化。另外,此類玻璃具有增加之熱膨脹係數,這往往會降低耐熱衝擊性。因此,玻璃組合物需要最優重量%之SiO2。舉例而言,玻璃組合物可包括約40重量%至約70重量%之SiO2In one embodiment, SiO2 is a component that forms a glass network structure. In the case of too high a SiO2 content, the glass is difficult to melt and form, or the glass has too low a thermal expansion coefficient and is difficult to have the same thermal expansion coefficient as the surrounding material. On the other hand, in the case of too low a SiO2 content, it is difficult to vitrify. In addition, such glasses have an increased thermal expansion coefficient, which tends to reduce thermal shock resistance. Therefore, the glass composition requires an optimal weight % of SiO2 . For example, the glass composition may include about 40 weight % to about 70 weight % of SiO2 .

在一實施例中,Al2O3為增強單一及/或多重離子交換之適合性之組分。Al2O3進一步具有增強玻璃之耐熱性及楊氏模數(Young's Modulus)之作用。在Al2O3之含量過高之情況下,去玻晶體易於在玻璃中分離,使得難以藉由溢流下拉製程(overflow down-draw process)或其類似者形成玻璃。此外,此類玻璃在高溫下具有增加之黏度且難以熔融。當Al2O3之含量過低時,有可能玻璃無法具有用於單一及/或多重離子交換之足夠適合性。自彼等方面而言,玻璃組合物需要最優重量%之Al2O3。舉例而言,玻璃組合物可包括約5重量%至約35重量%之Al2O3In one embodiment, Al 2 O 3 is a component that enhances suitability for single and/or multiple ion exchange. Al 2 O 3 further has the effect of enhancing the heat resistance and Young's modulus of the glass. In the case where the content of Al 2 O 3 is too high, devitrified crystals tend to separate in the glass, making it difficult to form glass by an overflow down-draw process or the like. In addition, such glasses have increased viscosity at high temperatures and are difficult to melt. When the content of Al 2 O 3 is too low, it is possible that the glass may not have sufficient suitability for single and/or multiple ion exchange. In these respects, the glass composition requires an optimal weight % of Al 2 O 3. For example, the glass composition may include about 5 weight % to about 35 weight % of Al 2 O 3 .

在一實施例中,B2O3為具有降低玻璃之液相線溫度、高溫黏度及密度之作用之組分,且進一步具有增強玻璃之單一及/或多重離子交換之適合性之作用。此外,B2O3之存在引起由化學強化形成之壓縮應力層之深度減小。自彼等方面而言,玻璃組合物需要最優重量%之B2O3。舉例而言,玻璃組合物可包括約0.5重量%至約10重量%之B2O3In one embodiment, B2O3 is a component that has the effect of lowering the liquidus temperature, high temperature viscosity and density of the glass, and further has the effect of enhancing the suitability of the glass for single and/or multiple ion exchange. In addition, the presence of B2O3 causes a reduction in the depth of the compressive stress layer formed by chemical strengthening. From these aspects, the glass composition requires an optimal weight % of B2O3 . For example, the glass composition may include about 0.5 weight % to about 10 weight % of B2O3 .

在一實施例中,Na2O係用於化學強化處理中藉由用鉀離子替換鈉離子來增加表面壓縮應力及表面壓縮應力層之深度之組分。然而,將Na2O含量增加至超出適當限值會導致表面壓縮應力可能降低之情形。自彼等方面而言,玻璃組合物需要最優重量%之Na2O。舉例而言,玻璃 組合物可包括約5重量%至約25重量%之Na2O。 In one embodiment, Na2O is a component used in chemical strengthening treatment to increase the surface compressive stress and the depth of the surface compressive stress layer by replacing sodium ions with potassium ions. However, increasing the Na2O content beyond an appropriate limit may result in a situation where the surface compressive stress may decrease. In view of these aspects, the glass composition requires an optimal weight % of Na2O . For example, the glass composition may include about 5 weight % to about 25 weight % of Na2O .

類似於Na2O,K2O為增加玻璃之可熔融性之組分。降低含量之K2O增加化學強化中之離子交換速率且進而增加表面壓縮應力層之深度,但同時降低玻璃組合物之液相線溫度TL。因此,K2O較佳地少量含有。自彼等方面而言,玻璃組合物需要最優重量%之K2O。舉例而言,玻璃組合物可包括約0重量%至約5重量%之K2O。 Similar to Na2O , K2O is a component that increases the meltability of glass. A reduced content of K2O increases the ion exchange rate in chemical strengthening and thereby increases the depth of the surface compressive stress layer, but simultaneously decreases the liquidus temperature TL of the glass composition. Therefore, K2O is preferably contained in a small amount. From these aspects, the glass composition requires an optimal wt% of K2O . For example, the glass composition may include about 0 wt% to about 5 wt% of K2O .

此外,鋁硼矽酸鹽玻璃實質上不含鋰,亦即尤其Li2O。由於Li2O之存在改良玻璃之楊氏模數及斷裂韌度,調整Al2O3之含量以改良無鋰之鋁硼矽酸鹽玻璃之楊氏模數。 Furthermore, the aluminum borosilicate glass contains substantially no lithium, ie in particular Li 2 O. Since the presence of Li 2 O improves the Young's modulus and fracture toughness of the glass, the content of Al 2 O 3 is adjusted to improve the Young's modulus of the lithium-free aluminum borosilicate glass.

在一實施例中,MgO為鹼土金屬,其中MgO之含量可為約0重量%至約7重量%。在一實施例中,P2O5為增強玻璃之離子交換之適合性之成分,且為高度有效的,尤其在增加壓縮應力層之深度時。由於較高P2O5含量可引起玻璃中之相分離或可減損耐水性,所以玻璃組合物可包括約0重量%至約10重量%之P2O5In one embodiment, MgO is an alkali earth metal, wherein the content of MgO may be about 0 wt % to about 7 wt %. In one embodiment, P 2 O 5 is a component that enhances the suitability of the glass for ion exchange and is highly effective, especially when increasing the depth of the compressive stress layer. Since a higher P 2 O 5 content may cause phase separation in the glass or may reduce water resistance, the glass composition may include about 0 wt % to about 10 wt % P 2 O 5 .

在一實施例中,玻璃組合物進一步包括一或多種精煉劑,諸如約0重量%至約2重量%之SnO2及約0重量%至約3重量%之Fe2O3。此外,其亦可包括其他精煉劑,諸如CeO2、氯化物、硫酸鹽或其類似物。在一實施例中,玻璃組合物可包括約0重量%至約6重量%之ZrO2及約0重量%至約5重量%之TiO2。在一實施例中,由上列玻璃組合物獲得之無鋰之鋁硼矽酸鹽玻璃之厚度在20微米至2mm之範圍內。 In one embodiment, the glass composition further includes one or more refining agents, such as about 0 wt % to about 2 wt % SnO 2 and about 0 wt % to about 3 wt % Fe 2 O 3 . In addition, it may also include other refining agents, such as CeO 2 , chlorides, sulfates, or the like. In one embodiment, the glass composition may include about 0 wt % to about 6 wt % ZrO 2 and about 0 wt % to about 5 wt % TiO 2 . In one embodiment, the thickness of the lithium-free aluminum borosilicate glass obtained from the above glass composition is in the range of 20 microns to 2 mm.

表1說明如下之非限制性、例示性無鋰之鋁硼矽酸鹽玻璃組合物及其特性:

Figure 112113566-A0305-12-0008-1
Table 1 illustrates the following non-limiting, exemplary lithium-free aluminum borosilicate glass compositions and their properties:
Figure 112113566-A0305-12-0008-1

表2說明如下之非限制性、例示性鋁硼矽酸鹽玻璃組合物及其特性:

Figure 112113566-A0305-12-0009-2
Table 2 illustrates the following non-limiting, exemplary aluminum borosilicate glass compositions and their properties:
Figure 112113566-A0305-12-0009-2

在一個例示性實施例中,當玻璃組合物包括約42.64重量%之SiO2、約31.27重量%之Al2O3、約4.19重量%之B2O3、約18.15重量%之Na2O、約0.10重量%之K2O、約1.31重量%之MgO、約0.17重量%之SnO2以及約2.16重量%之P2O5時,由玻璃組合物獲得之無鋰之鋁硼矽酸鹽玻璃 之玻璃轉移溫度(Tg)為約657℃,CTE為約94×10-7/℃,密度為約2.44g/cc,楊氏模數為約70.5GPa,退火溫度為約667℃,帕松比為約0.24,並且剪切模數為約28.4GPa。 In an exemplary embodiment, when the glass composition includes about 42.64 wt % SiO 2 , about 31.27 wt % Al 2 O 3 , about 4.19 wt % B 2 O 3 , about 18.15 wt % Na 2 O, about 0.10 wt % K 2 O, about 1.31 wt % MgO, about 0.17 wt % SnO 2 , and about 2.16 wt % P 2 O 5 , the glass transition temperature (Tg) of the lithium-free aluminum borosilicate glass obtained from the glass composition is about 657° C., and the CTE is about 94×10 -7 /°C, density is about 2.44 g/cc, Young's modulus is about 70.5 GPa, annealing temperature is about 667°C, Passon's ratio is about 0.24, and shear modulus is about 28.4 GPa.

無鋰之鋁硼矽酸鹽玻璃可經歷兩個離子交換製程步驟。在一實施例中,離子交換製程係基於單價鹼金屬離子之大小。含有單價鹼金屬離子之無鋰之鋁硼矽酸鹽玻璃在高溫下在含有鹼金屬無機鹽之熔融鹽浴中處理。此處,玻璃之玻璃表面處之單價鹼金屬離子與鹼金屬無機鹽之單價鹼金屬離子進行離子交換。常見製程為將玻璃浸沒在鹼金屬無機鹽或鹼金屬無機鹽及其他無機鹽之混合物之熔融鹽浴中。浸沒時間足以僅在玻璃物件之表面層引起此交換。藉由離子交換製程獲得之高壓縮應力有助於玻璃在發生故障之前在較大數目之裝置掉落過程中倖存下來。 Lithium-free aluminum borosilicate glass can undergo two ion exchange process steps. In one embodiment, the ion exchange process is based on the size of the monovalent alkali metal ions. The lithium-free aluminum borosilicate glass containing monovalent alkali metal ions is treated at high temperature in a molten salt bath containing an alkali metal inorganic salt. Here, the monovalent alkali metal ions at the glass surface of the glass are ion exchanged with the monovalent alkali metal ions of the alkali metal inorganic salt. A common process is to immerse the glass in a molten salt bath of an alkali metal inorganic salt or a mixture of an alkali metal inorganic salt and other inorganic salts. The immersion time is sufficient to induce this exchange only in the surface layer of the glass object. The high compressive stress achieved by the ion exchange process helps the glass survive a relatively large number of device drops before failure occurs.

當較大鹼金屬離子在低於玻璃之應變點之高溫下替換玻璃之表面層中之較小鹼金屬離子時,表面層隨後獲得壓縮應力。較大鹼金屬離子試圖佔據先前由較小鹼金屬離子佔據之空間,由此在玻璃之表面層處產生壓縮應力。因為熔融鹽浴之溫度低於玻璃之應變點,所以玻璃無法重新調整自身以緩解應力。無鋰之鋁硼矽酸鹽玻璃經歷雙重離子交換製程。以下係雙重離子交換製程之兩個步驟: When larger alkali metal ions replace smaller alkali metal ions in the surface layer of glass at an elevated temperature below the strain point of the glass, the surface layer subsequently acquires a compressive stress. The larger alkali metal ions attempt to occupy the space previously occupied by the smaller alkali metal ions, thereby creating a compressive stress at the surface layer of the glass. Because the temperature of the molten salt bath is below the strain point of the glass, the glass cannot readjust itself to relieve the stress. Lithium-free aluminoborosilicate glass undergoes a double ion exchange process. The following are the two steps of the double ion exchange process:

離子交換之步驟I:Ion exchange step I:

本發明之玻璃組合物富含Na+離子並且缺乏K+離子。在雙重離子交換製程之第一步驟I中,用於熔融鹽浴之鹼金屬鹽之K+/Na+比高於玻璃中之K+/Na+比。因此,進行第一步驟I以用熔融鹽浴中之較大鹼金屬離子(K+離子)替換玻璃表面之較小鹼金屬離子(Na+離子)。在雙重離子交換製程之第一步驟I中,鹼金屬鹽(諸如硝酸鈉(NaNO3)及硝酸鉀 (KNO3))用於離子交換浴中。此處,鹼金屬無機鹽之K+離子替換玻璃之表面層中之Na+離子。由於離子交換時間非常長,亦即,最少約1小時或約多於4小時,所以玻璃中之Na+離子最初由離子交換浴中之K+離子替換,以使玻璃表面富集K+離子。進一步之離子交換使得玻璃中K+離子由離子交換浴之Na+離子交換。玻璃中之K+離子由離子交換浴中之Na+離子交換,隨後玻璃中之Na+離子由離子交換浴中之K+離子交換之此連續製程持續進行,直至壓縮深度變得大於50μm,並且玻璃中K+/Na+比之組成變得與離子交換浴中之K+/Na+比相同。儘管壓縮應力隨時間變得愈來愈低,且離子交換浴包含Na+離子及K+離子之混合物,但玻璃之壓縮深度包含與離子交換浴中相同之Na+與K+離子之比率。這賦予較大深度之壓縮層以及大量之壓縮應力。形成於玻璃之表面上之壓縮應力層為玻璃提供增加之耐刮擦及掉落性。 The glass composition of the present invention is rich in Na+ ions and deficient in K+ ions. In the first step I of the double ion exchange process, the K+/Na+ ratio of the alkali metal salt used in the molten salt bath is higher than the K+/Na+ ratio in the glass. Therefore, the first step I is performed to replace the smaller alkali metal ions (Na+ ions) on the surface of the glass with the larger alkali metal ions (K+ ions) in the molten salt bath. In the first step I of the double ion exchange process, an alkali metal salt (such as sodium nitrate (NaNO 3 ) and potassium nitrate (KNO 3 )) is used in the ion exchange bath. Here, K+ ions of the alkaline metal inorganic salt replace Na+ ions in the surface layer of the glass. Since the ion exchange time is very long, i.e., at least about 1 hour or about more than 4 hours, the Na+ ions in the glass are initially replaced by the K+ ions in the ion exchange bath to enrich the glass surface with K+ ions. Further ion exchange causes the K+ ions in the glass to be exchanged by the Na+ ions in the ion exchange bath. This continuous process of exchanging K+ ions in the glass with Na+ ions in the ion exchange bath, followed by exchanging Na+ ions in the glass with K+ ions in the ion exchange bath, continues until the compression depth becomes greater than 50 μm and the composition of the K+/Na+ ratio in the glass becomes the same as the K+/Na+ ratio in the ion exchange bath. Although the compression stress becomes lower and lower with time and the ion exchange bath contains a mixture of Na+ ions and K+ ions, the compression depth of the glass contains the same ratio of Na+ to K+ ions as in the ion exchange bath. This gives a compression layer of greater depth and a large amount of compression stress. The compressive stress layer formed on the surface of the glass provides the glass with increased scratch and drop resistance.

離子交換之步驟II:Ion exchange step II:

在離子交換之第二步驟II中,K+/Na+比大於90%,其遠高於離子交換製程之第一步驟I中之K+/Na+比。在本發明之製程中,迄今為止使用之一些鹼金屬鹽,諸如與一些硝酸鈉(NaNO3)摻合之硝酸鉀(KNO3)-(極高濃度)提供離子交換之第二步驟之液體離子交換浴。此處,鹼金屬無機鹽之K+離子替換玻璃之表面層中之Na+離子。由於K+離子濃度極高,且離子交換時間極短(<60分鐘),這使得產生表面中之極大壓縮應力。 In the second step II of the ion exchange, the K+/Na+ ratio is greater than 90%, which is much higher than the K+/Na+ ratio in the first step I of the ion exchange process. In the process of the present invention, some alkaline metal salts used so far, such as potassium nitrate (KNO 3 ) mixed with some sodium nitrate (NaNO 3 ) (very high concentration) provide the liquid ion exchange bath of the second step of the ion exchange. Here, the K+ ions of the alkaline metal inorganic salt replace the Na+ ions in the surface layer of the glass. Due to the very high concentration of K+ ions and the very short ion exchange time (<60 minutes), this leads to the generation of very large compressive stresses in the surface.

本文中所描述之鋁硼矽酸鹽玻璃最初形成時實質上不含Li2O。當玻璃經歷雙重離子交換製程時,較大數目之K+離子替換存在於玻璃之表面上之Na+離子。無鋰之鋁硼矽酸鹽玻璃之雙重離子交換製程允 許實現相比於無鋰之鋁硼矽酸鹽玻璃之單一離子交換製程增加之玻璃表面上之壓縮應力層。雙重離子交換之玻璃具有類似於鋰鋁矽酸鹽玻璃之優良機械特性。調節雙重離子交換製程之離子交換條件以實現玻璃之表面上之所要壓縮應力層。 The aluminoborosilicate glass described herein is initially formed to be substantially free of Li2O . When the glass undergoes a double ion exchange process, a greater number of K+ ions replace Na+ ions present on the surface of the glass. The double ion exchange process of the lithium-free aluminoborosilicate glass allows for the achievement of an increased compressive stress layer on the surface of the glass compared to a single ion exchange process of the lithium-free aluminoborosilicate glass. The double ion exchanged glass has excellent mechanical properties similar to those of lithium aluminoborosilicate glass. The ion exchange conditions of the double ion exchange process are adjusted to achieve the desired compressive stress layer on the surface of the glass.

表3說明例示性樣品,描述厚度為0.7mm之玻璃樣品5之離子交換製程之兩個步驟以及各步驟之對應之壓縮深度(DOL_零)及壓縮應力(CS)。 Table 3 illustrates an exemplary sample, describing two steps of the ion exchange process for glass sample 5 with a thickness of 0.7 mm and the corresponding compression depth (DOL_zero) and compression stress (CS) for each step.

Figure 112113566-A0305-12-0012-3
Figure 112113566-A0305-12-0012-3

在一個例示性實施例中,玻璃組合物經歷兩個離子交換製程步驟。在離子交換之第一步驟中,玻璃在包含約75重量%之KNO3及約25重量%之NaNO3之鹽浴中經歷離子交換製程之第一步驟。用於處理玻璃材料之較佳溫度為約415℃,且用於處理玻璃材料之時間為約130分鐘。 離子交換之第一步驟之應力概況包含約158.43MPa之壓縮應力及約134.53μm之壓縮深度。此外,在離子交換之第二步驟中,鹽浴包含約97重量%之KNO3及約3重量%之NaNO3。用於處理玻璃材料之較佳溫度為約380℃,並且用於處理玻璃材料之時間為約20分鐘。離子交換之第二步驟之應力概況包含大於940.01MPa之壓縮應力及大於11.58μm之壓縮深度。無鋰之鋁硼矽酸鹽玻璃經歷雙重離子交換製程以實現大於50μm之壓縮層深度。 In one exemplary embodiment, the glass composition undergoes two ion exchange process steps. In the first step of the ion exchange, the glass undergoes the first step of the ion exchange process in a salt bath comprising about 75 wt % KNO 3 and about 25 wt % NaNO 3. The preferred temperature for treating the glass material is about 415° C., and the time for treating the glass material is about 130 minutes. The stress profile of the first step of the ion exchange includes a compressive stress of about 158.43 MPa and a compression depth of about 134.53 μm. In addition, in the second step of the ion exchange, the salt bath comprises about 97 wt % KNO 3 and about 3 wt % NaNO 3 . The preferred temperature for treating the glass material is about 380°C, and the time for treating the glass material is about 20 minutes. The stress profile of the second step of the ion exchange includes a compressive stress greater than 940.01 MPa and a compression depth greater than 11.58 μm. The lithium-free aluminum borosilicate glass undergoes a double ion exchange process to achieve a compression layer depth greater than 50 μm.

本發明允許不含鋰之鋁硼矽酸鹽玻璃經歷雙重離子交換製程,以獲得等效於鋰鋁矽酸鹽玻璃之表面層強度。藉由雙重離子交換步驟獲得之高壓縮應力有助於玻璃在發生故障之前在較大數目之裝置掉落過程中倖存下來。 The present invention allows lithium-free aluminoborosilicate glass to undergo a double ion exchange process to achieve a surface layer strength equivalent to that of lithium aluminoborosilicate glass. The high compressive stress achieved by the double ion exchange step helps the glass survive a greater number of device drops before failure.

鋁硼矽酸鹽玻璃之應用可用作用於觸摸面板顯示器之基板及用於此等顯示器之後蓋,該等顯示器諸如液晶顯示器(LCD)、場發射顯示器(FED)、電漿顯示器(PD)、電致發光顯示器(ELD)、有機發光二極體(OLED)顯示器、微型LED或其類似者。鋁硼矽酸鹽玻璃用作具有顯示螢幕之電子裝置,諸如行動電話、娛樂裝置、平板電腦、筆記本電腦、數位相機、可穿戴式裝置或其類似者之保護。 Aluminum borosilicate glass can be used as a substrate for touch panel displays and as a back cover for such displays, such as liquid crystal displays (LCDs), field emission displays (FEDs), plasma displays (PDs), electroluminescent displays (ELDs), organic light emitting diode (OLED) displays, micro LEDs or the like. Aluminum borosilicate glass is used for protection of electronic devices with display screens, such as mobile phones, entertainment devices, tablet computers, laptops, digital cameras, wearable devices or the like.

雖然已出於說明之目的闡述了典型實施例,但不應將前述描述視為對本發明或所附申請專利範圍之範疇之限制。因此,在不脫離本發明之精神及範疇之情況下,熟習此項技術者可進行各種修改、調適及替代。 Although typical embodiments have been described for illustrative purposes, the foregoing description should not be considered as limiting the scope of the present invention or the scope of the attached patent applications. Therefore, those skilled in the art may make various modifications, adaptations, and substitutions without departing from the spirit and scope of the present invention.

Claims (6)

一種化學強化玻璃物件,其包含:約40重量%至約70重量%範圍內之SiO2;約5重量%至約35重量%範圍內之Al2O3;約0.5重量%至約10重量%範圍內之B2O3;約5重量%至約25重量%範圍內之Na2O;約0重量%至約5重量%範圍內之K2O;約0重量%至約7重量%範圍內之MgO;約0重量%至約10重量%範圍內之P2O5;約0重量%至約6重量%範圍內之ZrO2;約0重量%至約2重量%範圍內之SnO2;約0重量%至約3重量%範圍內之Fe2O3;約0重量%至約3重量%範圍內之CeO2;及約0重量%至約5重量%範圍內之TiO2,其中該玻璃物件經歷雙重離子交換製程以實現大於90%之K+/Na+離子比率,其中該玻璃物件具有大於50μm之壓縮層深度,及其中該玻璃物件實質上不含鋰。 A chemically strengthened glass article, comprising: SiO2 in a range of about 40 wt% to about 70 wt%; Al2O3 in a range of about 5 wt% to about 35 wt%; B2O3 in a range of about 0.5 wt% to about 10 wt % ; Na2O in a range of about 5 wt% to about 25 wt%; K2O in a range of about 0 wt% to about 5 wt%; MgO in a range of about 0 wt% to about 7 wt%; P2O5 in a range of about 0 wt% to about 10 wt% ; ZrO2 in a range of about 0 wt% to about 6 wt % ; SnO2 in a range of about 0 wt% to about 2 wt%; Fe2O3 in a range of about 0 wt% to about 3 wt%; and CeO2 in a range of about 0 wt% to about 3 wt%. and TiO2 in a range of about 0 wt% to about 5 wt%, wherein the glass object undergoes a double ion exchange process to achieve a K+/Na+ ion ratio greater than 90%, wherein the glass object has a compression layer depth greater than 50 μm, and wherein the glass object is substantially free of lithium. 如請求項1之化學強化玻璃物件,其中最佳化SiO2之含量以實現與周邊材料相容之熱膨脹係數。 A chemically strengthened glass article as claimed in claim 1, wherein the SiO2 content is optimized to achieve a thermal expansion coefficient that is compatible with surrounding materials. 一種處理玻璃物件之方法,其包含以下步驟:a)向包含K+離子及Na+離子之該玻璃物件提供熔融鹽浴;b)維持該熔融鹽浴中之K+/Na+離子比率高於該玻璃中之K+/Na+離子比率;c)用該熔融鹽浴中之鹼金屬離子K+替換玻璃表面上之鹼金屬離子Na+;d)使該玻璃物件之該表面富集K+離子;e)添加至少一種選自由NaNO3或KNO3組成之群之鹼金屬鹽;f)用K+離子替換該玻璃之表面層中之Na+離子;g)維持該玻璃中之K+/Na+離子比率與該熔融鹽浴中之K+/Na+比率相等;h)將鹼金屬鹽KNO3與NaNO3摻合以提供液體離子交換浴;i)在該玻璃之該表面層中用K+離子替換Na+離子;及j)維持大於90%之K+/Na+離子比率,其中所得玻璃物件具有大於50μm之壓縮深度,且其中該玻璃物件實質上不含鋰。 A method for treating a glass object comprises the following steps: a) providing a molten salt bath to the glass object containing K+ ions and Na+ ions; b) maintaining the K+/Na+ ion ratio in the molten salt bath higher than the K+/Na+ ion ratio in the glass; c) replacing the alkali metal ion Na+ on the surface of the glass with the alkali metal ion K+ in the molten salt bath; d) enriching the surface of the glass object with K+ ions; e) adding at least one selected from NaNO3 or KNO 3 ; f) replacing Na+ ions in a surface layer of the glass with K+ ions; g) maintaining a K+/Na+ ion ratio in the glass equal to a K+/Na+ ratio in the molten salt bath; h) mixing an alkali metal salt KNO 3 with NaNO 3 to provide a liquid ion exchange bath; i) replacing Na+ ions in the surface layer of the glass with K+ ions; and j) maintaining a K+/Na+ ion ratio greater than 90%, wherein the resulting glass object has a compression depth greater than 50 μm, and wherein the glass object is substantially free of lithium. 如請求項3之方法,其中該步驟(a)中之離子交換時間為至少1小時。 The method of claim 3, wherein the ion exchange time in step (a) is at least 1 hour. 如請求項3之方法,其中該步驟(h)中之離子交換時間少於60分鐘。 The method of claim 3, wherein the ion exchange time in step (h) is less than 60 minutes. 如請求項3之方法,其中該雙重離子交換製程為該玻璃物件提供增加之耐刮擦性。 The method of claim 3, wherein the double ion exchange process provides the glass object with increased scratch resistance.
TW112113566A 2022-04-15 2023-04-12 Strengthened lithium-free aluminoborosilicate glass TWI872506B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN202221022507 2022-04-15
IN202221022507 2022-04-15

Publications (2)

Publication Number Publication Date
TW202348573A TW202348573A (en) 2023-12-16
TWI872506B true TWI872506B (en) 2025-02-11

Family

ID=88360925

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112113566A TWI872506B (en) 2022-04-15 2023-04-12 Strengthened lithium-free aluminoborosilicate glass

Country Status (2)

Country Link
CN (1) CN116903247A (en)
TW (1) TWI872506B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202210439A (en) * 2020-07-30 2022-03-16 日商安瀚視特控股股份有限公司 Chemical ion exchange glass

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102137822B (en) * 2008-07-29 2015-12-09 康宁股份有限公司 For two stage ion-exchanges of chemically reinforced glass
US8759238B2 (en) * 2010-05-27 2014-06-24 Corning Incorporated Ion exchangeable glasses
TWI632121B (en) * 2013-08-29 2018-08-11 康寧公司 Ion exchangeable glass containing boron and phosphorous
WO2017031720A1 (en) * 2015-08-26 2017-03-02 Kornerstone Materials Technology Company, Ltd. Glass composition for chemically strengthened alkali-aluminosilicate glass and method for the manufacture thereof with shortened ion exchange times
JP7441606B2 (en) * 2016-01-13 2024-03-01 コーニング インコーポレイテッド Ultra-thin unbreakable glass and its manufacturing method
CN107840570A (en) * 2017-10-26 2018-03-27 中国南玻集团股份有限公司 Alumina silicate glass and preparation method thereof, electronic equipment
CN110316974B (en) * 2019-05-31 2022-03-22 彩虹集团(邵阳)特种玻璃有限公司 Alkali-containing aluminosilicate glass, product, strengthening method and application thereof
US11434167B2 (en) * 2020-05-15 2022-09-06 Corning Incorporated Strengthened glass articles and methods of forming the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202210439A (en) * 2020-07-30 2022-03-16 日商安瀚視特控股股份有限公司 Chemical ion exchange glass

Also Published As

Publication number Publication date
TW202348573A (en) 2023-12-16
CN116903247A (en) 2023-10-20

Similar Documents

Publication Publication Date Title
CN115385571B (en) Chemically strengthened glass and glass for chemical strengthening
CN101337770B (en) High-strength aluminosilicate glass and its chemical tempering method
TWI744530B (en) Hybrid soda-lime silicate and aluminosilicate glass articles
CN106966586B (en) Glass for chemical strengthening, chemically strengthened glass, and method for producing chemically strengthened glass
JP2019108272A (en) Glass having crack and scratch resistance, and enclosure produced from the same
JP6137390B2 (en) Chemically strengthened glass, chemically strengthened glass, and method for producing chemically strengthened glass
JP5764084B2 (en) Glass composition, glass composition for chemical strengthening, tempered glass article, cover glass for display and method for producing tempered glass article
WO2012108417A1 (en) Tempered glass plate
JP2007099557A (en) Tempered glass article and method for producing the same
TW201141838A (en) Tempered glass substrate and method for fabricating the same
JP6776128B2 (en) Alkaline-added and non-alkali aluminoborosilicate glass
JPWO2016002888A1 (en) Chemically strengthened glass and chemically strengthened glass
JP6607356B2 (en) Glass and chemically strengthened glass using the same
CN107108331A (en) Glass and chemically reinforced glass
CN108349795B (en) Glass resin laminate
JP2017154973A (en) Glass for chemical strengthening
CN115244018A (en) High-performance strengthened glass
TWI872506B (en) Strengthened lithium-free aluminoborosilicate glass
TWI872505B (en) Chemically strengthened aluminoborosilicate glass
WO2019167550A1 (en) Tempered glass and glass for tempering
KR20130127956A (en) Alkali glass and method for manufacturing the same
KR20130127957A (en) Alkali glass and method for manufacturing the same
TW202511212A (en) Glass and glass products with high chemical toughness and low crystallization resistance and manufacturing method
KR20130143523A (en) Alkali glass and method for manufacturing the same