[go: up one dir, main page]

TW202210439A - Chemical ion exchange glass - Google Patents

Chemical ion exchange glass Download PDF

Info

Publication number
TW202210439A
TW202210439A TW110127929A TW110127929A TW202210439A TW 202210439 A TW202210439 A TW 202210439A TW 110127929 A TW110127929 A TW 110127929A TW 110127929 A TW110127929 A TW 110127929A TW 202210439 A TW202210439 A TW 202210439A
Authority
TW
Taiwan
Prior art keywords
dol
glass
mol
ion exchange
compressive stress
Prior art date
Application number
TW110127929A
Other languages
Chinese (zh)
Inventor
吉藤德拉 西蓋爾
比斯瓦納斯 森
邱竣郁
董立婷
Original Assignee
日商安瀚視特控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商安瀚視特控股股份有限公司 filed Critical 日商安瀚視特控股股份有限公司
Publication of TW202210439A publication Critical patent/TW202210439A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

The present invention describes a chemical strengthening process such as a double ion exchange process of a glass material. The glass composition comprises of SiO2 , Al2 O3 , B2 O3 , Li2 O, Na2 O, ZrO2 , ZnO, P2 O5 , and one or more refining agents. The invention describes a compressive stress-depth of layer (CS-DOL) profile and its analysis by considering areas of the curves and the angles formed by tangents of the curves. The invention also discloses stress areas from the CS-DOL profile and their impact on the chemical strengthening process. The CS-DOL profile allows to determine inequalities from stress areas and the angles of the curves. The inequalities help in predicting the strength of the cover glass and adjusting the processing parameters such as time and temperature during the chemical strengthening process.

Description

化學離子交換玻璃chemical ion exchange glass

本發明係關於一種化學離子交換玻璃。更特定言之,本發明聚焦於藉由考慮壓縮應力(CS)-層深度(DOL)分佈來推導化學離子交換玻璃之強化表達式。甚至更特定言之,本發明描述藉由考慮CS-DOL分佈之曲線下面積及由曲線之切線形成之角度來定義雙離子交換過程之反應參數的方法。The present invention relates to a chemical ion exchange glass. More specifically, the present invention focuses on deriving strengthening expressions for chemical ion exchange glasses by considering compressive stress (CS)-depth of layer (DOL) distributions. Even more specifically, the present invention describes a method for defining the reaction parameters of a dual ion exchange process by considering the area under the curve of the CS-DOL distribution and the angle formed by the tangent to the curve.

近年來,玻璃基板已廣泛用作諸如行動電話、娛樂裝置、平板電腦、筆記本電腦、數碼相機、可穿戴裝置等電子裝置之蓋板玻璃。蓋板玻璃用於增強對電子裝置之顯示屏之保護。電子裝置背面使用之蓋板玻璃除了為電子裝置提供強度外,亦需要提供增強之電磁無線電信號傳輸。隨著強化玻璃之應用愈來愈廣泛,蓋板玻璃經過化學或熱處理,在承受高拉伸強度時具有抗斷裂性。通常,玻璃組合物經受高表面壓縮應力以增加玻璃之強度。在化學強化過程之情況下,雙離子交換過程為生產具有高強度及耐久性之玻璃基板之已知過程,特別是對於其中物理強化非常困難甚至不可能的薄玻璃。In recent years, glass substrates have been widely used as cover glass for electronic devices such as mobile phones, entertainment devices, tablet computers, notebook computers, digital cameras, and wearable devices. Cover glass is used to enhance the protection of the display screen of electronic devices. In addition to providing strength to the electronic device, the cover glass used on the backside of the electronic device also needs to provide enhanced electromagnetic radio signal transmission. As tempered glass becomes more widely used, cover glass is chemically or heat-treated to resist breakage when subjected to high tensile strengths. Typically, glass compositions are subjected to high surface compressive stress to increase the strength of the glass. In the case of chemical strengthening processes, the dual ion exchange process is a known process for producing glass substrates with high strength and durability, especially for thin glasses where physical strengthening is very difficult or even impossible.

雙離子交換玻璃之化學強化一般由壓縮應力(CS)-層深度(DOL)分佈定義。CS-DOL分佈包含兩條斜率不同的曲線。CS-DOL分佈之曲線被視為估計雙離子交換玻璃之效能之量測參數。藉由使用CS-DOL分佈來確定玻璃之化學強化過程,已經推導出了各種方法及模型。需要使用最佳計算參數以滿足客戶對化學強化玻璃材料之要求。The chemical strengthening of double ion exchange glasses is generally defined by the compressive stress (CS)-depth of layer (DOL) distribution. The CS-DOL distribution contains two curves with different slopes. The curve of the CS-DOL distribution was taken as a measurement parameter for estimating the performance of the double ion exchange glass. Various methods and models have been derived by using the CS-DOL distribution to determine the chemical strengthening process of glass. It is necessary to use the best calculation parameters to meet the customer's requirements for chemically strengthened glass materials.

鑒於前述,本發明藉由使用CS-DOL分佈來定義玻璃材料之化學強化過程來導出不等式。本發明之目標 In view of the foregoing, the present invention derives inequalities by using the CS-DOL distribution to define the chemical strengthening process of glass materials. Object of the present invention

本文中描述本發明之一些目標。本發明之一個目標為提供經歷雙離子交換過程之玻璃組合物。本發明之另一目標為將鹼金屬鋁矽酸鹽玻璃材料用於蓋板玻璃。Some objects of the present invention are described herein. An object of the present invention is to provide glass compositions that undergo a dual ion exchange process. Another object of the present invention is to use alkali metal aluminosilicate glass materials for cover glass.

本發明之另一目標為藉由化學強化雙離子交換過程來增加蓋板玻璃之強度。Another object of the present invention is to increase the strength of the cover glass by chemically strengthening the double ion exchange process.

本發明之另一目標為提供用於化學強化玻璃之壓縮應力-層深度(CS-DOL)分佈。本發明之另一目標為藉由考慮曲線下面積及由曲線之切線形成之角度來評估CS-DOL分佈以定義雙離子交換過程之反應參數。Another object of the present invention is to provide a compressive stress-depth of layer (CS-DOL) profile for chemically strengthened glass. Another objective of the present invention is to evaluate the CS-DOL distribution by considering the area under the curve and the angle formed by the tangent of the curve to define the reaction parameters of the double ion exchange process.

本發明之另一目標為利用獲自CS-DOL分佈之不等式來定義雙離子交換玻璃材料之過程參數。本發明之另一目標為根據CS-DOL分佈確定雙離子交換玻璃材料之應力面積、處理時間及溫度。Another object of the present invention is to use the inequalities obtained from the CS-DOL distribution to define process parameters for dual ion exchange glass materials. Another object of the present invention is to determine the stress area, treatment time and temperature of the double ion exchange glass material according to the CS-DOL distribution.

本發明之另一目標為提供具有更高效能強度、更好使用壽命、更高抗裂性及更高尖銳衝擊強度之蓋板玻璃。Another object of the present invention is to provide a cover glass with higher performance strength, better service life, higher crack resistance and higher sharp impact strength.

本發明之其他目標及優點將自以下描述更顯而易見,該描述並不意欲限制本發明之範疇。Other objects and advantages of the present invention will become apparent from the following description, which is not intended to limit the scope of the invention.

在一個實施例中,本發明描述一種玻璃組合物。玻璃組合物包含一或多種化學組分,諸如SiO2 、Al2 O3 、Li2 O、B2 O3 及Na2 O。其亦可包含其他化學組分,諸如ZrO2 、MgO、CaO、P2 O5 、ZnO、K2 O、TiO2 等。此外,其亦可包含精煉劑,諸如SnO2 、Fe2 O3 、CeO2 、氯化物、硫酸鹽等。In one embodiment, the present invention describes a glass composition. The glass composition includes one or more chemical components, such as SiO 2 , Al 2 O 3 , Li 2 O, B 2 O 3 and Na 2 O. It may also contain other chemical components such as ZrO 2 , MgO, CaO, P 2 O 5 , ZnO, K 2 O, TiO 2 and the like. In addition, it may also contain refining agents such as SnO 2 , Fe 2 O 3 , CeO 2 , chlorides, sulfates, and the like.

在一個實施例中,本發明描述玻璃組合物之各種組分之最佳莫耳%。玻璃組合物包含約50莫耳%至約75莫耳%之SiO2 、約5莫耳%至約25莫耳%之Al2 O3 、約0莫耳%至約10莫耳%之B2 O3 、約0莫耳%至約15莫耳%之Na2 O、約5莫耳%至約17莫耳%之Li2 O、約0莫耳%至約2莫耳%之K2 O、約0莫耳%至約7莫耳%之MgO、約0莫耳%至約3莫耳%之CaO、約0莫耳%至約7莫耳%之P2 O5 、約0莫耳%至約7莫耳%之ZnO及約0莫耳%至約7莫耳%之ZrO2 。玻璃組合物亦包括一或多種精煉劑,諸如,約0莫耳%至約2.5莫耳%之SnO2 、約0莫耳%至約2.5莫耳%之Fe2 O3 、約0莫耳%至約2莫耳%之CeO2 ,以及其他精煉劑,如氯化物及硫酸鹽。此外,玻璃組合物進一步包括約0莫耳%至約2莫耳%之TiO2In one embodiment, the present invention describes the optimum molar % of the various components of the glass composition. The glass composition comprises about 50 mol % to about 75 mol % SiO 2 , about 5 mol % to about 25 mol % Al 2 O 3 , about 0 mol % to about 10 mol % B 2 O3 , about 0 mol% to about 15 mol% Na2O, about 5 mol% to about 17 mol% Li2O , about 0 mol% to about 2 mol% K2O , about 0 mol % to about 7 mol % MgO, about 0 mol % to about 3 mol % CaO, about 0 mol % to about 7 mol % P 2 O 5 , about 0 mol % % to about 7 mol % ZnO and about 0 mol % to about 7 mol % ZrO 2 . The glass composition also includes one or more refining agents, such as, about 0 mol% to about 2.5 mol% SnO2 , about 0 mol% to about 2.5 mol% Fe2O3 , about 0 mol% To about 2 mol% CeO2, and other refining agents such as chlorides and sulfates. Additionally, the glass composition further includes about 0 mol% to about 2 mol% TiO2 .

在一個實施例中,蓋板玻璃可藉由經由多個離子交換之化學強化處理而具備高強度。本發明定義藉由雙離子交換過程強化之蓋板玻璃。In one embodiment, the cover glass can have high strength by chemical strengthening through multiple ion exchanges. The present invention defines cover glass strengthened by a double ion exchange process.

在一個實施例中,雙離子交換過程包含在玻璃材料之外表面區域上之第一離子交換步驟,隨後為第二離子交換步驟。在一個實施例中,離子交換過程係基於離子之大小。當玻璃材料中之較大離子交換為較小離子時,較大離子會填充先前由較小離子佔據之表面積,從而在玻璃材料之內表面上產生壓縮應力,其對應於玻璃材料強度之增加。In one embodiment, the dual ion exchange process comprises a first ion exchange step on the outer surface area of the glass material followed by a second ion exchange step. In one embodiment, the ion exchange process is based on the size of the ions. When larger ions in the glass material are exchanged for smaller ions, the larger ions fill the surface area previously occupied by the smaller ions, creating a compressive stress on the inner surface of the glass material that corresponds to an increase in the strength of the glass material.

在一個實施例中,鹽浴在第一離子交換過程期間包含5-95重量%之NaNO3 及5-95重量%之KNO3 。鹽浴在第二離子交換過程期間包含0-50重量%之NaNO3 及50-100重量%之KNO3 。鹽浴中所用之NaNO3 及KNO3 之量僅出於示範性目的而呈現,且不應被理解為對本發明之範圍之限制。In one embodiment, the salt bath contains 5-95 wt% NaNO3 and 5-95 wt % KNO3 during the first ion exchange process. The salt bath contains 0-50 wt% NaNO3 and 50-100 wt% KNO3 during the second ion exchange process. The amounts of NaNO3 and KNO3 used in the salt bath are presented for exemplary purposes only and should not be construed as limiting the scope of the invention.

在一個實施例中,可在大於300℃之溫度下持續至少0.25小時之持續時間進行第一離子交換過程。在一個實施例中,可在大於300℃之溫度下持續0.1小時-6.5小時之持續時間進行第二離子交換過程。In one embodiment, the first ion exchange process can be performed at a temperature greater than 300°C for a duration of at least 0.25 hours. In one embodiment, the second ion exchange process may be performed at a temperature greater than 300°C for a duration of 0.1 hour to 6.5 hours.

在一個實施例中,由於第一離子交換過程,玻璃處於60 MPa至650 MPa範圍內之壓縮應力(CS)及45 μm至210 μm範圍內之層深度下。此外,由於第二離子交換過程,玻璃處於130 MPa至1400 MPa範圍內之壓縮應力及小於60 μm之層深度下。In one embodiment, the glass is under a compressive stress (CS) in the range of 60 MPa to 650 MPa and a layer depth in the range of 45 μm to 210 μm due to the first ion exchange process. Furthermore, due to the second ion exchange process, the glass is under compressive stress in the range of 130 MPa to 1400 MPa and a layer depth of less than 60 μm.

在一個實施例中,雙離子交換過程之壓縮應力-層深度(CS-DOL)分佈包含兩條曲線。本發明計算曲線下面積及由曲線之切線形成之角度。CS-DOL分佈描述應力面積及各種反應參數,如雙離子交換過程之時間及溫度。CS-DOL分佈有助於理解及調整玻璃材料之化學強化過程參數。In one embodiment, the compressive stress-depth-of-layer (CS-DOL) distribution for the dual ion exchange process comprises two curves. The present invention calculates the area under the curve and the angle formed by the tangent to the curve. The CS-DOL distribution describes the stress area and various reaction parameters, such as the time and temperature of the double ion exchange process. The CS-DOL distribution helps to understand and adjust the chemical strengthening process parameters of glass materials.

在一個實施例中,雙離子交換玻璃產生增強之使用耐久性、高抗裂性、高損傷後保留強度及高尖銳衝擊強度。In one embodiment, the dual ion exchange glass yields enhanced in-service durability, high crack resistance, high retention strength after damage, and high sharp impact strength.

在一個實施例中,雙離子交換玻璃用作蓋板玻璃。蓋板玻璃可用作觸摸面板顯示器之基板及此等顯示器之後蓋,例如液晶顯示器(LCD)、場發射顯示器(FED)、電漿顯示器(PD)、電致發光顯示器(ELD)、有機發光二級體(OLED)顯示器、微型LED或其類似者。雙離子交換玻璃亦可用作太陽能電池蓋板玻璃之基板、磁盤基板及窗玻璃。另外,蓋板玻璃可用於保護顯示屏,如行動電話、智慧型手機、平板電腦、可穿戴裝置、數碼相機等電子裝置之觸摸顯示器。蓋板玻璃可用於電子裝置之背面,不僅提供強度,而且亦提供增強之電磁無線電信號傳輸。然而,蓋板玻璃之應用不限於前述資訊,且亦可用作標牌、建築內部及外部、汽車之內部顯示器及擋風玻璃、與各種運輸方式相關之窗戶等之基板。In one embodiment, double ion exchange glass is used as the cover glass. Cover glass can be used as a substrate for touch panel displays and as the back cover of these displays, such as Liquid Crystal Displays (LCD), Field Emission Displays (FED), Plasma Displays (PD), Electroluminescent Displays (ELD), Organic Light Emitting Displays (OLEDs) Level-on-body (OLED) displays, micro LEDs, or the like. Double ion exchange glass can also be used as the substrate of solar cell cover glass, disk substrate and window glass. In addition, cover glass can be used to protect display screens, such as touch displays of electronic devices such as mobile phones, smart phones, tablet computers, wearable devices, and digital cameras. Cover glass can be used on the backside of electronic devices to provide not only strength, but also enhanced electromagnetic radio signal transmission. However, the application of cover glass is not limited to the aforementioned information, and can also be used as a substrate for signage, building interiors and exteriors, interior displays and windshields of automobiles, windows associated with various modes of transportation, and the like.

本發明之此等及其他態樣、優點及突出特徵將自以下詳細描述變得顯而易見。These and other aspects, advantages and salient features of the present invention will become apparent from the following detailed description.

優先權聲明claim of priority

本申請案主張2020年7月30日申請之印度臨時申請案序號202021032695之優先權,其全部內容以引用之方式併入本文中。This application claims priority from Indian Provisional Application Serial No. 202021032695 filed on July 30, 2020, the entire contents of which are incorporated herein by reference.

在以下描述中,在圖式中示出之若干視圖中,相同的參考標號表示相同或對應的部分。亦應理解,除非另外規定,否則諸如「頂部」、「底部」、「向外」、「向內」等術語為便利性措辭,且不應解釋為限制性術語。此外,每當一個組被描述為包含一組要素中之至少一者及其組合時,應理解,該組可單獨或彼此組合地包含任何數目的所述之彼等要素、基本上由其組成或由其組成。類似地,每當一個組被描述為由一組要素中之至少一者或其組合組成時,應理解,該組可單獨或彼此組合地由任何數目的所述之彼等要素組成。除非另外說明,否則在列舉值之範圍時,其包括範圍之上限及下限以及其間之任何範圍。如本文所用,除非另外說明,否則不定冠詞「一(a/an)」及對應之定冠詞「該(the)」意謂「至少一(at least one)」或「一或多(one or more)」。亦應理解,說明書及隨附圖示中揭示之各種特徵可以任何及所有組合使用。In the following description, like reference numerals refer to like or corresponding parts throughout the several views shown in the drawings. It should also be understood that unless stated otherwise, terms such as "top," "bottom," "outward," "inward," and the like are words of convenience and should not be construed as terms of limitation. Furthermore, whenever a group is described as comprising at least one of a group of elements and combinations thereof, it will be understood that the group can comprise, consist essentially of, any number of those elements, alone or in combination with each other or consist of it. Similarly, whenever a group is described as consisting of at least one of a group of elements, or a combination thereof, it will be understood that the group can consist of any number of those elements, alone or in combination with each other. Unless otherwise stated, when a range of values is recited, it includes the upper and lower limits of the range and any range therebetween. As used herein, the indefinite article "a/an" and the corresponding definite article "the" mean "at least one" or "one or more" unless stated otherwise. ". It should also be understood that the various features disclosed in the specification and accompanying drawings can be used in any and all combinations.

如本文所用,術語「玻璃製品(glass article/glass articles)」以其最廣泛含義使用以包括完全或部分由玻璃製成之任何物體。除非另外說明,否則所有組合物均以莫耳百分比(莫耳%)表示。除非另外說明,否則所有溫度均以攝氏度(℃)表示。As used herein, the term "glass article (glass articles)" is used in its broadest sense to include any object made entirely or partially of glass. All compositions are expressed in mole percent (mol %) unless otherwise stated. All temperatures are expressed in degrees Celsius (°C) unless otherwise stated.

應注意,術語「基本上」及「約」可在本文中用來表示可歸因於任何定量比較、值、量測或其他表示之固有之不確定性程度。此等術語亦在本文中用於表示定量表示可不同於所陳述參考之程度而不導致所論述主題之基本功能變化。It should be noted that the terms "substantially" and "about" may be used herein to denote the inherent degree of uncertainty attributable to any quantitative comparison, value, measurement or other representation. These terms are also used herein to denote the extent to which a quantitative representation may differ from a stated reference without resulting in a change in the basic functionality of the subject matter discussed.

參考本發明中所描述之圖式,應理解,圖示係出於描述特定實施例之目的,且不意欲將本發明或所附申請專利範圍限制於此。圖不一定按比例繪製,且為了清楚及簡明起見,圖之某些特徵及某些視圖可能在比例上放大地示出或示意性地示出。Reference is made to the drawings described in this disclosure, it should be understood that the illustrations are for the purpose of describing particular embodiments and are not intended to limit the scope of the disclosure or the appended claims thereto. The figures are not necessarily to scale and certain features of the figures and certain views of the figures may be shown exaggerated in scale or schematically for the sake of clarity and conciseness.

除非另外規定,否則如本文所用,術語「離子交換層之深度」及「DOL」係指壓縮層之深度且以微米(μm)表示,其中1 μm=0.001 mm,且厚度「t」在本文中以毫米表示,其中1 mm=1000 μm。Unless otherwise specified, as used herein, the terms "depth of ion exchange layer" and "DOL" refer to the depth of the compressive layer and are expressed in micrometers (μm), where 1 μm = 0.001 mm, and thickness “t” is used herein Expressed in millimeters, where 1 mm=1000 μm.

如本文所述,壓縮應力(CS)及中心張力(CT)以兆帕(MPa)表示。根據此項技術中通常使用之慣例,壓縮應力表示為負值(<0)且拉伸應力表示為正值(>0)。然而,在整個本說明書中,壓縮應力表示為正值或絕對值,亦即,如本文中所敍述,CS=|CS|。As described herein, compressive stress (CS) and central tension (CT) are expressed in megapascals (MPa). According to convention commonly used in the art, compressive stress is expressed as a negative value (<0) and tensile stress is expressed as a positive value (>0). However, throughout this specification, compressive stress is expressed as a positive or absolute value, ie, CS=|CS|, as stated herein.

本發明描述一種雙離子交換玻璃。雙離子交換玻璃用作蓋板玻璃。本發明進一步詳細描述蓋板玻璃之各種組合物。玻璃組合物包含一或多種化學組分,如SiO2 、Al2 O3 、Li2 O、B2 O3 及Na2 O。其亦可包含其他化學組分,如ZrO2 、MgO、CaO、P2 O5 、ZnO、K2 O、TiO2 等。此外,其亦可包含精煉劑,如SnO2 、Fe2 O3 、CeO2 、氯化物、硫酸鹽等。The present invention describes a dual ion exchange glass. Double ion exchange glass was used as cover glass. The present invention further details various compositions of cover glass. The glass composition includes one or more chemical components, such as SiO2 , Al2O3 , Li2O , B2O3 , and Na2O . It may also contain other chemical components such as ZrO 2 , MgO, CaO, P 2 O 5 , ZnO, K 2 O, TiO 2 and the like. In addition, it may also contain refining agents such as SnO 2 , Fe 2 O 3 , CeO 2 , chlorides, sulfates, and the like.

本發明描述藉由多重離子交換過程,諸如雙離子交換過程來增加鹼金屬鋁矽酸鹽玻璃之強度。雙離子交換過程包含在玻璃材料之外表面區域上之第一離子交換步驟,隨後為第二離子交換步驟。在一個實施例中,離子交換過程係基於離子之大小。當玻璃材料中之較大離子交換為較小離子時,較大離子會填充先前由較小離子佔據之表面積,從而在玻璃材料之內表面上產生壓縮應力,其對應於玻璃材料強度之增加。The present invention describes increasing the strength of alkali metal aluminosilicate glasses by multiple ion exchange processes, such as double ion exchange processes. The dual ion exchange process comprises a first ion exchange step on the outer surface area of the glass material followed by a second ion exchange step. In one embodiment, the ion exchange process is based on the size of the ions. When larger ions in the glass material are exchanged for smaller ions, the larger ions fill the surface area previously occupied by the smaller ions, creating a compressive stress on the inner surface of the glass material that corresponds to an increase in the strength of the glass material.

本發明描述各種玻璃組合物之壓縮應力-層深度(CS-DOL)分佈及其分析。本發明計算曲線下面積及由曲線之切線形成之角度。本發明亦描述應力面積及各種反應參數,諸如雙離子交換過程之時間及溫度。CS-DOL分佈有助於理解及調整化學強化過程參數,以獲得適合之玻璃材料。The present invention describes compressive stress-depth-of-layer (CS-DOL) distributions for various glass compositions and their analysis. The present invention calculates the area under the curve and the angle formed by the tangent to the curve. The present invention also describes the stress area and various reaction parameters, such as the time and temperature of the double ion exchange process. CS-DOL distribution helps to understand and adjust chemical strengthening process parameters to obtain suitable glass materials.

圖1為說明根據本發明之例示性實施例,對應於鹼金屬鋁矽酸鹽玻璃之雙離子交換強化過程之壓縮應力-層深度(CS-DOL)分佈圖100之圖。在一個實施例中,化學強化過程藉由在不同濃度之鹽浴中進行雙離子交換處理來進行。雙離子交換處理包含以下步驟:在鹽浴中處理鹼金屬鋁矽酸鹽玻璃,用較大鹼金屬陽離子置換較小鹼金屬陽離子之至少一部分,確定鹼金屬鋁矽酸鹽玻璃之表面層上之對應壓縮應力之第一深度(Dstep1),且用另一較大鹼金屬陽離子進一步置換所置換之鹼金屬陽離子(先前添加之較大陽離子)之至少一部分,產生對應於小於第一深度(Dstep1)之第二深度(Dstep2)之較高壓縮應力。用較大鹼金屬陽離子置換較小鹼金屬陽離子增加壓縮深度層中之壓縮應力且增加玻璃表面之抗損傷性,進而增強鹼金屬鋁矽酸鹽玻璃之化學強化。1 is a graph illustrating a compressive stress-depth-of-layer (CS-DOL) profile 100 corresponding to a double ion exchange strengthening process of an alkali metal aluminosilicate glass according to an exemplary embodiment of the present invention. In one embodiment, the chemical strengthening process is performed by double ion exchange treatment in salt baths of different concentrations. The double ion exchange treatment involves the steps of treating the alkali metal aluminosilicate glass in a salt bath, replacing at least a portion of the smaller alkali metal cations with larger alkali metal cations, and determining the surface layer of the alkali metal aluminosilicate glass. A first depth corresponding to compressive stress (Dstep1), and further displacement of at least a portion of the displaced alkali metal cation (previously added larger cation) with another larger alkali metal cation, resulting in a depth corresponding to less than the first (Dstep1) The higher compressive stress at the second depth (Dstep2). Replacing smaller alkali metal cations with larger alkali metal cations increases the compressive stress in the compressive depth layer and increases the damage resistance of the glass surface, thereby enhancing the chemical strengthening of the alkali metal aluminosilicate glass.

如圖1中所示,在不同濃度之鹽浴中,由於鹼金屬鋁矽酸鹽玻璃之雙離子交換處理獲得CS-DOL分佈。圖100包括表示層深度(x)之X軸及表示對應壓縮應力(Cx)之Y軸。圖100展示作為層深度(x)之函數之壓縮應力Cx。圖1中展示之CS-DOL分佈本質上為非線性的。圖100之CS-DOL分佈包含具有變化斜率之曲線a1 及曲線a2 。曲線a1 表示由於鹼金屬鋁矽酸鹽玻璃之第一步離子交換而獲得之壓縮應力。具體而言,曲線a1 定義鹼金屬鋁矽酸鹽玻璃之第一步離子交換。曲線a2 表示由於鹼金屬鋁矽酸鹽玻璃之第二步離子交換而獲得之壓縮應力。具體而言,曲線a2 定義鹼金屬鋁矽酸鹽玻璃之第二步離子交換。曲線a1 及a2 在交點處相交。在Dstep2之深度處確定該交點處之壓縮應力。具體而言,交點處之壓縮應力在本文中表示為CSk 。此外,當層深度為零時獲得最大壓縮應力,且在本文中表示為CSm 。在壓縮深度下,應力自正(壓縮)應力跨越至負(拉伸)應力,且因此值為零。壓縮深度在本文中表示為Dstep1。As shown in Figure 1, CS-DOL distributions were obtained due to double ion exchange treatment of alkali metal aluminosilicate glasses in salt baths of different concentrations. Graph 100 includes an X-axis representing layer depth (x) and a Y-axis representing corresponding compressive stress (Cx). Graph 100 shows compressive stress Cx as a function of layer depth (x). The CS-DOL distribution shown in Figure 1 is inherently nonlinear. The CS - DOL distribution of Figure 100 includes curve ai and curve a2 with varying slopes. Curve a1 represents the compressive stress obtained due to the first ion exchange of the alkali metal aluminosilicate glass. Specifically, curve a1 defines the first step of ion exchange for alkali metal aluminosilicate glasses. Curve a2 represents the compressive stress obtained due to the second step of ion exchange of the alkali metal aluminosilicate glass. Specifically, curve a2 defines the second step of ion exchange for alkali metal aluminosilicate glass. The curves a 1 and a 2 intersect at the intersection. The compressive stress at this intersection is determined at the depth of Dstep2. Specifically, the compressive stress at the intersection is denoted herein as CS k . Furthermore, the maximum compressive stress is obtained when the layer depth is zero, and is denoted herein as CS m . At the depth of compression, the stress spans from positive (compressive) to negative (tensile) stress, and thus has a value of zero. The compression depth is denoted Dstep1 in this paper.

圖2為說明根據本發明之例示性實施例之CS-DOL分佈圖200之圖,該分佈圖展示由鹼金屬鋁矽酸鹽玻璃之雙離子交換強化過程形成之壓縮應力面積。鹼金屬鋁矽酸鹽玻璃之雙離子交換強化過程由圖1中所示之CS-DOL分佈中之曲線a1 及曲線a2 定義。如圖2中所示,曲線a1 由第一直線a11 近似,且曲線a2 由第二直線a22 近似。第一直線a11 與第二直線a22 之間的交點被定義為由鄰接曲線a1 及曲線a2 形成之曲線之拐點(DOL_TP, CS_TP)。另外,第一直線a11 自拐點延伸至具有零壓縮應力及定義為(DOL_ZERO,0)之最大層深度之點。此外,第二直線a22 自拐點延伸至具有零層深度及定義為(0,CS)之最大壓縮應力之點。FIG. 2 is a diagram illustrating a CS-DOL profile 200 showing compressive stress areas formed by a double ion exchange strengthening process of alkali metal aluminosilicate glasses, according to an exemplary embodiment of the present invention. The double ion exchange strengthening process of alkali metal aluminosilicate glasses is defined by curve a 1 and curve a 2 in the CS-DOL distribution shown in FIG. 1 . As shown in FIG. 2 , the curve a 1 is approximated by the first straight line a 11 , and the curve a 2 is approximated by the second straight line a 22 . The intersection between the first straight line a11 and the second straight line a22 is defined as the inflection point (DOL_TP, CS_TP ) of the curve formed by the adjacent curve a1 and the curve a2. In addition, the first straight line a11 extends from the inflection point to a point with zero compressive stress and a maximum layer depth defined as (DOL_ZERO, 0). Furthermore, the second straight line a 22 extends from the inflection point to a point with zero layer depth and a maximum compressive stress defined as (0, CS).

考慮圖2,下文計算用於鹼金屬鋁矽酸鹽玻璃之雙離子交換強化過程之第一直線a11 及第二直線a22 下之壓縮應力面積。Considering FIG. 2, the compressive stress area under the first line a 11 and the second line a 22 for the double ion exchange strengthening process of alkali metal aluminosilicate glass is calculated below.

令第一壓縮應力面積A為雙離子交換強化過程之第一步之第一過程應力面積。CS-DOL分佈包括在第一直線a11 下之第一區域,其定義鹼金屬鋁矽酸鹽玻璃之第一步離子交換之第一壓縮應力面積A。圖2中之第一壓縮應力面積A係以座標(0, 0)、(0, CS_TP)、(DOL_TP, CS_TP)及(DOL_ZERO, 0)為頂點之梯形面積。藉由以下表達式計算第一壓縮應力面積A: A = (CS_TP x DOL_ZERO x 0.5) + (CS_TP x DOL_TP)   (1)Let the first compressive stress area A be the first process stress area of the first step of the double ion exchange strengthening process. The CS-DOL profile includes a first area under the first straight line a11 , which defines the first compressive stress area A of the first ion exchange of the alkali metal aluminosilicate glass. The first compressive stress area A in FIG. 2 is a trapezoidal area with coordinates (0, 0), (0, CS_TP), (DOL_TP, CS_TP) and (DOL_ZERO, 0) as vertices. Calculate the first compressive stress area A by the following expression: A = (CS_TP x DOL_ZERO x 0.5) + (CS_TP x DOL_TP) (1)

此外,令第二壓縮應力面積B為雙離子交換強化過程之第二步之第二過程應力面積。CS-DOL分佈包括在第二直線a22 下之第二區域,其定義鹼金屬鋁矽酸鹽玻璃之第二步離子交換之第二壓縮應力面積B。圖2中之第二壓縮應力面積B係以座標(0, 0)、(DOL_TP, 0)、(DOL_TP, CS_TP)及(0, CS)為頂點之梯形面積。藉由以下表達式計算第二壓縮應力面積B: B = (CS x DOL_TP x 0.5) + (CS_TP x DOL_TP)  (2)In addition, let the second compressive stress area B be the second process stress area of the second step of the double ion exchange strengthening process. The CS-DOL profile includes a second area under the second straight line a 22 that defines the second compressive stress area B of the second step ion exchange of the alkali metal aluminosilicate glass. The second compressive stress area B in FIG. 2 is a trapezoidal area with coordinates (0, 0), (DOL_TP, 0), (DOL_TP, CS_TP) and (0, CS) as vertices. Calculate the second compressive stress area B by the following expression: B = (CS x DOL_TP x 0.5) + (CS_TP x DOL_TP) (2)

考慮表達式(1)及(2)以及以上量測參數,由第一步化學強化及第二步化學強化過程形成之第一及第二壓縮應力面積A及B之比率在如下定義之範圍內: 0.1 ≦ |(A/B)|^0.5 ≦5.2Considering expressions (1) and (2) and the above measured parameters, the ratio of the first and second compressive stress areas A and B formed by the first and second chemical strengthening processes is within the range defined below : 0.1 ≦ |(A/B)|^0.5 ≦5.2

另外,圖2有助於理解鹼金屬鋁矽酸鹽玻璃之化學強化過程之反應溫度及時間。CS-DOL分佈包括在自壓縮深度點(DOL_TP, 0)延伸至最大壓縮應力點(0, CS)之直線a33 與第一直線a11 及第二直線a22 之間的第三區域,其定義第三壓縮應力面積C。令第三壓縮應力面積C為不含第一及第二過程應力面積之面積。藉由以下表達式定義第三壓縮應力面積C: C = (CS x DOL_ZERO x 0.5) - (CS_TP x DOL_ZERO x 0.5 +CS_TP x DOL_TP + CS x DOL_TP x 0.5) (3)In addition, FIG. 2 is helpful for understanding the reaction temperature and time of the chemical strengthening process of the alkali metal aluminosilicate glass. The CS-DOL distribution includes a third region between the line a 33 extending from the point of depth of compression (DOL_TP, 0) to the point of maximum compressive stress (0, CS) and the first line a 11 and the second line a 22 , which define The third compressive stress area C. Let the third compressive stress area C be the area excluding the first and second process stress areas. The third compressive stress area C is defined by the following expression: C = (CS x DOL_ZERO x 0.5) - (CS_TP x DOL_ZERO x 0.5 +CS_TP x DOL_TP + CS x DOL_TP x 0.5) (3)

此外,CS-DOL分佈包括在第一直線a11 下之第四區域,且第二直線a22 定義第四壓縮應力面積D。令第四壓縮應力面積D為第一直線a11 及第二直線a22 下之面積。具體而言,第四壓縮應力面積D為第一及第二過程應力面積之總及。藉由以下表達式定義第四壓縮應力面積D: D = (CS_TP x DOL_ZERO x 0.5 + CS_TP x DOL_TP + CS x DOL_TP x 0.5) (4)Furthermore, the CS-DOL distribution includes a fourth area under the first straight line a 11 , and the second straight line a 22 defines a fourth area D of compressive stress. Let the fourth compressive stress area D be the area under the first straight line a11 and the second straight line a22 . Specifically, the fourth compressive stress area D is the sum of the first and second process stress areas. The fourth compressive stress area D is defined by the following expression: D = (CS_TP x DOL_ZERO x 0.5 + CS_TP x DOL_TP + CS x DOL_TP x 0.5) (4)

考慮表達式(3)及(4),描述雙離子交換強化過程之反應溫度及時間之第三及第四壓縮面積C及D之比率在如下定義之範圍內: 0.2 ≦ |(C/D) |^0.5 ≦ 6Considering expressions (3) and (4), the ratio of the third and fourth compression areas C and D, which describe the reaction temperature and time of the double ion exchange intensification process, is within the range defined as follows: 0.2 ≦ |(C/D) |^0.5 ≦ 6

第三壓縮應力面積C與第四壓縮應力面積D之比率範圍與鹼金屬鋁矽酸鹽玻璃之雙離子交換強化過程之反應溫度及時間成反比。反應時間愈短或溫度愈低,第三壓縮應力面積C與第四壓縮應力面積D之比率愈高。The ratio range of the third compressive stress area C to the fourth compressive stress area D is inversely proportional to the reaction temperature and time of the double ion exchange strengthening process of the alkali metal aluminosilicate glass. The shorter the reaction time or the lower the temperature, the higher the ratio of the third compressive stress area C to the fourth compressive stress area D is.

圖3為說明根據本發明之例示性實施例,估計鹼金屬鋁矽酸鹽玻璃之雙離子交換強化過程之第一步及第二步之時間之CS-DOL分佈圖300之圖表。鹼金屬鋁矽酸鹽玻璃之雙離子交換強化過程由圖3中所示之CS-DOL分佈中之曲線a1 及曲線a2 定義。曲線a1 與a2 之間的交點被定義為由鄰接曲線a1 及a2 形成之曲線之拐點(DOL_TP, CS_TP)。如圖3中所示,第三直線a3 自曲線a2 上CS之最大值延伸至直到曲線a2 為線性之點。此點被定義為線性點(DOL_Linear, CS_Linear)。3 is a graph illustrating a CS-DOL profile 300 estimating the timing of the first and second steps of the double ion exchange strengthening process for alkali metal aluminosilicate glasses according to an exemplary embodiment of the present invention. The double ion exchange strengthening process of alkali metal aluminosilicate glasses is defined by curve a 1 and curve a 2 in the CS-DOL distribution shown in FIG. 3 . The intersection between the curves a 1 and a 2 is defined as the inflection point (DOL_TP, CS_TP) of the curve formed by the adjoining curves a 1 and a 2 . As shown in FIG. 3 , the third straight line a3 extends from the maximum value of CS on the curve a2 to the point where the curve a2 is linear. This point is defined as a linear point (DOL_Linear, CS_Linear).

考慮圖3,角度E基本上為由第三直線a3 在線性點(DOL_Linear, CS_Linear)處相對於DOL之軸線形成之角度。角度E由以下表達式定義: E= Arc Tangent ((CS- CS_Linear)/(DOL_Linear))  (5)Considering Figure 3, the angle E is substantially the angle formed by the third straight line a3 at the linear point (DOL_Linear, CS_Linear) relative to the axis of the DOL. The angle E is defined by the following expression: E= Arc Tangent ((CS- CS_Linear)/(DOL_Linear)) (5)

另外,角度F為由自拐點(DOL_TP, CS_TP)延伸至最大壓縮應力點之第二直線a22 相對於DOL之軸線形成之角度。角度F由以下表達式定義: F= Arc Tangent ((CS- CS_TP)/(DOL_TP))     (6)In addition, the angle F is the angle formed by the second straight line a 22 extending from the inflection point (DOL_TP, CS_TP) to the point of maximum compressive stress with respect to the axis of the DOL. The angle F is defined by the following expression: F= Arc Tangent ((CS- CS_TP)/(DOL_TP)) (6)

考慮表達式(5)及(6),與化學強化過程之處理時間有關之角度之比率範圍被定義為: |(E/F) -(E-F)|^0.5 ≦ 4Considering expressions (5) and (6), the range of the ratio of the angles related to the treatment time of the chemical strengthening process is defined as: |(E/F) -(E-F)|^0.5 ≦ 4

如上文所表述之角度E及F之比率與化學強化過程之處理時間成正比。上文表述之比率之值愈高,化學強化過程之處理時間愈長。The ratio of angles E and F as stated above is proportional to the treatment time of the chemical strengthening process. The higher the value of the ratio expressed above, the longer the treatment time of the chemical strengthening process.

在一些實施例中,根據要求,可藉由調諧雙離子交換過程獲得玻璃之強度之期望值。雙離子交換過程用於化學強化玻璃。在此過程中,玻璃之表面層上之較小離子與玻璃中存在之較小離子具有相同價態或氧化態之較大離子交換。此離子交換,較佳金屬陽離子之交換,在鹽浴中進行,其中來自鹽浴之較大陽離子替換玻璃之較小陽離子。此離子交換通常自玻璃之頂表面開始且延伸至頂表面下方之深度。此離子交換過程在自頂表面至玻璃深度之區域中產生壓縮應力。此壓縮應力使得拉伸應力增加,其強化了玻璃材料。In some embodiments, the desired value of the strength of the glass can be obtained by tuning the dual ion exchange process as required. The double ion exchange process is used to chemically strengthen the glass. During this process, smaller ions on the surface layer of the glass exchange with larger ions of the same valence or oxidation state that are present in the glass. This ion exchange, preferably the exchange of metal cations, is carried out in a salt bath, wherein the larger cations from the salt bath replace the smaller cations of the glass. This ion exchange typically begins at the top surface of the glass and extends to a depth below the top surface. This ion exchange process creates compressive stress in the region from the top surface to the depth of the glass. This compressive stress increases tensile stress, which strengthens the glass material.

舉例而言,在鋁矽酸鋰玻璃材料之雙離子交換過程中,待替換之鹼金屬離子是鋰離子(Li+)。較佳使用之鹽浴為鈉離子(Na+)浴及鉀離子(K+)浴。更佳地,鹽浴分別包含NaNO3 及KNO3 之鹽。在離子交換之第一步中,鋰離子被玻璃材料表面內部之鈉離子置換。此外,在離子交換之第二步中,鋰或鈉離子被玻璃材料表面內部之鉀離子置換。For example, in the double ion exchange process of lithium aluminosilicate glass materials, the alkali metal ions to be replaced are lithium ions (Li+). The salt baths preferably used are sodium ion (Na+) baths and potassium ion (K+) baths. More preferably, the salt bath contains salts of NaNO3 and KNO3 , respectively. In the first step of ion exchange, lithium ions are replaced by sodium ions inside the surface of the glass material. Furthermore, in the second step of ion exchange, lithium or sodium ions are replaced by potassium ions inside the surface of the glass material.

使用之玻璃為厚度在20微米至2 mm範圍內之鹼金屬鋁矽酸鹽玻璃。厚度為0.7 mm之鹼金屬鋁矽酸鹽玻璃樣品在表1中列出之條件下在第一離子交換浴中進行離子交換(第1步),隨後在第二離子交換浴中進行離子交換(第2步)。The glass used is an alkali metal aluminosilicate glass with a thickness in the range of 20 microns to 2 mm. Samples of alkali metal aluminosilicate glass with a thickness of 0.7 mm were ion exchanged in a first ion exchange bath (step 1) under the conditions listed in Table 1, followed by ion exchange in a second ion exchange bath ( step 2).

表1說明例示性玻璃組合物之雙離子交換過程之每一步之不同反應條件及壓縮應力(CS)-層深度(DOL)值。 S.No. 玻璃 1 2 1 2 1 步及第 2 步之擬合資料 KNO3 (wt%) 溫度 ( ℃) 時間 (Min.) KNO3 (wt%) 溫度 ( ℃) 時間 (Min.) CS (MPa) DOL_Zero (μm) CS (MPa) DOL /DOL_TP (μm) CS (MPa) DOL_Zero /DOC ( μ m) CS_TP/ CSk (MPa) DOL_TP/DOL (μm) 1 16 60% 380 60 90% 360 30 219.63 109.84 955.86 6.50 951.34 107.89 69.43 17.20 2 16 60% 380 127 90% 380 49 259.63 121.98 964.36 10.30 961.71 113.78 75.23 21.83 3 16 60% 380 300 90% 380 60 295.14 120.23 946.85 14.50 947.68 115.17 70.40 20.73 4 16 60% 390 240 100% 390 12 147.89 161.09 1261.68 13.25 1183.72 121.72 327.12 5.18 5 16 60% 390 360 100% 420 36 229.55 124.99 1175.49 19.66 1124.88 90.58 45.16 25.23 6 16 60% 380 120 90% 420 240 478.73 65.77 719.84 31.67 694.38 72.41 25.21 44.15 7 16 60% 380 40 100% 420 240 645.28 46.92 915.68 35.63 1190.56 47.62 4.82 45.58 8 8 60% 380 40 90% 360 240 135.80 145.79 947.96 6.98 887.65 111.27 221.87 8.05 9 8 60% 380 30 90% 380 270 141.56 157.91 645.30 9.01 596.54 120.52 328.25 3.73 10 8 60% 380 120 90% 380 40 148.55 139.17 658.30 6.04 629.95 95.20 106.70 26.38 11 8 60% 380 120 90% 380 45 96.67 180.67 753.22 8.77 758.75 172.14 90.27 10.05 12 8 60% 380 120 100% 420 90 101.38 179.63 1013.88 16.46 1013.88 152.74 105.22 25.83 13 8 60% 420 240 90% 380 90 103.68 209.10 719.21 15.39 724.44 199.95 102.29 15.50 14 8 60% 420 240 100% 420 45 96.84 189.14 1025.63 17.44 1030.28 173.64 91.39 18.38 15 8 80% 380 240 90% 420 45 97.03 190.80 774.74 14.50 755.60 182.33 91.58 17.08 16 8 80% 380 240 100% 380 90 92.75 184.56 1051.77 12.16 1060.65 162.41 76.30 14.60 17 8 80% 420 120 90% 420 90 104.56 182.70 732.43 17.83 737.17 167.99 98.30 22.08 18 8 80% 420 120 100% 380 45 104.57 177.55 1064.14 13.33 1071.26 165.88 90.49 12.35 19 8 60% 390 240 100% 390 12 95.21 194.55 1082.72 10.59 1082.72 180.73 99.88 12.20 20 8 60% 390 360 100% 420 36 105.99 161.54 1043.34 14.69 1055.00 162.69 84.51 16.53 21 8 60% 380 120 90% 420 240 119.53 163.51 752.47 19.75 - - - - 22 8 60% 380 120 100% 420 240 151.33 153.73 982.20 24.11 982.20 143.80 115.95 33.33 23 8 60% 380 40 100% 420 240 184.90 136.73 964.19 22.17 983.84 147.48 119.56 32.30 24 8 60% 380 120 90% 380 40 95.33 174.79 714.11 6.74 714.10 176.44 271.64 2.03 25 61 60% 390 240 100% 390 12 115.56 173.60 1294.08 6.69 1295.80 171.40 109.26 5.00 26 61 60% 390 240 100% 390 12 115.60 181.66 1277.01 7.79 1285.90 160.90 81.99 6.43 27 61 60% 390 240 100% 390 12 125.07 167.66 1290.83 7.56 1290.90 168.50 116.71 5.70 28 61 60% 390 240 100% 390 12 130.58 182.29 1299.07 6.75 1320.20 179.10 125.29 5.55 29 16 60% 390 240 100% 390 12 139.17 134.01 1284.95 12.16 1284.96 134.45 119.29 9.35 30 16 60% 390 240 100% 390 12 137.49 145.93 133.70 11.69 1332.31 144.93 119.27 8.38 31 16 60% 390 240 100% 390 12 135.39 145.68 1309.90 11.68 1311.40 145.57 119.52 8.78 32 16 60% 380 120 100% 380 40 125.52 159.03 853.06 8.24 853.10 182.10 103.85 6.50 33 13 60% 380 40 90% 360 240 125.52 159.03 626.68 14.15 626.70 164.50 99.15 14.88 34 13 60% 380 30 90% 380 270 138.55 141.86 625.26 19.34 626.80 147.20 99.88 18.50 35 13 60% 380 120 90% 380 40 110.59 111.71 623.69 11.62 623.90 113.30 79.06 8.83 36 15 60% 380 120 90% 380 40 92.68 150.29 634.77 9.77 635.40 150.60 76.85 10.53 37 61 60% 380 120 100% 420 240 120.45 105.46 1062.69 22.10 1062.70 101.70 78.94 25.85 38 8 60% 390 180 100% 390 36 78.92 148.92 1249.80 9.12 1251.24 142.75 68.68 10.45 39 8 60% 390 240 100% 390 12 84.59 150.10 1248.59 8.52 1249.78 138.73 84.35 6.18 40 8 60% 390 240 100% 390 36 75.12 149.64 1221.06 9.75 1222.40 135.93 63.58 9.68 41 8 60% 390 300 100% 390 12 101.50 142.73 1207.93 9.57 1209.04 144.01 84.61 7.08 42 8 60% 390 300 100% 390 36 85.52 150.74 1236.47 10.70 1237.89 147.68 77.47 10.48 43 80 40% 415 110 97% 380 20 213.48 98.80 970.43 6.55 970.43 99.52 248.06 4.43 44 80 40% 415 110 97% 380 20 210.89 92.68 996.12 5.28 996.12 92.59 248.22 6.13 45 62 60% 390 240 100% 390 12 106.25 160.36 1251.86 7.66 1253.48 145.45 99.79 10.65 46 62 60% 390 240 100% 390 12 106.25 162.25 1275.00 8.34 1276.57 161.69 103.53 5.33 47 61 60% 380 180 90% 380 35 120.40 172.68 850.29 6.87 850.50 172.23 110.19 5.68 48 8 60% 380 180 90% 380 35 87.43 145.17 835.58 9.73 836.73 145.92 75.58 10.50 49 16 60% 380 180 90% 380 35 164.38 105.19 880.31 12.48 880.31 107.56 175.38 10.53 50 61 50% 390 240 90% 380 150 114.28 161.83 846.54 10.01 848.23 158.80 108.21 9.58 51 8 50% 390 240 90% 380 150 95.14 137.05 825.23 14.49 827.21 138.94 73.71 15.98 52 16 50% 390 240 90% 380 150 166.86 109.37 863.32 17.79 864.59 112.54 120.13 16.10 53 79 40% 415 110 97% 380 20 173.03 120.93 1120.12 6.38 1124.06 102.26 96.37 15.53 54 79 40% 415 110 97% 380 20 168.00 116.09 1113.59 6.41 1114.13 113.29 163.79 5.38 55 62 60% 390 240 100% 390 12 94.06 156.29 1221.15 6.12 1228.89 141.26 68.93 5.35 56 62 60% 390 240 100% 390 12 91.22 151.87 1247.02 6.26 1247.93 149.36 89.23 4.75 57 62 60% 390 240 100% 390 12 96.68 153.03 1242.59 7.13 1244.01 145.65 91.33 10.93 58 16 60% 390 240 100% 390 12 105.36 156.69 1309.62 4.71 1310.41 155.90 100.45 5.30 59 16 60% 390 240 100% 390 12 112.58 153.72 1263.25 7.44 1264.23 154.61 104.87 6.13 60 16 60% 390 240 100% 390 12 117.31 151.50 1296.09 8.18 1296.48 152.04 112.20 5.53 61 16 60% 390 240 100% 390 12 111.95 155.95 1269.06 8.04 1270.49 156.51 106.45 5.85 62 63 60% 380 120 100% 420 90 124.41 110.88 1154.36 13.87 1157.33 111.80 67.58 18.93 63 63 60% 380 120 100% 420 90 102.40 122.93 1146.03 13.59 1149.24 121.35 72.88 18.93 64 63 60% 380 120 100% 420 90 116.25 123.77 1164.63 13.95 1168.09 118.44 62.92 21.33 65 63 60% 380 120 100% 420 90 68.09 137.70 1162.23 13.83 1162.45 121.02 47.02 20.70 66 62 60% 380 120 100% 420 90 152.04 109.12 1150.95 14.43 1153.97 112.51 67.68 19.90 67 62 60% 380 120 100% 420 90 138.04 104.76 1157.32 15.00 1160.27 107.03 67.48 20.25 68 62 60% 390 240 100% 390 12 113.68 149.43 1288.64 6.70 1290.18 149.99 105.01 4.98 69 62 60% 390 240 100% 390 12 110.16 152.24 1273.40 6.86 1273.81 150.79 99.21 4.88 70 62 60% 390 240 100% 390 12 108.57 146.04 1268.85 6.96 1270.17 146.16 97.77 5.00 71 62 60% 390 240 100% 390 12 106.77 149.59 1287.42 6.81 1289.04 148.95 99.68 4.88 72 62 60% 390 240 100% 390 12 110.97 152.26 1359.23 6.02 1365.64 146.91 92.37 4.55 73 62 60% 390 240 100% 390 12 110.68 147.79 1299.97 6.05 1301.20 147.31 102.66 4.75 74 62 60% 390 240 100% 390 12 108.00 148.00 1279.40 6.70 1280.79 147.77 98.99 4.83 75 62 60% 390 240 100% 390 12 113.11 154.01 1311.64 5.05 1311.84 152.54 102.88 5.53 76 62 60% 390 240 100% 390 12 112.06 149.35 1297.15 5.59 1298.36 149.66 100.01 4.70 表1:用於雙離子交換過程之每一步之例示性玻璃樣品與DOC及CSTable 1 illustrates different reaction conditions and compressive stress (CS)-depth of layer (DOL) values for each step of the dual ion exchange process for exemplary glass compositions. S.No. grass Step 1 _ Step 2 _ Step 1 _ Step 2 _ Fitting data for steps 1 and 2 KNO 3 (wt%) Temperature ( °C) Time (Min.) KNO 3 (wt%) Temperature ( °C) Time (Min.) CS (MPa) DOL_Zero (μm) CS (MPa) DOL /DOL_TP (μm) CS (MPa) DOL_Zero /DOC ( μm ) CS_TP/ CS k (MPa) DOL_TP/DOL (μm) 1 16 60% 380 60 90% 360 30 219.63 109.84 955.86 6.50 951.34 107.89 69.43 17.20 2 16 60% 380 127 90% 380 49 259.63 121.98 964.36 10.30 961.71 113.78 75.23 21.83 3 16 60% 380 300 90% 380 60 295.14 120.23 946.85 14.50 947.68 115.17 70.40 20.73 4 16 60% 390 240 100% 390 12 147.89 161.09 1261.68 13.25 1183.72 121.72 327.12 5.18 5 16 60% 390 360 100% 420 36 229.55 124.99 1175.49 19.66 1124.88 90.58 45.16 25.23 6 16 60% 380 120 90% 420 240 478.73 65.77 719.84 31.67 694.38 72.41 25.21 44.15 7 16 60% 380 40 100% 420 240 645.28 46.92 915.68 35.63 1190.56 47.62 4.82 45.58 8 8 60% 380 40 90% 360 240 135.80 145.79 947.96 6.98 887.65 111.27 221.87 8.05 9 8 60% 380 30 90% 380 270 141.56 157.91 645.30 9.01 596.54 120.52 328.25 3.73 10 8 60% 380 120 90% 380 40 148.55 139.17 658.30 6.04 629.95 95.20 106.70 26.38 11 8 60% 380 120 90% 380 45 96.67 180.67 753.22 8.77 758.75 172.14 90.27 10.05 12 8 60% 380 120 100% 420 90 101.38 179.63 1013.88 16.46 1013.88 152.74 105.22 25.83 13 8 60% 420 240 90% 380 90 103.68 209.10 719.21 15.39 724.44 199.95 102.29 15.50 14 8 60% 420 240 100% 420 45 96.84 189.14 1025.63 17.44 1030.28 173.64 91.39 18.38 15 8 80% 380 240 90% 420 45 97.03 190.80 774.74 14.50 755.60 182.33 91.58 17.08 16 8 80% 380 240 100% 380 90 92.75 184.56 1051.77 12.16 1060.65 162.41 76.30 14.60 17 8 80% 420 120 90% 420 90 104.56 182.70 732.43 17.83 737.17 167.99 98.30 22.08 18 8 80% 420 120 100% 380 45 104.57 177.55 1064.14 13.33 1071.26 165.88 90.49 12.35 19 8 60% 390 240 100% 390 12 95.21 194.55 1082.72 10.59 1082.72 180.73 99.88 12.20 20 8 60% 390 360 100% 420 36 105.99 161.54 1043.34 14.69 1055.00 162.69 84.51 16.53 twenty one 8 60% 380 120 90% 420 240 119.53 163.51 752.47 19.75 - - - - twenty two 8 60% 380 120 100% 420 240 151.33 153.73 982.20 24.11 982.20 143.80 115.95 33.33 twenty three 8 60% 380 40 100% 420 240 184.90 136.73 964.19 22.17 983.84 147.48 119.56 32.30 twenty four 8 60% 380 120 90% 380 40 95.33 174.79 714.11 6.74 714.10 176.44 271.64 2.03 25 61 60% 390 240 100% 390 12 115.56 173.60 1294.08 6.69 1295.80 171.40 109.26 5.00 26 61 60% 390 240 100% 390 12 115.60 181.66 1277.01 7.79 1285.90 160.90 81.99 6.43 27 61 60% 390 240 100% 390 12 125.07 167.66 1290.83 7.56 1290.90 168.50 116.71 5.70 28 61 60% 390 240 100% 390 12 130.58 182.29 1299.07 6.75 1320.20 179.10 125.29 5.55 29 16 60% 390 240 100% 390 12 139.17 134.01 1284.95 12.16 1284.96 134.45 119.29 9.35 30 16 60% 390 240 100% 390 12 137.49 145.93 133.70 11.69 1332.31 144.93 119.27 8.38 31 16 60% 390 240 100% 390 12 135.39 145.68 1309.90 11.68 1311.40 145.57 119.52 8.78 32 16 60% 380 120 100% 380 40 125.52 159.03 853.06 8.24 853.10 182.10 103.85 6.50 33 13 60% 380 40 90% 360 240 125.52 159.03 626.68 14.15 626.70 164.50 99.15 14.88 34 13 60% 380 30 90% 380 270 138.55 141.86 625.26 19.34 626.80 147.20 99.88 18.50 35 13 60% 380 120 90% 380 40 110.59 111.71 623.69 11.62 623.90 113.30 79.06 8.83 36 15 60% 380 120 90% 380 40 92.68 150.29 634.77 9.77 635.40 150.60 76.85 10.53 37 61 60% 380 120 100% 420 240 120.45 105.46 1062.69 22.10 1062.70 101.70 78.94 25.85 38 8 60% 390 180 100% 390 36 78.92 148.92 1249.80 9.12 1251.24 142.75 68.68 10.45 39 8 60% 390 240 100% 390 12 84.59 150.10 1248.59 8.52 1249.78 138.73 84.35 6.18 40 8 60% 390 240 100% 390 36 75.12 149.64 1221.06 9.75 1222.40 135.93 63.58 9.68 41 8 60% 390 300 100% 390 12 101.50 142.73 1207.93 9.57 1209.04 144.01 84.61 7.08 42 8 60% 390 300 100% 390 36 85.52 150.74 1236.47 10.70 1237.89 147.68 77.47 10.48 43 80 40% 415 110 97% 380 20 213.48 98.80 970.43 6.55 970.43 99.52 248.06 4.43 44 80 40% 415 110 97% 380 20 210.89 92.68 996.12 5.28 996.12 92.59 248.22 6.13 45 62 60% 390 240 100% 390 12 106.25 160.36 1251.86 7.66 1253.48 145.45 99.79 10.65 46 62 60% 390 240 100% 390 12 106.25 162.25 1275.00 8.34 1276.57 161.69 103.53 5.33 47 61 60% 380 180 90% 380 35 120.40 172.68 850.29 6.87 850.50 172.23 110.19 5.68 48 8 60% 380 180 90% 380 35 87.43 145.17 835.58 9.73 836.73 145.92 75.58 10.50 49 16 60% 380 180 90% 380 35 164.38 105.19 880.31 12.48 880.31 107.56 175.38 10.53 50 61 50% 390 240 90% 380 150 114.28 161.83 846.54 10.01 848.23 158.80 108.21 9.58 51 8 50% 390 240 90% 380 150 95.14 137.05 825.23 14.49 827.21 138.94 73.71 15.98 52 16 50% 390 240 90% 380 150 166.86 109.37 863.32 17.79 864.59 112.54 120.13 16.10 53 79 40% 415 110 97% 380 20 173.03 120.93 1120.12 6.38 1124.06 102.26 96.37 15.53 54 79 40% 415 110 97% 380 20 168.00 116.09 1113.59 6.41 1114.13 113.29 163.79 5.38 55 62 60% 390 240 100% 390 12 94.06 156.29 1221.15 6.12 1228.89 141.26 68.93 5.35 56 62 60% 390 240 100% 390 12 91.22 151.87 1247.02 6.26 1247.93 149.36 89.23 4.75 57 62 60% 390 240 100% 390 12 96.68 153.03 1242.59 7.13 1244.01 145.65 91.33 10.93 58 16 60% 390 240 100% 390 12 105.36 156.69 1309.62 4.71 1310.41 155.90 100.45 5.30 59 16 60% 390 240 100% 390 12 112.58 153.72 1263.25 7.44 1264.23 154.61 104.87 6.13 60 16 60% 390 240 100% 390 12 117.31 151.50 1296.09 8.18 1296.48 152.04 112.20 5.53 61 16 60% 390 240 100% 390 12 111.95 155.95 1269.06 8.04 1270.49 156.51 106.45 5.85 62 63 60% 380 120 100% 420 90 124.41 110.88 1154.36 13.87 1157.33 111.80 67.58 18.93 63 63 60% 380 120 100% 420 90 102.40 122.93 1146.03 13.59 1149.24 121.35 72.88 18.93 64 63 60% 380 120 100% 420 90 116.25 123.77 1164.63 13.95 1168.09 118.44 62.92 21.33 65 63 60% 380 120 100% 420 90 68.09 137.70 1162.23 13.83 1162.45 121.02 47.02 20.70 66 62 60% 380 120 100% 420 90 152.04 109.12 1150.95 14.43 1153.97 112.51 67.68 19.90 67 62 60% 380 120 100% 420 90 138.04 104.76 1157.32 15.00 1160.27 107.03 67.48 20.25 68 62 60% 390 240 100% 390 12 113.68 149.43 1288.64 6.70 1290.18 149.99 105.01 4.98 69 62 60% 390 240 100% 390 12 110.16 152.24 1273.40 6.86 1273.81 150.79 99.21 4.88 70 62 60% 390 240 100% 390 12 108.57 146.04 1268.85 6.96 1270.17 146.16 97.77 5.00 71 62 60% 390 240 100% 390 12 106.77 149.59 1287.42 6.81 1289.04 148.95 99.68 4.88 72 62 60% 390 240 100% 390 12 110.97 152.26 1359.23 6.02 1365.64 146.91 92.37 4.55 73 62 60% 390 240 100% 390 12 110.68 147.79 1299.97 6.05 1301.20 147.31 102.66 4.75 74 62 60% 390 240 100% 390 12 108.00 148.00 1279.40 6.70 1280.79 147.77 98.99 4.83 75 62 60% 390 240 100% 390 12 113.11 154.01 1311.64 5.05 1311.84 152.54 102.88 5.53 76 62 60% 390 240 100% 390 12 112.06 149.35 1297.15 5.59 1298.36 149.66 100.01 4.70 Table 1: Exemplary glass samples with DOC and CS for each step of the dual ion exchange process

在例示性實施例中,第一離子交換之鹽浴包含5重量%至95重量%範圍內之NaNO3 及5重量%至95重量%範圍內之KNO3 。用於處理玻璃材料之較佳溫度為大於300℃,且用於處理玻璃材料之時間為至少0.25小時。用於離子交換之第一步之應力分佈包含60 MPa至650 MPa範圍內之壓縮應力及45 μm至210 μm範圍內之層深度。第二離子交換之鹽浴包含50重量%至100重量%範圍內之KNO3 及0重量%至50重量%範圍內之NaNO3 。用於處理玻璃材料之較佳溫度為大於300℃,且用於處理玻璃材料之時間為約0.1小時至6.5小時。用於離子交換之第二步之應力分佈包含130 MPa至1400 MPa範圍內之壓縮應力及小於60 μm之層深度。根據上文所述之方法浸沒於第二離子交換浴中增加所有樣品之壓縮應力。In an exemplary embodiment, the first ion-exchanged salt bath includes NaNO 3 in the range of 5-95 wt % and KNO 3 in the range of 5-95 wt %. The preferred temperature for treating the glass material is greater than 300°C, and the time for treating the glass material is at least 0.25 hours. The stress profile for the first step of ion exchange includes compressive stress in the range of 60 MPa to 650 MPa and layer depth in the range of 45 μm to 210 μm. The second ion exchanged salt bath contains KNO3 in the range of 50 to 100 wt% and NaNO3 in the range of 0 to 50 wt%. The preferred temperature for treating the glass material is greater than 300°C, and the time for treating the glass material is about 0.1 hour to 6.5 hours. The stress profile for the second step of ion exchange included compressive stress in the range of 130 MPa to 1400 MPa and layer depth less than 60 μm. Immersion in the second ion exchange bath increased the compressive stress of all samples according to the method described above.

在一個實施例中,在低於轉變溫度(Tg)小於50℃之化學回火溫度及大於或等於2小時之總化學回火時間下實現玻璃之化學強化過程。對於玻璃之化學強化過程,CS、CS_TP、DOL_TP及DOL_ZERO之值來自FSM-6000及SLP-1000 (SLP-2000)之擬合結果。In one embodiment, the chemical strengthening process of the glass is achieved at a chemical tempering temperature less than 50°C below the transition temperature (Tg) and a total chemical tempering time greater than or equal to 2 hours. For the chemical strengthening process of glass, the values of CS, CS_TP, DOL_TP and DOL_ZERO are obtained from the fitting results of FSM-6000 and SLP-1000 (SLP-2000).

表2說明藉由例示性玻璃組合物之表1中所述之雙離子交換過程之壓縮應力-層深度(CS-DOL)分佈獲得之應力面積及角度之不同值。 S.No. 玻璃 A B |(A/B)|^0.5 C D |(C/D)|^0.5 E F |(E/F) -(E-F)|^0.5 1 16 4939.35 9375.66 0.7 38199.69 13120.88 1.7 - 1.5513 - 2 16 5921.49 12136.45 0.7 38297.46 16416.15 1.5 - 1.5462 - 3 16 5512.64 11279.30 0.7 39238.28 15332.98 1.6 - 1.5472 - 4 16 21602.29 4755.75 2.1 47378.58 24665.17 1.4 - 1.5648 - 5 16 3184.81 15326.76 0.5 33575.02 17372.31 1.4 - 1.5474 - 6 16 2025.99 16441.50 0.4 7785.54 17354.34 0.7 - 1.5049 - 7 16 334.44 27349.51 0.1 883.50 27464.28 0.2 - 1.5324 - 8 8 14129.57 5358.82 1.6 31680.90 17702.34 1.3 - 1.5587 - 9 8 21003.41 2333.78 3.0 13834.46 22114.48 0.8 - 1.5569 - 10 8 7892.79 11121.66 0.8 13783.82 16200.27 0.9 - 1.5204 - 11 8 8676.57 4719.93 1.4 52814.80 12489.29 2.1 - 1.5558 - 12 8 10752.50 15808.98 0.8 53585.54 23844.27 1.5 - 1.5424 - 13 8 11812.40 7199.97 1.3 54999.08 17426.81 1.8 - 1.5459 - 14 8 9613.42 11144.93 0.9 70368.09 19079.10 1.9 - 1.5512 - 15 8 9912.97 8014.66 1.1 52521.17 16363.87 1.8 - 1.5451 - 16 8 7309.50 8856.63 0.9 71076.94 15052.21 2.2 - 1.5560 - 17 8 10427.15 10306.59 1.0 43356.26 18563.69 1.5 - 1.5363 - 18 8 8622.74 7732.54 1.1 73612.76 15237.75 2.2 - 1.5582 - 19 8 10243.84 7823.12 1.1 80990.11 16848.44 2.2 - 1.5584 - 20 8 8270.69 10113.38 0.9 68832.26 16987.61 2.0 - 1.5538 - 21 8 - - - - - - - - - 22 8 12200.51 20230.43 0.8 42051.14 28566.86 1.2 - 1.5323 - 23 8 12678.02 19750.85 0.8 43980.51 28567.09 1.2 - 1.5334 - 24 8 24514.60 1273.09 4.4 37761.70 25237.63 1.2 - 1.5662 - 25 61 9909.79 3785.79 1.6 97900.77 13149.29 2.7 1.5668 1.5666 1.0000 26 61 7122.88 4657.74 1.2 92196.82 11253.83 2.9 1.5671 1.5655 0.9997 27 61 10497.70 4344.29 1.6 94581.55 14176.77 2.6 1.5664 1.5659 0.9999 28 61 11915.17 4358.92 1.7 102645.18 15578.73 2.6 1.5664 1.5662 1.0000 29 16 9134.50 7122.50 1.1 71241.55 15141.68 2.2 1.5634 1.5628 0.9999 30 16 9641.26 6577.88 1.2 81323.99 15220.30 2.3 1.5647 1.5639 0.9998 31 16 9747.97 6802.57 1.2 79945.88 15501.74 2.3 1.5662 1.5634 0.9995 32 16 10130.76 3447.61 1.7 64771.42 12903.34 2.2 1.5625 1.5621 0.9999 33 13 9630.33 6135.99 1.3 37254.66 14291.41 1.6 1.5510 1.5426 0.9985 34 13 9198.67 7645.62 1.1 31135.91 14996.57 1.4 1.5461 1.5357 0.9982 35 13 5176.39 3450.65 1.2 27414.59 7929.35 1.9 1.5611 1.5546 0.9988 36 15 6595.39 4152.61 1.3 37906.43 9939.19 2.0 1.5566 1.5520 0.9992 37 61 6055.00 15776.10 0.6 34247.89 19790.40 1.3 1.5536 1.5445 0.9984 38 8 5619.77 7255.44 0.9 77147.06 12157.48 2.5 1.5627 1.5620 0.9999 39 8 6371.38 4379.51 1.2 76459.96 10230.06 2.7 1.5659 1.5655 0.9999 40 8 4936.71 6528.53 0.9 72232.85 10850.08 2.6 1.5633 1.5624 0.9998 41 8 6690.64 4875.56 1.2 76089.10 10967.61 2.6 1.5654 1.5645 0.9998 42 8 6531.58 7294.88 0.9 78392.49 13015.02 2.5 1.5618 1.5618 1.0000 43 80 13441.56 3244.74 2.0 32701.23 15588.62 1.4 1.5494 1.5647 1.0027 44 80 13011.44 4570.95 1.7 30052.10 16062.05 1.4 1.5434 1.5626 1.0034 45 62 8320.17 7737.56 1.0 76162.16 14994.93 2.3 1.5639 1.5616 0.9996 46 62 8921.32 3950.17 1.5 90884.68 12320.18 2.7 1.5676 1.5663 0.9998 47 61 10114.93 3038.66 1.8 60714.62 12528.23 2.2 1.5656 1.5631 0.9996 48 8 6307.57 5186.39 1.1 50347.55 10700.42 2.2 1.5614 1.5570 0.9992 49 16 11277.70 6478.52 1.3 31431.86 15910.33 1.4 1.5589 1.5559 0.9995 50 61 9628.31 5097.02 1.4 53660.38 13689.19 2.0 1.5613 1.5579 0.9994 51 8 6297.77 7784.77 0.9 44560.57 12905.09 1.9 1.5578 1.5496 0.9985 52 16 8693.69 8893.99 1.0 32998.76 15653.67 1.5 1.5526 1.5492 0.9994 53 79 6424.02 10224.95 0.8 42320.84 15152.35 1.7 1.5605 1.5557 0.9991 54 79 10159.07 3878.20 1.6 49953.81 13156.08 1.9 - 1.5651 - 55 62 5237.34 3656.05 1.2 78272.23 8524.61 3.0 1.5681 1.5662 0.9997 56 62 7087.55 3387.67 1.4 83145.36 10051.38 2.9 1.5683 1.5667 0.9997 57 62 7648.54 7793.15 1.0 76148.40 14443.93 2.3 1.5684 1.5613 0.9987 58 16 8361.84 4004.94 1.4 90309.26 11834.43 2.8 1.5668 1.5664 0.9999 59 16 8749.38 4514.05 1.4 85106.98 12621.08 2.6 1.5656 1.5655 1.0000 60 16 9149.59 4201.44 1.5 85827.14 12731.11 2.6 1.5669 1.5661 0.9999 61 16 8952.56 4338.89 1.4 86753.53 12668.74 2.6 1.5677 1.5658 0.9996 62 63 5056.79 12230.22 0.6 48686.14 16008.02 1.7 1.5597 1.5534 0.9989 63 63 5801.21 12253.96 0.7 53053.77 16675.91 1.8 1.5596 1.5532 0.9989 64 63 5067.94 13796.54 0.6 51654.07 17522.73 1.7 1.5597 1.5515 0.9985 65 63 3818.78 13004.73 0.5 54490.87 15850.14 1.9 1.5601 1.5522 0.9986 66 62 5153.98 12828.79 0.6 48280.02 16635.99 1.7 1.5596 1.5525 0.9987 67 62 4977.43 13114.12 0.6 45367.84 16725.17 1.6 1.5588 1.5523 0.9988 68 62 8397.07 3731.73 1.5 85147.58 11606.39 2.7 1.5671 1.5666 0.9999 69 62 7963.48 3588.54 1.5 84970.93 11068.38 2.8 1.5671 1.5666 0.9999 70 62 7634.19 3664.29 1.4 82014.40 10809.62 2.8 1.5671 1.5665 0.9999 71 62 7909.95 3627.98 1.5 84950.20 11051.97 2.8 1.5669 1.5667 1.0000 72 62 7205.15 3527.10 1.4 90003.30 10311.98 3.0 1.5679 1.5672 0.9999 73 62 8049.29 3577.99 1.5 84702.48 11139.65 2.8 1.5672 1.5668 0.9999 74 62 7791.38 3567.54 1.5 83747.53 10881.30 2.8 1.5671 1.5667 0.9999 75 62 8414.75 4192.36 1.4 88013.36 12038.71 2.7 1.5666 1.5662 0.9999 76 62 7953.72 3521.20 1.5 86149.46 11004.87 2.8 1.5675 1.5669 0.9999 表2:例示性玻璃組合物之CS-DOL分佈之應力面積及角度值Table 2 illustrates the various values of stress area and angle obtained by the compressive stress-depth of layer (CS-DOL) distribution of the dual ion exchange process described in Table 1 of exemplary glass compositions. S.No. grass A B |(A/B)|^0.5 C D |(C/D)|^0.5 E F |(E/F) -(EF)|^0.5 1 16 4939.35 9375.66 0.7 38199.69 13120.88 1.7 - 1.5513 - 2 16 5921.49 12136.45 0.7 38297.46 16416.15 1.5 - 1.5462 - 3 16 5512.64 11279.30 0.7 39238.28 15332.98 1.6 - 1.5472 - 4 16 21602.29 4755.75 2.1 47378.58 24665.17 1.4 - 1.5648 - 5 16 3184.81 15326.76 0.5 33575.02 17372.31 1.4 - 1.5474 - 6 16 2025.99 16441.50 0.4 7785.54 17354.34 0.7 - 1.5049 - 7 16 334.44 27349.51 0.1 883.50 27464.28 0.2 - 1.5324 - 8 8 14129.57 5358.82 1.6 31680.90 17702.34 1.3 - 1.5587 - 9 8 21003.41 2333.78 3.0 13834.46 22114.48 0.8 - 1.5569 - 10 8 7892.79 11121.66 0.8 13783.82 16200.27 0.9 - 1.5204 - 11 8 8676.57 4719.93 1.4 52814.80 12489.29 2.1 - 1.5558 - 12 8 10752.50 15808.98 0.8 53585.54 23844.27 1.5 - 1.5424 - 13 8 11812.40 7199.97 1.3 54999.08 17426.81 1.8 - 1.5459 - 14 8 9613.42 11144.93 0.9 70368.09 19079.10 1.9 - 1.5512 - 15 8 9912.97 8014.66 1.1 52521.17 16363.87 1.8 - 1.5451 - 16 8 7309.50 8856.63 0.9 71076.94 15052.21 2.2 - 1.5560 - 17 8 10427.15 10306.59 1.0 43356.26 18563.69 1.5 - 1.5363 - 18 8 8622.74 7732.54 1.1 73612.76 15237.75 2.2 - 1.5582 - 19 8 10243.84 7823.12 1.1 80990.11 16848.44 2.2 - 1.5584 - 20 8 8270.69 10113.38 0.9 68832.26 16987.61 2.0 - 1.5538 - twenty one 8 - - - - - - - - - twenty two 8 12200.51 20230.43 0.8 42051.14 28566.86 1.2 - 1.5323 - twenty three 8 12678.02 19750.85 0.8 43980.51 28567.09 1.2 - 1.5334 - twenty four 8 24514.60 1273.09 4.4 37761.70 25237.63 1.2 - 1.5662 - 25 61 9909.79 3785.79 1.6 97900.77 13149.29 2.7 1.5668 1.5666 1.0000 26 61 7122.88 4657.74 1.2 92196.82 11253.83 2.9 1.5671 1.5655 0.9997 27 61 10497.70 4344.29 1.6 94581.55 14176.77 2.6 1.5664 1.5659 0.9999 28 61 11915.17 4358.92 1.7 102645.18 15578.73 2.6 1.5664 1.5662 1.0000 29 16 9134.50 7122.50 1.1 71241.55 15141.68 2.2 1.5634 1.5628 0.9999 30 16 9641.26 6577.88 1.2 81323.99 15220.30 2.3 1.5647 1.5639 0.9998 31 16 9747.97 6802.57 1.2 79945.88 15501.74 2.3 1.5662 1.5634 0.9995 32 16 10130.76 3447.61 1.7 64771.42 12903.34 2.2 1.5625 1.5621 0.9999 33 13 9630.33 6135.99 1.3 37254.66 14291.41 1.6 1.5510 1.5426 0.9985 34 13 9198.67 7645.62 1.1 31135.91 14996.57 1.4 1.5461 1.5357 0.9982 35 13 5176.39 3450.65 1.2 27414.59 7929.35 1.9 1.5611 1.5546 0.9988 36 15 6595.39 4152.61 1.3 37906.43 9939.19 2.0 1.5566 1.5520 0.9992 37 61 6055.00 15776.10 0.6 34247.89 19790.40 1.3 1.5536 1.5445 0.9984 38 8 5619.77 7255.44 0.9 77147.06 12157.48 2.5 1.5627 1.5620 0.9999 39 8 6371.38 4379.51 1.2 76459.96 10230.06 2.7 1.5659 1.5655 0.9999 40 8 4936.71 6528.53 0.9 72232.85 10850.08 2.6 1.5633 1.5624 0.9998 41 8 6690.64 4875.56 1.2 76089.10 10967.61 2.6 1.5654 1.5645 0.9998 42 8 6531.58 7294.88 0.9 78392.49 13015.02 2.5 1.5618 1.5618 1.0000 43 80 13441.56 3244.74 2.0 32701.23 15588.62 1.4 1.5494 1.5647 1.0027 44 80 13011.44 4570.95 1.7 30052.10 16062.05 1.4 1.5434 1.5626 1.0034 45 62 8320.17 7737.56 1.0 76162.16 14994.93 2.3 1.5639 1.5616 0.9996 46 62 8921.32 3950.17 1.5 90884.68 12320.18 2.7 1.5676 1.5663 0.9998 47 61 10114.93 3038.66 1.8 60714.62 12528.23 2.2 1.5656 1.5631 0.9996 48 8 6307.57 5186.39 1.1 50347.55 10700.42 2.2 1.5614 1.5570 0.9992 49 16 11277.70 6478.52 1.3 31431.86 15910.33 1.4 1.5589 1.5559 0.9995 50 61 9628.31 5097.02 1.4 53660.38 13689.19 2.0 1.5613 1.5579 0.9994 51 8 6297.77 7784.77 0.9 44560.57 12905.09 1.9 1.5578 1.5496 0.9985 52 16 8693.69 8893.99 1.0 32998.76 15653.67 1.5 1.5526 1.5492 0.9994 53 79 6424.02 10224.95 0.8 42320.84 15152.35 1.7 1.5605 1.5557 0.9991 54 79 10159.07 3878.20 1.6 49953.81 13156.08 1.9 - 1.5651 - 55 62 5237.34 3656.05 1.2 78272.23 8524.61 3.0 1.5681 1.5662 0.9997 56 62 7087.55 3387.67 1.4 83145.36 10051.38 2.9 1.5683 1.5667 0.9997 57 62 7648.54 7793.15 1.0 76148.40 14443.93 2.3 1.5684 1.5613 0.9987 58 16 8361.84 4004.94 1.4 90309.26 11834.43 2.8 1.5668 1.5664 0.9999 59 16 8749.38 4514.05 1.4 85106.98 12621.08 2.6 1.5656 1.5655 1.0000 60 16 9149.59 4201.44 1.5 85827.14 12731.11 2.6 1.5669 1.5661 0.9999 61 16 8952.56 4338.89 1.4 86753.53 12668.74 2.6 1.5677 1.5658 0.9996 62 63 5056.79 12230.22 0.6 48686.14 16008.02 1.7 1.5597 1.5534 0.9989 63 63 5801.21 12253.96 0.7 53053.77 16675.91 1.8 1.5596 1.5532 0.9989 64 63 5067.94 13796.54 0.6 51654.07 17522.73 1.7 1.5597 1.5515 0.9985 65 63 3818.78 13004.73 0.5 54490.87 15850.14 1.9 1.5601 1.5522 0.9986 66 62 5153.98 12828.79 0.6 48280.02 16635.99 1.7 1.5596 1.5525 0.9987 67 62 4977.43 13114.12 0.6 45367.84 16725.17 1.6 1.5588 1.5523 0.9988 68 62 8397.07 3731.73 1.5 85147.58 11606.39 2.7 1.5671 1.5666 0.9999 69 62 7963.48 3588.54 1.5 84970.93 11068.38 2.8 1.5671 1.5666 0.9999 70 62 7634.19 3664.29 1.4 82014.40 10809.62 2.8 1.5671 1.5665 0.9999 71 62 7909.95 3627.98 1.5 84950.20 11051.97 2.8 1.5669 1.5667 1.0000 72 62 7205.15 3527.10 1.4 90003.30 10311.98 3.0 1.5679 1.5672 0.9999 73 62 8049.29 3577.99 1.5 84702.48 11139.65 2.8 1.5672 1.5668 0.9999 74 62 7791.38 3567.54 1.5 83747.53 10881.30 2.8 1.5671 1.5667 0.9999 75 62 8414.75 4192.36 1.4 88013.36 12038.71 2.7 1.5666 1.5662 0.9999 76 62 7953.72 3521.20 1.5 86149.46 11004.87 2.8 1.5675 1.5669 0.9999 Table 2: Stress Area and Angle Values for CS-DOL Distributions of Exemplary Glass Compositions

在一個實例中,使用之玻璃為鋁矽酸鋰玻璃。在第一離子交換中,鹼金屬浴包含40重量% NaNO3 及60重量% KNO3 。將此玻璃基板在380℃之溫度下浸沒於鹼金屬浴中持續2小時之時段。玻璃經歷對應於174.79 μm之深度之95.33 MPa之壓縮應力。在第一浴中浸沒之後,進行玻璃之第二離子交換處理。第二離子交換浴包含10重量% NaNO3 及90重量% KNO3 。將玻璃基板在380℃之溫度下浸沒於第二離子交換浴中40分鐘。材料經歷對應於6.74 μm之深度之714.11 MPa之壓縮應力。在玻璃已藉由上文所描述之方法化學強化之後,玻璃之強度得以提高。由於CS、CS_TP、DOL_TP及DOL_ZERO之值來自FSM-6000及SLP-1000 (SLP-2000)之擬合結果,因此本例示性實施例得到之擬合值為:最大壓縮應力CS為714.10 MPa,壓縮深度DOL_ZERO為176.44 μm,拐點CS_TP處之壓縮應力為271.64 MPa,且拐點DOL_TP處之層深度為2.03 μm。應力面積及角度接著由CS、CS_TP、DOL_TP及DOL_ZERO值確定。第一壓縮應力A與第二壓縮應力B之比率(|(A/B)|^0.5)為4.4。第三壓縮應力C與第四壓縮應力D之比率(|(C/D) |^0.5)為1.2。由於第一壓縮應力A與第二壓縮應力B之比率之值較高,所以化學強化玻璃具有較高強度。In one example, the glass used is lithium aluminosilicate glass. In the first ion exchange, the alkali metal bath contained 40 wt % NaNO 3 and 60 wt % KNO 3 . The glass substrate was immersed in an alkali metal bath at a temperature of 380°C for a period of 2 hours. The glass experienced a compressive stress of 95.33 MPa corresponding to a depth of 174.79 μm. After immersion in the first bath, a second ion exchange treatment of the glass was performed. The second ion exchange bath contained 10 wt % NaNO 3 and 90 wt % KNO 3 . The glass substrate was immersed in the second ion exchange bath at a temperature of 380°C for 40 minutes. The material experienced a compressive stress of 714.11 MPa corresponding to a depth of 6.74 μm. The strength of the glass is increased after the glass has been chemically strengthened by the methods described above. Since the values of CS, CS_TP, DOL_TP and DOL_ZERO are derived from the fitting results of FSM-6000 and SLP-1000 (SLP-2000), the fitting values obtained in this exemplary embodiment are: the maximum compressive stress CS is 714.10 MPa, the compression The depth DOL_ZERO is 176.44 μm, the compressive stress at the inflection point CS_TP is 271.64 MPa, and the layer depth at the inflection point DOL_TP is 2.03 μm. The stress area and angle are then determined from the CS, CS_TP, DOL_TP, and DOL_ZERO values. The ratio of the first compressive stress A to the second compressive stress B (|(A/B)|^0.5) was 4.4. The ratio of the third compressive stress C to the fourth compressive stress D (|(C/D) |^0.5) was 1.2. Since the ratio of the first compressive stress A to the second compressive stress B has a higher value, the chemically strengthened glass has higher strength.

所描述之雙離子交換過程主要受玻璃之組合物影響。因此,玻璃之組合物是在其經歷強化過程之前考慮之重要因素。適合之玻璃組合物有助於優化化學強化過程,本文中為雙離子交換過程。The dual ion exchange process described is primarily affected by the composition of the glass. Therefore, the composition of the glass is an important factor to consider before it undergoes the strengthening process. A suitable glass composition helps to optimize the chemical strengthening process, herein a dual ion exchange process.

本發明描述組合物之各種組分之最佳莫耳%。玻璃組合物包含約50莫耳%至約75莫耳%之SiO2 、約5莫耳%至約25莫耳%之Al2 O3 、約0莫耳%至約10莫耳%之B2 O3 、約0莫耳%至約15莫耳%之Na2 O、約5莫耳%至約17莫耳%之Li2 O、約0莫耳%至約2莫耳%之K2 O、約0莫耳%至約7莫耳%之MgO、約0莫耳%至約3莫耳%之CaO、約0莫耳%至約7莫耳%之P2 O5 、約0莫耳%至約7莫耳%之ZnO及約0莫耳%至約7莫耳%之ZrO2 。玻璃組合物亦包括一或多種精煉劑,例如,約0莫耳%至約2.5莫耳%之SnO2 、約0莫耳%至約2.5莫耳%之Fe2 O3 、約0莫耳%至約2莫耳%之CeO2 ,以及其他精煉劑,如氯化物及硫酸鹽。此外,玻璃組合物進一步包括約0莫耳%至約2莫耳%之TiO2The present invention describes the optimum molar % of the various components of the composition. The glass composition comprises about 50 mol % to about 75 mol % SiO 2 , about 5 mol % to about 25 mol % Al 2 O 3 , about 0 mol % to about 10 mol % B 2 O3 , about 0 mol% to about 15 mol% Na2O, about 5 mol% to about 17 mol% Li2O , about 0 mol% to about 2 mol% K2O , about 0 mol % to about 7 mol % MgO, about 0 mol % to about 3 mol % CaO, about 0 mol % to about 7 mol % P 2 O 5 , about 0 mol % % to about 7 mol % ZnO and about 0 mol % to about 7 mol % ZrO 2 . The glass composition also includes one or more refining agents, for example, about 0 mol % to about 2.5 mol % SnO 2 , about 0 mol % to about 2.5 mol % Fe 2 O 3 , about 0 mol % To about 2 mol% CeO2, and other refining agents such as chlorides and sulfates. Additionally, the glass composition further includes about 0 mol% to about 2 mol% TiO2 .

表3說明本發明之例示性化學強化玻璃之非限制性、例示性組合物。用於鹼金屬氧化物及鹼土金屬氧化物之源材料選自由碳酸鹽及硝酸鹽組成之群。舉例而言,在下表3-8中,Na2 O(C)定義用於鈉(Na)之源材料為碳酸鈉。類似地,Na2 O(N)定義用於鈉(Na)之源材料為硝酸鈉。 莫耳 % 1 2 3 4 5 6 7 8 9 10 11 12 13 14 SiO2 67.28 65.67 66.03 66.28 67.47 67.14 65.91 64.41 64.41 64.41 66.01 64.91 65.91 64.71 Al2 O3 10.18 13.37 13.36 13.52 9.86 9.86 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 B2 O3 4.26 0.00 0.00 0.00 0.00 0.00 0.00 1.50 2.00 1.50 1.50 1.50 2.00 1.50 Na2 O (C) 9.40 10.99 11.13 11.04 10.87 10.76 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 Na2 O (N) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li2 O (C) 5.56 5.27 5.42 5.46 8.34 8.47 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 K2 O (C) 0.43 0.00 0.00 0.00 0.72 1.19 0.00 0.00 1.00 0.50 0.90 0.70 0.90 0.70 MgO (C) 0.00 0.00 3.08 0.00 2.64 2.48 0.00 0.00 2.00 3.00 1.00 1.10 0.50 0.70 CaO (C) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZnO 2.81 3.52 0.00 2.93 0.00 0.00 3.52 3.52 0.00 0.00 0.00 1.20 0.00 1.80 ZrO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SnO2 0.080 0.080 0.080 0.080 0.100 0.100 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 Fe2 O3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P2 O5 0.00 1.10 0.90 0.70 0.00 0.00 2.00 2.00 2.00 2.00 2.00 2.00 2.10 2.00 TiO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 總計 100.00 100.00 100.00 100.01 100.00 100.00 100.01 100.01 99.99 99.99 99.99 99.99 99.99 99.99 R2 O 15.39 16.26 16.55 16.50 19.93 20.42 16.50 16.50 17.50 17.00 17.40 17.20 17.40 17.20 RO 0.00 0.00 3.08 0.00 2.64 2.48 0.00 0.00 2.00 3.00 1.00 1.10 0.50 0.70 Al2 O3 / R2 O 0.66 0.82 0.81 0.82 0.49 0.48 0.73 0.73 0.69 0.71 0.69 0.7 0.69 0.70 表3:化學強化玻璃之例示性組合物 表4說明本發明之例示性化學強化玻璃之非限制性、例示性組合物。 莫耳 % 15 16 17 18 19 20 21 22 23 24 25 26 27 28 SiO2 64.71 61.85 63.61 65.90 65.90 65.98 67.05 68.91 65.74 70.88 72.23 71.90 71.13 69.12 Al2 O3 12.00 16.19 14.00 8.50 8.50 8.51 10.46 10.60 15.26 9.32 9.16 9.40 9.56 13.54 B2 O3 1.50 0.00 1.50 0.00 0.00 0.00 0.00 0.00 0.41 1.15 1.53 3.05 1.66 2.42 Na2 O (C) 10.00 11.89 10.00 10.40 10.40 10.41 10.46 8.70 8.65 5.58 5.67 5.96 5.37 6.40 Na2 O (N) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li2 O (C) 6.50 6.49 6.50 12.10 12.10 12.11 10.69 8.80 7.40 8.09 8.49 8.93 7.98 6.88 K2 O (C) 0.90 0.00 0.50 0.00 0.00 0.00 0.11 0.00 0.00 0.10 0.18 0.00 0.32 0.00 MgO (C) 0.50 0.00 0.20 2.90 0.00 0.00 1.13 0.00 0.30 4.68 0.00 0.00 3.78 1.26 CaO (C) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZnO 1.80 1.20 1.60 0.00 2.90 0.00 0.00 0.00 0.00 0.00 2.66 0.68 0.00 0.00 ZrO2 0.00 0.00 0.00 0.00 0.00 2.90 0.00 2.90 0.00 0.00 0.00 0.00 0.00 0.00 SnO2 0.080 0.080 0.080 0.200 0.200 0.080 0.100 0.080 0.200 0.200 0.080 0.080 0.200 0.200 Fe2 O3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P2 O5 2.00 2.30 2.00 0.00 0.00 0.00 0.00 0.00 2.05 0.00 0.00 0.00 0.00 0.19 TiO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 總計 99.99 100.00 99.99 100.00 100.00 99.99 100.00 99.99 100.01 100.00 100.00 100.00 100.00 100.01 R2 O 17.40 18.38 17.00 22.50 22.50 22.52 21.26 17.50 16.05 13.77 14.34 14.89 13.67 13.28 RO 0.50 0.00 0.20 2.90 0.00 0.00 1.13 0.00 0.30 4.68 0.00 0.00 3.78 1.26 Al2 O3 / R2 O 0.69 0.88 0.82 0.38 0.38 0.38 0.49 0.61 0.95 0.68 0.64 0.63 0.70 1.02 表4:化學強化玻璃之例示性組合物 表5說明本發明之例示性化學強化玻璃之非限制性、例示性組合物。 莫耳 % 29 30 31 32 33 34 35 36 37 38 39 40 41 42 SiO2 71.17 62.20 67.28 68.02 67.37 64.10 62.94 69.92 61.61 60.04 64.00 68.18 69.45 69.45 Al2 O3 9.48 16.58 10.18 13.94 10.89 15.00 13.79 12.60 14.90 12.04 15.98 14.56 14.50 14.50 B2 O3 0.76 0.19 4.26 1.42 0.00 2.00 1.60 0.00 2.30 1.90 1.31 0.59 0.08 0.08 Na2 O (C) 5.49 9.00 5.99 7.21 6.06 6.30 6.58 6.22 6.90 5.85 6.20 5.95 5.19 5.19 Na2 O (N) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li2 O (C) 8.45 8.22 8.97 8.03 9.09 8.00 9.88 10.55 10.40 12.19 9.90 10.47 10.12 10.13 K2 O (C) 0.00 0.83 0.43 0.00 0.00 0.80 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MgO (C) 4.45 0.35 0.00 1.15 3.30 1.06 0.00 0.28 1.80 1.40 0.00 0.00 0.45 0.45 CaO (C) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.60 0.00 0.00 0.00 0.00 ZnO 0.00 0.00 2.81 0.00 0.00 0.66 2.00 0.00 0.00 0.00 1.13 0.00 0.00 0.00 ZrO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 SnO2 0.200 0.080 0.080 0.200 0.080 0.080 0.080 0.100 0.080 0.080 0.080 0.100 0.200 0.200 Fe2 O3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P2 O5 0.00 2.55 0.00 0.02 3.20 2.00 2.30 0.33 2.00 1.90 1.40 0.15 0.01 0.00 TiO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 總計 100.00 100.00 100.00 99.99 99.99 100.00 100.00 100.00 99.99 100.00 100.00 100.00 100.00 100.00 R2 O 13.94 18.05 15.39 15.24 15.15 15.10 17.29 16.77 17.30 18.04 16.10 16.42 15.31 15.32 RO 4.45 0.35 0.00 1.15 3.30 1.06 0.00 0.28 1.80 3.00 0.00 0.00 0.45 0.45 Al2 O3 / R2 O 0.68 0.92 0.66 0.91 0.72 0.99 0.80 0.75 0.86 0.67 0.99 0.89 0.95 0.95 表5:化學強化玻璃之例示性組合物 表6說明本發明之例示性化學強化玻璃之非限制性、例示性組合物。 莫耳 % 43 44 45 46 47 48 49 50 51 52 53 54 55 56 SiO2 61.85 70.85 67.47 67.54 71.22 67.14 66.88 67.14 64.06 64.65 61.05 63.00 64.14 64.12 Al2 O3 16.19 13.88 14.49 9.89 12.87 9.99 11.05 10.89 12.91 12.59 13.99 12.00 12.50 12.00 B2 O3 0.00 0.22 0.08 0.40 0.00 0.40 0.40 0.40 0.00 0.00 0.40 1.50 1.49 2.00 Na2 O (C) 6.49 3.99 4.64 3.50 3.94 3.50 3.51 3.50 3.48 3.50 3.50 10.00 8.37 8.40 Na2 O (N) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li2 O (C) 11.89 9.95 11.11 12.59 10.92 13.89 12.65 12.99 13.51 14.19 16.39 8.30 7.91 7.90 K2 O (C) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MgO (C) 0.00 0.91 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CaO (C) 0.00 0.00 0.00 3.00 0.00 2.00 2.41 2.00 2.98 2.00 1.60 0.00 0.00 0.00 ZnO 1.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.12 3.51 3.50 ZrO2 0.00 0.00 0.00 3.00 0.00 3.00 3.01 3.00 2.98 3.00 3.00 0.00 0.00 0.00 SnO2 0.080 0.200 0.200 0.080 0.200 0.080 0.080 0.080 0.080 0.080 0.080 0.082 0.083 0.082 Fe2 O3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P2 O5 2.30 0.00 1.84 0.00 0.87 0.00 0.00 0.00 0.00 0.00 0.00 2.00 1.99 2.00 TiO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 總計 100.00 100.00 100.01 100.00 100.02 100.00 99.99 100.00 100.00 100.01 100.01 100.00 100.00 100.00 R2 O 18.38 13.94 15.75 16.09 14.86 17.39 16.16 16.49 16.99 17.69 19.89 18.30 16.28 16.30 RO 0.00 0.91 0.18 3.00 0.00 2.00 2.41 2.00 2.98 2.00 1.60 0.00 0.00 0.00 Al2 O3 / R2 O 0.88 1.00 0.92 0.61 0.87 0.57 0.68 0.66 0.76 0.71 0.70 0.66 0.77 0.74 表6:化學強化玻璃之例示性組合物 表7說明本發明之例示性化學強化玻璃之非限制性、例示性組合物。 莫耳 % 57 58 59 60 61 62 63 64 65 66 67 68 69 70 SiO2 65.80 64.97 64.54 64.12 65.42 65.42 65.41 61.59 59.42 60.42 60.42 58.42 58.42 59.00 Al2 O3 12.42 11.06 11.53 11.98 12.00 12.00 12.00 15.56 18.11 19.11 19.11 18.11 17.11 18.00 B2 O3 2.00 1.99 1.99 1.50 1.78 1.78 1.78 0.34 4.20 3.20 3.20 5.20 5.20 4.50 Na2 O (C) 10.00 8.37 8.37 9.98 8.39 6.89 8.39 9.49 9.56 8.56 8.56 9.56 9.56 9.50 Na2 O (N) 0.00 0.00 0.00 0.00 0.00 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li2 O (C) 6.50 7.87 7.87 6.82 6.82 6.82 6.82 7.26 6.35 6.35 5.35 6.35 7.35 6.50 K2 O (C) 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.14 0.14 0.14 0.14 0.22 MgO (C) 0.20 0.00 0.00 0.00 0.00 0.00 0.00 1.28 0.82 0.82 1.32 0.82 0.82 0.60 CaO (C) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZnO 0.00 3.49 3.49 3.51 3.51 3.51 3.51 2.04 0.00 0.00 0.00 0.00 0.00 0.00 ZrO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SnO2 0.082 0.082 0.082 0.082 0.082 0.073 0.082 0.040 0.020 0.020 0.020 0.020 0.023 0.080 Fe2 O3 0.000 0.000 0.000 0.000 0.000 0.009 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P2 O5 2.20 2.18 2.18 2.00 2.00 2.00 2.00 2.40 1.37 1.37 1.87 1.37 1.37 1.60 TiO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 總計 100.00 100.00 100.05 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 R2 O 17.30 16.24 16.24 16.80 15.21 15.21 15.21 16.75 16.05 15.05 14.05 16.05 17.05 16.22 RO 0.20 0.00 0.00 0.00 0.00 0.00 0.00 1.28 0.82 0.82 1.32 0.82 0.82 0.60 Al2 O3 / R2 O 0.72 0.68 0.71 0.71 0.79 0.79 0.79 0.93 1.13 1.27 1.36 1.13 1.00 1.11 表7:化學強化玻璃之例示性組合物 表8說明本發明之例示性化學強化玻璃之非限制性、例示性組合物。 莫耳 % 71 72 73 74 75 76 77 78 79 80 SiO2 57.25 57.99 56.91 57.63 57.00 57.85 57.43 57.43 58.70 55.16 Al2 O3 17.45 17.68 18.10 17.11 17.74 17.25 18.10 18.10 17.11 17.59 B2 O3 5.41 6.44 7.10 7.10 6.00 5.20 5.20 5.20 5.77 4.24 Na2 O (C) 9.21 9.33 8.50 8.90 9.50 9.70 9.56 9.56 9.00 9.10 Na2 O (N) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li2 O (C) 8.35 6.20 7.10 6.90 7.35 7.70 7.35 6.91 7.35 11.50 K2 O (C) 0.13 0.14 0.14 0.14 0.51 0.65 0.14 0.58 0.14 0.08 MgO (C) 0.79 0.80 0.76 0.82 0.45 0.45 0.82 0.82 0.48 1.14 CaO (C) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZrO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SnO2 0.084 0.085 0.023 0.023 0.080 0.025 0.023 0.025 0.075 0.020 Fe2 O3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P2 O5 1.32 1.34 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.07 TiO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0006 0.11 總計 100.00 100.00 100.00 100.00 100.00 100.20 100.00 100.00 100.00 100.00 R2 O 17.69 15.67 15.74 15.94 17.36 18.05 17.05 17.05 16.49 20.68 RO 0.79 0.80 0.76 0.82 0.45 0.45 0.82 0.82 0.48 1.14 Al2 O3 / R2 O 0.99 1.13 1.15 1.07 1.02 0.96 1.06 1.06 1.04 0.85 表8:化學強化玻璃之例示性組合物Table 3 illustrates non-limiting, exemplary compositions of exemplary chemically strengthened glasses of the present invention. Source materials for alkali metal oxides and alkaline earth metal oxides are selected from the group consisting of carbonates and nitrates. For example, in Tables 3-8 below, Na2O ( C) defines the source material for sodium (Na) as sodium carbonate. Similarly, Na2O ( N) defines the source material for sodium (Na) as sodium nitrate. mol % 1 2 3 4 5 6 7 8 9 10 11 12 13 14 SiO2 67.28 65.67 66.03 66.28 67.47 67.14 65.91 64.41 64.41 64.41 66.01 64.91 65.91 64.71 Al 2 O 3 10.18 13.37 13.36 13.52 9.86 9.86 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 B 2 O 3 4.26 0.00 0.00 0.00 0.00 0.00 0.00 1.50 2.00 1.50 1.50 1.50 2.00 1.50 Na 2 O (C) 9.40 10.99 11.13 11.04 10.87 10.76 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 Na 2 O (N) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li 2 O (C) 5.56 5.27 5.42 5.46 8.34 8.47 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 K 2 O (C) 0.43 0.00 0.00 0.00 0.72 1.19 0.00 0.00 1.00 0.50 0.90 0.70 0.90 0.70 MgO (C) 0.00 0.00 3.08 0.00 2.64 2.48 0.00 0.00 2.00 3.00 1.00 1.10 0.50 0.70 CaO (C) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZnO 2.81 3.52 0.00 2.93 0.00 0.00 3.52 3.52 0.00 0.00 0.00 1.20 0.00 1.80 ZrO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SnO 2 0.080 0.080 0.080 0.080 0.100 0.100 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 Fe 2 O 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P 2 O 5 0.00 1.10 0.90 0.70 0.00 0.00 2.00 2.00 2.00 2.00 2.00 2.00 2.10 2.00 TiO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 total 100.00 100.00 100.00 100.01 100.00 100.00 100.01 100.01 99.99 99.99 99.99 99.99 99.99 99.99 R 2 O 15.39 16.26 16.55 16.50 19.93 20.42 16.50 16.50 17.50 17.00 17.40 17.20 17.40 17.20 RO 0.00 0.00 3.08 0.00 2.64 2.48 0.00 0.00 2.00 3.00 1.00 1.10 0.50 0.70 Al 2 O 3 / R 2 O 0.66 0.82 0.81 0.82 0.49 0.48 0.73 0.73 0.69 0.71 0.69 0.7 0.69 0.70 Table 3: Exemplary Compositions of Chemically Strengthened Glasses Table 4 illustrates non-limiting, exemplary compositions of exemplary chemically strengthened glasses of the present invention. mol % 15 16 17 18 19 20 twenty one twenty two twenty three twenty four 25 26 27 28 SiO2 64.71 61.85 63.61 65.90 65.90 65.98 67.05 68.91 65.74 70.88 72.23 71.90 71.13 69.12 Al 2 O 3 12.00 16.19 14.00 8.50 8.50 8.51 10.46 10.60 15.26 9.32 9.16 9.40 9.56 13.54 B 2 O 3 1.50 0.00 1.50 0.00 0.00 0.00 0.00 0.00 0.41 1.15 1.53 3.05 1.66 2.42 Na 2 O (C) 10.00 11.89 10.00 10.40 10.40 10.41 10.46 8.70 8.65 5.58 5.67 5.96 5.37 6.40 Na 2 O (N) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li 2 O (C) 6.50 6.49 6.50 12.10 12.10 12.11 10.69 8.80 7.40 8.09 8.49 8.93 7.98 6.88 K 2 O (C) 0.90 0.00 0.50 0.00 0.00 0.00 0.11 0.00 0.00 0.10 0.18 0.00 0.32 0.00 MgO (C) 0.50 0.00 0.20 2.90 0.00 0.00 1.13 0.00 0.30 4.68 0.00 0.00 3.78 1.26 CaO (C) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZnO 1.80 1.20 1.60 0.00 2.90 0.00 0.00 0.00 0.00 0.00 2.66 0.68 0.00 0.00 ZrO 2 0.00 0.00 0.00 0.00 0.00 2.90 0.00 2.90 0.00 0.00 0.00 0.00 0.00 0.00 SnO 2 0.080 0.080 0.080 0.200 0.200 0.080 0.100 0.080 0.200 0.200 0.080 0.080 0.200 0.200 Fe 2 O 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P 2 O 5 2.00 2.30 2.00 0.00 0.00 0.00 0.00 0.00 2.05 0.00 0.00 0.00 0.00 0.19 TiO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 total 99.99 100.00 99.99 100.00 100.00 99.99 100.00 99.99 100.01 100.00 100.00 100.00 100.00 100.01 R 2 O 17.40 18.38 17.00 22.50 22.50 22.52 21.26 17.50 16.05 13.77 14.34 14.89 13.67 13.28 RO 0.50 0.00 0.20 2.90 0.00 0.00 1.13 0.00 0.30 4.68 0.00 0.00 3.78 1.26 Al 2 O 3 / R 2 O 0.69 0.88 0.82 0.38 0.38 0.38 0.49 0.61 0.95 0.68 0.64 0.63 0.70 1.02 Table 4: Exemplary Compositions of Chemically Strengthened Glasses Table 5 illustrates non-limiting, exemplary compositions of exemplary chemically strengthened glasses of the present invention. mol % 29 30 31 32 33 34 35 36 37 38 39 40 41 42 SiO2 71.17 62.20 67.28 68.02 67.37 64.10 62.94 69.92 61.61 60.04 64.00 68.18 69.45 69.45 Al 2 O 3 9.48 16.58 10.18 13.94 10.89 15.00 13.79 12.60 14.90 12.04 15.98 14.56 14.50 14.50 B 2 O 3 0.76 0.19 4.26 1.42 0.00 2.00 1.60 0.00 2.30 1.90 1.31 0.59 0.08 0.08 Na 2 O (C) 5.49 9.00 5.99 7.21 6.06 6.30 6.58 6.22 6.90 5.85 6.20 5.95 5.19 5.19 Na 2 O (N) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li 2 O (C) 8.45 8.22 8.97 8.03 9.09 8.00 9.88 10.55 10.40 12.19 9.90 10.47 10.12 10.13 K 2 O (C) 0.00 0.83 0.43 0.00 0.00 0.80 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MgO (C) 4.45 0.35 0.00 1.15 3.30 1.06 0.00 0.28 1.80 1.40 0.00 0.00 0.45 0.45 CaO (C) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.60 0.00 0.00 0.00 0.00 ZnO 0.00 0.00 2.81 0.00 0.00 0.66 2.00 0.00 0.00 0.00 1.13 0.00 0.00 0.00 ZrO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 SnO 2 0.200 0.080 0.080 0.200 0.080 0.080 0.080 0.100 0.080 0.080 0.080 0.100 0.200 0.200 Fe 2 O 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P 2 O 5 0.00 2.55 0.00 0.02 3.20 2.00 2.30 0.33 2.00 1.90 1.40 0.15 0.01 0.00 TiO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 total 100.00 100.00 100.00 99.99 99.99 100.00 100.00 100.00 99.99 100.00 100.00 100.00 100.00 100.00 R 2 O 13.94 18.05 15.39 15.24 15.15 15.10 17.29 16.77 17.30 18.04 16.10 16.42 15.31 15.32 RO 4.45 0.35 0.00 1.15 3.30 1.06 0.00 0.28 1.80 3.00 0.00 0.00 0.45 0.45 Al 2 O 3 / R 2 O 0.68 0.92 0.66 0.91 0.72 0.99 0.80 0.75 0.86 0.67 0.99 0.89 0.95 0.95 Table 5: Exemplary Compositions of Chemically Strengthened Glasses Table 6 illustrates non-limiting, exemplary compositions of exemplary chemically strengthened glasses of the present invention. mol % 43 44 45 46 47 48 49 50 51 52 53 54 55 56 SiO2 61.85 70.85 67.47 67.54 71.22 67.14 66.88 67.14 64.06 64.65 61.05 63.00 64.14 64.12 Al 2 O 3 16.19 13.88 14.49 9.89 12.87 9.99 11.05 10.89 12.91 12.59 13.99 12.00 12.50 12.00 B 2 O 3 0.00 0.22 0.08 0.40 0.00 0.40 0.40 0.40 0.00 0.00 0.40 1.50 1.49 2.00 Na 2 O (C) 6.49 3.99 4.64 3.50 3.94 3.50 3.51 3.50 3.48 3.50 3.50 10.00 8.37 8.40 Na 2 O (N) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li 2 O (C) 11.89 9.95 11.11 12.59 10.92 13.89 12.65 12.99 13.51 14.19 16.39 8.30 7.91 7.90 K 2 O (C) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MgO (C) 0.00 0.91 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CaO (C) 0.00 0.00 0.00 3.00 0.00 2.00 2.41 2.00 2.98 2.00 1.60 0.00 0.00 0.00 ZnO 1.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.12 3.51 3.50 ZrO 2 0.00 0.00 0.00 3.00 0.00 3.00 3.01 3.00 2.98 3.00 3.00 0.00 0.00 0.00 SnO 2 0.080 0.200 0.200 0.080 0.200 0.080 0.080 0.080 0.080 0.080 0.080 0.082 0.083 0.082 Fe 2 O 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P 2 O 5 2.30 0.00 1.84 0.00 0.87 0.00 0.00 0.00 0.00 0.00 0.00 2.00 1.99 2.00 TiO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 total 100.00 100.00 100.01 100.00 100.02 100.00 99.99 100.00 100.00 100.01 100.01 100.00 100.00 100.00 R 2 O 18.38 13.94 15.75 16.09 14.86 17.39 16.16 16.49 16.99 17.69 19.89 18.30 16.28 16.30 RO 0.00 0.91 0.18 3.00 0.00 2.00 2.41 2.00 2.98 2.00 1.60 0.00 0.00 0.00 Al 2 O 3 / R 2 O 0.88 1.00 0.92 0.61 0.87 0.57 0.68 0.66 0.76 0.71 0.70 0.66 0.77 0.74 Table 6: Exemplary Compositions of Chemically Strengthened Glasses Table 7 illustrates non-limiting, exemplary compositions of exemplary chemically strengthened glasses of the present invention. mol % 57 58 59 60 61 62 63 64 65 66 67 68 69 70 SiO2 65.80 64.97 64.54 64.12 65.42 65.42 65.41 61.59 59.42 60.42 60.42 58.42 58.42 59.00 Al 2 O 3 12.42 11.06 11.53 11.98 12.00 12.00 12.00 15.56 18.11 19.11 19.11 18.11 17.11 18.00 B 2 O 3 2.00 1.99 1.99 1.50 1.78 1.78 1.78 0.34 4.20 3.20 3.20 5.20 5.20 4.50 Na 2 O (C) 10.00 8.37 8.37 9.98 8.39 6.89 8.39 9.49 9.56 8.56 8.56 9.56 9.56 9.50 Na 2 O (N) 0.00 0.00 0.00 0.00 0.00 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li 2 O (C) 6.50 7.87 7.87 6.82 6.82 6.82 6.82 7.26 6.35 6.35 5.35 6.35 7.35 6.50 K 2 O (C) 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.14 0.14 0.14 0.14 0.22 MgO (C) 0.20 0.00 0.00 0.00 0.00 0.00 0.00 1.28 0.82 0.82 1.32 0.82 0.82 0.60 CaO (C) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZnO 0.00 3.49 3.49 3.51 3.51 3.51 3.51 2.04 0.00 0.00 0.00 0.00 0.00 0.00 ZrO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SnO 2 0.082 0.082 0.082 0.082 0.082 0.073 0.082 0.040 0.020 0.020 0.020 0.020 0.023 0.080 Fe 2 O 3 0.000 0.000 0.000 0.000 0.000 0.009 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P 2 O 5 2.20 2.18 2.18 2.00 2.00 2.00 2.00 2.40 1.37 1.37 1.87 1.37 1.37 1.60 TiO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 total 100.00 100.00 100.05 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 R 2 O 17.30 16.24 16.24 16.80 15.21 15.21 15.21 16.75 16.05 15.05 14.05 16.05 17.05 16.22 RO 0.20 0.00 0.00 0.00 0.00 0.00 0.00 1.28 0.82 0.82 1.32 0.82 0.82 0.60 Al 2 O 3 / R 2 O 0.72 0.68 0.71 0.71 0.79 0.79 0.79 0.93 1.13 1.27 1.36 1.13 1.00 1.11 Table 7: Exemplary Compositions of Chemically Strengthened Glasses Table 8 illustrates non-limiting, exemplary compositions of exemplary chemically strengthened glasses of the present invention. mol % 71 72 73 74 75 76 77 78 79 80 SiO2 57.25 57.99 56.91 57.63 57.00 57.85 57.43 57.43 58.70 55.16 Al 2 O 3 17.45 17.68 18.10 17.11 17.74 17.25 18.10 18.10 17.11 17.59 B 2 O 3 5.41 6.44 7.10 7.10 6.00 5.20 5.20 5.20 5.77 4.24 Na 2 O (C) 9.21 9.33 8.50 8.90 9.50 9.70 9.56 9.56 9.00 9.10 Na 2 O (N) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li 2 O (C) 8.35 6.20 7.10 6.90 7.35 7.70 7.35 6.91 7.35 11.50 K 2 O (C) 0.13 0.14 0.14 0.14 0.51 0.65 0.14 0.58 0.14 0.08 MgO (C) 0.79 0.80 0.76 0.82 0.45 0.45 0.82 0.82 0.48 1.14 CaO (C) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZrO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SnO 2 0.084 0.085 0.023 0.023 0.080 0.025 0.023 0.025 0.075 0.020 Fe 2 O 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P 2 O 5 1.32 1.34 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.07 TiO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0006 0.11 total 100.00 100.00 100.00 100.00 100.00 100.20 100.00 100.00 100.00 100.00 R 2 O 17.69 15.67 15.74 15.94 17.36 18.05 17.05 17.05 16.49 20.68 RO 0.79 0.80 0.76 0.82 0.45 0.45 0.82 0.82 0.48 1.14 Al 2 O 3 / R 2 O 0.99 1.13 1.15 1.07 1.02 0.96 1.06 1.06 1.04 0.85 Table 8: Exemplary Compositions of Chemically Strengthened Glasses

在例示性實施例中,玻璃組合物經歷兩步離子交換過程,該玻璃組合物包含約65.42 mol%之SiO2 、約1.78 mol%之B2 O3 、約12.00 mol%之Al2 O3 、約6.89 mol%之Na2 O (C)、約1.5 mol%之Na2 O (N)、約6.82 mol%之Li2 O (C)、約3.51 mol%之ZnO、約0.073 mol%之SnO2 、約0.009 mol%之Fe2 O3 及約2.00 mol%之P2 O5 。在第一離子交換中,鹼金屬浴包含40重量% NaNO3 及60重量% KNO3 。將此玻璃基板在390℃之溫度下浸沒於鹼金屬浴中持續4小時之時段。玻璃經歷對應於149.59 μm之深度之106.77 MPa之壓縮應力。在浸沒於第一浴中之後,進行玻璃之第二離子交換處理。第二離子交換浴包含100重量% KNO3 。將玻璃基板在390℃之溫度下浸沒於第二離子交換浴中12分鐘。材料經歷對應於6.81 μm之深度之1287.42 MPa之壓縮應力。在玻璃已藉由上文所描述之方法化學強化之後,玻璃之強度得以提高。由於CS、CS_TP、DOL_TP及DOL_ZERO之值來自FSM-6000及SLP-1000 (SLP-2000)之擬合結果,因此本例示性實施例得到的擬合值為:最大壓縮應力CS為1289.04 MPa,壓縮深度DOL_ZERO為148.95 μm,拐點CS_TP處之壓縮應力為99.68 MPa,且拐點DOL_TP處之層深度為4.88 μm。應力面積及角度接著由CS、CS_TP、DOL_TP及DOL_ZERO值確定。第一壓縮應力A與第二壓縮應力B之比率(|(A/B)|^0.5)為1.5。第三壓縮應力C與第四壓縮應力D之比率(|(C/D) |^0.5)為2.8。角度E與F之比率(|(E/F) -(E-F)|^0.5)為1。In an exemplary embodiment, a glass composition comprising about 65.42 mol % SiO 2 , about 1.78 mol % B 2 O 3 , about 12.00 mol % Al 2 O 3 , About 6.89 mol% Na2O (C), about 1.5 mol% Na2O ( N), about 6.82 mol% Li2O ( C), about 3.51 mol% ZnO, about 0.073 mol% SnO2 , about 0.009 mol % of Fe 2 O 3 and about 2.00 mol % of P 2 O 5 . In the first ion exchange, the alkali metal bath contained 40 wt % NaNO 3 and 60 wt % KNO 3 . The glass substrate was immersed in an alkali metal bath at a temperature of 390°C for a period of 4 hours. The glass experienced a compressive stress of 106.77 MPa corresponding to a depth of 149.59 μm. After immersion in the first bath, a second ion exchange treatment of the glass was performed. The second ion exchange bath contained 100 wt% KNO3 . The glass substrate was immersed in the second ion exchange bath at a temperature of 390°C for 12 minutes. The material experienced a compressive stress of 1287.42 MPa corresponding to a depth of 6.81 μm. The strength of the glass is increased after the glass has been chemically strengthened by the methods described above. Since the values of CS, CS_TP, DOL_TP and DOL_ZERO are derived from the fitting results of FSM-6000 and SLP-1000 (SLP-2000), the fitting values obtained in this exemplary embodiment are: the maximum compressive stress CS is 1289.04 MPa, and the compressive stress is 1289.04 MPa. The depth DOL_ZERO is 148.95 μm, the compressive stress at the inflection point CS_TP is 99.68 MPa, and the layer depth at the inflection point DOL_TP is 4.88 μm. The stress area and angle are then determined from the CS, CS_TP, DOL_TP and DOL_ZERO values. The ratio of the first compressive stress A to the second compressive stress B (|(A/B)|^0.5) was 1.5. The ratio of the third compressive stress C to the fourth compressive stress D (|(C/D) |^0.5) was 2.8. The ratio of the angle E to F (|(E/F)-(EF)|^0.5) is 1.

本發明提供用作蓋板玻璃之化學離子交換玻璃。具有高強度及高抗裂性之蓋板玻璃藉由經由雙離子交換過程之化學強化處理形成。與藉由物理強化方法強化之玻璃基板不同,蓋板玻璃不容易斷裂。具體地,本發明描述應力-DOL分佈及製定不等式,其適用於預測玻璃之強度以及處理參數,諸如時間及溫度。The present invention provides chemical ion exchange glass for use as cover glass. Cover glass with high strength and high crack resistance is formed by chemical strengthening through a double ion exchange process. Unlike glass substrates strengthened by physical strengthening methods, cover glass is not prone to breakage. Specifically, the present invention describes stress-DOL distributions and formulates inequalities that are suitable for predicting glass strength and processing parameters, such as time and temperature.

此類化學強化玻璃用於保護電子裝置之顯示屏。其用於觸摸面板顯示器及顯示屏之後蓋,如液晶顯示器(LCD)、場發射顯示器(FED)、電漿顯示器(PD)、電致發光顯示器(ELD)、有機發光二級體(OLED)顯示器、微型LED等。然而,蓋板玻璃不限於前述應用,且亦可用作例如觸摸面板顯示器之基板、太陽能電池之蓋板玻璃、磁盤基板、標牌基板、窗玻璃、建築內部及外部,汽車之內部顯示器及擋風玻璃、與各種運輸方式相關之窗戶等。Such chemically strengthened glass is used to protect the display screen of electronic devices. It is used in touch panel displays and display back covers such as Liquid Crystal Displays (LCD), Field Emission Displays (FED), Plasma Displays (PD), Electroluminescent Displays (ELD), Organic Light Emitting Diode (OLED) displays , Micro LED, etc. However, the cover glass is not limited to the aforementioned applications, and can also be used, for example, as a substrate for touch panel displays, cover glass for solar cells, disk substrates, signage substrates, window glass, building interiors and exteriors, automotive interior displays, and windshields Glass, windows associated with various modes of transport, etc.

在另一實施例中,蓋板玻璃用作與例如空運、海運或陸運之各種運輸方式相關之保護窗,且用於在非運輸應用中防風。此外,其用作防火玻璃。另外,蓋板玻璃亦用作硬盤中之基板。此外,其可用於半導體插入件及半導體載體中。藉由添加成核劑,其亦可用作陶瓷化形式之爐灶面。最後,蓋板玻璃在各種應用中用作塗層基板。In another embodiment, the cover glass is used as a protective window in connection with various modes of transportation, such as air, sea, or land, and for wind protection in non-transportation applications. Furthermore, it is used as fireproof glass. In addition, cover glass is also used as a substrate in hard disks. Furthermore, it can be used in semiconductor interposers and semiconductor carriers. By adding a nucleating agent, it can also be used as a cooktop in ceramified form. Finally, cover glass is used as a coated substrate in a variety of applications.

在一個特定實施例中,本發明亦聚焦於一種背面蓋板玻璃,其用於保護例如行動電話、智慧型手機、平板電腦、可穿戴裝置、數碼相機等電子裝置之背面。背面上使用之蓋板玻璃除了為裝置提供強度外,亦需要增強之電磁無線電信號傳輸。出於設計原因,著色不透明之外觀可為可能的。實現這一點之一種方法為在玻璃熔體中包括一或多種過渡元素。一或多種過渡元素可為Nb2 O5 、ZrO2 、Fe2 O3 、V2 O5 、Y2 O3 、MnO2 、NiO、CuO、Cr2 O3 、Co3 O4 、CoO、Co2 O3 等中之至少一者。除了製備化學離子交換玻璃以外,本發明亦有助於製備基於玻璃之製品,如玻璃陶瓷。上述模型有助於執行受控去玻化,以將玻璃轉化為主要結晶之玻璃陶瓷材料。此類玻璃陶瓷組合物包含約0莫耳%至約6莫耳%之TiO2In a specific embodiment, the present invention also focuses on a back cover glass for protecting the back of electronic devices such as mobile phones, smart phones, tablet computers, wearable devices, digital cameras, and the like. In addition to providing strength to the device, the cover glass used on the back also requires enhanced electromagnetic radio signal transmission. For design reasons, a tinted opaque appearance may be possible. One way to accomplish this is to include one or more transition elements in the glass melt. The one or more transition elements may be Nb 2 O 5 , ZrO 2 , Fe 2 O 3 , V 2 O 5 , Y 2 O 3 , MnO 2 , NiO, CuO, Cr 2 O 3 , Co 3 O 4 , CoO, Co At least one of 2 O 3 and the like. In addition to the preparation of chemical ion exchange glasses, the present invention also facilitates the preparation of glass-based articles, such as glass ceramics. The above model facilitates the implementation of controlled devitrification to transform the glass into a predominantly crystalline glass-ceramic material. Such glass-ceramic compositions contain from about 0 mol% to about 6 mol% TiO2 .

在另一實施例中,本發明進一步聚焦於玻璃組合物之額外應用。近來,隨著技術的進步,玻璃已被模製以形成3D曲面玻璃板。3D曲面玻璃板具有輕、薄、透明、清潔、防指紋、防眩光、堅硬、耐刮擦、耐候性好等優點。另外,趨向於在例如行動電話之電子裝置之顯示屏上使用3D曲面玻璃板。此外,此等玻璃不僅可保護或改良顯示屏,而且亦提供增強之電子傳輸。In another embodiment, the present invention is further focused on additional applications for the glass composition. Recently, as technology has advanced, glass has been molded to form 3D curved glass panels. The 3D curved glass plate has the advantages of light, thin, transparent, clean, anti-fingerprint, anti-glare, hard, scratch-resistant and weather-resistant. In addition, there is a trend to use 3D curved glass panels on display screens of electronic devices such as mobile phones. In addition, these glasses not only protect or improve the display, but also provide enhanced electron transport.

本發明藉由經由雙離子交換過程之化學強化處理提供具有更高效能強度、更好使用壽命、更高抗裂性及更高尖銳衝擊強度之蓋板玻璃。此外,本發明描述了計算曲線下面積及由曲線之切線形成之角度之表達式。CS-DOL分佈描述應力面積及各種反應參數,如雙離子交換過程之時間及溫度。CS-DOL分佈有助於理解及調整強化過程參數,以獲得適合之玻璃材料。The present invention provides a cover glass with higher performance strength, better service life, higher crack resistance and higher sharp impact strength by chemical strengthening treatment through a double ion exchange process. Furthermore, this disclosure describes expressions for calculating the area under the curve and the angle formed by the tangent to the curve. The CS-DOL distribution describes the stress area and various reaction parameters, such as the time and temperature of the double ion exchange process. The CS-DOL distribution helps to understand and adjust the strengthening process parameters to obtain suitable glass materials.

雖然已出於說明之目的闡述了典型實施例,但不應將前述描述視為對本發明或所附申請專利範圍之範疇的限制。因此,在不脫離本發明之精神及範疇之情況下,熟習此項技術者可進行各種修改、調適及替代。While typical embodiments have been described for purposes of illustration, the foregoing description should not be construed as limiting the scope of the invention or the scope of the appended claims. Accordingly, various modifications, adaptations, and substitutions can be made by those skilled in the art without departing from the spirit and scope of the present invention.

本發明的被認為新穎的特徵精確闡述於所附申請專利範圍中。本文中將結合隨附圖示描述本發明之實施例,提供隨附圖示係為了說明而非限制申請專利範圍之範疇,其中相同的標號表示相同的元件,且其中:The features of the invention believed to be novel are precisely set forth in the appended claims. Embodiments of the invention will be described herein in conjunction with the accompanying drawings, which are provided for the purpose of illustration and not to limit the scope of the claims, wherein like numerals refer to like elements, and wherein:

圖1為說明根據本發明之例示性實施例,對應於鹼金屬鋁矽酸鹽玻璃之雙離子交換強化過程之壓縮應力-離子交換層深度(CS-DOL)分佈圖的圖;1 is a graph illustrating a compressive stress-ion exchange layer depth (CS-DOL) profile corresponding to a double ion exchange strengthening process of an alkali metal aluminosilicate glass according to an exemplary embodiment of the present invention;

圖2為說明根據本發明之例示性實施例之CS-DOL分佈圖的圖,該分佈圖展示由鹼金屬鋁矽酸鹽玻璃之雙離子交換強化過程形成之壓縮應力面積;且2 is a graph illustrating a CS-DOL profile showing compressive stress areas formed by a double ion exchange strengthening process of alkali metal aluminosilicate glasses, according to an exemplary embodiment of the present invention; and

圖3為說明根據本發明之例示性實施例,估計鹼金屬鋁矽酸鹽玻璃之雙離子交換強化過程之第一步及第二步之時間之CS-DOL分佈圖的圖。3 is a graph illustrating a CS-DOL profile estimating the timing of the first and second steps of the double ion exchange strengthening process of alkali metal aluminosilicate glass according to an exemplary embodiment of the present invention.

Claims (14)

一種化學強化玻璃,其包含: 經歷雙離子交換過程之鹼金屬鋁矽酸鹽玻璃;以及 該鹼金屬鋁矽酸鹽玻璃之該雙離子交換過程之壓縮應力-層深度(CS-DOL)分佈,該CS-DOL分佈包含: 第一曲線a1 ,其定義該鹼金屬鋁矽酸鹽玻璃之第一步離子交換; 第二曲線a2 ,其定義該鹼金屬鋁矽酸鹽玻璃之第二步離子交換,其中該第一曲線a1 及該第二曲線a2 在該CS-DOL分佈中之拐點(DOL_TP, CS_TP)處相交,其中該第一曲線a1 自壓縮深度點(DOL_ZERO, 0)延伸至該拐點,其中該第二曲線a2 自最大壓縮應力點(0, CS)延伸至該拐點,且其中該第一曲線a1 外推至第一直線a11 且該第二曲線a2 外推至第二直線a22 ; 該第一直線a11 下之第一區域,其定義該鹼金屬鋁矽酸鹽玻璃之該第一步離子交換之第一壓縮應力面積A,其中該第一壓縮應力面積A為如由以下表達式定義之第一梯形面積: A = (CS_TP x DOL_ZERO x 0.5) + (CS_TP x DOL_TP),其中DOL_ZERO及DOL_TP以微米(μm)表示,CS_TP以MPa表示,且DOL_ZERO>DOL_TP;以及 該第二直線a22 下之第二區域,其定義該鹼金屬鋁矽酸鹽玻璃之該第二步離子交換之第二壓縮應力面積B,其中該第二壓縮應力面積B為如由以下表達式定義之第二梯形面積: B = (CS x DOL_TP x 0.5) + (CS_TP x DOL_TP),其中CS及CS_TP以MPa表示,DOL_TP以微米(μm)表示,且CS>CS_TP, 其中該第一壓縮應力面積及該第二壓縮應力面積A及B之比率在如由以下表達式定義之範圍內: 0.1≦ |(A/B)|^0.5 ≦5.2。A chemically strengthened glass comprising: an alkali metal aluminosilicate glass subjected to a double ion exchange process; and a compressive stress-depth of layer (CS-DOL) distribution of the double ion exchange process of the alkali metal aluminosilicate glass, The CS-DOL profile comprises: a first curve a 1 , which defines the first step of ion exchange of the alkali metal aluminosilicate glass; a second curve a 2 , which defines the second step of the alkali metal aluminosilicate glass Ion exchange, where the first curve a 1 and the second curve a 2 intersect at an inflection point (DOL_TP, CS_TP) in the CS-DOL distribution, where the first curve a 1 is from the compression depth point (DOL_ZERO, 0) extends to the inflection point, wherein the second curve a 2 extends from the point of maximum compressive stress (0, CS) to the inflection point, and wherein the first curve a 1 is extrapolated to the first straight line a 11 and the second curve a 2 is outside Pushed to the second straight line a 22 ; the first area under the first straight line a 11 , which defines the first compressive stress area A of the first step ion exchange of the alkali metal aluminosilicate glass, wherein the first compressive stress Area A is the area of the first trapezoid as defined by the following expression: A = (CS_TP x DOL_ZERO x 0.5) + (CS_TP x DOL_TP), where DOL_ZERO and DOL_TP are expressed in micrometers (μm), CS_TP is expressed in MPa, and DOL_ZERO >DOL_TP; and the second area under the second straight line a 22 , which defines the second compressive stress area B of the second-step ion exchange of the alkali metal aluminosilicate glass, wherein the second compressive stress area B is as follows The second trapezoid area is defined by the following expression: B = (CS x DOL_TP x 0.5) + (CS_TP x DOL_TP), where CS and CS_TP are expressed in MPa, DOL_TP is expressed in micrometers (μm), and CS>CS_TP, where the The ratio of the first compressive stress area and the second compressive stress areas A and B is within the range as defined by the following expression: 0.1≦|(A/B)|^0.5≦5.2. 如請求項1之化學強化玻璃,該CS-DOL分佈包含: 在自該壓縮深度點延伸至該最大壓縮應力點之直線a33 與該第一直線a11 及該第二直線a22 之間的第三區域,其定義第三壓縮應力面積C,其中該第三壓縮應力面積C由以下表達式定義: C = (CS x DOL_ZERO x 0.5) - (CS_TP x DOL_ZERO x 0.5 + CS_TP x DOL_TP + CS x DOL_TP x 0.5),其中CS及CS_TP以MPa表示且DOL_ZERO及DOL_TP以微米(μm)表示;以及 在該第一直線a11 及該第二直線a22 下之第四區域,其定義第四壓縮應力面積D,其中該第四壓縮應力面積D由以下表達式定義: D = (CS_TP x DOL_ZERO x 0.5 + CS_TP x DOL_TP + CS x DOL_TP x 0.5),其中CS及CS_TP以MPa表示且DOL_ZERO及DOL_TP以微米(μm)表示, 其中該第三壓縮應力面積及該第四壓縮應力面積C及D之比率在如由以下表達式定義之範圍內: 0.2 ≦ |(C/D) |^0.5 ≦ 6,且 其中該第三壓縮應力面積及該第四壓縮應力面積C及D之比率與該鹼金屬鋁矽酸鹽玻璃之該第一步離子交換及該第二步離子交換之反應溫度及持續時間成反比。The chemically strengthened glass of claim 1, the CS-DOL distribution comprises: the first straight line a 33 extending from the compression depth point to the maximum compressive stress point, the first straight line a 11 and the second straight line a 22 Three regions defining a third compressive stress area C, where the third compressive stress area C is defined by the following expression: C = (CS x DOL_ZERO x 0.5) - (CS_TP x DOL_ZERO x 0.5 + CS_TP x DOL_TP + CS x DOL_TP x 0.5), where CS and CS_TP are expressed in MPa and DOL_ZERO and DOL_TP are expressed in micrometers (μm); and a fourth area under the first straight line a 11 and the second straight line a 22 , which defines a fourth compressive stress area D , where the fourth compressive stress area D is defined by the following expression: D = (CS_TP x DOL_ZERO x 0.5 + CS_TP x DOL_TP + CS x DOL_TP x 0.5), where CS and CS_TP are expressed in MPa and DOL_ZERO and DOL_TP are expressed in micrometers (μm ) represents where the ratio of the third compressive stress area and the fourth compressive stress area C and D is within the range as defined by the following expression: 0.2 ≦ |(C/D) |^0.5 ≦ 6, and where the The ratio of the third compressive stress area and the fourth compressive stress area C and D is inversely proportional to the reaction temperature and duration of the first step ion exchange and the second step ion exchange of the alkali metal aluminosilicate glass. 如請求項1之化學強化玻璃,其中在該鹼金屬鋁矽酸鹽玻璃之該第一步離子交換中,該化學強化玻璃之該壓縮應力在60 MPa至650 MPa範圍內。The chemically strengthened glass of claim 1, wherein in the first step of ion exchange of the alkali metal aluminosilicate glass, the compressive stress of the chemically strengthened glass is in the range of 60 MPa to 650 MPa. 如請求項1之化學強化玻璃,其中在該鹼金屬鋁矽酸鹽玻璃之該第二步離子交換中,該化學強化玻璃之該壓縮應力在130 MPa至1400 MPa範圍內。The chemically strengthened glass of claim 1, wherein in the second step of ion exchange of the alkali metal aluminosilicate glass, the compressive stress of the chemically strengthened glass is in the range of 130 MPa to 1400 MPa. 如請求項1之化學強化玻璃,其中在該鹼金屬鋁矽酸鹽玻璃之該第一步離子交換中,該化學強化玻璃之該層深度在45 μm至210 μm範圍內。The chemically strengthened glass of claim 1, wherein in the first step of ion exchange of the alkali metal aluminosilicate glass, the layer depth of the chemically strengthened glass is in the range of 45 μm to 210 μm. 如請求項1之化學強化玻璃,其中在該鹼金屬鋁矽酸鹽玻璃之該第二步離子交換中,該化學強化玻璃之該層深度為小於60 μm。The chemically strengthened glass of claim 1, wherein in the second step of ion exchange of the alkali metal aluminosilicate glass, the layer depth of the chemically strengthened glass is less than 60 μm. 如請求項1之化學強化玻璃,其中在該鹼金屬鋁矽酸鹽玻璃之該第一步離子交換中,該鹼金屬鋁矽酸鹽玻璃浸沒於具有5-95重量% NaNO3 及5-95重量% KNO3 之鹽浴中。The chemically strengthened glass of claim 1, wherein in the first step of ion exchange of the alkali metal aluminosilicate glass, the alkali metal aluminosilicate glass is immersed in 5-95 wt % NaNO 3 and 5-95 wt% KNO3 in a salt bath. 如請求項7之化學強化玻璃,其中在該鹼金屬鋁矽酸鹽玻璃之該第一步離子交換中,該鹼金屬鋁矽酸鹽玻璃在大於300℃之溫度下浸沒於該鹽浴中。The chemically strengthened glass of claim 7, wherein in the first step of ion exchange of the alkali metal aluminosilicate glass, the alkali metal aluminosilicate glass is immersed in the salt bath at a temperature greater than 300°C. 如請求項7之化學強化玻璃,其中在該鹼金屬鋁矽酸鹽玻璃之該第一步離子交換中,該鹼金屬鋁矽酸鹽玻璃持續至少0.25小時之持續時間浸沒於該鹽浴中。The chemically strengthened glass of claim 7, wherein in the first step of ion exchange of the alkali metal aluminosilicate glass, the alkali metal aluminosilicate glass is immersed in the salt bath for a duration of at least 0.25 hours. 如請求項1之化學強化玻璃,其中在該鹼金屬鋁矽酸鹽玻璃之該第二步離子交換中,該鹼金屬鋁矽酸鹽玻璃浸沒於具有0-50%重量% NaNO3 及50-100重量% KNO3 之鹽浴中。The chemically strengthened glass of claim 1, wherein in the second step of ion exchange of the alkali metal aluminosilicate glass, the alkali metal aluminosilicate glass is immersed in 0-50% by weight NaNO 3 and 50- 100 wt% KNO3 in a salt bath. 如請求項10之化學強化玻璃,其中在該鹼金屬鋁矽酸鹽玻璃之該第二步離子交換中,該鹼金屬鋁矽酸鹽玻璃在大於300℃之溫度下浸沒於該鹽浴中。The chemically strengthened glass of claim 10, wherein in the second step of ion exchange of the alkali metal aluminosilicate glass, the alkali metal aluminosilicate glass is immersed in the salt bath at a temperature greater than 300°C. 如請求項10之化學強化玻璃,其中在該鹼金屬鋁矽酸鹽玻璃之該第二步離子交換中,該鹼金屬鋁矽酸鹽玻璃持續0.1小時至6.5小時之持續時間浸沒於該鹽浴中。The chemically strengthened glass of claim 10, wherein in the second step of ion exchange of the alkali metal aluminosilicate glass, the alkali metal aluminosilicate glass is immersed in the salt bath for a duration of 0.1 to 6.5 hours middle. 如請求項1之化學強化玻璃,其中該化學強化玻璃具有含量如下之組成: 50莫耳%至75莫耳%之SiO2 ; 5莫耳%至25莫耳%之Al2 O3 ; 0莫耳%至10莫耳%之B2 O3 ; 0莫耳%至15莫耳%之Na2 O; 5莫耳%至17莫耳%之Li2 O; 0莫耳%至2莫耳%之K2 O; 0莫耳%至7莫耳%之MgO; 0莫耳%至3莫耳%之CaO; 0莫耳%至7莫耳%之ZnO; 0莫耳%至7莫耳%之ZrO2 ; 0莫耳%至2.5莫耳%之Fe2 O3 ; 0莫耳%至2莫耳%之TiO2 ; 0莫耳%至2莫耳%之CeO2 ; 0莫耳%至7莫耳%之P2 O5 ;及 0莫耳%至2.5莫耳%之SnO2The chemically strengthened glass of claim 1, wherein the chemically strengthened glass has the following composition: 50 mol % to 75 mol % SiO 2 ; 5 mol % to 25 mol % Al 2 O 3 ; 0 mol % % to 10 mol% of B 2 O 3 ; 0 to 15 mol % of Na 2 O; 5 to 17 mol % of Li 2 O; 0 to 2 mol % 0 to 7 mol% of MgO; 0 to 3 mol% of CaO; 0 to 7 mol% of ZnO; 0 to 7 mol% of ZrO 2 ; 0 mol % to 2.5 mol % Fe 2 O 3 ; 0 mol % to 2 mol % TiO 2 ; 0 mol % to 2 mol % CeO 2 ; 0 mol % to 7 mol % of P 2 O 5 ; and 0 to 2.5 mol % of SnO 2 . 如請求項1之化學強化玻璃,該CS-DOL分佈包含: 自線性點(DOL_Linear, CS_Linear)延伸至該最大壓縮應力點之第三直線a3 ; 由該第三直線a3 在該線性點處相對於該DOL之軸線形成之角度E,其中該角度E由以下表達式定義: E = Arc Tangent ((CS- CS_Linear)/(DOL_Linear));以及 由自該拐點延伸至該最大壓縮應力點之該第二直線a22 在該拐點處相對於該DOL之軸線形成之角度F,且其中該角度F由以下表達式定義: F= Arc Tangent ((CS - CS_TP)/(DOL_TP)), 其中該等角度E及F之範圍由以下表達式定義: |(E/F) -(E-F)|^0.5 ≦ 4, 其中該等角度E及F之範圍與該鹼金屬鋁矽酸鹽玻璃之該雙離子交換過程之處理時間成正比。As claimed in the chemically strengthened glass of claim 1, the CS-DOL distribution comprises: a third straight line a 3 extending from a linear point (DOL_Linear, CS_Linear) to the point of maximum compressive stress; from the third straight line a 3 at the linear point The angle E formed with respect to the axis of the DOL, wherein the angle E is defined by the following expression: E = Arc Tangent ((CS-CS_Linear)/(DOL_Linear)); and from the point extending from the point of inflection to the point of maximum compressive stress The angle F formed by the second straight line a 22 at the inflection point with respect to the axis of the DOL, and where the angle F is defined by the following expression: F=Arc Tangent ((CS - CS_TP)/(DOL_TP)), where the The range of the equal angles E and F is defined by the following expression: |(E/F) -(EF)|^0.5 ≦ 4, wherein the range of the equal angles E and F is the same as the double angle of the alkali metal aluminosilicate glass. The processing time of the ion exchange process is proportional.
TW110127929A 2020-07-30 2021-07-29 Chemical ion exchange glass TW202210439A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN202021032695 2020-07-30
IN202021032695 2020-07-30

Publications (1)

Publication Number Publication Date
TW202210439A true TW202210439A (en) 2022-03-16

Family

ID=80233439

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110127929A TW202210439A (en) 2020-07-30 2021-07-29 Chemical ion exchange glass

Country Status (2)

Country Link
CN (1) CN114057410A (en)
TW (1) TW202210439A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI872506B (en) * 2022-04-15 2025-02-11 日商安瀚視特控股股份有限公司 Strengthened lithium-free aluminoborosilicate glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022181169A (en) * 2021-05-25 2022-12-07 Agc株式会社 Reasoning method, quality control method, chemically strengthened glass, reasoning program, storage medium, reasoning device, and chemically strengthened glass manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10442730B2 (en) * 2013-11-25 2019-10-15 Corning Incorporated Method for achieving a stress profile in a glass
DK3169639T3 (en) * 2014-07-25 2022-01-03 Corning Inc REINFORCED GLASS WITH DEEP COMPRESSION DEPTH
TWI680954B (en) * 2014-11-04 2020-01-01 美商康寧公司 Deep non-frangible stress profiles and methods of making
WO2018152845A1 (en) * 2017-02-27 2018-08-30 Schott Glass Technologies (Suzhou) Co. Ltd. Lithium containing aluminosilicate glass with low expansion after chemical toughening
US11523527B2 (en) * 2017-10-03 2022-12-06 Corning Incorporated Glass-based articles having crack resistant stress profiles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI872506B (en) * 2022-04-15 2025-02-11 日商安瀚視特控股股份有限公司 Strengthened lithium-free aluminoborosilicate glass

Also Published As

Publication number Publication date
CN114057410A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2018199046A1 (en) Chemically strengthened glass, and glass for chemical strengthening purposes
JP7431872B2 (en) Thin glass with improved bendability and chemical strengthening
JP6168288B2 (en) Tempered glass and tempered glass plate
US9156726B2 (en) Toughened glass substrate and process for producing same
TWI670246B (en) Glass composition, glass plate for chemical strengthening, tempered glass plate, and tempered glass substrate for display
US20130219966A1 (en) Method of manufacturing chemically strengthened glass plate
US9206079B2 (en) Chemically strengthened glass plate and method for manufacturing same
TWI577648B (en) Method for producing reinforced glass
JP6300177B2 (en) Method for producing tempered glass
JP6136008B2 (en) Tempered glass and tempered glass plate
TWI670245B (en) Glass for chemical strengthening, chemically strengthened glass, and method for producing chemically strengthened glass
JP2016044119A (en) Strengthened glass and method for producing the same
JP2015054790A (en) Antibacterial function-fitted strengthened glass and method for producing the same
CN115716715B (en) Chemically strengthened glass
TW202210439A (en) Chemical ion exchange glass
CN115244018A (en) High-performance strengthened glass
TW202219009A (en) Lithium aluminosilicate glass
TW202235392A (en) Ion exchangeable silicate glass
CN106458705A (en) Glass
JP2013245158A (en) Method for manufacturing tempered glass plate, method for manufacturing glass plate for tempering, tempered glass plate, and touch panel
CN113443839A (en) Cover glass strengthened using dual ion exchange
CN113443831A (en) Cover plate glass
WO2023243574A1 (en) Glass for chemical strengthening, and glass
CN117800618A (en) Chemically strengthened glass, method for producing chemically strengthened glass, electronic device product, and glass for chemical strengthening
JP6066382B2 (en) Tempered float glass substrate and manufacturing method thereof