[go: up one dir, main page]

TWI867682B - Manufacturing method of metal-clad laminate - Google Patents

Manufacturing method of metal-clad laminate Download PDF

Info

Publication number
TWI867682B
TWI867682B TW112130365A TW112130365A TWI867682B TW I867682 B TWI867682 B TW I867682B TW 112130365 A TW112130365 A TW 112130365A TW 112130365 A TW112130365 A TW 112130365A TW I867682 B TWI867682 B TW I867682B
Authority
TW
Taiwan
Prior art keywords
metal
layer
clad laminate
insulating resin
diamine
Prior art date
Application number
TW112130365A
Other languages
Chinese (zh)
Other versions
TW202346095A (en
Inventor
安藤智典
西山哲平
實森詠司
Original Assignee
日商日鐵化學材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日鐵化學材料股份有限公司 filed Critical 日商日鐵化學材料股份有限公司
Publication of TW202346095A publication Critical patent/TW202346095A/en
Application granted granted Critical
Publication of TWI867682B publication Critical patent/TWI867682B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/024Dielectric details, e.g. changing the dielectric material around a transmission line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/002Etching of the substrate by chemical or physical means by liquid chemical etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Non-Insulated Conductors (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

一種覆金屬積層板的製造方法,包括:所述第一單面覆金屬積層板與所述第二單面覆金屬積層板的準備步驟1;在所述第一絕緣樹脂層或所述第二絕緣樹脂層中的任一者或兩者上,積層由熱塑性樹脂或熱硬化性樹脂構成的作為所述黏著層的樹脂層的步驟2;在所述步驟2之後,熱壓接所述第一單面覆金屬積層板與所述第二單面覆金屬積層板的步驟3,使各自的絕緣樹脂層隔著所述黏著層彼此相對。黏著層是由熱塑性樹脂或熱硬化性樹脂構成,滿足(i)50℃下的儲存彈性係數為1800 MPa以下;(ii)180℃~260℃的溫度區域的儲存彈性係數的最大值為800 MPa以下;(iii)玻璃化轉變溫度(Tg)為180℃以下。A method for manufacturing a metal-clad laminate comprises: step 1 of preparing the first single-sided metal-clad laminate and the second single-sided metal-clad laminate; step 2 of laminating a resin layer made of a thermoplastic resin or a thermosetting resin as the adhesive layer on either or both of the first insulating resin layer or the second insulating resin layer; and step 3 of hot-pressing the first single-sided metal-clad laminate and the second single-sided metal-clad laminate after step 2 so that the respective insulating resin layers are opposed to each other via the adhesive layer. The adhesive layer is composed of a thermoplastic resin or a thermosetting resin and satisfies the following requirements: (i) the storage elastic modulus at 50°C is less than 1800 MPa; (ii) the maximum value of the storage elastic modulus in the temperature range of 180°C to 260°C is less than 800 MPa; and (iii) the glass transition temperature (Tg) is less than 180°C.

Description

覆金屬積層板的製造方法Manufacturing method of metal-clad laminate

本發明是有關於一種作為電子零件而有用的覆金屬積層板和電路基板。The present invention relates to a metal-clad laminate and a circuit substrate useful as electronic components.

近年來,伴隨著電子設備的小型化、輕量化、省空間化的進展,對於薄且輕量、具有可撓性並且即便反覆彎曲也具有優異的耐久性的可撓性印刷配線板(可撓性印刷電路(Flexible Printed Circuits,FPC))的需要增大。關於FPC,即便在有限的空間也可實現立體性且高密度的安裝,因此例如在硬式磁碟機(Hard Disk Drive,HDD)、數位影音光碟(Digital Video Disc,DVD)、智能手機等電子設備的可動部分的配線、或者電纜、連接器等零件中其用途逐漸擴大。In recent years, with the progress of miniaturization, lightness, and space saving of electronic equipment, there is an increasing demand for flexible printed wiring boards (Flexible Printed Circuits, FPCs) that are thin, lightweight, flexible, and have excellent durability even when bent repeatedly. FPCs can be installed three-dimensionally and at high density even in limited spaces, so their use is gradually expanding in wiring of movable parts of electronic equipment such as hard disk drives (HDDs), digital video discs (DVDs), and smart phones, as well as parts such as cables and connectors.

除了所述高密度化以外,設備的高性能化得到推進,因此也需要對於傳輸信號的高頻化的應對。在傳輸高頻信號時,在傳輸路徑中的傳輸損失大的情況下,會產生電信號的損耗或信號的推遲時間變長等不良情況。因此,今後在FPC中,傳輸損失的減少也變得重要。為了應對高頻信號傳輸,使用將更低介電常數、低介質損耗因數的液晶聚合物作為介電層的FPC,來代替作為FPC材料通常使用的聚醯亞胺。然而,液晶聚合物雖介電特性優異,但耐熱性或與金屬層的黏著性存在改善的餘地。In addition to the above-mentioned high density, the performance of equipment is being promoted, so it is also necessary to cope with the high frequency of the transmission signal. When transmitting high-frequency signals, if the transmission loss in the transmission path is large, it will cause undesirable conditions such as loss of electrical signals or prolonged signal delay time. Therefore, in the future, it will also be important to reduce transmission loss in FPC. In order to cope with high-frequency signal transmission, FPCs using liquid crystal polymers with lower dielectric constants and low dielectric loss factors as dielectric layers are used instead of polyimide commonly used as FPC materials. However, although liquid crystal polymers have excellent dielectric properties, there is room for improvement in heat resistance or adhesion to metal layers.

另外,氟系樹脂也作為顯示低介電常數、低介質損耗因數的聚合物廣為人知。例如,作為能夠應對高頻信號傳輸且黏著性優異的FPC材料,提出了在氟系樹脂層的兩面分別貼合具有熱塑性聚醯亞胺層和高耐熱性聚醯亞胺層的聚醯亞胺黏著膜而成的絕緣膜(專利文獻1)。專利文獻1的絕緣膜由於使用氟系樹脂,因此在介電特性方面優異,但尺寸穩定性存在課題,特別是在應用於FPC的情況下,擔心因蝕刻而引起的電路加工前後的尺寸變化變大。因此,難以增加氟系樹脂的厚度及提高厚度比率。In addition, fluorine-based resins are also widely known as polymers that exhibit low dielectric constants and low dielectric loss factors. For example, as an FPC material that can cope with high-frequency signal transmission and has excellent adhesion, an insulating film has been proposed in which a polyimide adhesive film having a thermoplastic polyimide layer and a high heat-resistant polyimide layer is bonded to both sides of a fluorine-based resin layer (Patent Document 1). Since the insulating film of Patent Document 1 uses a fluorine-based resin, it has excellent dielectric properties, but there are problems with dimensional stability. In particular, when applied to FPC, there is a concern that the dimensional change before and after circuit processing due to etching will increase. Therefore, it is difficult to increase the thickness of the fluorine-based resin and improve the thickness ratio.

且說,作為與電子材料中使用的黏著層有關的技術,提出了含有環氧樹脂和苯氧基樹脂的樹脂組合物或含有熱塑性聚醯亞胺和馬來醯亞胺化合物等的樹脂組合物在黏著片中的應用(專利文獻2、專利文獻3)。專利文獻2和專利文獻3的膜狀黏著片具有玻璃化轉變溫度低、對積層材料顯示高黏著性的優點。然而,專利文獻2和專利文獻3中,並未研究對高頻信號傳輸的應用的可能性或者對覆金屬積層板的黏著層的應用。 [現有技術文獻] [專利文獻] As a technology related to adhesive layers used in electronic materials, the application of resin compositions containing epoxy resins and phenoxy resins or resin compositions containing thermoplastic polyimide and maleimide compounds in adhesive sheets has been proposed (Patent Documents 2 and 3). The film-like adhesive sheets of Patent Documents 2 and 3 have the advantages of low glass transition temperatures and high adhesion to laminated materials. However, Patent Documents 2 and 3 do not study the possibility of application to high-frequency signal transmission or the application to adhesive layers of metal-clad laminates. [Prior Art Documents] [Patent Documents]

[專利文獻1]日本專利特開2017-24265號公報 [專利文獻2]日本專利第6191800號公報 [專利文獻3]日本專利第5553108號公報 [Patent Document 1] Japanese Patent Publication No. 2017-24265 [Patent Document 2] Japanese Patent Publication No. 6191800 [Patent Document 3] Japanese Patent Publication No. 5553108

[發明所要解決的課題] 本發明的目的在於提供一種即便在高頻傳輸中也能夠減少傳輸損失且尺寸穩定性優異的覆金屬積層板和電路基板。 [Problem to be solved by the invention] The purpose of the present invention is to provide a metal-clad laminate and a circuit substrate that can reduce transmission loss even in high-frequency transmission and have excellent dimensional stability.

[解決課題的技術手段] 本發明者等人進行了努力研究,結果發現通過在覆金屬積層板中使用玻璃化轉變溫度低、低彈性係數的黏著層,可解決所述課題,從而完成了本發明。 [Technical means for solving the problem] The inventors of the present invention have conducted diligent research and found that the problem can be solved by using an adhesive layer with a low glass transition temperature and a low elastic modulus in a metal-clad laminate, thereby completing the present invention.

本發明的覆金屬積層板是如下覆金屬積層板,包括: 第一單面覆金屬積層板,具有第一金屬層與積層於所述第一金屬層的至少一側的面上的第一絕緣樹脂層; 第二單面覆金屬積層板,具有第二金屬層與積層於所述第二金屬層的至少一側的面上的第二絕緣樹脂層;以及 黏著層,以抵接於所述第一絕緣樹脂層和所述第二絕緣樹脂層的方式配置,積層於所述第一單面覆金屬積層板與所述第二單面覆金屬積層板之間。 本發明的一種覆金屬積層板的製造方法包括所述第一單面覆金屬積層板與所述第二單面覆金屬積層板的準備步驟1;在所述第一絕緣樹脂層或所述第二絕緣樹脂層中的任一者或兩者上,積層由熱塑性樹脂或熱硬化性樹脂構成的作為所述黏著層的樹脂層的步驟2;在所述步驟2之後,熱壓接所述第一單面覆金屬積層板與所述第二單面覆金屬積層板的步驟3,使各自的絕緣樹脂層隔著所述黏著層彼此相對。 所述黏著層是由熱塑性樹脂或熱硬化性樹脂構成,滿足下述條件(i)~(iii): (i)50℃下的儲存彈性係數(storage elastic modulus)為1800 MPa以下; (ii)180℃~260℃的溫度區域的儲存彈性係數的最大值為800 MPa以下; (iii)玻璃化轉變溫度(Tg)為180℃以下。 The metal-clad laminate of the present invention is a metal-clad laminate as follows, comprising: A first single-sided metal-clad laminate having a first metal layer and a first insulating resin layer laminated on at least one side of the first metal layer; A second single-sided metal-clad laminate having a second metal layer and a second insulating resin layer laminated on at least one side of the second metal layer; and An adhesive layer is arranged in a manner abutting against the first insulating resin layer and the second insulating resin layer, and laminated between the first single-sided metal-clad laminate and the second single-sided metal-clad laminate. The manufacturing method of a metal-clad laminate of the present invention includes step 1 of preparing the first single-sided metal-clad laminate and the second single-sided metal-clad laminate; step 2 of laminating a resin layer composed of a thermoplastic resin or a thermosetting resin as the adhesive layer on either or both of the first insulating resin layer or the second insulating resin layer; and step 3 of hot-pressing the first single-sided metal-clad laminate and the second single-sided metal-clad laminate after step 2, so that the respective insulating resin layers are opposite to each other through the adhesive layer. The adhesive layer is composed of a thermoplastic resin or a thermosetting resin and meets the following conditions (i) to (iii): (i) the storage elastic modulus at 50°C is less than 1800 MPa; (ii) the maximum value of the storage elastic modulus in the temperature range of 180°C to 260°C is less than 800 MPa; (iii) the glass transition temperature (Tg) is less than 180°C.

本發明的覆金屬積層板的製造方法中,所述步驟2的所述樹脂層是塗布熱塑性樹脂、熱硬化性樹脂或其樹脂溶液並乾燥後的塗布膜。In the method for manufacturing a metal-clad laminate of the present invention, the resin layer in step 2 is a coating film obtained by coating a thermoplastic resin, a thermosetting resin or a resin solution thereof and drying it.

本發明的覆金屬積層板的製造方法中,所述第一絕緣樹脂層和所述第二絕緣樹脂層可均具有熱塑性聚醯亞胺層、非熱塑性聚醯亞胺層和熱塑性聚醯亞胺層依次積層而成的多層結構, 所述黏著層可與兩個所述熱塑性聚醯亞胺層接觸設置。 In the manufacturing method of the metal-clad laminate of the present invention, the first insulating resin layer and the second insulating resin layer may both have a multi-layer structure in which a thermoplastic polyimide layer, a non-thermoplastic polyimide layer and a thermoplastic polyimide layer are sequentially laminated, and the adhesive layer may be arranged in contact with the two thermoplastic polyimide layers.

[發明的效果] 本發明的覆金屬積層板通過使具有特定參數的黏著層介隔存在而貼合兩個單面覆金屬積層板的結構,能夠增加絕緣樹脂層的厚度,且能夠確保尺寸穩定性。另外,在應用於傳輸10 GHz以上的高頻信號的電路基板等中時,可減少傳輸損失。因此,在電路基板中可實現可靠性和良率的提高。 [Effect of the invention] The metal-clad laminate of the present invention has a structure in which two single-sided metal-clad laminates are bonded together with an adhesive layer having specific parameters interposed therebetween, thereby increasing the thickness of the insulating resin layer and ensuring dimensional stability. In addition, when applied to a circuit substrate that transmits high-frequency signals above 10 GHz, transmission loss can be reduced. Therefore, reliability and yield can be improved in the circuit substrate.

適宜參照圖式對本發明的實施方式進行說明。The embodiments of the present invention will be described with reference to the drawings as appropriate.

[覆金屬積層板] 圖1是表示本發明的一實施方式的覆金屬積層板的構成的示意圖。本實施方式的覆金屬積層板(C)具有利用黏著層(B)貼合一對單面覆金屬積層板的結構。即,覆金屬積層板(C)包括第一單面覆金屬積層板(C1)、第二單面覆金屬積層板(C2)、積層於這些第一單面覆金屬積層板(C1)和第二單面覆金屬積層板(C2)之間的黏著層(B)。此處,第一單面覆金屬積層板(C1)具有第一金屬層(M1)、以及積層於所述第一金屬層(M1)的至少一側的面上的第一絕緣樹脂層(P1)。第二單面覆金屬積層板(C2)具有第二金屬層(M2)、以及積層於所述第二金屬層(M2)的至少一側的面上的第二絕緣樹脂層(P2)。而且,黏著層(B)以抵接於第一絕緣樹脂層(P1)和第二絕緣樹脂層(P2)的方式配置。即,覆金屬積層板(C)具有第一金屬層(M1)/第一絕緣樹脂層(P1)/黏著層(B)/第二絕緣樹脂層(P2)/第二金屬層(M2)依次積層而成的結構。第一金屬層(M1)和第二金屬層(M2)分別位於最外側,在它們的內側配置有第一絕緣樹脂層(P1)和第二絕緣樹脂層(P2),進而在第一絕緣樹脂層(P1)和第二絕緣樹脂層(P2)之間介隔存在配置黏著層(B)。 [Metal-clad laminate] FIG. 1 is a schematic diagram showing the structure of a metal-clad laminate of an embodiment of the present invention. The metal-clad laminate (C) of this embodiment has a structure in which a pair of single-sided metal-clad laminates are bonded together using an adhesive layer (B). That is, the metal-clad laminate (C) includes a first single-sided metal-clad laminate (C1), a second single-sided metal-clad laminate (C2), and an adhesive layer (B) laminated between the first single-sided metal-clad laminate (C1) and the second single-sided metal-clad laminate (C2). Here, the first single-sided metal-clad laminate (C1) has a first metal layer (M1) and a first insulating resin layer (P1) laminated on at least one side of the first metal layer (M1). The second single-sided metal-clad laminate (C2) has a second metal layer (M2) and a second insulating resin layer (P2) laminated on at least one side of the second metal layer (M2). Furthermore, the adhesive layer (B) is arranged in contact with the first insulating resin layer (P1) and the second insulating resin layer (P2). That is, the metal-clad laminate (C) has a structure in which the first metal layer (M1)/first insulating resin layer (P1)/adhesive layer (B)/second insulating resin layer (P2)/second metal layer (M2) are stacked in sequence. The first metal layer (M1) and the second metal layer (M2) are located at the outermost sides, respectively, and the first insulating resin layer (P1) and the second insulating resin layer (P2) are arranged inside them, and the adhesive layer (B) is arranged between the first insulating resin layer (P1) and the second insulating resin layer (P2).

<單面覆金屬積層板> 一對單面覆金屬積層板(C1、C2)的構成並無特別限定,作為FPC材料,能夠使用一般的材料,也可為市售的覆銅積層板等。再者,第一單面覆金屬積層板(C1)和第二單面覆金屬積層板(C2)的構成可相同,也可不同。 <Single-sided metal-clad laminate> The structure of a pair of single-sided metal-clad laminates (C1, C2) is not particularly limited. As FPC materials, general materials can be used, and commercially available copper-clad laminates can also be used. Furthermore, the structures of the first single-sided metal-clad laminate (C1) and the second single-sided metal-clad laminate (C2) can be the same or different.

(金屬層) 作為第一金屬層(M1)和第二金屬層(M2)的材質,並無特別限制,例如可列舉:銅、不銹鋼、鐵、鎳、鈹、鋁、鋅、銦、銀、金、錫、鋯、鉭、鈦、鉛、鎂、錳及它們的合金等。其中,尤其優選為銅或銅合金。再者,後述的本實施方式的電路基板中的配線層的材質也與第一金屬層(M1)和第二金屬層(M2)相同。 (Metal layer) The materials of the first metal layer (M1) and the second metal layer (M2) are not particularly limited, and examples thereof include: copper, stainless steel, iron, nickel, beryllium, aluminum, zinc, indium, silver, gold, tin, zirconium, tantalum, titanium, lead, magnesium, manganese, and alloys thereof. Among them, copper or copper alloys are particularly preferred. Furthermore, the material of the wiring layer in the circuit substrate of the present embodiment described later is also the same as that of the first metal layer (M1) and the second metal layer (M2).

第一金屬層(M1)和第二金屬層(M2)的厚度並無特別限定,例如在使用銅箔等金屬箔的情況下,優選為35 μm以下,可更優選為5 μm~25 μm的範圍內。就生產穩定性及處理性的觀點而言,金屬箔的厚度的下限值優選為設為5 μm。再者,在使用銅箔的情況下,可為壓延銅箔,也可為電解銅箔。另外,作為銅箔,可使用市售的銅箔。The thickness of the first metal layer (M1) and the second metal layer (M2) is not particularly limited. For example, when a metal foil such as copper foil is used, it is preferably 35 μm or less, and more preferably in the range of 5 μm to 25 μm. From the perspective of production stability and handling, the lower limit of the thickness of the metal foil is preferably 5 μm. Furthermore, when a copper foil is used, it can be a rolled copper foil or an electrolytic copper foil. In addition, as the copper foil, a commercially available copper foil can be used.

另外,金屬箔例如也可以防銹處理或黏著力的提高為目的實施利用例如板壁、鋁醇化物、鋁螯合物、矽烷偶聯劑等的表面處理。The metal foil may be subjected to surface treatment using, for example, a sheet metal, an aluminum alkoxide, an aluminum chelate, a silane coupling agent, etc., for the purpose of rust prevention or improvement of adhesion.

(絕緣樹脂層) 作為第一絕緣樹脂層(P1)和第二絕緣樹脂層(P2),只要是由具有電絕緣性的樹脂構成即可,並無特別限定,例如可列舉:聚醯亞胺、環氧樹脂、酚樹脂、聚乙烯、聚丙烯、聚四氟乙烯、矽酮、四氟乙烯(Ethyl Tetrafluoroethylene,ETFE)等,但優選為由聚醯亞胺構成。另外,第一絕緣樹脂層(P1)及第二絕緣樹脂層(P2)不限於單層,也可為積層有多個樹脂層的層。再者,在本發明中提及聚醯亞胺的情況下,除了聚醯亞胺以外,是指包含聚醯胺醯亞胺、聚醚醯亞胺、聚酯醯亞胺、聚矽氧烷醯亞胺、聚苯并咪唑醯亞胺等在分子結構中具有醯亞胺基的聚合物的樹脂。 (Insulating resin layer) The first insulating resin layer (P1) and the second insulating resin layer (P2) are not particularly limited as long as they are made of a resin having electrical insulation properties. Examples thereof include polyimide, epoxy resin, phenolic resin, polyethylene, polypropylene, polytetrafluoroethylene, silicone, tetrafluoroethylene (ETFE), etc., but preferably they are made of polyimide. In addition, the first insulating resin layer (P1) and the second insulating resin layer (P2) are not limited to a single layer, but may be a layer having multiple resin layers laminated. Furthermore, when polyimide is mentioned in the present invention, in addition to polyimide, it refers to a resin containing a polymer having an imide group in the molecular structure such as polyamide imide, polyether imide, polyester imide, polysiloxane imide, polybenzimidazole imide, etc.

<黏著層> 黏著層(B)是由熱塑性樹脂或熱硬化性樹脂構成,滿足(i)50℃下的儲存彈性係數為1800 MPa以下、(ii)180℃~260℃的儲存彈性係數的最大值為800 MPa以下、以及(iii)玻璃化轉變溫度(Tg)為180℃以下。作為所述樹脂,例如可列舉:聚醯亞胺樹脂、聚醯胺樹脂、環氧樹脂、苯氧基樹脂、丙烯酸樹脂、聚氨基甲酸酯樹脂、苯乙烯樹脂、聚酯樹脂、酚樹脂、聚碸樹脂、聚醚碸樹脂、聚苯硫醚樹脂、聚乙烯樹脂、聚丙烯樹脂、矽酮樹脂、聚醚酮樹脂、聚乙烯醇樹脂、聚乙烯醇縮丁醛樹脂、苯乙烯-馬來醯亞胺共聚物、馬來醯亞胺-乙烯基化合物共聚物或(甲基)丙烯酸共聚物、苯并噁嗪樹脂、雙馬來醯亞胺樹脂和氰酸酯樹脂等樹脂,這些樹脂中,可選擇滿足條件(i)~(iii)的材料或者以滿足條件(i)~(iii)的方式設計而用於黏著層(B)中。 <Adhesive layer> The adhesive layer (B) is composed of a thermoplastic resin or a thermosetting resin and satisfies (i) a storage modulus of elasticity at 50°C of 1800 MPa or less, (ii) a maximum value of a storage modulus of elasticity at 180°C to 260°C of 800 MPa or less, and (iii) a glass transition temperature (Tg) of 180°C or less. Examples of the resin include polyimide resins, polyamide resins, epoxy resins, phenoxy resins, acrylic resins, polyurethane resins, styrene resins, polyester resins, phenol resins, polysulfone resins, polyethersulfone resins, polyphenylene sulfide resins, polyethylene resins, polypropylene resins, silicone resins, polyetherketone resins, polyvinyl alcohol resins, and polyvinyl butyral resins. , styrene-maleimide copolymer, maleimide-vinyl compound copolymer or (meth) acrylic acid copolymer, benzoxazine resin, dimaleimide resin and cyanate resin, etc. Among these resins, materials satisfying conditions (i) to (iii) can be selected or designed in a manner satisfying conditions (i) to (iii) and used in the adhesive layer (B).

在黏著層(B)為熱硬化性樹脂的情況下,可含有有機過氧化物、硬化劑、硬化促進劑等,也可根據需要並用硬化劑和硬化促進劑、或者催化劑和助催化劑。在能夠確保所述條件(i)~(iii)的範圍內,只要判斷硬化劑、硬化促進劑、催化劑、助催化劑和有機過氧化物的添加量以及有無添加即可。When the adhesive layer (B) is a thermosetting resin, it may contain an organic peroxide, a hardener, a hardening accelerator, etc., and may also contain a hardener and a hardening accelerator, or a catalyst and a co-catalyst as needed. Within the range that the above conditions (i) to (iii) can be ensured, it is sufficient to determine the amount of hardener, hardening accelerator, catalyst, co-catalyst and organic peroxide to be added, and whether to add them.

<層厚> 覆金屬積層板(C)中,在將第一絕緣樹脂層(P1)和黏著層(B)及第二絕緣樹脂層(P2)的合計厚度設為T1時,所述合計厚度T1為70 μm~500 μm的範圍內,優選為100 μm~300 μm的範圍內。若合計厚度T1未滿70 μm,則使製成電路基板時的傳輸損失下降的效果不充分,若超過500 μm,則有可能生產性下降。 <Layer thickness> In the metal-clad laminate (C), when the total thickness of the first insulating resin layer (P1), the adhesive layer (B), and the second insulating resin layer (P2) is set to T1, the total thickness T1 is in the range of 70 μm to 500 μm, preferably in the range of 100 μm to 300 μm. If the total thickness T1 is less than 70 μm, the effect of reducing the transmission loss when manufacturing the circuit board is insufficient, and if it exceeds 500 μm, the productivity may be reduced.

另外,黏著層(B)的厚度T2例如優選為50 μm~450 μm的範圍內,更優選為50 μm~250 μm的範圍內。若黏著層(B)的厚度T2不滿足所述下限值,則作為高頻基板,有時傳輸損失增大。另一方面,若黏著層(B)的厚度超過所述上限值,則有時會產生尺寸穩定性下降等不良狀況。In addition, the thickness T2 of the adhesive layer (B) is preferably within the range of 50 μm to 450 μm, and more preferably within the range of 50 μm to 250 μm. If the thickness T2 of the adhesive layer (B) does not meet the lower limit, the transmission loss may increase as a high-frequency substrate. On the other hand, if the thickness of the adhesive layer (B) exceeds the upper limit, it may cause undesirable conditions such as decreased dimensional stability.

另外,黏著層(B)的厚度T2相對於合計厚度T1的比率(T2/T1)為0.5~0.8的範圍內,優選為0.5~0.7的範圍內。若比率(T2/T1)未滿0.5,則難以將T1設為70 μm以上,若超過0.8,則會產生尺寸穩定性下降等不良狀況。In addition, the ratio (T2/T1) of the thickness T2 of the adhesive layer (B) to the total thickness T1 is in the range of 0.5 to 0.8, preferably in the range of 0.5 to 0.7. If the ratio (T2/T1) is less than 0.5, it is difficult to set T1 to 70 μm or more, and if it exceeds 0.8, it will cause problems such as reduced dimensional stability.

第一絕緣樹脂層(P1)和第二絕緣樹脂層(P2)的厚度T3均優選為例如12 μm~100 μm的範圍內,更優選為12 μm~50 μm的範圍內。若第一絕緣樹脂層(P1)和第二絕緣樹脂層(P2)的厚度T3不滿足所述下限值,則有時會產生覆金屬積層板(C)的翹曲等問題。若第一絕緣樹脂層(P1)和第二絕緣樹脂層(P2)的厚度T3超過所述上限值,則會產生生產性下降等不良狀況。再者,第一絕緣樹脂層(P1)和第二絕緣樹脂層(P2)可不一定為相同厚度。The thickness T3 of the first insulating resin layer (P1) and the second insulating resin layer (P2) is preferably within a range of, for example, 12 μm to 100 μm, and more preferably within a range of 12 μm to 50 μm. If the thickness T3 of the first insulating resin layer (P1) and the second insulating resin layer (P2) does not satisfy the lower limit, problems such as warping of the metal-clad laminate (C) may occur. If the thickness T3 of the first insulating resin layer (P1) and the second insulating resin layer (P2) exceeds the upper limit, undesirable conditions such as decreased productivity may occur. Furthermore, the first insulating resin layer (P1) and the second insulating resin layer (P2) may not necessarily have the same thickness.

<熱膨脹係數> 第一絕緣樹脂層(P1)和第二絕緣樹脂層(P2)的熱膨脹係數(Coefficient of Thermal Expansion,CTE)可為10 ppm/K以上,優選為10 ppm/K以上且30 ppm/K以下的範圍內,更優選為15 ppm/K以上且25 ppm/K以下的範圍內。若CTE未滿10 ppm/K或超過30 ppm/K,則會產生翹曲或者尺寸穩定性下降。通過適宜變更所使用的原料的組合、厚度、乾燥及硬化條件,可製成具有所期望的CTE的聚醯亞胺層。 <Coefficient of Thermal Expansion> The coefficient of thermal expansion (CTE) of the first insulating resin layer (P1) and the second insulating resin layer (P2) may be 10 ppm/K or more, preferably 10 ppm/K or more and 30 ppm/K or less, and more preferably 15 ppm/K or more and 25 ppm/K or less. If the CTE is less than 10 ppm/K or exceeds 30 ppm/K, warping or reduced dimensional stability may occur. By appropriately changing the combination of raw materials used, thickness, drying and curing conditions, a polyimide layer having a desired CTE can be produced.

黏著層(B)雖為高熱膨脹性但彈性低且玻璃化轉變溫度低,因此即便CTE超過30 ppm/K,也可緩和積層時產生的內部應力。 另外,第一絕緣樹脂層(P1)、黏著層(B)和第二絕緣樹脂層(P2)的整體的熱膨脹係數(CTE)可為10 ppm/K以上,優選為10 ppm/K以上且30 ppm/K以下的範圍內,更優選為15 ppm/K以上且25 ppm/K以下的範圍內。若這些樹脂層整體的CTE未滿10 ppm/K或者超過30 ppm/K,則會產生翹曲或者尺寸穩定性下降。 The adhesive layer (B) has high thermal expansion but low elasticity and low glass transition temperature, so it can relieve the internal stress generated during lamination even if the CTE exceeds 30 ppm/K. In addition, the overall thermal expansion coefficient (CTE) of the first insulating resin layer (P1), the adhesive layer (B), and the second insulating resin layer (P2) can be 10 ppm/K or more, preferably in the range of 10 ppm/K or more and 30 ppm/K or less, and more preferably in the range of 15 ppm/K or more and 25 ppm/K or less. If the overall CTE of these resin layers is less than 10 ppm/K or exceeds 30 ppm/K, warping will occur or dimensional stability will decrease.

<玻璃化轉變溫度(Tg)> 黏著層(B)的玻璃化轉變溫度(Tg)為180℃以下,可優選為160℃以下的範圍內。通過將黏著層(B)的玻璃化轉變溫度設為180℃以下,能夠進行低溫下的熱壓接,因此可緩和積層時產生的內部應力,抑制電路加工後的尺寸變化。若黏著層(B)的Tg超過180℃,則介隔存在於第一絕緣樹脂層(P1)與第二絕緣樹脂層(P2)之間而黏著時的溫度變高,有可能損害電路加工後的尺寸穩定性。 <Glass transition temperature (Tg)> The glass transition temperature (Tg) of the adhesive layer (B) is 180°C or less, preferably 160°C or less. By setting the glass transition temperature of the adhesive layer (B) to 180°C or less, low-temperature heat pressing can be performed, thereby relieving the internal stress generated during lamination and suppressing dimensional changes after circuit processing. If the Tg of the adhesive layer (B) exceeds 180°C, an interlayer exists between the first insulating resin layer (P1) and the second insulating resin layer (P2), and the temperature during bonding becomes high, which may impair the dimensional stability after circuit processing.

<儲存彈性係數> 黏著層(B)在50℃下的儲存彈性係數為1800 MPa以下,180℃~260℃的溫度區域的儲存彈性係數的最大值為800 MPa以下。認為所述黏著層(B)的特性是緩和熱壓接時的內部應力、保持電路加工後的尺寸穩定性的主要原因。另外,黏著層(B)在所述溫度區域的上限溫度(260℃)下的儲存彈性係數優選為800 MPa以下,更優選為500 MPa以下的範圍內。通過設為所述儲存彈性係數,即便在經過電路加工後的回流焊步驟後,也不易產生翹曲。 <Storage elastic coefficient> The storage elastic coefficient of the adhesive layer (B) at 50°C is 1800 MPa or less, and the maximum value of the storage elastic coefficient in the temperature range of 180°C to 260°C is 800 MPa or less. It is believed that the characteristics of the adhesive layer (B) are the main reasons for relieving the internal stress during hot pressing and maintaining the dimensional stability after circuit processing. In addition, the storage elastic coefficient of the adhesive layer (B) at the upper limit temperature (260°C) of the temperature range is preferably 800 MPa or less, and more preferably 500 MPa or less. By setting the storage elastic coefficient to the above, warping is not easy to occur even after the reflow step after circuit processing.

<介質損耗因數> 第一絕緣樹脂層(P1)和第二絕緣樹脂層(P2)例如在應用於電路基板的情況下,為了抑制介電損失的惡化,10 GHz下的介質損耗因數(Tanδ)可優選為0.02以下,更優選為0.0005以上且0.01以下的範圍內,進一步優選為0.001以上且0.008以下的範圍內。若第一絕緣樹脂層(P1)和第二絕緣樹脂層(P2)的10 GHz下的介質損耗因數超過0.02,則在應用於電路基板時,容易產生高頻信號的傳輸路徑上的電信號的損耗等不良情況。另一方面,第一絕緣樹脂層(P1)和第二絕緣樹脂層(P2)的10 GHz下的介質損耗因數的下限值並無特別限制,但考慮作為電路基板的絕緣樹脂層的物性控制。 <Dielectric loss factor> When the first insulating resin layer (P1) and the second insulating resin layer (P2) are applied to a circuit board, for example, in order to suppress the deterioration of dielectric loss, the dielectric loss factor (Tanδ) at 10 GHz is preferably 0.02 or less, more preferably in the range of 0.0005 or more and 0.01 or less, and further preferably in the range of 0.001 or more and 0.008 or less. If the dielectric loss factor of the first insulating resin layer (P1) and the second insulating resin layer (P2) at 10 GHz exceeds 0.02, when applied to a circuit board, it is easy to cause problems such as loss of electrical signals on the transmission path of high-frequency signals. On the other hand, there is no particular lower limit on the dielectric loss factor of the first insulating resin layer (P1) and the second insulating resin layer (P2) at 10 GHz, but the physical property control of the insulating resin layer as a circuit board is considered.

黏著層(B)例如在應用於電路基板的情況下,為了抑制介電損失的惡化,10 GHz下的介質損耗因數(Tanδ)可優選為0.015以下,更優選為0.01以下,進一步優選為0.006以下。若黏著層(B)的10 GHz下的介質損耗因數超過0.015,則在應用於電路基板時,容易產生高頻信號的傳輸路徑上的電信號的損耗等不良情況。另一方面,黏著層(B)的10 GHz下的介質損耗因數的下限值並無特別限制。When the adhesive layer (B) is applied to a circuit board, for example, the dielectric loss factor (Tanδ) at 10 GHz is preferably 0.015 or less, more preferably 0.01 or less, and further preferably 0.006 or less in order to suppress the deterioration of dielectric loss. If the dielectric loss factor of the adhesive layer (B) at 10 GHz exceeds 0.015, when applied to a circuit board, it is easy to cause disadvantages such as loss of electrical signals on the transmission path of high-frequency signals. On the other hand, there is no particular limit to the lower limit of the dielectric loss factor of the adhesive layer (B) at 10 GHz.

<介電常數> 第一絕緣樹脂層(P1)和第二絕緣樹脂層(P2)例如在作為電路基板的絕緣樹脂層應用的情況下,為了確保阻抗匹配性,作為絕緣樹脂層整體,優選為10 GHz下的介電常數為4.0以下。若第一絕緣樹脂層(P1)和第二絕緣樹脂層(P2)的10 GHz下的介電常數超過4.0,則在應用於電路基板時,導致第一絕緣樹脂層(P1)和第二絕緣樹脂層(P2)的介電損失的惡化,容易產生高頻信號的傳輸路徑上的電信號的損耗等不良情況。 <Dielectric constant> When the first insulating resin layer (P1) and the second insulating resin layer (P2) are used as insulating resin layers of a circuit board, for example, in order to ensure impedance matching, the dielectric constant of the insulating resin layer as a whole is preferably 4.0 or less at 10 GHz. If the dielectric constant of the first insulating resin layer (P1) and the second insulating resin layer (P2) at 10 GHz exceeds 4.0, when applied to a circuit board, the dielectric loss of the first insulating resin layer (P1) and the second insulating resin layer (P2) deteriorates, which may easily cause the loss of electrical signals on the transmission path of high-frequency signals.

黏著層(B)例如在應用於電路基板的情況下,為了確保阻抗匹配性,10 GHz下的介電常數優選為4.0以下。若黏著層(B)的10 GHz下的介電常數超過4.0,則在應用於電路基板時,導致黏著層(B)的介電損失的惡化,容易產生高頻信號的傳輸路徑上的電信號的損耗等不良情況。When the adhesive layer (B) is used in a circuit board, for example, the dielectric constant at 10 GHz is preferably 4.0 or less in order to ensure impedance matching. If the dielectric constant of the adhesive layer (B) at 10 GHz exceeds 4.0, the dielectric loss of the adhesive layer (B) deteriorates when used in the circuit board, which easily causes the loss of electrical signals in the transmission path of high-frequency signals.

<作用> 在本實施方式的覆金屬積層板(C)中,為了實現絕緣樹脂層整體的低介質損耗因數化且可應對高頻傳輸,而增加黏著層(B)的自身厚度。但是,一般如黏著層(B)那樣彈性係數低的材料顯示高熱膨脹係數,因此增加層厚有可能導致尺寸穩定性的下降。此處,對覆金屬積層板(C)進行電路加工時產生的尺寸變化認為主要是通過下述的a)~c)的機制產生,b)與c)的合計量成為蝕刻後的尺寸變化而表現出來。 a)在覆金屬積層板(C)的製造時,在樹脂層中蓄積內部應力。 b)在電路加工時,通過蝕刻金屬層,釋放a)中蓄積的內部應力,樹脂層膨脹或收縮。 c)在電路加工時,通過蝕刻金屬層,露出的樹脂吸濕膨脹。 <Function> In the metal-clad laminate (C) of this embodiment, the thickness of the adhesive layer (B) itself is increased in order to achieve a low dielectric loss factor for the entire insulating resin layer and to cope with high-frequency transmission. However, generally, materials with a low modulus of elasticity, such as the adhesive layer (B), show a high thermal expansion coefficient, so increasing the layer thickness may lead to a decrease in dimensional stability. Here, the dimensional change caused by circuit processing of the metal-clad laminate (C) is considered to be mainly caused by the following mechanisms a) to c), and the total amount of b) and c) becomes the dimensional change after etching. a) When the metal-clad laminate (C) is manufactured, internal stress is accumulated in the resin layer. b) During circuit processing, the metal layer is etched to release the internal stress accumulated in a), and the resin layer expands or contracts. c) During circuit processing, the metal layer is etched, and the exposed resin absorbs moisture and expands.

所述a)的內部應力的主要原因是1)金屬層與樹脂層的熱膨脹係數的差、2)因膜化而產生的樹脂內部應變。此處,由1)引起的內部應力的大小不僅影響熱膨脹係數的差,還影響從黏著時的溫度(加熱溫度)到冷卻固化的溫度為止的溫度差ΔT。即,由於內部應力與溫度差ΔT成比例地變大,因此即便金屬層與樹脂層的熱膨脹係數的差小,黏著越需要高溫的樹脂,內部應力越變大。在本實施方式的覆金屬積層板(C)中,通過採用滿足所述條件(i)~(iii)的層作為黏著層(B),減小內部應力來確保尺寸穩定性。The main causes of the internal stress in a) are 1) the difference in thermal expansion coefficient between the metal layer and the resin layer, and 2) the internal strain of the resin caused by film formation. Here, the magnitude of the internal stress caused by 1) affects not only the difference in thermal expansion coefficient, but also the temperature difference ΔT from the temperature at the time of adhesion (heating temperature) to the temperature of cooling and solidification. That is, since the internal stress increases in proportion to the temperature difference ΔT, even if the difference in thermal expansion coefficient between the metal layer and the resin layer is small, the higher the temperature of the resin required for adhesion, the greater the internal stress. In the metal-clad laminate (C) of this embodiment, by using a layer satisfying the above conditions (i) to (iii) as the adhesive layer (B), internal stress is reduced and dimensional stability is ensured.

另外,由於黏著層(B)積層於第一絕緣樹脂層(P1)與第二絕緣樹脂層(P2)之間,因此發揮作為中間層的功能,抑制翹曲和尺寸變化。進而,例如在半導體晶片的安裝時的回流焊(reflow)等加熱步驟中,由於直接的熱量或與氧的接觸被第一絕緣樹脂層(P1)或第二絕緣樹脂層(P2)遮擋,因此難以受到氧化劣化的影響而不易發生尺寸變化。如此,還具有第一絕緣樹脂層(P1)、黏著層(B)和第二絕緣樹脂層(P2)的層構成的特徵所帶來的優點。In addition, since the adhesive layer (B) is laminated between the first insulating resin layer (P1) and the second insulating resin layer (P2), it functions as an intermediate layer to suppress warping and dimensional change. Furthermore, in a heating step such as reflow soldering when mounting a semiconductor chip, direct heat or contact with oxygen is blocked by the first insulating resin layer (P1) or the second insulating resin layer (P2), so it is difficult to be affected by oxidative degradation and dimensional change is unlikely to occur. In this way, the advantages brought by the characteristics of the layer structure of the first insulating resin layer (P1), the adhesive layer (B) and the second insulating resin layer (P2) are also possessed.

[覆金屬積層板的製造] 覆金屬積層板(C)例如可利用以下的方法1或方法2製造。 [方法1] 將成為黏著層(B)的樹脂組合物成形為片狀而形成黏著片,將所述黏著片配置並貼合在第一單面覆金屬積層板(C1)的第一絕緣樹脂層(P1)與第二單面覆金屬積層板(C2)的第二絕緣樹脂層(P2)之間,進行熱壓接的方法。 [方法2] 將成為黏著層(B)的樹脂組合物的溶液以規定的厚度塗布在第一單面覆金屬積層板(C1)的第一絕緣樹脂層(P1)或第二單面覆金屬積層板(C2)的第二絕緣樹脂層(P2)中的任一者或兩者上並進行乾燥後,貼合塗布膜的一側進行熱壓接的方法。 [Manufacturing of Metal-Clad Laminated Board] The metal-clad laminate (C) can be manufactured, for example, by the following method 1 or method 2. [Method 1] A method in which a resin composition to be an adhesive layer (B) is formed into a sheet to form an adhesive sheet, and the adhesive sheet is arranged and bonded between a first insulating resin layer (P1) of a first single-sided metal-clad laminate (C1) and a second insulating resin layer (P2) of a second single-sided metal-clad laminate (C2), and then heat-pressed. [Method 2] A method in which a solution of a resin composition to be an adhesive layer (B) is applied to a predetermined thickness on either or both of the first insulating resin layer (P1) of the first single-sided metal-clad laminate (C1) or the second insulating resin layer (P2) of the second single-sided metal-clad laminate (C2), and after drying, one side of the coated film is bonded by heat pressing.

方法1中使用的黏著片例如可通過在任意的支持基材上塗布成為黏著層(B)的樹脂組合物的溶液並進行乾燥後從支持基材上剝離而製成黏著片的方法來加以製造。 另外,在所述中,作為將成為黏著層(B)的樹脂組合物的溶液塗布在支持基材或絕緣樹脂層(P1、P2)上的方法,並無特別限制,例如可利用缺角輪、模具、刮刀、模唇等塗布機進行塗布。 The adhesive sheet used in method 1 can be produced, for example, by applying a solution of a resin composition to be an adhesive layer (B) on an arbitrary support substrate, drying it, and then peeling it off from the support substrate to make an adhesive sheet. In addition, in the above, there is no particular limitation on the method of applying the solution of the resin composition to be the adhesive layer (B) on the support substrate or the insulating resin layer (P1, P2), and for example, the application can be performed using an applicator such as a notch wheel, a mold, a scraper, or a die lip.

如上所述獲得的本實施方式的覆金屬積層板(C)通過對第一金屬層(M1)和/或第二金屬層(M2)進行蝕刻等來進行配線電路加工,可製造單面FPC或兩面FPC等電路基板。The metal-clad laminate (C) of the present embodiment obtained as described above can be processed into a circuit board such as a single-sided FPC or a double-sided FPC by etching the first metal layer (M1) and/or the second metal layer (M2) to form a wiring circuit.

[覆金屬積層板的優選構成例] 其次,對本實施方式的覆金屬積層板(C)中的第一絕緣樹脂層(P1)、第二絕緣樹脂層(P2)、黏著層(B)、第一金屬層(M1)和第二金屬層(M2)進行更具體的說明。 [Preferred Configuration Example of Metal-Clad Laminate] Next, the first insulating resin layer (P1), the second insulating resin layer (P2), the adhesive layer (B), the first metal layer (M1), and the second metal layer (M2) in the metal-clad laminate (C) of this embodiment will be described in more detail.

圖2是表示本實施方式的覆金屬積層板100的結構的示意性剖面圖。如圖2所示,覆金屬積層板100包括:作為第一金屬層(M1)和第二金屬層(M2)的金屬層101、101;作為第一絕緣樹脂層(P1)和第二絕緣樹脂層(P2)的聚醯亞胺層110、110;以及作為黏著層(B)的黏著性聚醯亞胺層120。此處,通過金屬層101和聚醯亞胺層110形成作為第一單面覆金屬積層板(C1)或第二單面覆金屬積層板(C2)的單面覆金屬積層板130。在本形態中,第一單面覆金屬積層板(C1)和第二單面覆金屬積層板(C2)的構成相同。Fig. 2 is a schematic cross-sectional view showing the structure of the metal-clad laminate 100 of the present embodiment. As shown in Fig. 2, the metal-clad laminate 100 includes: metal layers 101, 101 as a first metal layer (M1) and a second metal layer (M2); polyimide layers 110, 110 as a first insulating resin layer (P1) and a second insulating resin layer (P2); and an adhesive polyimide layer 120 as an adhesive layer (B). Here, a single-sided metal-clad laminate 130 is formed as a first single-sided metal-clad laminate (C1) or a second single-sided metal-clad laminate (C2) by a metal layer 101 and a polyimide layer 110. In this form, the first single-sided metal-clad laminate (C1) and the second single-sided metal-clad laminate (C2) have the same structure.

聚醯亞胺層110、110均可為積層有多個聚醯亞胺層的結構。例如在圖2所示的形態中,形成包括作為基底層的由非熱塑性聚醯亞胺構成的非熱塑性聚醯亞胺層111、111、以及分別設置在非熱塑性聚醯亞胺層111、111的兩側的由熱塑性聚醯亞胺構成的熱塑性聚醯亞胺層112、112在內的三層結構。再者,聚醯亞胺層110、110分別不限於三層結構。The polyimide layers 110, 110 may be a structure in which a plurality of polyimide layers are stacked. For example, in the form shown in FIG. 2, a three-layer structure is formed including non-thermoplastic polyimide layers 111, 111 made of non-thermoplastic polyimide as a base layer, and thermoplastic polyimide layers 112, 112 made of thermoplastic polyimide disposed on both sides of the non-thermoplastic polyimide layers 111, 111. Furthermore, the polyimide layers 110, 110 are not limited to a three-layer structure.

在圖2所示的覆金屬積層板100中,兩個單面覆金屬積層板130、130中的外側的熱塑性聚醯亞胺層112、112分別與黏著性聚醯亞胺層120貼合,形成覆金屬積層板100。黏著性聚醯亞胺層120是用於在覆金屬積層板100中貼合兩個單面覆金屬積層板130、130的黏著層,且是用於在確保尺寸穩定性的同時使覆金屬積層板100的絕緣樹脂層變厚的層。關於黏著性聚醯亞胺層120,如對所述黏著層(B)所說明的那樣。In the metal clad laminate 100 shown in FIG2 , the outer thermoplastic polyimide layers 112, 112 of two single-sided metal clad laminates 130, 130 are respectively bonded to the adhesive polyimide layer 120 to form the metal clad laminate 100. The adhesive polyimide layer 120 is an adhesive layer for bonding the two single-sided metal clad laminates 130, 130 in the metal clad laminate 100, and is a layer for thickening the insulating resin layer of the metal clad laminate 100 while ensuring dimensional stability. The adhesive polyimide layer 120 is as described above for the adhesive layer (B).

其次,對構成聚醯亞胺層110、110的非熱塑性聚醯亞胺層111與熱塑性聚醯亞胺層112進行說明。再者,所謂「非熱塑性聚醯亞胺」通常是即便加熱也不顯示軟化、黏著性的聚醯亞胺,但在本發明中是指使用動態黏彈性測定裝置(動態機械分析儀(Dynamic Mechanical Analysis,DMA))而測定的30℃下的儲存彈性係數為1.0×10 9Pa以上、350℃下的儲存彈性係數為1.0×10 8Pa以上的聚醯亞胺。另外,所謂「熱塑性聚醯亞胺」通常是可明確確認玻璃化轉變溫度(Tg)的聚醯亞胺,但在本發明中是指使用DMA而測定的30℃下的儲存彈性係數為1.0×10 9Pa以上、350℃下的儲存彈性係數未滿1.0×10 8Pa的聚醯亞胺。 Next, the non-thermoplastic polyimide layer 111 and the thermoplastic polyimide layer 112 constituting the polyimide layers 110, 110 are described. The so-called "non-thermoplastic polyimide" is generally a polyimide that does not soften or show adhesiveness even when heated, but in the present invention, it refers to a polyimide having a storage modulus of 1.0×10 9 Pa or more at 30°C and a storage modulus of 1.0×10 8 Pa or more at 350°C as measured using a dynamic viscoelasticity measuring device (dynamic mechanical analyzer (DMA)). The so-called "thermoplastic polyimide" is generally a polyimide with a clearly identifiable glass transition temperature (Tg), but in the present invention, it refers to a polyimide having a storage modulus of 1.0×10 9 Pa or more at 30°C and a storage modulus of less than 1.0×10 8 Pa at 350°C as measured using DMA.

非熱塑性聚醯亞胺層: 構成非熱塑性聚醯亞胺層111的非熱塑性聚醯亞胺為包含四羧酸殘基及二胺殘基者。再者,本發明中,所謂四羧酸殘基表示由四羧酸二酐所衍生的四價基,所謂二胺殘基表示由二胺化合物所衍生的二價基。聚醯亞胺優選為包含由芳香族四羧酸二酐所衍生的芳香族四羧酸殘基及由芳香族二胺所衍生的芳香族二胺殘基。 Non-thermoplastic polyimide layer: The non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer 111 is a material containing tetracarboxylic acid residues and diamine residues. Furthermore, in the present invention, the so-called tetracarboxylic acid residues represent tetravalent groups derived from tetracarboxylic dianhydride, and the so-called diamine residues represent divalent groups derived from diamine compounds. Polyimide preferably contains aromatic tetracarboxylic acid residues derived from aromatic tetracarboxylic dianhydride and aromatic diamine residues derived from aromatic diamine.

(四羧酸殘基) 構成非熱塑性聚醯亞胺層111的非熱塑性聚醯亞胺優選為含有由3,3',4,4'-聯苯四羧酸二酐(3,3',4,4'-biphenyl tetracarboxylic dianhydride,BPDA)及1,4-亞苯基雙(偏苯三甲酸單酯)二酐(1,4-phenylene bis(trimellitic acid monoester)dianhydride,TAHQ)中的至少一種所衍生的四羧酸殘基以及由均苯四甲酸二酐(pyromellitic dianhydride,PMDA)及2,3,6,7-萘四羧酸二酐(2,3,6,7-naphthalene tetracarboxylic dianhydride,NTCDA)中的至少一種所衍生的四羧酸殘基作為四羧酸殘基。 (Tetracarboxylic acid residues) The non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer 111 preferably contains tetracarboxylic acid residues derived from at least one of 3,3',4,4'-biphenyl tetracarboxylic dianhydride (BPDA) and 1,4-phenylene bis(trimellitic acid monoester) dianhydride (TAHQ) and tetracarboxylic acid residues derived from at least one of pyromellitic dianhydride (PMDA) and 2,3,6,7-naphthalene tetracarboxylic dianhydride (NTCDA) as tetracarboxylic acid residues.

由BPDA所衍生的四羧酸殘基(以下,也稱為「BPDA殘基」)及由TAHQ所衍生的四羧酸殘基(以下,也稱為「TAHQ殘基」)容易形成聚合物的有序結構,可通過抑制分子的運動而使介質損耗因數或吸濕性下降。BPDA殘基可賦予作為聚醯亞胺前體的聚醯胺酸的凝膠膜的自支持性,但另一方面出現使醯亞胺化後的CTE增大且使玻璃化轉變溫度降低並使耐熱性下降的傾向。Tetracarboxylic acid residues derived from BPDA (hereinafter, also referred to as "BPDA residues") and tetracarboxylic acid residues derived from TAHQ (hereinafter, also referred to as "TAHQ residues") easily form an ordered structure of the polymer, and can reduce the dielectric loss factor and hygroscopicity by inhibiting the movement of molecules. BPDA residues can give self-supporting properties to the gel film of polyamide, which is a precursor of polyimide, but on the other hand, they tend to increase the CTE after imidization, lower the glass transition temperature, and reduce heat resistance.

就所述觀點而言,以構成非熱塑性聚醯亞胺層111的非熱塑性聚醯亞胺相對於所有四羧酸殘基的100莫耳份而在合計優選為30莫耳份以上且60莫耳份以下的範圍內、更優選為40莫耳份以上且50莫耳份以下的範圍內含有BPDA殘基及TAHQ殘基的方式進行控制。若BPDA殘基及TAHQ殘基的合計未滿30莫耳份,則聚合物的有序結構的形成變得不充分,耐吸濕性下降,或者介質損耗因數的減少變得不充分,若超過60莫耳份,則除了CTE的增加或面內延遲(RO)的變化量的增大以外,有耐熱性下降的擔心。From the above viewpoint, the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer 111 is controlled to contain BPDA residues and TAHQ residues in a total amount preferably in a range of 30 mol parts or more and 60 mol parts or less, and more preferably in a range of 40 mol parts or more and 50 mol parts or less, relative to 100 mol parts of all tetracarboxylic acid residues. If the total amount of BPDA residues and TAHQ residues is less than 30 mol parts, the formation of the ordered structure of the polymer becomes insufficient, the moisture absorption resistance decreases, or the reduction of the dielectric loss factor becomes insufficient. If it exceeds 60 mol parts, in addition to the increase in CTE or the increase in the variation of the in-plane retardation (RO), there is a concern that the heat resistance decreases.

另外,由均苯四甲酸二酐所衍生的四羧酸殘基(以下,也稱為「PMDA殘基」)及由2,3,6,7-萘四羧酸二酐所衍生的四羧酸殘基(以下,也稱為「NTCDA殘基」)具有剛直性,因此是提高面內取向性、較低地抑制CTE且承擔面內延遲(RO)的控制、或者玻璃化轉變溫度的控制的作用的殘基。另一方面,PMDA殘基由於分子量小,因此若其量變得過多,則聚合物的醯亞胺基濃度變高,極性基增加而吸濕性變大,由於分子鏈內部的水分的影響而介質損耗因數增加。另外,NTCDA殘基出現因剛直性高的萘骨架而膜容易變脆且使彈性係數增大的傾向。 因此,構成非熱塑性聚醯亞胺層的非熱塑性聚醯亞胺相對於所有四羧酸殘基的100莫耳份而在合計優選為40莫耳份以上且70莫耳份以下的範圍內、更優選為50莫耳份以上且60莫耳份以下的範圍內、進一步優選為50莫耳份~55莫耳份的範圍內含有PMDA殘基及NTCDA殘基。若PMDA殘基及NTCDA殘基的合計未滿40莫耳份,則有CTE增加或者耐熱性下降的擔心,若超過70莫耳份,則有聚合物的醯亞胺基濃度變高,極性基增加且低吸濕性受損,介質損耗因數增加的擔心,或者有膜變脆且膜的自支持性下降的擔心。 In addition, tetracarboxylic acid residues derived from pyromellitic dianhydride (hereinafter also referred to as "PMDA residues") and tetracarboxylic acid residues derived from 2,3,6,7-naphthalenetetracarboxylic dianhydride (hereinafter also referred to as "NTCDA residues") have rigidity, and therefore are residues that play a role in improving in-plane orientation, suppressing CTE to a low level, and controlling in-plane retardation (RO) or glass transition temperature. On the other hand, PMDA residues have a small molecular weight, so if the amount becomes too large, the imide group concentration of the polymer becomes high, the polar group increases, the hygroscopicity becomes greater, and the dielectric loss factor increases due to the influence of moisture inside the molecular chain. In addition, NTCDA residues tend to make the film brittle and increase the modulus of elasticity due to the highly rigid naphthalene skeleton. Therefore, the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer preferably contains PMDA residues and NTCDA residues in a total amount of preferably 40 mol parts or more and 70 mol parts or less, more preferably 50 mol parts or more and 60 mol parts or less, and further preferably 50 mol parts to 55 mol parts relative to 100 mol parts of all tetracarboxylic acid residues. If the total of PMDA residues and NTCDA residues is less than 40 mol parts, there is a concern that CTE may increase or heat resistance may decrease. If it exceeds 70 mol parts, there is a concern that the concentration of amide groups in the polymer may increase, polar groups may increase and low hygroscopicity may be impaired, the dielectric loss factor may increase, or the film may become brittle and the self-supporting property of the film may decrease.

另外,BPDA殘基及TAHQ殘基中的至少一種以及PMDA殘基及NTCDA殘基中的至少一種的合計可為相對於所有四羧酸殘基的100莫耳份而為80莫耳份以上,優選為90莫耳份以上。The total amount of at least one of BPDA residues and TAHQ residues and at least one of PMDA residues and NTCDA residues may be 80 mol parts or more, preferably 90 mol parts or more, based on 100 mol parts of all tetracarboxylic acid residues.

另外,可將BPDA殘基及TAHQ殘基中的至少一種、與PMDA殘基及NTCDA殘基中的至少一種的莫耳比{(BPDA殘基+TAHQ殘基)/(PMDA殘基+NTCDA殘基)}設為0.4以上且1.5以下的範圍內、優選為0.6以上且1.3以下的範圍內、更優選為0.8以上且1.2以下的範圍內,控制CTE與聚合物的有序結構的形成。In addition, the molar ratio of at least one of the BPDA residue and the TAHQ residue to at least one of the PMDA residue and the NTCDA residue {(BPDA residue + TAHQ residue) / (PMDA residue + NTCDA residue)} can be set to a range of greater than 0.4 and less than 1.5, preferably within a range of greater than 0.6 and less than 1.3, and more preferably within a range of greater than 0.8 and less than 1.2, to control the CTE and the formation of an ordered structure of the polymer.

PMDA及NTCDA具有剛直骨架,因此與其他一般的酸酐成分相比,可控制聚醯亞胺中的分子的面內取向性,具有熱膨脹係數(CTE)的抑制與玻璃化轉變溫度(Tg)的提高效果。另外,與PMDA相比,BPDA及TAHQ的分子量大,因此由於裝入比率的增加醯亞胺基濃度下降,由此對於介質損耗因數的下降或吸濕率的下降具有效果。另一方面,若BPDA及TAHQ的裝入比率增加,則聚醯亞胺中的分子的面內取向性下降,而導致CTE的增加。進而,分子內的有序結構的形成得到推進,霧度值增加。就所述觀點而言,PMDA及NTCDA的合計裝入量相對於原料的所有酸酐成分的100莫耳份,可為40莫耳份~70莫耳份的範圍內、優選為50莫耳份~60莫耳份的範圍內、更優選為50莫耳份~55莫耳份的範圍內。若相對於原料的所有酸酐成分的100莫耳份,PMDA及NTCDA的合計裝入量未滿40莫耳份,則分子的面內取向性下降,且低CTE化變得困難,另外Tg的下降所引起的加熱時的膜的耐熱性或尺寸穩定性下降。另一方面,若PMDA及NTCDA的合計裝入量超過70莫耳份,則出現因醯亞胺基濃度的增加而吸濕率變差,或者使彈性係數增大的傾向。PMDA and NTCDA have a rigid skeleton, so compared with other general anhydride components, they can control the in-plane orientation of molecules in polyimide, and have the effect of suppressing the coefficient of thermal expansion (CTE) and improving the glass transition temperature (Tg). In addition, compared with PMDA, BPDA and TAHQ have a larger molecular weight, so the concentration of imide groups decreases as the loading ratio increases, which has an effect on reducing the dielectric loss factor or reducing the moisture absorption rate. On the other hand, if the loading ratio of BPDA and TAHQ increases, the in-plane orientation of molecules in polyimide decreases, resulting in an increase in CTE. Furthermore, the formation of an ordered structure within the molecule is promoted, and the haze value increases. From the above viewpoint, the total amount of PMDA and NTCDA charged can be in the range of 40 to 70 mol parts, preferably in the range of 50 to 60 mol parts, and more preferably in the range of 50 to 55 mol parts, relative to 100 mol parts of all the acid anhydride components of the raw material. If the total amount of PMDA and NTCDA charged is less than 40 mol parts relative to 100 mol parts of all the acid anhydride components of the raw material, the in-plane orientation of the molecules decreases, and it becomes difficult to lower the CTE. In addition, the heat resistance or dimensional stability of the film during heating due to the decrease in Tg decreases. On the other hand, if the total amount of PMDA and NTCDA charged exceeds 70 mol parts, there is a tendency that the moisture absorption rate deteriorates due to the increase in the imide group concentration, or the elastic modulus increases.

另外,BPDA及TAHQ對分子運動的抑制或醯亞胺基濃度的下降所引起的低介質損耗因數化、吸濕率下降具有效果,但會使作為醯亞胺化後的聚醯亞胺膜的CTE增大。就所述觀點而言,BPDA及TAHQ的合計裝入量相對於原料的所有酸酐成分的100莫耳份,可為30莫耳份~60莫耳份的範圍內、優選為40莫耳份~50莫耳份的範圍內、更優選為40莫耳份~45莫耳份的範圍內。In addition, BPDA and TAHQ have the effect of lowering the dielectric loss factor and moisture absorption rate due to the suppression of molecular motion or the reduction of the imide group concentration, but the CTE of the polyimide film after imidization increases. From this viewpoint, the total amount of BPDA and TAHQ charged can be in the range of 30 mol parts to 60 mol parts, preferably in the range of 40 mol parts to 50 mol parts, and more preferably in the range of 40 mol parts to 45 mol parts, relative to 100 mol parts of all the acid anhydride components of the raw materials.

作為構成非熱塑性聚醯亞胺層111的非熱塑性聚醯亞胺中所含的所述BPDA殘基、TAHQ殘基、PMDA殘基、NTCDA殘基以外的四羧酸殘基,例如可列舉由3,3',4,4'-二苯基碸四羧酸二酐、4,4'-氧基二鄰苯二甲酸酐、2,3',3,4'-聯苯四羧酸二酐、2,2',3,3'-二苯甲酮四羧酸二酐、2,3,3',4'-二苯甲酮四羧酸二酐或3,3',4,4'-二苯甲酮四羧酸二酐、2,3',3,4'-二苯基醚四羧酸二酐、雙(2,3-二羧基苯基)醚二酐、3,3'',4,4''-對三聯苯四羧酸二酐、2,3,3'',4''-對三聯苯四羧酸二酐或2,2'',3,3''-對三聯苯四羧酸二酐、2,2-雙(2,3-二羧基苯基)-丙烷二酐或2,2-雙(3,4-二羧基苯基)-丙烷二酐、雙(2,3-二羧基苯基)甲烷二酐或雙(3,4-二羧基苯基)甲烷二酐、雙(2,3-二羧基苯基)碸二酐或雙(3,4-二羧基苯基)碸二酐、1,1-雙(2,3-二羧基苯基)乙烷二酐或1,1-雙(3,4-二羧基苯基)乙烷二酐、1,2,7,8-菲-四羧酸二酐、1,2,6,7-菲-四羧酸二酐或1,2,9,10-菲-四羧酸二酐、2,3,6,7-蒽四羧酸二酐、2,2-雙(3,4-二羧基苯基)四氟丙烷二酐、2,3,5,6-環己烷二酐、1,2,5,6-萘四羧酸二酐、1,4,5,8-萘四羧酸二酐、4,8-二甲基-1,2,3,5,6,7-六氫萘-1,2,5,6-四羧酸二酐、2,6-二氯萘-1,4,5,8-四羧酸二酐或2,7-二氯萘-1,4,5,8-四羧酸二酐、2,3,6,7-(或1,4,5,8-)四氯萘-1,4,5,8-(或2,3,6,7-)四羧酸二酐、2,3,8,9-苝-四羧酸二酐、3,4,9,10-苝-四羧酸二酐、4,5,10,11-苝-四羧酸二酐或5,6,11,12-苝-四羧酸二酐、環戊烷-1,2,3,4-四羧酸二酐、吡嗪-2,3,5,6-四羧酸二酐、吡咯烷-2,3,4,5-四羧酸二酐、噻吩-2,3,4,5-四羧酸二酐、4,4'-雙(2,3-二羧基苯氧基)二苯基甲烷二酐、乙二醇雙偏苯三酸酐等芳香族四羧酸二酐所衍生的四羧酸殘基。Examples of tetracarboxylic acid residues other than the BPDA residue, TAHQ residue, PMDA residue, and NTCDA residue contained in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer 111 include 3,3',4,4'-diphenylsulfonate tetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride, 2,3',3,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-benzophenonetetracarboxylic dianhydride, 2,3,3',4'-benzophenonetetracarboxylic dianhydride or 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,3',3,4'-diphenylethertetracarboxylic dianhydride, bis(2,3-dicarboxyphenyl)ether dianhydride, 3,3'',4,4''-terphenyltetracarboxylic dianhydride, 2,3,3'',4''-terphenyltetracarboxylic dianhydride or 2,2'',3,3''-terphenyltetracarboxylic dianhydride, 2,2-bis(2,3-dicarboxyphenyl)-propane dianhydride or 2,2-bis(3,4-dicarboxyphenyl)-propane dianhydride, bis(2,3-dicarboxyphenyl)methane dianhydride or bis(3,4-dicarboxyphenyl)methane dianhydride, bis(2,3-dicarboxyphenyl)sulfonate dianhydride or bis(3,4-dicarboxyphenyl)sulfonate dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride or 1,1-bis(3,4-dicarboxyphenyl)ethane dianhydride, 1,2,7, 8-phenanthrene-tetracarboxylic dianhydride, 1,2,6,7-phenanthrene-tetracarboxylic dianhydride or 1,2,9,10-phenanthrene-tetracarboxylic dianhydride, 2,3,6,7-anthracenetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)tetrafluoropropane dianhydride, 2,3,5,6-cyclohexane dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride or 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,3,6,7-(or 1,4,5,8 tetracarboxylic acid residues derived from aromatic tetracarboxylic acid dianhydrides such as tetrachloronaphthalene-1,4,5,8-(or 2,3,6,7-)tetracarboxylic dianhydride, 2,3,8,9-perylene-tetracarboxylic dianhydride, 3,4,9,10-perylene-tetracarboxylic dianhydride, 4,5,10,11-perylene-tetracarboxylic dianhydride or 5,6,11,12-perylene-tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride, 4,4'-bis(2,3-dicarboxyphenoxy)diphenylmethane dianhydride, and ethylene glycol bis(trimellitic)anhydride.

(二胺殘基) 作為構成非熱塑性聚醯亞胺層111的非熱塑性聚醯亞胺中所含的二胺殘基,優選為由通式(1)所表示的二胺化合物所衍生的二胺殘基。 (Diamine residue) As the diamine residue contained in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer 111, a diamine residue derived from a diamine compound represented by the general formula (1) is preferred.

[化2] [Chemistry 2]

式(1)中,連結基Z表示單鍵或-COO-,Y獨立地表示鹵素原子或可經苯基取代的碳數1~3的一價烴、或碳數1~3的烷氧基、或碳數1~3的全氟烷基、或烯基,n表示0~2的整數,p和q獨立地表示0~4的整數。此處,所謂「獨立地」表示所述式(1)中多個取代基Y、進而整數p、q可相同也可不同。再者,所述式(1)中,末端的兩個氨基中的氫原子可經取代,例如也可為-NR 2R 3(此處,R 2、R 3獨立地表示烷基等任意的取代基)。 In formula (1), the linking group Z represents a single bond or -COO-, Y independently represents a halogen atom or a monovalent hydrocarbon having 1 to 3 carbon atoms which may be substituted with a phenyl group, or an alkoxy group having 1 to 3 carbon atoms, or a perfluoroalkyl group having 1 to 3 carbon atoms, or an alkenyl group, n represents an integer of 0 to 2, and p and q independently represent integers of 0 to 4. Here, the term "independently" means that there are a plurality of substituents Y in the formula (1), and further, the integers p and q may be the same or different. Furthermore, in the formula (1), the hydrogen atoms in the two amino groups at the terminals may be substituted, for example, -NR 2 R 3 (here, R 2 and R 3 independently represent any substituent such as an alkyl group).

通式(1)所表示的二胺化合物(以下,有時表述為「二胺(1)」)是具有1個~3個苯環的芳香族二胺。二胺(1)具有剛直結構,因此具有對聚合物整體賦予有序結構的作用。因此,可獲得透氣性低、低吸濕性的聚醯亞胺,可減少分子鏈內部的水分,因此可降低介質損耗因數。此處,作為連結基Z,優選為單鍵。The diamine compound represented by the general formula (1) (hereinafter, sometimes referred to as "diamine (1)") is an aromatic diamine having 1 to 3 benzene rings. Diamine (1) has a rigid structure and thus has the effect of imparting an ordered structure to the polymer as a whole. Therefore, a polyimide having low air permeability and low hygroscopicity can be obtained, and the water content inside the molecular chain can be reduced, thereby reducing the dielectric loss factor. Here, the linking group Z is preferably a single bond.

作為二胺(1),例如可列舉:1,4-二氨基苯(對苯二胺(p-phenylenediamine,p-PDA))、2,2'-二甲基-4,4'-二氨基聯苯(m-TB)、2,2'-正丙基-4,4'-二氨基聯苯(2,2'-n-propyl-4,4'-diamino biphenyl,m-NPB)、4-氨基苯基-4'-氨基苯甲酸酯(4-amino phenyl-4'-amino benzoate,APAB)等。Examples of the diamine (1) include 1,4-diaminobenzene (p-phenylenediamine (p-PDA)), 2,2'-dimethyl-4,4'-diaminobiphenyl (m-TB), 2,2'-n-propyl-4,4'-diaminobiphenyl (m-NPB), and 4-aminophenyl-4'-aminobenzoate (APAB).

構成非熱塑性聚醯亞胺層111的非熱塑性聚醯亞胺可相對於所有二胺殘基的100莫耳份而含有優選為80莫耳份以上、更優選為85莫耳份以上由二胺(1)所衍生的二胺殘基。以所述範圍內的量來使用二胺(1),由此利用源自單體的剛直結構而容易對聚合物整體形成有序結構,容易獲得透氣性低、低吸濕性且低介質損耗因數的非熱塑性聚醯亞胺。The non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer 111 may contain diamine residues derived from diamine (1) in an amount of preferably 80 mol parts or more, more preferably 85 mol parts or more, relative to 100 mol parts of all diamine residues. When the diamine (1) is used in an amount within the above range, it is easy to form an ordered structure for the entire polymer by utilizing the rigid structure derived from the monomer, and it is easy to obtain a non-thermoplastic polyimide with low air permeability, low moisture absorption and low dielectric loss factor.

另外,在相對於非熱塑性聚醯亞胺中的所有二胺殘基的100莫耳份,由二胺(1)所衍生的二胺殘基為80莫耳份以上且85莫耳份以下的範圍內的情況下,就為更剛直、面內取向性優異的結構的觀點而言,作為二胺(1),優選為使用1,4-二氨基苯。When the diamine residues derived from the diamine (1) are in the range of 80 mol parts or more and 85 mol parts or less per 100 mol parts of all diamine residues in the non-thermoplastic polyimide, 1,4-diaminobenzene is preferably used as the diamine (1) from the viewpoint of obtaining a more rigid structure with excellent in-plane orientation.

作為構成非熱塑性聚醯亞胺層111的非熱塑性聚醯亞胺中所含的其他二胺殘基,例如可列舉由2,2-雙-[4-(3-氨基苯氧基)苯基]丙烷、雙[4-(3-氨基苯氧基)苯基]碸、雙[4-(3-氨基苯氧基)]聯苯、雙[1-(3-氨基苯氧基)]聯苯、雙[4-(3-氨基苯氧基)苯基]甲烷、雙[4-(3-氨基苯氧基)苯基]醚、雙[4-(3-氨基苯氧基)]二苯甲酮、9,9-雙[4-(3-氨基苯氧基)苯基]芴、2,2-雙-[4-(4-氨基苯氧基)苯基]六氟丙烷、2,2-雙-[4-(3-氨基苯氧基)苯基]六氟丙烷、3,3'-二甲基-4,4'-二氨基聯苯、4,4'-亞甲基二-鄰甲苯胺、4,4'-亞甲基二-2,6-二甲苯胺、4,4'-亞甲基-2,6-二乙基苯胺、3,3'-二氨基二苯基乙烷、3,3'-二氨基聯苯、3,3'-二甲氧基聯苯胺、3,3''-二氨基-對三聯苯、4,4'-[1,4-亞苯基雙(1-甲基亞乙基)]雙苯胺、4,4'-[1,3-亞苯基雙(1-甲基亞乙基)]雙苯胺、雙(對氨基環己基)甲烷、雙(對-β-氨基-叔丁基苯基)醚、雙(對-β-甲基-δ-氨基戊基)苯、對-雙(2-甲基-4-氨基戊基)苯、對-雙(1,1-二甲基-5-氨基戊基)苯、1,5-二氨基萘、2,6-二氨基萘、2,4-雙(β-氨基-叔丁基)甲苯、2,4-二氨基甲苯、間二甲苯-2,5-二胺、對二甲苯-2,5-二胺、間亞二甲苯基二胺、對亞二甲苯基二胺、2,6-二氨基吡啶、2,5-二氨基吡啶、2,5-二氨基-1,3,4-噁二唑、呱嗪、2'-甲氧基-4,4'-二氨基苯甲醯苯胺、4,4'-二氨基苯甲醯苯胺、1,3-雙[2-(4-氨基苯基)-2-丙基]苯、6-氨基-2-(4-氨基苯氧基)苯并噁唑等芳香族二胺化合物所衍生的二胺殘基、由二聚酸的兩個末端羧酸基經取代為一級氨基甲基或氨基的二聚酸型二胺等脂肪族二胺化合物所衍生的二胺殘基。Examples of other diamine residues contained in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer 111 include 2,2-bis-[4-(3-aminophenoxy)phenyl]propane, bis[4-(3-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)]biphenyl, bis[1-(3-aminophenoxy)]biphenyl, bis[4-(3-aminophenoxy)phenyl]methane, bis[4-(3-aminophenoxy)phenyl]ether, bis[4-(3-aminophenoxy)]benzophenone, 9,9-bis[4-(3-aminophenoxy)phenyl]fluorene, 2, 2-Bis-[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis-[4-(3-aminophenoxy)phenyl]hexafluoropropane, 3,3'-dimethyl-4,4'-diaminobiphenyl, 4,4'-methylenebis-o-toluidine, 4,4'-methylenebis-2,6-dimethylaniline, 4,4'-methylenebis-2,6-diethylaniline, 3,3'-diaminodiphenylethane, 3,3'-diaminobiphenyl, 3,3'-dimethoxybenzidine, 3,3''-diamino-p-terphenyl, 4,4'-[1,4-phenylenebis(1-methylethyl)benzidine] )]bisaniline, 4,4'-[1,3-phenylenebis(1-methylethylidene)]bisaniline, bis(p-aminocyclohexyl)methane, bis(p-β-amino-tert-butylphenyl)ether, bis(p-β-methyl-δ-aminopentyl)benzene, p-bis(2-methyl-4-aminopentyl)benzene, p-bis(1,1-dimethyl-5-aminopentyl)benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,4-bis(β-amino-tert-butyl)toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m-xylylene diamine diamine residues derived from aromatic diamine compounds such as p-xylylenediamine, 2,6-diaminopyridine, 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole, piperazine, 2'-methoxy-4,4'-diaminobenzanilide, 4,4'-diaminobenzanilide, 1,3-bis[2-(4-aminophenyl)-2-propyl]benzene, and 6-amino-2-(4-aminophenoxy)benzoxazole; and diamine residues derived from aliphatic diamine compounds such as dimer acid-type diamines in which both terminal carboxylic acid groups of a dimer acid are substituted with primary aminomethyl groups or amino groups.

非熱塑性聚醯亞胺中,通過選定所述四羧酸殘基及二胺殘基的種類、或者應用兩種以上的四羧酸殘基或二胺殘基時各自的莫耳比,可控制熱膨脹係數、儲存彈性係數、拉伸彈性係數等。另外,非熱塑性聚醯亞胺中,在具有多個聚醯亞胺的結構單元的情況下,可以嵌段的形式存在,也可無規存在,但就抑制面內延遲(RO)的偏差的觀點而言,優選為無規存在。In the non-thermoplastic polyimide, by selecting the types of the tetracarboxylic acid residues and diamine residues, or by using two or more tetracarboxylic acid residues or diamine residues, their respective molar ratios can be controlled to control the thermal expansion coefficient, storage elastic coefficient, tensile elastic coefficient, etc. In addition, in the non-thermoplastic polyimide, when having a plurality of structural units of polyimide, they may exist in the form of blocks or randomly, but from the viewpoint of suppressing the deviation of the in-plane retardation (RO), it is preferably present randomly.

再者,通過將非熱塑性聚醯亞胺中所含的四羧酸殘基及二胺殘基均設為芳香族基,可提高聚醯亞胺膜在高溫環境下的尺寸精度,且減少面內延遲(RO)的變化量,因此優選。Furthermore, it is preferred that both the tetracarboxylic acid residue and the diamine residue contained in the non-thermoplastic polyimide are aromatic groups because the dimensional accuracy of the polyimide film in a high temperature environment can be improved and the variation of the in-plane retardation (RO) can be reduced.

非熱塑性聚醯亞胺的醯亞胺基濃度優選為33%以下,更優選為32%以下。此處,「醯亞胺基濃度」表示聚醯亞胺中的醯亞胺基部(-(CO) 2-N-)的分子量除以聚醯亞胺的結構整體的分子量而得的值。若醯亞胺基濃度超過33%,則樹脂自身的分子量減小,且因極性基的增加而低吸濕性也變差。通過選擇所述酸酐與二胺化合物的組合而控制非熱塑性聚醯亞胺中的分子的取向性,由此抑制伴隨醯亞胺基濃度下降的CTE的增加,確保低吸濕性。 The imide group concentration of the non-thermoplastic polyimide is preferably 33% or less, and more preferably 32% or less. Here, "imide group concentration" refers to the value obtained by dividing the molecular weight of the imide group (-(CO) 2 -N-) in the polyimide by the molecular weight of the entire structure of the polyimide. If the imide group concentration exceeds 33%, the molecular weight of the resin itself decreases, and the low hygroscopicity also deteriorates due to the increase in polar groups. By selecting the combination of the acid anhydride and the diamine compound, the orientation of the molecules in the non-thermoplastic polyimide is controlled, thereby suppressing the increase in CTE accompanying the decrease in the imide group concentration and ensuring low hygroscopicity.

非熱塑性聚醯亞胺的重量平均分子量例如優選為10,000~400,000的範圍內,更優選為50,000~350,000的範圍內。若重量平均分子量未滿10,000,則出現膜的強度下降而容易變脆的傾向。另一方面,若重量平均分子量超過400,000,則出現黏度過度增加且塗敷作業時容易發生膜厚度不均、條紋等不良情況的傾向。The weight average molecular weight of the non-thermoplastic polyimide is preferably in the range of 10,000 to 400,000, more preferably in the range of 50,000 to 350,000. If the weight average molecular weight is less than 10,000, the strength of the film decreases and the film tends to become brittle. On the other hand, if the weight average molecular weight exceeds 400,000, the viscosity increases excessively and the film thickness is uneven, streaks, and other undesirable conditions tend to occur during the coating operation.

就確保作為基底層的功能且製造時及熱塑性聚醯亞胺塗敷時的搬運性的觀點而言,非熱塑性聚醯亞胺層111的厚度優選為6 μm以上且100 μm以下的範圍內,更優選為9 μm以上且50 μm以下的範圍內。在非熱塑性聚醯亞胺層111的厚度未滿所述下限值的情況下,電絕緣性或操作性變得不充分,若超過上限值,則生產性下降。From the viewpoint of ensuring the function as a base layer and the handling properties during manufacturing and coating of thermoplastic polyimide, the thickness of the non-thermoplastic polyimide layer 111 is preferably in the range of 6 μm to 100 μm, and more preferably in the range of 9 μm to 50 μm. If the thickness of the non-thermoplastic polyimide layer 111 is less than the lower limit, the electrical insulation or handling properties become insufficient, and if it exceeds the upper limit, the productivity decreases.

就耐熱性的觀點而言,非熱塑性聚醯亞胺層111的玻璃化轉變溫度(Tg)優選為280℃以上。From the viewpoint of heat resistance, the glass transition temperature (Tg) of the non-thermoplastic polyimide layer 111 is preferably 280° C. or higher.

另外,就抑制翹曲的觀點而言,非熱塑性聚醯亞胺層111的熱膨脹係數可為1 ppm/K以上且30 ppm/K以下的範圍內,優選為1 ppm/K以上且25 ppm/K以下的範圍內,更優選為15 ppm/K以上且25 ppm/K以下的範圍內。In addition, from the viewpoint of suppressing warp, the thermal expansion coefficient of the non-thermoplastic polyimide layer 111 can be in the range of 1 ppm/K to 30 ppm/K, preferably in the range of 1 ppm/K to 25 ppm/K, and more preferably in the range of 15 ppm/K to 25 ppm/K.

另外,在構成非熱塑性聚醯亞胺層111的非熱塑性聚醯亞胺中例如可適宜調配塑化劑、環氧樹脂等其他硬化樹脂成分、硬化劑、硬化促進劑、偶聯劑、填充劑、溶劑、阻燃劑等作為任意成分。但是,塑化劑中有含有大量的極性基的物質,所述物質有助長銅從銅配線擴散的擔心,因此優選為盡可能不使用塑化劑。In addition, for example, a plasticizer, other curing resin components such as epoxy resin, a curing agent, a curing accelerator, a coupling agent, a filler, a solvent, a flame retardant, etc. may be appropriately formulated as an arbitrary component in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer 111. However, there are substances containing a large amount of polar groups in the plasticizer, and there is a concern that the substance promotes the diffusion of copper from the copper wiring, so it is preferable not to use the plasticizer as much as possible.

熱塑性聚醯亞胺層: 構成熱塑性聚醯亞胺層112的熱塑性聚醯亞胺為包含四羧酸殘基及二胺殘基者,優選為包含由芳香族四羧酸二酐所衍生的芳香族四羧酸殘基及芳香族二胺所衍生的芳香族二胺殘基。 Thermoplastic polyimide layer: Thermoplastic polyimide constituting the thermoplastic polyimide layer 112 contains tetracarboxylic acid residues and diamine residues, preferably contains aromatic tetracarboxylic acid residues derived from aromatic tetracarboxylic dianhydride and aromatic diamine residues derived from aromatic diamine.

(四羧酸殘基) 作為構成熱塑性聚醯亞胺層112的熱塑性聚醯亞胺中使用的四羧酸殘基,可使用與所述作為構成非熱塑性聚醯亞胺層的非熱塑性聚醯亞胺中的四羧酸殘基而例示者相同者。 (Tetracarboxylic acid residue) As the tetracarboxylic acid residue used in the thermoplastic polyimide constituting the thermoplastic polyimide layer 112, the same ones as those exemplified as the tetracarboxylic acid residue in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer can be used.

(二胺殘基) 作為構成熱塑性聚醯亞胺層112的熱塑性聚醯亞胺中所含的二胺殘基,優選為由通式(B1)~通式(B7)所表示的二胺化合物所衍生的二胺殘基。 (Diamine residue) As the diamine residue contained in the thermoplastic polyimide constituting the thermoplastic polyimide layer 112, a diamine residue derived from a diamine compound represented by general formula (B1) to general formula (B7) is preferred.

[化3] [Chemistry 3]

式(B1)~式(B7)中,R 1獨立地表示碳數1~6的一價烴基或烷氧基,連結基A獨立地表示選自-O-、-S-、-CO-、-SO-、-SO 2-、-COO-、-CH 2-、-C(CH 3) 2-、-NH-或-CONH-中的二價基,n 1獨立地表示0~4的整數。其中,自式(B3)中去除與式(B2)重複者,自式(B5)中去除與式(B4)重複者。此處,所謂「獨立地」表示所述式(B1)~式(B7)內的一個式或兩個以上式中多個連結基A、多個R 1或多個n 1可相同也可不同。再者,所述式(B1)~式(B7)中,末端的兩個氨基中的氫原子可經取代,例如也可為-NR 2R 3(此處,R 2、R 3獨立地表示烷基等任意的取代基)。 In formula (B1) to formula (B7), R1 independently represents a monovalent alkyl group or alkoxy group having 1 to 6 carbon atoms, linking group A independently represents a divalent group selected from -O-, -S-, -CO-, -SO-, -SO 2 -, -COO-, -CH 2 -, -C(CH 3 ) 2 -, -NH- or -CONH-, and n1 independently represents an integer from 0 to 4. In formula (B3), the repeating group in formula (B2) is excluded, and the repeating group in formula (B4) is excluded from formula (B5). Here, "independently" means that the multiple linking groups A, multiple R1 or multiple n1 in one or more formulas of formula (B1) to formula (B7) may be the same or different. In the above formulae (B1) to (B7), the hydrogen atoms in the two terminal amino groups may be substituted, and may be, for example, -NR 2 R 3 (wherein R 2 and R 3 independently represent any substituent such as an alkyl group).

式(B1)所表示的二胺(以下,有時表述為「二胺(B1)」)是具有兩個苯環的芳香族二胺。認為所述二胺(B1)通過直接鍵結於至少一個苯環上的氨基與二價連結基A處於間位,聚醯亞胺分子鏈所具有的自由度增加且具有高彎曲性,有助於聚醯亞胺分子鏈的柔軟性的提高。因此,通過使用二胺(B1),聚醯亞胺的熱塑性提高。此處,作為連結基A,優選為-O-、-CH 2-、-C(CH 3) 2-、-CO-、-SO 2-、-S-。 The diamine represented by formula (B1) (hereinafter, sometimes referred to as "diamine (B1)") is an aromatic diamine having two benzene rings. The diamine (B1) is directly bonded to at least one benzene ring, and the amino group and the divalent linking group A are located at the meta position, so that the degree of freedom of the polyimide molecular chain increases and the polyimide molecular chain has high flexibility, which contributes to the improvement of the flexibility of the polyimide molecular chain. Therefore, by using diamine (B1), the thermoplasticity of the polyimide is improved. Here, as the linking group A, -O-, -CH2- , -C( CH3 ) 2- , -CO-, -SO2- , -S- are preferred.

作為二胺(B1),例如可列舉:3,3'-二氨基二苯基甲烷、3,3'-二氨基二苯基丙烷、3,3'-二氨基二苯基硫醚、3,3'-二氨基二苯基碸、3,3'-二氨基二苯基醚、3,4'-二氨基二苯基醚、3,4'-二氨基二苯基甲烷、3,4'-二氨基二苯基丙烷、3,4'-二氨基二苯基硫醚、3,3'-二氨基二苯甲酮、(3,3'-雙氨基)二苯基胺等。Examples of the diamine (B1) include 3,3'-diaminodiphenylmethane, 3,3'-diaminodiphenylpropane, 3,3'-diaminodiphenyl sulfide, 3,3'-diaminodiphenylsulfone, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylpropane, 3,4'-diaminodiphenyl sulfide, 3,3'-diaminobenzophenone, and (3,3'-bisamino)diphenylamine.

式(B2)所表示的二胺(以下,有時表述為「二胺(B2)」)是具有三個苯環的芳香族二胺。認為所述二胺(B2)通過直接鍵結於至少一個苯環上的氨基與二價連結基A處於間位,聚醯亞胺分子鏈所具有的自由度增加且具有高彎曲性,有助於聚醯亞胺分子鏈的柔軟性的提高。因此,通過使用二胺(B2),聚醯亞胺的熱塑性提高。此處,作為連結基A,優選為-O-。The diamine represented by formula (B2) (hereinafter, sometimes referred to as "diamine (B2)") is an aromatic diamine having three benzene rings. The diamine (B2) is directly bonded to the amino group on at least one benzene ring and the divalent linking group A is in the meta position, so that the degree of freedom of the polyimide molecular chain is increased and the polyimide molecular chain has high flexibility, which contributes to the improvement of the flexibility of the polyimide molecular chain. Therefore, by using diamine (B2), the thermoplasticity of the polyimide is improved. Here, as the linking group A, -O- is preferably used.

作為二胺(B2),例如可列舉:1,4-雙(3-氨基苯氧基)苯、3-[4-(4-氨基苯氧基)苯氧基]苯胺、3-[3-(4-氨基苯氧基)苯氧基]苯胺等。Examples of the diamine (B2) include 1,4-bis(3-aminophenoxy)benzene, 3-[4-(4-aminophenoxy)phenoxy]aniline, and 3-[3-(4-aminophenoxy)phenoxy]aniline.

式(B3)所表示的二胺(以下,有時表述為「二胺(B3)」)是具有三個苯環的芳香族二胺。認為所述二胺(B3)通過直接鍵結於一個苯環上的兩個二價連結基A彼此處於間位,聚醯亞胺分子鏈所具有的自由度增加且具有高彎曲性,有助於聚醯亞胺分子鏈的柔軟性的提高。因此,通過使用二胺(B3),聚醯亞胺的熱塑性提高。此處,作為連結基A,優選為-O-。The diamine represented by formula (B3) (hereinafter, sometimes referred to as "diamine (B3)") is an aromatic diamine having three benzene rings. The diamine (B3) is believed to increase the degree of freedom of the polyimide molecular chain and have high flexibility due to the two divalent linking groups A directly bonded to one benzene ring, thereby contributing to the improvement of the flexibility of the polyimide molecular chain. Therefore, by using diamine (B3), the thermoplasticity of the polyimide is improved. Here, the linking group A is preferably -O-.

作為二胺(B3),例如可列舉:1,3-雙(4-氨基苯氧基)苯(1,3-Bis(4-aminophenoxy)benzene,TPE-R)、1,3-雙(3-氨基苯氧基)苯(1,3-Bis(3-aminophenoxy)benzene,APB)、4,4'-[2-甲基-(1,3-亞苯基)雙氧基]雙苯胺、4,4'-[4-甲基-(1,3-亞苯基)雙氧基]雙苯胺、4,4'-[5-甲基-(1,3-亞苯基)雙氧基]雙苯胺等。Examples of the diamine (B3) include 1,3-bis(4-aminophenoxy)benzene (TPE-R), 1,3-bis(3-aminophenoxy)benzene (APB), 4,4'-[2-methyl-(1,3-phenylene)bisoxy]bisaniline, 4,4'-[4-methyl-(1,3-phenylene)bisoxy]bisaniline, and 4,4'-[5-methyl-(1,3-phenylene)bisoxy]bisaniline.

式(B4)所表示的二胺(以下,有時表述為「二胺(B4)」)是具有四個苯環的芳香族二胺。認為所述二胺(B4)通過直接鍵結於至少一個苯環上的氨基與二價連結基A處於間位,而具有高彎曲性,有助於聚醯亞胺分子鏈的柔軟性的提高。因此,通過使用二胺(B4),聚醯亞胺的熱塑性提高。此處,作為連結基A,優選為-O-、-CH 2-、-C(CH 3) 2-、-SO 2-、-CO-、-CONH-。 The diamine represented by formula (B4) (hereinafter, sometimes referred to as "diamine (B4)") is an aromatic diamine having four benzene rings. The diamine (B4) is considered to have high flexibility due to the amino group directly bonded to at least one benzene ring and the divalent linking group A being at the meta position, and thus contributes to the improvement of the flexibility of the polyimide molecular chain. Therefore, by using the diamine (B4), the thermoplasticity of the polyimide is improved. Here, as the linking group A, -O-, -CH2- , -C( CH3 ) 2- , -SO2- , -CO-, and -CONH- are preferred.

作為二胺(B4),可列舉:雙[4-(3-氨基苯氧基)苯基]甲烷、雙[4-(3-氨基苯氧基)苯基]丙烷、雙[4-(3-氨基苯氧基)苯基]醚、雙[4-(3-氨基苯氧基)苯基]碸、雙[4-(3-氨基苯氧基)]二苯甲酮、雙[4,4'-(3-氨基苯氧基)]苯甲醯苯胺等。Examples of the diamine (B4) include bis[4-(3-aminophenoxy)phenyl]methane, bis[4-(3-aminophenoxy)phenyl]propane, bis[4-(3-aminophenoxy)phenyl]ether, bis[4-(3-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)benzophenone, and bis[4,4'-(3-aminophenoxy)]benzanilide.

式(B5)所表示的二胺(以下,有時表述為「二胺(B5)」)是具有四個苯環的芳香族二胺。認為所述二胺(B5)通過直接鍵結於至少一個苯環上的兩個二價連結基A彼此處於間位,聚醯亞胺分子鏈所具有的自由度增加且具有高彎曲性,有助於聚醯亞胺分子鏈的柔軟性的提高。因此,通過使用二胺(B5),聚醯亞胺的熱塑性提高。此處,作為連結基A,優選為-O-。The diamine represented by formula (B5) (hereinafter, sometimes referred to as "diamine (B5)") is an aromatic diamine having four benzene rings. The diamine (B5) is considered to increase the degree of freedom of the polyimide molecular chain and have high flexibility due to the two divalent linking groups A directly bonded to at least one benzene ring, which contributes to the improvement of the flexibility of the polyimide molecular chain. Therefore, by using diamine (B5), the thermoplasticity of the polyimide is improved. Here, the linking group A is preferably -O-.

作為二胺(B5),可列舉4-[3-[4-(4-氨基苯氧基)苯氧基]苯氧基]苯胺、4,4'-[氧基雙(3,1-亞苯氧基)]雙苯胺等。Examples of the diamine (B5) include 4-[3-[4-(4-aminophenoxy)phenoxy]phenoxy]aniline and 4,4'-[oxybis(3,1-phenyleneoxy)]bisaniline.

式(B6)所表示的二胺(以下,有時表述為「二胺(B6)」)是具有四個苯環的芳香族二胺。認為所述二胺(B6)通過具有至少兩個醚鍵而具有高彎曲性,有助於聚醯亞胺分子鏈的柔軟性的提高。因此,通過使用二胺(B6),聚醯亞胺的熱塑性提高。此處,作為連結基A,優選為-C(CH 3) 2-、-O-、-SO 2-、-CO-。 The diamine represented by formula (B6) (hereinafter, sometimes referred to as "diamine (B6)") is an aromatic diamine having four benzene rings. The diamine (B6) is considered to have high flexibility due to having at least two ether bonds, and contributes to improving the flexibility of the polyimide molecular chain. Therefore, by using diamine (B6), the thermoplasticity of the polyimide is improved. Here, as the linking group A, -C( CH3 ) 2- , -O-, -SO2- , and -CO- are preferred.

作為二胺(B6),例如可列舉:2,2-雙[4-(4-氨基苯氧基)苯基]丙烷(2,2-Bis[4-(4-aminophenoxy)phenyl]propane,BAPP)、雙[4-(4-氨基苯氧基)苯基]醚(Bis[4-(4-aminophenoxy)phenyl]ether,BAPE)、雙[4-(4-氨基苯氧基)苯基]碸(Bis[4-(4-aminophenoxy)phenyl]sulfone,BAPS)、雙[4-(4-氨基苯氧基)苯基]酮(Bis[4-(4-aminophenoxy)phenyl]ketone,BAPK)等。Examples of the diamine (B6) include 2,2-Bis[4-(4-aminophenoxy)phenyl]propane (BAPP), Bis[4-(4-aminophenoxy)phenyl]ether (BAPE), Bis[4-(4-aminophenoxy)phenyl]sulfone (BAPS), and Bis[4-(4-aminophenoxy)phenyl]ketone (BAPK).

式(B7)所表示的二胺(以下,有時表述為「二胺(B7)」)是具有四個苯環的芳香族二胺。所述二胺(B7)在二苯基骨架的兩側分別具有彎曲性高的二價連結基A,因此認為有助於聚醯亞胺分子鏈的柔軟性的提高。因此,通過使用二胺(B7),聚醯亞胺的熱塑性提高。此處,作為連結基A,優選為-O-。The diamine represented by formula (B7) (hereinafter, sometimes referred to as "diamine (B7)") is an aromatic diamine having four benzene rings. The diamine (B7) has a highly flexible divalent linking group A on both sides of the diphenyl skeleton, and is therefore considered to contribute to improving the flexibility of the polyimide molecular chain. Therefore, by using the diamine (B7), the thermoplasticity of the polyimide is improved. Here, the linking group A is preferably -O-.

作為二胺(B7),例如可列舉雙[4-(3-氨基苯氧基)]聯苯、雙[4-(4-氨基苯氧基)]聯苯等。Examples of the diamine (B7) include bis[4-(3-aminophenoxy)]biphenyl and bis[4-(4-aminophenoxy)]biphenyl.

構成熱塑性聚醯亞胺層112的熱塑性聚醯亞胺可相對於所有二胺殘基的100莫耳份,在60莫耳份以上、優選為60莫耳份以上且99莫耳份以下的範圍內、更優選為70莫耳份以上且95莫耳份以下的範圍內含有由選自二胺(B1)~二胺(B7)中的至少一種二胺化合物所衍生的二胺殘基。二胺(B1)~二胺(B7)含有具有彎曲性的分子結構,因此通過以所述範圍內的量來使用選自這些化合物中的至少一種二胺化合物,可提高聚醯亞胺分子鏈的柔軟性,且賦予熱塑性。若原料中的二胺(B1)~二胺(B7)的合計量相對於所有二胺成分的100莫耳份而未滿60莫耳份,則聚醯亞胺樹脂的柔軟性不足而無法獲得充分的熱塑性。The thermoplastic polyimide constituting the thermoplastic polyimide layer 112 may contain diamine residues derived from at least one diamine compound selected from diamine (B1) to diamine (B7) in an amount of 60 mol parts or more, preferably in a range of 60 mol parts or more and 99 mol parts or less, and more preferably in a range of 70 mol parts or more and 95 mol parts or less, relative to 100 mol parts of all diamine residues. Diamine (B1) to diamine (B7) have a molecular structure having flexibility, and therefore, by using at least one diamine compound selected from these compounds in an amount within the above range, the flexibility of the polyimide molecular chain can be improved and thermoplasticity can be imparted. If the total amount of diamine (B1) to diamine (B7) in the raw materials is less than 60 mol parts relative to 100 mol parts of all diamine components, the polyimide resin will be insufficiently flexible and sufficient thermoplasticity will not be obtained.

另外,作為構成熱塑性聚醯亞胺層112的熱塑性聚醯亞胺中所含的二胺殘基,也優選為由通式(1)表示的二胺化合物所衍生的二胺殘基。關於式(1)表示的二胺化合物[二胺(1)],如在非熱塑性聚醯亞胺的說明中所述那樣。二胺(1)具有剛直結構,且具有對聚合物整體賦予有序結構的作用,因此可通過抑制分子的運動而使介質損耗因數或吸濕性下降。進而,通過用作熱塑性聚醯亞胺的原料,可獲得透氣性低、長期耐熱黏著性優異的聚醯亞胺。In addition, as the diamine residue contained in the thermoplastic polyimide constituting the thermoplastic polyimide layer 112, it is also preferred to be a diamine residue derived from a diamine compound represented by the general formula (1). The diamine compound represented by the general formula (1) [diamine (1)] is as described in the description of the non-thermoplastic polyimide. Diamine (1) has a rigid structure and has the function of imparting an ordered structure to the polymer as a whole, thereby suppressing the movement of molecules and reducing the dielectric loss factor or moisture absorption. Furthermore, by using it as a raw material for thermoplastic polyimide, a polyimide with low air permeability and excellent long-term heat resistance and adhesion can be obtained.

構成熱塑性聚醯亞胺層112的熱塑性聚醯亞胺可在優選為1莫耳份以上且40莫耳份以下的範圍內、更優選為5莫耳份以上且30莫耳份以下的範圍內含有由二胺(1)所衍生的二胺殘基。通過以所述範圍內的量來使用二胺(1),利用源自單體的剛直結構而聚合物整體形成有序結構,因此可獲得為熱塑性且透氣性及吸濕性低、長期耐熱黏著性優異的聚醯亞胺。The thermoplastic polyimide constituting the thermoplastic polyimide layer 112 may contain diamine residues derived from the diamine (1) in an amount preferably in the range of 1 mol to 40 mol, more preferably in the range of 5 mol to 30 mol. By using the diamine (1) in an amount in the above range, the polymer as a whole forms an ordered structure by utilizing the rigid structure derived from the monomer, thereby obtaining a thermoplastic polyimide having low air permeability and moisture absorption and excellent long-term heat-resistant adhesion.

構成熱塑性聚醯亞胺層112的熱塑性聚醯亞胺可在不損及發明的效果的範圍內包含由二胺(1)、二胺(B1)~二胺(B7)以外的二胺化合物所衍生的二胺殘基。The thermoplastic polyimide constituting the thermoplastic polyimide layer 112 may contain a diamine residue derived from a diamine compound other than diamine (1) and diamine (B1) to diamine (B7) within a range not impairing the effects of the present invention.

熱塑性聚醯亞胺中,通過選定所述四羧酸殘基及二胺殘基的種類、或者應用兩種以上的四羧酸殘基或二胺殘基時各自的莫耳比,可控制熱膨脹係數、拉伸彈性係數、玻璃化轉變溫度等。另外,熱塑性聚醯亞胺中,在具有多個聚醯亞胺的結構單元的情況下,可以嵌段的形式存在,也可無規存在,但優選為無規存在。In thermoplastic polyimide, by selecting the types of tetracarboxylic acid residues and diamine residues, or by using two or more tetracarboxylic acid residues or diamine residues, their respective molar ratios can be controlled to control the thermal expansion coefficient, tensile elastic coefficient, glass transition temperature, etc. In addition, in the case of having a plurality of structural units of polyimide in thermoplastic polyimide, they may exist in the form of blocks or randomly, but preferably exist randomly.

再者,通過將熱塑性聚醯亞胺中所含的四羧酸殘基及二胺殘基均設為芳香族基,可提高聚醯亞胺膜在高溫環境下的尺寸精度,且抑制面內延遲(RO)的變化量。Furthermore, by making both the tetracarboxylic acid residue and the diamine residue contained in the thermoplastic polyimide into aromatic groups, the dimensional accuracy of the polyimide film in a high temperature environment can be improved and the variation of the in-plane retardation (RO) can be suppressed.

熱塑性聚醯亞胺的醯亞胺基濃度優選為33%以下,更優選為32%以下。此處,「醯亞胺基濃度」表示聚醯亞胺中的醯亞胺基部(-(CO) 2-N-)的分子量除以聚醯亞胺的結構整體的分子量而得的值。若醯亞胺基濃度超過33%,則樹脂自身的分子量減小,且因極性基的增加而低吸濕性也變差。通過選擇所述二胺化合物的組合而控制熱塑性聚醯亞胺中的分子的取向性,由此抑制伴隨醯亞胺基濃度下降的CTE的增加,確保低吸濕性。 The imide group concentration of the thermoplastic polyimide is preferably 33% or less, and more preferably 32% or less. Here, "imide group concentration" refers to the value obtained by dividing the molecular weight of the imide group (-(CO) 2 -N-) in the polyimide by the molecular weight of the entire structure of the polyimide. If the imide group concentration exceeds 33%, the molecular weight of the resin itself decreases, and the low hygroscopicity also deteriorates due to the increase in polar groups. By selecting the combination of the diamine compounds, the orientation of the molecules in the thermoplastic polyimide is controlled, thereby suppressing the increase in CTE accompanying the decrease in the imide group concentration and ensuring low hygroscopicity.

熱塑性聚醯亞胺的重量平均分子量例如優選為10,000~400,000的範圍內,更優選為50,000~350,000的範圍內。若重量平均分子量未滿10,000,則出現膜的強度下降而容易變脆的傾向。另一方面,若重量平均分子量超過400,000,則出現黏度過度增加且塗敷作業時容易發生膜厚度不均、條紋等不良情況的傾向。The weight average molecular weight of the thermoplastic polyimide is preferably in the range of 10,000 to 400,000, more preferably in the range of 50,000 to 350,000. If the weight average molecular weight is less than 10,000, the strength of the film decreases and the film tends to become brittle. On the other hand, if the weight average molecular weight exceeds 400,000, the viscosity increases excessively and defects such as uneven film thickness and streaks tend to occur during coating.

構成熱塑性聚醯亞胺層112的熱塑性聚醯亞胺例如成為電路基板的絕緣樹脂中的黏著層,因此為了抑制銅的擴散,最優選為完全經醯亞胺化的結構。其中,聚醯亞胺的一部分也可成為醯胺酸。所述醯亞胺化率是使用傅立葉轉換紅外光譜儀(市售品:日本分光製造的FT/IR620),並利用一次反射減弱全反射(Attenuated Total Reflectance,ATR)法測定聚醯亞胺薄膜的紅外線吸收光譜,由此以1015 cm -1附近的苯環吸收體為基準,根據源自1780 cm -1的醯亞胺基的C=O伸縮的吸光度而算出。 The thermoplastic polyimide constituting the thermoplastic polyimide layer 112 serves as an adhesive layer in the insulating resin of the circuit board, for example. Therefore, in order to suppress the diffusion of copper, a completely imidized structure is most preferably used. Part of the polyimide may also be an amide. The imidization rate is measured by using a Fourier transform infrared spectrometer (commercial product: FT/IR620 manufactured by JASCO Corporation) and using the attenuated total reflectance (ATR) method to measure the infrared absorption spectrum of the polyimide film. The benzene ring absorber near 1015 cm -1 is used as a reference, and the absorbance of the C=O stretching of the imide group at 1780 cm -1 is calculated.

就確保黏著性能的觀點而言,熱塑性聚醯亞胺層112的厚度優選為1 μm以上且10 μm以下的範圍內,更優選為1 μm以上且5 μm以下的範圍內。在熱塑性聚醯亞胺層112的厚度未滿所述下限值的情況下,黏著性不充分,若超過上限值,則出現尺寸穩定性惡化的傾向。From the viewpoint of ensuring adhesion performance, the thickness of the thermoplastic polyimide layer 112 is preferably within a range of 1 μm to 10 μm, and more preferably within a range of 1 μm to 5 μm. If the thickness of the thermoplastic polyimide layer 112 is less than the lower limit, adhesion is insufficient, and if it exceeds the upper limit, dimensional stability tends to deteriorate.

就抑制翹曲的觀點而言,熱塑性聚醯亞胺層112的熱膨脹係數可為30 ppm/K以上,優選為30 ppm/K以上且100 ppm/K以下的範圍內,更優選為30 ppm/K以上且80 ppm/K以下的範圍內。From the viewpoint of suppressing warp, the thermal expansion coefficient of the thermoplastic polyimide layer 112 may be 30 ppm/K or more, preferably 30 ppm/K or more and 100 ppm/K or less, and more preferably 30 ppm/K or more and 80 ppm/K or less.

另外,在熱塑性聚醯亞胺層112中使用的樹脂中,除了聚醯亞胺以外,例如可適宜調配塑化劑、環氧樹脂等其他硬化樹脂成分、硬化劑、硬化促進劑、無機填料、偶聯劑、填充劑、溶劑、阻燃劑等作為任意成分。但是,塑化劑中有含有大量的極性基的物質,所述物質有助長銅從銅配線擴散的擔心,因此優選為盡可能不使用塑化劑。In addition, in addition to polyimide, the resin used in the thermoplastic polyimide layer 112 may contain, as an arbitrary component, a plasticizer, other curing resin components such as epoxy resin, a curing agent, a curing accelerator, an inorganic filler, a coupling agent, a filler, a solvent, a flame retardant, etc. However, there are substances containing a large amount of polar groups among plasticizers, and there is a concern that such substances promote the diffusion of copper from copper wiring, so it is preferred not to use plasticizers as much as possible.

在覆金屬積層板100中,為了確保電路加工後的尺寸穩定性,兩個聚醯亞胺層110和黏著性聚醯亞胺層120的整體的熱膨脹係數可為10 ppm/K以上,可優選為10 ppm/K以上且30 ppm/K以下的範圍內,更優選為15 ppm/K以上且25 ppm/K以下的範圍內。 再者,在覆金屬積層板100中,關於兩個聚醯亞胺層110和黏著性聚醯亞胺層120的合計厚度T1、黏著性聚醯亞胺層120的厚度T2、以及黏著性聚醯亞胺層120的厚度T2相對於合計厚度T1的比率(T2/T1)如圖1中說明那樣。 In the metal-clad laminate 100, in order to ensure dimensional stability after circuit processing, the overall thermal expansion coefficient of the two polyimide layers 110 and the adhesive polyimide layer 120 may be greater than 10 ppm/K, preferably within the range of greater than 10 ppm/K and less than 30 ppm/K, and more preferably within the range of greater than 15 ppm/K and less than 25 ppm/K. Furthermore, in the metal-clad laminate 100, the total thickness T1 of the two polyimide layers 110 and the adhesive polyimide layer 120, the thickness T2 of the adhesive polyimide layer 120, and the ratio (T2/T1) of the thickness T2 of the adhesive polyimide layer 120 to the total thickness T1 are as shown in FIG. 1.

(聚醯亞胺的合成) 構成聚醯亞胺層110的聚醯亞胺可通過使所述酸酐與二胺在溶媒中反應且在生成前體樹脂後進行加熱閉環而加以製造。例如,使大致等莫耳的酸酐成分與二胺成分溶解於有機溶媒中,在0℃~100℃的範圍內的溫度下進行30分鐘~24小時攪拌而進行聚合反應,由此可獲得作為聚醯亞胺前體的聚醯胺酸。在反應時,以所生成的前體在有機溶媒中成為5重量%~30重量%的範圍內、優選為10重量%~20重量%的範圍內的方式溶解反應成分。作為聚合反應中使用的有機溶媒,例如可列舉:N,N-二甲基甲醯胺、N,N-二甲基乙醯胺(N,N-dimethyl acetamide,DMAc)、N-甲基-2-吡咯烷酮、2-丁酮、二甲基亞碸、硫酸二甲酯、環己酮、二噁烷、四氫呋喃、二甘醇二甲醚(diglyme)、三甘醇二甲醚等。也可將這些溶媒並用使用兩種以上,進而也可並用如二甲苯、甲苯那樣的芳香族烴。另外,作為所述有機溶媒的使用量,並無特別限制,但優選為調整為通過聚合反應而獲得的聚醯胺酸溶液(聚醯亞胺前體溶液)的濃度成為5重量%~30重量%左右的使用量而加以使用。 (Synthesis of polyimide) The polyimide constituting the polyimide layer 110 can be produced by reacting the acid anhydride and the diamine in a solvent and heating and ring-closing the resulting precursor resin. For example, approximately equal molar amounts of the acid anhydride component and the diamine component are dissolved in an organic solvent, and the polymerization reaction is carried out at a temperature in the range of 0°C to 100°C for 30 minutes to 24 hours while stirring, thereby obtaining a polyamide acid as a polyimide precursor. During the reaction, the reaction components are dissolved in such a manner that the generated precursor is in the range of 5% by weight to 30% by weight, preferably in the range of 10% by weight to 20% by weight in the organic solvent. As organic solvents used in the polymerization reaction, for example, N,N-dimethylformamide, N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone, 2-butanone, dimethyl sulfoxide, dimethyl sulfate, cyclohexanone, dioxane, tetrahydrofuran, diglyme, triglyme, etc. Two or more of these solvents may be used in combination, and aromatic hydrocarbons such as xylene and toluene may also be used in combination. In addition, the amount of the organic solvent used is not particularly limited, but it is preferably used in an amount adjusted to a concentration of about 5% to 30% by weight of the polyimide solution (polyimide precursor solution) obtained by the polymerization reaction.

在聚醯亞胺的合成中,所述酸酐及二胺分別可僅使用所述一種,也可並用使用兩種以上。通過選定酸酐及二胺的種類、或者使用兩種以上的酸酐或二胺時的各自的莫耳比,可控制熱膨脹性、黏著性、玻璃化轉變溫度等。In the synthesis of polyimide, the acid anhydride and diamine may be used alone or in combination of two or more. By selecting the types of the acid anhydride and diamine, or the molar ratio of the two or more acid anhydrides or diamines, thermal expansion, adhesion, glass transition temperature, etc. can be controlled.

合成的前體通常有利的是作為反應溶媒溶液使用,但可視需要進行濃縮、稀釋或置換為其他有機溶媒。另外,前體通常溶媒可溶性優異,因此可有利地使用。使前體醯亞胺化的方法並無特別限制,例如可較佳地採用如下熱處理:在所述溶媒中在80℃~400℃的範圍內的溫度條件下花1小時~24小時進行加熱。The synthesized precursor is usually advantageously used as a reaction solvent solution, but may be concentrated, diluted or replaced with other organic solvents as needed. In addition, the precursor is generally excellent in solvent solubility and can be advantageously used. The method of imidizing the precursor is not particularly limited, and for example, the following heat treatment can be preferably adopted: heating in the solvent at a temperature condition in the range of 80°C to 400°C for 1 hour to 24 hours.

[電路基板] 覆金屬積層板100主要作為FPC、剛性及柔性電路基板等電路基板材料有用。即,通過利用常規方法將覆金屬積層板100的兩個金屬層101的一者或兩者加工成圖案狀來形成配線層,可製造作為本發明的一實施方式的FPC等電路基板。雖然省略了圖示,但所述電路基板包括第一絕緣樹脂層(P1)、黏著層(B)和第二絕緣樹脂層(P2)依次積層而成的樹脂積層體、以及設置在所述樹脂積層體的一側或者兩側的面上的配線層。 [實施例] [Circuit board] The metal-clad laminate 100 is mainly useful as a circuit board material such as an FPC, a rigid and a flexible circuit board. That is, by processing one or both of the two metal layers 101 of the metal-clad laminate 100 into a pattern to form a wiring layer using a conventional method, a circuit board such as an FPC which is an embodiment of the present invention can be manufactured. Although the illustration is omitted, the circuit board includes a resin laminate body in which a first insulating resin layer (P1), an adhesive layer (B) and a second insulating resin layer (P2) are sequentially laminated, and a wiring layer is provided on one side or both sides of the resin laminate body. [Example]

以下通過實施例對本發明進行具體的說明,但本發明不受這些實施例的任何限定。再者,以下的實施例中,只要無特別說明,則各種測定、評價如下所述。The present invention is specifically described below by way of examples, but the present invention is not limited to these examples. In the following examples, unless otherwise specified, various measurements and evaluations are as follows.

[介電常數和介質損耗因數的測定] 使用向量網路分析儀(安捷倫(Agilent)公司製造、商品名E8363C)及分離介質諧振器(split post dielectric resonator,SPDR),測定10 GHz下的聚醯亞胺膜的介電常數(Dk)和介質損耗因數(Df)。再者,測定中使用的材料是在溫度:24℃~26℃、濕度45%~55%RH的條件下放置24小時的材料。 [Measurement of dielectric constant and dielectric loss factor] The dielectric constant (Dk) and dielectric loss factor (Df) of the polyimide film at 10 GHz were measured using a vector network analyzer (manufactured by Agilent, trade name E8363C) and a split post dielectric resonator (SPDR). The material used in the measurement was left at a temperature of 24°C to 26°C and a humidity of 45% to 55%RH for 24 hours.

[儲存彈性係數和玻璃化轉變溫度(Tg)的測定] 關於黏著層的儲存彈性係數,將所述黏著層(厚度50 m)從基材膜剝離去除後,切成5 mm×20 mm,在120℃的烘箱中加熱2小時,在170℃下加熱3小時。將所得的樣品使用動態黏彈性測定裝置(DMA:UBM公司製造、商品名:E4000F),在自30℃起至400℃為止以升溫速度為4℃/分鐘進行階段性的加熱,在頻率為1 Hz下進行測定。另外,將測定中的Tanδ值最大的最大溫度定義為Tg。 [Measurement of storage elastic coefficient and glass transition temperature (Tg)] Regarding the storage elastic coefficient of the adhesive layer, the adhesive layer (thickness 50 μm) was peeled off from the base film, cut into 5 mm × 20 mm, and heated in an oven at 120°C for 2 hours and at 170°C for 3 hours. The obtained sample was heated stepwise from 30°C to 400°C at a heating rate of 4°C/min using a dynamic viscoelasticity measuring device (DMA: manufactured by UBM, trade name: E4000F), and measured at a frequency of 1 Hz. In addition, the maximum temperature at which the Tanδ value in the measurement is the largest is defined as Tg.

[尺寸變化率的測定] 尺寸變化率的測定按照以下的順序進行。首先,使用150 mm見方的試驗片,以100 mm間隔對乾膜抗蝕劑進行曝光、顯影,由此形成位置測定用靶。在溫度23±2℃、相對濕度50±5%的氣氛中測定蝕刻前(常態)的尺寸後,通過蝕刻(液溫40℃以下、時間10分鐘以內)去除試驗片的靶以外的銅。在溫度23±2℃、相對濕度50±5%的氣氛中靜置24±4小時後,測定蝕刻後的尺寸。計算MD方向(長邊方向)和TD方向(寬度方向)各3處的相對於常態的尺寸變化率,將各自的平均值作為蝕刻後的尺寸變化率。蝕刻後尺寸變化率通過下述數式計算出。 [Measurement of dimensional change rate] The dimensional change rate was measured in the following order. First, a 150 mm square test piece was used, and the dry film resist was exposed and developed at intervals of 100 mm to form a target for position measurement. After measuring the size before etching (normal state) in an atmosphere of temperature 23±2°C and relative humidity 50±5%, the copper other than the target of the test piece was removed by etching (liquid temperature below 40°C, time within 10 minutes). After standing for 24±4 hours in an atmosphere of temperature 23±2°C and relative humidity 50±5%, the size after etching was measured. The dimensional change rate relative to the normal state was calculated at 3 locations each in the MD direction (long side direction) and the TD direction (width direction), and the average value of each was taken as the dimensional change rate after etching. The dimensional change rate after etching is calculated using the following formula.

蝕刻後尺寸變化率(%)=(B-A)/A×100 A:蝕刻前的靶間距離 B:蝕刻後的靶間距離 Dimension change rate after etching (%) = (B-A)/A×100 A: Target distance before etching B: Target distance after etching

其次,將本試驗片在250℃的烘箱中加熱處理1小時,測定之後的位置靶間的距離。計算MD方向(長邊方向)和TD方向(寬度方向)的各3處的相對於蝕刻後的尺寸變化率,將各自的平均值作為加熱處理後的尺寸變化率。加熱後尺寸變化率通過下述數式計算出。Next, heat the test piece in an oven at 250°C for 1 hour, and measure the distance between the position targets afterwards. Calculate the dimensional change rate after etching at three locations in the MD direction (longitudinal direction) and TD direction (width direction), and take the average value of each as the dimensional change rate after heat treatment. The dimensional change rate after heating is calculated using the following formula.

加熱後尺寸變化率(%)=(C-B)/B×100 B:蝕刻後的靶間距離 C:加熱後的靶間距離 Dimension change rate after heating (%) = (C-B)/B×100 B: Target distance after etching C: Target distance after heating

本實施例中使用的縮寫表示以下的化合物: BPDA:3,3',4,4'-聯苯四羧酸二酐 PMDA:均苯四甲酸二酐 BTDA:3,3',4,4'-二苯甲酮四羧酸二酐 m-TB:2,2'-二甲基-4,4'-二氨基聯苯 TPE-R:1,3-雙(4-氨基苯氧基)苯 雙苯胺-M:1,3-雙[2-(4-氨基苯基)-2-丙基]苯 DDA:日本禾大(Croda Japan)股份有限公司製造(商品名:普利胺(PRIAMINE)1075) N-12:十二烷二酸二醯肼 DMAc:N,N-二甲基乙醯胺 R710:(商品名、普林泰科(Printec)(股)製造、雙酚型環氧樹脂、環氧當量:170、常溫下為液狀、重量平均分子量:約340) VG3101L:(商品名、普林泰科(Printec)(股)製造、多官能環氧樹脂、環氧當量:210、軟化點:39℃~46℃) SR35K:(商品名、普林泰科(Printec)股份有限公司製造、環氧樹脂、環氧當量:930~940、軟化點:86℃~98℃) YDCN-700-10:(商品名、新日鐵住金化學股份有限公司製造、甲酚酚醛清漆型環氧樹脂、環氧當量210、軟化點75℃~85℃) 米萊斯(milex)XLC-LL:(商品名、三井化學(股)製造、酚樹脂、羥基當量:175、軟化點:77℃、吸水率:1質量%、加熱質量減少率:4質量%) HE200C-10:(商品名、空氣水(股)製造、酚樹脂、羥基當量:200、軟化點:65℃~76℃、吸水率:1質量%、加熱質量減少率:4質量%) HE910-10:(商品名、空氣水(股)製造、酚樹脂、羥基當量:101、軟化點:83℃、吸水率:1質量%、加熱質量減少率:3質量%) SC1030-HJA:(商品名、亞都瑪(Admatechs)(股)製造、二氧化矽填料分散液、平均粒徑:0.25 μm) 艾羅西爾(Aerosil)R972:(商品名、日本艾羅西爾(Aerosil)(股)製造、二氧化矽、平均粒徑:0.016 μm) 丙烯酸橡膠HTR-860P-30B-CHN:(樣品名、帝國化學產業(股)製造、重量平均分子量:23萬、縮水甘油基官能基單體比率:8%、Tg:-7℃) 丙烯酸橡膠HTR-860P-3CSP:(樣品名、帝國化學產業(股)製造、重量平均分子量:80萬、縮水甘油基官能基單體比率:3%、Tg:-7℃) A-1160:(商品名、GE東芝(股)製造、γ-脲基丙基三乙氧基矽烷) A-189:(商品名、GE東芝(股)製造、γ-巰基丙基三甲氧基矽烷) 庫來羅(Curezol)2PZ-CN:(商品名、四國化成工業(股)製造、1-氰基乙基-2-苯基咪唑) RE-810NM:(商品名、日本化藥股份有限公司製造、二烯丙基雙酚A二縮水甘油醚、性狀:液狀) 福萊特(PHORET)SCS:(商品名、綜研化學股份有限公司製造、含苯乙烯基的丙烯酸聚合物、Tg:70℃、重量平均分子量:15000) BMI-1:(商品名、東京化成股份有限公司製造、4,4'-雙馬來醯亞胺二苯基甲烷) TPPK:(商品名、東京化成股份有限公司製造、四苯基鏻四苯基硼酸鹽) HP-P1:(商品名、水島合金鐵股份有限公司製造、氮化硼填料) NMP:(關東化學股份有限公司製造、N-甲基-2-吡咯烷酮)。 The abbreviations used in this embodiment represent the following compounds: BPDA: 3,3',4,4'-biphenyltetracarboxylic dianhydride PMDA: pyromellitic dianhydride BTDA: 3,3',4,4'-benzophenonetetracarboxylic dianhydride m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl TPE-R: 1,3-bis(4-aminophenoxy)benzene Bisaniline-M: 1,3-bis[2-(4-aminophenyl)-2-propyl]benzene DDA: manufactured by Croda Japan Co., Ltd. (trade name: PRIAMINE 1075) N-12: dodecanedioic acid dihydrazide DMAc: N,N-dimethylacetamide R710: (Trade name, manufactured by Printec Co., Ltd., bisphenol-type epoxy resin, epoxy equivalent: 170, liquid at room temperature, weight average molecular weight: about 340) VG3101L: (Trade name, manufactured by Printec Co., Ltd., multifunctional epoxy resin, epoxy equivalent: 210, softening point: 39°C to 46°C) SR35K: (Trade name, manufactured by Printec Co., Ltd., epoxy resin, epoxy equivalent: 930 to 940, softening point: 86°C to 98°C) YDCN-700-10: (trade name, manufactured by Nippon Steel & Sumitomo Chemical Co., Ltd., cresol novolac type epoxy resin, epoxy equivalent 210, softening point 75℃~85℃) Milex XLC-LL: (trade name, manufactured by Mitsui Chemicals Co., Ltd., phenolic resin, hydroxyl equivalent: 175, softening point: 77℃, water absorption: 1% by mass, heating mass reduction rate: 4% by mass) HE200C-10: (trade name, manufactured by Air Water Co., Ltd., phenolic resin, hydroxyl equivalent: 200, softening point: 65℃~76℃, water absorption: 1% by mass, heating mass reduction rate: 4% by mass) HE910-10: (trade name, manufactured by Air Water Co., Ltd., phenol resin, hydroxyl equivalent: 101, softening point: 83°C, water absorption: 1% by mass, mass loss rate on heating: 3% by mass) SC1030-HJA: (trade name, manufactured by Admatechs Co., Ltd., silica filler dispersion, average particle size: 0.25 μm) Aerosil R972: (trade name, manufactured by Japan Aerosil Co., Ltd., silica, average particle size: 0.016 μm) Acrylic rubber HTR-860P-30B-CHN: (Sample name, manufactured by Teikoku Chemical Industry Co., Ltd., weight average molecular weight: 230,000, glycidyl functional monomer ratio: 8%, Tg: -7°C) Acrylic rubber HTR-860P-3CSP: (Sample name, manufactured by Teikoku Chemical Industry Co., Ltd., weight average molecular weight: 800,000, glycidyl functional monomer ratio: 3%, Tg: -7°C) A-1160: (Trade name, manufactured by GE Toshiba Co., Ltd., γ-ureidopropyl triethoxysilane) A-189: (Trade name, manufactured by GE Toshiba Co., Ltd., γ-butylenepropyl trimethoxysilane) Curezol 2PZ-CN: (trade name, manufactured by Shikoku Chemical Industry Co., Ltd., 1-cyanoethyl-2-phenylimidazole) RE-810NM: (trade name, manufactured by Nippon Kayaku Co., Ltd., diallylbisphenol A diglycidyl ether, properties: liquid) PHORET SCS: (trade name, manufactured by Soken Chemical Co., Ltd., styrene-containing acrylic polymer, Tg: 70°C, weight average molecular weight: 15000) BMI-1: (trade name, manufactured by Tokyo Chemical Industry Co., Ltd., 4,4'-bismaleimide diphenylmethane) TPPK: (trade name, manufactured by Tokyo Chemical Industry Co., Ltd., tetraphenylphosphonium tetraphenylborate) HP-P1: (trade name, manufactured by Mizushima Alloy Steel Co., Ltd., boron nitride filler) NMP: (N-methyl-2-pyrrolidone, manufactured by Kanto Chemical Co., Ltd.).

(合成例1) <黏著層用樹脂溶液A的製備> 在包含表1所示的品名及組成比(單位:質量份)的作為(a)熱硬化性樹脂的環氧樹脂及酚樹脂、(c)無機填料的組合物中加入環己酮,攪拌混合。向其中加入表1所示的作為(b)高分子量成分的丙烯酸橡膠並攪拌,進一步加入表1所示的(e)偶聯劑和(d)硬化促進劑,攪拌至各成分均勻,獲得黏著層用樹脂溶液A。 (Synthesis Example 1) <Preparation of Resin Solution A for Adhesive Layer> Cyclohexanone is added to a composition containing epoxy resin and phenol resin as (a) thermosetting resin and (c) inorganic filler as shown in Table 1 with the product names and composition ratios (unit: parts by mass), and the mixture is stirred and mixed. Acrylic rubber as (b) high molecular weight component shown in Table 1 is added thereto and stirred, and (e) coupling agent and (d) curing accelerator shown in Table 1 are further added and stirred until the components are uniform, thereby obtaining Resin Solution A for Adhesive Layer.

[表1] 區分 名稱 合成例1 環氧樹脂 R710 24 VG3101L 21 SR35K 20 YDCN-700-10 1.4 酚樹脂 XLC-LL 1.2 HE910-10 17 HE200C-10 15 無機填料 R972 0.82 SC1030-HJA 61 偶聯劑 A-189 0.29 A-1160 0.59 硬化促進劑 2PZ-CN 0.025 丙烯酸橡膠 HTR-860P-30B-CHN 27 HTR-860P-3CSP 12 [Table 1] Differentiation Name Synthesis Example 1 Epoxy R710 twenty four VG3101L twenty one SR35K 20 YDCN-700-10 1.4 Phenolic resin XLC-LL 1.2 HE910-10 17 HE200C-10 15 Inorganic filler R972 0.82 SC1030-HJA 61 Coupling agent A-189 0.29 A-1160 0.59 Hardening accelerator 2PZ-CN 0.025 Acrylic rubber HTR-860P-30B-CHN 27 HTR-860P-3CSP 12

(合成例2) <聚醯亞胺樹脂(PI-1)的合成及黏著層用樹脂溶液B的製備> 在安裝有溫度計、攪拌機、冷卻管及氮氣流入管的300 mL燒瓶中,裝入1,3-雙(3-氨基丙基)四甲基二矽氧烷(信越化學工業股份有限公司製造、商品名:LP-7100)15.53 g、聚氧丙烯二胺(巴斯夫(BASF)股份有限公司製造、商品名:D400、分子量:450)28.13 g及NMP 100.0 g並進行攪拌,而製備反應液。在二胺溶解後,一邊將燒瓶在冰浴中冷卻,一邊在反應液中一點一點地添加預先通過來自乙酸酐的再結晶而精製的4,4'-氧基二鄰苯二甲酸酐32.30 g。在常溫(25℃)下反應8小時後,加入二甲苯67.0 g,一邊吹入氮氣一邊在180℃下加熱,由此與水一起共沸去除二甲苯。將所述反應液注入至大量的水中,過濾取出沉澱的樹脂,進行乾燥而獲得聚醯亞胺樹脂(PI-1)。利用凝膠滲透色譜法(Gel Permeation Chromatography,GPC)測定所得的聚醯亞胺樹脂(PI-1)的分子量,結果以聚苯乙烯換算計數量平均分子量Mn=22400、重量平均分子量Mw=70200。 使用所述獲得的聚醯亞胺樹脂(PI-1),以表2所示的組成比(單位:質量份)調配各成分,獲得黏著層用樹脂溶液B。 (Synthesis Example 2) <Synthesis of polyimide resin (PI-1) and preparation of resin solution B for adhesive layer> In a 300 mL flask equipped with a thermometer, a stirrer, a cooling tube, and a nitrogen inflow tube, 15.53 g of 1,3-bis(3-aminopropyl)tetramethyldisiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: LP-7100), 28.13 g of polyoxypropylenediamine (manufactured by BASF, trade name: D400, molecular weight: 450) and 100.0 g of NMP were placed and stirred to prepare a reaction solution. After the diamine was dissolved, 32.30 g of 4,4'-oxydiphthalic anhydride, which had been purified by recrystallization from acetic anhydride, was added little by little to the reaction solution while the flask was cooled in an ice bath. After reacting at room temperature (25°C) for 8 hours, 67.0 g of xylene was added, and the mixture was heated at 180°C while nitrogen was blown in, thereby removing xylene by azeotropy with water. The reaction solution was poured into a large amount of water, and the precipitated resin was filtered out and dried to obtain a polyimide resin (PI-1). The molecular weight of the obtained polyimide resin (PI-1) was measured by gel permeation chromatography (GPC), and the result was that the number average molecular weight Mn = 22400 and the weight average molecular weight Mw = 70200 in terms of polystyrene conversion. Using the obtained polyimide resin (PI-1), each component was prepared in the composition ratio (unit: mass parts) shown in Table 2 to obtain a resin solution B for an adhesive layer.

[表2] 區分 名稱 合成例2 熱塑性樹脂 PI-1 100 反應性塑化劑 RE-810NM 40 具有苯乙烯基的化合物 福萊特(PHORET)SCS 40 具有馬來醯亞胺基的化合物 BMI-1 40 硬化促進劑 TPPK 0.2 無機填料 HP-P1 22 溶劑 NMP 270 [Table 2] Differentiation Name Synthesis Example 2 Thermoplastic resin PI-1 100 Reactive plasticizer RE-810NM 40 Compounds having a styryl group PHORET SCS 40 Compounds having a maleimide group BMI-1 40 Hardening accelerator TPPK 0.2 Inorganic filler HP-P1 twenty two Solvent NMP 270

(合成例3) <絕緣樹脂層用聚醯胺酸溶液的製備> 在氮氣流下,向反應槽中投入64.20 g的m-TB(0.302莫耳)和5.48 g的雙苯胺-M(0.016莫耳)以及聚合後的固體成分濃度為15重量%的量的DMAc,在室溫下攪拌使其溶解。其次,在添加34.20 g的PMDA(0.157莫耳)和46.13 g的BPDA(0.157莫耳)後,在室溫下持續攪拌3小時進行聚合反應,製備聚醯胺酸溶液1(黏度:26,500 cps)。 (Synthesis Example 3) <Preparation of polyamide solution for insulating resin layer> Under nitrogen flow, 64.20 g of m-TB (0.302 mol) and 5.48 g of bisaniline-M (0.016 mol) and DMAc in an amount of 15 wt% solid content concentration after polymerization were added to a reaction tank and stirred at room temperature to dissolve. Next, 34.20 g of PMDA (0.157 mol) and 46.13 g of BPDA (0.157 mol) were added, and the polymerization reaction was continued at room temperature for 3 hours with continuous stirring to prepare polyamide solution 1 (viscosity: 26,500 cps).

(合成例4) <絕緣樹脂層用聚醯胺酸溶液的製備> 除了將69.56 g的m-TB(0.328莫耳)、542.75 g的TPE-R(1.857莫耳)、聚合後的固體成分濃度為12重量%的量的DMAc、194.39 g的PMDA(0.891莫耳)以及393.31 g的BPDA(1.337莫耳)作為原料組成以外,與合成例3同樣地製備聚醯胺酸溶液2(黏度:2,650 cps)。 (Synthesis Example 4) <Preparation of polyamide solution for insulating resin layer> Polyamide solution 2 (viscosity: 2,650 cps) was prepared in the same manner as in Synthesis Example 3 except that 69.56 g of m-TB (0.328 mol), 542.75 g of TPE-R (1.857 mol), DMAc in an amount of 12 wt% solid content after polymerization, 194.39 g of PMDA (0.891 mol) and 393.31 g of BPDA (1.337 mol) were used as raw material compositions.

(製作例1) <黏著層用樹脂片A的製備> 將黏著層用樹脂溶液A以乾燥後厚度為50 μm的方式塗敷在脫模基材(縱×橫×厚度=320 mm×240 mm×25 μm)的矽酮處理面上後,在80℃下加熱乾燥15分鐘,進一步在120℃下進行15分鐘乾燥後,從脫模基材上剝離,由此製備樹脂片A。另外,關於樹脂片A,為了評價硬化後的物性,在120℃的烘箱中加熱2小時,在170℃下加熱3小時。之後,硬化後樹脂片A的Tg為95℃,50℃下的儲存彈性係數為960 MPa,180℃~260℃的儲存彈性係數的最大值為7 MPa。 (Production Example 1) <Preparation of adhesive layer resin sheet A> The adhesive layer resin solution A was applied to the silicone treated surface of a release substrate (length × width × thickness = 320 mm × 240 mm × 25 μm) in a manner to a thickness of 50 μm after drying, and then dried at 80°C for 15 minutes, and then dried at 120°C for 15 minutes, and then peeled from the release substrate to prepare a resin sheet A. In addition, in order to evaluate the physical properties after curing, the resin sheet A was heated in an oven at 120°C for 2 hours and at 170°C for 3 hours. After that, the Tg of the hardened resin sheet A is 95°C, the storage elastic modulus at 50°C is 960 MPa, and the maximum value of the storage elastic modulus at 180°C to 260°C is 7 MPa.

(製作例2) <黏著層用樹脂片B的製備> 將黏著層用樹脂溶液B以乾燥後厚度為50 μm的方式塗敷在脫模基材(縱×橫×厚度=320 mm×240 mm×25 μm)的矽酮處理面上後,在80℃下加熱乾燥15分鐘,進一步在120℃下進行15分鐘乾燥後,從脫模基材上剝離,由此製備樹脂片B。另外,關於樹脂片B,為了評價硬化後的物性,在120℃的烘箱中加熱2小時,在170℃下加熱3小時。之後,硬化後樹脂片B的Tg為100℃以下,50℃下的儲存彈性係數為1800 MPa以下,180℃~260℃的儲存彈性係數的最大值為70 MPa。 (Production Example 2) <Preparation of adhesive layer resin sheet B> The adhesive layer resin solution B was applied to the silicone treated surface of a release substrate (length × width × thickness = 320 mm × 240 mm × 25 μm) in a manner to a thickness of 50 μm after drying, and then dried at 80°C for 15 minutes, and then dried at 120°C for 15 minutes, and then peeled from the release substrate to prepare a resin sheet B. In addition, in order to evaluate the physical properties after curing, the resin sheet B was heated in an oven at 120°C for 2 hours and at 170°C for 3 hours. After that, the Tg of the cured resin sheet B is below 100°C, the storage modulus of elasticity at 50°C is below 1800 MPa, and the maximum value of the storage modulus of elasticity at 180°C to 260°C is 70 MPa.

(製作例3) <單面覆金屬積層板的製備> 在銅箔1(電解銅箔、厚度:12 μm、樹脂層側的表面粗糙度Rz:0.6 μm)上以硬化後的厚度成為約2 μm~3 μm的方式均勻地塗布聚醯胺酸溶液2,然後在120℃下加熱乾燥而去除溶媒。其次,在其上以硬化後的厚度成為約21 μm的方式均勻地塗布聚醯胺酸溶液1,在120℃下加熱乾燥而去除溶媒。進而,在其上以硬化後的厚度成為約2 μm~3 μm的方式均勻地塗布聚醯胺酸溶液2後,在120℃下加熱乾燥而去除溶媒。進而,自120℃起至360℃為止進行階段性熱處理,完成醯亞胺化,製作單面覆金屬積層板1。單面覆金屬積層板1的尺寸變化率如下所述。 MD方向(長邊方向)的蝕刻後尺寸變化率:0.01% TD方向(寬度方向)的蝕刻後尺寸變化率:-0.04% MD方向(長邊方向)的加熱後尺寸變化率:-0.03% TD方向(寬度方向)的加熱後尺寸變化率:-0.01% (Production Example 3) <Preparation of a single-sided metal-clad laminate> Polyamide solution 2 is uniformly applied to copper foil 1 (electrolytic copper foil, thickness: 12 μm, surface roughness Rz of the resin layer side: 0.6 μm) in a manner that the thickness after curing becomes approximately 2 μm to 3 μm, and then heat-dried at 120°C to remove the solvent. Next, polyamide solution 1 is uniformly applied thereon in a manner that the thickness after curing becomes approximately 21 μm, and heat-dried at 120°C to remove the solvent. Furthermore, polyamide solution 2 is uniformly applied thereon in a manner that the thickness after curing becomes approximately 2 μm to 3 μm, and then heat-dried at 120°C to remove the solvent. Then, a stepwise heat treatment is performed from 120°C to 360°C to complete imidization and produce a single-sided metal-clad laminate 1. The dimensional change rate of the single-sided metal-clad laminate 1 is as follows. Dimensional change rate after etching in the MD direction (long side direction): 0.01% Dimensional change rate after etching in the TD direction (width direction): -0.04% Dimensional change rate after heating in the MD direction (long side direction): -0.03% Dimensional change rate after heating in the TD direction (width direction): -0.01%

<聚醯亞胺膜的製備> 使用氯化鐵水溶液蝕刻去除單面覆金屬積層板1的銅箔1,製備聚醯亞胺膜1(厚度:25 μm、CTE:20 ppm/K、Dk:3.40、Df:00029)。 <Preparation of polyimide film> The copper foil 1 of the single-sided metal laminate 1 was etched away using an aqueous solution of ferric chloride to prepare a polyimide film 1 (thickness: 25 μm, CTE: 20 ppm/K, Dk: 3.40, Df: 00029).

[實施例1] 準備2張單面覆金屬積層板1,將各自的絕緣樹脂層側的面與樹脂片A的兩面重合,在180℃下施加2小時3.5 MPa的壓力進行壓接,製備覆金屬積層板1。覆金屬積層板1的評價結果如下所述。 MD方向的蝕刻後尺寸變化率:-0.02% TD方向的蝕刻後尺寸變化率:-0.03% MD方向的加熱後尺寸變化率:-0.02% TD方向的加熱後尺寸變化率:-0.02% 覆金屬積層板1無翹曲,尺寸變化也無問題。另外,將覆金屬積層板1中的銅箔1蝕刻去除而製備的樹脂積層體1(厚度:100 μm)的CTE為24.1 ppm/K。 [Example 1] Prepare two single-sided metal-clad laminates 1, overlap the surfaces of the insulating resin layers of each sheet with both surfaces of the resin sheet A, and press-bond them at 180°C for 2 hours under a pressure of 3.5 MPa to prepare the metal-clad laminate 1. The evaluation results of the metal-clad laminate 1 are as follows. Dimensional change rate after etching in the MD direction: -0.02% Dimensional change rate after etching in the TD direction: -0.03% Dimensional change rate after heating in the MD direction: -0.02% Dimensional change rate after heating in the TD direction: -0.02% The metal-clad laminate 1 has no warping and no problem with dimensional change. In addition, the CTE of the resin laminate 1 (thickness: 100 μm) prepared by etching away the copper foil 1 in the metal-clad laminate 1 is 24.1 ppm/K.

[實施例2] 準備2張單面覆金屬積層板1,將各自的絕緣樹脂層側的面與樹脂片B的兩面重合,在180℃下施加2小時3.5 MPa的壓力進行壓接,製備覆金屬積層板2。覆金屬積層板2的評價結果如下所述。 MD方向的蝕刻後尺寸變化率:-0.05% TD方向的蝕刻後尺寸變化率:-0.05% MD方向的加熱後尺寸變化率:-0.03% TD方向的加熱後尺寸變化率:-0.04% 覆金屬積層板2無翹曲,尺寸變化也無問題。另外,將覆金屬積層板2中的銅箔1蝕刻去除而製備的樹脂積層體2(厚度:100 μm)的CTE為23.3 ppm/K。 [Example 2] Prepare two single-sided metal-clad laminates 1, overlap the surfaces of the insulating resin layers of each sheet with the two surfaces of the resin sheet B, and press-bond them at 180°C for 2 hours under a pressure of 3.5 MPa to prepare metal-clad laminate 2. The evaluation results of metal-clad laminate 2 are as follows. Dimensional change rate after etching in MD direction: -0.05% Dimensional change rate after etching in TD direction: -0.05% Dimensional change rate after heating in MD direction: -0.03% Dimensional change rate after heating in TD direction: -0.04% Metal-clad laminate 2 has no warping and no problem with dimensional change. In addition, the CTE of the resin laminate 2 (thickness: 100 μm) prepared by etching away the copper foil 1 in the metal-clad laminate 2 is 23.3 ppm/K.

(比較例1) 除了使用氟樹脂片(旭硝子公司製造、商品名:黏著全氟樹脂EA-2000、厚度:50 μm、Tm:303℃、Tg:無)代替樹脂片A、在320℃下施加5分鐘3.5 MPa的壓力進行壓接以外,與實施例1同樣地製備覆金屬積層板3。 覆金屬積層板3的評價結果如下所述。 MD方向的蝕刻後尺寸變化率:-0.11% TD方向的蝕刻後尺寸變化率:-0.13% MD方向的加熱後尺寸變化率:-0.19% TD方向的加熱後尺寸變化率:-0.20% 覆金屬積層板3無翹曲,尺寸變化也無問題。另外,將覆金屬積層板3中的銅箔1蝕刻去除而製備的樹脂積層體3(厚度:100 μm)的CTE為27.6 ppm/K。 (Comparative Example 1) Metal-clad laminate 3 was prepared in the same manner as in Example 1 except that a fluororesin sheet (manufactured by Asahi Glass Co., Ltd., trade name: Adhesive Perfluororesin EA-2000, thickness: 50 μm, Tm: 303°C, Tg: None) was used instead of resin sheet A and a pressure of 3.5 MPa was applied at 320°C for 5 minutes for compression bonding. The evaluation results of metal-clad laminate 3 are as follows. Dimensional change rate after etching in MD direction: -0.11% Dimensional change rate after etching in TD direction: -0.13% Dimensional change rate after heating in MD direction: -0.19% Dimensional change rate after heating in TD direction: -0.20% The metal-clad laminate 3 has no warping and no problem with dimensional change. In addition, the CTE of the resin laminate 3 (thickness: 100 μm) prepared by etching away the copper foil 1 in the metal-clad laminate 3 is 27.6 ppm/K.

(參考例1) 按照銅箔1、樹脂片A、聚醯亞胺膜1、樹脂片A及銅箔1的順序重合,在180℃下施加2小時3.5 MPa的壓力進行壓接,製備覆金屬積層板4。 覆金屬積層板4的評價結果如下所述。 MD方向的蝕刻後尺寸變化率:-0.04% TD方向的蝕刻後尺寸變化率:-0.05% MD方向的加熱後尺寸變化率:-0.12% TD方向的加熱後尺寸變化率:-0.14% 覆金屬積層板4無翹曲,尺寸變化也無問題。另外,將覆金屬積層板4中的銅箔1蝕刻去除而製備的樹脂積層體4(厚度:100 μm)的CTE為23.9 ppm/K。 (Reference Example 1) Copper foil 1, resin sheet A, polyimide film 1, resin sheet A, and copper foil 1 were overlapped in this order and pressed together at 180°C for 2 hours under a pressure of 3.5 MPa to prepare a metal-clad laminate 4. The evaluation results of the metal-clad laminate 4 are as follows. Dimensional change rate after etching in MD direction: -0.04% Dimensional change rate after etching in TD direction: -0.05% Dimensional change rate after heating in MD direction: -0.12% Dimensional change rate after heating in TD direction: -0.14% The metal-clad laminate 4 had no warping and no problem with dimensional change. In addition, the CTE of the resin laminate 4 (thickness: 100 μm) prepared by etching away the copper foil 1 in the metal-clad laminate 4 is 23.9 ppm/K.

可知實施例1及實施例2即便與比較例1、參考例1分別進行比較,蝕刻後尺寸變化率及加熱後尺寸變化率也較低。再者,在比較例1中,進行利用320℃下的熱壓接的積層,密接性無問題,但利用與實施例1和實施例2相同的熱壓接條件(溫度:180℃、時間:2小時、壓力:3.5 MPa)下的熱壓接無法獲得充分的密接力。另外,參考例1是為了樹脂片A的位置構成的驗證而進行。It can be seen that Example 1 and Example 2 have lower dimensional change rates after etching and after heating than Comparative Example 1 and Reference Example 1, respectively. In Comparative Example 1, lamination by heat pressing at 320°C was performed, and there was no problem with adhesion, but sufficient adhesion could not be obtained by heat pressing under the same heat pressing conditions as Example 1 and Example 2 (temperature: 180°C, time: 2 hours, pressure: 3.5 MPa). In addition, Reference Example 1 was performed to verify the positional configuration of the resin sheet A.

[實施例3] 準備單面覆金屬積層板1,將黏著層用樹脂溶液A以乾燥後厚度為50 μm的方式塗敷在絕緣樹脂層側的面上後,在80℃下進行15分鐘加熱乾燥,進一步在120℃下進行15分鐘乾燥,製備帶黏著層的單面覆金屬積層板1。 其次,將帶黏著層的單面覆金屬積層板1的黏著層面與其他單面覆金屬積層板1的絕緣樹脂層側的面重合後,在180℃下施加2小時3.5 MPa的壓力進行壓接,製備覆金屬積層板1'。 覆金屬積層板1'的評價結果如下所述。 MD方向的蝕刻後尺寸變化率:-0.03% TD方向的蝕刻後尺寸變化率:-0.03% MD方向的加熱後尺寸變化率:-0.02% TD方向的加熱後尺寸變化率:-0.02% 覆金屬積層板1'無翹曲,尺寸變化也無問題。另外,將覆金屬積層板1'中的銅箔1蝕刻去除而製備的樹脂積層體1'(厚度:100 μm)的CTE為23.1 ppm/K。 [Example 3] Prepare a single-sided metal-clad laminate 1, apply an adhesive layer resin solution A to the surface of the insulating resin layer side in a manner to a thickness of 50 μm after drying, heat dry at 80°C for 15 minutes, and further dry at 120°C for 15 minutes to prepare a single-sided metal-clad laminate 1 with an adhesive layer. Secondly, overlap the adhesive layer surface of the single-sided metal-clad laminate 1 with the surface of the insulating resin layer side of another single-sided metal-clad laminate 1, and apply a pressure of 3.5 MPa at 180°C for 2 hours for compression bonding to prepare a metal-clad laminate 1'. The evaluation results of the metal-clad laminate 1' are as follows. Dimensional change rate after etching in the MD direction: -0.03% Dimensional change rate after etching in the TD direction: -0.03% Dimensional change rate after heating in the MD direction: -0.02% Dimensional change rate after heating in the TD direction: -0.02% The metal-clad laminate 1' has no warping and no problem with dimensional change. In addition, the CTE of the resin laminate 1' (thickness: 100 μm) prepared by etching away the copper foil 1 in the metal-clad laminate 1' is 23.1 ppm/K.

[實施例4] 準備2張帶黏著層的單面覆金屬積層板1,將黏著層面彼此重合後,在180℃下施加2小時3.5 MPa的壓力進行壓接,製備覆金屬積層板5。 覆金屬積層板5的評價結果如下所述。 MD方向的蝕刻後尺寸變化率:-0.03% TD方向的蝕刻後尺寸變化率:-0.03% MD方向的加熱後尺寸變化率:-0.03% TD方向的加熱後尺寸變化率:-0.03% 覆金屬積層板5無翹曲,尺寸變化也無問題。另外,將覆金屬積層板5中的銅箔1蝕刻去除而製備的樹脂積層體5(厚度:150 μm)的CTE為23.8 ppm/K。 [Example 4] Two single-sided metal-clad laminates 1 with adhesive layers were prepared, and after the adhesive layers were overlapped, they were pressed together at 180°C for 2 hours under a pressure of 3.5 MPa to prepare a metal-clad laminate 5. The evaluation results of the metal-clad laminate 5 are as follows. Dimensional change rate after etching in the MD direction: -0.03% Dimensional change rate after etching in the TD direction: -0.03% Dimensional change rate after heating in the MD direction: -0.03% Dimensional change rate after heating in the TD direction: -0.03% The metal-clad laminate 5 had no warping and no problem with dimensional change. In addition, the CTE of the resin laminate 5 (thickness: 150 μm) prepared by etching away the copper foil 1 in the metal-clad laminate 5 is 23.8 ppm/K.

[實施例5] 準備單面覆金屬積層板1,將黏著層用樹脂溶液A以乾燥後厚度為75 μm的方式塗敷在絕緣樹脂層側的面上後,在80℃下進行15分鐘加熱乾燥,進一步在120℃下進行25分鐘乾燥,製備帶黏著層的單面覆金屬積層板2。 準備2張帶黏著層的單面覆金屬積層板2,將黏著層面彼此重合後,在180℃下施加2小時3.5 MPa的壓力進行壓接,製備覆金屬積層板6。 覆金屬積層板6的評價結果如下所述。 MD方向的蝕刻後尺寸變化率:-0.01% TD方向的蝕刻後尺寸變化率:-0.01% MD方向的加熱後尺寸變化率:0.01% TD方向的加熱後尺寸變化率:0.02% 覆金屬積層板6無翹曲,尺寸變化也無問題。另外,將覆金屬積層板6中的銅箔1蝕刻去除而製備的樹脂積層體6(厚度:200 μm)的CTE為22.8 ppm/K。 [Example 5] A single-sided metal-clad laminate 1 was prepared, and an adhesive layer resin solution A was applied to the surface of the insulating resin layer in a manner to a thickness of 75 μm after drying, followed by heat drying at 80°C for 15 minutes and further drying at 120°C for 25 minutes to prepare a single-sided metal-clad laminate 2 with an adhesive layer. Two single-sided metal-clad laminates 2 with an adhesive layer were prepared, and after the adhesive layers were overlapped, they were pressed together at 180°C for 2 hours under a pressure of 3.5 MPa to prepare a metal-clad laminate 6. The evaluation results of the metal-clad laminate 6 are as follows. Dimensional change rate after etching in MD direction: -0.01% Dimensional change rate after etching in TD direction: -0.01% Dimensional change rate after heating in MD direction: 0.01% Dimensional change rate after heating in TD direction: 0.02% The metal-clad laminate 6 has no warping and no problem with dimensional change. In addition, the CTE of the resin laminate 6 (thickness: 200 μm) prepared by etching away the copper foil 1 in the metal-clad laminate 6 is 22.8 ppm/K.

(合成例5) 在氮氣流下,向500 ml的可分離式燒瓶中裝入44.98 g的BTDA(0.139莫耳)、75.02 g的DDA(0.140莫耳)、168 g的NMP及112 g的二甲苯,在40℃下充分混合30分鐘,製備聚醯胺酸溶液。將所述聚醯胺酸溶液升溫至190℃,加熱攪拌4.5小時,加入112 g的二甲苯,製備完成醯亞胺化的聚醯亞胺黏著劑溶液1。所得的聚醯亞胺黏著劑溶液1中的固體成分為29.1重量%,黏度為7,800 cps。另外,聚醯亞胺的重量平均分子量(Mw)為87,700。 (Synthesis Example 5) Under a nitrogen flow, 44.98 g of BTDA (0.139 mol), 75.02 g of DDA (0.140 mol), 168 g of NMP and 112 g of xylene were placed in a 500 ml separable flask and mixed thoroughly at 40°C for 30 minutes to prepare a polyamide solution. The polyamide solution was heated to 190°C, heated and stirred for 4.5 hours, and 112 g of xylene was added to prepare a polyimide adhesive solution 1 after imidization. The solid content of the obtained polyimide adhesive solution 1 was 29.1% by weight and the viscosity was 7,800 cps. In addition, the weight average molecular weight (Mw) of the polyimide was 87,700.

(合成例6) 對合成例5中所得的聚醯亞胺黏著劑溶液1調配34.4 g(固體成分為10 g)與1.25 g的N-12及2.5 g的愛色利特(Exolit)OP935(日本科萊恩(Clariant Japan)股份有限公司製造),加入1.297 g的NMP與3.869 g的二甲苯進行稀釋,製備黏著層用樹脂溶液C。 (Synthesis Example 6) 34.4 g (solid content: 10 g) of the polyimide adhesive solution 1 obtained in Synthesis Example 5 was mixed with 1.25 g of N-12 and 2.5 g of Exolit OP935 (manufactured by Clariant Japan Co., Ltd.), and 1.297 g of NMP and 3.869 g of xylene were added for dilution to prepare a resin solution C for an adhesive layer.

<黏著層用樹脂片C的製備> 將黏著層用樹脂溶液C以乾燥後厚度為50 μm的方式塗敷在脫模基材(縱×橫×厚度=320 mm×240 mm×25 μm)的矽酮處理面上後,在80℃下加熱乾燥15分鐘,進一步在120℃下進行15分鐘乾燥後,從脫模基材上剝離,由此製備樹脂片C。另外,關於樹脂片C,為了評價硬化後的物性,在120℃的烘箱中加熱2小時,在170℃下加熱3小時,製備硬化後的樹脂片D。硬化後的樹脂片D的Tg為95℃,50℃下的儲存彈性係數為1220 MPa,180℃~260℃的儲存彈性係數的最大值為26 MPa。 <Preparation of adhesive layer resin sheet C> The adhesive layer resin solution C was applied to the silicone treated surface of a release substrate (length × width × thickness = 320 mm × 240 mm × 25 μm) to a thickness of 50 μm after drying, and then dried at 80°C for 15 minutes, and then dried at 120°C for 15 minutes, and then peeled from the release substrate to prepare resin sheet C. In addition, in order to evaluate the physical properties after curing, resin sheet C was heated in an oven at 120°C for 2 hours and at 170°C for 3 hours to prepare a cured resin sheet D. The Tg of the hardened resin sheet D is 95°C, the storage elastic modulus at 50°C is 1220 MPa, and the maximum storage elastic modulus at 180°C to 260°C is 26 MPa.

[實施例6] 準備單面覆金屬積層板1,將黏著層用樹脂溶液C以乾燥後厚度為50 μm的方式塗敷在絕緣樹脂層側的面上後,在80℃下進行15分鐘加熱乾燥,進一步在120℃下進行15分鐘乾燥,製備帶黏著層的單面覆金屬積層板3。 其次,將帶黏著層的單面覆金屬積層板3的黏著層面與單面覆金屬積層板1的絕緣樹脂層側的面重合後,在180℃下施加2小時3.5 MPa的壓力進行壓接,製備覆金屬積層板7。 覆金屬積層板7的評價結果如下所述。 MD方向的蝕刻後尺寸變化率:-0.02% TD方向的蝕刻後尺寸變化率:-0.02% MD方向的加熱後尺寸變化率:-0.03% TD方向的加熱後尺寸變化率:-0.03% 覆金屬積層板7無翹曲,尺寸變化也無問題。另外,將覆金屬積層板7中的銅箔1蝕刻去除而製備的樹脂積層體7(厚度:100 μm)的CTE為23.4 ppm/K。 [Example 6] Prepare a single-sided metal-clad laminate 1, apply an adhesive layer resin solution C to the surface of the insulating resin layer side in a manner to a thickness of 50 μm after drying, heat dry at 80°C for 15 minutes, and further dry at 120°C for 15 minutes to prepare a single-sided metal-clad laminate 3 with an adhesive layer. Next, overlap the adhesive layer surface of the single-sided metal-clad laminate 3 with the surface of the insulating resin layer side of the single-sided metal-clad laminate 1, and press-bond them at 180°C for 2 hours under a pressure of 3.5 MPa to prepare a metal-clad laminate 7. The evaluation results of the metal-clad laminate 7 are as follows. Dimensional change rate after etching in the MD direction: -0.02% Dimensional change rate after etching in the TD direction: -0.02% Dimensional change rate after heating in the MD direction: -0.03% Dimensional change rate after heating in the TD direction: -0.03% The metal-clad laminate 7 has no warping and no problem with dimensional change. In addition, the CTE of the resin laminate 7 (thickness: 100 μm) prepared by etching away the copper foil 1 in the metal-clad laminate 7 is 23.4 ppm/K.

另外,實施例中記載的任一帶黏著層的單面覆金屬積層板也可應用於多層電路基板的製造。另外,認為所述情況下的黏著層的厚度優選為100 μm以下,絕緣樹脂層中的黏著層的厚度比優選為80%以下。In addition, any single-sided metal-clad laminate with an adhesive layer described in the embodiments can also be applied to the manufacture of a multi-layer circuit board. In addition, it is considered that the thickness of the adhesive layer in the above case is preferably 100 μm or less, and the thickness ratio of the adhesive layer in the insulating resin layer is preferably 80% or less.

以上,出於例示的目的對本發明的實施方式進行了詳細的說明,但本發明並不由所述實施方式制約,可進行各種變形。The embodiments of the present invention have been described in detail above for the purpose of illustration. However, the present invention is not limited to the embodiments described above and various modifications are possible.

100:覆金屬積層板 101:金屬層 110:聚醯亞胺層 111:非熱塑性聚醯亞胺層 112:熱塑性聚醯亞胺層 120:黏著性聚醯亞胺層 130:單面覆金屬積層板 B:黏著層 C:覆金屬積層板 C1:第一單面覆金屬積層板(單面覆金屬積層板) C2:第二單面覆金屬積層板(單面覆金屬積層板) M1:第一金屬層 M2:第二金屬層 P1:第一絕緣樹脂層 P2:第二絕緣樹脂層 T1:合計厚度 T2、T3:厚度 100: Metal-clad laminate 101: Metal layer 110: Polyimide layer 111: Non-thermoplastic polyimide layer 112: Thermoplastic polyimide layer 120: Adhesive polyimide layer 130: Single-sided metal-clad laminate B: Adhesive layer C: Metal-clad laminate C1: First single-sided metal-clad laminate (single-sided metal-clad laminate) C2: Second single-sided metal-clad laminate (single-sided metal-clad laminate) M1: First metal layer M2: Second metal layer P1: First insulating resin layer P2: Second insulating resin layer T1: Total thickness T2, T3: Thickness

圖1是表示本發明的一實施方式的覆金屬積層板的構成的示意圖。 圖2是表示本發明的優選的實施方式的覆金屬積層板的構成的示意性剖面圖。 FIG1 is a schematic diagram showing the structure of a metal-clad laminate according to an embodiment of the present invention. FIG2 is a schematic cross-sectional diagram showing the structure of a metal-clad laminate according to a preferred embodiment of the present invention.

B:黏著層 B: Adhesive layer

C:覆金屬積層板 C: Metal-clad laminate

C1:第一單面覆金屬積層板(單面覆金屬積層板) C1: The first single-sided metal-clad laminate (single-sided metal-clad laminate)

C2:第二單面覆金屬積層板(單面覆金屬積層板) C2: Second single-sided metal-clad laminate (single-sided metal-clad laminate)

M1:第一金屬層 M1: First metal layer

M2:第二金屬層 M2: Second metal layer

P1:第一絕緣樹脂層 P1: First insulating resin layer

P2:第二絕緣樹脂層 P2: Second insulating resin layer

T1:合計厚度 T1: Total thickness

T2、T3:厚度 T2, T3: thickness

Claims (3)

一種覆金屬積層板的製造方法,所述覆金屬積層板包括:第一單面覆金屬積層板,具有第一金屬層與積層於所述第一金屬層的至少一側的面上的第一絕緣樹脂層;第二單面覆金屬積層板,具有第二金屬層與積層於所述第二金屬層的至少一側的面上的第二絕緣樹脂層;以及黏著層,以抵接於所述第一絕緣樹脂層和所述第二絕緣樹脂層的方式配置,積層於所述第一單面覆金屬積層板與所述第二單面覆金屬積層板之間,且所述製造方法的特徵在於,包括以下步驟1~3:步驟1:所述第一單面覆金屬積層板與所述第二單面覆金屬積層板的準備步驟;步驟2:在所述第一絕緣樹脂層或所述第二絕緣樹脂層中的任一者或兩者上,積層由熱塑性樹脂或熱硬化性樹脂構成的作為所述黏著層的樹脂層的步驟;步驟3:在所述步驟2之後,熱壓接所述第一單面覆金屬積層板與所述第二單面覆金屬積層板的步驟,使各自的絕緣樹脂層隔著所述黏著層彼此相對, 所述黏著層是由熱塑性樹脂或熱硬化性樹脂構成,滿足下述條件(i)~(iii):(i)50℃下的儲存彈性係數為1800MPa以下;(ii)180℃~260℃的溫度區域的儲存彈性係數的最大值為800MPa以下;(iii)玻璃化轉變溫度(Tg)為180℃以下。 A method for manufacturing a metal-clad laminate, the metal-clad laminate comprising: a first single-sided metal-clad laminate having a first metal layer and a first insulating resin layer laminated on at least one side of the first metal layer; a second single-sided metal-clad laminate having a second metal layer and a second insulating resin layer laminated on at least one side of the second metal layer; and an adhesive layer for resisting The method comprises the steps of: first, forming a first metal-clad laminated board and a second metal-clad laminated board in a manner of being connected to the first insulating resin layer and the second insulating resin layer, and being laminated between the first metal-clad laminated board and the second metal-clad laminated board, and the manufacturing method comprises the steps of: step 1: preparing the first metal-clad laminated board and the second metal-clad laminated board; step 2: The first step is to laminate a resin layer made of thermoplastic resin or thermosetting resin as the adhesive layer on either or both of the first insulating resin layer or the second insulating resin layer; the second step is to heat-press the first single-sided metal-clad laminate and the second single-sided metal-clad laminate after the first step is to make the insulating resin layers face each other through the adhesive layer. The adhesive layer is composed of a thermoplastic resin or a thermosetting resin and meets the following conditions (i) to (iii): (i) the storage elastic coefficient at 50°C is less than 1800MPa; (ii) the maximum value of the storage elastic coefficient in the temperature range of 180°C to 260°C is less than 800MPa; (iii) the glass transition temperature (Tg) is less than 180°C. 如申請專利範圍第1項所述的覆金屬積層板的製造方法,其中所述步驟2的所述黏著層的樹脂層是塗布熱塑性樹脂、熱硬化性樹脂或其樹脂溶液並乾燥後的塗布膜。 As described in the first item of the patent application, the manufacturing method of the metal-clad laminate, wherein the resin layer of the adhesive layer in step 2 is a coating film obtained by coating a thermoplastic resin, a thermosetting resin or a resin solution thereof and drying it. 如申請專利範圍第1項所述的覆金屬積層板的製造方法,其中所述第一絕緣樹脂層和所述第二絕緣樹脂層均具有熱塑性聚醯亞胺層、非熱塑性聚醯亞胺層和熱塑性聚醯亞胺層依次積層而成的多層結構,所述黏著層與兩個所述熱塑性聚醯亞胺層接觸設置。 As described in item 1 of the patent application, the manufacturing method of the metal-clad laminate, wherein the first insulating resin layer and the second insulating resin layer both have a multi-layer structure formed by sequentially stacking a thermoplastic polyimide layer, a non-thermoplastic polyimide layer and a thermoplastic polyimide layer, and the adhesive layer is arranged in contact with the two thermoplastic polyimide layers.
TW112130365A 2018-09-28 2019-09-26 Manufacturing method of metal-clad laminate TWI867682B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-185878 2018-09-28
JP2018185878 2018-09-28

Publications (2)

Publication Number Publication Date
TW202346095A TW202346095A (en) 2023-12-01
TWI867682B true TWI867682B (en) 2024-12-21

Family

ID=70028545

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108134893A TWI814908B (en) 2018-09-28 2019-09-26 Metal-clad laminates and circuit boards
TW112130365A TWI867682B (en) 2018-09-28 2019-09-26 Manufacturing method of metal-clad laminate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW108134893A TWI814908B (en) 2018-09-28 2019-09-26 Metal-clad laminates and circuit boards

Country Status (4)

Country Link
JP (2) JP7446741B2 (en)
KR (2) KR102694527B1 (en)
CN (3) CN117067718A (en)
TW (2) TWI814908B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220116189A (en) * 2019-12-25 2022-08-22 미쯔비시 케미컬 주식회사 Laminate and manufacturing method thereof, and exterior material for automobiles
JP7477597B2 (en) * 2020-04-10 2024-05-01 株式会社巴川コーポレーション Adhesive Composition
TWI807216B (en) * 2020-09-01 2023-07-01 佳勝科技股份有限公司 Composite substrate and manufacturing method thereof
JP7598756B2 (en) * 2020-12-24 2024-12-12 日鉄ケミカル&マテリアル株式会社 Resin films, metal-clad laminates and circuit boards
JP7644611B2 (en) * 2021-02-04 2025-03-12 旭化成株式会社 Metal clad laminate and printed wiring board
JP7621161B2 (en) * 2021-03-31 2025-01-24 日鉄ケミカル&マテリアル株式会社 Resin films, laminates, coverlay films, resin-coated copper foils, metal-clad laminates, circuit boards and multilayer circuit boards
KR20230000671A (en) * 2021-06-25 2023-01-03 피아이첨단소재 주식회사 SEMI-TRANSPARENT LOW DIELECTRIC Polyimide Film and MANUFACTURING METHOD THEREOF
US11596066B1 (en) * 2022-03-22 2023-02-28 Thintronics. Inc. Materials for printed circuit boards
JP2024000978A (en) 2022-06-21 2024-01-09 日鉄ケミカル&マテリアル株式会社 Metal-clad laminate plate, circuit board, electronic device and electronic apparatus
JP2024050431A (en) 2022-09-29 2024-04-10 日鉄ケミカル&マテリアル株式会社 Metal-clad laminates, circuit boards, electronic devices and electronic equipment
CN117087208B (en) * 2023-07-21 2024-08-20 江门建滔积层板有限公司 Heat-resistant flexible copper-clad plate and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361753A (en) * 2009-01-23 2012-02-22 株式会社斗山 Novel ductile metal foil laminate and method for producing the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553108U (en) 1978-10-06 1980-04-09
JPS6238237Y2 (en) 1984-11-20 1987-09-30
EP1266926B1 (en) * 2000-02-01 2007-05-23 Nippon Steel Chemical Co., Ltd. Adhesive polyimide resin and adhesive laminate
KR100815314B1 (en) * 2000-03-31 2008-03-19 히다치 가세고교 가부시끼가이샤 Adhesive composition, its manufacturing method, adhesive film using this, board | substrate for semiconductor mounting, and semiconductor device
JP4619860B2 (en) * 2004-07-13 2011-01-26 新日鐵化学株式会社 Flexible laminate and method for manufacturing the same
JP2007049036A (en) * 2005-08-11 2007-02-22 Nitto Denko Corp Wiring circuit board
JP2007115723A (en) * 2005-10-17 2007-05-10 Tdk Corp Metal foil laminated body and electronic component
JP5095142B2 (en) * 2006-07-05 2012-12-12 ユニチカ株式会社 Flexible printed wiring board substrate and manufacturing method thereof
JP5886027B2 (en) * 2011-12-21 2016-03-16 新日鉄住金化学株式会社 Double-sided metal-clad laminate and method for producing the same
JP6031396B2 (en) * 2013-03-29 2016-11-24 新日鉄住金化学株式会社 Manufacturing method of double-sided flexible metal-clad laminate
JP6403503B2 (en) * 2013-09-30 2018-10-10 新日鉄住金化学株式会社 Copper-clad laminate, printed wiring board and method of using the same
JP2015127117A (en) * 2013-12-27 2015-07-09 新日鉄住金化学株式会社 Metal-clad laminate and circuit board
JP6590568B2 (en) 2015-07-22 2019-10-16 株式会社カネカ Insulating film, method for producing insulating film, and method for producing metal-clad laminate
JP6839594B2 (en) * 2016-04-27 2021-03-10 日鉄ケミカル&マテリアル株式会社 Polyimide film and copper-clad laminate
TWI761375B (en) * 2016-09-26 2022-04-21 日商昭和電工材料股份有限公司 Resin composition, wiring laminate for semiconductor, and semiconductor device
CN109789689A (en) * 2016-09-29 2019-05-21 日铁化学材料株式会社 Polyimide film, copper plywood and circuit substrate
JP7479781B2 (en) * 2017-02-28 2024-05-09 日鉄ケミカル&マテリアル株式会社 Metal-clad laminate, adhesive sheet, adhesive polyimide resin composition, and circuit board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361753A (en) * 2009-01-23 2012-02-22 株式会社斗山 Novel ductile metal foil laminate and method for producing the same

Also Published As

Publication number Publication date
JP2020055299A (en) 2020-04-09
CN117048152A (en) 2023-11-14
JP7446741B2 (en) 2024-03-11
KR20200036770A (en) 2020-04-07
CN110962410A9 (en) 2023-06-23
KR102694527B1 (en) 2024-08-13
TW202346095A (en) 2023-12-01
TWI814908B (en) 2023-09-11
JP2024059887A (en) 2024-05-01
CN117067718A (en) 2023-11-17
KR20240124264A (en) 2024-08-16
CN110962410A (en) 2020-04-07
TW202012167A (en) 2020-04-01
CN110962410B (en) 2023-09-05

Similar Documents

Publication Publication Date Title
TWI867682B (en) Manufacturing method of metal-clad laminate
CN110964319B (en) Resin film, polyimide, adhesive resin composition, and use thereof
TWI859161B (en) Metal-clad laminates, circuit substrates and multi-layer circuit substrates
JP7301495B2 (en) Metal-clad laminates and circuit boards
TWI845787B (en) Resin composition, resin film, laminate, cover film, copper foil with resin, metal-clad laminate and circuit substrate
TWI864246B (en) Resin film, metal-clad laminate and circuit substrate
JP2025089343A (en) Polyimide composition, resin film, laminate, coverlay film, resin-coated copper foil, metal-clad laminate, and circuit board
TWI865703B (en) Metal-clad laminates and circuit boards
JP7465058B2 (en) Metal-clad laminates and circuit boards
JP7636149B2 (en) Polyimide, polyimide solution, polyimide film, adhesive film, laminate, coverlay film, resin-coated copper foil, metal-clad laminate, circuit board, and multi-layer circuit board
TWI762725B (en) Metal clad laminate and circuit substrate
JP7598756B2 (en) Resin films, metal-clad laminates and circuit boards
TW202413090A (en) Metal-clad laminate, circuit board, electronic device and electronic apparatus
TW202400413A (en) Metal-clad laminate, circuit board, electronic device and electronic apparatus
CN116787887A (en) Multilayer films, metal-clad laminates and circuit substrates