TWI867398B - Memory device - Google Patents
Memory device Download PDFInfo
- Publication number
- TWI867398B TWI867398B TW112100026A TW112100026A TWI867398B TW I867398 B TWI867398 B TW I867398B TW 112100026 A TW112100026 A TW 112100026A TW 112100026 A TW112100026 A TW 112100026A TW I867398 B TWI867398 B TW I867398B
- Authority
- TW
- Taiwan
- Prior art keywords
- ferromagnetic layer
- conductor
- voltage
- memory cell
- layer
- Prior art date
Links
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 170
- 239000004020 conductor Substances 0.000 claims abstract description 85
- 230000005415 magnetization Effects 0.000 claims abstract description 34
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 25
- 230000005291 magnetic effect Effects 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims description 32
- 230000005641 tunneling Effects 0.000 claims description 6
- 230000004044 response Effects 0.000 claims 8
- 238000003860 storage Methods 0.000 description 30
- 238000010586 diagram Methods 0.000 description 18
- 230000006870 function Effects 0.000 description 18
- 238000009826 distribution Methods 0.000 description 17
- 230000008859 change Effects 0.000 description 10
- 230000001747 exhibiting effect Effects 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 101100510671 Rattus norvegicus Lnpep gene Proteins 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- ZGDWHDKHJKZZIQ-UHFFFAOYSA-N cobalt nickel Chemical compound [Co].[Ni].[Ni].[Ni] ZGDWHDKHJKZZIQ-UHFFFAOYSA-N 0.000 description 6
- OQCGPOBCYAOYSD-UHFFFAOYSA-N cobalt palladium Chemical compound [Co].[Co].[Co].[Pd].[Pd] OQCGPOBCYAOYSD-UHFFFAOYSA-N 0.000 description 6
- GUBSQCSIIDQXLB-UHFFFAOYSA-N cobalt platinum Chemical compound [Co].[Pt].[Pt].[Pt] GUBSQCSIIDQXLB-UHFFFAOYSA-N 0.000 description 6
- 230000005307 ferromagnetism Effects 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 229910052741 iridium Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229910052707 ruthenium Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000003302 ferromagnetic material Substances 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- ZDZZPLGHBXACDA-UHFFFAOYSA-N [B].[Fe].[Co] Chemical compound [B].[Fe].[Co] ZDZZPLGHBXACDA-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- ZDVYABSQRRRIOJ-UHFFFAOYSA-N boron;iron Chemical compound [Fe]#B ZDVYABSQRRRIOJ-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Mram Or Spin Memory Techniques (AREA)
- Hall/Mr Elements (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
文中所述之實施例一般係有關於一種記憶體裝置。 對於相關申請案之交叉參考 The embodiments described herein generally relate to a memory device. Cross-references to Related Applications
本申請案係基於並主張來自日本專利申請案編號2022-038263(2022年三月11日提出申請)及美國專利申請案編號17/898913(2022年八月30日提出申請)之優先權利益,其完整內容被併入本文中以利參考。This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2022-038263 (filed on March 11, 2022) and U.S. Patent Application No. 17/898913 (filed on August 30, 2022), the entire contents of which are incorporated herein by reference.
已知一種使用具有可變電阻值之元件以儲存資料的記憶體裝置。該記憶體裝置必須具有高儲存容量及高資料讀取性能。A memory device that uses a device having a variable resistance value to store data is known. The memory device must have a high storage capacity and a high data read performance.
實施例提供一種具有高資料讀取性能之記憶體裝置。The embodiment provides a memory device with high data reading performance.
通常,依據一個實施例,該記憶體裝置包括一第一導體、在該第一導體上之一第一堆疊體、在該第一堆疊體上之一第二導體、在該第二導體上之一第二堆疊體、及在該第二堆疊體上之一第三導體。Generally, according to one embodiment, the memory device includes a first conductor, a first stack on the first conductor, a second conductor on the first stack, a second stack on the second conductor, and a third conductor on the second stack.
該第一堆疊體包括一第一鐵磁層、一第一絕緣層、一第二鐵磁層、一非磁性第一金屬層、及依序自該第一導體之一側堆疊的一第三鐵磁層。該第二鐵磁層與該第三鐵磁層具有在相反方向上之磁化。該第二堆疊體包括一第四鐵磁層、一第二絕緣層、一第五鐵磁層、一非磁性第二金屬層、及依序自該第二導體之一側堆疊的一第六鐵磁層。該第五鐵磁層與該第六鐵磁層具有在相反方向上之磁化。該第六鐵磁層具有大於該第三鐵磁層之體積的體積。The first stack includes a first ferromagnetic layer, a first insulating layer, a second ferromagnetic layer, a non-magnetic first metal layer, and a third ferromagnetic layer stacked in sequence from one side of the first conductor. The second ferromagnetic layer and the third ferromagnetic layer have magnetizations in opposite directions. The second stack includes a fourth ferromagnetic layer, a second insulating layer, a fifth ferromagnetic layer, a non-magnetic second metal layer, and a sixth ferromagnetic layer stacked in sequence from one side of the second conductor. The fifth ferromagnetic layer and the sixth ferromagnetic layer have magnetizations in opposite directions. The sixth ferromagnetic layer has a volume greater than that of the third ferromagnetic layer.
在一個實施例或不同實施例中具有實質上相同功能及組態之複數組件可具有額外的數字或字母添加至參考數字之末端以利其彼此分辨。在接續於任何已描述實施例之實施例中,與已描述實施例之差異被主要地描述。一個實施例之所有描述亦適用為另一實施例之描述,除非明確地排除或者其排除係顯而易見的。Multiple components having substantially the same function and configuration in one embodiment or different embodiments may have additional numerals or letters added to the end of the reference numeral to distinguish them from each other. In an embodiment following any described embodiment, the differences from the described embodiment are mainly described. All descriptions of one embodiment also apply to the description of another embodiment, unless explicitly excluded or its exclusion is obvious.
非必要的是:各功能區塊被實施如以下範例中所示。例如,一些功能可由不同於範例功能區塊之一功能區塊來執行。再者,範例功能區塊可被細分為更細的功能子區塊。It is not necessary that each functional block is implemented as shown in the following example. For example, some functions may be performed by a functional block different from the example functional block. Furthermore, the example functional block may be subdivided into more detailed functional sub-blocks.
如本說明書及申請專利範圍中所使用,當一個第一元件被「連接」至另一第二元件時,該第一元件可被直接地連接至該第二元件、或者經由一恆定地或選擇性地變為導電之元件。 1.第一實施例 1.1.結構(組態) 1.1.1.總組態 As used in this specification and the scope of the patent application, when a first element is "connected" to another second element, the first element can be directly connected to the second element, or via an element that becomes conductive either constantly or selectively. 1. First embodiment 1.1. Structure (configuration) 1.1.1. Overall configuration
圖1係第一實施例之記憶體裝置的方塊圖。記憶體裝置1係用於儲存資料之裝置。記憶體裝置1使用展現可變電阻值之磁性材料的堆疊體來儲存資料。記憶體裝置1包括核心電路11、輸入及輸出電路12、控制電路13、解碼電路14、頁面緩衝器15、及電壓產生電路16。FIG1 is a block diagram of a memory device of the first embodiment. The
核心電路11係一種電路,其包括記憶體單元MC(在圖1中僅描繪其一個)、用於存取記憶體單元MC之佈線、及周邊電路。記憶體單元MC係以非揮發性方式儲存資料的元件。佈線包括總體字元線GWL(未顯示)、局部字元線LWL、總體位元線GBL(未顯示)、及局部位元線LBL。各記憶體單元MC被連接至一個局部字元線LWL及一個局部位元線LBL。局部字元線LWL被指派一個列位址。局部位元線LBL被指派一個行位址。The
輸入及輸出電路12係輸入並輸出資料及信號之電路。輸入及輸出電路12接收控制信號CNT、命令CMD、位址信號ADD、及資料DAT,其將從記憶體單元1之外部(例如,記憶體控制器)被寫入記憶體單元MC中。The input and
控制電路13係控制記憶體裝置1之操作的電路。控制電路13從輸入及輸出電路12接收命令CMD及控制信號CNT。控制電路13基於命令CMD及控制信號CNT來控制核心電路11,並控制資料之讀取自記憶體單元MC以及資料之寫入至記憶體單元MC。控制電路13基於命令CMD及控制信號CNT來控制電壓產生電路16The
解碼電路14係解碼位址信號ADD之電路。解碼電路14從輸入及輸出電路12接收位址信號ADD。解碼電路14解碼位址信號ADD並產生用以基於該解碼之結果來選擇資料所被讀取自或寫入至之記憶體單元MC的信號。所產生的信號被傳輸至核心電路11。The
頁面緩衝器15係暫時地儲存某一大小之資料的電路。頁面緩衝器15從輸入及輸出電路12接收其寫入記憶體單元MC中之資料DAT、暫時地儲存該資料、並將該資料轉移至核心電路11。頁面緩衝器15亦接收讀取自記憶體單元MC之資料、暫時地儲存該讀取資料、並將資料DAT轉移至輸入及輸出電路12。The
電壓產生電路16係產生記憶體裝置1中所使用之各種電壓的電路。電壓產生電路16基於控制電路13之控制來產生電壓。電壓產生電路16在資料之寫入至記憶體單元MC期間將用於資料寫入之電壓供應至核心電路11。電壓產生電路16在資料之讀取自記憶體單元MC期間將用於資料讀取之電壓供應至核心電路11。
1.1.2.核心電路組態
The
圖2係第一實施例之核心電路11的方塊圖。如圖2中所示,核心電路11包括複數組,各包括記憶體單元陣列MA、列選擇器RS、行選擇器CS。核心電路11進一步包括複數總體字元線GWL、複數局部字元線LWL、複數總體位元線GBL、複數局部位元線LBL、讀出電路RC、及寫入電路WC。圖2僅描繪一個組,其包括記憶體單元陣列MA、列選擇器RS、及行選擇器CS,連同一個總體字元線GWL及一個總體位元線GBL。FIG2 is a block diagram of the
記憶體單元陣列MA係由複數記憶體單元MC組成。複數局部字元線LWL及複數局部位元線LBL被置於記憶體單元陣列MA中。The memory cell array MA is composed of a plurality of memory cells MC. A plurality of local word lines LWL and a plurality of local bit lines LBL are disposed in the memory cell array MA.
列選擇器RS被提供用於控制一個記憶體單元陣列MA。列選擇器RS係用於選擇相應記憶體單元陣列MA之一個列的電路。列選擇器RS接收一列位址並基於該已接收列位址而將相應記憶體單元陣列MA之局部字元線LWL的一者連接至一個總體字元線GWL。列選擇器RS包括複數開關。各開關在一端處被連接至一個總體字元線GWL且在另一端處被連接至一個局部字元線LWL。開關係(例如)MOSFET(金氧半導體場效電晶體),例如,n型MOSFET。The column selector RS is provided for controlling a memory cell array MA. The column selector RS is a circuit for selecting a column of the corresponding memory cell array MA. The column selector RS receives a column address and connects one of the local word lines LWL of the corresponding memory cell array MA to a global word line GWL based on the received column address. The column selector RS includes a plurality of switches. Each switch is connected to a global word line GWL at one end and to a local word line LWL at the other end. The switch is, for example, a MOSFET (metal oxide semiconductor field effect transistor), for example, an n-type MOSFET.
行選擇器CS被提供用於控制一個記憶體單元陣列MA。行選擇器CS係用於選擇相應記憶體單元陣列MA之一個行的電路。行選擇器CS接收一行位址並基於該已接收行位址而將相應記憶體單元陣列MA之局部位元線LBL的一者連接至一個總體位元線GBL。行選擇器CS包括複數開關。各開關在一端處被連接至一個總體位元線GBL且在另一端處被連接至一個局部位元線LBL。開關係(例如)MOSFET,例如,n型MOSFET。A row selector CS is provided for controlling a memory cell array MA. The row selector CS is a circuit for selecting a row of the corresponding memory cell array MA. The row selector CS receives a row address and connects one of the local bit lines LBL of the corresponding memory cell array MA to a global bit line GBL based on the received row address. The row selector CS includes a plurality of switches. Each switch is connected to a global bit line GBL at one end and to a local bit line LBL at the other end. The switch is, for example, a MOSFET, for example, an n-type MOSFET.
總體字元線GWL被連接至複數列選擇器RS。總體字元線GWL亦被連接至讀出電路RC及寫入電路WC。The global word line GWL is connected to a plurality of row selectors RS. The global word line GWL is also connected to a read circuit RC and a write circuit WC.
總體位元線GBL被連接至複數行選擇器CS。總體位元線GBL亦被連接至讀出電路RC及寫入電路WC。The global bit line GBL is connected to a plurality of row selectors CS. The global bit line GBL is also connected to a read circuit RC and a write circuit WC.
讀出電路RC係控制資料之讀取自記憶體單元MC的電路。讀出電路RC使用其係基於儲存在資料讀取目標記憶體單元MC中之資料的電壓來判定儲存在資料讀取目標記憶體單元MC中之資料。讀出電路RC包括複數感測放大器電路SAC。感測放大器電路SAC係一電路,其藉由使用其係基於儲存在資料讀取目標記憶體單元MC中之資料的電壓以輸出經判定為將儲存在資料讀取目標記憶體單元MC中之資料。感測放大器電路SAC可基於其係基於儲存在資料讀取目標記憶體單元MC中之資料的電壓(例如,下文所述之低固持電壓VhdL或高固持電壓VhdH)與參考電壓之間的關係來輸出資料,該參考電壓具有介於低固持電壓VhdL與高固持電壓VhdH之間的量值。感測放大器電路SAC基於介於兩個電壓之間的關係來輸出經判定為將儲存在資料讀取目標記憶體單元MC中之資料。The read circuit RC is a circuit that controls the reading of data from the memory cell MC. The read circuit RC determines the data stored in the data read target memory cell MC using a voltage based on the data stored in the data read target memory cell MC. The read circuit RC includes a plurality of sense amplifier circuits SAC. The sense amplifier circuit SAC is a circuit that outputs the data determined to be stored in the data read target memory cell MC by using a voltage based on the data stored in the data read target memory cell MC. The sense amplifier circuit SAC may output data based on a relationship between a voltage based on data stored in the data read target memory cell MC (e.g., a low holding voltage VhdL or a high holding voltage VhdH described below) and a reference voltage having a magnitude between the low holding voltage VhdL and the high holding voltage VhdH. The sense amplifier circuit SAC outputs data determined to be stored in the data read target memory cell MC based on the relationship between the two voltages.
寫入電路WC係控制資料之寫入至記憶體單元MC的電路。寫入電路WC接收待寫入資料。寫入電路WC藉由基於待寫入資料而使電流流經資料寫入目標記憶體單元MC以將資料寫入至資料寫入目標記憶體單元MC。 1.1.3.記憶體單元陣列之電路組態 The write circuit WC is a circuit that controls the writing of data into the memory cell MC. The write circuit WC receives data to be written. The write circuit WC writes data into the data write target memory cell MC by causing a current to flow through the data write target memory cell MC based on the data to be written. 1.1.3. Circuit configuration of memory cell array
圖3係第一實施例之記憶體單元陣列MA的電路圖。如圖3中所示,M+1(M係自然數)局部字元線LWLA(LWLA <0>、LWLA <1>、...、LWLA <M>)及M+1局部字元線LWLB(LWLB <0>、LWLB <1>、...、LWLB <M>)被置於記憶體單元陣列MA中。N+1(N係自然數)局部位元線LBL(LBL <0>、LBL <1>、...、LBL <N>)亦被置於記憶體單元陣列MA中。FIG3 is a circuit diagram of the memory cell array MA of the first embodiment. As shown in FIG3, M+1 (M is a natural number) local word lines LWLA (LWLA <0>, LWLA <1>, ..., LWLA <M>) and M+1 local word lines LWLB (LWLB <0>, LWLB <1>, ..., LWLB <M>) are placed in the memory cell array MA. N+1 (N is a natural number) local bit lines LBL (LBL <0>, LBL <1>, ..., LBL <N>) are also placed in the memory cell array MA.
各記憶體單元MC(MCA及MCB)被連接至一個局部字元線LWL及一個局部位元線LBL。更明確地,記憶體單元MCA包括針對其中α係0或更大及M或更小之整數的所有情況以及其中β係0或更大及N或更小之整數的所有情況之所有組合的記憶體單元MCA <α, β>。記憶體單元MCA <α, β>被連接在局部字元線LWLA <α>與局部位元線LBL <β>之間。類似地,記憶體單元MCB包括針對其中α係0或更大及M或更小之整數的所有情況以及其中β係0或更大及N或更小之整數的所有情況之所有組合的記憶體單元MCB <α, β>。記憶體單元MCB <α, β>被連接在局部字元線LWLB <α>與局部位元線LBL <β>之間。Each memory cell MC (MCA and MCB) is connected to a local word line LWL and a local bit line LBL. More specifically, the memory cell MCA includes memory cells MCA <α, β> for all combinations of all cases where α is an integer of 0 or greater and M or less and all cases where β is an integer of 0 or greater and N or less. The memory cell MCA <α, β> is connected between the local word line LWLA <α> and the local bit line LBL <β>. Similarly, the memory cell MCB includes memory cells MCB <α, β> for all combinations of all cases where α is an integer of 0 or greater and M or less and all cases where β is an integer of 0 or greater and N or less. The memory cell MCB <α, β> is connected between the local word line LWLB <α> and the local bit line LBL <β>.
各記憶體單元MC包括一個磁穿隧接面(MTJ)元件MTJ(MTJA或MTJB)及一個切換元件SE(SEA或SEB)。Each memory cell MC includes a magnetic tunneling junction (MTJ) element MTJ (MTJA or MTJB) and a switching element SE (SEA or SEB).
在各記憶體單元MC中,MTJ元件MTJ與切換元件SE被串聯連接。各記憶體單元MCA之切換元件SEA被連接至一個局部字元線LWL。各記憶體單元MCA之MTJ元件MTJA被連接至一個局部位元線LBL。各記憶體單元MCB之切換元件SEB被連接至一個局部位元線LBL。各記憶體單元MCB之MTJ元件MTJB被連接至一個局部字元線LWL。In each memory cell MC, the MTJ element MTJ and the switching element SE are connected in series. The switching element SEA of each memory cell MCA is connected to a local word line LWL. The MTJ element MTJA of each memory cell MCA is connected to a local bit line LBL. The switching element SEB of each memory cell MCB is connected to a local bit line LBL. The MTJ element MTJB of each memory cell MCB is connected to a local word line LWL.
MTJ元件MTJ係展現穿隧磁電阻效應且包括(例如)磁穿隧接面(MTJ)之元件。MTJ元件MTJ可在低電阻值狀態與高電阻值之間切換。MTJ元件MTJ可藉由利用介於兩個電阻值狀態之間的差異以儲存1位元資料。例如,MTJ元件MTJ在低電阻值狀態下儲存「0」資料且在高電阻值狀態下儲存「1」資料。MTJ element MTJ is an element that exhibits a tunneling magnetoresistance effect and includes, for example, a magnetic tunneling junction (MTJ). MTJ element MTJ can be switched between a low resistance state and a high resistance state. MTJ element MTJ can store 1 bit of data by utilizing the difference between the two resistance states. For example, MTJ element MTJ stores "0" data in a low resistance state and stores "1" data in a high resistance state.
切換元件SE係用於選擇其中將包括此切換元件SE之記憶體單元MC的元件。切換元件SE包括兩個終端。當施加在兩個終端之間的電壓小於某第一臨限電壓時,切換元件SE係在高電阻值狀態,例如,非導電狀態(OFF狀態)。當施加在兩個終端之間的電壓升高且變為等於或高於第一臨限電壓時,切換元件SE進入低電阻值狀態,例如,導電狀態(ON狀態)。當施加在處於低電阻值狀態下之切換元件SE的兩個終端之間的電壓減少且變為等於或低於第二臨限電壓時,切換元件SE進入高電阻值狀態。切換元件SE具有如基於施加在第一方向之電壓的量值而在高電阻值狀態與低電阻值狀態之間的切換功能之相同功能,在相反於第一方向之第二方向。亦即,切換元件SE係方向性切換元件。藉由開啟或關閉切換元件SE,有可能控制電流是否被供應至連接至切換元件SE之MTJ元件MTJ,亦即,MTJ元件MTJ之選擇或不選擇。 1.1.4.記憶體單元陣列之結構 The switching element SE is an element for selecting a memory cell MC in which the switching element SE is to be included. The switching element SE includes two terminals. When the voltage applied between the two terminals is less than a first critical voltage, the switching element SE is in a high resistance state, for example, a non-conductive state (OFF state). When the voltage applied between the two terminals increases and becomes equal to or higher than the first critical voltage, the switching element SE enters a low resistance state, for example, a conductive state (ON state). When the voltage applied between the two terminals of the switching element SE in the low resistance state decreases and becomes equal to or lower than a second critical voltage, the switching element SE enters a high resistance state. The switching element SE has the same function as a switching function between a high resistance state and a low resistance state based on the magnitude of a voltage applied in a first direction, in a second direction opposite to the first direction. That is, the switching element SE is a directional switching element. By turning the switching element SE on or off, it is possible to control whether current is supplied to the MTJ element MTJ connected to the switching element SE, that is, the selection or non-selection of the MTJ element MTJ. 1.1.4. Structure of memory cell array
圖4係第一實施例之記憶體單元陣列MA的一部分之透視圖。圖4中所示之組件陰影僅被添附以供圖形之視覺比較的目的。陰影組件之材料係取決於由陰影圖案所指示之材料。FIG4 is a perspective view of a portion of the memory cell array MA of the first embodiment. The component shading shown in FIG4 is only added for the purpose of visual comparison of the figures. The material of the shaded component depends on the material indicated by the shaded pattern.
如圖4中所示,記憶體單元陣列MA包括記憶體單元MCA及MCB。複數導體21、複數導體22、及複數導體23被置於記憶體單元陣列MA中。4, the memory cell array MA includes memory cells MCA and MCB. A plurality of
導體21沿著y軸而延伸且沿著x軸而配置。各導體21作用為一個局部字元線LWLA。The
導體22被置於導體21之上。導體22沿著x軸而延伸且沿著y軸而配置。各導體22作用為一個局部位元線LBL。The
導體23被置於導體22之上。導體23沿著y軸而延伸且沿著x軸而配置。各導體23作用為一個局部字元線LWLB。The
一個記憶體單元MCA被提供在導體21與導體22之各相交處。記憶體單元MCA被置於xy平面之矩陣組態中。各記憶體單元MCA包括作用為切換元件SEA之結構及作用為MTJ元件MTJA之結構。作用為切換元件SEA之結構及作用為MTJ元件MTJA之結構各包括一個或複數層。作用為MTJ元件MTJA之結構被置於作用為切換元件SEA之結構的上表面上。記憶體單元MCA之下表面係與導體21之上表面接觸。記憶體單元MCA之上表面係與導體22之下表面接觸。記憶體單元MCA可被稱為下記憶體單元MCA。A memory cell MCA is provided at each intersection of the
一個記憶體單元MCB被提供在導體22與導體23之各相交處。記憶體單元MCB被置於xy平面之矩陣組態中。各記憶體單元MCB包括作用為切換元件SEB之結構及作用為MTJ元件MTJB之結構。作用為切換元件SEB之結構及作用為MTJ元件MTJB之結構各包括一個或複數層。作用為MTJ元件MTJB之結構被置於作用為切換元件SEB之結構的上表面上。記憶體單元MCB之下表面係與導體22之上表面接觸。記憶體單元MC之上表面係與導體23之下表面接觸。記憶體單元MCB可被稱為上記憶體單元MCB。
1.1.5.記憶體單元結構
A memory cell MCB is provided at each intersection of the
圖5顯示第一實施例之記憶體單元MC的結構之範例的橫斷面。圖5顯示下記憶體單元MCA及上記憶體單元MCB,且亦顯示連接至下記憶體單元MCA及上記憶體單元MCB之導體21、22、及23。下記憶體單元MCA及上記憶體單元MCB各包括數個實質上完全相同的組件。在下記憶體單元MCA與上記憶體單元MCB共有的組件中,在下記憶體單元MCA中所提供之組件可具有「A」添加至參考數字之末端而在上記憶體單元MCB中所提供之組件具有「B」添加至參考數字之末端。FIG. 5 shows a cross section of an example of the structure of the memory cell MC of the first embodiment. FIG. 5 shows a lower memory cell MCA and an upper memory cell MCB, and also shows
如圖5中所示,作用為下記憶體單元MCA之結構包括作用為切換元件SE之結構,亦即,作用為切換元件SEA之結構。作用為切換元件SEA之結構包括可變電阻值材料31,亦即,可變電阻值材料31A。5, the structure serving as the lower memory cell MCA includes a structure serving as a switching element SE, that is, a structure serving as a switching element SEA. The structure serving as the switching element SEA includes a
可變電阻值材料31係展現可變電阻值之材料。可變電阻值材料31係介於兩個終端之間的切換元件,兩個終端之第一終端係可變電阻值材料31之上表面與下表面的一者,而兩個終端之第二終端係可變電阻值材料31之上表面與下表面的另一者。當施加在兩個終端之間的電壓小於某第一臨限電壓時,可變電阻值材料31係在「高電阻值」狀態,例如,非導電狀態。當施加在兩個終端之間的電壓升高且變為等於或高於第一臨限電壓時,可變電阻值材料31係在「低電阻值」狀態,例如,導電狀態。當施加在處於低電阻值狀態下之可變電阻值材料31的兩個終端之間的電壓減少且變為等於或低於第二臨限電壓時,可變電阻值材料31進入高電阻值狀態。可變電阻值材料31包括絕緣體及藉由離子植入而被引入絕緣體中之摻雜物。絕緣體包括(例如)氧化物且含有SiO
2或實質上由SiO
2組成之材料。摻雜物包括(例如)砷(As)及鍺(Ge)。如在說明書及申請專利範圍中所使用,包括術語「實質上」之用語「實質上由...形成(組成)」及類似用語意指容許「實質上」形成的元件含有非所欲的雜質。
The
作用為切換元件SE之結構可進一步包括下電極及上電極。在此情況下,可變電阻值材料31被置於下電極之上表面上,而上電極被置於可變電阻值材料31之上表面上。The structure serving as the switching element SE may further include a lower electrode and an upper electrode. In this case, the
作用為下記憶體單元MCA之結構各包括鐵磁層32、絕緣層33、鐵磁層34、及金屬層35,亦即,鐵磁層32A、絕緣層33A、鐵磁層34A、及金屬層35A。作用為MTJ元件MTJA之結構進一步包括鐵磁層41。鐵磁層32、絕緣層33、鐵磁層34、金屬層35、及鐵磁層41依此順序而被堆疊在可變電阻值材料31A之上表面上。The structure serving as the lower memory cell MCA includes a
鐵磁層32係展現鐵磁性之材料的層。鐵磁層32含有(例如)鈷鐵硼(CoFeB)或硼化鐵(FeB),或實質上由CoFeB或FeB組成。鐵磁層32具有沿著穿透鐵磁層32、絕緣層33、及鐵磁層34之介面的方向之簡單磁化的軸,例如,在相對於介面之45˚以上且90˚以下的角度處之簡單磁化的軸。例如,鐵磁層32具有沿著正交於介面的方向之簡單磁化的軸。鐵磁層32之磁化方向藉由將資料寫入至記憶體單元MC而係可變的,且鐵磁層32可作用為所謂的儲存層(SL)。於下文中,鐵磁層32可被稱為儲存層32。儲存層32可包括複數層。The
絕緣層33係絕緣體之層。絕緣層33含有(例如)氧化鎂(MgO)或實質上由MgO組成。絕緣層33作用為所謂的穿隧障壁(TB)。The insulating layer 33 is a layer of an insulator. The insulating layer 33 contains, for example, magnesium oxide (MgO) or consists essentially of MgO. The insulating layer 33 functions as a so-called tunneling barrier (TB).
鐵磁層34係展現鐵磁性之材料的層。鐵磁層34具有沿著穿透鐵磁層32、絕緣層33、及鐵磁層34之介面的方向之簡單磁化的軸,例如,在相對於介面之45˚以上且90˚以下的角度處之簡單磁化的軸。例如,鐵磁層34具有沿著正交於介面的方向之簡單磁化的軸。所欲的是,鐵磁層34之磁化方向在讀取及寫入記憶體單元MC中之資料期間係不變的。鐵磁層34可作用為所謂的參考層(RL)。於下文中,鐵磁層34可被稱為參考層34。鐵磁層34可包括複數層。The
當儲存層32之磁化方向係平行於參考層34之磁化方向時,MTJ元件MTJ具有某低電阻值。當儲存層32之磁化方向係反平行於參考層34之磁化方向時,MTJ元件MTJ具有高於當儲存層32之磁化方向與參考層34之磁化方向係平行時之電阻值的電阻值。於下文中,其中儲存層32之磁化方向係平行於參考層34之磁化方向的狀態可被稱為「平行狀態」或「P狀態」。其中儲存層32之磁化方向係反平行於參考層34之磁化方向的狀態可被稱為「反平行狀態」或「AP狀態」。When the magnetization direction of the
當具有某量值之切換電流Icp從儲存層32流向參考層34時,儲存層32之磁化方向變為平行於參考層34之磁化方向。當具有某量值之另一切換電流Icap從參考層34流向儲存層32時,儲存層32之磁化方向變為反平行於參考層34之磁化方向。切換電流Icap之量值不同於切換電流Icp之量值。When a switching current Icp having a certain magnitude flows from the
金屬層35係非磁性金屬層,其反鐵磁地耦合夾制金屬層35之兩個鐵磁材料。金屬層35含有釕(Ru)或銥(Ir)或係實質上由Ru或Ir組成。Ru及Ir容許夾制Ru或Ir之層的兩個鐵磁材料基於Ru或Ir之厚度而被鐵磁地或反鐵磁地耦合。金屬層35具有容許鐵磁層32與鐵磁層41被反鐵磁地耦合之厚度。因此,鐵磁層32與鐵磁層41被反鐵磁地耦合。The metal layer 35 is a non-magnetic metal layer that antiferromagnetically couples two ferromagnetic materials sandwiching the metal layer 35. The metal layer 35 contains ruthenium (Ru) or iridium (Ir) or is substantially composed of Ru or Ir. Ru and Ir allow two ferromagnetic materials sandwiching the layers of Ru or Ir to be ferromagnetically or antiferromagnetically coupled based on the thickness of Ru or Ir. The metal layer 35 has a thickness that allows the
鐵磁層41係鐵磁材料之層。鐵磁層41含有展現鐵磁性之元件或者係實質上由展現鐵磁性之元件組成。鐵磁層41含有鈷鉑(CoPt)、鈷鎳(CoNi)、或鈷鈀(CoPd)或者係實質上由CoPt、CoNi、或CoPd組成。鐵磁層41包括(例如)一種其中鈷(Co)層與鉑(Pt)層被交替地重複以一或多者之結構、一種其中鈷層與鎳(Ni)層被交替地重複以一或多者之結構、或一種其中鈷層與鈀(Pd)層被交替地重複以一或多者之結構。The
鐵磁層41具有在相反於參考層34A之磁化方向的方向上之磁化。鐵磁層41減少由參考層34A所產生且施加至儲存層32A之磁場,亦即,洩漏磁場。鐵磁層41作用為所謂的移位取消層(SCL)。於下文中,鐵磁層41可被稱為移位取消層41。The
作用為上記憶體單元MCB之結構包括作用為切換元件SE之結構,亦即,作用為切換元件SEB之結構。作用為切換元件SEB之結構包括可變電阻值材料31,亦即,可變電阻值材料31B。The structure serving as the upper memory cell MCB includes a structure serving as a switching element SE, that is, a structure serving as a switching element SEB. The structure serving as a switching element SEB includes a
作用為MTJ元件MTJB之結構包括鐵磁層32、絕緣層33、鐵磁層34、及金屬層35,亦即,鐵磁層32B、絕緣層33B、鐵磁層34B、及金屬層35B。作用為MTJ元件MTJB之結構進一步包括鐵磁層43。鐵磁層32B、絕緣層33B、鐵磁層34B、金屬層35B、及鐵磁層43依此順序而被堆疊在可變電阻值材料31B之上表面上。The structure serving as the MTJ element MTJB includes a
鐵磁層43係鐵磁材料之層。鐵磁層43含有展現鐵磁性之元件或者係實質上由展現鐵磁性之元件組成。鐵磁層43含有鈷鉑(CoPt)、鈷鎳(CoNi)、或鈷鈀(CoPd),或者係實質上由CoPt、CoNi、或CoPd組成。鐵磁層43包括(例如)一種其中鈷(Co)層與鉑(Pt)層被交替地重複以一或多者之結構、一種其中鈷層與鎳(Ni)層被交替地重複以一或多者之結構、或一種其中鈷層與鈀(Pd)層被交替地重複以一或多者之結構。The
鐵磁層43具有在相反於參考層34B之磁化方向的方向上之磁化。鐵磁層43減少由鐵磁層34B所產生且施加至鐵磁層32B之磁場,亦即,洩漏磁場。鐵磁層43作用為所謂的移位取消層。於下文中,鐵磁層43可被稱為移位取消層43。The
鐵磁層43具有如鐵磁層41之每單位體積的矯頑磁力(coercive force)之相同每單位體積的矯頑磁力。因此,鐵磁層43可由實質上如鐵磁層41之材料的相同材料製成。另一方面,鐵磁層43具有大於鐵磁層41之體積的體積。亦即,鐵磁層41具有體積VL1而鐵磁層43具有體積VL2,且VL1 < VL2。The
因為鐵磁層43具有大於鐵磁層41之體積的體積,所以鐵磁層41及鐵磁層43可具有下文所述之尺寸。亦即,鐵磁層41與鐵磁層43具有沿著xy平面之相同形狀且具有不同高度(沿著z軸之尺寸)。圖5顯示此一範例。當作範例,下記憶體單元MCA及上記憶體單元MCB具有沿著xy平面之實質上圓形的形狀,而鐵磁層41及鐵磁層43亦具有沿著xy平面之實質上圓形的形狀。沿著xy平面之鐵磁層41的半徑係實質上相同於沿著xy平面之鐵磁層43的半徑。另一方面,鐵磁層43之高度係高於鐵磁層41之高度。更特定的範例將參考圖6來描述。Because the
圖6顯示第一實施例之記憶體裝置的數個記憶體單元之形狀,且顯示下記憶體單元MCA及上記憶體單元MCB之形狀。如圖6中所示,下記憶體單元MCA之至少一部分及上記憶體單元MCB之至少一部分係沿著z軸而被傾斜在側邊上。例如,下記憶體單元MCA及上記憶體單元MCB具有實質上截圓錐形狀,而鐵磁層41及鐵磁層43亦具有實質上截圓錐形狀。鐵磁層43係由第一部分431及第二部分432組成。第一部分431係鐵磁層43之下部分,而第二部分432係鐵磁層43之上部分。第一部分431具有如鐵磁層41之實質上相同的形狀。因此,鐵磁層43具有比鐵磁層41之體積大了第二部分432之量的體積。FIG6 shows the shapes of several memory cells of the memory device of the first embodiment, and shows the shapes of the lower memory cell MCA and the upper memory cell MCB. As shown in FIG6 , at least a portion of the lower memory cell MCA and at least a portion of the upper memory cell MCB are tilted on the side along the z-axis. For example, the lower memory cell MCA and the upper memory cell MCB have a substantially truncated cone shape, and the
因為鐵磁層43具有大於鐵磁層41之體積的體積,所以鐵磁層43具有比鐵磁層41之矯頑磁力更高的矯頑磁力。因為鐵磁層43具有比鐵磁層41之矯頑磁力更高的矯頑磁力,所以下記憶體單元MCA之切換電流Icp及Icap的量值係不同於上記憶體單元MCB之切換電流Icp及Icap的量值。Because the
圖7A及7B顯示第一實施例之切換電流的分佈。更明確地,圖7A及7B顯示介於切換電流與記憶體單元MC的數目之間的關係。7A and 7B show the distribution of the switching current of the first embodiment. More specifically, FIG. 7A and 7B show the relationship between the switching current and the number of memory cells MC.
圖7A及7B各別地顯示上記憶體單元MCB及下記憶體單元MCA。圖7A及7B中之水平軸顯示電流之量值。正電流係在從參考層34至儲存層32之方向上的電流。於下文中,從參考層34至儲存層32之方向可被稱為AP方向。負電流係在從儲存層32至參考層34之方向上的電流。於下文中,從儲存層32至參考層34之方向可被稱為P方向。7A and 7B show the upper memory cell MCB and the lower memory cell MCA, respectively. The horizontal axis in FIGS. 7A and 7B shows the magnitude of the current. A positive current is a current in the direction from the
切換電流Icap在AP方向上流動且可被稱為AP方向切換電流Icap。切換電流Icp在P方向上流動且可被稱為P方向切換電流Icp。AP方向切換電流Icap取決於記憶體單元MC之特性而因此針對各記憶體單元MC具有不同的量值。類似地,P方向切換電流Icp取決於記憶體單元MC之特性而因此針對各記憶體單元MC具有不同的量值。The switching current Icap flows in the AP direction and may be referred to as the AP direction switching current Icap. The switching current Icp flows in the P direction and may be referred to as the P direction switching current Icp. The AP direction switching current Icap depends on the characteristics of the memory cell MC and therefore has different values for each memory cell MC. Similarly, the P direction switching current Icp depends on the characteristics of the memory cell MC and therefore has different values for each memory cell MC.
假如記憶體單元MC不包括移位取消層41且不包括移位取消層43,則記憶體單元MC傾向於在P狀態且不太可能在AP狀態。亦即,P方向切換電流Icp之量值小而AP方向切換電流Icap之量值大。另一方面,假如記憶體單元MC包括移位取消層41或43,則AP方向切換電流Icap比在無移位取消層41或43之情況下更小。同時,假如記憶體單元MC包括移位取消層41或43,則P方向切換電流Icp比在無移位取消層41或43之情況下更大。亦即,移位取消層41及43減少AP方向切換電流Icap且增加P方向切換電流Icp。此函數係隨著移位取消層41或43之矯頑磁力更高而更高。If the memory cell MC does not include the
如圖7B中所示,下記憶體單元MCA之AP方向切換電流Icap被分佈涵蓋某量值之範圍。類似地,下記憶體單元MCA之P方向切換電流Icp被分佈涵蓋某量值之範圍。於下文中,下記憶體單元MCA之P方向切換電流Icp可被稱為下P方向切換電流Icpd。下記憶體單元MCA之AP方向切換電流Icap可被稱為下AP方向切換電流Icapd。As shown in FIG7B , the AP direction switching current Icap of the lower memory unit MCA is distributed to cover a range of certain values. Similarly, the P direction switching current Icp of the lower memory unit MCA is distributed to cover a range of certain values. Hereinafter, the P direction switching current Icp of the lower memory unit MCA may be referred to as the lower P direction switching current Icpd. The AP direction switching current Icap of the lower memory unit MCA may be referred to as the lower AP direction switching current Icapd.
如參考圖5所述,上記憶體單元MCB之移位取消層43具有比下記憶體單元MCA之移位取消層41更大的矯頑磁力。因此,如圖7A中所示,上記憶體單元MCB之P方向切換電流Icp的量值大於下記憶體單元MCA之P方向切換電流Icp的量值。再者,上記憶體單元MCB之AP方向切換電流Icap的量值小於下記憶體單元MCA之AP方向切換電流Icap的量值。As described with reference to FIG5, the
於下文中,上記憶體單元MCB之P方向切換電流Icp可被稱為上P方向切換電流Icpu。上記憶體單元MCB之AP方向切換電流Icap可被稱為上AP方向切換電流Icapu。Hereinafter, the P direction switching current Icp of the upper memory cell MCB may be referred to as the upper P direction switching current Icpu. The AP direction switching current Icap of the upper memory cell MCB may be referred to as the upper AP direction switching current Icapu.
圖8係顯示第一實施例之記憶體單元MC的電壓及電流特性之範例的圖。該圖之水平軸顯示記憶體單元MC之終端電壓的量值。該圖之垂直軸以對數尺度顯示流經記憶體單元MC之電流的量值。在圖8中,未實際出現之虛擬特性係由虛線顯示。圖8顯示其中記憶體單元MC在低電阻值狀態之情況以及其中記憶體單元MC在高電阻值狀態之情況。以下描述適用於記憶體單元MC之低電阻值狀態及高電阻值狀態兩者。FIG8 is a diagram showing an example of voltage and current characteristics of the memory cell MC of the first embodiment. The horizontal axis of the diagram shows the magnitude of the terminal voltage of the memory cell MC. The vertical axis of the diagram shows the magnitude of the current flowing through the memory cell MC on a logarithmic scale. In FIG8 , virtual characteristics that do not actually appear are shown by dotted lines. FIG8 shows a case where the memory cell MC is in a low resistance state and a case where the memory cell MC is in a high resistance state. The following description applies to both the low resistance state and the high resistance state of the memory cell MC.
當電壓被增加自0時,電流持續增加直到電壓之量值達到臨限電壓Vth。直到電壓達到臨限電壓Vth,記憶體單元MC之切換元件SE為關,亦即,非導電。When the voltage is increased from 0, the current continues to increase until the magnitude of the voltage reaches the threshold voltage Vth. Until the voltage reaches the threshold voltage Vth, the switching element SE of the memory cell MC is off, that is, non-conductive.
當電壓被進一步增加且達到臨限電壓Vth時,亦即,當點A達到時,介於電壓與電流之間的關係顯示中斷的改變且展現在點B1及B2處之特性。在點B1及B2處之電流的量值係顯著地大於在點A處之電流的量值。此電流之突然改變係基於其記憶體單元MC之切換元件SE被開啟的事實。在點B1及B2處之電流的量值取決於記憶體單元MC之MTJ元件MTJ的電阻值狀態。When the voltage is further increased and reaches the threshold voltage Vth, that is, when point A is reached, the relationship between the voltage and the current shows a discontinuous change and exhibits characteristics at points B1 and B2. The magnitude of the current at points B1 and B2 is significantly greater than the magnitude of the current at point A. This sudden change in current is based on the fact that the switching element SE of the memory cell MC is turned on. The magnitude of the current at points B1 and B2 depends on the resistance value state of the MTJ element MTJ of the memory cell MC.
當電壓被減少自其中切換元件SE為開之狀態(例如,其中電壓及電流顯示在點B1或點B2處所示之關係的狀態)時,電流持續減少。When the voltage is reduced from a state in which the switching element SE is on (eg, a state in which the voltage and the current show the relationship shown at point B1 or point B2), the current continues to decrease.
當電壓被進一步減少且達到某量值時,則介於電壓與電流之間的關係顯示中斷的改變。在介於電壓與電流之間的關係開始顯示中斷處之電壓取決於記憶體單元MC之MTJ元件MTJ的終端電壓,亦即,MTJ元件MTJ係在高電阻值狀態或低電阻值狀態。當MTJ元件MTJ在低電阻值狀態時,介於電壓與電流之間的關係顯示自點C1之中斷。當MTJ元件MTJ在高電阻值狀態時,介於電壓與電流之間的關係顯示自點C2之中斷。介於電壓與電流之間的關係將顯示各別地在點D1及D2處所示之特性,當點C1及C2到達時。在點D1及D2處之電流的量值係顯著地各別地小於在點C1及C2處之電流的量值。電流之突然改變係基於其記憶體單元MC之切換元件SE被關閉的事實。When the voltage is further reduced and reaches a certain value, the relationship between the voltage and the current shows a change of interruption. The voltage at which the relationship between the voltage and the current begins to show interruption depends on the terminal voltage of the MTJ element MTJ of the memory cell MC, that is, whether the MTJ element MTJ is in a high resistance state or a low resistance state. When the MTJ element MTJ is in a low resistance state, the relationship between the voltage and the current shows an interruption from point C1. When the MTJ element MTJ is in a high resistance state, the relationship between the voltage and the current shows an interruption from point C2. The relationship between voltage and current will show the characteristics shown at points D1 and D2, respectively, when points C1 and C2 are reached. The magnitudes of the currents at points D1 and D2 are significantly smaller than the magnitudes of the currents at points C1 and C2, respectively. The sudden change in current is based on the fact that the switching element SE of the memory cell MC is turned off.
在包括低電阻值狀態下之MTJ元件MTJ的記憶體單元MC之點D1處的終端電壓可被稱為低固持電壓VhdL。在包括高電阻值狀態下之MTJ元件MTJ的記憶體單元MC之點D2處的終端電壓可被稱為高固持電壓VhdH。 1.1.6.讀出電路組態 The terminal voltage at point D1 of the memory cell MC including the MTJ element MTJ in the low resistance state may be referred to as a low holding voltage VhdL. The terminal voltage at point D2 of the memory cell MC including the MTJ element MTJ in the high resistance state may be referred to as a high holding voltage VhdH. 1.1.6. Reading out circuit configuration
圖9顯示第一實施例之讀出電路的組件以及介於該等組件之間的連接。如圖9中所示,讀出電路RC包括讀取控制電路ROC、驅動器電路RDH、RDUB、RDP、和RDUW、以及感測放大器電路SAC。圖9僅顯示一個總體位元線GBL及一個總體字元線GWL之組件。驅動器電路RDH及RDUB亦被提供給其他總體位元線GBL。此外,驅動器電路RDP及RDUW以及感測放大器電路SAC亦被提供給其他總體字元線GWL。FIG9 shows the components of the readout circuit of the first embodiment and the connections between the components. As shown in FIG9 , the readout circuit RC includes a read control circuit ROC, driver circuits RDH, RDUB, RDP, and RDUW, and a sense amplifier circuit SAC. FIG9 shows the components of only one global bit line GBL and one global word line GWL. The driver circuits RDH and RDUB are also provided to other global bit lines GBL. In addition, the driver circuits RDP and RDUW and the sense amplifier circuit SAC are also provided to other global word lines GWL.
驅動器電路RDH被組態使得電源供應電壓Vhh可被施加至總體位元線GBL。電源供應電壓Vhh係記憶體裝置1之內部電源供應電壓且高於接地電壓(或共同電壓)Vss。驅動器電路RDH可具有任何組態,只要電源供應電壓Vhh可被施加至總體位元線GBL。例如,驅動器電路RDH包括開關電路SW1。開關電路SW1在一端處被連接至總體位元線GBL,且在另一端處被連接至記憶體裝置1中之電源供應電壓Vhh所被施加至之節點。開關電路SW1基於控制信號S1而開啟或關閉,且將電源供應電壓Vhh轉移至總體位元線GBL。開關電路SW1從,例如,讀取控制電路ROC接收控制信號S1。開關電路SW1係,例如,MOSFET。The driver circuit RDH is configured so that a power supply voltage Vhh can be applied to the global bit line GBL. The power supply voltage Vhh is an internal power supply voltage of the
驅動器電路RDUB被組態使得非選擇電壓Vusel可被施加至總體位元線GBL。非選擇電壓Vusel係,例如,高於接地電壓Vss且低於電源供應電壓Vhh。接地電壓Vss係,例如,0V。驅動器電路RDUB可具有任何組態,只要非選擇電壓Vusel可被施加至總體位元線GBL。例如,驅動器電路RDUB包括開關電路SW2。開關電路SW2在一端處被連接至總體位元線GBL,且在另一端處被連接至記憶體裝置1中之非選擇電壓Vusel所被施加至之節點。開關電路SW2基於控制信號S2而開啟或關閉,且將非選擇電壓Vusel轉移至總體位元線GBL。開關電路SW2從,例如,讀取控制電路ROC接收控制信號S2。開關電路SW2係,例如,MOSFET。The driver circuit RDUB is configured so that a non-selection voltage Vusel can be applied to the global bit line GBL. The non-selection voltage Vusel is, for example, higher than the ground voltage Vss and lower than the power supply voltage Vhh. The ground voltage Vss is, for example, 0V. The driver circuit RDUB may have any configuration as long as the non-selection voltage Vusel can be applied to the global bit line GBL. For example, the driver circuit RDUB includes a switching circuit SW2. The switching circuit SW2 is connected to the global bit line GBL at one end and is connected to a node to which the non-selection voltage Vusel is applied in the
驅動器電路RDP被組態使得預充電電壓Vprch可被施加至總體位元線GBL。預充電電壓Vprch係高於接地電壓Vss且低於非選擇電壓Vusel。驅動器電路RDP可具有任何組態,只要預充電電壓Vprch可被施加至總體字元線GWL。例如,驅動器電路RDP包括開關電路SW3。開關電路SW3在一端處被連接至總體字元線GWL,且在另一端處被連接至記憶體裝置1中之預充電電壓Vprch所被施加至之節點。開關電路SW3基於控制信號S3而開啟或關閉,且將預充電電壓Vprch轉移至總體字元線GWL。開關電路SW3從,例如,讀取控制電路ROC接收控制信號S3。開關電路SW3係,例如,MOSFET。The driver circuit RDP is configured so that a precharge voltage Vprch can be applied to the global bit line GBL. The precharge voltage Vprch is higher than the ground voltage Vss and lower than the non-selection voltage Vusel. The driver circuit RDP may have any configuration as long as the precharge voltage Vprch can be applied to the global word line GWL. For example, the driver circuit RDP includes a switching circuit SW3. The switching circuit SW3 is connected to the global word line GWL at one end and to a node in the
驅動器電路RDUW被組態使得非選擇電壓Vusel可被施加至總體字元線GWL。驅動器電路RDUW可具有任何組態,只要非選擇電壓Vusel可被施加至總體字元線GWL。例如,驅動器電路RDUW包括開關電路SW4。開關電路SW4在一端處被連接至總體字元線GWL,且在另一端處被連接至記憶體裝置1中之非選擇電壓Vusel所被施加至之節點。開關電路SW4基於控制信號S4而開啟或關閉,且將非選擇電壓Vusel轉移至總體字元線GWL。開關電路SW4從,例如,讀取控制電路ROC接收控制信號S4。開關電路SW4係,例如,MOSFET。The driver circuit RDUW is configured so that the non-selection voltage Vusel can be applied to the global word line GWL. The driver circuit RDUW can have any configuration as long as the non-selection voltage Vusel can be applied to the global word line GWL. For example, the driver circuit RDUW includes a switching circuit SW4. The switching circuit SW4 is connected to the global word line GWL at one end and is connected to a node in the
感測放大器電路SAC包括操作放大器OP及電阻R1。操作放大器OP在非反相輸入終端處被連接至總體字元線GWL。操作放大器OP之反相輸入終端係經由電阻R1而被接地,亦即,連接至具有接地電壓Vss之節點。電阻R1具有一量值以使得具有介於低固持電壓VhdL與高固持電壓VhdH之間的量值之電壓被施加至操作放大器OP之反相輸入終端。操作放大器OP之輸出OUT係1位元資料,其經判定以被儲存在操作放大器OP所連接至之記憶體單元陣列MA中的讀取目標記憶體單元MC中。The sense amplifier circuit SAC includes an operational amplifier OP and a resistor R1. The operational amplifier OP is connected to the global word line GWL at a non-inverting input terminal. The inverting input terminal of the operational amplifier OP is grounded via the resistor R1, that is, connected to a node having a ground voltage Vss. The resistor R1 has a value so that a voltage having a value between a low holding voltage VhdL and a high holding voltage VhdH is applied to the inverting input terminal of the operational amplifier OP. The output OUT of the operational amplifier OP is 1-bit data, which is determined to be stored in a read target memory cell MC in the memory cell array MA to which the operational amplifier OP is connected.
讀取控制電路ROC基於控制信號而操作,該控制信號係由控制電路13及解碼電路14基於控制信號CNT、命令CMD、及位址信號ADD來產生。
1.1.7.寫入電路組態
The read control circuit ROC operates based on a control signal, which is generated by the
圖10顯示第一實施例之寫入電路的組件以及介於該等組件之間的連接。如圖10中所示,寫入電路WC包括寫入控制電路WOC、驅動器電路WDPU、WDAPD、WDPD、和WDAPU、以及槽電路WSB和WSW。圖10僅顯示一個總體位元線GBL及一個總體字元線GWL之組件。驅動器電路WDPU和WDAPD、以及槽電路WSB亦被提供給其他總體位元線GBL。此外,驅動器電路WDPD和WDAPU、以及槽電路WSW亦被提供給其他總體字元線GWL。FIG10 shows the components of the write circuit of the first embodiment and the connections between the components. As shown in FIG10 , the write circuit WC includes a write control circuit WOC, driver circuits WDPU, WDAPD, WDPD, and WDAPU, and slot circuits WSB and WSW. FIG10 shows the components of only one global bit line GBL and one global word line GWL. The driver circuits WDPU and WDAPD, and the slot circuit WSB are also provided to other global bit lines GBL. In addition, the driver circuits WDPD and WDAPU, and the slot circuit WSW are also provided to other global word lines GWL.
驅動器電路WDPU被組態使得上P寫入電壓Vwpu可被施加至總體位元線GBL。上P寫入電壓Vwpu具有容許上P寫入電流Iwpu流經寫入目標上記憶體單元MCB之量值,當其經由佈線而被施加至寫入目標上記憶體單元MCB時。上P寫入電流Iwpu之量值將被描述於後。驅動器電路WDPU可具有任何組態,只要上P寫入電壓Vwpu可被施加至總體位元線GBL。例如,驅動器電路WDPU包括開關電路SW11。開關電路SW11在一端處被連接至總體位元線GBL,且在另一端處被連接至記憶體裝置1中之上P寫入電壓Vwpu所被施加至之節點。開關電路SW11基於控制信號S11而開啟或關閉,且將上P寫入電壓Vwpu轉移至總體位元線GBL。開關電路SW11從,例如,寫入控制電路WOC接收控制信號S11。開關電路SW11係,例如,MOSFET。The driver circuit WDPU is configured so that the upper P write voltage Vwpu can be applied to the global bit line GBL. The upper P write voltage Vwpu has a magnitude that allows the upper P write current Iwpu to flow through the write target upper memory cell MCB when it is applied to the write target upper memory cell MCB through wiring. The magnitude of the upper P write current Iwpu will be described later. The driver circuit WDPU may have any configuration as long as the upper P write voltage Vwpu can be applied to the global bit line GBL. For example, the driver circuit WDPU includes a switching circuit SW11. The switching circuit SW11 is connected to the global bit line GBL at one end and is connected to a node in the
驅動器電路WDAPD被組態使得下AP寫入電壓Vwapd可被施加至總體位元線GBL。下AP寫入電壓Vwapd具有容許下AP寫入電流Iwapd流經寫入目標下記憶體單元MCA之量值,當其經由佈線而被施加至寫入目標下記憶體單元MCA時。下AP寫入電流Iwapd之量值將被描述於後。驅動器電路WDAPD可具有任何組態,只要下AP寫入電壓Vwapd可被施加至總體位元線GBL。例如,驅動器電路WDAPD包括開關電路SW12。開關電路SW12在一端處被連接至總體位元線GBL,且在另一端處被連接至記憶體裝置1中下AP寫入電壓Vwapd所被施加至之節點。開關電路SW12基於控制信號S12而開啟或關閉,且將下AP寫入電壓Vwapd轉移至總體位元線GBL。開關電路SW12從,例如,寫入控制電路WOC接收控制信號S12。開關電路SW12係,例如,MOSFET。The driver circuit WDAPD is configured so that the lower AP write voltage Vwapd can be applied to the global bit line GBL. The lower AP write voltage Vwapd has a magnitude that allows the lower AP write current Iwapd to flow through the write target lower memory cell MCA when it is applied to the write target lower memory cell MCA via wiring. The magnitude of the lower AP write current Iwapd will be described later. The driver circuit WDAPD may have any configuration as long as the lower AP write voltage Vwapd can be applied to the global bit line GBL. For example, the driver circuit WDAPD includes a switch circuit SW12. The switch circuit SW12 is connected to the global bit line GBL at one end and to a node to which the lower AP write voltage Vwapd is applied in the
槽電路WSB被組態使得接地電壓Vss可被施加至總體位元線GBL。槽電路WSB可具有任何組態,只要接地電壓Vss可被施加至總體位元線GBL。例如,槽電路WSB包括開關電路SW13。開關電路SW13在一端處被連接至總體位元線GBL,且在另一端處被連接至記憶體裝置1中之接地電壓Vss所被施加至之節點。開關電路SW13基於控制信號S13而開啟或關閉,且將接地電壓Vss轉移至總體位元線GBL。開關電路SW13從,例如,寫入控制電路WOC接收控制信號S13。開關電路SW13係,例如,MOSFET。The slot circuit WSB is configured so that the ground voltage Vss can be applied to the global bit line GBL. The slot circuit WSB may have any configuration as long as the ground voltage Vss can be applied to the global bit line GBL. For example, the slot circuit WSB includes a switching circuit SW13. The switching circuit SW13 is connected to the global bit line GBL at one end and is connected to a node in the
驅動器電路WDPD被組態使得下P寫入電壓Vwpd可被施加至總體字元線GWL。下P寫入電壓Vwpd具有容許下P寫入電流Iwpd流經寫入目標下記憶體單元MCA之量值,當其經由佈線而被施加至寫入目標下記憶體單元MCA時。下P寫入電流Iwpd之量值將被描述於後。驅動器電路WDPD可具有任何組態,只要下P寫入電壓Vwpd可被施加至總體字元線GWL。例如,驅動器電路WDPD包括開關電路SW14。開關電路SW14在一端處被連接至總體字元線GWL,且在另一端處被連接至記憶體裝置1中之下P寫入電壓Vwpd所被施加至之節點。開關電路SW14基於控制信號S14而開啟或關閉,且將下P寫入電壓Vwpd轉移至總體字元線GWL。開關電路SW14從,例如,寫入控制電路WOC接收控制信號S14。開關電路SW14係,例如,MOSFET。The driver circuit WDPD is configured so that the lower P write voltage Vwpd can be applied to the global word line GWL. The lower P write voltage Vwpd has a magnitude that allows the lower P write current Iwpd to flow through the write target lower memory cell MCA when it is applied to the write target lower memory cell MCA via wiring. The magnitude of the lower P write current Iwpd will be described later. The driver circuit WDPD may have any configuration as long as the lower P write voltage Vwpd can be applied to the global word line GWL. For example, the driver circuit WDPD includes a switch circuit SW14. The switch circuit SW14 is connected to the global word line GWL at one end and to a node to which the lower P write voltage Vwpd is applied in the
驅動器電路WDAPU被組態使得上AP寫入電壓Vwapu可被施加至總體字元線GWL。上AP寫入電壓Vwapu具有容許上AP寫入電流Iwapu流經寫入目標上記憶體單元MCB之量值,當其經由佈線而被施加至寫入目標上記憶體單元MCB時。上AP寫入電流Iwapu之量值將被描述於後。驅動器電路WDAPU可具有任何組態,只要上AP寫入電壓Vwapu可被施加至總體字元線GWL。例如,驅動器電路WDAPU包括開關電路SW15。開關電路SW15在一端處被連接至總體字元線GWL,且在另一端處被連接至記憶體裝置1中之上AP寫入電壓Vwapu所被施加至之節點。開關電路SW15基於控制信號S15而開啟或關閉,且將上AP寫入電壓Vwapu轉移至總體字元線GWL。開關電路SW15從,例如,寫入控制電路WOC接收控制信號S15。開關電路SW15係,例如,MOSFET。The driver circuit WDAPU is configured so that the upper AP write voltage Vwapu can be applied to the global word line GWL. The upper AP write voltage Vwapu has a value that allows the upper AP write current Iwapu to flow through the write target upper memory cell MCB when it is applied to the write target upper memory cell MCB through wiring. The value of the upper AP write current Iwapu will be described later. The driver circuit WDAPU may have any configuration as long as the upper AP write voltage Vwapu can be applied to the global word line GWL. For example, the driver circuit WDAPU includes a switching circuit SW15. The switching circuit SW15 is connected to the global word line GWL at one end and to a node to which the upper AP write voltage Vwapu is applied in the
槽電路WSW被組態使得接地電壓Vss可被施加至總體字元線GWL。槽電路WSW可具有任何組態,只要接地電壓Vss可被施加至總體字元線GWL。例如,槽電路WSW包括開關電路SW16。開關電路SW16在一端處被連接至總體字元線GWL,且在另一端處被連接至記憶體裝置1中之接地電壓Vss所被施加至之節點。開關電路SW16基於控制信號S16而開啟或關閉,且將接地電壓Vss轉移至總體字元線GWL。開關電路SW16從,例如,寫入控制電路WOC接收控制信號S16。開關電路SW16係,例如,MOSFET。
1.2.操作
1.2.1.資料寫入
The slot circuit WSW is configured so that the ground voltage Vss can be applied to the global word line GWL. The slot circuit WSW can have any configuration as long as the ground voltage Vss can be applied to the global word line GWL. For example, the slot circuit WSW includes a switching circuit SW16. The switching circuit SW16 is connected to the global word line GWL at one end and is connected to a node in the
圖11至14顯示相關於在第一實施例之記憶體裝置1中的資料寫入期間之資料寫入的組件以及介於該等組件之間的連接。圖11顯示當下記憶體單元MCA之MTJ元件MTJA在P狀態下時之狀態。圖12顯示當下記憶體單元MCA之MTJ元件MTJA在AP狀態下時之狀態。圖13顯示當上記憶體單元MCB之MTJ元件MTJB在P狀態下時之狀態。圖14顯示當上記憶體單元MCB之MTJ元件MTJB在AP狀態下時之狀態。圖11至14僅顯示寫入目標記憶體單元MC之儲存層32及參考層34。11 to 14 show components related to data writing during data writing in the
如圖11中所示,為了將某寫入目標下記憶體單元MCA之MTJ元件MTJA置入P狀態,寫入目標下記憶體單元MCA經由導體22(局部位元線LBL)而被連接至總體位元線GBL且經由導體21(局部字元線LWLA)而被連接至總體字元線GWL。再者,下P寫入電壓Vwpd藉由驅動器電路WDPD而被施加至總體字元線GWL,且接地電壓Vss經由槽電路WSB而被施加至總體位元線GBL。結果,下P寫入電流Iwpd在寫入目標下記憶體單元MCA中從儲存層32A流向參考層34A。結果,寫入目標下記憶體單元MCA之MTJ元件MTJA係在P狀態。As shown in FIG. 11 , in order to put the MTJ element MTJA of a certain write target lower memory cell MCA into the P state, the write target lower memory cell MCA is connected to the global bit line GBL via the conductor 22 (local bit line LBL) and is connected to the global word line GWL via the conductor 21 (local word line LWLA). Furthermore, the lower P write voltage Vwpd is applied to the global word line GWL by the driver circuit WDPD, and the ground voltage Vss is applied to the global bit line GBL via the slot circuit WSB. As a result, the lower P write current Iwpd flows from the
如圖12中所示,為了將某寫入目標下記憶體單元MCA之MTJ元件MTJA置入AP狀態,寫入目標下記憶體單元MCA經由導體22(局部位元線LBL)而被連接至總體位元線GBL且經由導體21(局部字元線LWLA)而被連接至總體字元線GWL。再者,下AP寫入電壓Vwapd藉由驅動器電路WDAPD而被施加至總體位元線GBL,且接地電壓Vss經由槽電路WSW而被施加至總體字元線GWL。結果,下AP寫入電流Iwapd在寫入目標下記憶體單元MCA中從參考層34A流向儲存層32A。結果,寫入目標下記憶體單元MCA之MTJ元件MTJA係在AP狀態。As shown in FIG. 12 , in order to place the MTJ element MTJA of a certain write-target lower memory cell MCA into the AP state, the write-target lower memory cell MCA is connected to the global bit line GBL via the conductor 22 (local bit line LBL) and is connected to the global word line GWL via the conductor 21 (local word line LWLA). Furthermore, the lower AP write voltage Vwapd is applied to the global bit line GBL by the driver circuit WDAPD, and the ground voltage Vss is applied to the global word line GWL via the slot circuit WSW. As a result, the lower AP write current Iwapd flows from the
如圖13中所示,為了將某寫入目標上記憶體單元MCB之MTJ元件MTJB置入P狀態,寫入目標上記憶體單元MCB經由導體22(局部位元線LBL)而被連接至總體位元線GBL且經由導體23(局部字元線LWLB)而被連接至總體字元線GWL。再者,上P寫入電壓Vwpu藉由驅動器電路WDPU而被施加至總體位元線GBL,且接地電壓Vss經由槽電路WSW而被施加至總體字元線GWL。結果,上P寫入電流Iwpu在寫入目標上記憶體單元MCB中從儲存層32B流向參考層34B。結果,寫入目標上記憶體單元MCB之MTJ元件MTJB係在P狀態。As shown in FIG. 13 , in order to put the MTJ element MTJB of a certain write-target memory cell MCB into the P state, the write-target memory cell MCB is connected to the global bit line GBL via the conductor 22 (local bit line LBL) and is connected to the global word line GWL via the conductor 23 (local word line LWLB). Furthermore, the upper P write voltage Vwpu is applied to the global bit line GBL by the driver circuit WDPU, and the ground voltage Vss is applied to the global word line GWL via the slot circuit WSW. As a result, the upper P write current Iwpu flows from the
如圖14中所示,為了將某寫入目標上記憶體單元MCB之MTJ元件MTJB置入AP狀態,寫入目標上記憶體單元MCB經由導體22(局部位元線LBL)而被連接至總體位元線GBL且經由導體23(局部字元線LWLB)而被連接至總體字元線GWL。再者,上AP寫入電壓Vwapu藉由驅動器電路WDAPU而被施加至總體字元線GWL,且接地電壓Vss經由槽電路WSB而被施加至總體位元線GBL。結果,上AP寫入電流Iwapu在寫入目標上記憶體單元MCB中從參考層34B流向儲存層32B。結果,寫入目標上記憶體單元MCB之MTJ元件MTJB係在AP狀態。
1.2.2.資料讀取
As shown in FIG. 14 , in order to put the MTJ element MTJB of a write-target memory cell MCB into the AP state, the write-target memory cell MCB is connected to the global bit line GBL via the conductor 22 (local bit line LBL) and is connected to the global word line GWL via the conductor 23 (local word line LWLB). Furthermore, the upper AP write voltage Vwapu is applied to the global word line GWL by the driver circuit WDAPU, and the ground voltage Vss is applied to the global bit line GBL via the slot circuit WSB. As a result, the upper AP write current Iwapu flows from the
圖15及16顯示相關於在第一實施例之記憶體裝置1中的資料讀取期間之資料讀取的組件以及介於該等組件之間的連接。圖15顯示在資料讀取自下記憶體單元MCA期間之狀態。圖16顯示在資料讀取自上記憶體單元MCB期間之狀態。15 and 16 show components related to data reading and connections between the components during data reading in the
同時,在資料讀取之開始時,總體位元線GBL係藉由驅動器電路RDUB(未顯示)而被施加以非選擇電壓Vusel,且總體字元線GWL係藉由驅動器電路RDUW (未顯示)而被施加以非選擇電壓Vusel。因此,在總體字元線GWL與總體位元線GBL之間沒有電壓差異。At the same time, at the start of data reading, the global bit line GBL is applied with a non-selection voltage Vusel by a driver circuit RDUB (not shown), and the global word line GWL is applied with a non-selection voltage Vusel by a driver circuit RDUW (not shown). Therefore, there is no voltage difference between the global word line GWL and the global bit line GBL.
如圖15中所示,當開始資料讀取自讀取目標下記憶體單元MCA時,讀取目標下記憶體單元MCA經由局部位元線LBL(導體22)而被連接至總體位元線GBL且經由局部字元線LWLA(導體21)而被連接至總體字元線GWL。As shown in FIG. 15 , when data reading starts from the read target memory cell MCA, the read target memory cell MCA is connected to the global bit line GBL via the local bit line LBL (conductor 22) and is connected to the global word line GWL via the local word line LWLA (conductor 21).
再者,預充電電壓Vprch係藉由驅動器電路RDP而被施加至總體字元線GWL。結果,總體字元線GWL被充電以預充電電壓Vprch。之後,總體字元線GWL被中斷自驅動器電路RDP,且總體字元線GWL被置於電浮動狀態。於此狀態下,電源供應電壓Vhh係藉由驅動器電路RDH而被施加至總體位元線GBL。結果,具有Vhh - Vprch之量值的電壓被施加至讀取目標下記憶體單元MCA之兩端。此電壓具有其開啟讀取目標下記憶體單元MCA之切換元件SEA的量值。因此,讀取電流Irap從參考層34A流向儲存層32A,亦即,在AP方向。讀取電流Irap充電總體字元線GWL且升高總體字元線GWL之電壓。隨著總體字元線GWL之電壓增加,介於讀取目標下記憶體單元MCA的兩端之間的電壓差異減少。Furthermore, the precharge voltage Vprch is applied to the global word line GWL through the driver circuit RDP. As a result, the global word line GWL is charged with the precharge voltage Vprch. Thereafter, the global word line GWL is disconnected from the driver circuit RDP, and the global word line GWL is placed in an electrically floating state. In this state, the power supply voltage Vhh is applied to the global bit line GBL through the driver circuit RDH. As a result, a voltage having a value of Vhh - Vprch is applied to both ends of the memory cell MCA under the read target. This voltage has a value that turns on the switching element SEA of the memory cell MCA under the read target. Therefore, the read current Irap flows from the
當介於讀取目標下記憶體單元MCA的兩端之間的電壓差異降至某量值時,讀取目標下記憶體單元MCA之切換元件SEA關閉。結果,當讀取目標下記憶體單元MCA之切換元件SEA被關閉時的總體字元線GWL之電壓被儲存在操作放大器OP之非反相輸入終端的節點中。已儲存電壓係基於讀取目標下記憶體單元MCA之電阻值狀態的低固持電壓VhdL及高固持電壓VhdH之一者。反映儲存在讀取目標下記憶體單元MCA中之資料的輸出OUT係基於已儲存電壓及操作放大器OP之反相輸入終端的電壓而被輸出。When the voltage difference between the two ends of the memory cell MCA under the read target drops to a certain value, the switching element SEA of the memory cell MCA under the read target is turned off. As a result, the voltage of the global word line GWL when the switching element SEA of the memory cell MCA under the read target is turned off is stored in the node of the non-inverting input terminal of the operational amplifier OP. The stored voltage is one of the low holding voltage VhdL and the high holding voltage VhdH based on the resistance value state of the memory cell MCA under the read target. The output OUT reflecting the data stored in the memory cell MCA under the read target is output based on the stored voltage and the voltage of the inverting input terminal of the operational amplifier OP.
如圖16中所示,當開始資料讀取自讀取目標上記憶體單元MCB時,讀取目標上記憶體單元MCB經由局部位元線LBL(導體22)而被連接至總體位元線GBL且經由局部字元線LWLB(導體23)而被連接至總體字元線GWL。As shown in FIG. 16 , when data reading starts from a memory cell MCB on a read target, the memory cell MCB on the read target is connected to the global bit line GBL via the local bit line LBL (conductor 22) and to the global word line GWL via the local word line LWLB (conductor 23).
再者,預充電電壓Vprch係藉由驅動器電路RDP而被施加至總體字元線GWL。結果,總體字元線GWL被充電以預充電電壓Vprch。之後,總體字元線GWL被中斷自驅動器電路RDP,且總體字元線GWL被置於電浮動狀態。於此狀態下,電源供應電壓Vhh係藉由驅動器電路RDH而被施加至總體位元線GBL。結果,具有Vhh - Vprch之量值的電壓被施加至讀取目標上記憶體單元MCB之兩端。由於此電壓,讀取電流Irp從儲存層32B流向參考層34B,亦即,在P方向。讀取電流Irp充電總體字元線GWL且升高總體字元線GWL之電壓。隨著總體字元線GWL之電壓增加,介於讀取目標上記憶體單元MCB的兩端之間的電壓差異減少。Furthermore, the precharge voltage Vprch is applied to the global word line GWL through the driver circuit RDP. As a result, the global word line GWL is charged with the precharge voltage Vprch. Thereafter, the global word line GWL is disconnected from the driver circuit RDP, and the global word line GWL is placed in an electrically floating state. In this state, the power supply voltage Vhh is applied to the global bit line GBL through the driver circuit RDH. As a result, a voltage having a magnitude of Vhh - Vprch is applied to both ends of the memory cell MCB on the read target. Due to this voltage, the read current Irp flows from the
當介於讀取目標上記憶體單元MCB的兩端之間的電壓差異降至某量值時,讀取目標上記憶體單元MCB之切換元件SEB關閉。結果,基於讀取目標上記憶體單元MCB之電阻值狀態的低固持電壓VhdL及高固持電壓VhdH之一者被儲存在操作放大器OP之非反相輸入終端的節點中。反映儲存在讀取目標上記憶體單元MCB中之資料的輸出OUT係基於已儲存電壓及操作放大器OP之非反相輸入終端的電壓而被輸出。When the voltage difference between both ends of the memory cell MCB on the read target drops to a certain value, the switching element SEB of the memory cell MCB on the read target is turned off. As a result, one of the low holding voltage VhdL and the high holding voltage VhdH based on the resistance value state of the memory cell MCB on the read target is stored in the node of the non-inverting input terminal of the operational amplifier OP. The output OUT reflecting the data stored in the memory cell MCB on the read target is output based on the stored voltage and the voltage of the non-inverting input terminal of the operational amplifier OP.
1.2.3.電流之量值1.2.3. Current value
圖17A及17B顯示在第一實施例之記憶體裝置1中的各種操作期間流動之電流的量值。明確地,圖17A及17B顯示針對上記憶體單元MCB及下記憶體單元MCA之各者的寫入電流及讀取電流。圖17A顯示上記憶體單元MCB而圖17B顯示下記憶體單元MCA。圖17A及17B亦顯示在圖7A及7B中所示之上P方向切換電流Icpu、上AP方向切換電流Icapu、下P方向切換電流Icpd、及下AP方向切換電流Icapd。17A and 17B show the magnitude of the current flowing during various operations in the
為了改變記憶體單元MC之電阻值狀態,具有大於記憶體單元MC之切換電流的量值之量值的寫入電流必須流經此記憶體單元MC。實際上流經記憶體單元MC之寫入電流取決於寫入電路之特性及/或記憶體單元MC之特性。因此,實際上流經記憶體單元MC之寫入電流針對各記憶體單元MC而不同,且因此被分佈涵蓋某範圍。類似地,流經記憶體單元MC之讀取電流取決於讀出電路之特性及/或記憶體單元MC之特性。因此,實際上流經記憶體單元MC之讀取電流針對各記憶體單元MC而不同,且因此被分佈涵蓋某範圍。In order to change the resistance value state of the memory cell MC, a write current having a magnitude greater than the magnitude of the switching current of the memory cell MC must flow through this memory cell MC. The write current actually flowing through the memory cell MC depends on the characteristics of the write circuit and/or the characteristics of the memory cell MC. Therefore, the write current actually flowing through the memory cell MC is different for each memory cell MC and is therefore distributed to cover a certain range. Similarly, the read current flowing through the memory cell MC depends on the characteristics of the read circuit and/or the characteristics of the memory cell MC. Therefore, the read current actually flowing through the memory cell MC is different for each memory cell MC and is therefore distributed to cover a certain range.
如圖17B中所示,下AP寫入電流Iwapd之量值大於下AP方向切換電流Icapd之量值。亦即,最小量值下AP寫入電流Iwapd大於最大量值下AP方向切換電流Icapd。下P寫入電流Iwpd之量值大於下P方向切換電流Icpd之量值。亦即,具有最小量值之下P寫入電流Iwpd大於具有最大量值之下P方向切換電流Icpd。As shown in FIG. 17B , the magnitude of the lower AP write current Iwapd is greater than the magnitude of the lower AP direction switching current Icapd. That is, the minimum magnitude lower AP write current Iwapd is greater than the maximum magnitude lower AP direction switching current Icapd. The magnitude of the lower P write current Iwpd is greater than the magnitude of the lower P direction switching current Icpd. That is, the lower P write current Iwpd having the minimum magnitude is greater than the lower P direction switching current Icpd having the maximum magnitude.
如圖17A中所示,上AP寫入電流Iwapu之量值大於上AP方向切換電流Icapu之量值。亦即,具有最小量值之上AP寫入電流Iwapu大於具有最大量值之上AP方向切換電流Icapu。上P寫入電流Iwpu之量值大於上P方向切換電流Icpu之量值。亦即,具有最小量值之上P寫入電流Iwpu大於具有最大量值之上P方向切換電流Icpu。As shown in FIG. 17A , the magnitude of the upper AP write current Iwapu is greater than the magnitude of the upper AP direction switching current Icapu. That is, the upper AP write current Iwapu having the minimum magnitude is greater than the upper AP direction switching current Icapu having the maximum magnitude. The magnitude of the upper P write current Iwpu is greater than the magnitude of the upper P direction switching current Icpu. That is, the upper P write current Iwpu having the minimum magnitude is greater than the upper P direction switching current Icpu having the maximum magnitude.
如圖17A及17B中所示且參考圖7A及7B所述,上AP方向切換電流Icapu之量值小於下AP方向切換電流Icapd之量值。因為上AP方向切換電流Icapu之量值小於下AP方向切換電流Icapd之量值,所以上AP寫入電流Iwapu之量值可小於下AP寫入電流Iwapd之量值。因此,上AP寫入電流Iwapu之量值小於下AP寫入電流Iwapd之量值。亦即,上AP寫入電流Iwapu之分佈被設置比下AP寫入電流Iwapd之分佈更接近於水平軸上之原點。例如,上AP寫入電流Iwapu之最大量值小於下AP寫入電流Iwapd之最大量值,及/或上AP寫入電流Iwapu之最小量值小於下AP寫入電流Iwapd之最小量值。As shown in FIGS. 17A and 17B and described with reference to FIGS. 7A and 7B , the magnitude of the upper AP direction switching current Icapu is smaller than the magnitude of the lower AP direction switching current Icapd. Because the magnitude of the upper AP direction switching current Icapu is smaller than the magnitude of the lower AP direction switching current Icapd, the magnitude of the upper AP write current Iwapu may be smaller than the magnitude of the lower AP write current Iwapd. Therefore, the magnitude of the upper AP write current Iwapu is smaller than the magnitude of the lower AP write current Iwapd. That is, the distribution of the upper AP write current Iwapu is set closer to the origin on the horizontal axis than the distribution of the lower AP write current Iwapd. For example, the maximum value of the upper AP write current Iwapu is smaller than the maximum value of the lower AP write current Iwapd, and/or the minimum value of the upper AP write current Iwapu is smaller than the minimum value of the lower AP write current Iwapd.
亦如圖17A及17B中所示且參考圖7A及7B所述,上P方向切換電流Icpu之量值大於下P方向切換電流Icpd之量值。因為上P方向切換電流Icpu之量值大於下P方向切換電流Icpd之量值,所以上P寫入電流Iwpu之量值大於下P寫入電流Iwpd之量值。亦即,上P寫入電流Iwpu之分佈被設置比下P寫入電流Iwpd之分佈更遠離水平軸上之原點。例如,上P寫入電流Iwpu之最大量值大於下P寫入電流Iwpd之最大量值,及/或上P寫入電流Iwpu之最小量值大於下P寫入電流Iwpd之最小量值。As also shown in FIGS. 17A and 17B and described with reference to FIGS. 7A and 7B , the magnitude of the upper P direction switching current Icpu is greater than the magnitude of the lower P direction switching current Icpd. Because the magnitude of the upper P direction switching current Icpu is greater than the magnitude of the lower P direction switching current Icpd, the magnitude of the upper P write current Iwpu is greater than the magnitude of the lower P write current Iwpd. That is, the distribution of the upper P write current Iwpu is set farther from the origin on the horizontal axis than the distribution of the lower P write current Iwpd. For example, the maximum magnitude of the upper P write current Iwpu is greater than the maximum magnitude of the lower P write current Iwpd, and/or the minimum magnitude of the upper P write current Iwpu is greater than the minimum magnitude of the lower P write current Iwpd.
流經記憶體單元MC之電流可改變記憶體單元MC之電阻值狀態,亦即,其可造成記憶體單元MC中之讀取擾動。然而,必須的是:讀取電流不改變記憶體單元MC之電阻值狀態,即使讀取電流流經記憶體單元MC。為了該目的,假如某讀取電流以第一方向(AP方向或P方向)流經某記憶體單元MC,則此讀取電流之量值必須小於在此記憶體單元MC之第一方向上的切換電流。基於此,讀取電流Irap小於下AP方向切換電流Icapd。亦即,讀取電流Irap之分佈被設置比下AP方向切換電流Icapd之分佈更接近於水平軸上之原點。例如,讀取電流Irap之最大量值小於下AP方向切換電流Icapd之最小量值。The current flowing through the memory cell MC may change the resistance value state of the memory cell MC, that is, it may cause a read disturbance in the memory cell MC. However, it is necessary that the read current does not change the resistance value state of the memory cell MC even if the read current flows through the memory cell MC. For this purpose, if a read current flows through a memory cell MC in a first direction (AP direction or P direction), the magnitude of this read current must be smaller than the switching current in the first direction of this memory cell MC. Based on this, the read current Irap is smaller than the lower AP direction switching current Icapd. That is, the distribution of the read current Irap is set closer to the origin on the horizontal axis than the distribution of the lower AP direction switching current Icapd. For example, the maximum value of the read current Irap is smaller than the minimum value of the lower AP direction switching current Icapd.
同時,讀取電流Irp小於上P方向切換電流Icpu。亦即,讀取電流Irp之分佈被設置比之上P方向切換電流Icpu之分佈更接近於水平軸上之原點。例如,讀取電流Irp之最大量值小於之上P方向切換電流Icpu之最小量值。 1.3.優點(效果) At the same time, the read current Irp is smaller than the upper P-direction switching current Icpu. That is, the distribution of the read current Irp is set closer to the origin on the horizontal axis than the distribution of the upper P-direction switching current Icpu. For example, the maximum value of the read current Irp is smaller than the minimum value of the upper P-direction switching current Icpu. 1.3. Advantages (Effects)
依據第一實施例,如下文所述,得以提供一種記憶體裝置,其中讀取擾動被減少且針對各記憶體單元MC之資料讀取容限的變化被減少。According to the first embodiment, as described below, a memory device is provided in which read disturbance is reduced and variation in data read margin for each memory cell MC is reduced.
記憶體裝置100之大綱被描述以供比較及參考。記憶體裝置100包括記憶體單元101A及記憶體單元101B以各別地取代第一實施例之記憶體裝置1中的下記憶體單元MCA及上記憶體單元MCB。記憶體單元101A及記憶體單元101B具有如記憶體單元MCA之相同結構。The outline of the memory device 100 is described for comparison and reference. The memory device 100 includes a
一般而言,用於將MTJ元件置於AP狀態之切換電流大於用於將MTJ元件置於P狀態之切換電流。因此,為了減少讀取擾動,可想到以AP方向通過讀取電流。Generally speaking, the switching current used to put the MTJ element in the AP state is larger than the switching current used to put the MTJ element in the P state. Therefore, in order to reduce the read disturbance, it is conceivable to pass the read current in the AP direction.
由驅動器電路施加電壓至某佈線可由各種方法來履行。當作第一方法,欲由驅動器電路所施加之電壓被產生如參考圖9及10所述,且所產生的電壓係經由開關電路SW而被轉移至佈線。當作第二方法,具有不同於欲被轉移之電壓的參考電壓(例如,內部電源供應或接地電壓)係經由MOSFET而被連接至佈線。接著,藉由調整MOSFET之閘極的電壓,具有欲被轉移之量值的電壓(其係藉由升高或降低參考電壓來產生)被施加至佈線。當第二方法被採用在記憶體裝置100中時,以下現象可能發生。Applying a voltage to a wiring by a driver circuit can be performed by various methods. As a first method, the voltage to be applied by the driver circuit is generated as described in reference figures 9 and 10, and the generated voltage is transferred to the wiring via the switching circuit SW. As a second method, a reference voltage different from the voltage to be transferred (for example, an internal power supply or a ground voltage) is connected to the wiring via a MOSFET. Then, by adjusting the voltage of the gate of the MOSFET, a voltage having a value to be transferred (which is generated by raising or lowering the reference voltage) is applied to the wiring. When the second method is adopted in the memory device 100, the following phenomenon may occur.
圖18及19係類似於圖15及16並顯示相關於在記憶體裝置100中的資料讀取期間之資料讀取的組件以及介於該等組件之間的連接。圖18顯示在資料讀取自下記憶體單元101A期間之狀態。圖19顯示在資料讀取自上記憶體單元101B期間之狀態。18 and 19 are similar to FIGS. 15 and 16 and show components related to data reading and connections between the components during data reading in the memory device 100. FIG. 18 shows the state during data reading from the
讀取資料自下記憶體單元101A之情況係相同於第一實施例(圖15)之情況。亦即,總體字元線GWL被設定至預充電電壓Vprch,接著被置於電浮動狀態,且接著電源供應電壓Vhh被施加至總體位元線GBL。結果,如圖18中所示,讀取電流Ir從參考層34流經記憶體單元101A而朝向儲存層32,亦即,在AP方向。槽電路103包括連接在總體字元線GWL與具有接地電壓Vss的節點之間的p型MOSFET 104。The case of reading data from the
同時,在AP方向上之讀取電流可藉由以下方法而流經記憶體單元101B。如圖19中所示,感測放大器電路SAC被連接至總體字元線GWL,如在讀取資料自第一實施例之下記憶體單元101A及下記憶體單元MCA的情況。總體字元線GWL係藉由驅動器電路111而被充電以預充電電壓Vprch2。預充電電壓Vprch2高於非選擇電壓Vusel。在充電完成之後,總體字元線GWL被中斷自驅動器電路111,且被置於電浮動狀態。接下來,接地電壓Vss係藉由槽電路112而被施加至總體位元線GBL。結果,讀取電流Ir從參考層34流經上記憶體單元MCB而朝向儲存層32,亦即,在AP方向。At the same time, a read current in the AP direction can flow through the
當總體字元線GWL被使用為參考時之讀取電流Ir的方向在讀取資料自下記憶體單元101A之情況與在讀取資料自上記憶體單元101B之情況係不同。由於此現象,佈線與電晶體(包括讀取電流Ir所流經之路徑)的組合在圖18及圖19之情況係不同。差異之一係連接至總體字元線GWL之電晶體的類型。亦即,在圖18之情況下,p型MOSFET 104被連接至總體字元線GWL;而在圖19之情況下,n型MOSFET 115被連接至總體字元線GWL。針對連接至總體字元線GWL之操作放大器OP,此作用為連接至操作放大器OP之組件的特性之差異。針對操作放大器OP之特性的差異導致藉由操作放大器OP之操作在圖18及19之情況係不同,亦即,取決於記憶體單元101之位置。此造成在記憶體裝置100中之資料讀取的特性之變化。The direction of the read current Ir when the global word line GWL is used as a reference is different in the case of reading data from the
當作針對此現象之對策,可想到使讀取電流Ir以P方向通過至上記憶體單元101B。在此情況下,在上記憶體單元101B中之各電流的分佈係相同於圖17A及17B中所示之下記憶體單元MCA的分佈。當P方向之讀取電流流至具有此一分佈之上記憶體單元101B時,上記憶體單元101B之P方向切換電流Icpu的分佈(相同於下記憶體單元101A之P方向切換電流Icp的分佈)與P方向讀取電流分佈(相同於上記憶體單元101B之P方向讀取電流Irp)部分地重疊。此可造成讀取擾動,由於在P方向之讀取電流Ir。As a countermeasure to this phenomenon, it is conceivable to allow the read current Ir to pass to the
替代地,可考量以下措施以對抗記憶體裝置100中之資料讀取的特性之變化。亦即,從導體22(局部位元線LBL)朝向導體21(局部字元線LWLA)而設置之材料(層)的順序相同於從導體22朝向導體23(局部字元線LWLB)而設置之材料(層)的順序。亦即,記憶體單元101A之層所被設置的順序與記憶體單元101B之層所被設置的順序係相對於導體22而線對稱。如此一來,在AP方向上之讀取電流係從局部位元線LBL流向局部字元線LWL,在記憶體單元101A及101B之任一者中。然而,改變記憶體單元101之層所被設置的順序可改變記憶體單元101A及101B之特性。亦即,記憶體單元101具有截圓錐之形狀(由於製造程序等等之限制),而位於截圓錐之上的層具有比位於截圓錐之下的層更小的體積,即使具有相同厚度。此導致儲存層、參考層、及/或切換元件之特性在記憶體單元101A及101B中係不同。此顯著地改變記憶體單元101之特性。Alternatively, the following measures may be considered to counteract the variation in the characteristics of data reading in the memory device 100. That is, the order of materials (layers) arranged from the conductor 22 (local bit line LBL) toward the conductor 21 (local word line LWLA) is the same as the order of materials (layers) arranged from the
依據第一實施例,下記憶體單元MCA與上記憶體單元MCB包括以沿著z軸之相同順序而設置的實質上相同複數層。亦即,在下記憶體單元MCA及上記憶體單元MCB兩者中,切換元件SE、儲存層32、參考層34、及移位取消層41或43依此順序被設置在其中z軸座標增加的方向(+z方向)。此外,上記憶體單元MCB之移位取消層43具有比下記憶體單元MCA之移位取消層41的體積更大的體積。因此,上P方向切換電流Icpu之量值大於上P方向切換電流之量值(亦即,下P方向切換電流Icpd之量值),當移位取消層43具有如移位取消層41之相同體積時。利用此事實,得以使讀取電流以P方向通過至上記憶體單元MCB,以供讀取資料自上記憶體單元MCB。因為上P方向切換電流Icpu之量值大於上P方向切換電流之量值(當移位取消層43具有如移位取消層41之相同體積時),所以上記憶體單元MCB之MTJ元件MTJB被防止進入P狀態,即使讀取電流以P方向流經上記憶體單元MCB。According to the first embodiment, the lower memory cell MCA and the upper memory cell MCB include substantially the same plurality of layers arranged in the same order along the z-axis. That is, in both the lower memory cell MCA and the upper memory cell MCB, the switching element SE, the
因為讀取電流Ir可以P方向流經上記憶體單元MCB(如從圖15及16清楚可見),所以當總體字元線GWL被使用為參考時之讀取電流的方向在讀取資料自下記憶體單元MCA之情況以及在讀取資料自上記憶體單元MCB之情況係相同。亦即,讀取電流流向總體字元線GWL。此帶來下文所述之優點。Because the read current Ir can flow through the upper memory cell MCB in the P direction (as clearly seen from FIGS. 15 and 16 ), the direction of the read current when the global word line GWL is used as a reference is the same in the case of reading data from the lower memory cell MCA and in the case of reading data from the upper memory cell MCB. That is, the read current flows toward the global word line GWL. This brings about the advantages described below.
圖20及21顯示相關於在第一實施例之記憶體裝置1中的資料讀取期間之資料讀取的組件以及介於該等組件之間的連接,並各別地顯示圖15及16之組件及連接的範例。如圖20及21中所示,驅動器電路RDP包括p型MOSFET TP1。電晶體TP1在一端處被連接至總體字元線GWL,且在另一端處被連接至具有接地電壓Vss之節點。在閘極處,電晶體TP1從除了讀出電路RC之驅動器電路RDP以外的部分接收控制信號。20 and 21 show components related to data reading during data reading in the
如從圖20及21可見,佈線與電晶體(包括讀取電流Ir所流經之路徑)的組合在讀取資料自下記憶體單元MCA之情況以及在讀取資料自上記憶體單元MCB之情況係相同。此表示:針對連接至總體字元線GWL之操作放大器OP,連接至操作放大器OP之組件的特性之差異被減少。此差異之減少導致以下事實:由於操作放大器OP所致之操作的變化在讀取資料自下記憶體單元MCA之情況以及在讀取資料自上記憶體單元MCB之情況被減少。因此,得以提供記憶體裝置1,其中基於記憶體單元MC之位置的資料讀取之特性的變化被減少。As can be seen from FIGS. 20 and 21 , the combination of wiring and transistors (including the path through which the read current Ir flows) is the same in the case of reading data from the lower memory cell MCA and in the case of reading data from the upper memory cell MCB. This means that for the operational amplifier OP connected to the global word line GWL, the difference in characteristics of the components connected to the operational amplifier OP is reduced. This reduction in difference leads to the fact that the change in operation due to the operational amplifier OP is reduced in the case of reading data from the lower memory cell MCA and in the case of reading data from the upper memory cell MCB. Therefore, it is possible to provide the
因為上AP方向切換電流Icapu為小(如參考圖7A及7B所述),所以上AP方向切換電流Icapu之分佈之分佈具有極小的間隔或者與AP方向之讀取電流Irap部分地重疊,如從圖17A及17B可見。然而,AP方向之讀取電流不在上記憶體單元MCB中流動。因此,在上記憶體單元MCB中之讀取擾動不會發生。 1.4.修改 Because the upper AP direction switching current Icapu is small (as described in reference to FIGS. 7A and 7B ), the distribution of the upper AP direction switching current Icapu has a very small interval or partially overlaps with the AP direction reading current Irap, as can be seen from FIGS. 17A and 17B . However, the AP direction reading current does not flow in the upper memory unit MCB. Therefore, the reading disturbance in the upper memory unit MCB does not occur. 1.4. Modification
藉由感測放大器電路SAC之資料判定不限於上文所述之形式。例如,總體字元線GWL經由第一開關電路而被連接至操作放大器之非反相輸入終端。總體字元線GWL亦經由第二開關電路而被連接至電壓調整電路之輸入。電壓調整電路調整輸入電壓並將經調整電壓供應至操作放大器OP之反相輸入終端。該調整被執行以使得經調整電壓具有介於(例如)低固持電壓VhdL與高固持電壓VhdH之間的量值。The data determination by the sense amplifier circuit SAC is not limited to the form described above. For example, the global word line GWL is connected to the non-inverting input terminal of the operational amplifier via a first switch circuit. The global word line GWL is also connected to the input of the voltage adjustment circuit via a second switch circuit. The voltage adjustment circuit adjusts the input voltage and supplies the adjusted voltage to the inverting input terminal of the operational amplifier OP. The adjustment is performed so that the adjusted voltage has a value between, for example, a low holding voltage VhdL and a high holding voltage VhdH.
在資料讀取之時刻,如參考圖15及16所述之相同資料讀取被履行,其中第一開關電路開啟而第二開關電路關閉。結果,基於讀取目標下記憶體單元MCA之電阻值狀態的低固持電壓VhdL及高固持電壓VhdH之一者出現在總體字元線GWL上。接著,當第一開關電路被關閉時,總體字元線GWL之電壓被固持在操作放大器OP之非反相輸入終端的節點處。經固持電壓被稱為第一樣本電壓。At the moment of data reading, the same data reading as described with reference to FIGS. 15 and 16 is performed, wherein the first switching circuit is turned on and the second switching circuit is turned off. As a result, one of a low holding voltage VhdL and a high holding voltage VhdH based on the resistance value state of the memory cell MCA under the read target appears on the global word line GWL. Then, when the first switching circuit is turned off, the voltage of the global word line GWL is held at the node of the non-inverting input terminal of the operational amplifier OP. The held voltage is referred to as a first sample voltage.
接下來,預定參考資料被寫入至讀取目標記憶體單元MC。參考資料可為「1」資料或「0」資料,例如,「0」資料。在寫入之後,如參考圖15及16所述之相同資料讀取被履行,其中第一開關電路關閉而第二開關電路開啟。結果,低固持電壓VhdL出現在總體字元線GWL上。之後,當第二開關電路被關閉時,針對總體字元線GWL之電壓而調整的電壓被固持在操作放大器OP之反相輸入終端的節點中。經固持電壓被稱為第二樣本電壓。Next, predetermined reference data is written to the read target memory cell MC. The reference data may be "1" data or "0" data, for example, "0" data. After writing, the same data reading as described in reference figures 15 and 16 is performed, wherein the first switching circuit is closed and the second switching circuit is opened. As a result, a low holding voltage VhdL appears on the global word line GWL. Thereafter, when the second switching circuit is closed, the voltage adjusted for the voltage of the global word line GWL is held in the node of the inverting input terminal of the operational amplifier OP. The held voltage is referred to as the second sample voltage.
操作放大器OP基於第一樣本電壓及第二樣本電壓之量值而輸出一值。假如第一樣本電壓小於第二樣本電壓,則操作放大器OP輸出「L」位準電壓。此被視為如同:資料讀取目標記憶體單元MC將相同的「0」資料固持為參考資料。同時,當第一樣本電壓大於第二樣本電壓,則操作放大器OP輸出「H」位準電壓。此被視為如同:資料讀取目標記憶體單元MC將「1」資料固持為不同於參考資料。The operational amplifier OP outputs a value based on the magnitude of the first sample voltage and the second sample voltage. If the first sample voltage is less than the second sample voltage, the operational amplifier OP outputs an "L" level voltage. This is regarded as if the data read target memory cell MC holds the same "0" data as the reference data. Meanwhile, when the first sample voltage is greater than the second sample voltage, the operational amplifier OP outputs an "H" level voltage. This is regarded as if the data read target memory cell MC holds the "1" data as different from the reference data.
雖已描述某些實施例,但這些實施例僅藉由範例方式來呈現,而並非用以限制本揭露之範圍。確實,文中所述之新穎實施例可被實施以多種其他形式;再者,可以文中所述實施例之形式進行各種省略、取代及改變而不背離本揭露之精神。後附申請專利範圍及其同等物係為了涵蓋此類形式或修改如將落入本揭露之範圍及精神內。Although certain embodiments have been described, these embodiments are presented by way of example only and are not intended to limit the scope of the present disclosure. Indeed, the novel embodiments described herein may be implemented in a variety of other forms; furthermore, various omissions, substitutions, and changes in the form of the embodiments described herein may be made without departing from the spirit of the present disclosure. The appended claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the present disclosure.
1:記憶體裝置
11:核心電路
12:輸入及輸出電路
13:控制電路
14:解碼電路
15:頁面緩衝器
16:電壓產生電路
21,22,23:導體
31,31A,31B:可變電阻值材料
32,32A,32B:鐵磁層
33,33A,33B:絕緣層
34,34A,34B:鐵磁層
35,35A,35B:金屬層
41:鐵磁層
43:鐵磁層
100:記憶體裝置
101A:記憶體單元
101B:記憶體單元
111:驅動器電路
112:槽電路
115:n型MOSFET
431:第一部分
432:第二部分
GBL:總體位元線
GWL:總體字元線
LBL:局部位元線
LWL:局部字元線
MA:記憶體單元陣列
MC:記憶體單元
MTJ:MTJ元件
RC:讀出電路
SE:切換元件
WC:寫入電路
1: memory device
11: core circuit
12: input and output circuit
13: control circuit
14: decoding circuit
15: page buffer
16:
[圖1]係第一實施例之記憶體裝置的方塊圖;[FIG. 1] is a block diagram of a memory device of the first embodiment;
[圖2]係第一實施例之核心電路的方塊圖。[Figure 2] is a block diagram of the core circuit of the first embodiment.
[圖3]係第一實施例之記憶體單元陣列的電路圖。[FIG. 3] is a circuit diagram of the memory cell array of the first embodiment.
[圖4]係第一實施例之記憶體單元陣列的一部分之透視圖。[FIG. 4] is a perspective view of a portion of the memory cell array of the first embodiment.
[圖5]係顯示第一實施例之記憶體單元的結構之範例的橫斷面之圖。[FIG. 5] is a cross-sectional view showing an example of the structure of the memory cell of the first embodiment.
[圖6]係顯示第一實施例之記憶體裝置的一些記憶體單元之形狀的圖。[FIG. 6] is a diagram showing the shapes of some memory cells of the memory device of the first embodiment.
[圖7A及7B]係顯示在第一實施例之記憶體裝置中的切換電流之分佈的圖。[Figures 7A and 7B] are diagrams showing the distribution of switching current in the memory device of the first embodiment.
[圖8]係顯示第一實施例之記憶體單元的電壓及電流特性之範例的圖。[FIG. 8] is a diagram showing an example of voltage and current characteristics of a memory cell of the first embodiment.
[圖9]係顯示第一實施例之記憶體裝置中的讀出電路之組件以及介於該等組件之間的連接之圖。[FIG. 9] is a diagram showing components of a readout circuit in a memory device of the first embodiment and connections between the components.
[圖10]係顯示第一實施例之寫入電路的組件以及介於該等組件之間的連接之圖。[FIG. 10] is a diagram showing components of a write circuit of the first embodiment and connections between the components.
[圖11-14]係顯示相關於在第一實施例之記憶體裝置中的資料寫入期間之資料寫入的組件以及介於該等組件之間的連接之圖。[Figures 11-14] are diagrams showing components related to data writing and connections between the components during data writing in the memory device of the first embodiment.
[圖15-16]係顯示相關於在第一實施例之記憶體裝置中的資料讀取期間之資料讀取的組件以及介於該等組件之間的連接之圖。[Figures 15-16] are diagrams showing components related to data reading and connections between the components during data reading in the memory device of the first embodiment.
[圖17A及17B]係顯示在第一實施例之記憶體裝置中的各種操作期間流動之電流的量值之圖。[Figures 17A and 17B] are graphs showing the magnitude of current flowing during various operations in the memory device of the first embodiment.
[圖18-19]係顯示相關於在比較範例之記憶體裝置中的資料讀取期間之資料讀取的組件以及介於該等組件之間的連接之圖。[FIGS. 18-19] are diagrams showing components related to data reading and connections between the components during data reading in a memory device of a comparative example.
[圖20-21]係顯示相關於在第一實施例之記憶體裝置中的資料讀取期間之資料讀取的組件以及介於該等組件之間的連接之詳細範例的圖。[Figures 20-21] are diagrams showing detailed examples of components related to data reading and connections between the components during data reading in the memory device of the first embodiment.
11:核心電路 11: Core circuit
21,22,23:導體 21,22,23: Conductor
31,31A:可變電阻值材料 31,31A: Variable resistance material
32,32A,32B:鐵磁層 32,32A,32B: ferromagnetic layer
33A,33B:絕緣層 33A,33B: Insulation layer
34A,34B:鐵磁層 34A,34B: ferromagnetic layer
35A,35B:金屬層 35A,35B:Metal layer
41:鐵磁層 41: Ferromagnetic layer
43:鐵磁層 43: Ferromagnetic layer
LBL:局部位元線 LBL: Local Bit Line
LWLA,LWLB:局部字元線 LWLA, LWLB: local character line
MCA:下記憶體單元 MCA: Lower Memory Unit
MCB:上記憶體單元 MCB: Upper Memory Cell
MTJA,MTJB:MTJ元件 MTJA,MTJB:MTJ components
RL:參考層 RL: Reference layer
SCL:移位取消層 SCL: Shift cancel layer
SEA,SEB:切換元件 SEA, SEB: switching element
SL:儲存層 SL: Storage layer
TB:穿隧障壁 TB: Tunneling Barrier
Claims (20)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-038263 | 2022-03-11 | ||
JP2022038263A JP2023132752A (en) | 2022-03-11 | 2022-03-11 | Storage device |
US17/898,913 | 2022-08-30 | ||
US17/898,913 US20230290397A1 (en) | 2022-03-11 | 2022-08-30 | Memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202336752A TW202336752A (en) | 2023-09-16 |
TWI867398B true TWI867398B (en) | 2024-12-21 |
Family
ID=88927350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112100026A TWI867398B (en) | 2022-03-11 | 2023-01-03 | Memory device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI867398B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6798689B2 (en) * | 2000-11-23 | 2004-09-28 | Infineon Technologies Ag | Integrated memory with a configuration of non-volatile memory cells and method for fabricating and for operating the integrated memory |
US7511981B2 (en) * | 2001-01-24 | 2009-03-31 | International Business Machines Corporation | Non-volatile memory device |
US9620190B2 (en) * | 2014-04-14 | 2017-04-11 | Samsung Electronics Co., Ltd. | Semiconductor resistive memory devices including separately controllable source lines |
US9818464B2 (en) * | 2014-03-13 | 2017-11-14 | Kabushiki Kaisha Toshiba | Magnetic memory element and memory device |
CN109712657A (en) * | 2017-10-25 | 2019-05-03 | 三星电子株式会社 | Variable-resistance memory device |
TW202137579A (en) * | 2020-03-20 | 2021-10-01 | 台灣積體電路製造股份有限公司 | Integrated Chip and Method Forming Same |
-
2023
- 2023-01-03 TW TW112100026A patent/TWI867398B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6798689B2 (en) * | 2000-11-23 | 2004-09-28 | Infineon Technologies Ag | Integrated memory with a configuration of non-volatile memory cells and method for fabricating and for operating the integrated memory |
US7511981B2 (en) * | 2001-01-24 | 2009-03-31 | International Business Machines Corporation | Non-volatile memory device |
US9818464B2 (en) * | 2014-03-13 | 2017-11-14 | Kabushiki Kaisha Toshiba | Magnetic memory element and memory device |
US9620190B2 (en) * | 2014-04-14 | 2017-04-11 | Samsung Electronics Co., Ltd. | Semiconductor resistive memory devices including separately controllable source lines |
CN109712657A (en) * | 2017-10-25 | 2019-05-03 | 三星电子株式会社 | Variable-resistance memory device |
TW202137579A (en) * | 2020-03-20 | 2021-10-01 | 台灣積體電路製造股份有限公司 | Integrated Chip and Method Forming Same |
Also Published As
Publication number | Publication date |
---|---|
TW202336752A (en) | 2023-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3906212B2 (en) | Magnetic random access memory | |
US6473337B1 (en) | Memory device having memory cells with magnetic tunnel junction and tunnel junction in series | |
KR101415233B1 (en) | Asymmetric write scheme for magnetic bit cell elements | |
US8213216B2 (en) | Shared bit line and source line resistive sense memory structure | |
US10102894B2 (en) | Magnetic memory | |
KR20050016244A (en) | Semiconductor memory device having magnetic reluctance element and data writing method thereof | |
US9990975B2 (en) | Nonvolatile semiconductor memory | |
US11502125B2 (en) | Magnetoresistive memory device | |
US8068359B2 (en) | Static source plane in stram | |
US11961557B2 (en) | Memory device | |
US12201034B2 (en) | Memory device | |
US11676661B2 (en) | Storage device | |
US7397694B2 (en) | Magnetic memory arrays | |
TWI867398B (en) | Memory device | |
KR20050001022A (en) | Magnetic random access memory | |
US20230290397A1 (en) | Memory device | |
US11837288B2 (en) | Memory device | |
CN116741216A (en) | memory device | |
US11538512B2 (en) | Memory device that executes a read operation based on a self-reference scheme | |
JP2005277189A (en) | Magnetic storage device | |
TWI861739B (en) | Memory device | |
US10056128B2 (en) | Semiconductor storage device | |
US20240312506A1 (en) | Memory device | |
TWI813056B (en) | Storage device | |
US20250095705A1 (en) | Memory device |