[go: up one dir, main page]

TWI857781B - Power supply device with high conversion efficiency - Google Patents

Power supply device with high conversion efficiency Download PDF

Info

Publication number
TWI857781B
TWI857781B TW112135234A TW112135234A TWI857781B TW I857781 B TWI857781 B TW I857781B TW 112135234 A TW112135234 A TW 112135234A TW 112135234 A TW112135234 A TW 112135234A TW I857781 B TWI857781 B TW I857781B
Authority
TW
Taiwan
Prior art keywords
potential
coupled
terminal
node
transistor
Prior art date
Application number
TW112135234A
Other languages
Chinese (zh)
Inventor
詹子增
Original Assignee
宏碁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏碁股份有限公司 filed Critical 宏碁股份有限公司
Priority to TW112135234A priority Critical patent/TWI857781B/en
Application granted granted Critical
Publication of TWI857781B publication Critical patent/TWI857781B/en

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A power supply device with high conversion efficiency includes a switch circuit, a transformer, a first capacitor, an output stage circuit, a synchronous rectifier circuit, and a detection and control circuit. The first capacitor provides a capacitive voltage. The output stage circuit generates an output voltage according to a first control voltage and a second control voltage. The synchronous rectifier circuit generates the first control voltage and the second control volage with a dead zone time. The detection and control circuit is coupled to the synchronous rectifier circuit. The detection and control circuit can monitor the dead zone time. If the dead zone time is between a first threshold and a second threshold, the detection and control circuit can control the synchronous rectifier circuit according to the capacitive voltage, so as to update and increase the aforementioned dead zone time.

Description

高轉換效率之電源供應器High conversion efficiency power supply

本發明係關於一種電源供應器,特別係關於一種高轉換效率之電源供應器。The present invention relates to a power supply, and in particular to a power supply with high conversion efficiency.

電源供應器為筆記型電腦領域中不可或缺之元件。然而,若電源供應器之轉換效率不足,則很容易造成相關筆記型電腦之整體操作性能下滑。有鑑於此,勢必要提出一種全新之解決方案,以克服先前技術所面臨之困境。The power supply is an indispensable component in the field of laptop computers. However, if the conversion efficiency of the power supply is insufficient, it is easy to cause the overall operating performance of the related laptop to decline. In view of this, it is necessary to propose a new solution to overcome the difficulties faced by the previous technology.

在較佳實施例中,本發明提出一種高轉換效率之電源供應器,包括:一切換電路,根據一輸入電位、一第一驅動電位,以及一第二驅動電位來產生一切換電位;一變壓器,包括一主線圈、一第一副線圈,以及一第二副線圈,其中該變壓器內建一漏電感器和一激磁電感器,而該主線圈係經由該漏電感器接收該切換電位;一第一電容器,耦接至該激磁電感器,並提供一電容電位;一輸出級電路,耦接至該第一副線圈和該第二副線圈,其中該輸出級電路係根據一第一控制電位和一第二控制電位來產生一輸出電位;一同步整流電路,產生具有一死區時間之該第一控制電位和該第二控制電位;以及一偵測及控制電路,耦接至該同步整流電路,並產生該第一驅動電位和該第二驅動電位;其中該偵測及控制電路更監控該死區時間,而若該死區時間介於一第一臨界值和一第二臨界值之間,則該偵測及控制電路即根據該電容電位來控制該同步整流電路,以更新及增加該死區時間。In a preferred embodiment, the present invention provides a power supply with high conversion efficiency, including: a switching circuit, which generates a switching potential according to an input potential, a first driving potential, and a second driving potential; a transformer, including a main coil, a first sub-coil, and a second sub-coil, wherein the transformer has a built-in leakage inductor and an excitation inductor, and the main coil receives the switching potential through the leakage inductor; a first capacitor, coupled to the excitation inductor, and provides a capacitance potential; an output stage circuit, coupled to the first sub-coil and the second sub-coil, wherein The output stage circuit generates an output potential according to a first control potential and a second control potential; a synchronous rectification circuit generates the first control potential and the second control potential with a dead time; and a detection and control circuit is coupled to the synchronous rectification circuit and generates the first drive potential and the second drive potential; wherein the detection and control circuit further monitors the dead time, and if the dead time is between a first critical value and a second critical value, the detection and control circuit controls the synchronous rectification circuit according to the capacitor potential to update and increase the dead time.

在一些實施例中,該切換電路包括:一第一電晶體,具有一控制端、一第一端,以及一第二端,其中該第一電晶體之該控制端係用於接收該第一驅動電位,該第一電晶體之該第一端係耦接至一第一節點以輸出該切換電位,而該第一電晶體之該第二端係耦接至一輸入節點以接收該輸入電位;以及一第二電晶體,具有一控制端、一第一端,以及一第二端,其中該第二電晶體之該控制端係用於接收該第二驅動電位,該第二電晶體之該第一端係耦接至一接地電位,而該第二電晶體之該第二端係耦接至該第一節點。In some embodiments, the switching circuit includes: a first transistor having a control end, a first end, and a second end, wherein the control end of the first transistor is used to receive the first driving potential, the first end of the first transistor is coupled to a first node to output the switching potential, and the second end of the first transistor is coupled to an input node to receive the input potential; and a second transistor having a control end, a first end, and a second end, wherein the control end of the second transistor is used to receive the second driving potential, the first end of the second transistor is coupled to a ground potential, and the second end of the second transistor is coupled to the first node.

在一些實施例中,該漏電感器具有一第一端和一第二端,該漏電感器之該第一端係耦接至該第一節點以接收該切換電位,該漏電感器之該第二端係耦接至一第二節點,該主線圈具有一第一端和一第二端,該主線圈之該第一端係耦接至該第二節點,該主線圈之該第二端係耦接至一第三節點,該激磁電感器具有一第一端和一第二端,該激磁電感器之該第一端係耦接至該第二節點,該激磁電感器之該第二端係耦接至該第三節點,該第一電容器具有一第一端和一第二端,該第一電容器之該第一端係耦接至該第三節點以輸出該電容電位,該第一電容器之該第二端係耦接至該接地電位,該第一副線圈具有一第一端和一第二端,該第一副線圈之該第一端係耦接至一第四節點,該第一副線圈之該第二端係耦接至一共同節點,該第二副線圈具有一第一端和一第二端,該第二副線圈之該第一端係耦接至該共同節點,而該第二副線圈之該第二端係耦接至一第五節點。In some embodiments, the leakage inductor has a first end and a second end, the first end of the leakage inductor is coupled to the first node to receive the switching potential, the second end of the leakage inductor is coupled to a second node, the main coil has a first end and a second end, the first end of the main coil is coupled to the second node, the second end of the main coil is coupled to a third node, the excitation inductor has a first end and a second end, the first end of the excitation inductor is coupled to the second node, the second end of the excitation inductor is coupled to the third node, and the The first capacitor has a first end and a second end, the first end of the first capacitor is coupled to the third node to output the capacitance potential, the second end of the first capacitor is coupled to the ground potential, the first sub-coil has a first end and a second end, the first end of the first sub-coil is coupled to a fourth node, the second end of the first sub-coil is coupled to a common node, the second sub-coil has a first end and a second end, the first end of the second sub-coil is coupled to the common node, and the second end of the second sub-coil is coupled to a fifth node.

在一些實施例中,該輸出級電路包括:一第三電晶體,具有一控制端、一第一端,以及一第二端,其中該第三電晶體之該控制端係用於接收該第一控制電位,該第三電晶體之該第一端係耦接至一輸出節點以輸出該輸出電位,而該第三電晶體之該第二端係耦接至該第四節點;一第四電晶體,具有一控制端、一第一端,以及一第二端,其中該第四電晶體之該控制端係用於接收該第二控制電位,該第四電晶體之該第一端係耦接至該輸出節點,而該第四電晶體之該第二端係耦接至該第五節點;以及一第二電容器,具有一第一端和一第二端,其中該第二電容器之該第一端係耦接至該輸出節點,而該第二電容器之該第二端係耦接至該共同節點。In some embodiments, the output stage circuit includes: a third transistor having a control terminal, a first terminal, and a second terminal, wherein the control terminal of the third transistor is used to receive the first control potential, the first terminal of the third transistor is coupled to an output node to output the output potential, and the second terminal of the third transistor is coupled to the fourth node; a fourth transistor having a control terminal, a first terminal, and a second terminal, wherein the control terminal of the fourth transistor is used to receive the second control potential, the first terminal of the fourth transistor is coupled to the output node, and the second terminal of the fourth transistor is coupled to the fifth node; and a second capacitor having a first terminal and a second terminal, wherein the first terminal of the second capacitor is coupled to the output node, and the second terminal of the second capacitor is coupled to the common node.

在一些實施例中,該第一臨界值約等於60ns,而該第二臨界值約等於300ns。In some embodiments, the first threshold value is approximately equal to 60 ns, and the second threshold value is approximately equal to 300 ns.

在一些實施例中,該偵測及控制電路包括:一平均電路,將該電容電位進行平均,以產生一平均電位。In some embodiments, the detection and control circuit includes: an averaging circuit that averages the capacitor potential to generate an average potential.

在一些實施例中,該偵測及控制電路更包括:一除法器,將該平均電位除以一參考電位,以產生一增益倍率,其中該除法器係由一供應電位來進行供電。In some embodiments, the detection and control circuit further includes: a divider that divides the average potential by a reference potential to generate a gain multiplier, wherein the divider is powered by a supply potential.

在一些實施例中,該偵測及控制電路更包括:一微控制器,監控該死區時間,並產生該第一驅動電位、該第二驅動電位,以及該參考電位,其中若該死區時間介於該第一臨界值和該第二臨界值之間,則該微控制器即輸出具有高邏輯位準之該供應電位,並更由該除法器處接收該增益倍率。In some embodiments, the detection and control circuit further includes: a microcontroller, monitoring the dead time and generating the first drive potential, the second drive potential, and the reference potential, wherein if the dead time is between the first critical value and the second critical value, the microcontroller outputs the supply potential with a high logic level and further receives the gain multiplier from the divider.

在一些實施例中,若該死區時間介於該第一臨界值和該第二臨界值之間,則該微控制器更控制該同步整流電路,以藉由將該死區時間乘以該增益倍率來更新該死區時間。In some embodiments, if the dead time is between the first critical value and the second critical value, the microcontroller further controls the synchronous rectification circuit to update the dead time by multiplying the dead time by the gain multiplier.

在一些實施例中,若該死區時間小於該第一臨界值,則該微控制器將傳送一通知電位至一系統端,並於一延遲時間之後強迫該電源供應器進入一栓鎖保護模式。In some embodiments, if the dead time is less than the first threshold value, the microcontroller will send a notification level to a system end and force the power supply to enter a latching protection mode after a delay time.

為讓本發明之目的、特徵和優點能更明顯易懂,下文特舉出本發明之具體實施例,並配合所附圖式,作詳細說明如下。In order to make the purpose, features and advantages of the present invention more clearly understood, specific embodiments of the present invention are specifically listed below and described in detail with reference to the accompanying drawings.

在說明書及申請專利範圍當中使用了某些詞彙來指稱特定的元件。本領域技術人員應可理解,硬體製造商可能會用不同的名詞來稱呼同一個元件。本說明書及申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及申請專利範圍當中所提及的「包含」及「包括」一詞為開放式的用語,故應解釋成「包含但不僅限定於」。「大致」一詞則是指在可接受的誤差範圍內,本領域技術人員能夠在一定誤差範圍內解決所述技術問題,達到所述基本之技術效果。此外,「耦接」一詞在本說明書中包含任何直接及間接的電性連接手段。因此,若文中描述一第一裝置耦接至一第二裝置,則代表該第一裝置可直接電性連接至該第二裝置,或經由其它裝置或連接手段而間接地電性連接至該第二裝置。Certain terms are used in the specification and patent application to refer to specific components. Those skilled in the art should understand that hardware manufacturers may use different terms to refer to the same component. This specification and patent application do not use differences in names as a way to distinguish components, but use differences in the functions of components as the criterion for distinction. The words "include" and "including" mentioned throughout the specification and patent application are open terms and should be interpreted as "including but not limited to". The word "substantially" means that within an acceptable error range, those skilled in the art can solve the technical problem within a certain error range and achieve the basic technical effect. In addition, the word "coupled" in this specification includes any direct and indirect electrical connection means. Therefore, if a first device is described herein as being coupled to a second device, it means that the first device may be directly electrically connected to the second device, or may be indirectly electrically connected to the second device via other devices or connection means.

第1圖係顯示根據本發明一實施例所述之電源供應器100之示意圖。例如,電源供應器100可應用於桌上型電腦、筆記型電腦,或一體成形電腦。如第1圖所示,電源供應器100包括:一切換電路110、一變壓器120、一第一電容器C1、一輸出級電路130、一同步整流電路140,以及一偵測及控制電路150。必須注意的是,雖然未顯示於第1圖中,但電源供應器100更可包括其他元件,例如:一穩壓器或(且)一負回授電路。FIG. 1 is a schematic diagram showing a power supply 100 according to an embodiment of the present invention. For example, the power supply 100 can be applied to a desktop computer, a laptop computer, or an all-in-one computer. As shown in FIG. 1, the power supply 100 includes: a switching circuit 110, a transformer 120, a first capacitor C1, an output stage circuit 130, a synchronous rectification circuit 140, and a detection and control circuit 150. It should be noted that, although not shown in FIG. 1, the power supply 100 may further include other components, such as: a voltage regulator or (and) a negative feedback circuit.

切換電路110可根據一輸入電位VIN、一第一驅動電位VG1,以及一第二驅動電位VG2來產生一切換電位VW。例如,輸入電位VIN可為一直流電位,其電位位準可介於360V至440V之間,但亦不僅限於此。變壓器120包括一主線圈121、一第一副線圈122,以及一第二副線圈123。變壓器120更可內建一漏電感器LR和一激磁電感器LM,其中漏電感器LR、激磁電感器LM,以及主線圈121皆可位於變壓器120之同一側,而第一副線圈122和第二副線圈123則皆可位於變壓器120之相對另一側。主線圈121可經由漏電感器LR接收切換電位VW,而第一副線圈122和第二副線圈123則可回應於切換電位VW來進行操作。第一電容器C1係耦接至激磁電感器LM,其中第一電容器C1可提供一電容電位VP。在一些實施例中,漏電感器LR、激磁電感器LM,以及第一電容器C1三者可共同形成電源供應器100之一諧振槽(Resonant Tank)。輸出級電路130係耦接至第一副線圈122和第二副線圈123,其中輸出級電路130可根據一第一控制電位VC1和一第二控制電位VC2來產生一輸出電位VOUT。例如,輸出電位VOUT可為另一直流電位,其電位位準可介於18V至20V之間,但亦不僅限於此。同步整流電路140可產生具有一死區時間(Dead Zone Time)DZT之第一控制電位VC1和第二控制電位VC2。例如,第一控制電位VC1和第二控制電位VC2兩者可大致為互補(Complementary)之邏輯位準。然而,於前述之死區時間DZT之內,第一控制電位VC1和第二控制電位VC2將可同時皆為低邏輯位準(亦即,邏輯「0」)。偵測及控制電路150係耦接至同步整流電路140,並可產生第一驅動電位VG1和第二驅動電位VG2。另外,偵測及控制電路150還可監控死區時間DZT。若死區時間DZT介於一第一臨界值TH1和一第二臨界值TH2之間,則偵測及控制電路150即可根據電容電位VP來控制同步整流電路140,以更新及增加死區時間DZT。根據實際量測結果,本發明所提之電源供應器100將可有效避免因死區時間不足而造成之非理想切換損耗,從而能大幅提升其整體之轉換效率。The switching circuit 110 can generate a switching potential VW according to an input potential VIN, a first drive potential VG1, and a second drive potential VG2. For example, the input potential VIN can be a DC potential, and its potential level can be between 360V and 440V, but it is not limited to this. The transformer 120 includes a main coil 121, a first sub-coil 122, and a second sub-coil 123. The transformer 120 can further have a built-in leakage inductor LR and an excitation inductor LM, wherein the leakage inductor LR, the excitation inductor LM, and the main coil 121 can all be located on the same side of the transformer 120, and the first sub-coil 122 and the second sub-coil 123 can all be located on the opposite side of the transformer 120. The main coil 121 can receive the switching potential VW via the leakage inductor LR, and the first sub-coil 122 and the second sub-coil 123 can operate in response to the switching potential VW. The first capacitor C1 is coupled to the excitation inductor LM, wherein the first capacitor C1 can provide a capacitance potential VP. In some embodiments, the leakage inductor LR, the excitation inductor LM, and the first capacitor C1 can together form a resonant tank (Resonant Tank) of the power supply 100. The output stage circuit 130 is coupled to the first sub-coil 122 and the second sub-coil 123, wherein the output stage circuit 130 can generate an output potential VOUT according to a first control potential VC1 and a second control potential VC2. For example, the output potential VOUT can be another DC potential, and its potential level can be between 18V and 20V, but it is not limited thereto. The synchronous rectification circuit 140 can generate a first control potential VC1 and a second control potential VC2 with a dead zone time DZT. For example, the first control potential VC1 and the second control potential VC2 can be substantially complementary logic levels. However, within the aforementioned dead zone time DZT, the first control potential VC1 and the second control potential VC2 can both be low logic levels (i.e., logic "0") at the same time. The detection and control circuit 150 is coupled to the synchronous rectification circuit 140 and can generate a first drive potential VG1 and a second drive potential VG2. In addition, the detection and control circuit 150 can also monitor the dead zone time DZT. If the dead time DZT is between a first critical value TH1 and a second critical value TH2, the detection and control circuit 150 can control the synchronous rectification circuit 140 according to the capacitor potential VP to update and increase the dead time DZT. According to actual measurement results, the power supply 100 of the present invention can effectively avoid non-ideal switching losses caused by insufficient dead time, thereby greatly improving its overall conversion efficiency.

以下實施例將介紹電源供應器100之詳細結構及操作方式。必須理解的是,這些圖式和敘述僅為舉例,而非用於限制本發明之範圍。The following embodiments will introduce the detailed structure and operation of the power supply 100. It must be understood that these drawings and descriptions are only examples and are not intended to limit the scope of the present invention.

第2圖係顯示根據本發明一實施例所述之電源供應器200之電路圖。在第2圖之實施例中,在第2圖之實施例中,電源供應器200具有一輸入節點NIN和一輸出節點NOUT,並包括:一切換電路210、一變壓器220、一第一電容器C1、一輸出級電路230、一同步整流電路240,以及一偵測及控制電路250。電源供應器200之輸入節點NIN可由一外部輸入電源處(未顯示)接收一輸入電位VIN,而電源供應器200之輸出節點NOUT則可用於輸出一輸出電位VOUT至一系統端(未顯示)。FIG. 2 is a circuit diagram of a power supply 200 according to an embodiment of the present invention. In the embodiment of FIG. 2, the power supply 200 has an input node NIN and an output node NOUT, and includes: a switching circuit 210, a transformer 220, a first capacitor C1, an output stage circuit 230, a synchronous rectification circuit 240, and a detection and control circuit 250. The input node NIN of the power supply 200 can receive an input potential VIN from an external input power source (not shown), and the output node NOUT of the power supply 200 can be used to output an output potential VOUT to a system end (not shown).

切換電路210包括一第一電晶體M1和一第二電晶體M2。例如,第一電晶體M1和第二電晶體M2可各自為一N型金氧半場效電晶體(N-type Metal-Oxide-Semiconductor Field-Effect Transistor,NMOSFET)。第一電晶體M1具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第一電晶體M1之控制端係用於接收一第一驅動電位VG1,第一電晶體M1之第一端係耦接至一第一節點N1以輸出一切換電位VW,而第一電晶體M1之第二端係耦接至輸入節點NIN。第二電晶體M2具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第二電晶體M2之控制端係用於接收一第二驅動電位VG2,第二電晶體M2之第一端係耦接至一接地電位VSS(例如:0V),而第二電晶體M2之第二端係耦接至第一節點N1。在一些實施例中,第一驅動電位VG1和第二驅動電位VG2兩者可具有相同之切換頻率和互補之邏輯位準。The switching circuit 210 includes a first transistor M1 and a second transistor M2. For example, the first transistor M1 and the second transistor M2 may each be an N-type Metal-Oxide-Semiconductor Field-Effect Transistor (NMOSFET). The first transistor M1 has a control terminal (e.g., a gate), a first terminal (e.g., a source), and a second terminal (e.g., a drain), wherein the control terminal of the first transistor M1 is used to receive a first driving potential VG1, the first terminal of the first transistor M1 is coupled to a first node N1 to output a switching potential VW, and the second terminal of the first transistor M1 is coupled to the input node NIN. The second transistor M2 has a control terminal (e.g., a gate), a first terminal (e.g., a source), and a second terminal (e.g., a drain), wherein the control terminal of the second transistor M2 is used to receive a second driving potential VG2, the first terminal of the second transistor M2 is coupled to a ground potential VSS (e.g., 0V), and the second terminal of the second transistor M2 is coupled to the first node N1. In some embodiments, the first driving potential VG1 and the second driving potential VG2 may have the same switching frequency and complementary logic levels.

變壓器220包括一主線圈221、一第一副線圈222,以及一第二副線圈223,其中變壓器220更可內建一漏電感器LR和一激磁電感器LM。漏電感器LR和激磁電感器LM皆可為變壓器220製造時所附帶產生之固有元件,其並非外部獨立元件。漏電感器LR、主線圈221,以及激磁電感器LM皆可位於變壓器220之同一側(例如:一次側),而第一副線圈222和第二副線圈223則皆可位於變壓器220之相對另一側(例如:二次側,其可與一次側互相隔離開來)。漏電感器LR具有一第一端和一第二端,其中漏電感器LR之第一端係耦接至第一節點N1以接收切換電位VW,而漏電感器LR之第二端係耦接至一第二節點N2。主線圈221具有一第一端和一第二端,其中主線圈221之第一端係耦接至第二節點N2,而主線圈221之第二端係耦接至一第三節點N3。激磁電感器LM具有一第一端和一第二端,其中激磁電感器LM之第一端係耦接至第二節點N2,而激磁電感器LM之第二端係耦接至第三節點N3。第一電容器C1具有一第一端和一第二端,其中第一電容器C1之第一端係耦接至第三節點N3以輸出一電容電位VP,而第一電容器C1之第二端係耦接至接地電位VSS。在一些實施例中,漏電感器LR、激磁電感器LM,以及第一電容器C1三者可共同形成電源供應器200之一諧振槽。第一副線圈222具有一第一端和一第二端,其中第一副線圈222之第一端係耦接至一第四節點N4,而第一副線圈222之第二端係耦接至一共同節點NCM。例如,共同節點NCM可提供一共同電位,其可被視為另一接地電位,並可與前述之接地電位VSS相同或相異。第二副線圈223具有一第一端和一第二端,其中第二副線圈223之第一端係耦接至共同節點NCM,而第二副線圈223之第二端係耦接至一第五節點N5。The transformer 220 includes a main coil 221, a first secondary coil 222, and a second secondary coil 223, wherein the transformer 220 may further have a built-in leakage inductor LR and an excitation inductor LM. The leakage inductor LR and the excitation inductor LM may be inherent components generated when the transformer 220 is manufactured, and are not external independent components. The leakage inductor LR, the main coil 221, and the excitation inductor LM may all be located on the same side of the transformer 220 (e.g., the primary side), while the first secondary coil 222 and the second secondary coil 223 may all be located on the opposite side of the transformer 220 (e.g., the secondary side, which may be isolated from the primary side). The leakage inductor LR has a first end and a second end, wherein the first end of the leakage inductor LR is coupled to the first node N1 to receive the switching potential VW, and the second end of the leakage inductor LR is coupled to a second node N2. The main coil 221 has a first end and a second end, wherein the first end of the main coil 221 is coupled to the second node N2, and the second end of the main coil 221 is coupled to a third node N3. The excitation inductor LM has a first end and a second end, wherein the first end of the excitation inductor LM is coupled to the second node N2, and the second end of the excitation inductor LM is coupled to the third node N3. The first capacitor C1 has a first end and a second end, wherein the first end of the first capacitor C1 is coupled to the third node N3 to output a capacitance potential VP, and the second end of the first capacitor C1 is coupled to the ground potential VSS. In some embodiments, the leakage inductor LR, the excitation inductor LM, and the first capacitor C1 can together form a resonant tank of the power supply 200. The first sub-coil 222 has a first end and a second end, wherein the first end of the first sub-coil 222 is coupled to a fourth node N4, and the second end of the first sub-coil 222 is coupled to a common node NCM. For example, the common node NCM can provide a common potential, which can be regarded as another ground potential and can be the same as or different from the aforementioned ground potential VSS. The second sub-coil 223 has a first end and a second end, wherein the first end of the second sub-coil 223 is coupled to the common node NCM, and the second end of the second sub-coil 223 is coupled to a fifth node N5.

輸出級電路230包括一第三電晶體M3、一第四電晶體M4,以及一第二電容器C2。例如,第三電晶體M3和第四電晶體M4可各自為一N型金氧半場效電晶體。第三電晶體M3具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第三電晶體M3之控制端係用於接收一第一控制電位VC1,第三電晶體M3之第一端係耦接至輸出節點NOUT,而第三電晶體M3之第二端係耦接至第四節點N4。第四電晶體M4具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第四電晶體M4之控制端係用於接收一第二控制電位VC2,第四電晶體M4之第一端係耦接至輸出節點NOUT,而第四電晶體M4之第二端係耦接至第五節點N5。第二電容器C2具有一第一端和一第二端,其中第二電容器C2之第一端係耦接至輸出節點NOUT,而第二電容器C2之第二端係耦接至共同節點NCM。在一些實施例中,一第一電流I1可流經第三電晶體M3,而一第二電流I2則可流經第四電晶體M4。The output stage circuit 230 includes a third transistor M3, a fourth transistor M4, and a second capacitor C2. For example, the third transistor M3 and the fourth transistor M4 can each be an N-type metal oxide semi-conductor field effect transistor. The third transistor M3 has a control terminal (e.g., a gate), a first terminal (e.g., a source), and a second terminal (e.g., a drain), wherein the control terminal of the third transistor M3 is used to receive a first control potential VC1, the first terminal of the third transistor M3 is coupled to the output node NOUT, and the second terminal of the third transistor M3 is coupled to the fourth node N4. The fourth transistor M4 has a control terminal (e.g., a gate), a first terminal (e.g., a source), and a second terminal (e.g., a drain), wherein the control terminal of the fourth transistor M4 is used to receive a second control potential VC2, the first terminal of the fourth transistor M4 is coupled to the output node NOUT, and the second terminal of the fourth transistor M4 is coupled to the fifth node N5. The second capacitor C2 has a first terminal and a second terminal, wherein the first terminal of the second capacitor C2 is coupled to the output node NOUT, and the second terminal of the second capacitor C2 is coupled to the common node NCM. In some embodiments, a first current I1 may flow through the third transistor M3, and a second current I2 may flow through the fourth transistor M4.

同步整流電路240可產生具有一死區時間DZT之第一控制電位VC1和第二控制電位VC2。例如,第一控制電位VC1和第二控制電位VC2兩者可大致為互補之邏輯位準。然而,於前述之死區時間DZT之內,第一控制電位VC1和第二控制電位VC2將可同時皆為低邏輯位準,而此種設計可避免輸出級電路230之第三電晶體M3和第四電晶體M4同時導通。必須注意的是,同步整流電路240之死區時間DZT亦可由偵測及控制電路250來進行調整。The synchronous rectifier circuit 240 can generate a first control potential VC1 and a second control potential VC2 with a dead time DZT. For example, the first control potential VC1 and the second control potential VC2 can be substantially complementary logic levels. However, within the aforementioned dead time DZT, the first control potential VC1 and the second control potential VC2 can both be low logic levels at the same time, and this design can prevent the third transistor M3 and the fourth transistor M4 of the output stage circuit 230 from being turned on at the same time. It must be noted that the dead time DZT of the synchronous rectifier circuit 240 can also be adjusted by the detection and control circuit 250.

偵測及控制電路250包括一平均電路(Average Circuit)252、一除法器(Divider)254,以及一微控制器(Microcontroller Unit,MCU)256,其功能及操作方式將於下列實施例中進行詳述。The detection and control circuit 250 includes an average circuit 252, a divider 254, and a microcontroller unit (MCU) 256, and its functions and operation methods will be described in detail in the following embodiments.

平均電路252係耦接至第三節點N3。平均電路252可用於將電容電位VP進行平均,以產生一平均電位VA。舉例而言,平均電位VA可大致等於電容電位VP於一段既定時間內之一平均值,但亦不僅限於此。The averaging circuit 252 is coupled to the third node N3. The averaging circuit 252 can be used to average the capacitor potential VP to generate an average potential VA. For example, the average potential VA can be substantially equal to an average value of the capacitor potential VP within a given period of time, but is not limited thereto.

除法器254係耦接至平均電路252。除法器254可將平均電位VA除以一參考電位VR,以產生一增益倍率QN,其中除法器254更可由一供應電位VCC來進行供電。例如,若供應電位VCC具有高邏輯位準(亦即:邏輯「1」),則除法器254將可被致能(Enabled);反之,若供應電位VCC具有低邏輯位準,則除法器254將可被禁能(Disable)。在一些實施例中,除法器254之操作原理可如下列方程式(1)所述:The divider 254 is coupled to the averaging circuit 252. The divider 254 can divide the average potential VA by a reference potential VR to generate a gain factor QN, wherein the divider 254 can be powered by a supply potential VCC. For example, if the supply potential VCC has a high logic level (i.e., logic "1"), the divider 254 will be enabled; conversely, if the supply potential VCC has a low logic level, the divider 254 will be disabled. In some embodiments, the operating principle of the divider 254 can be described as the following equation (1):

……………………………………………(1) 其中「QN」代表增益倍率QN之數值,「VA」代表平均電位VA之電位位準,而「VR」代表參考電位VR之電位位準。 …………………………………………(1) Where “QN” represents the value of the gain factor QN, “VA” represents the potential level of the average potential VA, and “VR” represents the potential level of the reference potential VR.

微控制器256係分別耦接至同步整流電路240和除法器254。微控制器256可監控同步整流電路240之死區時間DZT,並可產生前述之第一驅動電位VG1、第二驅動電位VG2,以及參考電位VR。例如,參考電位VR可為一固定值。詳細而言,微控制器256可將死區時間DZT與一第一臨界值TH1和一第二臨界值TH2進行比較。若死區時間DZT介於第一臨界值TH1和第二臨界值TH2之間(亦即, ),則微控制器256即可輸出具有高邏輯位準之供應電位VCC,並更可由除法器254處接收增益倍率QN。在一些實施例中,第一臨界值TH1可約等於60ns,而第二臨界值TH2可約等於300ns,但亦不僅限於此。 The microcontroller 256 is coupled to the synchronous rectifier circuit 240 and the divider 254, respectively. The microcontroller 256 can monitor the dead time DZT of the synchronous rectifier circuit 240, and can generate the aforementioned first driving potential VG1, the second driving potential VG2, and the reference potential VR. For example, the reference potential VR can be a fixed value. In detail, the microcontroller 256 can compare the dead time DZT with a first critical value TH1 and a second critical value TH2. If the dead time DZT is between the first critical value TH1 and the second critical value TH2 (that is, ), the microcontroller 256 can output a supply potential VCC with a high logic level, and can further receive a gain factor QN from the divider 254. In some embodiments, the first threshold value TH1 can be approximately equal to 60ns, and the second threshold value TH2 can be approximately equal to 300ns, but is not limited thereto.

第3圖係顯示根據本發明一實施例所述之第一控制電位VC1和第二控制電位VC2之電位波形圖,其中橫軸代表時間(s),而縱軸代表電位位準(V)。如第3圖所示,若死區時間DZT介於第一臨界值TH1和第二臨界值TH2之間,則微控制器256更可控制同步整流電路240,以藉由將死區時間DZT乘以增益倍率QN來更新此一死區時間DZT。大致來說,更新後之死區時間DZT’將會比原本之死區時間DZT來得更長。在一些實施例中,更新後之死區時間DZT’可如下列方程式(2)所述:FIG. 3 shows a potential waveform diagram of the first control potential VC1 and the second control potential VC2 according to an embodiment of the present invention, wherein the horizontal axis represents time (s) and the vertical axis represents potential level (V). As shown in FIG. 3, if the dead time DZT is between the first critical value TH1 and the second critical value TH2, the microcontroller 256 can further control the synchronous rectifier circuit 240 to update the dead time DZT by multiplying the dead time DZT by the gain multiplier QN. Generally speaking, the updated dead time DZT' will be longer than the original dead time DZT. In some embodiments, the updated dead time DZT' can be as described in the following equation (2):

……………………………………(2) 其中「DZT’」代表更新後之死區時間DZT’之長度,「QN」代表增益倍率QN之數值,而「DZT」代表原本之死區時間DZT之長度。 ……………………………………(2) “DZT’” represents the length of the updated dead time DZT’, “QN” represents the value of the gain factor QN, and “DZT” represents the length of the original dead time DZT.

第4圖係顯示根據本發明一實施例所述之系統端290之示意圖。例如,系統端290可為一筆記型電腦,但亦不僅限於此。在第4圖之實施例中,系統端290可包括一主電路板292和一嵌入式控制器(Embedded Controller,EC)294,其中主電路板292可接收來自電源供應器200之輸出電位VOUT,而嵌入式控制器294則可設置於主電路板292之上。必須注意的是,系統端290並不屬於電源供應器200之任何一部份。FIG. 4 is a schematic diagram showing a system end 290 according to an embodiment of the present invention. For example, the system end 290 may be a laptop computer, but is not limited thereto. In the embodiment of FIG. 4 , the system end 290 may include a main circuit board 292 and an embedded controller (EC) 294, wherein the main circuit board 292 may receive the output potential VOUT from the power supply 200, and the embedded controller 294 may be disposed on the main circuit board 292. It should be noted that the system end 290 is not a part of the power supply 200.

在一些實施例中,若死區時間DZT小於第一臨界值TH1(亦即, ),則微控制器256將傳送一通知電位VT至系統端290之嵌入式控制器294,並於一延遲時間TD之後強迫電源供應器200進入一栓鎖保護模式。因此,系統端290將可基於通知電位VT而偵測到電源供應器200之異常狀態,且操作於栓鎖保護模式下之電源供應器200也不會再提供任何電力給系統端290。例如,前述之延遲時間TD可介於1ms至2.5ms之間,但亦不僅限於此。 In some embodiments, if the dead time DZT is less than the first threshold value TH1 (ie, ), the microcontroller 256 will transmit a notification voltage VT to the embedded controller 294 of the system end 290, and force the power supply 200 to enter a latch protection mode after a delay time TD. Therefore, the system end 290 will be able to detect the abnormal state of the power supply 200 based on the notification voltage VT, and the power supply 200 operating in the latch protection mode will no longer provide any power to the system end 290. For example, the aforementioned delay time TD may be between 1ms and 2.5ms, but is not limited thereto.

第5圖係顯示傳統電源供應器之信號波形圖,其中橫軸代表時間(s),而縱軸代表電位位準(V)或電流值(A)。如第5圖所示,在死區時間DZT不夠長之前提下,傳統電源供應器通常無法達成零電流切換(Zero-Current Switching,ZCS)操作之目標(如複數個虛線框571、572、573、574所指示處)。因此,傳統電源供應器往往會面臨切換損失過大之問題。FIG. 5 shows a signal waveform of a conventional power supply, wherein the horizontal axis represents time (s) and the vertical axis represents potential level (V) or current value (A). As shown in FIG. 5, under the premise that the dead time DZT is not long enough, the conventional power supply usually cannot achieve the goal of zero-current switching (ZCS) operation (as indicated by a plurality of dashed boxes 571, 572, 573, 574). Therefore, conventional power supplies often face the problem of excessive switching loss.

第6圖係顯示根據本發明一實施例所述之電源供應器200之信號波形圖,其中橫軸代表時間(s),而縱軸代表電位位準(V)或電流值(A)。根據第6圖之量測結果,在本發明之設計下,電源供應器200將可適當地增加同步整流電路240之死區時間DZT,使得其輸出級電路230幾乎可達成完美之零電流切換操作(如複數個虛線框671、672、673、674所指示處)。因此,本發明所提之電源供應器200將能提供相對較高之轉換效率。FIG. 6 shows a signal waveform diagram of a power supply 200 according to an embodiment of the present invention, wherein the horizontal axis represents time (s) and the vertical axis represents potential level (V) or current value (A). According to the measurement results of FIG. 6, under the design of the present invention, the power supply 200 can appropriately increase the dead time DZT of the synchronous rectification circuit 240, so that its output stage circuit 230 can almost achieve perfect zero current switching operation (as indicated by a plurality of dashed boxes 671, 672, 673, 674). Therefore, the power supply 200 of the present invention can provide a relatively high conversion efficiency.

本發明提出一種新穎之電源供應器。根據實際量測結果,使用前述設計之電源供應器其整體之轉換效率將有明顯改善,故其很適合應用於各種各式之裝置當中。The present invention proposes a novel power supply. According to actual measurement results, the overall conversion efficiency of the power supply using the above design will be significantly improved, so it is very suitable for application in various types of devices.

值得注意的是,以上所述之電位、電流、電阻值、電感值、電容值,以及其餘元件參數均非為本發明之限制條件。設計者可以根據不同需要調整這些設定值。本發明之電源供應器並不僅限於第1-6圖所圖示之狀態。本發明可以僅包括第1-6圖之任何一或複數個實施例之任何一或複數項特徵。換言之,並非所有圖示之特徵均須同時實施於本發明之電源供應器當中。雖然本發明之實施例係使用金氧半場效電晶體為例,但本發明並不僅限於此,本技術領域人士可改用其他種類之電晶體,例如:接面場效電晶體,或是鰭式場效電晶體等等,而不致於影響本發明之效果。It is worth noting that the potential, current, resistance, inductance, capacitance, and other component parameters described above are not limiting conditions of the present invention. Designers can adjust these settings according to different needs. The power supply of the present invention is not limited to the states shown in Figures 1-6. The present invention may only include any one or more features of any one or more embodiments of Figures 1-6. In other words, not all of the features shown in the diagrams need to be implemented in the power supply of the present invention at the same time. Although the embodiments of the present invention use metal oxide semi-conductor field effect transistors as an example, the present invention is not limited to this. People in the technical field can use other types of transistors, such as junction field effect transistors, or fin field effect transistors, etc., without affecting the effects of the present invention.

在本說明書以及申請專利範圍中的序數,例如「第一」、「第二」、「第三」等等,彼此之間並沒有順序上的先後關係,其僅用於標示區分兩個具有相同名字之不同元件。Ordinal numbers in this specification and the scope of the patent application, such as "first", "second", "third", etc., have no sequential relationship with each other, and are only used to mark and distinguish two different components with the same name.

本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention is disclosed as above with the preferred embodiments, it is not intended to limit the scope of the present invention. Anyone skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the scope defined by the attached patent application.

100,200:電源供應器 110,210:切換電路 120,220:變壓器 121,221:主線圈 122,222:第一副線圈 123,223:第二副線圈 130,230:輸出級電路 140,240:同步整流電路 150,250:偵測及控制電路 252:平均電路 254:除法器 256:微控制器 290:系統端 292:主電路板 294:嵌入式控制器 571,572,573,574,671,672,673,674:虛線框 C1:第一電容器 C2:第二電容器 DZT:死區時間 DZT’:更新後之死區時間 I1:第一電流 I2:第二電流 LM:激磁電感器 LR:漏電感器 M1:第一電晶體 M2:第二電晶體 M3:第三電晶體 M4:第四電晶體 N1:第一節點 N2:第二節點 N3:第三節點 N4:第四節點 N5:第五節點 NCM:共同節點 NIN:輸入節點 NOUT:輸出節點 QN:增益倍率 TD:延遲時間 TH1:第一臨界值 TH2:第二臨界值 VA:平均電位 VC1:第一控制電位 VC2:第二控制電位 VCC:供應電位 VIN:輸入電位 VG1:第一驅動電位 VG2:第二驅動電位 VOUT:輸出電位 VP:電容電位 VR:參考電位 VSS:接地電位 VT:通知電位 VW:切換電位100,200: Power supply 110,210: Switching circuit 120,220: Transformer 121,221: Main coil 122,222: First secondary coil 123,223: Second secondary coil 130,230: Output stage circuit 140,240: Synchronous rectification circuit 150,250: Detection and control circuit 252: Averaging circuit 254: Divider 256: Microcontroller 290: System side 292: Main circuit board 294: Embedded controller 571,572,573,574,671,672,673,674: Dashed frame C1: First capacitor C2: Second capacitor DZT: Dead time DZT’: Dead time after update I1: First current I2: Second current LM: Excitation inductor LR: Leakage inductor M1: First transistor M2: Second transistor M3: Third transistor M4: Fourth transistor N1: First node N2: Second node N3: Third node N4: Fourth node N5: Fifth node NCM: Common node NIN: Input node NOUT: Output node QN: Gain multiplier TD: Delay time TH1: First threshold value TH2: Second threshold value VA: Average potential VC1: First control potential VC2: Second control potential VCC: Supply potential VIN: Input potential VG1: First drive potential VG2: Second drive potential VOUT: Output potential VP: Capacitor potential VR: Reference potential VSS: Ground potential VT: Notification potential VW: Switching potential

第1圖係顯示根據本發明一實施例所述之電源供應器之示意圖。 第2圖係顯示根據本發明一實施例所述之電源供應器之電路圖。 第3圖係顯示根據本發明一實施例所述之第一控制電位和第二控制電位之電位波形圖。 第4圖係顯示根據本發明一實施例所述之系統端之示意圖。 第5圖係顯示傳統電源供應器之信號波形圖。 第6圖係顯示根據本發明一實施例所述之電源供應器之信號波形圖。 FIG. 1 is a schematic diagram showing a power supply according to an embodiment of the present invention. FIG. 2 is a circuit diagram showing a power supply according to an embodiment of the present invention. FIG. 3 is a potential waveform diagram showing a first control potential and a second control potential according to an embodiment of the present invention. FIG. 4 is a schematic diagram showing a system end according to an embodiment of the present invention. FIG. 5 is a signal waveform diagram showing a conventional power supply. FIG. 6 is a signal waveform diagram showing a power supply according to an embodiment of the present invention.

100:電源供應器 100: Power supply

110:切換電路 110: Switching circuit

120:變壓器 120: Transformer

121:主線圈 121: Main coil

122:第一副線圈 122: First coil

123:第二副線圈 123: Second coil

130:輸出級電路 130: Output stage circuit

140:同步整流電路 140: Synchronous rectification circuit

150:偵測及控制電路 150: Detection and control circuit

C1:第一電容器 C1: First capacitor

DZT:死區時間 DZT: Dead Zone Time

LM:激磁電感器 LM: Magnetizing inductor

LR:漏電感器 LR: Leakage Inductor

TH1:第一臨界值 TH1: First critical value

TH2:第二臨界值 TH2: Second critical value

VC1:第一控制電位 VC1: first control potential

VC2:第二控制電位 VC2: Second control potential

VIN:輸入電位 VIN: input voltage

VG1:第一驅動電位 VG1: first driving potential

VG2:第二驅動電位 VG2: Second driving potential

VOUT:輸出電位 VOUT: output voltage

VP:電容電位 VP: Capacitor potential

VW:切換電位 VW: Switching potential

Claims (10)

一種高轉換效率之電源供應器,包括: 一切換電路,根據一輸入電位、一第一驅動電位,以及一第二驅動電位來產生一切換電位; 一變壓器,包括一主線圈、一第一副線圈,以及一第二副線圈,其中該變壓器內建一漏電感器和一激磁電感器,而該主線圈係經由該漏電感器接收該切換電位; 一第一電容器,耦接至該激磁電感器,並提供一電容電位; 一輸出級電路,耦接至該第一副線圈和該第二副線圈,其中該輸出級電路係根據一第一控制電位和一第二控制電位來產生一輸出電位; 一同步整流電路,產生具有一死區時間之該第一控制電位和該第二控制電位;以及 一偵測及控制電路,耦接至該同步整流電路,並產生該第一驅動電位和該第二驅動電位; 其中該偵測及控制電路更監控該死區時間,而若該死區時間介於一第一臨界值和一第二臨界值之間,則該偵測及控制電路即根據該電容電位來控制該同步整流電路,以更新及增加該死區時間。 A power supply with high conversion efficiency, comprising: A switching circuit, generating a switching potential according to an input potential, a first drive potential, and a second drive potential; A transformer, comprising a main coil, a first sub-coil, and a second sub-coil, wherein the transformer has a built-in leakage inductor and an excitation inductor, and the main coil receives the switching potential through the leakage inductor; A first capacitor, coupled to the excitation inductor and providing a capacitance potential; An output stage circuit, coupled to the first sub-coil and the second sub-coil, wherein the output stage circuit generates an output potential according to a first control potential and a second control potential; A synchronous rectification circuit, generating the first control potential and the second control potential with a dead time; and A detection and control circuit is coupled to the synchronous rectification circuit and generates the first driving potential and the second driving potential; Wherein, the detection and control circuit further monitors the dead time, and if the dead time is between a first critical value and a second critical value, the detection and control circuit controls the synchronous rectification circuit according to the capacitor potential to update and increase the dead time. 如請求項1之電源供應器,其中該切換電路包括: 一第一電晶體,具有一控制端、一第一端,以及一第二端,其中該第一電晶體之該控制端係用於接收該第一驅動電位,該第一電晶體之該第一端係耦接至一第一節點以輸出該切換電位,而該第一電晶體之該第二端係耦接至一輸入節點以接收該輸入電位;以及 一第二電晶體,具有一控制端、一第一端,以及一第二端,其中該第二電晶體之該控制端係用於接收該第二驅動電位,該第二電晶體之該第一端係耦接至一接地電位,而該第二電晶體之該第二端係耦接至該第一節點。 A power supply as claimed in claim 1, wherein the switching circuit comprises: a first transistor having a control terminal, a first terminal, and a second terminal, wherein the control terminal of the first transistor is used to receive the first driving potential, the first terminal of the first transistor is coupled to a first node to output the switching potential, and the second terminal of the first transistor is coupled to an input node to receive the input potential; and a second transistor having a control terminal, a first terminal, and a second terminal, wherein the control terminal of the second transistor is used to receive the second driving potential, the first terminal of the second transistor is coupled to a ground potential, and the second terminal of the second transistor is coupled to the first node. 如請求項2之電源供應器,其中該漏電感器具有一第一端和一第二端,該漏電感器之該第一端係耦接至該第一節點以接收該切換電位,該漏電感器之該第二端係耦接至一第二節點,該主線圈具有一第一端和一第二端,該主線圈之該第一端係耦接至該第二節點,該主線圈之該第二端係耦接至一第三節點,該激磁電感器具有一第一端和一第二端,該激磁電感器之該第一端係耦接至該第二節點,該激磁電感器之該第二端係耦接至該第三節點,該第一電容器具有一第一端和一第二端,該第一電容器之該第一端係耦接至該第三節點以輸出該電容電位,該第一電容器之該第二端係耦接至該接地電位,該第一副線圈具有一第一端和一第二端,該第一副線圈之該第一端係耦接至一第四節點,該第一副線圈之該第二端係耦接至一共同節點,該第二副線圈具有一第一端和一第二端,該第二副線圈之該第一端係耦接至該共同節點,而該第二副線圈之該第二端係耦接至一第五節點。A power supply as claimed in claim 2, wherein the leakage inductor has a first end and a second end, the first end of the leakage inductor is coupled to the first node to receive the switching potential, the second end of the leakage inductor is coupled to a second node, the main coil has a first end and a second end, the first end of the main coil is coupled to the second node, the second end of the main coil is coupled to a third node, the excitation inductor has a first end and a second end, the first end of the excitation inductor is coupled to the second node, the second end of the excitation inductor is coupled to the third node point, the first capacitor has a first end and a second end, the first end of the first capacitor is coupled to the third node to output the capacitance potential, the second end of the first capacitor is coupled to the ground potential, the first sub-coil has a first end and a second end, the first end of the first sub-coil is coupled to a fourth node, the second end of the first sub-coil is coupled to a common node, the second sub-coil has a first end and a second end, the first end of the second sub-coil is coupled to the common node, and the second end of the second sub-coil is coupled to a fifth node. 如請求項3之電源供應器,其中該輸出級電路包括: 一第三電晶體,具有一控制端、一第一端,以及一第二端,其中該第三電晶體之該控制端係用於接收該第一控制電位,該第三電晶體之該第一端係耦接至一輸出節點以輸出該輸出電位,而該第三電晶體之該第二端係耦接至該第四節點; 一第四電晶體,具有一控制端、一第一端,以及一第二端,其中該第四電晶體之該控制端係用於接收該第二控制電位,該第四電晶體之該第一端係耦接至該輸出節點,而該第四電晶體之該第二端係耦接至該第五節點;以及 一第二電容器,具有一第一端和一第二端,其中該第二電容器之該第一端係耦接至該輸出節點,而該第二電容器之該第二端係耦接至該共同節點。 A power supply as claimed in claim 3, wherein the output stage circuit comprises: a third transistor having a control terminal, a first terminal, and a second terminal, wherein the control terminal of the third transistor is used to receive the first control potential, the first terminal of the third transistor is coupled to an output node to output the output potential, and the second terminal of the third transistor is coupled to the fourth node; a fourth transistor having a control terminal, a first terminal, and a second terminal, wherein the control terminal of the fourth transistor is used to receive the second control potential, the first terminal of the fourth transistor is coupled to the output node, and the second terminal of the fourth transistor is coupled to the fifth node; and a second capacitor having a first terminal and a second terminal, wherein the first terminal of the second capacitor is coupled to the output node, and the second terminal of the second capacitor is coupled to the common node. 如請求項1之電源供應器,其中該第一臨界值約等於60ns,而該第二臨界值約等於300ns。A power supply as claimed in claim 1, wherein the first critical value is approximately equal to 60ns, and the second critical value is approximately equal to 300ns. 如請求項1之電源供應器,其中該偵測及控制電路包括: 一平均電路,將該電容電位進行平均,以產生一平均電位。 A power supply as claimed in claim 1, wherein the detection and control circuit comprises: An averaging circuit that averages the capacitor potential to generate an average potential. 如請求項6之電源供應器,其中該偵測及控制電路更包括: 一除法器,將該平均電位除以一參考電位,以產生一增益倍率,其中該除法器係由一供應電位來進行供電。 A power supply as claimed in claim 6, wherein the detection and control circuit further comprises: A divider that divides the average potential by a reference potential to generate a gain multiplier, wherein the divider is powered by a supply potential. 如請求項7之電源供應器,其中該偵測及控制電路更包括: 一微控制器,監控該死區時間,並產生該第一驅動電位、該第二驅動電位,以及該參考電位,其中若該死區時間介於該第一臨界值和該第二臨界值之間,則該微控制器即輸出具有高邏輯位準之該供應電位,並更由該除法器處接收該增益倍率。 The power supply of claim 7, wherein the detection and control circuit further comprises: A microcontroller, monitoring the dead time, and generating the first drive potential, the second drive potential, and the reference potential, wherein if the dead time is between the first critical value and the second critical value, the microcontroller outputs the supply potential with a high logic level, and further receives the gain multiplier from the divider. 如請求項8之電源供應器,其中若該死區時間介於該第一臨界值和該第二臨界值之間,則該微控制器更控制該同步整流電路,以藉由將該死區時間乘以該增益倍率來更新該死區時間。A power supply as claimed in claim 8, wherein if the dead time is between the first critical value and the second critical value, the microcontroller further controls the synchronous rectification circuit to update the dead time by multiplying the dead time by the gain factor. 如請求項8之電源供應器,其中若該死區時間小於該第一臨界值,則該微控制器將傳送一通知電位至一系統端,並於一延遲時間之後強迫該電源供應器進入一栓鎖保護模式。As in the power supply of claim 8, if the dead time is less than the first critical value, the microcontroller will transmit a notification potential to a system end and force the power supply to enter a latching protection mode after a delay time.
TW112135234A 2023-09-15 2023-09-15 Power supply device with high conversion efficiency TWI857781B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112135234A TWI857781B (en) 2023-09-15 2023-09-15 Power supply device with high conversion efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112135234A TWI857781B (en) 2023-09-15 2023-09-15 Power supply device with high conversion efficiency

Publications (1)

Publication Number Publication Date
TWI857781B true TWI857781B (en) 2024-10-01

Family

ID=94083879

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112135234A TWI857781B (en) 2023-09-15 2023-09-15 Power supply device with high conversion efficiency

Country Status (1)

Country Link
TW (1) TWI857781B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201138285A (en) * 2009-10-30 2011-11-01 Delta Electronics Inc Method and apparatus for resetting a resonant converter
CN102468759B (en) * 2010-11-01 2015-02-18 台达电子工业股份有限公司 Resonant converter and its reset method and device
US10594225B1 (en) * 2018-09-12 2020-03-17 Jing-Yuan Lin Interleaved LLC half-bridge series resonant converter having integrated transformer
TWI800420B (en) * 2022-06-29 2023-04-21 明志科技大學 Full Bridge LLC Resonant Converter
TW202322538A (en) * 2021-11-24 2023-06-01 宏碁股份有限公司 Power supply system
TWI812354B (en) * 2022-07-18 2023-08-11 宏碁股份有限公司 Power supply device with high efficiency

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201138285A (en) * 2009-10-30 2011-11-01 Delta Electronics Inc Method and apparatus for resetting a resonant converter
TWI436570B (en) * 2009-10-30 2014-05-01 Delta Electronics Inc Method and apparatus for resetting a resonant converter
CN102468759B (en) * 2010-11-01 2015-02-18 台达电子工业股份有限公司 Resonant converter and its reset method and device
US10594225B1 (en) * 2018-09-12 2020-03-17 Jing-Yuan Lin Interleaved LLC half-bridge series resonant converter having integrated transformer
TW202322538A (en) * 2021-11-24 2023-06-01 宏碁股份有限公司 Power supply system
TWI800420B (en) * 2022-06-29 2023-04-21 明志科技大學 Full Bridge LLC Resonant Converter
TWI812354B (en) * 2022-07-18 2023-08-11 宏碁股份有限公司 Power supply device with high efficiency

Similar Documents

Publication Publication Date Title
TW202101882A (en) Power supply device
TW202337119A (en) Power supply device for suppressing magnetic saturation
CN114552996A (en) Low-loss power supply
TWI857781B (en) Power supply device with high conversion efficiency
TW202203565A (en) Power supply device for eliminating ringing effect
TWI812354B (en) Power supply device with high efficiency
TW202349837A (en) Power supply device with fast discharge function
TWI731675B (en) Power supply device for eliminating ringing effect
TW202322538A (en) Power supply system
TWI851351B (en) Power supply device for reducing power consumption
TWI850814B (en) Power supply device with high output voltage stability
TWI837944B (en) Power supply device with high output stability
TWI844373B (en) Power supply device with low switching loss
TWI871924B (en) Power supply device with high efficiency
TWI812079B (en) Power supply device with high output stability
TWI871925B (en) Power supply device with high output stability
TW202505346A (en) Power supply device for reducing power consumption
TWI812407B (en) Power supply device with high output stability
TWI837730B (en) Boost converter with fast discharge function
TWI837670B (en) Power supply device
CN113938014B (en) Power supplies that eliminate ringing
CN113541512B (en) boost converter
TW202439760A (en) Boost converter with high conversion efficiency
TWI865371B (en) Power supply device with high output stability
TWI871944B (en) Power supply device with high efficiency