[go: up one dir, main page]

TWI850376B - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TWI850376B
TWI850376B TW109114480A TW109114480A TWI850376B TW I850376 B TWI850376 B TW I850376B TW 109114480 A TW109114480 A TW 109114480A TW 109114480 A TW109114480 A TW 109114480A TW I850376 B TWI850376 B TW I850376B
Authority
TW
Taiwan
Prior art keywords
layer
dopant
semiconductor
semiconductor device
active
Prior art date
Application number
TW109114480A
Other languages
Chinese (zh)
Other versions
TW202044618A (en
Inventor
陳孟揚
林員梃
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to US16/875,354 priority Critical patent/US11374146B2/en
Publication of TW202044618A publication Critical patent/TW202044618A/en
Priority to US17/750,232 priority patent/US11728456B2/en
Priority to US18/213,304 priority patent/US12136683B2/en
Application granted granted Critical
Publication of TWI850376B publication Critical patent/TWI850376B/en
Priority to US18/896,886 priority patent/US20250040294A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/83Electrodes
    • H10H20/832Electrodes characterised by their material
    • H10H20/835Reflective materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/811Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
    • H10H20/812Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/824Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/84Coatings, e.g. passivation layers or antireflective coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/84Coatings, e.g. passivation layers or antireflective coatings
    • H10H20/841Reflective coatings, e.g. dielectric Bragg reflectors

Landscapes

  • Led Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

The present disclosure provides a semiconductor device which includes an active structure and a first semiconductor layer. The active structure includes an active region and a first dopant having a first conductivity type. The active region has a topmost surface and a bottommost surface. The first dopant distributes from the topmost surface to the bottommost surface. The first semiconductor layer is located under the active structure and includes a second dopant having a second conductivity type. The active region includes a quaternary semiconductor material. The quaternary semiconductor material includes arsenic (As).

Description

半導體元件Semiconductor components

本發明是關於半導體元件,特別是有關於半導體發光元件,如發光二極體。The present invention relates to semiconductor devices, and in particular to semiconductor light-emitting devices, such as light-emitting diodes.

半導體元件的用途十分廣泛,相關材料的開發研究也持續進行。舉例來說,包含三族及五族元素的III-V族半導體材料可應用於各種光電半導體元件如發光二極體(Light emitting diode,LED)、雷射二極體(Laser diode,LD)、光電偵測器或太陽能電池(Solar cell),或者可以是例如開關或整流器的功率元件,能用於照明、醫療、顯示、通訊、感測、電源系統等領域。作為半導體發光元件之一的發光二極體具有耗電量低以及壽命長等優點,因此大量被應用於各種領域。隨著科技的發展,現今對於半導體元件仍存在許多技術研發的需求。Semiconductor components have a wide range of uses, and the development and research of related materials are also ongoing. For example, III-V semiconductor materials containing group III and group V elements can be applied to various optoelectronic semiconductor components such as light emitting diodes (LEDs), laser diodes (LDs), photodetectors or solar cells, or can be power components such as switches or rectifiers, which can be used in lighting, medical, display, communication, sensing, power supply systems and other fields. As one of the semiconductor light-emitting components, the light-emitting diode has the advantages of low power consumption and long life, so it is widely used in various fields. With the development of technology, there is still a lot of demand for technical research and development of semiconductor components.

本發明內容提供一種半導體元件,其包括活性結構及第一半導體層。活性結構包含活性區及具有第一導電型的第一摻質。活性區具有一最上表面及一最下表面。第一摻質分佈於最上表面至最下表面。第一半導體層位於活性結構下且包含具有第二導電型的第二摻質。活性區包含一四元半導體材料。四元半導體材料包含砷(As)。The present invention provides a semiconductor device, which includes an active structure and a first semiconductor layer. The active structure includes an active region and a first dopant with a first conductivity type. The active region has an uppermost surface and a lowermost surface. The first dopant is distributed from the uppermost surface to the lowermost surface. The first semiconductor layer is located under the active structure and includes a second dopant with a second conductivity type. The active region includes a quaternary semiconductor material. The quaternary semiconductor material includes arsenic (As).

以下實施例將伴隨著圖式說明本發明之概念,在圖式或說明中,相似或相同之構件將使用相似或相同之標號進行說明,並且若未特別說明,圖式中各元件之形狀或尺寸僅為例示,實際上並不限於此。需特別注意的是,圖中未繪示或描述之元件,可以是熟習此技藝之人士所知之形式。The following embodiments will be accompanied by drawings to illustrate the concept of the present invention. In the drawings or descriptions, similar or identical components will be described using similar or identical reference numerals, and unless otherwise specified, the shapes or sizes of the components in the drawings are only examples and are not limited thereto. It should be noted that components not shown or described in the drawings may be forms known to those skilled in the art.

在未特別說明的情況下,通式InGaAs代表Inz1 Ga1-z1 As,其中0>z1>1;通式 InAlAs代表Inz2 Al1-z2 As,其中0>z2>1;InGaAsP代表Inz3 Ga1-z3 Asz4 P1-z4 ,其中0>z3>1,0>z4>1;AlGaInAs代表(Alz5 Ga(1-z5) )z6 In1-z6 As,其中0>z5>1,0>z6>1;通式AlGaInP代表(Alz7 Ga(1-z7) )z8 In1-z8 P,其中0>z7>1,0>z8>1。本揭露內容的半導體元件包含的各層組成及摻質(dopant)可用任何適合的方式分析而得,例如二次離子質譜儀(secondary ion mass spectrometer,SIMS),而各層之厚度亦可用任何適合的方式分析而得,例如穿透式電子顯微鏡(transmission electron microscopy,TEM)或是掃描式電子顯微鏡(scanning electron microscope,SEM)。此外,本揭露內容中所提及的各摻質可為故意添加或非故意添加。故意添加例如是藉由在磊晶成長期間原位(in-situ)摻雜及/或藉由在磊晶成長之後使用P型或N型摻質進行佈植(implanting)。非故意添加例如是因製程過程中所產生。Unless otherwise specified, the general formula InGaAs represents In z1 Ga 1-z1 As, where 0>z1>1; the general formula InAlAs represents In z2 Al 1-z2 As, where 0>z2>1; InGaAsP represents In z3 Ga 1-z3 As z4 P 1-z4 , where 0>z3>1, 0>z4>1; AlGaInAs represents (Al z5 Ga (1-z5) ) z6 In 1-z6 As, where 0>z5>1, 0>z6>1; the general formula AlGaInP represents (Al z7 Ga (1-z7) ) z8 In 1-z8 P, where 0>z7>1, 0>z8>1. The composition and dopant of each layer included in the semiconductor device disclosed herein can be analyzed by any suitable method, such as secondary ion mass spectrometer (SIMS), and the thickness of each layer can also be analyzed by any suitable method, such as transmission electron microscopy (TEM) or scanning electron microscope (SEM). In addition, each dopant mentioned in the disclosed content can be intentionally added or unintentionally added. Intentional addition is, for example, by in-situ doping during epitaxial growth and/or by implanting P-type or N-type dopant after epitaxial growth. Unintentional addition is, for example, generated during the manufacturing process.

所屬領域中具通常知識者應理解,可以在以下所說明各實施例之基礎上添加其他構件。舉例來說,在未特別說明之情況下,「第一層(或結構)位於第二層(或結構)上」的類似描述可包含第一層(或結構)與第二層(或結構)直接接觸的實施例,也可包含第一層(或結構)與第二層(或結構)之間具有其他結構而彼此未直接接觸的實施例。另外,應理解各層(或結構)的上下位置關係等可能因由不同方位觀察而有所改變。此外,於本揭露內容中,一層或結構「實質上由X所組成」之敘述表示上述層或結構的主要組成為X,但並不排除上述層或結構包含摻質或不可避免的雜質(impurities)。It should be understood by those skilled in the art that other components may be added to the embodiments described below. For example, unless otherwise specified, a similar description of "a first layer (or structure) is located on a second layer (or structure)" may include an embodiment in which the first layer (or structure) is in direct contact with the second layer (or structure), and may also include an embodiment in which the first layer (or structure) and the second layer (or structure) are not in direct contact with each other with other structures between them. In addition, it should be understood that the upper and lower positional relationship of each layer (or structure) may change due to observation from different directions. In addition, in the present disclosure, the description that a layer or structure “substantially consists of X” means that the main component of the layer or structure is X, but does not exclude that the layer or structure contains dopants or unavoidable impurities.

第1圖為本揭露一實施例之半導體元件100的結構上視圖。第2圖為第1圖之半導體元件100沿A-A’線之剖面結構示意圖。如第1圖所示,從上視觀之,半導體元件100呈一矩形。在一實施例中,半導體元件100之長度及寬度可大於等於100 µm且小於等於500 µm,例如200 µm、250 µm、300 µm、350 µm、400 µm、450 µm。在一實施例中,半導體元件100的長度與寬度大致相等。如第2圖所示,本實施例的半導體元件100包括基底10、活性結構12、第一半導體層14、第二半導體層16、第一電極18以及第二電極20。在一些實施例中,第一半導體層14、活性結構12及第二半導體層16可以透過磊晶方法成長於基底10上或是接合至基底10上,亦即基底10可為成長基板或是非成長基板。基底10可用以支持位於其上之半導體疊層與其它層或結構。活性結構12位於基底10之第一側10a。第二電極20位於基底10之第二側10b。於本實施例中,第二電極20鄰接於基底10且直接接觸基底10之表面。第一半導體層14位於活性結構12下。如第2圖所示,第一半導體層14位在基底10與活性結構12之間。第二半導體層16位於活性結構12上。第一電極18位於第二半導體層16上。半導體元件100在操作時可發出一輻射。FIG. 1 is a top view of the structure of a semiconductor device 100 according to an embodiment of the present disclosure. FIG. 2 is a schematic diagram of the cross-sectional structure of the semiconductor device 100 along the A-A' line of FIG. 1. As shown in FIG. 1, the semiconductor device 100 is a rectangle when viewed from above. In one embodiment, the length and width of the semiconductor device 100 may be greater than or equal to 100 μm and less than or equal to 500 μm, such as 200 μm, 250 μm, 300 μm, 350 μm, 400 μm, 450 μm. In one embodiment, the length and width of the semiconductor device 100 are substantially equal. As shown in FIG. 2 , the semiconductor device 100 of the present embodiment includes a substrate 10, an active structure 12, a first semiconductor layer 14, a second semiconductor layer 16, a first electrode 18, and a second electrode 20. In some embodiments, the first semiconductor layer 14, the active structure 12, and the second semiconductor layer 16 can be grown on the substrate 10 or bonded to the substrate 10 by an epitaxial method, that is, the substrate 10 can be a growth substrate or a non-growth substrate. The substrate 10 can be used to support semiconductor stacks and other layers or structures thereon. The active structure 12 is located on the first side 10a of the substrate 10. The second electrode 20 is located on the second side 10b of the substrate 10. In the present embodiment, the second electrode 20 is adjacent to the substrate 10 and directly contacts the surface of the substrate 10. The first semiconductor layer 14 is located below the active structure 12. As shown in FIG. 2 , the first semiconductor layer 14 is located between the substrate 10 and the active structure 12. The second semiconductor layer 16 is located on the active structure 12. The first electrode 18 is located on the second semiconductor layer 16. The semiconductor device 100 can emit radiation when in operation.

在一實施例中,基底10為一成長基板且可為一導電基板,可包含導電材料例如:砷化鎵(Gallium Arsenide,GaAs) 、磷化銦(Indium Phosphide,InP)、碳化矽(Silicon carbide,SiC)、磷化鎵(GaP) 、氧化鋅(ZnO) 、 氮化鎵(GaN)、氮化鋁(AlN) 、鍺(Ge)或矽(Si) 等。基底10對於上述輻射可為透明、半透明或不透明。舉例來說,當半導體元件100發出的輻射大於1000 nm時,基底10對於上述輻射較佳為具有大於30%的穿透率,或是具有30%以下的吸收率。在一些實施例中,基底10可具有一厚度大於等於60 µm且小於等於250 µm,例如100 µm、130 µm、140 µm、150 µm、160 µm、170 µm、180 µm、200 µm、230 µm。In one embodiment, the substrate 10 is a growth substrate and can be a conductive substrate, which can include conductive materials such as gallium arsenide (GaAs), indium phosphide (InP), silicon carbide (SiC), gallium phosphide (GaP), zinc oxide (ZnO), gallium nitride (GaN), aluminum nitride (AlN), germanium (Ge) or silicon (Si). The substrate 10 can be transparent, semi-transparent or opaque to the above radiation. For example, when the radiation emitted by the semiconductor device 100 is greater than 1000 nm, the substrate 10 preferably has a transmittance greater than 30% or an absorptivity less than 30% to the above radiation. In some embodiments, the substrate 10 may have a thickness greater than or equal to 60 µm and less than or equal to 250 µm, such as 100 µm, 130 µm, 140 µm, 150 µm, 160 µm, 170 µm, 180 µm, 200 µm, or 230 µm.

半導體元件100可包含單異質結構(single heterostructure,SH)、雙異質結構(double heterostructure,DH)、雙側雙異質結構 (double-side double heterostructure,DDH)、或多重量子井(multiple quantum wells,MQW)結構。半導體元件100所發出的輻射可為同調或非同調的可見光或不可見光,較佳為紅光或紅外光,例如是近红外光(Near Infrared,NIR)。當上述輻射為近紅外光時,可具有介於800 nm至2000 nm之間(包含兩者)的峰值波長(peak wavelength),例如:約810 nm、850 nm、 910 nm、940 nm、 1050 nm、1070 nm、1100 nm、1200 nm、1300 nm、1400 nm、1450 nm、1500 nm、1550 nm、1600 nm、1650 nm、1700 nm等。於一實施例中,半導體元件100僅可發出非同調之輻射而無法發射同調之輻射,意即半導體元件100不具有閾值電流(Ith)。The semiconductor device 100 may include a single heterostructure (SH), a double heterostructure (DH), a double-side double heterostructure (DDH), or a multiple quantum wells (MQW) structure. The radiation emitted by the semiconductor device 100 may be coherent or incoherent visible light or invisible light, preferably red light or infrared light, such as near infrared light (NIR). When the radiation is near-infrared light, it may have a peak wavelength between 800 nm and 2000 nm (inclusive), for example, about 810 nm, 850 nm, 910 nm, 940 nm, 1050 nm, 1070 nm, 1100 nm, 1200 nm, 1300 nm, 1400 nm, 1450 nm, 1500 nm, 1550 nm, 1600 nm, 1650 nm, 1700 nm, etc. In one embodiment, the semiconductor device 100 can only emit incoherent radiation but cannot emit coherent radiation, that is, the semiconductor device 100 does not have a threshold current (Ith).

於本實施例中,活性結構12包含第一侷限層(confinement layer)120、第二侷限層122以及位於第一侷限層120及第二侷限層122之間的活性區124。活性結構12可具有第一寬度w1,基底10可具有大於第一寬度w1的第二寬度w2。於一實施例中,第一侷限層120、活性區124及第二侷限層122均包含三元或四元半導體材料。三元或四元半導體材料可包含鋁(Al)、鎵(Ga)、砷(As)、磷(P)或銦(In),例如InGaAs、InGaAsP或AlGaInAs等。於一實施例中,第一侷限層120、活性區124及第二侷限層122均包含砷(As)。較佳為,第一侷限層120、活性區124及第二侷限層122實質上由四元半導體材料所組成,例如由InGaAsP或AlGaInAs所組成。In this embodiment, the active structure 12 includes a first confinement layer 120, a second confinement layer 122, and an active region 124 located between the first confinement layer 120 and the second confinement layer 122. The active structure 12 may have a first width w1, and the substrate 10 may have a second width w2 greater than the first width w1. In one embodiment, the first confinement layer 120, the active region 124, and the second confinement layer 122 all include ternary or quaternary semiconductor materials. The ternary or quaternary semiconductor materials may include aluminum (Al), gallium (Ga), arsenic (As), phosphorus (P), or indium (In), such as InGaAs, InGaAsP, or AlGaInAs. In one embodiment, the first confinement layer 120, the active region 124 and the second confinement layer 122 all contain arsenic (As). Preferably, the first confinement layer 120, the active region 124 and the second confinement layer 122 are substantially composed of a quaternary semiconductor material, such as InGaAsP or AlGaInAs.

於一實施例中,第一侷限層120包含Inx1 Ga1-x1 Asy1 P1-y1 ,其中0>x1>1,0>y1>1;較佳地,0.5≤x1≤0.9或/且0.1≤y1≤0.4。於一實施例中,第二侷限層122包含Inx2 Ga1-x2 Asy2 P1-y2 ,其中0>x2>1,0>y2>1;較佳地,0.5≤x2≤0.9或/且0.1≤y2≤0.4。於一實施例中,活性區124包含Inx3 Ga1-x3 Asy3 P1-y3 ,其中0>x3>1, 0>y3>1;較佳地,0.5≤x3≤0.9或/且0.5≤y3≤0.9。於一實施例中,x1>x3且x2>x3,y3>y1且y3>y2。較佳為,第一侷限層120及第二侷限層122之能隙(band gap)大於活性區124之能隙。在一實施例中,第一侷限層120具有第一厚度t1,第二侷限層122具有第二厚度t2而活性區124具有第三厚度t3,第三厚度t3可大於第一厚度t1或/且第二厚度t2。在一實施例中,第三厚度t3可為第一厚度t1或第二厚度t2的3倍以上,10倍以下,例如為4倍、5倍、6倍、7倍、8倍、9倍。藉由具有相對較厚的活性區124,可增加半導體元件的發光體積,從而提升發光效率。在一實施例中,第一厚度t1及第二厚度t2可分別小於等於90 nm且大於1 nm,例如為80 nm、70 nm、60 nm、50 nm、40 nm、30 nm、20 nm或10 nm。於一些實施例,在一固定操作電流下,與第一厚度t1或第二厚度t2不大於90 nm之半導體元件相比,第一厚度t1或第二厚度t2大於90 nm之半導體元件的順向電壓 (forward voltage, vf) 值可能較大。In one embodiment, the first confinement layer 120 comprises In x1 Ga 1-x1 As y1 P 1-y1 , wherein 0>x1>1, 0>y1>1; preferably, 0.5≤x1≤0.9 or/and 0.1≤y1≤0.4. In one embodiment, the second confinement layer 122 comprises In x2 Ga 1-x2 As y2 P 1-y2 , wherein 0>x2>1, 0>y2>1; preferably, 0.5≤x2≤0.9 or/and 0.1≤y2≤0.4. In one embodiment, the active region 124 comprises In x3 Ga 1-x3 As y3 P 1-y3 , wherein 0>x3>1, 0>y3>1; preferably, 0.5≤x3≤0.9 or/and 0.5≤y3≤0.9. In one embodiment, x1>x3 and x2>x3, y3>y1 and y3>y2. Preferably, the band gap of the first confinement layer 120 and the second confinement layer 122 is greater than the band gap of the active region 124. In one embodiment, the first confinement layer 120 has a first thickness t1, the second confinement layer 122 has a second thickness t2 and the active region 124 has a third thickness t3, and the third thickness t3 may be greater than the first thickness t1 and/or the second thickness t2. In one embodiment, the third thickness t3 may be more than 3 times and less than 10 times the first thickness t1 or the second thickness t2, for example, 4 times, 5 times, 6 times, 7 times, 8 times, 9 times. By having a relatively thick active region 124, the light-emitting volume of the semiconductor element can be increased, thereby improving the light-emitting efficiency. In one embodiment, the first thickness t1 and the second thickness t2 may be less than or equal to 90 nm and greater than 1 nm, for example, 80 nm, 70 nm, 60 nm, 50 nm, 40 nm, 30 nm, 20 nm or 10 nm. In some embodiments, under a fixed operating current, the forward voltage (vf) value of the semiconductor element with the first thickness t1 or the second thickness t2 greater than 90 nm may be larger than that of the semiconductor element with the first thickness t1 or the second thickness t2 not greater than 90 nm.

第一半導體層14及第二半導體層16分別位於活性結構12的兩側且鄰接於活性結構12。於一實施例中,第一半導體層14具有第四厚度t4,第二半導體層具有第五厚度t5大於等於第四厚度t4。於一實施例中,第五厚度t5可為第四厚度t4的2倍以上,10倍以下,例如為3倍、4倍、5倍、6倍、7倍、8倍、9倍。第一半導體層14及第二半導體層16可分別包含二元、三元或四元的III-V族半導體材料,較佳為包含鋁(Al)、鎵(Ga)、砷(As)、磷(P)或銦(In),且可不包含氮(N)。較佳為,第一半導體層14及第二半導體層16分別包含選自鋁(Al)、鎵(Ga)、砷(As)、磷(P)及銦(In)所組成群組中的至少兩者。The first semiconductor layer 14 and the second semiconductor layer 16 are respectively located on both sides of the active structure 12 and are adjacent to the active structure 12. In one embodiment, the first semiconductor layer 14 has a fourth thickness t4, and the second semiconductor layer has a fifth thickness t5 that is greater than or equal to the fourth thickness t4. In one embodiment, the fifth thickness t5 may be more than 2 times and less than 10 times the fourth thickness t4, for example, 3 times, 4 times, 5 times, 6 times, 7 times, 8 times, 9 times. The first semiconductor layer 14 and the second semiconductor layer 16 may respectively include binary, ternary or quaternary III-V semiconductor materials, preferably aluminum (Al), gallium (Ga), arsenic (As), phosphorus (P) or indium (In), and may not include nitrogen (N). Preferably, the first semiconductor layer 14 and the second semiconductor layer 16 respectively include at least two selected from the group consisting of aluminum (Al), gallium (Ga), arsenic (As), phosphorus (P) and indium (In).

在一實施例中,第一半導體層14及第二半導體層16分別包含二元或三元半導體材料,如InP、GaAs、InGaAs或InAlAs。較佳為,第一半導體層14及第二半導體層16實質上分別由二元或三元半導體材料(如InP、GaAs、InGaAs或InAlAs)所組成。在一實施例中,可藉由在磊晶成長期間原位(in-situ)摻雜及/或藉由在磊晶成長之後使用摻質進行佈植(implanting)以進行第一半導體層14和第二半導體層16的摻雜。第二半導體層16可包含第一摻質使其具有第一導電型。第一半導體層14可包含第二摻質使其具有第二導電型。第二導電型與第一導電型不同。第一導電型例如為p型及第二導電型例如為n型以提供電洞或電子,或者第一導電型例如為n型及第二導電型例如為p型以提供電子或電洞。在一實施例中,第一摻質或第二摻質可為鎂(Mg)、鋅(Zn)、矽(Si) 或碲(Te)。In one embodiment, the first semiconductor layer 14 and the second semiconductor layer 16 include binary or ternary semiconductor materials, such as InP, GaAs, InGaAs or InAlAs. Preferably, the first semiconductor layer 14 and the second semiconductor layer 16 are substantially composed of binary or ternary semiconductor materials (such as InP, GaAs, InGaAs or InAlAs). In one embodiment, the first semiconductor layer 14 and the second semiconductor layer 16 can be doped by in-situ doping during epitaxial growth and/or by implanting the dopant after epitaxial growth. The second semiconductor layer 16 can include a first dopant to have a first conductivity type. The first semiconductor layer 14 may include a second dopant to have a second conductivity type. The second conductivity type is different from the first conductivity type. The first conductivity type is, for example, a p-type and the second conductivity type is, for example, an n-type to provide holes or electrons, or the first conductivity type is, for example, an n-type and the second conductivity type is, for example, a p-type to provide electrons or holes. In one embodiment, the first dopant or the second dopant may be magnesium (Mg), zinc (Zn), silicon (Si) or tellurium (Te).

於一實施例中,活性結構12包含第一摻質。具體來說,第一摻質至少分佈於活性區124中。於一實施例中,活性區124具有一最上表面及一最下表面,而第一摻質分佈於活性區124的最上表面至最下表面。於一些實施例中,活性區124包括交互堆疊的多個井層及多個阻障層,且第一摻質分佈於各井層及各阻障層中。更者,前述之最上表面即為活性區124中最上層(井層或阻障層)的上表面,且前述之最下表面即為活性區124中最下層(井層或阻障層)的下表面。較佳為,第一摻質在活性結構12中連續不間斷地分佈(如第4圖所示區域II中的線S1)。於一實施例中,第一摻質於活性結構12中的分佈範圍可介於第一侷限層120及第二侷限層122之間(包含兩者)。換言之,於一實施例中,第一侷限層120、活性區124及第二侷限層122皆具有第一摻質。於一實施例中,第一摻質於活性結構12中的分佈範圍僅位於活性區124及第二侷限層122,第一侷限層120不具有第一摻質。於一實施例中,第一摻質於活性結構12中的分佈範圍僅位於活性區124,而第二侷限層122及第一侷限層120不具有第一摻質。於活性區124中,第一摻質之摻雜濃度可在5x1015 cm-3 至1.5x1018 cm-3 的範圍內,較佳為小於或等於1x1018 cm-3 ,更佳為小於或等於5x1017 cm-3 ,且進一步較佳為大於或等於1x1016 cm-3 ,更佳為大於或等於5x1016 cm-3 ,更佳為大於或等於1x1017 cm-3 。於一些實施例中,藉由在活性結構12中含有第一摻質,可進一步改善元件特性,例如提升發光效率。具體來說,第一摻質可藉由擴散而由第二半導體層16進入第一侷限層120、活性區124及/或第二侷限層122中,即,並非於第一侷限層120、活性區124及/或第二侷限層122中故意添加第一摻質,例如是在以磊晶方式形成第一侷限層120、活性區124及/或第二侷限層122的過程中完全不添加第一摻質。或者,第一摻質也可為故意添加於第一侷限層120、活性區124及/或第二侷限層122。於另一實施例中,活性結構12可實質上由活性區124所組成,即活性結構12不包含第一侷限層120及第二侷限層122。藉此,可簡化製程,有助於元件生產之穩定性。在此情況下,第一摻質可藉由擴散或故意添加而於活性區124中連續不間斷地分佈。In one embodiment, the active structure 12 includes a first dopant. Specifically, the first dopant is distributed at least in the active region 124. In one embodiment, the active region 124 has an uppermost surface and a lowermost surface, and the first dopant is distributed from the uppermost surface to the lowermost surface of the active region 124. In some embodiments, the active region 124 includes a plurality of well layers and a plurality of barrier layers stacked alternately, and the first dopant is distributed in each well layer and each barrier layer. Furthermore, the aforementioned uppermost surface is the upper surface of the uppermost layer (well layer or barrier layer) in the active region 124, and the aforementioned lowermost surface is the lower surface of the lowermost layer (well layer or barrier layer) in the active region 124. Preferably, the first dopant is continuously distributed in the active structure 12 (as shown by line S1 in region II in FIG. 4 ). In one embodiment, the distribution range of the first dopant in the active structure 12 may be between the first confinement layer 120 and the second confinement layer 122 (including both). In other words, in one embodiment, the first confinement layer 120, the active region 124, and the second confinement layer 122 all have the first dopant. In one embodiment, the distribution range of the first dopant in the active structure 12 is only located in the active region 124 and the second confinement layer 122, and the first confinement layer 120 does not have the first dopant. In one embodiment, the distribution range of the first dopant in the active structure 12 is only located in the active region 124, and the second confinement layer 122 and the first confinement layer 120 do not have the first dopant. In the active region 124, the doping concentration of the first dopant may be in the range of 5x10 15 cm -3 to 1.5x10 18 cm -3 , preferably less than or equal to 1x10 18 cm -3 , more preferably less than or equal to 5x10 17 cm -3 , and further preferably greater than or equal to 1x10 16 cm -3 , more preferably greater than or equal to 5x10 16 cm -3 , and more preferably greater than or equal to 1x10 17 cm -3 . In some embodiments, by including the first dopant in the active structure 12, the device characteristics can be further improved, such as increasing the light emission efficiency. Specifically, the first dopant can enter the first confinement layer 120, the active region 124 and/or the second confinement layer 122 from the second semiconductor layer 16 by diffusion, that is, the first dopant is not intentionally added to the first confinement layer 120, the active region 124 and/or the second confinement layer 122, for example, the first dopant is not added at all during the process of forming the first confinement layer 120, the active region 124 and/or the second confinement layer 122 by epitaxial deposition. Alternatively, the first dopant can also be intentionally added to the first confinement layer 120, the active region 124 and/or the second confinement layer 122. In another embodiment, the active structure 12 may be substantially composed of the active region 124, that is, the active structure 12 does not include the first confinement layer 120 and the second confinement layer 122. This simplifies the manufacturing process and helps to stabilize the device production. In this case, the first dopant may be continuously and uninterruptedly distributed in the active region 124 by diffusion or intentional addition.

如前所述,第一半導體層14可提供電子或電洞。此外,第一半導體層14亦可同時作為一窗戶層(光取出層),以增加出光取出效率。根據一實施例,於第一半導體層14中第二摻質之摻雜濃度可在1x1015 cm-3 至1x1019 cm-3 的範圍內,較佳為小於等於1x1018 cm-3 ,更佳為小於等於5x1017 cm-3 ,且進一步較佳為大於等於1x1016 cm-3 。於一些實施例中,第一半導體層14中第二摻質的摻雜濃度之最大值大於或等於活性區124中第一摻質的摻雜濃度之最大值。於第一半導體層14中第一摻質的摻雜濃度小於或等於第二摻質的摻雜濃度。較佳為,於第一半導體層14的所有位置,第一摻質的摻雜濃度均小於第二摻質的摻雜濃度(參考第4圖)。在一實施例中,於第二半導體層16中第一摻質的摻雜濃度可小於等於第一半導體層14中第二摻質的摻雜濃度之最大值。在一實施例中,於第二半導體層16中第一摻質的摻雜濃度均大於等於活性區124中第一摻質的摻雜濃度。於第二半導體層16中第一摻質的摻雜濃度可在1x1017 cm-3 至1x1019 cm-3 的範圍內,較佳為大於等於5x1017 cm-3 ,更佳為大於等於1x1018 cm-3 ,且較佳為小於等5x1018 cm-3As mentioned above, the first semiconductor layer 14 can provide electrons or holes. In addition, the first semiconductor layer 14 can also serve as a window layer (light extraction layer) to increase the light extraction efficiency. According to one embodiment, the doping concentration of the second dopant in the first semiconductor layer 14 can be in the range of 1x10 15 cm -3 to 1x10 19 cm -3 , preferably less than or equal to 1x10 18 cm -3 , more preferably less than or equal to 5x10 17 cm -3 , and further preferably greater than or equal to 1x10 16 cm -3 . In some embodiments, the maximum value of the doping concentration of the second dopant in the first semiconductor layer 14 is greater than or equal to the maximum value of the doping concentration of the first dopant in the active region 124. The doping concentration of the first dopant in the first semiconductor layer 14 is less than or equal to the doping concentration of the second dopant. Preferably, the doping concentration of the first dopant is less than the doping concentration of the second dopant at all locations in the first semiconductor layer 14 (see FIG. 4 ). In one embodiment, the doping concentration of the first dopant in the second semiconductor layer 16 may be less than or equal to the maximum value of the doping concentration of the second dopant in the first semiconductor layer 14. In one embodiment, the doping concentration of the first dopant in the second semiconductor layer 16 is greater than or equal to the doping concentration of the first dopant in the active region 124. The doping concentration of the first dopant in the second semiconductor layer 16 may be in the range of 1x10 17 cm -3 to 1x10 19 cm -3 , preferably greater than or equal to 5x10 17 cm -3 , more preferably greater than or equal to 1x10 18 cm -3 , and preferably less than or equal to 5x10 18 cm -3 .

第一電極18及第二電極20用於與外部電源及活性結構12電性連接。第一電極18可包括主電極18a及多個延伸電極18b。如第1圖所示,主電極18a位於半導體元件100的中央位置,多個延伸電極18b圍繞主電極18a外側並與主電極18a相連接。在本實施例中,各延伸電極18b呈一T字形。第一電極18及第二電極20的材料可包含金屬氧化材料、金屬或合金。金屬氧化材料包含如氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鎢(IWO)、氧化鋅(ZnO)或氧化銦鋅(IZO) 等。金屬可列舉如鍺(Ge)、鈹(Be) 、鋅(Zn) 、金(Au)、鉑(Pt)、鈦(Ti)、鋁(Al)、或鎳(Ni)、銅(Cu)等。合金可包含選自由上述金屬所組成之群組中的至少兩者,例如鍺金鎳(GeAuNi)、鈹金(BeAu)、鍺金(GeAu)、鋅金(ZnAu)等。The first electrode 18 and the second electrode 20 are used to electrically connect to an external power source and the active structure 12. The first electrode 18 may include a main electrode 18a and a plurality of extended electrodes 18b. As shown in FIG. 1 , the main electrode 18a is located at the center of the semiconductor element 100, and the plurality of extended electrodes 18b surround the outer side of the main electrode 18a and are connected to the main electrode 18a. In this embodiment, each extended electrode 18b is in a T-shape. The materials of the first electrode 18 and the second electrode 20 may include metal oxide materials, metals or alloys. The metal oxide material includes indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO), indium tungsten oxide (IWO), zinc oxide (ZnO) or indium zinc oxide (IZO). The metal can be listed as germanium (Ge), benzium (Be), zinc (Zn), gold (Au), platinum (Pt), titanium (Ti), aluminum (Al), or nickel (Ni), copper (Cu), etc. The alloy may include at least two selected from the group consisting of the above metals, such as germanium gold nickel (GeAuNi), benzene gold (BeAu), germanium gold (GeAu), zinc gold (ZnAu), etc.

第3圖為本揭露一實施例的半導體元件200之剖面結構示意圖。本實施例的半導體元件200與半導體元件100之差異在於更包含窗戶層17以及中間層24。窗戶層17位於第二半導體層16與第一電極18之間,可作為光取出層以提升元件的發光效率。窗戶層17可包含二元、三元或四元半導體材料,較佳為包含鋁(Al)、鎵(Ga)、砷(As)、磷(P)或銦(In),且可不包含氮(N)。例如包含磷(P)、銦(In)、鎵(Ga)或砷(As)。舉例來說,窗戶層17可包含InP、GaAs、InAlAs或AlGaInAs。窗戶層17與第二半導體層16可包含相同或不同的二元、三元或四元III-V族半導體材料。較佳地,窗戶層17實質上由二元、三元或四元半導體材料所組成,例如InP、GaAs、InAlAs或AlGaInAs。窗戶層17亦可包含第一摻質。較佳為第一摻質於窗戶層17中的摻質濃度高於第一摻質於第二半導體層16中的摻質濃度。於一實施例中,窗戶層17可具有第一區及第二區(未繪示),第一區較第二區靠近第一電極18,且較佳為第一摻質於第一區中的摻質濃度高第一摻質於第二區中的摻質濃度。藉此,可進一步改善窗戶層17與第一電極18之間的電接觸特性。Figure 3 is a schematic diagram of the cross-sectional structure of a semiconductor element 200 of an embodiment of the present disclosure. The difference between the semiconductor element 200 of this embodiment and the semiconductor element 100 is that it further includes a window layer 17 and an intermediate layer 24. The window layer 17 is located between the second semiconductor layer 16 and the first electrode 18, and can be used as a light extraction layer to improve the luminous efficiency of the element. The window layer 17 may include binary, ternary or quaternary semiconductor materials, preferably aluminum (Al), gallium (Ga), arsenic (As), phosphorus (P) or indium (In), and may not include nitrogen (N). For example, it includes phosphorus (P), indium (In), gallium (Ga) or arsenic (As). For example, the window layer 17 may include InP, GaAs, InAlAs or AlGaInAs. The window layer 17 and the second semiconductor layer 16 may include the same or different binary, ternary or quaternary III-V semiconductor materials. Preferably, the window layer 17 is substantially composed of a binary, ternary or quaternary semiconductor material, such as InP, GaAs, InAlAs or AlGaInAs. The window layer 17 may also include a first dopant. Preferably, the dopant concentration of the first dopant in the window layer 17 is higher than the dopant concentration of the first dopant in the second semiconductor layer 16. In one embodiment, the window layer 17 may have a first region and a second region (not shown), the first region is closer to the first electrode 18 than the second region, and the doping concentration of the first dopant in the first region is preferably higher than the doping concentration of the first dopant in the second region. In this way, the electrical contact characteristics between the window layer 17 and the first electrode 18 can be further improved.

中間層24可位於第二半導體層16與及活性結構12之間,例如位在第二半導體層16與第二侷限層122之間。中間層24可包含二元半導體材料,較佳為包含鋁(Al)、鎵(Ga)、砷(As)、磷(P)或銦(In),且可不包含氮(N)。例如包含磷(P)、銦(In)或鎵(Ga)、砷(As)。於一實施例中,中間層24與第二半導體層16包含相同的二元III-V族半導體材料,例如InP或GaAs。較佳為,中間層24實質上由二元半導體材料所組成,例如InP或GaAs。在一些實施例中,當中間層與第二半導體層16包含相同的半導體材料,中間層24與第二半導體層16間的界面例如在SEM或TEM分析下可能不明顯,即中間層24與第二半導體層16整體呈現類似單一層的構造。The middle layer 24 may be located between the second semiconductor layer 16 and the active structure 12, for example, between the second semiconductor layer 16 and the second confinement layer 122. The middle layer 24 may include a binary semiconductor material, preferably aluminum (Al), gallium (Ga), arsenic (As), phosphorus (P) or indium (In), and may not include nitrogen (N). For example, phosphorus (P), indium (In) or gallium (Ga), arsenic (As). In one embodiment, the middle layer 24 and the second semiconductor layer 16 include the same binary III-V semiconductor material, such as InP or GaAs. Preferably, the middle layer 24 is substantially composed of a binary semiconductor material, such as InP or GaAs. In some embodiments, when the intermediate layer 24 and the second semiconductor layer 16 include the same semiconductor material, the interface between the intermediate layer 24 and the second semiconductor layer 16 may not be obvious under SEM or TEM analysis, that is, the intermediate layer 24 and the second semiconductor layer 16 have a structure similar to a single layer as a whole.

於一些實施例,中間層24亦可包含第一摻質。第一摻質例如是藉由擴散而由第二半導體層16進入中間層24,即並非於中間層24中刻意添加第一摻質而形成,例如是在以磊晶方式形成中間層24的過程中完全不添加第一摻質。具體來說,中間層24可作為擴散控制層,用於調整第一摻質往活性結構12及第一半導體層14方向擴散的距離。在一些實施例中,當第一摻質過度擴散而穿越活性結構12至第一半導體層14而使第一半導體層14中存在高摻質濃度(例如1x1017 cm-3 以上)的第一摻質時,可能導致元件失效的情況。因此,較佳為第一半導體層14中第一摻質的摻質濃度低於1x1017 cm-3 ,更佳為低於5x1016 cm-3 。在一些實施例中,中間層24可具有一厚度落在30 nm至250 nm的範圍內,例如約40 nm、50 nm、60 nm、70 nm、80 nm、90 nm、100 nm、110 nm、120 nm、130 nm、140 nm、150 nm、160 nm、170 nm、180 nm、190 nm、200 nm、210 nm、220 nm、230 nm或240 nm。In some embodiments, the intermediate layer 24 may also include a first dopant. The first dopant, for example, enters the intermediate layer 24 from the second semiconductor layer 16 by diffusion, that is, the first dopant is not intentionally added to the intermediate layer 24. For example, the first dopant is not added at all during the process of forming the intermediate layer 24 by epitaxial deposition. Specifically, the intermediate layer 24 may serve as a diffusion control layer to adjust the diffusion distance of the first dopant toward the active structure 12 and the first semiconductor layer 14. In some embodiments, when the first dopant diffuses excessively through the active structure 12 to the first semiconductor layer 14, resulting in a high dopant concentration (e.g., above 1x10 17 cm -3 ) of the first dopant in the first semiconductor layer 14, device failure may occur. Therefore, it is preferred that the dopant concentration of the first dopant in the first semiconductor layer 14 is lower than 1x10 17 cm -3 , and more preferably lower than 5x10 16 cm -3 . In some embodiments, the intermediate layer 24 may have a thickness within a range of 30 nm to 250 nm, for example, approximately 40 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, 110 nm, 120 nm, 130 nm, 140 nm, 150 nm, 160 nm, 170 nm, 180 nm, 190 nm, 200 nm, 210 nm, 220 nm, 230 nm or 240 nm.

於一些實施例中,當中間層24的厚度小於30 nm時,控制擴散的效果較不顯著,而使得第一半導體層14中存在高摻質濃度(例如1x1017 cm-3 以上)的第一摻質。於一些實施例中,例如在活性結構12實質上由活性區124所組成(即活性結構12不包含第一侷限層120及第二侷限層122)的情況下,中間層24的厚度較佳為落在100 nm至250 nm的範圍內,更佳為在150 nm至250 nm的範圍內。藉此,半導體元件可具有更佳的發光效率。於一些實施例中,在活性結構12包含第一侷限層120、活性區124及第二侷限層122的情況下,當中間層24的厚度超過150 nm,可能會出現半導體元件所發出輻射之峰值波長有偏移的情況,故較佳為中間層24的厚度在150 nm以下的範圍內。基於上述,藉由設置中間層24,可更容易控制第一摻質於活性結構12中的摻質濃度變化,以調整元件之光電特性。In some embodiments, when the thickness of the intermediate layer 24 is less than 30 nm, the effect of controlling diffusion is not significant, so that the first dopant with a high dopant concentration (e.g., 1x10 17 cm -3 or more) exists in the first semiconductor layer 14. In some embodiments, for example, when the active structure 12 is substantially composed of the active region 124 (i.e., the active structure 12 does not include the first confinement layer 120 and the second confinement layer 122), the thickness of the intermediate layer 24 is preferably within the range of 100 nm to 250 nm, and more preferably within the range of 150 nm to 250 nm. Thereby, the semiconductor device can have better light-emitting efficiency. In some embodiments, when the active structure 12 includes the first confinement layer 120, the active region 124, and the second confinement layer 122, when the thickness of the intermediate layer 24 exceeds 150 nm, the peak wavelength of the radiation emitted by the semiconductor device may be shifted, so it is preferred that the thickness of the intermediate layer 24 is within a range of less than 150 nm. Based on the above, by providing the intermediate layer 24, it is easier to control the doping concentration variation of the first dopant in the active structure 12 to adjust the photoelectric characteristics of the device.

第4圖為半導體元件200部分之磊晶結構SIMS圖。請參照第4圖,其中的區域I可對應於第二半導體層16與中間層24,區域II可對應於活性結構12,區域III可對應於第一半導體層14。第4圖中的線S1表示第一摻質之摻質濃度曲線,線S2表示第二摻質之摻質濃度曲線。於本實施例中,第一半導體層14、中間層24與第二半導體層16均包含In及P,活性結構12包含In、Ga、As及P。於本實施例中,中間層24與第二半導體層16實質上由相同的半導體材料所組成,故中間層24與第二半導體層16間的界面例如在SEM或TEM分析下較不明顯而呈現類似單一層的構造。FIG. 4 is a SIMS image of the epitaxial structure of the semiconductor device 200. Referring to FIG. 4, region I may correspond to the second semiconductor layer 16 and the intermediate layer 24, region II may correspond to the active structure 12, and region III may correspond to the first semiconductor layer 14. Line S1 in FIG. 4 represents the doping concentration curve of the first dopant, and line S2 represents the doping concentration curve of the second dopant. In this embodiment, the first semiconductor layer 14, the intermediate layer 24, and the second semiconductor layer 16 all contain In and P, and the active structure 12 contains In, Ga, As, and P. In this embodiment, the intermediate layer 24 and the second semiconductor layer 16 are substantially composed of the same semiconductor material, so the interface between the intermediate layer 24 and the second semiconductor layer 16 is not obvious under SEM or TEM analysis and presents a structure similar to a single layer.

由第4圖可知,第一摻質主要分布於區域I及區域II,第一摻質於區域I中的摻質濃度大於第一摻質於區域II中的摻質濃度。第二摻質主要分布於區域III中,且於區域III中第二摻質之最大濃度CM 大於區域II中第一摻質之最大濃度BM 。於區域III中,第一摻質之摻質濃度均明顯小於第二摻質之最大濃度CM 。於區域III中,第一摻質之摻質濃度例如是在第二摻質之最大濃度CM 的1/10以下。區域III可分為靠近區域II的第一區域R1(左側)及遠離區域II的第二區域R2(右側)。如第4圖中所示,在第一區域R1中,第一摻質之摻質濃度小於或等於第二摻質之摻質濃度;在第二區域R2中,第二摻質之摻質濃度小於或等於第一摻質之摻質濃度。第一摻質於區域III中的摻質濃度可小於1x1017 cm-3As shown in FIG. 4 , the first dopant is mainly distributed in regions I and II, and the dopant concentration of the first dopant in region I is greater than the dopant concentration of the first dopant in region II. The second dopant is mainly distributed in region III, and the maximum concentration CM of the second dopant in region III is greater than the maximum concentration BM of the first dopant in region II. In region III, the dopant concentration of the first dopant is significantly less than the maximum concentration CM of the second dopant. In region III, the dopant concentration of the first dopant is, for example, less than 1/10 of the maximum concentration CM of the second dopant. Region III can be divided into a first region R1 (left side) close to region II and a second region R2 (right side) far from region II. As shown in FIG. 4 , in the first region R1, the doping concentration of the first dopant is less than or equal to the doping concentration of the second dopant; in the second region R2, the doping concentration of the second dopant is less than or equal to the doping concentration of the first dopant. The doping concentration of the first dopant in region III may be less than 1×10 17 cm -3 .

在一些實施例中,半導體元件200也可具有包含窗戶層17而不包含中間層24,或者僅包含中間層24而不包含窗戶層17的形態。本實施例中的其他各層或結構之位置、相對關係及材料組成等內容及結構變化例均已於先前實施例中進行了詳盡之說明,於此不再贅述。In some embodiments, the semiconductor device 200 may also have a form including the window layer 17 but not the intermediate layer 24, or only including the intermediate layer 24 but not the window layer 17. The positions, relative relationships, material compositions, and structural variations of other layers or structures in this embodiment have been described in detail in the previous embodiments and will not be repeated here.

第5圖為本揭露一實施例的半導體元件300之剖面結構示意圖。本實施例的半導體元件300與半導體元件100之差異在於半導體元件300更包含中間層24、接觸層26及過渡層(transient layer)28。於此實施例中,接觸層26位於第二半導體層16與第一電極18之間。藉由設置接觸層26,可進一步改善第二半導體層16與第一電極18間的電接觸特性。接觸層26可包含二元或三元半導體材料,較佳為包含鋁(Al)、鎵(Ga)、砷(As)、磷(P)或銦(In),且可不包含氮(N)。於一實施例中,接觸層26與第二半導體層16包含至少一相同元素,例如均包含銦(In)、鎵(Ga)或砷(As)。於一實施例中,接觸層26包含三元III-V族半導體材料,而第二半導體層16包含二元III-V族半導體材料。於一實施例中,接觸層26包含二元III-V族半導體材料,而第二半導體層16包含三元III-V族半導體材料。於一實施例中,接觸層26包含GaAs或InGaAs。較佳為,接觸層26實質上由二元或三元半導體材料(如GaAs或InGaAs) 所組成。接觸層26可進一步包含第三摻質,且於接觸層26中第三摻質的摻質濃度可大於第二半導體層16中第一摻質的摻質濃度。接觸層26可具有與第二半導體層16相同的導電型態(p型或n型)。第三摻質可為鎂(Mg)、鋅(Zn)、矽(Si) 或碲(Te),且可與第一摻質相同或不同。接觸層26中第三摻質的摻質濃度可大於或等於1x1018 cm-3 ,較佳為大於或等於2x1018 cm-3 ,例如大於或等於4x1018 cm-3 ,可小於或等於2x1019 cm-3 ,較佳為小於或等於1x1019 cm-3FIG. 5 is a schematic diagram of the cross-sectional structure of a semiconductor device 300 according to an embodiment of the present disclosure. The difference between the semiconductor device 300 of the present embodiment and the semiconductor device 100 is that the semiconductor device 300 further includes an intermediate layer 24, a contact layer 26, and a transition layer (transient layer) 28. In this embodiment, the contact layer 26 is located between the second semiconductor layer 16 and the first electrode 18. By providing the contact layer 26, the electrical contact characteristics between the second semiconductor layer 16 and the first electrode 18 can be further improved. The contact layer 26 may include a binary or ternary semiconductor material, preferably aluminum (Al), gallium (Ga), arsenic (As), phosphorus (P) or indium (In), and may not include nitrogen (N). In one embodiment, the contact layer 26 and the second semiconductor layer 16 include at least one common element, for example, both include indium (In), gallium (Ga) or arsenic (As). In one embodiment, the contact layer 26 includes a ternary III-V semiconductor material, and the second semiconductor layer 16 includes a binary III-V semiconductor material. In one embodiment, the contact layer 26 includes a binary III-V semiconductor material, and the second semiconductor layer 16 includes a ternary III-V semiconductor material. In one embodiment, the contact layer 26 includes GaAs or InGaAs. Preferably, the contact layer 26 is substantially composed of a binary or ternary semiconductor material (such as GaAs or InGaAs). The contact layer 26 may further include a third dopant, and the dopant concentration of the third dopant in the contact layer 26 may be greater than the dopant concentration of the first dopant in the second semiconductor layer 16. The contact layer 26 may have the same conductivity type (p-type or n-type) as the second semiconductor layer 16. The third dopant may be magnesium (Mg), zinc (Zn), silicon (Si), or tellurium (Te), and may be the same as or different from the first dopant. The doping concentration of the third dopant in the contact layer 26 may be greater than or equal to 1×10 18 cm −3 , preferably greater than or equal to 2×10 18 cm −3 , such as greater than or equal to 4×10 18 cm −3 , and may be less than or equal to 2×10 19 cm −3 , preferably less than or equal to 1×10 19 cm −3 .

具體來說,過渡層28之厚度可大於接觸層26。於一實施例中,過渡層28包含四元半導體材料,較佳為包含鋁(Al)、鎵(Ga)、砷(As)、磷(P)或銦(In),且可不包含氮(N)。較佳地,過渡層28實質上由四元半導體材料所組成。於一實施例中,過渡層28與接觸層26至少包含兩個以上相同元素,例如選自銦(In)、鎵(Ga)及砷(As)所組成之群組。過渡層28可包含與活性區124相同的四元半導體材料。於一實施例中,過渡層28包含Inx4 Ga1-x4 Asy4 P1-y4 ,其中0>x4>1, 0>y4>1。較佳為,0.5≤x4≤0.9,0.5≤y4≤0.9。於一實施例中,當過渡層28包含Inx4 Ga1-x4 Asy4 P1-y4 ,活性區124包含Inx3 Ga1-x3 Asy3 P1-y3 時,較佳為 x4≥ x3且 y4≥ y3。於一實施例中,過渡層28可進一步包含第四摻質。過渡層28中第四摻質的摻質濃度可大於或等於第二半導體層16中第一摻質的摻質濃度。過渡層28具有與第二半導體層16相同的導電型態(p型或n型)。第四摻質可為鎂(Mg)、鋅(Zn)、矽(Si) 或碲(Te) ,且可與第一摻質相同或不同。Specifically, the thickness of the transition layer 28 may be greater than that of the contact layer 26. In one embodiment, the transition layer 28 comprises a quaternary semiconductor material, preferably aluminum (Al), gallium (Ga), arsenic (As), phosphorus (P) or indium (In), and may not contain nitrogen (N). Preferably, the transition layer 28 is substantially composed of a quaternary semiconductor material. In one embodiment, the transition layer 28 and the contact layer 26 contain at least two or more of the same elements, for example, selected from the group consisting of indium (In), gallium (Ga) and arsenic (As). The transition layer 28 may include the same quaternary semiconductor material as the active region 124. In one embodiment, the transition layer 28 comprises In x4 Ga 1-x4 As y4 P 1-y4 , wherein 0>x4>1, 0>y4>1. Preferably, 0.5≤x4≤0.9, 0.5≤y4≤0.9. In one embodiment, when the transition layer 28 comprises In x4 Ga 1-x4 As y4 P 1-y4 and the active region 124 comprises In x3 Ga 1-x3 As y3 P 1-y3 , preferably x4≥x3 and y4≥y3. In one embodiment, the transition layer 28 may further comprise a fourth dopant. The doping concentration of the fourth dopant in the transition layer 28 may be greater than or equal to the doping concentration of the first dopant in the second semiconductor layer 16. The transition layer 28 has the same conductivity type (p-type or n-type) as the second semiconductor layer 16. The fourth dopant may be magnesium (Mg), zinc (Zn), silicon (Si) or tellurium (Te), and may be the same as or different from the first dopant.

在一些實施例中,半導體元件300也可具有包含接觸層26而不包含過渡層28,或者僅包含過渡層28而不包含接觸層26的形態。本實施例中的其他各層或結構之位置、相對關係及材料組成等內容及結構變化例均已於先前實施例中進行了詳盡之說明,於此不再贅述。In some embodiments, the semiconductor device 300 may include the contact layer 26 but not the transition layer 28, or include only the transition layer 28 but not the contact layer 26. The positions, relative relationships, material compositions, and structural variations of other layers or structures in this embodiment have been described in detail in the previous embodiments and will not be described again here.

第6圖為本揭露一實施例的半導體元件400之剖面結構示意圖。本實施例的半導體元件400與半導體元件200之差異在於半導體元件400更包含反射結構30及黏著層40。在本實施例中,基底10為一非成長基板,且第一半導體層14、第二半導體層16、活性結構12、其他半導體層及反射結構30係透過黏著層40而結合至基底10上。FIG. 6 is a schematic diagram of a cross-sectional structure of a semiconductor device 400 according to an embodiment of the present disclosure. The difference between the semiconductor device 400 of this embodiment and the semiconductor device 200 is that the semiconductor device 400 further includes a reflective structure 30 and an adhesive layer 40. In this embodiment, the substrate 10 is a non-growth substrate, and the first semiconductor layer 14, the second semiconductor layer 16, the active structure 12, the other semiconductor layers and the reflective structure 30 are bonded to the substrate 10 through the adhesive layer 40.

反射結構30位於黏著層40及第一半導體層14之間。具體來說,反射結構30可為單層或多層。在一實施例中,反射結構30可反射半導體元件400所發出的輻射以朝第二半導體層16方向射出於半導體元件400外。反射結構30的材料為導電且可包含金屬或合金。金屬例如銅(Cu)、鋁(Al)、錫(Sn)、金(Au)、銀(Ag)、鉛(Pb)、鈦(Ti)、鎳(Ni)、鉑(Pt)、或鎢(W)。合金可包含選自由上述金屬所組成之群組中的至少兩者。在一實施例中,反射結構30中至少包含第一金屬層、第二金屬層以及第三金屬層(未繪示)。第一金屬層可鄰接於第一半導體層14 ,第二金屬層可鄰接於黏著層40,第三金屬層可位於第一金屬層與第二金屬層之間。根據一實施例,第一金屬層、第二金屬層以及第三金屬層的材料可分別包含鋁(Al)、金(Au) 、銀(Ag)、鈦(Ti)或鉑(Pt)。較佳為,第一金屬層、第二金屬層以及第三金屬層實質上分別由鋁(Al)、金(Au) 、銀(Ag)、鈦(Ti)或鉑(Pt)所組成。較佳地,第一金屬層、第二金屬層以及第三金屬層的材料各不相同。在一實施例中,反射結構30可包含可導電之布拉格反射結構(Distributed Bragg Reflector structure,DBR )。The reflective structure 30 is located between the adhesive layer 40 and the first semiconductor layer 14. Specifically, the reflective structure 30 can be a single layer or multiple layers. In one embodiment, the reflective structure 30 can reflect the radiation emitted by the semiconductor element 400 to emit it outside the semiconductor element 400 toward the second semiconductor layer 16. The material of the reflective structure 30 is conductive and can include metal or alloy. Metals are, for example, copper (Cu), aluminum (Al), tin (Sn), gold (Au), silver (Ag), lead (Pb), titanium (Ti), nickel (Ni), platinum (Pt), or tungsten (W). The alloy can include at least two selected from the group consisting of the above metals. In one embodiment, the reflective structure 30 includes at least a first metal layer, a second metal layer, and a third metal layer (not shown). The first metal layer may be adjacent to the first semiconductor layer 14, the second metal layer may be adjacent to the adhesive layer 40, and the third metal layer may be located between the first metal layer and the second metal layer. According to one embodiment, the materials of the first metal layer, the second metal layer, and the third metal layer may include aluminum (Al), gold (Au), silver (Ag), titanium (Ti), or platinum (Pt), respectively. Preferably, the first metal layer, the second metal layer, and the third metal layer are substantially composed of aluminum (Al), gold (Au), silver (Ag), titanium (Ti), or platinum (Pt), respectively. Preferably, the materials of the first metal layer, the second metal layer and the third metal layer are different. In one embodiment, the reflective structure 30 may include a conductive Bragg reflector structure (Distributed Bragg Reflector structure, DBR).

黏著層40用於連接基底10與反射結構30。在一實施例中,黏著層40可包含兩個以上子層(未繪示)。黏著層40之材料為導電性且可包含透明導電材料、金屬或合金。透明導電材料包含但不限於氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)、磷化鎵(GaP)、氧化銦鈰(ICO)、氧化銦鎢(IWO)、氧化銦鈦(ITiO)、氧化銦鋅(IZO)、氧化銦鎵(IGO)、氧化鎵鋁鋅(GAZO)、石墨烯或上述材料之組合。金屬包含但不限於銅(Cu)、鋁(Al)、錫(Sn)、金(Au)、銀(Ag)、鉛(Pb)、鈦(Ti)、鎳(Ni)、鉑(Pt)或鎢(W)等。合金可包含選自由上述金屬所組成之群組中的至少兩者。The adhesive layer 40 is used to connect the substrate 10 and the reflective structure 30. In one embodiment, the adhesive layer 40 may include more than two sub-layers (not shown). The material of the adhesive layer 40 is conductive and may include a transparent conductive material, metal or alloy. The transparent conductive material includes but is not limited to indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO), zinc oxide (ZnO), gallium phosphide (GaP), indium caesium oxide (ICO), indium tungsten oxide (IWO), indium titanium oxide (ITiO), indium zinc oxide (IZO), indium gallium oxide (IGO), gallium aluminum zinc oxide (GAZO), graphene or a combination of the above materials. The metal includes but is not limited to copper (Cu), aluminum (Al), tin (Sn), gold (Au), silver (Ag), lead (Pb), titanium (Ti), nickel (Ni), platinum (Pt) or tungsten (W). The alloy may include at least two selected from the group consisting of the above metals.

在另一實施例中,類似第6圖,中間層24不位於第二半導體層16與及活性結構12之間,而係位於第一半導體層14及活性結構12之間,例如中間層24位於第一半導體層14及第一侷限層120之間。於此情況下,第一半導體層14及中間層24中第一摻質及第二摻質的分布狀況可對應於第4圖中所示的區域I,活性結構12中第一摻質及第二摻質的分布狀況可對應於第4圖中所示的區域II,而第二半導體層16中第一摻質及第二摻質的分布狀況可對應於第4圖中所示的區域III,即第一摻質例如是藉由擴散而由第一半導體層14進入中間層24及活性結構12,或是藉由摻雜而進入中間層24及活性結構12。中間層24可作為擴散控制層,用於調整第一摻質往活性結構12及第二半導體層16方向擴散的距離。In another embodiment, similar to FIG. 6 , the intermediate layer 24 is not located between the second semiconductor layer 16 and the active structure 12 , but is located between the first semiconductor layer 14 and the active structure 12 , for example, the intermediate layer 24 is located between the first semiconductor layer 14 and the first confinement layer 120 . In this case, the distribution of the first dopant and the second dopant in the first semiconductor layer 14 and the intermediate layer 24 may correspond to region I shown in FIG. 4 , the distribution of the first dopant and the second dopant in the active structure 12 may correspond to region II shown in FIG. 4 , and the distribution of the first dopant and the second dopant in the second semiconductor layer 16 may correspond to region III shown in FIG. 4 , that is, the first dopant enters the intermediate layer 24 and the active structure 12 from the first semiconductor layer 14 by diffusion, or enters the intermediate layer 24 and the active structure 12 by doping, for example. The intermediate layer 24 can be used as a diffusion control layer to adjust the diffusion distance of the first dopant toward the active structure 12 and the second semiconductor layer 16.

第7圖為本揭露一實施例的半導體元件500之剖面結構示意圖。半導體元件500類似半導體元件400。半導體元件500更包含絕緣層32位於反射結構30與第一半導體層14之間。如第7圖所示,絕緣層32可覆蓋第一半導體層14下表面的一部份。於此實施例中,第一半導體層14之寬度大於活性結構12之寬度。絕緣層32的材料可包含氧化物絕緣材料或非氧化物絕緣材料。舉例來說,氧化物絕緣材料可以包含氧化矽(SiOx )或類似的材料;非氧化物絕緣材料可以包含氮化矽(SiNx )、苯并環丁烯(benzocyclobutene,BCB)、環烯烴聚合物(cyclo olefin copolymer,COC)或氟碳聚合物(fluorocarbon polymer)、氟化鈣(calcium fluoride,CaF2 )或氟化鎂(magnesium fluoride,MgF2 )。於此實施例中,第一電極18與絕緣層32在垂直方向上不重疊。於一實施例中,絕緣層32與第一電極18中的主電極18a在垂直方向上不重疊而與延伸電極18b在垂直方向上重疊。FIG. 7 is a schematic diagram of a cross-sectional structure of a semiconductor device 500 according to an embodiment of the present disclosure. The semiconductor device 500 is similar to the semiconductor device 400. The semiconductor device 500 further includes an insulating layer 32 located between the reflective structure 30 and the first semiconductor layer 14. As shown in FIG. 7, the insulating layer 32 may cover a portion of the lower surface of the first semiconductor layer 14. In this embodiment, the width of the first semiconductor layer 14 is greater than the width of the active structure 12. The material of the insulating layer 32 may include an oxide insulating material or a non-oxide insulating material. For example, the oxide insulating material may include silicon oxide (SiO x ) or a similar material; the non-oxide insulating material may include silicon nitride (SiN x ), benzocyclobutene (BCB), cycloolefin copolymer (COC) or fluorocarbon polymer, calcium fluoride (CaF 2 ) or magnesium fluoride (MgF 2 ). In this embodiment, the first electrode 18 and the insulating layer 32 do not overlap in the vertical direction. In one embodiment, the insulating layer 32 does not overlap with the main electrode 18 a in the first electrode 18 in the vertical direction but overlaps with the extension electrode 18 b in the vertical direction.

如第7圖所示,半導體元件500可更包含導電層34,覆蓋於絕緣層32上。於此實施例中,導電層34與第一半導體層14接觸部分可形成電流路徑。 導電層34可包含透明導電材料、金屬或合金。透明導電材料包含但不限於氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)、磷化鎵(GaP)、氧化銦鈰(ICO)、氧化銦鎢(IWO)、氧化銦鈦(ITiO)、氧化銦鋅(IZO)、氧化銦鎵(IGO)、氧化鎵鋁鋅(GAZO)、石墨烯或上述材料之組合。金屬包含但不限於銅(Cu)、鋁(Al)、錫(Sn)、金(Au)、銀(Ag)、鉛(Pb)、鈦(Ti)、鎳(Ni)、鉑(Pt)或鎢(W)等。合金可包含選自由上述金屬所組成之群組中的至少兩者。As shown in FIG. 7 , the semiconductor device 500 may further include a conductive layer 34 covering the insulating layer 32. In this embodiment, the conductive layer 34 and the contact portion of the first semiconductor layer 14 may form a current path. The conductive layer 34 may include a transparent conductive material, metal or alloy. The transparent conductive material includes but is not limited to indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO), zinc oxide (ZnO), gallium phosphide (GaP), indium caesium oxide (ICO), indium tungsten oxide (IWO), indium titanium oxide (ITiO), indium zinc oxide (IZO), indium gallium oxide (IGO), gallium aluminum zinc oxide (GAZO), graphene or a combination of the above materials. The metal includes but is not limited to copper (Cu), aluminum (Al), tin (Sn), gold (Au), silver (Ag), lead (Pb), titanium (Ti), nickel (Ni), platinum (Pt) or tungsten (W). The alloy may include at least two selected from the group consisting of the above metals.

在一些實施例中,半導體元件500也可具有僅包含絕緣層32而不包含導電層34的形態,或者僅包含導電層34而不包含絕緣層32的形態。本實施例中的其他各層或結構之位置、相對關係及材料組成等內容及結構變化例均已於先前實施例中進行了詳盡之說明,於此不再贅述。In some embodiments, the semiconductor device 500 may also have a form including only the insulating layer 32 but not the conductive layer 34, or may have only the conductive layer 34 but not the insulating layer 32. The positions, relative relationships, material compositions, and structural variations of other layers or structures in this embodiment have been described in detail in the previous embodiments and will not be repeated here.

第8圖為本揭露內容一實施例之半導體元件的封裝結構600示意圖。請參照第8圖,封裝結構600包含半導體元件60、封裝基板61、載體63、接合線65、接觸結構66以及封裝材料層68。封裝基板61可包含陶瓷或玻璃材料。封裝基板61中具有多個通孔62。通孔62中可填充有導電性材料如金屬等而有助於導電或/且散熱。載體63位於封裝基板61一側的表面上,且亦包含導電性材料,如金屬。接觸結構66位於封裝基板61另一側的表面上。在本實施例中,接觸結構66包含第一接觸墊66a以及第二接觸墊66b,且第一接觸墊66a以及第二接觸墊66b可藉由通孔62而與載體63電性連接。在一實施例中,接觸結構66可進一步包含散熱墊(thermal pad)(未繪示),例如位於第一接觸墊66a與第二接觸墊66b之間。FIG. 8 is a schematic diagram of a semiconductor device package structure 600 according to an embodiment of the present disclosure. Referring to FIG. 8 , the package structure 600 includes a semiconductor device 60, a package substrate 61, a carrier 63, bonding wires 65, a contact structure 66, and a package material layer 68. The package substrate 61 may include ceramic or glass materials. The package substrate 61 has a plurality of through holes 62. The through holes 62 may be filled with conductive materials such as metals to facilitate electrical conduction and/or heat dissipation. The carrier 63 is located on the surface of one side of the package substrate 61 and also includes conductive materials such as metals. The contact structure 66 is located on the surface of the other side of the package substrate 61. In this embodiment, the contact structure 66 includes a first contact pad 66a and a second contact pad 66b, and the first contact pad 66a and the second contact pad 66b can be electrically connected to the carrier 63 through the through hole 62. In one embodiment, the contact structure 66 can further include a thermal pad (not shown), for example, located between the first contact pad 66a and the second contact pad 66b.

半導體元件60位於載體63上。半導體元件60可為本揭露內容任一實施例所述的半導體元件(如半導體元件100、200、300、400、500)。在本實施例中,載體63包含第一部分63a及第二部分63b,半導體元件60藉由接合線65而與載體63的第二部分63b電性連接。接合線65的材質可包含金屬,例如金、銀、銅、鋁或至少包含上述任一元素之合金。封裝材料層68覆蓋於半導體元件60上,具有保護半導體元件60之效果。具體來說,封裝材料層68可包含樹脂材料如環氧樹脂(epoxy)、矽氧烷樹脂(silicone)等。封裝材料層68更可包含複數個波長轉換粒子(圖未示)以轉換半導體元件60所發出的第一光為一第二光。第二光的波長大於第一光的波長。The semiconductor element 60 is located on the carrier 63. The semiconductor element 60 can be the semiconductor element described in any embodiment of the present disclosure (such as semiconductor elements 100, 200, 300, 400, 500). In this embodiment, the carrier 63 includes a first portion 63a and a second portion 63b, and the semiconductor element 60 is electrically connected to the second portion 63b of the carrier 63 via a bonding wire 65. The material of the bonding wire 65 can include metals, such as gold, silver, copper, aluminum, or an alloy containing at least any of the above elements. The packaging material layer 68 covers the semiconductor element 60 and has the effect of protecting the semiconductor element 60. Specifically, the packaging material layer 68 can include a resin material such as epoxy, silicone, etc. The packaging material layer 68 may further include a plurality of wavelength conversion particles (not shown) to convert the first light emitted by the semiconductor element 60 into a second light. The wavelength of the second light is greater than that of the first light.

基於上述,根據本揭露內容之實施例,可提供一種半導體元件,其具有良好磊晶品質及光電特性,例如在發光效率、波長穩定性及元件可靠度等方面可獲得進一步提升。具體來說,本揭露內容之半導體元件可應用於照明、醫療、顯示、通訊、感測、電源系統等領域的產品,例如燈具、監視器、手機、平板電腦、車用儀表板、電視、電腦、穿戴裝置(如手錶、手環、項鍊等)、交通號誌、戶外顯示器、醫療器材等。Based on the above, according to the embodiments of the present disclosure, a semiconductor device can be provided, which has good epitaxial quality and optoelectronic characteristics, such as further improvement in luminous efficiency, wavelength stability and device reliability. Specifically, the semiconductor device of the present disclosure can be applied to products in the fields of lighting, medical treatment, display, communication, sensing, power supply system, etc., such as lamps, monitors, mobile phones, tablet computers, car dashboards, televisions, computers, wearable devices (such as watches, bracelets, necklaces, etc.), traffic signs, outdoor displays, medical equipment, etc.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,所屬技術領域中具有通常知識者應理解,在不脫離本發明之精神和範圍內可作些許之修飾或變更,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。此外,上述實施例內容在適當的情況下可互相組合或替換,而非僅限於所描述之特定實施例。舉例而言,在一實施例中所揭露特定構件之相關參數或特定構件與其他構件的連接關係亦可應用於其他實施例中,且均落於本發明之權利保護範圍。Although the present invention has been disclosed as above by the embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the relevant technical field should understand that some modifications or changes can be made without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the definition of the scope of the attached patent application. In addition, the contents of the above embodiments can be combined or replaced with each other under appropriate circumstances, and are not limited to the specific embodiments described. For example, the relevant parameters of a specific component disclosed in an embodiment or the connection relationship between a specific component and other components can also be applied to other embodiments, and all fall within the scope of protection of the present invention.

100、200、300、400、500、60:半導體元件 10:基底 10a:第一側 10b:第二側 12:活性結構 14:第一半導體層 16:第二半導體層 17:窗戶層 18:第一電極 18a:主電極 18b:延伸電極 20:第二電極 24:中間層 26:接觸層 28:過渡層 30:反射結構 32:絕緣層 34:導電層 40:黏著層 61:封裝基底 62:通孔 63:載體 63a:第一部分 63b:第二部分 65:接合線 66:接觸結構 66a:第一接觸墊 66b:第二接觸墊 68:封裝材料層 120:第一侷限層 122:第二侷限層 124:活性區 600:封裝結構 R1:第一區域 R2:第二區域 S1、S2:線 t1:第一厚度 A-A’:線 t2:第二厚度 t3:第三厚度 t4:第四厚度 t5:第五厚度 w1:第一寬度 w2:第二寬度 I、II、III:區域 BM、CM:最大濃度 100, 200, 300, 400, 500, 60: semiconductor element 10: substrate 10a: first side 10b: second side 12: active structure 14: first semiconductor layer 16: second semiconductor layer 17: window layer 18: first electrode 18a: main electrode 18b: extension electrode 20: second electrode 24: intermediate layer 26: contact layer 28: transition layer 30: reflective structure 32: insulating layer 34: conductive layer 40: adhesive layer 61: packaging substrate 62: through hole 63: carrier 63a: First part 63b: second part 65: bonding line 66: contact structure 66a: first contact pad 66b: second contact pad 68: packaging material layer 120: first confinement layer 122: second confinement layer 124: active area 600: packaging structure R1: first region R2: second regions S1, S2: line t1: first thickness A-A': line t2: second thickness t3: third thickness t4: fourth thickness t5: fifth thickness w1: first width w2: second width I, II, III: regions B M , C M : maximum concentration

第1圖為本揭露一實施例之半導體元件的結構上視圖。FIG. 1 is a top view of a semiconductor device structure according to an embodiment of the present disclosure.

第2圖為第1圖之半導體元件沿A-A’線之剖面結構示意圖。FIG. 2 is a schematic diagram of the cross-sectional structure of the semiconductor element in FIG. 1 along line A-A’.

第3圖為本揭露一實施例的半導體元件之剖面結構示意圖。FIG. 3 is a schematic diagram of a cross-sectional structure of a semiconductor device according to an embodiment of the present disclosure.

第4圖為本揭露一實施例的半導體元件部分之磊晶結構SIMS圖。FIG. 4 is a SIMS image of the epitaxial structure of a semiconductor device portion according to an embodiment of the present disclosure.

第5圖為本揭露一實施例的半導體元件之剖面結構示意圖。FIG. 5 is a schematic diagram of a cross-sectional structure of a semiconductor device according to an embodiment of the present disclosure.

第6圖為本揭露一實施例的半導體元件之剖面結構示意圖。FIG6 is a schematic diagram of a cross-sectional structure of a semiconductor device according to an embodiment of the present disclosure.

第7圖為本揭露一實施例的半導體元件之剖面結構示意圖FIG. 7 is a schematic diagram of a cross-sectional structure of a semiconductor device according to an embodiment of the present disclosure.

第8圖為本揭露內容一實施例之半導體元件的封裝結構示意圖。FIG. 8 is a schematic diagram of a semiconductor device packaging structure according to an embodiment of the present disclosure.

100:半導體元件 100:Semiconductor components

10:基底 10: Base

10a:第一側 10a: First side

10b:第二側 10b: Second side

12:活性結構 12: Active structure

14:第一半導體層 14: First semiconductor layer

16:第二半導體層 16: Second semiconductor layer

18:第一電極 18: First electrode

20:第二電極 20: Second electrode

120:第一侷限層 120: The first limit layer

122:第二侷限層 122: Second limit layer

124:活性區 124: Active area

t1:第一厚度 t1: first thickness

t2:第二厚度 t2: Second thickness

t3:第三厚度 t3: The third thickness

t4:第四厚度 t4: fourth thickness

t5:第五厚度 t5: fifth thickness

w1:第一寬度 w1: first width

w2:第二寬度 w2: second width

Claims (10)

一種半導體元件,包括: 一活性結構,包含一活性區以及一具有第一導電型的第一摻質,該活性區具有一最上表面及一最下表面,且該第一摻質分佈於該最上表面至該最下表面;以及 一第一半導體層,位於該活性結構下且包含一具有第二導電型的第二摻質; 其中,該活性區包含一四元半導體材料,該四元半導體材料包含砷(As)。A semiconductor element comprises: an active structure comprising an active region and a first dopant having a first conductivity type, the active region having an uppermost surface and a lowermost surface, and the first dopant being distributed from the uppermost surface to the lowermost surface; and a first semiconductor layer located under the active structure and comprising a second dopant having a second conductivity type; wherein the active region comprises a quaternary semiconductor material, and the quaternary semiconductor material comprises arsenic (As). 如申請專利範圍第1項所述之半導體元件,其中該第一半導體層中該第二摻質的摻雜濃度之最大值大於等於該活性區中該第一摻質的摻雜濃度之最大值。A semiconductor device as described in claim 1, wherein the maximum value of the doping concentration of the second dopant in the first semiconductor layer is greater than or equal to the maximum value of the doping concentration of the first dopant in the active region. 如申請專利範圍第1項所述之半導體元件,其中該四元半導體材料為InGaAsP或AlGaInAs。A semiconductor device as described in item 1 of the patent application, wherein the quaternary semiconductor material is InGaAsP or AlGaInAs. 如申請專利範圍第1項所述之半導體元件,其中該半導體元件具有雙異質結構或多重量子井結構。A semiconductor device as described in claim 1, wherein the semiconductor device has a double heterostructure or a multiple quantum well structure. 如申請專利範圍第1項所述之半導體元件,其中於該活性區中,該第一摻質的摻質濃度小於等於5x1017 cm-3The semiconductor device as claimed in claim 1, wherein in the active region, the doping concentration of the first dopant is less than or equal to 5×10 17 cm -3 . 如申請專利範圍第1項所述之半導體元件,更包括一第二半導體層,位於該活性結構上。The semiconductor device as described in claim 1 further comprises a second semiconductor layer located on the active structure. 如申請專利範圍第6項所述之半導體元件,更包括一中間層,位於該第二半導體層與該活性結構之間。The semiconductor device as described in claim 6 further includes an intermediate layer located between the second semiconductor layer and the active structure. 如申請專利範圍第7項所述之半導體元件,其中該中間層包含二元半導體材料。A semiconductor device as described in claim 7, wherein the intermediate layer comprises a binary semiconductor material. 如申請專利範圍第1項所述之半導體元件,其中該活性結構更包括一第一侷限層及一第二侷限層,該活性區位於該第一侷限層及一第二侷限層之間,且該第一摻質分佈於該第一侷限層及該第二侷限層中。As described in item 1 of the patent application scope, the active structure further includes a first confinement layer and a second confinement layer, the active region is located between the first confinement layer and the second confinement layer, and the first dopant is distributed in the first confinement layer and the second confinement layer. 如申請專利範圍第1項所述之半導體元件,其中該活性區包括交互堆疊的多個井層及多個阻障層,且該第一摻質分佈於各該井層及各該阻障層中。As described in item 1 of the patent application scope, the active region includes a plurality of well layers and a plurality of barrier layers stacked alternately, and the first dopant is distributed in each of the well layers and each of the barrier layers.
TW109114480A 2019-05-16 2020-04-30 Semiconductor device TWI850376B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/875,354 US11374146B2 (en) 2019-05-16 2020-05-15 Semiconductor device
US17/750,232 US11728456B2 (en) 2019-05-16 2022-05-20 Semiconductor device
US18/213,304 US12136683B2 (en) 2019-05-16 2023-06-23 Semiconductor device
US18/896,886 US20250040294A1 (en) 2019-05-16 2024-09-25 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962848788P 2019-05-16 2019-05-16
US62/848,788 2019-05-16

Publications (2)

Publication Number Publication Date
TW202044618A TW202044618A (en) 2020-12-01
TWI850376B true TWI850376B (en) 2024-08-01

Family

ID=73337056

Family Applications (3)

Application Number Title Priority Date Filing Date
TW113124051A TW202441812A (en) 2019-05-16 2020-04-30 Semiconductor device
TW109114480A TWI850376B (en) 2019-05-16 2020-04-30 Semiconductor device
TW109114475A TWI829922B (en) 2019-05-16 2020-04-30 Semiconductor device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW113124051A TW202441812A (en) 2019-05-16 2020-04-30 Semiconductor device

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW109114475A TWI829922B (en) 2019-05-16 2020-04-30 Semiconductor device

Country Status (2)

Country Link
CN (3) CN111952421B (en)
TW (3) TW202441812A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI864436B (en) * 2022-09-07 2024-12-01 晶元光電股份有限公司 Semiconductor device and package structure of semiconductor device
CN115513346B (en) * 2022-11-14 2023-04-07 泉州三安半导体科技有限公司 Light emitting diode and light emitting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110062466A1 (en) * 2008-06-03 2011-03-17 Sumitomo Electric Industries, Ltd. AlxGa(1-x)As Substrate, Epitaxial Wafer for Infrared LEDs, Infrared LED, Method of Manufacturing AlxGa(1-x)As Substrate, Method of Manufacturing Epitaxial Wafer for Infrared LEDs, and Method of Manufacturing Infrared LEDs

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838705B1 (en) * 1999-03-29 2005-01-04 Nichia Corporation Nitride semiconductor device
US6791119B2 (en) * 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
JP4967243B2 (en) * 2005-03-08 2012-07-04 三菱化学株式会社 GaN-based light emitting diode and light emitting device
JP5586860B2 (en) * 2009-02-25 2014-09-10 日亜化学工業株式会社 Semiconductor light emitting device and semiconductor light emitting device
JP5095840B2 (en) * 2011-04-26 2012-12-12 株式会社東芝 Semiconductor light emitting device
JP2012248807A (en) * 2011-05-31 2012-12-13 Kyocera Corp Light-emitting element and manufacturing method thereof
TW201340405A (en) * 2012-03-30 2013-10-01 Lextar Electronics Corp Light-emitting diode
KR101926479B1 (en) * 2012-04-20 2019-03-07 엘지이노텍 주식회사 Light emitting device, light emitting device package, and light unit
KR101946917B1 (en) * 2012-06-08 2019-02-12 엘지이노텍 주식회사 Fabricating method of light emitting device
TWI577045B (en) * 2013-07-10 2017-04-01 晶元光電股份有限公司 Light-emitting element
KR102476036B1 (en) * 2016-05-09 2022-12-12 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 A light emitting device
DE102016123262B4 (en) * 2016-12-01 2025-07-24 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Radiation-emitting semiconductor body and method for producing a semiconductor layer sequence
US11056434B2 (en) * 2017-01-26 2021-07-06 Epistar Corporation Semiconductor device having specified p-type dopant concentration profile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110062466A1 (en) * 2008-06-03 2011-03-17 Sumitomo Electric Industries, Ltd. AlxGa(1-x)As Substrate, Epitaxial Wafer for Infrared LEDs, Infrared LED, Method of Manufacturing AlxGa(1-x)As Substrate, Method of Manufacturing Epitaxial Wafer for Infrared LEDs, and Method of Manufacturing Infrared LEDs

Also Published As

Publication number Publication date
CN111952421A (en) 2020-11-17
TW202441812A (en) 2024-10-16
CN111952421B (en) 2025-01-24
TWI829922B (en) 2024-01-21
CN111952422A (en) 2020-11-17
CN119967962A (en) 2025-05-09
CN111952422B (en) 2025-05-16
TW202044618A (en) 2020-12-01
TW202109922A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
US20250040294A1 (en) Semiconductor device
TWI850376B (en) Semiconductor device
CN111354842B (en) Semiconductor device with a semiconductor element having a plurality of electrodes
US20240186449A1 (en) Semiconductor device, semiconductor component and display panel including the same
US20200152830A1 (en) Semiconductor device
CN116031355A (en) Semiconductor element and semiconductor assembly comprising same
US11588072B2 (en) Semiconductor device and semiconductor component including ihe same
US20200365769A1 (en) Semiconductor device
US12125956B2 (en) Semiconductor device and semiconductor component including the same
TWI830100B (en) Semiconductor optoelectronic device
CN220569701U (en) Semiconductor element and semiconductor assembly
TW202119651A (en) Semiconductor device and semiconductor component including the same
TWI823136B (en) Semiconductor device
TWI840665B (en) Semiconductor device and semiconductor component including the same
US20230058195A1 (en) Semiconductor device
US20230343896A1 (en) Semiconductor device
US20250006862A1 (en) Semiconductor device
TWI852163B (en) Semiconductor device
US20240413268A1 (en) Semiconductor device
TW202412336A (en) Semiconductor device
TW202341528A (en) Semiconductor device
TW202525098A (en) Semiconductor device
TWM611586U (en) Semiconductor device
TW202519083A (en) Semiconductor device