[go: up one dir, main page]

TWI849421B - Light-emitting element, light-emitting device having the same, and method for manufacturing light-emitting element - Google Patents

Light-emitting element, light-emitting device having the same, and method for manufacturing light-emitting element Download PDF

Info

Publication number
TWI849421B
TWI849421B TW111118304A TW111118304A TWI849421B TW I849421 B TWI849421 B TW I849421B TW 111118304 A TW111118304 A TW 111118304A TW 111118304 A TW111118304 A TW 111118304A TW I849421 B TWI849421 B TW I849421B
Authority
TW
Taiwan
Prior art keywords
light
layer
emitting element
transparent conductive
protective layer
Prior art date
Application number
TW111118304A
Other languages
Chinese (zh)
Other versions
TW202347834A (en
Inventor
郭得山
歐震
郭光揚
卓亨穎
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW111118304A priority Critical patent/TWI849421B/en
Publication of TW202347834A publication Critical patent/TW202347834A/en
Application granted granted Critical
Publication of TWI849421B publication Critical patent/TWI849421B/en

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

A light-emitting element is provided. The light-emitting element includes: a substrate; a first semiconductor layer disposed on the substrate and including a first portion and a second portion connected with the first portion; a semiconductor stack disposed on the first portion and including: an active area disposed on the first semiconductor layer, and a second semiconductor layer disposed on the active area and having a conductive type different from that of the first semiconductor layer; a first protective layer disposed on the semiconductor stack with one or multiple first protective layer openings on the second semiconductor layer; a transparent conductive oxide layer disposed on the first protective layer and filling into the first protective layer openings to provide a flat surface; and a metal reflection layer disposed on the flat surface and through the transparent conductive oxide layer to electrically connected to the second semiconductor layer.

Description

發光元件、具有其之發光裝置、及發光元件 的製造方法 Light-emitting element, light-emitting device having the same, and method for manufacturing the light-emitting element

本申請案是關於一種發光元件、具有其之發光裝置、及發光元件的製造方法。本申請案特別是關於一種包括金屬反射層的發光元件、具有其之發光裝置、及發光元件的製造方法。 This application is about a light-emitting element, a light-emitting device having the same, and a method for manufacturing the light-emitting element. This application is particularly about a light-emitting element including a metal reflective layer, a light-emitting device having the same, and a method for manufacturing the light-emitting element.

在發光裝置中常常設有反射結構,以將光集中發射。以覆晶式發光二極體(LED)元件為例,其中反射層設置在與出光面相對的一側,藉此將向出光面對側發射的光反射回出光面,進而可以集中光源並提高亮度。然而,由於在覆晶式發光二極體元件的製造過程中,位於反射層下方的結構具有明顯高低起伏,因此連帶著反射層也相當不平整。不平整的反射表面會造成反射的光有漫射情形,部分的光不會直接離開出光面,而是在結構內部多次反射,造成光損失。 A reflective structure is often provided in a light-emitting device to concentrate the light. For example, in a flip-chip light-emitting diode (LED) component, a reflective layer is provided on the side opposite to the light-emitting surface, thereby reflecting the light emitted to the side opposite to the light-emitting surface back to the light-emitting surface, thereby concentrating the light source and increasing the brightness. However, during the manufacturing process of the flip-chip light-emitting diode component, the structure below the reflective layer has obvious ups and downs, so the reflective layer is also quite uneven. The uneven reflective surface will cause the reflected light to be diffused, and part of the light will not leave the light-emitting surface directly, but will be reflected multiple times inside the structure, causing light loss.

本申請案提供一種發光元件、具有其之發光裝置、及發光元件的製造方法。在本申請案一些實施例的發光元件中,反 射層形成在相對平整的表面上,因此可以避免反射表面不夠平整所造成的問題。 This application provides a light-emitting element, a light-emitting device having the same, and a method for manufacturing the light-emitting element. In the light-emitting element of some embodiments of this application, the reflective layer is formed on a relatively flat surface, thereby avoiding the problem caused by the reflective surface being not flat enough.

根據實施例的發光元件包括一基板、一第一半導體層、一半導體堆疊、一第一保護層、一透明導電氧化物層、和一金屬反射層。第一半導體層設置在基板上。第一半導體層包含一第一部份及一第二部份與第一部份相連。半導體堆疊設置在第一部份上。半導體堆疊包括一主動區域和一第二半導體層。主動區域設置在第一半導體層上。第二半導體層設置在主動區域上。第二半導體層的導電類型不同於第一半導體層的導電類型。第一保護層設置在半導體堆疊上。第一保護層於第二半導體層上具有一或複數個第一保護層開口。透明導電氧化物層設置在第一保護層上且填入第一保護層開口以提供一平整表面。金屬反射層設置在平整表面上且經由透明導電氧化物層以電性連接第二半導體層。透明導電氧化物層未被第一保護層覆蓋。 The light-emitting element according to the embodiment includes a substrate, a first semiconductor layer, a semiconductor stack, a first protective layer, a transparent conductive oxide layer, and a metal reflective layer. The first semiconductor layer is disposed on the substrate. The first semiconductor layer includes a first part and a second part connected to the first part. The semiconductor stack is disposed on the first part. The semiconductor stack includes an active region and a second semiconductor layer. The active region is disposed on the first semiconductor layer. The second semiconductor layer is disposed on the active region. The conductivity type of the second semiconductor layer is different from the conductivity type of the first semiconductor layer. The first protective layer is disposed on the semiconductor stack. The first protective layer has one or more first protective layer openings on the second semiconductor layer. The transparent conductive oxide layer is disposed on the first protective layer and fills the opening of the first protective layer to provide a flat surface. The metal reflective layer is disposed on the flat surface and electrically connected to the second semiconductor layer through the transparent conductive oxide layer. The transparent conductive oxide layer is not covered by the first protective layer.

根據實施例的發光裝置包括根據實施例的發光元件,以倒裝的方式設置在發光裝置中。 The light-emitting device according to the embodiment includes the light-emitting element according to the embodiment, which is arranged in the light-emitting device in a flip-chip manner.

根據實施例的發光元件的製造方法包括下列步驟。首先,提供一基板。形成一第一半導體層在基板上,包含一第一部份及一第二部份與第一部份相連。形成一半導體堆疊在第一部份上,包括形成一主動區域在第一部份上、以及形成一第二半導體層在主動區域上。第二半導體層的導電類型不同於第一半導體層的導電類型。形成一第一保護層在半導體堆疊上及一或複數個第 一保護層開口在第二半導體層上。形成一透明導電氧化物層在第一保護層上並填入第一保護層開口以提供一平整表面。之後,形成一金屬反射層在平整表面上且接觸透明導電氧化物層以電性連接第二半導體層。 The manufacturing method of the light-emitting element according to the embodiment includes the following steps. First, a substrate is provided. A first semiconductor layer is formed on the substrate, including a first portion and a second portion connected to the first portion. A semiconductor stack is formed on the first portion, including forming an active region on the first portion and forming a second semiconductor layer on the active region. The conductivity type of the second semiconductor layer is different from the conductivity type of the first semiconductor layer. A first protective layer is formed on the semiconductor stack and one or more first protective layer openings are formed on the second semiconductor layer. A transparent conductive oxide layer is formed on the first protective layer and the first protective layer openings are filled to provide a flat surface. Afterwards, a metal reflective layer is formed on the flat surface and contacts the transparent conductive oxide layer to electrically connect to the second semiconductor layer.

為了對本申請案之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to better understand the above and other aspects of this application, the following is a specific example, and the attached drawings are explained in detail as follows:

1A、2A、3A、4A:發光裝置 1A, 2A, 3A, 4A: Light-emitting device

1P、2P、3P:發光封裝體 1P, 2P, 3P: luminescent package

100、200、300、400、500、1000:發光元件 100, 200, 300, 400, 500, 1000: light-emitting element

101P:透光體 101P: Translucent body

102:基板 102: Substrate

102P:反射體 102P: Reflector

102w:側表面 102w: side surface

103a、103b:金屬凸塊 103a, 103b: metal bumps

104:第一半導體層 104: First semiconductor layer

104A:第一部份 104A: Part 1

104B:第二部份 104B: Part 2

106:半導體堆疊 106: Semiconductor stacking

108:主動區域 108: Active area

110:第二半導體層 110: Second semiconductor layer

112:第一保護層 112: First protective layer

114、214、314、414、514:透明導電氧化物層 114, 214, 314, 414, 514: Transparent conductive oxide layer

116、516:金屬反射層 116, 516: Metal reflective layer

118:歐姆接觸層 118: Ohm contact layer

120、520:阻障層 120, 520: Barrier layer

122:第二保護層 122: Second protective layer

124:導通層 124: Conductive layer

124A:第一導通部分 124A: First conduction part

124B:第二導通部分 124B: Second conduction part

126:第三保護層 126: The third protective layer

128:接墊層 128:Pad layer

128A:第一接墊 128A: First pad

128B:第二接墊 128B: Second pad

201P:反射結構 201P: Reflection structure

202P:封裝基板 202P:Packaging substrate

203P:第一墊片 203P: First gasket

204P:第二墊片 204P: Second gasket

205P:絕緣部 205P: Insulation Department

300P:支撐基板 300P: Support substrate

301:第一焊盤 301: First pad

302:第二焊盤 302: Second solder pad

303:第一凸塊 303: First bump

304:第二凸塊 304: Second bump

305:波長轉換器 305: Wavelength converter

306:透鏡 306: Lens

401A:燈罩 401A: Lampshade

402A:反射鏡 402A: Reflector

403A:承載部 403A: Carrier Department

404A:發光單元 404A: Light-emitting unit

405A:發光模組 405A: Light-emitting module

406A:燈座 406A: Lamp holder

407A:散熱片 407A: Heat sink

408A:連接部 408A:Connection part

409A:電連接元件 409A: Electrical connection components

500A、600:顯示面板 500A, 600: Display panel

501:底蓋 501: Bottom cover

502、606:反射片 502, 606: reflective sheet

503:擴散板 503:Diffusion plate

504、605:光學片 504, 605: Optical film

505:透鏡 505: Lens

514A:第一透明導電部分 514A: first transparent conductive part

514B:第二透明導電部分 514B: Second transparent conductive part

516A:第一反射部分 516A: First reflection part

516B:第二反射部分 516B: Second reflection part

520A:第一阻障部分 520A: First barrier section

520B:第二阻障部分 520B: Second barrier section

601:框架 601:Framework

602、603:罩蓋 602, 603: Cover

604:導光板 604: Light guide plate

607、701:載板 607, 701: carrier board

700:燈主體 700: Light body

702:蓋透鏡 702: Cover lens

703:散熱部 703: Heat dissipation unit

704:支撐肋 704: Support ribs

705:連接部件 705: Connecting parts

706:散熱片 706: Heat sink

707:散熱扇 707: Cooling fan

C:凹陷 C: Depression

h:高度差 h: height difference

O1:第一保護層開口 O1: Opening of the first protective layer

O2:第二保護層開口 O2: Second protective layer opening

O3:保護層開口 O3: Opening of protective layer

O4:第一焊墊開口 O4: First welding pad opening

O5:第二焊墊開口 O5: Second welding pad opening

S:平整表面 S: Flat surface

S1~S12、S31、S32:步驟 S1~S12, S31, S32: Steps

第1圖係繪示根據一實施例之發光元件的剖面示意圖。 Figure 1 is a schematic cross-sectional view of a light-emitting element according to an embodiment.

第2圖係繪示根據一實施例之發光元件的剖面示意圖。 Figure 2 is a schematic cross-sectional view of a light-emitting element according to an embodiment.

第3圖係繪示根據一實施例之發光元件的剖面示意圖。 Figure 3 is a schematic cross-sectional view of a light-emitting element according to an embodiment.

第4圖係繪示根據一實施例之發光元件的剖面示意圖。 Figure 4 is a schematic cross-sectional view of a light-emitting element according to an embodiment.

第5圖係繪示根據一實施例之發光元件的剖面示意圖。 Figure 5 is a schematic cross-sectional view of a light-emitting element according to an embodiment.

第6圖係繪示根據一實施例之發光元件的製造方法的流程圖。 Figure 6 is a flow chart showing a method for manufacturing a light-emitting element according to an embodiment.

第7圖係繪示根據一實施例之發光封裝體之示意圖。 Figure 7 is a schematic diagram of a light-emitting package according to an embodiment.

第8圖係繪示根據一實施例之發光封裝體之示意圖。 Figure 8 is a schematic diagram of a light-emitting package according to an embodiment.

第9圖係繪示根據一實施例之發光封裝體之示意圖。 Figure 9 is a schematic diagram of a light-emitting package according to an embodiment.

第10圖係繪示根據一實施例之發光裝置之示意圖。 Figure 10 is a schematic diagram of a light-emitting device according to an embodiment.

第11圖係繪示根據一實施例之發光裝置之示意圖。 Figure 11 is a schematic diagram of a light-emitting device according to an embodiment.

第12圖係繪示根據一實施例之發光裝置之示意圖。 Figure 12 is a schematic diagram of a light-emitting device according to an embodiment.

第13圖係繪示根據一實施例之發光裝置之示意圖。 Figure 13 is a schematic diagram of a light-emitting device according to an embodiment.

以下將配合所附圖式對於各種不同的實施例進行更詳細的敘述。為了清楚起見,圖式中的元件可能並未依照實際比例進行繪示。並且,在一些圖式中可能省略部分元件和/或符號。在圖式中,以類似的符號來指示類似的元件。下述內容和所附圖式只是提供用於說明,並不意欲造成限制。可以預期的是,一實施例中的元件和特徵,能夠被有利地納入於另一實施例中,無須進一步的闡述。 The following will be described in more detail with the accompanying drawings for various different embodiments. For the sake of clarity, the elements in the drawings may not be drawn according to the actual scale. In addition, some elements and/or symbols may be omitted in some drawings. In the drawings, similar symbols are used to indicate similar elements. The following content and the accompanying drawings are provided for illustration only and are not intended to be limiting. It is expected that the elements and features of one embodiment can be advantageously incorporated into another embodiment without further elaboration.

本申請案的一種態樣是發光元件。請參照第1圖,係繪示根據一實施例之發光元件100的剖面示意圖。 One aspect of this application is a light-emitting element. Please refer to Figure 1, which is a cross-sectional schematic diagram of a light-emitting element 100 according to an embodiment.

發光元件100包括一基板102、一第一半導體層104、一半導體堆疊106、一第一保護層112、一透明導電氧化物層114、和一金屬反射層116。第一半導體層104設置在基板10上。第一半導體層104包含一第一部份104A及一第二部份104B與第一部份104A相連。半導體堆疊106設置在第一部份104A上。半導體堆疊106包括一主動區域108和一第二半導體層110。主動區域108設置在第一半導體層104上。第二半導體層110設置在主動區域108上。第二半導體層110的導電類型不同於第一半導體層104的導電類型。第一保護層112設置在半導體堆疊106上。第一保護層112於第二半導體層110上具有一或複數個第一保護層開口O1。透明導電氧化物層114設置在第一保護層112上且填入第一保護層開口O1以提供一平整表面S。金屬反射層116設置在平整表面S上且經由透明導電氧化物層114以電性連接第二半導體層110。 The light-emitting element 100 includes a substrate 102, a first semiconductor layer 104, a semiconductor stack 106, a first protective layer 112, a transparent conductive oxide layer 114, and a metal reflective layer 116. The first semiconductor layer 104 is disposed on the substrate 10. The first semiconductor layer 104 includes a first portion 104A and a second portion 104B connected to the first portion 104A. The semiconductor stack 106 is disposed on the first portion 104A. The semiconductor stack 106 includes an active region 108 and a second semiconductor layer 110. The active region 108 is disposed on the first semiconductor layer 104. The second semiconductor layer 110 is disposed on the active region 108. The conductivity type of the second semiconductor layer 110 is different from the conductivity type of the first semiconductor layer 104. The first protective layer 112 is disposed on the semiconductor stack 106. The first protective layer 112 has one or more first protective layer openings O1 on the second semiconductor layer 110. The transparent conductive oxide layer 114 is disposed on the first protective layer 112 and fills the first protective layer openings O1 to provide a flat surface S. The metal reflective layer 116 is disposed on the flat surface S and is electrically connected to the second semiconductor layer 110 through the transparent conductive oxide layer 114.

更具體地說,基板102可以是用於磊晶成長第一半導體層104和半導體堆疊106等半導體疊層的成長基板,包括用於生長磷化鎵銦(AlGaInP)的砷化鎵(GaAs)基板、及磷化鎵(GaP)基板,或用於生長氮化銦鎵(InGaN)或氮化鋁鎵(AlGaN)的藍寶石(Al2O3)基板,氮化鎵(GaN)基板,碳化矽(SiC)基板、及氮化鋁(AlN)基板。基板102也可以是一承載基板,經由成長基板磊晶形成的半導體疊層晶由晶圓轉移(Wafer transfer)等製程接合於承載基板,再移除成長基板,繼續之後的製程。承載基板包括導電材料或半導體材料,承載基板可為透光或不透光的。導電透光材料包含但不限於透明導電氧化物(TCO),例如氧化鋅(ZnO);導電不透光材料包含但不限於金屬材料,例如鋁(Al)、銅(Cu)、鉬(Mo)、鍺(Ge)或鎢(W)等元素或上述材料之合金或疊層;半導體材料包含矽(Si)、碳化矽(SiC)、砷化鎵(GaAs)、氮化鎵(GaN)、氮化鋁(AlN)、磷化鎵(GaP)、磷砷化鎵(GaAsP)、硒化鋅(ZnSe)、硒化鋅(ZnSe)或磷化銦(InP)。基板102可以是一圖案化基板,即,基板上表面具有圖案化結構(圖未示)。於一實施例中,從主動區域108發射的光可以被基板102的圖案化結構所折射或反射,從而提高發光元件的光摘出效率。於一實施例中,基板102做為成長基板時,其圖案化結構減緩或抑制了基板102與第一半導體層104、主動區域108及第二半導體層110之間因晶格不匹配而導致的錯位,從而改善磊晶品質。 More specifically, the substrate 102 may be a growth substrate for epitaxially growing semiconductor stacks such as the first semiconductor layer 104 and the semiconductor stack 106, including a gallium arsenide (GaAs) substrate and a gallium phosphide (GaP) substrate for growing gallium indium phosphide (AlGaInP), or a sapphire ( Al2O3 ) substrate, a gallium nitride (GaN) substrate, a silicon carbide ( SiC ) substrate, and an aluminum nitride (AlN) substrate for growing gallium indium nitride (InGaN) or aluminum gallium nitride (AlGaN). The substrate 102 may also be a carrier substrate, and the semiconductor stack crystal formed by epitaxial growth of the growth substrate is bonded to the carrier substrate by a process such as wafer transfer, and then the growth substrate is removed to continue the subsequent process. The carrier substrate includes a conductive material or a semiconductor material, and the carrier substrate may be light-transmissive or light-opaque. The conductive light-transmissive material includes but is not limited to a transparent conductive oxide (TCO), such as zinc oxide (ZnO); the conductive light-opaque material includes but is not limited to a metal material, such as aluminum (Al), copper (Cu), molybdenum (Mo), germanium (Ge) or tungsten (W) or an alloy or stack of the above materials; the semiconductor material includes silicon (Si), silicon carbide (SiC), gallium arsenide (GaAs), gallium nitride (GaN), aluminum nitride (AlN), gallium phosphide (GaP), gallium arsenide phosphide (GaAsP), zinc selenide (ZnSe), zinc selenide (ZnSe) or indium phosphide (InP). The substrate 102 may be a patterned substrate, that is, the upper surface of the substrate has a patterned structure (not shown). In one embodiment, light emitted from the active region 108 can be refracted or reflected by the patterned structure of the substrate 102, thereby improving the light extraction efficiency of the light emitting element. In one embodiment, when the substrate 102 is used as a growth substrate, its patterned structure reduces or suppresses the misalignment caused by lattice mismatch between the substrate 102 and the first semiconductor layer 104, the active region 108, and the second semiconductor layer 110, thereby improving the epitaxial quality.

於一實施例中,在基板102上形成第一半導體層104之前,可先形成一緩衝結構(圖未示)。緩衝結構可進一步減緩上述的晶格 不匹配並抑制錯位,從而改善磊晶品質。緩衝層的材料包括適合上述半導體疊層磊晶成長的材料,例如GaN、AlGaN或AlN。緩衝結構的形成方法包含有機金屬化學氣相沉積(MOCVD)、分子束磊晶法(MBE)、氫化物氣相磊晶(HVPE)或離子鍍,例如濺鍍或蒸鍍等。在一實施例中,緩衝結構包括多個子層(圖未示)。子層包括相同材料或不同材料。在一實施例中,緩衝結構包括兩個子層,其中第一子層的生長方式為濺鍍,第二子層的生長方式為MOCVD。在一實施例中,緩衝層另包含第三子層。其中第三子層的生長方式為MOCVD,第二子層的生長溫度高於或低於第三子層的生長溫度。於一實施例中,第一、第二及第三子層包括相同的材料,例如AlN,或不同材料,例如AlN、GaN、或AlGaN。在本申請案的一實施例中,第一半導體層104和第二半導體層110,例如為包覆層(cladding layer)或侷限層(confinement layer),具有不同的導電型態、電性、極性或用於提供電子或電洞的摻雜元素。例如,第一半導體層104是n型半導體,以及第二半導體層110是p型半導體。主動區域108形成於第一半導體層104與第二半導體層110之間。電子與電洞在電流驅動下在主動區域108中結合,將電能轉換成光能以發光。可藉由改變其中一個或多個層別的物理特性和化學組成,來調整發光元件100所發出的光之波長。 In one embodiment, before forming the first semiconductor layer 104 on the substrate 102, a buffer structure (not shown) may be formed first. The buffer structure may further alleviate the above-mentioned lattice mismatch and suppress dislocation, thereby improving the epitaxial quality. The material of the buffer layer includes a material suitable for the above-mentioned semiconductor stack epitaxial growth, such as GaN, AlGaN or AlN. The method for forming the buffer structure includes metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), hydrogen vapor phase epitaxy (HVPE) or ion plating, such as sputtering or evaporation. In one embodiment, the buffer structure includes a plurality of sub-layers (not shown). The sub-layers include the same material or different materials. In one embodiment, the buffer structure includes two sublayers, wherein the growth method of the first sublayer is sputtering, and the growth method of the second sublayer is MOCVD. In one embodiment, the buffer layer further includes a third sublayer. The growth method of the third sublayer is MOCVD, and the growth temperature of the second sublayer is higher or lower than the growth temperature of the third sublayer. In one embodiment, the first, second and third sublayers include the same material, such as AlN, or different materials, such as AlN, GaN, or AlGaN. In one embodiment of the present application, the first semiconductor layer 104 and the second semiconductor layer 110, such as a cladding layer or a confinement layer, have different conductivity types, electrical properties, polarities, or doping elements for providing electrons or holes. For example, the first semiconductor layer 104 is an n-type semiconductor, and the second semiconductor layer 110 is a p-type semiconductor. The active region 108 is formed between the first semiconductor layer 104 and the second semiconductor layer 110. Electrons and holes combine in the active region 108 under current drive, converting electrical energy into light energy to emit light. The wavelength of light emitted by the light-emitting element 100 can be adjusted by changing the physical properties and chemical composition of one or more of the layers.

第一半導體層104、主動區域108及第二半導體層110的材料包括AlxInyGa(1-x-y)N或AlxInyGa(1-x-y)P的III-V族半導體材料,其中0

Figure 111118304-A0305-02-0009-1
x,y
Figure 111118304-A0305-02-0009-2
1;x+y
Figure 111118304-A0305-02-0009-3
1。根據主動區域108的材料,當主動區域108的材料是AlInGaP系列時,可以發出波長介於610nm和650nm之間的紅光或波長介於550nm和570nm之間的黃光。當主動區域108的材料是InGaN 系列時,可以發出波長介於400nm和490nm之間的藍光或深藍光或波長介於490nm和550nm之間的綠光。當主動區域108的材料是AlGaN系列時,可以發出波長介於400nm和250nm之間的UV光。主動區域108可以是單異質結構(single heterostructure;SH)、雙異質結構(double heterostructure;DH)、雙面雙異質結構(double-side double heterostructure;DDH)、多重量子井(multi-quantum well;MQW)。主動區域108的材料可以是i型、p型或n型半導體。 The materials of the first semiconductor layer 104, the active region 108 and the second semiconductor layer 110 include III-V semiconductor materials of AlxInyGa (1-xy) N or AlxInyGa (1- xy ) P, wherein 0
Figure 111118304-A0305-02-0009-1
x,y
Figure 111118304-A0305-02-0009-2
1; x+y
Figure 111118304-A0305-02-0009-3
1. According to the material of the active region 108, when the material of the active region 108 is AlInGaP series, red light with a wavelength between 610nm and 650nm or yellow light with a wavelength between 550nm and 570nm can be emitted. When the material of the active region 108 is InGaN series, blue light or deep blue light with a wavelength between 400nm and 490nm or green light with a wavelength between 490nm and 550nm can be emitted. When the material of the active region 108 is AlGaN series, UV light with a wavelength between 400nm and 250nm can be emitted. The active region 108 may be a single heterostructure (SH), a double heterostructure (DH), a double-side double heterostructure (DDH), or a multi-quantum well (MQW). The material of the active region 108 may be an i-type, p-type, or n-type semiconductor.

根據一些實施例,發光元件100可以更包括一歐姆接觸層118,設置在半導體堆疊106與第一保護層112之間,且覆蓋第二半導體層110的一上表面,並與第二半導體層110電性接觸。於本實施例中,歐姆接觸層118的邊緣是內縮形成於第二半導體層110上,與其相鄰的第二半導體層110的邊緣間隔一距離。歐姆接觸層118可以是金屬或是透明導電材料,其中金屬可選自具有透光性的薄金屬層,例如金(Au)、鋁(Al)、鈦(Ti)、鎳(Ni)、鉻(Cr)或上述材料之合金或疊層。透明導電材料對於主動區域108所發出的光線為透明,包含石墨烯、銦錫氧化物(ITO)、氧化鋁鋅(AZO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)或銦鋅氧化物(IZO)等材料。於一實施例中,歐姆接觸層118的材料與透明導電氧化物層114的材料相同或不同。 According to some embodiments, the light emitting element 100 may further include an ohmic contact layer 118 disposed between the semiconductor stack 106 and the first protective layer 112, covering an upper surface of the second semiconductor layer 110, and electrically contacting the second semiconductor layer 110. In this embodiment, the edge of the ohmic contact layer 118 is formed inwardly on the second semiconductor layer 110, and is spaced a distance from the edge of the adjacent second semiconductor layer 110. The ohmic contact layer 118 can be a metal or a transparent conductive material, wherein the metal can be selected from a thin metal layer with light transmittance, such as gold (Au), aluminum (Al), titanium (Ti), nickel (Ni), chromium (Cr) or an alloy or stack of the above materials. The transparent conductive material is transparent to the light emitted by the active region 108, and includes materials such as graphene, indium tin oxide (ITO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), zinc oxide (ZnO) or indium zinc oxide (IZO). In one embodiment, the material of the ohmic contact layer 118 is the same as or different from the material of the transparent conductive oxide layer 114.

第一保護層112形成於第二半導體層110上。於一實施例中,第一保護層112形成於歐姆接觸層118的一上表面上,延伸覆蓋部分第二半導體層110、第一半導體層104的第一部份104A之一側表 面及第二部分104B之一上表面。第一保護層112包含一或複數個第一保護層開口O1位於第二半導體層110上,暴露出部份第二半導體層110,及/或歐姆接觸層118。第一保護層112相對於主動區域108所發出的光線為透明,其材料為非導電材料,包含有機材料或無機材料。其中有機材料包含Su8、苯并環丁烯(BCB)、過氟環丁烷(PFCB)、環氧樹脂(Epoxy)、丙烯酸樹脂(Acrylic Resin)、環烯烴聚合物(COC)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚醚醯亞胺(Polyetherimide)、聚醯亞胺(Polyimide)或氟碳聚合物(Fluorocarbon Polymer)。無機材料包含例如矽膠(Silicone)、玻璃(Glass)或是介電材料。介電材料包括:含矽材料,例如為氧化矽(SiNx)、氮化矽(SiOx)、氧氮化矽(SiOxNy);金屬氧化物,例如氧化鈮(Nb2O5)、氧化鉭(Ta2O5)、氧化鉿(HfO2)、氧化鈦(TiOx)、氧化鋁(Al2O3);金屬氟化物,例如氟化鎂(MgF2)。第一保護層112可由多個子層堆疊而成。於一實施例中,多個子層由介電材料所形成。介電材料包括:含矽材料,例如氧化矽(SiOx)、氮化矽(SiNx)、或氧氮化矽(SiOxNy);金屬氧化物,例如氧化鉭(Ta2O5)、氧化鈮(Nb2O5)、氧化鉿(HfO2)、氧化鈦(TiOx)、或氧化鋁(Al2O3);金屬氟化物,例如氟化鎂(MgF2)。於一實施例中,第一保護層112藉由不同折射率材料的選擇搭配其厚度設計堆疊成材料疊層構成反射結構,對主動區域108發出之特定波長範圍的光線提供反射功能,例如為一分佈式布拉格反射器(DBR,distributed Bragg reflector)。 The first protective layer 112 is formed on the second semiconductor layer 110. In one embodiment, the first protective layer 112 is formed on an upper surface of the ohmic contact layer 118, extending to cover a portion of the second semiconductor layer 110, a side surface of the first portion 104A of the first semiconductor layer 104, and an upper surface of the second portion 104B. The first protective layer 112 includes one or more first protective layer openings O1 located on the second semiconductor layer 110, exposing a portion of the second semiconductor layer 110 and/or the ohmic contact layer 118. The first protective layer 112 is transparent to the light emitted by the active area 108, and its material is a non-conductive material, including an organic material or an inorganic material. The organic materials include Su8, benzocyclobutene (BCB), perfluorocyclobutane (PFCB), epoxy, acrylic resin, cycloolefin polymer (COC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (PC), polyetherimide, polyimide or fluorocarbon polymer. The inorganic materials include silicone, glass or dielectric materials. Dielectric materials include: silicon-containing materials, such as silicon oxide ( SiNx ), silicon nitride ( SiOx ), silicon oxynitride ( SiOxNy ); metal oxides, such as niobium oxide ( Nb2O5 ), tantalum oxide ( Ta2O5 ), ferrous oxide ( HfO2 ), titanium oxide ( TiOx ), aluminum oxide ( Al2O3 ); metal fluorides, such as magnesium fluoride ( MgF2 ). The first protection layer 112 can be formed by stacking multiple sub-layers. In one embodiment, the multiple sub-layers are formed by dielectric materials. The dielectric material includes: silicon-containing materials, such as silicon oxide ( SiOx ), silicon nitride ( SiNx ), or silicon oxynitride ( SiOxNy ); metal oxides, such as tantalum oxide ( Ta2O5 ), niobium oxide ( Nb2O5 ), niobium oxide ( HfO2 ), titanium oxide ( TiOx ), or aluminum oxide ( Al2O3 ); metal fluorides, such as magnesium fluoride ( MgF2 ). In one embodiment, the first protective layer 112 is stacked into a material stack by selecting materials with different refractive indices and designing their thicknesses to form a reflective structure, which provides a reflective function for light in a specific wavelength range emitted by the active region 108, such as a distributed Bragg reflector (DBR).

在發光元件100中,透明導電氧化物層114設置在第一保護層112上。透明導電氧化物層114的一上表面高於第一保護層112的一上表面,且透明導電氧化物層114的上表面構成平整表面S。根據一些實施例,透明導電氧化物層114的材料選擇條件可以是透光率大於90%且電阻率小於或等於1×10-3ohmm.cm。舉例來說,透明導電氧化物層114的材料可以是銦錫氧化物(ITO)、銦鋅氧化物(IZO)、氧化鋁鋅(AZO)、氧化鎵鋅(GZO)或氧化鋅(ZnO),但不限於此。在一實施例中,在第一保護層112的厚度較大時,例如大於200nm,透明導電氧化物層114的材料可選擇例如IZO或ZnO等透光率較高的材料,以在達到接近第一保護層112的厚度時,透明導電氧化物層114的材料仍能兼顧高透光率以提升發光元件之亮度。在導電氧化物層114的形成方式中,可以在沉積透明導電氧化物層114的材料之後,再進行平坦化製程,例如以化學機械平坦化(CMP)處理,以改善表面平整度。在一些實施例中,透明導電氧化物層114的寬度可以大於第二半導體層110的寬度。在一些實施例中,透明導電氧化物層114可以超出第二半導體層110的邊緣,延伸形成在半導體堆疊106的側壁,藉由第一保護層112與半導體堆疊106電性絕緣。 In the light-emitting element 100, the transparent conductive oxide layer 114 is disposed on the first protective layer 112. An upper surface of the transparent conductive oxide layer 114 is higher than an upper surface of the first protective layer 112, and the upper surface of the transparent conductive oxide layer 114 constitutes a flat surface S. According to some embodiments, the material selection conditions of the transparent conductive oxide layer 114 may be a light transmittance greater than 90% and a resistivity less than or equal to 1×10 -3 ohmm. cm. For example, the material of the transparent conductive oxide layer 114 may be indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO) or zinc oxide (ZnO), but is not limited thereto. In one embodiment, when the thickness of the first protective layer 112 is relatively large, for example, greater than 200 nm, the material of the transparent conductive oxide layer 114 may be selected from materials with higher light transmittance, such as IZO or ZnO, so that when the thickness reaches a thickness close to that of the first protective layer 112, the material of the transparent conductive oxide layer 114 can still take into account high light transmittance to improve the brightness of the light-emitting element. In the formation method of the conductive oxide layer 114, after depositing the material of the transparent conductive oxide layer 114, a planarization process, such as chemical mechanical planarization (CMP) treatment, may be performed to improve the surface flatness. In some embodiments, the width of the transparent conductive oxide layer 114 may be greater than the width of the second semiconductor layer 110. In some embodiments, the transparent conductive oxide layer 114 may extend beyond the edge of the second semiconductor layer 110 and be formed on the sidewall of the semiconductor stack 106 , and be electrically insulated from the semiconductor stack 106 by the first protection layer 112 .

在發光元件100中,只由透明導電氧化物層114提供要形成金屬反射層116的平整表面S。可以理解的是,本申請案所謂的「平整」仍允許一些製程導致的誤差或缺陷存在。根據一些實 施例,平整表面S的最高處與最低處的高度差小於5nm。根據一些實施例,平整表面S的表面粗糙度Ra為1nm以下。 In the light-emitting element 100, only the transparent conductive oxide layer 114 provides a flat surface S on which the metal reflective layer 116 is to be formed. It is understandable that the so-called "flatness" in this application still allows for some errors or defects caused by the process. According to some embodiments, the height difference between the highest point and the lowest point of the flat surface S is less than 5nm. According to some embodiments, the surface roughness Ra of the flat surface S is less than 1nm.

金屬反射層116設置在平整表面S上,從而形成為平整而沒有明顯高低起伏的層,因此可以提供平整的反射面。金屬反射層116經由透明導電氧化物層114與第二半導體層110電性連接。外部注入電流通過金屬反射層116,再經由第一保護層開口O1電性連接至第二半導體層110達到電流均勻分佈的效果。於一實施例中,金屬反射層116可包含單一金屬層或是由複數金屬層所形成之疊層,第一保護層112可包含單層或是由多層,例如為分佈式布拉格反射器所形成之疊層。於一實施例中,金屬反射層116、透明導電氧化物層114與第一保護層112形成一全方位反射鏡(omnidirectional reflector,ODR),以增進光的反射及發光元件100的亮度。金屬反射層116可以包含對主動區域108所發射的光線具有高反射率的金屬材料,例如銀(Ag)、金(Au)、鋁(Al)、鈦(Ti)、鉻(Cr)、銅(Cu)、鎳(Ni)、鉑(Pt)、釕(Ru)、鎢(W)或上述材料之合金或疊層。 The metal reflective layer 116 is disposed on the flat surface S, thereby forming a flat layer without obvious ups and downs, thereby providing a flat reflective surface. The metal reflective layer 116 is electrically connected to the second semiconductor layer 110 via the transparent conductive oxide layer 114. The external injection current passes through the metal reflective layer 116, and then electrically connects to the second semiconductor layer 110 via the first protective layer opening O1 to achieve the effect of uniform current distribution. In one embodiment, the metal reflective layer 116 may include a single metal layer or a stacked layer formed by a plurality of metal layers, and the first protective layer 112 may include a single layer or a stacked layer formed by multiple layers, such as a distributed Bragg reflector. In one embodiment, the metal reflective layer 116, the transparent conductive oxide layer 114 and the first protective layer 112 form an omnidirectional reflector (ODR) to enhance the reflection of light and the brightness of the light-emitting element 100. The metal reflective layer 116 may include a metal material having a high reflectivity for the light emitted by the active area 108, such as silver (Ag), gold (Au), aluminum (Al), titanium (Ti), chromium (Cr), copper (Cu), nickel (Ni), platinum (Pt), ruthenium (Ru), tungsten (W) or alloys or stacks of the above materials.

根據一些實施例,發光元件100可以更包括一阻障層120,設置在金屬反射層116上。阻障層120的材料可包括金屬,例如鉻(Cr)、鋁(Al)、鉑(Pt)、鈦(Ti)、鎢(W)、鋅(Zn)或上述材料之合金或疊層。於一實施例中,當阻障層120為金屬疊層時,阻障層120係由兩層或兩層以上的金屬交替堆疊而形成,例如Cr/Pt,Cr/Ti,Cr/TiW,Cr/W,Cr/Zn,Ti/Al,Ti/Pt,Ti/W,Ti/TiW,Ti/Zn,Pt/TiW,Pt/W,Pt/Zn,TiW/W,TiW/Zn,或W/Zn等。於一實施例中,阻障層120的 材料可包括透明導電材料,包括石墨烯、銦錫氧化物(ITO)、氧化鋁鋅(AZO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)或銦鋅氧化物(IZO)等材料。於一實施例中,金屬反射層116的邊緣是內縮於與其相鄰的第二半導體層110的邊緣,且歐姆接觸層118的邊緣是內縮於與其相鄰的金屬反射層116的邊緣。換句話說,金屬反射層116的邊緣與相鄰的第二半導體層110的邊緣有一間距,歐姆接觸層118的邊緣與相鄰的金屬反射層116的邊緣有一間距。於一實施例中,金屬反射層116的邊緣是內縮於與其相鄰的透明導電氧化物層114的邊緣,且歐姆接觸層118的邊緣是內縮於與其相鄰的金屬反射層116的邊緣。換句話說,金屬反射層116的邊緣位於相鄰的透明導電氧化物層114的邊緣與相鄰的歐姆接觸層118的邊緣之間。 According to some embodiments, the light emitting element 100 may further include a barrier layer 120 disposed on the metal reflective layer 116. The barrier layer 120 may be made of metal, such as chromium (Cr), aluminum (Al), platinum (Pt), titanium (Ti), tungsten (W), zinc (Zn), or alloys or stacks thereof. In one embodiment, when the barrier layer 120 is a metal stack, the barrier layer 120 is formed by alternately stacking two or more metal layers, such as Cr/Pt, Cr/Ti, Cr/TiW, Cr/W, Cr/Zn, Ti/Al, Ti/Pt, Ti/W, Ti/TiW, Ti/Zn, Pt/TiW, Pt/W, Pt/Zn, TiW/W, TiW/Zn, or W/Zn. In one embodiment, the material of the barrier layer 120 may include a transparent conductive material, including graphene, indium tin oxide (ITO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), zinc oxide (ZnO), or indium zinc oxide (IZO). In one embodiment, the edge of the metal reflective layer 116 is inwardly contracted to the edge of the adjacent second semiconductor layer 110, and the edge of the ohmic contact layer 118 is inwardly contracted to the edge of the adjacent metal reflective layer 116. In other words, there is a gap between the edge of the metal reflective layer 116 and the edge of the adjacent second semiconductor layer 110, and there is a gap between the edge of the ohmic contact layer 118 and the edge of the adjacent metal reflective layer 116. In one embodiment, the edge of the metal reflective layer 116 is indented to the edge of the adjacent transparent conductive oxide layer 114, and the edge of the ohmic contact layer 118 is indented to the edge of the adjacent metal reflective layer 116. In other words, the edge of the metal reflective layer 116 is located between the edge of the adjacent transparent conductive oxide layer 114 and the edge of the adjacent ohmic contact layer 118.

根據一些實施例,發光元件100可以更包括一第二保護層122,設置在阻障層120上。第二保護層122自阻障層120上延伸覆蓋至第一保護層112的側壁。於一實施例中,第二保護層122形成於阻障層120上。於一實施例中,第二保護層122包含一或複數個第二保護層開口O2位於阻障層120上且暴露阻障層120。第一保護層112及第二保護層122更分別包含一或更多個保護層開口(圖未示)位於第一半導體層104的第二部分104B上且暴露第一半導體層104的第二部分104B。於一實施例中,位於第一半導體層104的第二部分104B上的第一保護層112及第二保護層122的保護層開口具有一重疊的保護層開口O3。第二保護層122相對於主動區域108所發出的光線為透明,其材料為非導電材料,包含有機材料或無機材料。其中 有機材料包含Su8、苯并環丁烯(BCB)、過氟環丁烷(PFCB)、環氧樹脂(Epoxy)、丙烯酸樹脂(Acrylic Resin)、環烯烴聚合物(COC)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚醚醯亞胺(Polyetherimide)、聚醯亞胺(Polyimide)或氟碳聚合物(Fluorocarbon Polymer)。無機材料包含例如矽膠(Silicone)、玻璃(Glass)或是介電材料。介電材料包括:含矽材料,例如為氧化矽(SiNx)、氮化矽(SiNx)、氧氮化矽(SiOxNy)、金屬氧化物,例如氧化鈮(Nb2O5)、氧化鉭(Ta2O5)、氧化鉿(HfO2)、氧化鈦(TiOx)、氧化鋁(Al2O3)、金屬氟化物,例如氟化鎂(MgF2)。第二保護層122可由多個子層堆疊而成。於一實施例中,多個子層由介電材料所形成,介電材料包括:含矽材料,例如氧化矽(SiOx)、氮化矽(SiNx)、或氧氮化矽(SiOxNy);金屬氧化物,例如氧化鈮(Nb2O5)、氧化鉭(Ta2O5)、氧化鉿(HfO2)、氧化鈦(TiOx)、或氧化鋁(Al2O3);金屬氟化物,例如氟化鎂(MgF2)。於一實施例中,第二保護層122藉由不同折射率材料的選擇搭配其厚度設計堆疊成材料疊層構成反射結構,對主動區域108發出之特定波長範圍的光線提供反射功能,例如為一分佈式布拉格反射器(DBR,distributed Bragg reflector)。 According to some embodiments, the light emitting device 100 may further include a second protective layer 122 disposed on the barrier layer 120. The second protective layer 122 extends from the barrier layer 120 to cover the sidewall of the first protective layer 112. In one embodiment, the second protective layer 122 is formed on the barrier layer 120. In one embodiment, the second protective layer 122 includes one or more second protective layer openings O2 located on the barrier layer 120 and exposing the barrier layer 120. The first protective layer 112 and the second protective layer 122 further include one or more protective layer openings (not shown) located on the second portion 104B of the first semiconductor layer 104 and exposing the second portion 104B of the first semiconductor layer 104. In one embodiment, the protective layer openings of the first protective layer 112 and the second protective layer 122 on the second portion 104B of the first semiconductor layer 104 have an overlapping protective layer opening O3. The second protective layer 122 is transparent to the light emitted by the active area 108 and is made of a non-conductive material, including an organic material or an inorganic material. The organic materials include Su8, benzocyclobutene (BCB), perfluorocyclobutane (PFCB), epoxy, acrylic resin, cycloolefin polymer (COC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (PC), polyetherimide, polyimide or fluorocarbon polymer. The inorganic materials include silicone, glass or dielectric materials. Dielectric materials include silicon-containing materials, such as silicon oxide ( SiNx ), silicon nitride ( SiNx ), silicon oxynitride ( SiOxNy ) , metal oxides, such as niobium oxide ( Nb2O5 ), tantalum oxide ( Ta2O5 ), helium oxide ( HfO2 ), titanium oxide ( TiOx ), aluminum oxide ( Al2O3 ), and metal fluorides, such as magnesium fluoride ( MgF2 ). The second protection layer 122 can be formed by stacking multiple sub-layers. In one embodiment, the plurality of sub-layers are formed of a dielectric material, the dielectric material comprising: a silicon-containing material, such as silicon oxide ( SiOx ), silicon nitride ( SiNx ), or silicon oxynitride ( SiOxNy ); a metal oxide, such as niobium oxide (Nb2O5 ) , tantalum oxide ( Ta2O5 ), helium oxide ( HfO2 ), titanium oxide ( TiOx ), or aluminum oxide ( Al2O3 ); a metal fluoride, such as magnesium fluoride ( MgF2 ). In one embodiment, the second protective layer 122 is stacked into a material layer to form a reflective structure by selecting materials with different refractive indices and designing their thicknesses, and provides a reflective function for light in a specific wavelength range emitted by the active area 108, such as a distributed Bragg reflector (DBR).

根據一些實施例,發光元件100可以更包括一導通層124,設置在第二保護層122上。導通層124包含彼此分離的一第一導通部分124A和一第二導通部分124B。第一導通部分124A覆蓋第一保護層112及第二保護層122且經由保護層開口O3接觸第一半導體層104的第二部分104B以電性連接第一半導體層104。第二導通 部分124B經由第二保護層開口O2接觸阻障層120,與第二半導體層110電性連接。於一實施例中,導通層124包含金屬材料,例如銀(Ag)、鋁(Al)、鉻(Cr)、鉑(Pt)、金(Au)、鈦(Ti)、鎢(W)、鋅(Zn)或上述材料之合金或疊層。 According to some embodiments, the light-emitting element 100 may further include a conductive layer 124 disposed on the second protective layer 122. The conductive layer 124 includes a first conductive portion 124A and a second conductive portion 124B separated from each other. The first conductive portion 124A covers the first protective layer 112 and the second protective layer 122 and contacts the second portion 104B of the first semiconductor layer 104 through the protective layer opening O3 to electrically connect the first semiconductor layer 104. The second conductive portion 124B contacts the barrier layer 120 through the second protective layer opening O2 to electrically connect the second semiconductor layer 110. In one embodiment, the conductive layer 124 includes a metal material, such as silver (Ag), aluminum (Al), chromium (Cr), platinum (Pt), gold (Au), titanium (Ti), tungsten (W), zinc (Zn), or an alloy or a stack of the above materials.

根據一些實施例,發光元件100可以更包括一第三保護層126、第一焊墊開口O4及第二焊墊開口O5,設置在導通層124上。第三保護層126自導通層124上延伸覆蓋至至第二保護層122的側壁,更延伸覆蓋至第一半導體層104的第二部分104B及/或基板102外圍的基板上表面。第一焊墊開口O4暴露第一導通部分124A,以及第二焊墊開口O5暴露第二導通部分124B。第三保護層126相對於主動區域108所發出的光線為透明,其材料為非導電材料,包含有機材料或無機材料。其中有機材料包含Su8、苯并環丁烯(BCB)、過氟環丁烷(PFCB)、環氧樹脂(Epoxy)、丙烯酸樹脂(Acrylic Resin)、環烯烴聚合物(COC)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚醚醯亞胺(Polyetherimide)、聚醯亞胺(Polyimide)或氟碳聚合物(Fluorocarbon Polymer)。無機材料包含例如矽膠(Silicone)、玻璃(Glass)或是介電材料。介電材料包括:含矽材料,例如為氧化矽(SiNx)、氮化矽(SiNx)、氧氮化矽(SiOxNy);金屬氧化物,例如氧化鈮(Nb2O5)、氧化鉭(Ta2O5)、氧化鉿(HfO2)、氧化鈦(TiOx)、氧化鋁(Al2O3);金屬氟化物,例如氟化鎂(MgF2)。第三保護層126可由多個子層堆疊而成。於一實施例中,多個子層由介電材料所形成,介電材料包括:含矽材料,例如氧化矽(SiOx)、氮化矽(SiNx)、或氧氮化 矽(SiOxNy);金屬氧化物,例如氧化鈮(Nb2O5)、氧化鉭(Ta2O5)、氧化鉿(HfO2)、氧化鈦(TiOx)、或氧化鋁(Al2O3);金屬氟化物,例如氟化鎂(MgF2)。於一實施例中,第三保護層126藉由不同折射率材料的選擇搭配其厚度設計堆疊成材料疊層構成反射結構,對主動區域108發出之特定波長範圍的光線提供反射功能,例如為一分佈式布拉格反射器(DBR,distributed Bragg reflector)。 According to some embodiments, the light-emitting element 100 may further include a third protective layer 126, a first pad opening O4, and a second pad opening O5, which are disposed on the conductive layer 124. The third protective layer 126 extends from the conductive layer 124 to cover the sidewall of the second protective layer 122, and further extends to cover the second portion 104B of the first semiconductor layer 104 and/or the upper surface of the substrate at the periphery of the substrate 102. The first pad opening O4 exposes the first conductive portion 124A, and the second pad opening O5 exposes the second conductive portion 124B. The third protective layer 126 is transparent to the light emitted by the active region 108, and its material is a non-conductive material, including an organic material or an inorganic material. The organic materials include Su8, benzocyclobutene (BCB), perfluorocyclobutane (PFCB), epoxy, acrylic resin, cycloolefin polymer (COC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (PC), polyetherimide, polyimide or fluorocarbon polymer. The inorganic materials include silicone, glass or dielectric materials. Dielectric materials include: silicon-containing materials, such as silicon oxide ( SiNx ), silicon nitride ( SiNx ), silicon oxynitride ( SiOxNy ); metal oxides, such as niobium oxide ( Nb2O5 ), tantalum oxide ( Ta2O5 ) , helium oxide ( HfO2 ), titanium oxide ( TiOx ), aluminum oxide ( Al2O3 ); metal fluorides, such as magnesium fluoride ( MgF2 ). The third protection layer 126 can be formed by stacking multiple sub-layers. In one embodiment, the plurality of sub-layers are formed of a dielectric material, the dielectric material comprising: a silicon-containing material, such as silicon oxide ( SiOx ), silicon nitride ( SiNx ), or silicon oxynitride ( SiOxNy ); a metal oxide, such as niobium oxide ( Nb2O5 ), tantalum oxide ( Ta2O5 ), helium oxide ( HfO2 ), titanium oxide ( TiOx ), or aluminum oxide ( Al2O3 ); a metal fluoride, such as magnesium fluoride ( MgF2 ). In one embodiment, the third protective layer 126 is stacked into a material layer to form a reflective structure by selecting materials with different refractive indices and designing their thicknesses, and provides a reflective function for light in a specific wavelength range emitted by the active area 108, such as a distributed Bragg reflector (DBR).

根據一些實施例,發光元件100可以更包括一接墊層128,設置在第三保護層126上。接墊層128包括一第一接墊128A和一第二接墊128B,且分別經由接觸第一導通部分124A與第二導通部分124B而分別電性連接第一半導體層104與第二半導體層110。於一實施例中,第一接墊128A及/或第二接墊128B更可覆蓋於第三保護層126上,以增加第一接墊128A、第二接墊128B面積,於後續封裝製程中,進而增加對外接合時之接合面積。第一接墊128A及第二接墊128B包含金屬材料,例如鉻(Cr)、鈦(Ti)、鎢(W)、金(Au)、鋁(Al)、銦(In)、錫(Sn)、鎳(Ni)、鉑(Pt)等金屬或上述材料之疊層或合金。第一接墊128A及第二接墊128B可由單個層或是多個層所組成。例如,第一接墊128A及第二接墊128B可包括Ti/Al、Ti/Au、Ti/Pt/Au、Cr/Au、Cr/Pt/Au、Ni/Au、Ni/Pt/Au或Cr/Al/Cr/Ni/Au。於一實施例中,第一接墊128A及第二接墊128B之表面有對應第一保護層112、第二保護層122及第三保護層126的開口形成的複數個凹部(圖未示),介由複數個凹部,於後續封裝製程中,可提升接墊與載板之間的接合力,以提升製程良率。 According to some embodiments, the light emitting device 100 may further include a pad layer 128 disposed on the third protective layer 126. The pad layer 128 includes a first pad 128A and a second pad 128B, and is electrically connected to the first semiconductor layer 104 and the second semiconductor layer 110 by contacting the first conductive portion 124A and the second conductive portion 124B, respectively. In one embodiment, the first pad 128A and/or the second pad 128B may be covered on the third protective layer 126 to increase the area of the first pad 128A and the second pad 128B, and further increase the bonding area when bonding to the outside in the subsequent packaging process. The first pad 128A and the second pad 128B include metal materials, such as chromium (Cr), titanium (Ti), tungsten (W), gold (Au), aluminum (Al), indium (In), tin (Sn), nickel (Ni), platinum (Pt), or a stack or alloy of the above materials. The first pad 128A and the second pad 128B may be composed of a single layer or multiple layers. For example, the first pad 128A and the second pad 128B may include Ti/Al, Ti/Au, Ti/Pt/Au, Cr/Au, Cr/Pt/Au, Ni/Au, Ni/Pt/Au, or Cr/Al/Cr/Ni/Au. In one embodiment, the surfaces of the first pad 128A and the second pad 128B have a plurality of recesses (not shown) corresponding to the openings of the first protective layer 112, the second protective layer 122, and the third protective layer 126. Through the plurality of recesses, the bonding force between the pad and the carrier can be enhanced in the subsequent packaging process to improve the process yield.

在不違背本申請案精神的情況下,發光元件的結構可以做各種調整。舉例來說,請參照第2圖,係繪示根據一實施例之發光元件200的剖面示意圖。發光元件200之製程及結構和發光元件100類似,類似的製程及結構請參考發光元件100之說明及圖式,不再贅述,後續將針對差異處說明。發光元件200與發光元件100不同的地方在於透明導電氧化物層214的一上表面與第一保護層112的上表面實質上齊平,透明導電氧化物層114的上表面和第一保護層112的上表面共同構成平整表面S。進而,金屬反射層116形成在透明導電氧化物層114和第一保護層112共同提供的平整表面S上。這樣的結構可以透過例如調整透明導電氧化物層114的CMP製程參數來達成。發光元件200的其他元件和特徵類似於發光元件100,在此不再贅述。 Without violating the spirit of the present application, the structure of the light-emitting element can be adjusted in various ways. For example, please refer to FIG. 2, which is a cross-sectional schematic diagram of a light-emitting element 200 according to an embodiment. The process and structure of the light-emitting element 200 are similar to those of the light-emitting element 100. For similar processes and structures, please refer to the description and drawings of the light-emitting element 100, and will not be repeated here. The differences will be described later. The light-emitting element 200 is different from the light-emitting element 100 in that an upper surface of the transparent conductive oxide layer 214 is substantially flush with the upper surface of the first protective layer 112, and the upper surface of the transparent conductive oxide layer 114 and the upper surface of the first protective layer 112 together constitute a flat surface S. Furthermore, the metal reflective layer 116 is formed on the flat surface S provided by the transparent conductive oxide layer 114 and the first protective layer 112. Such a structure can be achieved by, for example, adjusting the CMP process parameters of the transparent conductive oxide layer 114. Other components and features of the light-emitting element 200 are similar to those of the light-emitting element 100 and will not be described again here.

請參照第3圖,係繪示根據一實施例之發光元件300的剖面示意圖。發光元件300之製程及結構和發光元件100類似,類似的製程及結構請參考發光元件100之說明及圖式,不再贅述,後續將針對差異處說明。發光元件300與發光元件100不同的地方在於,受到製程等因素的影響,透明導電氧化物層314在對應第一保護層開口O處可能會略呈凹狀。因此,平整表面S在對應一或複數個第一保護層開口O處分別具有一或複數個凹陷C。於一實施例中,金屬反射層116對應一或複數個凹陷C的位置形成平滑的凸面,由主動區域108發出的光透過金屬反射層116的凸面及平面反射,可進一步提升光摘出效率。於一實施例中,即使存在凹陷C,平整表面S的 最高處與最低處的高度差h仍小於5nm。於一實施例中,平整表面S包含一最低處位於一或複數個凹陷C之一,平整表面S的一最高處與該最低處的高度差小於5nm。與傳統的覆晶式LED元件相比,仍可以大幅改善反射表面不夠平整所造成的問題。發光元件300的其他元件和特徵類似於發光元件100,在此不再贅述。 Please refer to FIG. 3, which is a schematic cross-sectional view of a light-emitting element 300 according to an embodiment. The manufacturing process and structure of the light-emitting element 300 are similar to those of the light-emitting element 100. For similar manufacturing processes and structures, please refer to the description and drawings of the light-emitting element 100, and will not be repeated here. The differences will be described later. The light-emitting element 300 is different from the light-emitting element 100 in that, due to factors such as the manufacturing process, the transparent conductive oxide layer 314 may be slightly concave at the position corresponding to the first protective layer opening O. Therefore, the flat surface S has one or more depressions C at the positions corresponding to one or more first protective layer openings O. In one embodiment, the metal reflective layer 116 forms a smooth convex surface corresponding to the position of one or more depressions C. The light emitted by the active area 108 is reflected by the convex surface and the plane of the metal reflective layer 116, which can further improve the light extraction efficiency. In one embodiment, even if there is a depression C, the height difference h between the highest point and the lowest point of the flat surface S is still less than 5nm. In one embodiment, the flat surface S includes a lowest point located at one or more depressions C, and the height difference between the highest point and the lowest point of the flat surface S is less than 5nm. Compared with traditional flip-chip LED components, the problem caused by the uneven reflective surface can still be greatly improved. Other components and features of the light-emitting element 300 are similar to those of the light-emitting element 100 and will not be repeated here.

請參照第4圖,係繪示根據一實施例之發光元件400的剖面示意圖。發光元件400之製程及結構和發光元件100類似,類似的製程及結構請參考發光元件100之說明及圖式,不再贅述,後續將針對差異處說明。發光元件400與發光元件100不同的地方在於透明導電氧化物層414的一上表面與第一保護層112的上表面實質上齊平,透明導電氧化物層414的上表面和第一保護層112的上表面共同構成平整表面S。此外,受到製程等因素的影響,平整表面S在對應一或複數個第一保護層開口O處分別具有一或複數個凹陷C。於一實施例中,金屬反射層116對應一或複數個凹陷C的位置形成平滑的凸面,由主動區域108發出的光透過金屬反射層116的凸面及平面反射,可進一步提升光摘出效率。於一實施例中,即使存在凹陷C,平整表面S的最高處與最低處的高度差h仍小於5nm。於一實施例中,平整表面S包含一最低處位於一或複數個凹陷C之一,平整表面S的一最高處與該最低處的高度差小於5nm。與傳統的覆晶式LED元件相比,仍可以大幅改善反射表面不夠平整所造成的問題。發光元件400的其他元件和特徵類似於發光元件100,在此不再贅述。 Please refer to FIG. 4, which is a schematic cross-sectional view of a light-emitting element 400 according to an embodiment. The manufacturing process and structure of the light-emitting element 400 are similar to those of the light-emitting element 100. For similar manufacturing processes and structures, please refer to the description and drawings of the light-emitting element 100, and no further description will be given. The differences will be described later. The light-emitting element 400 is different from the light-emitting element 100 in that an upper surface of the transparent conductive oxide layer 414 is substantially flush with the upper surface of the first protective layer 112, and the upper surface of the transparent conductive oxide layer 414 and the upper surface of the first protective layer 112 together form a flat surface S. In addition, affected by factors such as the manufacturing process, the flat surface S has one or more recesses C corresponding to one or more first protective layer openings O. In one embodiment, the metal reflective layer 116 forms a smooth convex surface corresponding to one or more depressions C. The light emitted from the active area 108 is reflected by the convex surface and the plane of the metal reflective layer 116, which can further improve the light extraction efficiency. In one embodiment, even if there is a depression C, the height difference h between the highest point and the lowest point of the flat surface S is still less than 5nm. In one embodiment, the flat surface S includes a lowest point located at one or more depressions C, and the height difference between the highest point and the lowest point of the flat surface S is less than 5nm. Compared with traditional flip-chip LED components, the problem caused by the uneven reflective surface can still be greatly improved. Other components and features of the light-emitting element 400 are similar to those of the light-emitting element 100 and will not be repeated here.

請參照第5圖,係繪示根據一實施例之發光元件500的剖面示意圖。發光元件500之製程及結構和發光元件100類似,類似的製程及結構請參考發光元件100之說明及圖式,不再贅述,後續將針對差異處說明。發光元件500與發光元件100不同的地方在於,透明導電氧化物層514包括一第一透明導電部分514A設置在半導體堆疊106上方,以及一第二透明導電部分514B位在第一半導體層104的第二部份104B上。於一實施例中,金屬反射層516包括一第一反射部分516A設置在第一透明導電部分514A上,以及一第二反射部分516B設置在第二透明導電部分514B上,阻障層520包括一第一阻障部分520A設置在第一反射部分516A上,以及一第二阻障部分520B設置在第二反射部分516B上,第二保護層122除了位於第一阻障部分520A上,更位於第二阻障部分520B上,而第三保護層126除了位於第一阻障部分520A上,更延伸覆蓋至第二阻障部分520B上。根據一些實施例,第一透明導電部分514A的一上表面與第二透明導電部分514B的一上表面齊平,進而使第一反射部分516A的一上表面及第一阻障部分520A的一上表面分別與第二反射部分516B的一上表面及第二阻障部分520B的一上表面齊平。藉由在第一半導體層104的第二部份104B上形成透明導電氧化物層514及金屬反射層516,可反射半導體堆疊106從側壁發出的光,進而提升正向的光摘出。 Please refer to FIG. 5, which is a schematic cross-sectional view of a light-emitting device 500 according to an embodiment. The manufacturing process and structure of the light-emitting device 500 are similar to those of the light-emitting device 100. For similar manufacturing processes and structures, please refer to the description and drawings of the light-emitting device 100, and no further description will be given. The differences will be described later. The light-emitting device 500 is different from the light-emitting device 100 in that the transparent conductive oxide layer 514 includes a first transparent conductive portion 514A disposed above the semiconductor stack 106, and a second transparent conductive portion 514B is located on the second portion 104B of the first semiconductor layer 104. In one embodiment, the metal reflective layer 516 includes a first reflective portion 516A disposed on the first transparent conductive portion 514A, and a second reflective portion 516B disposed on the second transparent conductive portion 514B, the barrier layer 520 includes a first barrier portion 520A disposed on the first reflective portion 516A, and a second barrier portion 520B disposed on the second reflective portion 516B, the second protective layer 122 is not only located on the first barrier portion 520A, but also on the second barrier portion 520B, and the third protective layer 126 is not only located on the first barrier portion 520A, but also extends to cover the second barrier portion 520B. According to some embodiments, an upper surface of the first transparent conductive portion 514A is flush with an upper surface of the second transparent conductive portion 514B, thereby making an upper surface of the first reflective portion 516A and an upper surface of the first barrier portion 520A flush with an upper surface of the second reflective portion 516B and an upper surface of the second barrier portion 520B, respectively. By forming the transparent conductive oxide layer 514 and the metal reflective layer 516 on the second portion 104B of the first semiconductor layer 104, the light emitted from the sidewall of the semiconductor stack 106 can be reflected, thereby improving the forward light extraction.

在本申請案的發光元件中,透明導電氧化物層提供一平整表面供金屬反射層形成於其上,因此可以提供平整的反射 面,減少或避免漫射在結構中造成的光損失。第一保護層、透明導電氧化物層、和平整的金屬反射層可以進一步構成ODR結構,得到極佳的光學反射。可以理解的是,可以依照需求對於本申請案的發光元件做適當的調整和更動,只要不背離本申請案的精神即可。 In the light-emitting element of the present application, the transparent conductive oxide layer provides a flat surface for the metal reflective layer to be formed thereon, thereby providing a flat reflective surface to reduce or avoid light loss caused by diffusion in the structure. The first protective layer, the transparent conductive oxide layer, and the flat metal reflective layer can further form an ODR structure to obtain excellent optical reflection. It is understood that the light-emitting element of the present application can be appropriately adjusted and modified according to needs, as long as it does not deviate from the spirit of the present application.

本申請案的另一種態樣是發光元件的製造方法,用於製造根據實施例的發光元件。請參照第6圖,係繪示根據一實施例之發光元件的製造方法的流程圖。可以同時參照第1圖,以更清楚地理解製造方法。 Another aspect of the present application is a method for manufacturing a light-emitting element, which is used to manufacture a light-emitting element according to an embodiment. Please refer to FIG. 6, which is a flow chart of a method for manufacturing a light-emitting element according to an embodiment. You can also refer to FIG. 1 at the same time to understand the manufacturing method more clearly.

首先,在步驟S1,提供一基板102。在步驟S2,形成一第一半導體層104在基板102上。第一半導體層104包含一第一部份104A及一第二部份104B與第一部份104A相連。 First, in step S1, a substrate 102 is provided. In step S2, a first semiconductor layer 104 is formed on the substrate 102. The first semiconductor layer 104 includes a first portion 104A and a second portion 104B connected to the first portion 104A.

在步驟S3,形成一半導體堆疊106在第一部份104A上。這個步驟包括步驟S31和S32。在步驟S31,形成一主動區域108在第一半導體層104上。在步驟S32,形成一第二半導體層110在主動區域108上。第二半導體層110的導電類型不同於第一半導體層104的導電類型。於一實施例中,定義出第一半導體層104的第一部份104A及第二部份104B兩區域,由第二半導體層110的一上表面往下移除第二部份104B上的第二半導體層110及主動區域108,或更進一步蝕刻部分第一半導體層104至一深度,露出第一半導體層104的上表面,第一部份104A上未被移除的主動區域108及第二半導體層110形成一半導體堆疊106。於一實施例中,移除第二部份104B上的第二半 導體層110及主動區域108的方式包含以光罩定義第一部份104A及第二部份104B,再以蝕刻顯影方式移除第二部份104B上的第二半導體層110及主動區域108。在本申請案的一實施例中,在基板102上形成第一半導體層104、主動區域108及第二半導體層110的方法包含有機金屬化學氣相沉積(MOCVD)、分子束磊晶法(MBE)、氫化物氣相磊晶(HVPE)或離子鍍,例如濺鍍(sputtering)或蒸鍍(evaporation)等。 In step S3, a semiconductor stack 106 is formed on the first portion 104A. This step includes steps S31 and S32. In step S31, an active region 108 is formed on the first semiconductor layer 104. In step S32, a second semiconductor layer 110 is formed on the active region 108. The conductivity type of the second semiconductor layer 110 is different from the conductivity type of the first semiconductor layer 104. In one embodiment, two regions of the first portion 104A and the second portion 104B of the first semiconductor layer 104 are defined, and the second semiconductor layer 110 and the active region 108 on the second portion 104B are removed downward from an upper surface of the second semiconductor layer 110, or a portion of the first semiconductor layer 104 is further etched to a depth to expose the upper surface of the first semiconductor layer 104, and the active region 108 and the second semiconductor layer 110 that are not removed on the first portion 104A form a semiconductor stack 106. In one embodiment, the method of removing the second semiconductor layer 110 and the active region 108 on the second portion 104B includes defining the first portion 104A and the second portion 104B by a mask, and then removing the second semiconductor layer 110 and the active region 108 on the second portion 104B by etching and developing. In one embodiment of the present application, the method of forming the first semiconductor layer 104, the active region 108 and the second semiconductor layer 110 on the substrate 102 includes metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), hydrogenated vapor phase epitaxy (HVPE) or ion plating, such as sputtering or evaporation.

在選擇性的步驟S4,可以形成一歐姆接觸層118在半導體堆疊上。歐姆接觸層118可以透過沉積製程或濺鍍、蒸鍍製程以及黃光顯影蝕刻或掀離(lift-off)製程來形成,但不限於此。 In the optional step S4, an ohmic contact layer 118 may be formed on the semiconductor stack. The ohmic contact layer 118 may be formed by a deposition process or a sputtering process, an evaporation process, and a yellow light developing etching or a lift-off process, but is not limited thereto.

在步驟S5,形成一第一保護層112在半導體堆疊106上、一或複數個第一保護層開口O1在第二半導體層110上、及一或複數個保護層開口(圖未示)位於第一半導體層104的第二部分104B上且暴露第一半導體層104的第二部分104B。於一實施例中,在形成第一保護層112、第一保護層開口O1及保護層開口的步驟中,可先以原子沉積法(Atomic Layer Deposition,ALD)、濺鍍、蒸鍍及旋塗(spin-coating)等方式形成一第一絕緣材料層,再以黃光顯影蝕刻或掀離等方式在第一絕緣材料層中形成第一保護層開口O及一或複數個保護層開口以形成第一保護層112。 In step S5, a first protection layer 112 is formed on the semiconductor stack 106, one or more first protection layer openings O1 are formed on the second semiconductor layer 110, and one or more protection layer openings (not shown) are located on the second portion 104B of the first semiconductor layer 104 and expose the second portion 104B of the first semiconductor layer 104. In one embodiment, in the step of forming the first protective layer 112, the first protective layer opening O1 and the protective layer opening, a first insulating material layer may be formed by atomic layer deposition (ALD), sputtering, evaporation and spin-coating, and then the first protective layer opening O and one or more protective layer openings may be formed in the first insulating material layer by yellow light etching or lift-off to form the first protective layer 112.

在步驟S6,形成一透明導電氧化物層114在第一保護層112上並填入第一保護層開口O1以提供一平整表面S。舉例來說,可以透過沉積製程或濺鍍、蒸鍍製程以及黃光顯影蝕刻或掀離等方式來形成透明導電氧化物層114之後,再進行平坦化製程,例 如以化學機械平坦化(CMP)處理,以改善表面平整度。在一些實施例中,如第2圖和第4圖所示,可以調整CMP參數,使得透明導電氧化物層214/414的上表面可以實質上齊平於第一保護層112的上表面,且透明導電氧化物層214/414的上表面和第一保護層112的上表面共同構成金屬反射層116形成於其上的平整表面S。在一些實施例中,如第5圖所示,可藉由黃光顯影蝕刻或掀離等方式圖案化透明導電氧化物層514,而將第一透明導電部分514A形成在半導體堆疊106上及第二透明導電部分514B形成在第二部份104B上,其中第二部份104B未被半導體堆疊106覆蓋。 In step S6, a transparent conductive oxide layer 114 is formed on the first protective layer 112 and fills the first protective layer opening O1 to provide a flat surface S. For example, the transparent conductive oxide layer 114 can be formed by a deposition process or a sputtering process, an evaporation process, and a yellow light development etching or lift-off process, and then a planarization process is performed, such as a chemical mechanical planarization (CMP) process, to improve the surface flatness. In some embodiments, as shown in FIG. 2 and FIG. 4, CMP parameters can be adjusted so that the upper surface of the transparent conductive oxide layer 214/414 can be substantially flush with the upper surface of the first protective layer 112, and the upper surface of the transparent conductive oxide layer 214/414 and the upper surface of the first protective layer 112 together constitute a flat surface S on which the metal reflective layer 116 is formed. In some embodiments, as shown in FIG. 5, the transparent conductive oxide layer 514 can be patterned by yellow light etching or lift-off, and the first transparent conductive portion 514A is formed on the semiconductor stack 106 and the second transparent conductive portion 514B is formed on the second portion 104B, wherein the second portion 104B is not covered by the semiconductor stack 106.

在步驟S7,形成一金屬反射層116在平整表面S上且接觸透明導電氧化物層114以電性連接第二半導體層110。金屬反射層116例如透過沉積製程或濺鍍、蒸鍍製程以及黃光顯影蝕刻或掀離等方式來形成,但不限於此。在一些實施例中,如第5圖所示,可藉由黃光顯影蝕刻或掀離等方式圖案化金屬反射層516,而將第一反射部分516A形成在第一透明導電部分514A上及第二反射部分516B形成在第二透明導電部分514B上。 In step S7, a metal reflective layer 116 is formed on the flat surface S and contacts the transparent conductive oxide layer 114 to electrically connect the second semiconductor layer 110. The metal reflective layer 116 is formed, for example, by a deposition process or a sputtering process, an evaporation process, and yellow light development etching or lift-off, but is not limited thereto. In some embodiments, as shown in FIG. 5, the metal reflective layer 516 can be patterned by yellow light development etching or lift-off, and the first reflective portion 516A is formed on the first transparent conductive portion 514A and the second reflective portion 516B is formed on the second transparent conductive portion 514B.

在選擇性的步驟S8,可以形成一阻障層120在金屬反射層116上。阻障層120例如透過沉積製程或蒸鍍濺鍍、製程以及黃光顯影蝕刻或掀離等方式來形成,但不限於此。在一些實施例中,如第5圖所示,可藉由黃光顯影蝕刻或掀離等方式圖案化阻障層520,而將第一阻障部分520A形成在第一反射部分516A上及第二阻障部分520B形成在第二反射部分516B上。 In the optional step S8, a barrier layer 120 may be formed on the metal reflective layer 116. The barrier layer 120 may be formed, for example, by a deposition process or an evaporation sputtering process and yellow light photolithography or lift-off, but is not limited thereto. In some embodiments, as shown in FIG. 5, the barrier layer 520 may be patterned by yellow light photolithography or lift-off, and the first barrier portion 520A may be formed on the first reflective portion 516A and the second barrier portion 520B may be formed on the second reflective portion 516B.

在步驟S9,可以形成一第二保護層122、一或複數個第二保護層開口O2位於阻障層120上、及一或複數個保護層開口在第一半導體層104的第二部分104B上。於一實施例中,在形成第二保護層122、第二保護層開口O2及保護層開口的步驟中,可先以原子沉積法、濺鍍、蒸鍍及旋塗等方式形成一第二絕緣材料層,再以黃光顯影蝕刻或掀離等方式在第二絕緣材料層中形成第二保護層開口O2、保護層開口,以形成第二保護層122。於一實施例中,第一保護層112及第二保護層122的保護層開口可以在形成一第一、第二絕緣材料層後,再以同一道製程的黃光顯影蝕刻或掀離等方式來形成重疊的保護層開口O3。 In step S9, a second protective layer 122, one or more second protective layer openings O2 may be formed on the barrier layer 120, and one or more protective layer openings may be formed on the second portion 104B of the first semiconductor layer 104. In one embodiment, in the step of forming the second protective layer 122, the second protective layer openings O2, and the protective layer openings, a second insulating material layer may be first formed by atomic deposition, sputtering, evaporation, spin coating, etc., and then the second protective layer openings O2 and the protective layer openings may be formed in the second insulating material layer by photolithography or lift-off to form the second protective layer 122. In one embodiment, the protective layer openings of the first protective layer 112 and the second protective layer 122 can be formed by forming a first and a second insulating material layer, and then using the same process of yellow light development etching or lift-off to form an overlapping protective layer opening O3.

在步驟S10,可以形成一導通層124在第二保護層122上。導通層124包括一第一導通部分124A和一第二導通部分124B,第一導通部分124A電性連接第一半導體層104,第二導通部分124B電性連接第二半導體層110。導通層124例如透過沉積製程或蒸鍍、濺鍍製程以及黃光顯影蝕刻或掀離等方式來形成,但不限於此。 In step S10, a conductive layer 124 can be formed on the second protective layer 122. The conductive layer 124 includes a first conductive portion 124A and a second conductive portion 124B, the first conductive portion 124A is electrically connected to the first semiconductor layer 104, and the second conductive portion 124B is electrically connected to the second semiconductor layer 110. The conductive layer 124 is formed by, for example, a deposition process or evaporation, sputtering process, yellow light development etching or lift-off, but is not limited thereto.

在步驟S11,可以形成一第三保護層126、一第一焊墊開口O4及一第二焊墊開口O5在導通層124上。形成第三保護層126的步驟中,可先以原子沉積法、濺鍍、蒸鍍及旋塗等方式形成一絕緣材料層,再以黃光顯影蝕刻或掀離等方式形成第一焊墊開口O4暴露第一導通部分124A,以及第二焊墊開口O5暴露第二導通部分124B。 In step S11, a third protective layer 126, a first pad opening O4 and a second pad opening O5 can be formed on the conductive layer 124. In the step of forming the third protective layer 126, an insulating material layer can be formed by atomic deposition, sputtering, evaporation and spin coating, and then the first pad opening O4 can be formed by yellow light etching or lift-off to expose the first conductive part 124A, and the second pad opening O5 can be formed to expose the second conductive part 124B.

在步驟S12,可以形成一接墊層128在第三保護層126上。接墊層128包括一第一接墊128A和一第二接墊128B,第一接墊128A電性連接第一導通部分124A,第二接墊128B電性連接第二導通部分124B。接墊層128例如透過沉積製程或蒸鍍、濺鍍製程以及黃光顯影蝕刻或掀離等方式來形成,但不限於此。 In step S12, a pad layer 128 may be formed on the third protective layer 126. The pad layer 128 includes a first pad 128A and a second pad 128B, the first pad 128A is electrically connected to the first conductive portion 124A, and the second pad 128B is electrically connected to the second conductive portion 124B. The pad layer 128 is formed, for example, by a deposition process or evaporation, sputtering process, yellow light development etching or lift-off, but is not limited thereto.

至此已對於本申請案的發光元件的製造方法提供充分的說明。可以理解的是,可以依照需求對於本申請案的發光元件做適當的調整和更動,只要不背離本申請案的精神即可。第7圖係繪示根據一實施例之發光封裝體1P之示意圖。如第7圖所示,透光體101P覆蓋基板102側表面102w。金屬凸塊103a、103b分別對應第一接墊128A及第二接墊128B設置。詳言之,金屬凸塊103a連接第一接墊128A。金屬凸塊103b連接第二接墊128B。反射體102P覆蓋金屬凸塊103a、103b側壁的一部分。於一實施例中,反射體102P亦覆蓋第一接墊128A及第二接墊128B側壁的一部分。 So far, a sufficient description has been provided for the manufacturing method of the light-emitting element of the present application. It can be understood that the light-emitting element of the present application can be appropriately adjusted and changed as needed, as long as it does not deviate from the spirit of the present application. Figure 7 is a schematic diagram of a light-emitting package 1P according to an embodiment. As shown in Figure 7, the light-transmitting body 101P covers the side surface 102w of the substrate 102. The metal bumps 103a and 103b are respectively provided corresponding to the first pad 128A and the second pad 128B. In detail, the metal bump 103a is connected to the first pad 128A. The metal bump 103b is connected to the second pad 128B. The reflector 102P covers a portion of the side walls of the metal bumps 103a and 103b. In one embodiment, the reflector 102P also covers a portion of the sidewalls of the first pad 128A and the second pad 128B.

金屬凸塊(103a、103b)包含一無鉛焊錫,其包含至少一種選自由錫、銅、銀、鉍、銦、鋅和銻所組成群組中的材料。金屬凸塊的高度介於20~150μm之間。在一實施例中,金屬凸塊係藉由迴焊製程(reflow soldering)而形成。焊錫膠放置於接合墊上,然後於一迴焊爐中進行加熱以熔化焊錫膠且產生接合(joint)。焊錫膠可包含錫-銀-銅、錫-銻或金-錫且具有一熔點大於215℃、或大於220℃,或介於215~240℃之間(例如217℃、220℃、234℃)。此外,在迴焊製程中之峰值溫度(峰值溫度通常發生於迴焊區(reflow zone)的階段)係大於250℃、或大於260℃,或介於250~270℃之間(例如255℃、265℃)。 The metal bump (103a, 103b) comprises a lead-free solder, which comprises at least one material selected from the group consisting of tin, copper, silver, bismuth, indium, zinc and antimony. The height of the metal bump is between 20 and 150 μm. In one embodiment, the metal bump is formed by a reflow soldering process. The solder paste is placed on the bonding pad and then heated in a reflow soldering furnace to melt the solder paste and produce a joint. The solder paste may contain tin-silver-copper, tin-antimony or gold-tin and have a melting point greater than 215°C, or greater than 220°C, or between 215~240°C (e.g. 217°C, 220°C, 234°C). In addition, the peak temperature during the reflow process (the peak temperature usually occurs in the reflow zone) is greater than 250°C, or greater than 260°C, or between 250~270°C (e.g. 255°C, 265°C).

反射體102P為電絕緣體且包含第一基質及複數個混於基質內的反射粒子(圖未示)。第一基質具有矽基底的基質材料(silicone-based material)或者環氧樹脂基底的基質材料(epoxy-based material),並具有介於1.4~1.6或者1.5~1.6之間的折射率(n)。反射粒子包括二氧化鈦、二氧化矽、氧化鋁、氧化鋅,或二氧化鋯。在一實施例中,當半導體疊層106發射的光線撞擊到反射體102P時,光線會被反射並且此反射被稱為漫反射(diffuse reflection)。除了反射功能,反射體102P也可以作為機械承載並承受發光封裝體1P在操作期間所產生的應力。 The reflector 102P is an electrical insulator and includes a first matrix and a plurality of reflective particles mixed in the matrix (not shown). The first matrix has a silicone-based material or an epoxy-based material and has a refractive index (n) between 1.4 and 1.6 or 1.5 and 1.6. The reflective particles include titanium dioxide, silicon dioxide, aluminum oxide, zinc oxide, or zirconium dioxide. In one embodiment, when light emitted by the semiconductor stack 106 hits the reflector 102P, the light is reflected and this reflection is called diffuse reflection. In addition to the reflective function, the reflector 102P can also serve as a mechanical load and withstand the stress generated by the light-emitting package 1P during operation.

透光體101P包含矽基底的基質材料或者環氧樹脂基底的基質材料。更者,透光體101P可包含分散於其中的複數個波長轉換顆粒(圖未示)或/及擴散粉粒子以吸收發光元件1000所發出的第一光而轉換成與第一光不同頻譜之第二光,其中發光元件1000可為前述實施例中的發光元件。第一光若與第二光混和會產生第三光。在本實施例中,第三光在CIE1931色度圖中具有一色點座標(x、y),其中,0.27≦x≦0.285;0.23≦y≦0.26。在另一實施例中,第一光與第二光混和會產生第三光,例如白光。可根據波長轉換顆粒的重量百分濃度以及種類使發光封裝體於熱穩態下具有一白光,其相對色溫(CCT)為2200K~6500K(例如:2200K、2400K、2700K、3000K、5000k、5700K、6500K),在CIE1931色度圖中具有一色點座標(x、y)會落於七個麥克亞當橢圓(MacAdam ellipse)之範圍,並具有一大於80或大於90之演色性(CRI)。在另一實施例,第一光與第二光混合可產生紫光、琥珀光、綠光、黃光或其他非白光的色光。 The light-transmitting body 101P includes a base material of a silicon substrate or a base material of an epoxy resin substrate. Furthermore, the light-transmitting body 101P may include a plurality of wavelength conversion particles (not shown) or/and diffusion powder particles dispersed therein to absorb the first light emitted by the light-emitting element 1000 and convert it into a second light of a different frequency spectrum from the first light, wherein the light-emitting element 1000 may be the light-emitting element in the aforementioned embodiment. If the first light is mixed with the second light, a third light will be generated. In this embodiment, the third light has a color point coordinate (x, y) in the CIE1931 chromaticity diagram, wherein 0.27≦x≦0.285; 0.23≦y≦0.26. In another embodiment, the first light is mixed with the second light to generate a third light, such as white light. According to the weight percentage concentration and type of the wavelength conversion particles, the light-emitting package can have a white light in a thermally stable state, with a relative color temperature (CCT) of 2200K~6500K (for example: 2200K, 2400K, 2700K, 3000K, 5000k, 5700K, 6500K), a color point coordinate (x, y) in the CIE1931 chromaticity diagram that falls within the range of seven MacAdam ellipses, and a color rendering index (CRI) greater than 80 or greater than 90. In another embodiment, the first light and the second light are mixed to produce purple light, amber light, green light, yellow light or other non-white light.

波長轉換顆粒具有10nm~100μm的顆粒尺寸且可包含一種或兩種以上種類之無機的螢光粉(phosphor)、有機分子螢光色素(organic fluorescent colorant)、半導體材料(semiconductor)、或者上述材料的組合。無機的螢光粉材包含但不限於黃綠色螢光粉或紅色螢光粉。黃綠色螢光粉之成分係例如鋁氧化物(YAG或是TAG)、矽酸鹽、釩酸鹽、鹼土金屬硒化物、或金屬氮化物。紅色螢光粉之成分係例如氟化物(K2TiF6:Mn4+、K2SiF6:Mn4+)、矽酸鹽、釩酸鹽、鹼土金屬硫化物(CaS)、金屬氮氧化物、或鎢鉬酸鹽族混合物。波長轉換顆粒於基體中的重量百分濃度(w/w)介於50~70%。半導體材料包含奈米尺寸結晶體(nano crystal)的半導體材料,例如量子點(quantum-dot)發光材料。量子點發光材料可選自於由硫化鋅(ZnS)、硒化鋅(ZnSe)、碲化鋅(ZnTe)、氧化鋅(ZnO)、硫化鎘(CdS)、硒化鎘(CdSe)、碲化鎘(CdTe)、氮化鎵(GaN)、磷化鎵(GaP)、硒化鎵(GaSe)、銻化鎵(GaSb)、砷化鎵(GaAs)、氮化鋁(AlN)、磷化鋁(AlP)、砷化鋁(AlAs)、磷化銦(InP)、砷化銦(InAs)、碲(Te)、硫化鉛(PbS)、銻化銦(InSb)、碲化鉛(PbTe)、硒化鉛(PbSe)、碲化銻(SbTe)、硫化鋅鎘硒(ZnCdSeS)、硫化銅銦(CuInS)、銫氯化鉛(CsPbCl3)、銫溴化鉛(CsPbBr3)、及銫碘化鉛(CsPbI3)所組成之群組。擴散粉包含二氧化鈦、氧化鋯、氧化鋅或氧化鋁,用以散射發光元件1000所發出的光。 The wavelength conversion particles have a particle size of 10nm~100μm and may include one or more types of inorganic phosphors, organic fluorescent colorants, semiconductor materials, or a combination of the above materials. The inorganic fluorescent powder material includes but is not limited to yellow-green phosphors or red phosphors. The components of the yellow-green phosphors are, for example, aluminum oxide (YAG or TAG), silicates, vanadates, alkali earth metal selenides, or metal nitrides. The red fluorescent powder is composed of, for example, fluoride (K 2 TiF 6 :Mn 4+ , K 2 SiF 6 :Mn 4+ ), silicate, vanadate, alkaline earth metal sulfide (CaS), metal oxynitride, or tungsten-molybdenum salt mixture. The weight percentage concentration (w/w) of the wavelength conversion particles in the matrix is between 50 and 70%. The semiconductor material includes a semiconductor material of nano crystal, such as a quantum-dot luminescent material. The quantum dot luminescent material can be selected from zinc sulfide (ZnS), zinc selenide (ZnSe), zinc telluride (ZnTe), zinc oxide (ZnO), cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe), gallium nitride (GaN), gallium phosphide (GaP), gallium selenide (GaSe), gallium antimonide (GaSb), gallium arsenide (GaAs), aluminum nitride (Al The light emitting element 1000 is a group consisting of: aluminum phosphide (AlP), aluminum arsenide (AlAs), indium phosphide (InP), indium arsenide (InAs), tellurium (Te), lead sulfide (PbS), indium antimonide (InSb), lead telluride (PbTe), lead selenide (PbSe), antimony telluride (SbTe), zinc cadmium selenide sulfide (ZnCdSeS), copper indium sulfide (CuInS), lead chloride (CsPbCl 3 ), lead bromide (CsPbBr 3 ), and lead iodide (CsPbI 3 ). The diffusion powder includes titanium dioxide, zirconium oxide, zinc oxide or aluminum oxide, and is used to scatter the light emitted by the light emitting element 1000.

第8圖係繪示根據一實施例之發光封裝體2P之示意圖。發光元件1000以倒裝晶片之形式安裝於封裝基板202P之第一墊片203P、第二墊片204P上。第一墊片203P、第二墊片204P之間藉由一包含絕緣材料之絕緣部205P做電性絕緣。倒裝晶片安裝係將與接墊形成面相對之基板102側朝上設置,使基板側為主要的光取出面。為了增加 發光元件之光取出效率,可於發光元件1000之周圍設置一反射結構201P,其中發光元件1000可為前述實施例中的發光元件。 FIG. 8 is a schematic diagram of a light-emitting package 2P according to an embodiment. The light-emitting element 1000 is mounted on the first pad 203P and the second pad 204P of the package substrate 202P in the form of a flip chip. The first pad 203P and the second pad 204P are electrically insulated by an insulating portion 205P containing an insulating material. The flip chip mounting is to place the side of the substrate 102 opposite to the pad forming surface upward so that the substrate side is the main light extraction surface. In order to increase the light extraction efficiency of the light-emitting element, a reflective structure 201P can be set around the light-emitting element 1000, wherein the light-emitting element 1000 can be the light-emitting element in the aforementioned embodiment.

第9圖係繪示根據一實施例之發光封裝體3P之示意圖。發光封裝體3P包括支撐基板300P、發光元件1000、波長轉換器305和透鏡306。將發光元件1000利用第一凸塊303和第二凸塊304可倒裝鍵合於配置有第一焊盤301和第二焊盤302的支撐基板300P上。支撐基板300P例如可以是印刷電路板。另一方面,透鏡306配置于發光元件1000的上方。所述透鏡306是使光分散的擴散透鏡(diffusion lens),但並不限定於此,各種形狀的透鏡306可與發光元件1000結合而實現各種光圖案,其中發光元件1000可為前述實施例中的發光元件。 FIG. 9 is a schematic diagram of a light-emitting package 3P according to an embodiment. The light-emitting package 3P includes a supporting substrate 300P, a light-emitting element 1000, a wavelength converter 305, and a lens 306. The light-emitting element 1000 is flip-chip bonded to the supporting substrate 300P having a first pad 301 and a second pad 302 by using a first bump 303 and a second bump 304. The supporting substrate 300P may be, for example, a printed circuit board. On the other hand, the lens 306 is disposed above the light-emitting element 1000. The lens 306 is a diffusion lens that disperses light, but is not limited thereto. Lenses 306 of various shapes can be combined with the light-emitting element 1000 to realize various light patterns, wherein the light-emitting element 1000 can be the light-emitting element in the aforementioned embodiment.

第10圖係繪示根據一實施例之發光裝置1A之示意圖。發光裝置1A包括一燈罩401A、一反射鏡402A、一發光模組405A、一燈座406A、一散熱片407A、一連接部408A以及一電連接元件409A。發光模組405A包含一承載部403A,以及複數個發光單元404A位於承載部403A上,其中複數個發光單元404A可為前述實施例中的發光元件、發光封裝體。 FIG. 10 is a schematic diagram of a light-emitting device 1A according to an embodiment. The light-emitting device 1A includes a lampshade 401A, a reflector 402A, a light-emitting module 405A, a lamp holder 406A, a heat sink 407A, a connecting portion 408A, and an electrical connection element 409A. The light-emitting module 405A includes a carrier 403A, and a plurality of light-emitting units 404A located on the carrier 403A, wherein the plurality of light-emitting units 404A may be the light-emitting elements and light-emitting packages in the aforementioned embodiments.

第11圖係繪示根據一實施例之發光裝置2A之示意圖。發光裝置2A包括顯示面板500A及背光單元。背光單元包括發光元件1000、底蓋501、反射片502、擴散板503以及光學片504。底蓋501可以向上方開口而容納發光元件1000、反射片502、擴散板503以及光學片504。發光元件1000可為前述實施例中的發光元件或發光封裝體。於一實施例中,在各個發光元件1000上設置透鏡505,可以提高從多個發光元件1000發出的光的均勻性。擴散板503以及光學片504位於發光元件 1000上。從發光元件1000發出的光可以經過擴散板503以及光學片504以面光源形式向顯示面板500A供應。 FIG. 11 is a schematic diagram of a light-emitting device 2A according to an embodiment. The light-emitting device 2A includes a display panel 500A and a backlight unit. The backlight unit includes a light-emitting element 1000, a bottom cover 501, a reflective sheet 502, a diffusion plate 503, and an optical sheet 504. The bottom cover 501 can be opened upward to accommodate the light-emitting element 1000, the reflective sheet 502, the diffusion plate 503, and the optical sheet 504. The light-emitting element 1000 can be a light-emitting element or a light-emitting package in the aforementioned embodiment. In one embodiment, a lens 505 is provided on each light-emitting element 1000 to improve the uniformity of light emitted from the plurality of light-emitting elements 1000. The diffusion plate 503 and the optical sheet 504 are located on the light-emitting element 1000. The light emitted from the light-emitting element 1000 can be supplied to the display panel 500A in the form of a surface light source through the diffusion plate 503 and the optical sheet 504.

第12圖係繪示根據一實施例之發光裝置3A之示意圖。發光裝置3A包括顯示面板600及設置在顯示面板600下方的背光單元。進而,發光裝置3A包括:支撐顯示面板600並容納背光單元的框架601以及顯示面板600的罩蓋602、603。顯示面板600可以通過位於其上下方的罩蓋602、603來固定,位於下方的罩蓋603可與背光單元結合。背光單元包括導光板604、光學片605、反射片606、載板607以及多個發光元件1000。光學片605位於導光板604上而使光擴散,反射片606佈置在導光板604的下方而使往導光板604的下方行進的光向顯示面板600的方向反射,發光元件1000在載板607上以一定間隔設置。於一實施例中,載板607可以是印刷電路基板。發光元件1000可為前述實施例中的發光元件或發光封裝體。 FIG. 12 is a schematic diagram of a light-emitting device 3A according to an embodiment. The light-emitting device 3A includes a display panel 600 and a backlight unit disposed below the display panel 600. Furthermore, the light-emitting device 3A includes: a frame 601 that supports the display panel 600 and accommodates the backlight unit, and covers 602 and 603 of the display panel 600. The display panel 600 can be fixed by the covers 602 and 603 located above and below it, and the cover 603 located below can be combined with the backlight unit. The backlight unit includes a light guide plate 604, an optical sheet 605, a reflective sheet 606, a carrier 607, and a plurality of light-emitting elements 1000. The optical sheet 605 is located on the light guide plate 604 to diffuse the light, the reflective sheet 606 is arranged below the light guide plate 604 to reflect the light traveling below the light guide plate 604 toward the display panel 600, and the light-emitting elements 1000 are arranged at certain intervals on the carrier 607. In one embodiment, the carrier 607 can be a printed circuit substrate. The light-emitting element 1000 can be the light-emitting element or light-emitting package in the aforementioned embodiment.

第13圖係繪示根據一實施例之發光裝置4A之示意圖。發光裝置4A包括燈主體700、載板701、發光元件1000、蓋透鏡702、散熱部703、支撐肋704以及連接部件705。載板701被支撐肋704固定並隔開設置在燈主體700上。載板701可以是印刷電路基板之類具有導電圖案的基板。發光元件1000位於載板701上,並可以通過載板701的導電圖案與外部的電源電連接。發光元件1000可為前述實施例中的發光元件或發光封裝體。蓋透鏡702位於從發光元件1000發出的光路徑上,可以通過蓋透鏡702調整發光裝置4A向外部發出的光指向角和/或顏色。連接部件705在將蓋透鏡702與載板701固定的同時,圍繞發光元件1000而有導光功能。於一實施例中,連接部件705可以由光反射性物質 形成,或者用光反射性物質進行塗佈。散熱部703可以包括散熱片706及/或散熱扇707可以向外部排出發光元件1000驅動時產生的熱量。 FIG. 13 is a schematic diagram of a light-emitting device 4A according to an embodiment. The light-emitting device 4A includes a lamp body 700, a carrier 701, a light-emitting element 1000, a cover lens 702, a heat sink 703, a support rib 704, and a connecting component 705. The carrier 701 is fixed by the support rib 704 and is spaced apart from the lamp body 700. The carrier 701 can be a substrate having a conductive pattern such as a printed circuit substrate. The light-emitting element 1000 is located on the carrier 701 and can be electrically connected to an external power source through the conductive pattern of the carrier 701. The light-emitting element 1000 can be the light-emitting element or light-emitting package in the aforementioned embodiments. The cover lens 702 is located on the light path emitted from the light-emitting element 1000, and the light directional angle and/or color emitted by the light-emitting device 4A to the outside can be adjusted through the cover lens 702. The connecting component 705 surrounds the light-emitting element 1000 and has a light-guiding function while fixing the cover lens 702 to the carrier 701. In one embodiment, the connecting component 705 can be formed of a light-reflective material, or coated with a light-reflective material. The heat dissipation portion 703 can include a heat sink 706 and/or a heat dissipation fan 707 to discharge the heat generated when the light-emitting element 1000 is driven to the outside.

綜上所述,雖然本申請案已以實施例揭露如上,然其並非用以限定本申請案。本申請案所屬技術領域中具有通常知識者,在不脫離本申請案之精神和範圍內,當可作各種之更動與潤飾。因此,本申請案之保護範圍當視後附之申請專利範圍所界定者為準。 In summary, although this application has been disclosed as above by the embodiments, it is not used to limit this application. Those with common knowledge in the technical field to which this application belongs can make various changes and embellishments without departing from the spirit and scope of this application. Therefore, the scope of protection of this application shall be subject to the scope of the attached patent application.

100:發光元件 100: Light-emitting element

102:基板 102: Substrate

104:第一半導體層 104: First semiconductor layer

104A:第一部份 104A: Part 1

104B:第二部份 104B: Part 2

106:半導體堆疊 106: Semiconductor stacking

108:主動區域 108: Active area

110:第二半導體層 110: Second semiconductor layer

112:第一保護層 112: First protective layer

114:透明導電氧化物層 114: Transparent conductive oxide layer

116:金屬反射層 116:Metal reflective layer

118:歐姆接觸層 118: Ohm contact layer

120:阻障層 120: Barrier layer

122:第二保護層 122: Second protective layer

124:導通層 124: Conductive layer

124A:第一導通部分 124A: First conduction part

124B:第二導通部分 124B: Second conduction part

126:第三保護層 126: The third protective layer

128:接墊層 128:Pad layer

128A:第一接墊 128A: First pad

128B:第二接墊 128B: Second pad

O1:第一保護層開口 O1: Opening of the first protective layer

O2:第二保護層開口 O2: Second protective layer opening

O3:保護層開口 O3: Opening of protective layer

O4:第一焊墊開口 O4: First welding pad opening

O5:第二焊墊開口 O5: Second welding pad opening

S:平整表面 S: Flat surface

Claims (10)

一種發光元件,包括:一基板;一第一半導體層,設置在該基板上,包含一第一部份及一第二部份與該第一部份相連;一半導體堆疊,設置在該第一部份上,該半導體堆疊包括:一主動區域,設置在該第一半導體層上;以及一第二半導體層,設置在該主動區域上,該第二半導體層的導電類型不同於該第一半導體層的導電類型;一第一保護層,設置在該半導體堆疊上,並於該第二半導體層上具有一或複數個第一保護層開口;一透明導電氧化物層,設置在該第一保護層上且填入該一或複數個第一保護層開口以提供一平整表面,該透明導電氧化物層未被該第一保護層覆蓋;以及一金屬反射層,設置在該平整表面上且經由該透明導電氧化物層以電性連接該第二半導體層。 A light-emitting element comprises: a substrate; a first semiconductor layer disposed on the substrate, comprising a first portion and a second portion connected to the first portion; a semiconductor stack disposed on the first portion, the semiconductor stack comprising: an active region disposed on the first semiconductor layer; and a second semiconductor layer disposed on the active region, the conductivity type of the second semiconductor layer being different from the conductivity type of the first semiconductor layer; a first protective layer; A protective layer is disposed on the semiconductor stack and has one or more first protective layer openings on the second semiconductor layer; a transparent conductive oxide layer is disposed on the first protective layer and fills the one or more first protective layer openings to provide a flat surface, the transparent conductive oxide layer is not covered by the first protective layer; and a metal reflective layer is disposed on the flat surface and electrically connected to the second semiconductor layer through the transparent conductive oxide layer. 如請求項1所述之發光元件,其中該平整表面的表面粗糙度Ra為1nm以下。 The light-emitting element as described in claim 1, wherein the surface roughness Ra of the flat surface is less than 1nm. 如請求項1所述之發光元件,其中該透明導電氧化物層設置在該第一保護層上,該透明導電氧化物層的一上表面高於該第一保護層的一上表面,且該透明導電氧化物層的該上表面構成該平整表面。 The light-emitting element as described in claim 1, wherein the transparent conductive oxide layer is disposed on the first protective layer, an upper surface of the transparent conductive oxide layer is higher than an upper surface of the first protective layer, and the upper surface of the transparent conductive oxide layer constitutes the flat surface. 如請求項1所述之發光元件,其中該透明導電氧化物層的一上表面與該第一保護層的一上表面實質上齊平,該透明導電氧化物層的該上表面和該第一保護層的該上表面共同構成該平整表面。 The light-emitting element as described in claim 1, wherein an upper surface of the transparent conductive oxide layer is substantially flush with an upper surface of the first protective layer, and the upper surface of the transparent conductive oxide layer and the upper surface of the first protective layer together constitute the flat surface. 如請求項1所述之發光元件,其中該平整表面在對應該一或複數個第一保護層開口處分別具有一或複數個凹陷,該平整表面包含一最低處位於該一或複數個凹陷之一,該平整表面的一最高處與該最低處的高度差小於5nm。 The light-emitting element as described in claim 1, wherein the flat surface has one or more depressions at the openings corresponding to the one or more first protective layers, the flat surface includes a lowest point located at one of the one or more depressions, and the height difference between a highest point and the lowest point of the flat surface is less than 5nm. 如請求項1所述之發光元件,其中該第二部份未被該半導體堆疊覆蓋,其中該透明導電氧化物層包括一第一透明導電部份位在該半導體堆疊上方,以及一第二透明導電部份位在該第二部份上,該第一透明導電部份的一上表面與該第二透明導電部份的一上表面齊平。 A light-emitting element as described in claim 1, wherein the second portion is not covered by the semiconductor stack, wherein the transparent conductive oxide layer includes a first transparent conductive portion located above the semiconductor stack, and a second transparent conductive portion located on the second portion, and an upper surface of the first transparent conductive portion is flush with an upper surface of the second transparent conductive portion. 如請求項1所述之發光元件,其中該透明導電氧化物層的材料是銦鋅氧化物(IZO)或氧化鋅(ZnO)。 The light-emitting element as described in claim 1, wherein the material of the transparent conductive oxide layer is indium zinc oxide (IZO) or zinc oxide (ZnO). 如請求項1所述之發光元件,更包括一歐姆接觸層,設置在該半導體堆疊與該第一保護層之間。 The light-emitting element as described in claim 1 further includes an ohmic contact layer disposed between the semiconductor stack and the first protective layer. 一種發光裝置,包括:如請求項1至8項中任一項所述之發光元件,以倒裝的方式設置在該發光裝置中。 A light-emitting device, comprising: a light-emitting element as described in any one of claim 1 to claim 8, which is arranged in the light-emitting device in a flip-chip manner. 一種發光元件的製造方法,包括:提供一基板; 形成一第一半導體層在該基板上,包含一第一部份及一第二部份與該第一部份相連;形成一半導體堆疊在該第一部份上,包括:形成一主動區域在該第一部份上;以及形成一第二半導體層在該主動區域上,該第二半導體層的導電類型不同於該第一半導體層的導電類型;形成一第一保護層在該半導體堆疊上及一或複數個第一保護層開口在該第二半導體層上;形成一透明導電氧化物層在該第一保護層上並填入該一或複數個第一保護層開口以提供一平整表面,該透明導電氧化物層未被該第一保護層覆蓋;以及形成一金屬反射層在該平整表面上且接觸該透明導電氧化物層以電性連接該第二半導體層。 A method for manufacturing a light-emitting element, comprising: providing a substrate; forming a first semiconductor layer on the substrate, comprising a first portion and a second portion connected to the first portion; forming a semiconductor stack on the first portion, comprising: forming an active region on the first portion; and forming a second semiconductor layer on the active region, wherein the conductivity type of the second semiconductor layer is different from the conductivity type of the first semiconductor layer; forming a A first protective layer is formed on the semiconductor stack and one or more first protective layer openings are formed on the second semiconductor layer; a transparent conductive oxide layer is formed on the first protective layer and fills the one or more first protective layer openings to provide a flat surface, the transparent conductive oxide layer is not covered by the first protective layer; and a metal reflective layer is formed on the flat surface and contacts the transparent conductive oxide layer to electrically connect the second semiconductor layer.
TW111118304A 2022-05-17 2022-05-17 Light-emitting element, light-emitting device having the same, and method for manufacturing light-emitting element TWI849421B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111118304A TWI849421B (en) 2022-05-17 2022-05-17 Light-emitting element, light-emitting device having the same, and method for manufacturing light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111118304A TWI849421B (en) 2022-05-17 2022-05-17 Light-emitting element, light-emitting device having the same, and method for manufacturing light-emitting element

Publications (2)

Publication Number Publication Date
TW202347834A TW202347834A (en) 2023-12-01
TWI849421B true TWI849421B (en) 2024-07-21

Family

ID=90039434

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111118304A TWI849421B (en) 2022-05-17 2022-05-17 Light-emitting element, light-emitting device having the same, and method for manufacturing light-emitting element

Country Status (1)

Country Link
TW (1) TWI849421B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201611357A (en) * 2014-09-02 2016-03-16 三星電子股份有限公司 Semiconductor light emitting device
US10608141B2 (en) * 2010-11-18 2020-03-31 Seoul Viosys Co., Ltd. Light emitting diode chip having electrode pad

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10608141B2 (en) * 2010-11-18 2020-03-31 Seoul Viosys Co., Ltd. Light emitting diode chip having electrode pad
TW201611357A (en) * 2014-09-02 2016-03-16 三星電子股份有限公司 Semiconductor light emitting device

Also Published As

Publication number Publication date
TW202347834A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
TWI758402B (en) Light-emitting device
TW201545385A (en) Photoelectric element and method of manufacturing same
CN213601872U (en) Display device, unit pixel and pixel module
CN101203966A (en) Light emitting device and manufacturing method thereof
US20240413135A1 (en) Unit pixel having light emitting device, method of fabricating the same, and displaying apparatus having the same
TWI846791B (en) Light-emitting element and manufacturing method thereof
US20230215998A1 (en) Light-emitting device
TWI849421B (en) Light-emitting element, light-emitting device having the same, and method for manufacturing light-emitting element
TWI805981B (en) Semiconductor light-emitting device
US20240204131A1 (en) Light-emitting device and manufacturing method thereof
TWI852572B (en) Semiconductor light-emitting device
KR102631848B1 (en) Optoelectronic device
TWI868197B (en) Light-emitting device and manufacturing method thereof
KR102331621B1 (en) Optoelectronic device
KR102059974B1 (en) Optoelectronic device
TWI870017B (en) Light-emitting device
TW202341523A (en) Light-emitting device
CN112510131B (en) Photoelectric element and method for manufacturing the same
TW202445855A (en) Light-emitting device and display device using the same
TW202329492A (en) Light-emitting device and display device using the same
TWI758603B (en) Optoelectronic device and method for manufacturing the same
TWI667812B (en) Optoelectronic device and method for manufacturing the same
TWI638468B (en) Optoelectronic device and method for manufacturing the same
KR20230024121A (en) Semiconductor light emitting device
CN114551669A (en) Light-emitting device, preparation method thereof and display device