[go: up one dir, main page]

TWI845403B - Display device and method for manufacturing the same - Google Patents

Display device and method for manufacturing the same Download PDF

Info

Publication number
TWI845403B
TWI845403B TW112132177A TW112132177A TWI845403B TW I845403 B TWI845403 B TW I845403B TW 112132177 A TW112132177 A TW 112132177A TW 112132177 A TW112132177 A TW 112132177A TW I845403 B TWI845403 B TW I845403B
Authority
TW
Taiwan
Prior art keywords
light
wavelength conversion
layer
materials
transmitting
Prior art date
Application number
TW112132177A
Other languages
Chinese (zh)
Other versions
TW202509598A (en
Inventor
謝靜箖
林俊良
林育玄
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW112132177A priority Critical patent/TWI845403B/en
Application granted granted Critical
Publication of TWI845403B publication Critical patent/TWI845403B/en
Publication of TW202509598A publication Critical patent/TW202509598A/en

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

A display device which includes a pixel array substrate, a plurality of light-emitting components, a wavelength conversion layer and a light diverging structure is provided. The light-emitting components are disposed in an array and connected to the pixel array substrate, while the light-emitting components are located between the wavelength conversion layer and the pixel array substrate. The wavelength conversion layer includes a plurality of wavelength conversion materials and a plurality of light-transmitting materials which are spaced from each other. The wavelength conversion materials overlap some of the light-emitting components respectively while the light-transmitting materials overlap the others respectively. The light diverging structure is disposed on the pixel array substrate and overlaps the light-transmitting materials but the wavelength conversion materials. Furthermore, the transmittance of light having a wavelength range from 450nm to 495nm to the light-transmitting materials is greater than to the wavelength conversion materials.

Description

顯示裝置及其製造方法Display device and manufacturing method thereof

本發明是有關於一種顯示裝置及此顯示裝置的製造方法,特別是指一種具有光波長轉換層的顯示裝置。The present invention relates to a display device and a manufacturing method of the display device, and in particular to a display device with a light wavelength conversion layer.

目前已有部分顯示裝置採用色轉換技術(color conversion)來做為次畫素(例如RGB畫素)的呈色方式。舉例而言,量子點(Quantum Dot;QD)顯示技術可以透過藍光激發量子點材料,而使量子點材料發出波長頻譜較窄的各色光,從而達到廣色域(gamut)的效果。因為此種技術已採用藍光做為激發光源,故光線不須再經過量子點材料的轉換便能形成藍色次畫素。然而,由於形成藍色次畫素的光線未經過量子點材料,其光指向性相較於量子點色轉換後發出的散射光高。此差異造成藍色次畫素的可視角小於其他顏色的次畫素,進而影響顯示裝置的色準。At present, some display devices use color conversion technology as a way to present the colors of sub-pixels (such as RGB pixels). For example, quantum dot (QD) display technology can use blue light to excite quantum dot materials, causing the quantum dot materials to emit various colors of light with a narrow wavelength spectrum, thereby achieving a wide color gamut (gamut) effect. Because this technology has used blue light as the excitation light source, the light does not need to be converted by the quantum dot material to form a blue sub-pixel. However, since the light that forms the blue sub-pixel does not pass through the quantum dot material, its light directivity is higher than the scattered light emitted after the quantum dot color conversion. This difference causes the viewing angle of the blue sub-pixel to be smaller than that of the sub-pixels of other colors, which in turn affects the color accuracy of the display device.

本發明一實施例提供一種顯示裝置,可提升未經過色轉換的次畫素的可視角度,藉以改善顯示裝置的色準。An embodiment of the present invention provides a display device that can enhance the viewing angle of sub-pixels that have not undergone color conversion, thereby improving the color accuracy of the display device.

在本發明至少一實施例提供一種顯示裝置,此顯示裝置包含一畫素陣列基板;多個發光元件,呈陣列排列於畫素陣列基板上,並電性連接畫素陣列基板;一波長轉換陣列層,設置於畫素陣列基板上,其中發光元件位於波長轉換陣列層以及畫素陣列基板之間。波長轉換陣列層包含多個波長轉換材料以及與波長轉換材料彼此分隔的多個透光材料。波長轉換材料分別與發光元件的其中一些重疊,而透光材料分別與其他發光元件重疊。顯示裝置還包含多個光發散結構,設置於波長轉換陣列層上,其中光發散結構與透光材料重疊,但光發散結構與波長轉換材料不重疊。波長範圍落在400nm至495nm之間的光線對透光材料的穿透率大於此光線對波長轉換材料的穿透率。At least one embodiment of the present invention provides a display device, which includes a pixel array substrate; a plurality of light-emitting elements arranged in an array on the pixel array substrate and electrically connected to the pixel array substrate; a wavelength conversion array layer disposed on the pixel array substrate, wherein the light-emitting elements are located between the wavelength conversion array layer and the pixel array substrate. The wavelength conversion array layer includes a plurality of wavelength conversion materials and a plurality of light-transmitting materials separated from the wavelength conversion materials. The wavelength conversion materials overlap with some of the light-emitting elements, and the light-transmitting materials overlap with other light-emitting elements. The display device further includes a plurality of light scattering structures disposed on the wavelength conversion array layer, wherein the light scattering structures overlap with the light-transmitting material, but the light scattering structures do not overlap with the wavelength conversion material. The light having a wavelength range of 400nm to 495nm has a greater penetration rate through the light-transmitting material than the light having a wavelength range of 400nm to 495nm.

在本發明至少一實施例中,光發散結構的每一者包含多個平凸透鏡,且平凸透鏡是面向波長轉換陣列層而凸出。這些平凸透鏡的每一者的寬度範圍落在1µm至10µm之間。In at least one embodiment of the present invention, each of the light diverging structures includes a plurality of plano-convex lenses, and the plano-convex lenses protrude toward the wavelength conversion array layer. The width of each of the plano-convex lenses ranges from 1 μm to 10 μm.

在本發明至少一實施例中,顯示裝置還包含一黑色矩陣層,位於光發散結構以及波長轉換陣列層之間;一透光層,位於黑色矩陣層以及光發散結構之間,並且覆蓋平凸透鏡的凸面。In at least one embodiment of the present invention, the display device further includes a black matrix layer located between the light scattering structure and the wavelength conversion array layer; and a light-transmitting layer located between the black matrix layer and the light scattering structure and covering the convex surface of the plano-convex lens.

在本發明至少一實施例中,透光層的折射率小於平凸透鏡的折射率。In at least one embodiment of the present invention, the refractive index of the light-transmitting layer is smaller than the refractive index of the plano-convex lens.

在本發明至少一實施例中,顯示裝置還包含一黑色矩陣層,位於波長轉換陣列層上,此黑色矩陣層具有多個開口,而光發散結構分別位於這些開口中。顯示裝置還包含多個濾光層,分布於黑色矩陣層的開口中,並且覆蓋平凸透鏡的凸面。In at least one embodiment of the present invention, the display device further includes a black matrix layer located on the wavelength conversion array layer, the black matrix layer has a plurality of openings, and the light scattering structures are respectively located in the openings. The display device further includes a plurality of filter layers distributed in the openings of the black matrix layer and covering the convex surface of the plano-convex lens.

在本發明至少一實施例中,波長轉換材料包含紅色量子點材料。In at least one embodiment of the present invention, the wavelength conversion material includes a red quantum dot material.

在本發明至少一實施例中,部分波長轉換材料還包含綠色量子點材料。In at least one embodiment of the present invention, part of the wavelength conversion material further includes green quantum dot material.

本發明一實施例還提供一種顯示裝置的製造方法,包含提供一畫素陣列基板;設置多個發光元件於畫素陣列基板上,且發光元件電性連接至畫素陣列基板;在一對向基板上形成一光阻層;以一半透光光罩作為遮罩,圖案化光阻層,以形成多個光發散結構;形成一波長轉換陣列層於光發散結構上,且波長轉換陣列層包含彼此分隔的多個波長轉換材料以及多個透光材料;以及在形成波長轉換陣列層之後將對向基板設置於發光元件上,使光發散結構與波長轉換陣列層位於對向基板以及發光元件之間。波長轉換材料分別與其中一些發光元件重疊,而透光材料分別與其他發光元件重疊。光發散結構與透光材料重疊,但光發散結構與波長轉換材料不重疊。An embodiment of the present invention further provides a method for manufacturing a display device, comprising providing a pixel array substrate; disposing a plurality of light emitting elements on the pixel array substrate, and the light emitting elements are electrically connected to the pixel array substrate; forming a photoresist layer on an opposite substrate; patterning the photoresist layer using a semi-transparent mask as a mask to form a plurality of light scattering structures; forming a wavelength conversion array layer on the light scattering structure, and the wavelength conversion array layer includes a plurality of wavelength conversion materials and a plurality of light-transmitting materials separated from each other; and disposing the opposite substrate on the light emitting element after forming the wavelength conversion array layer, so that the light scattering structure and the wavelength conversion array layer are located between the opposite substrate and the light emitting element. The wavelength conversion material overlaps with some of the light emitting elements, and the light transmitting material overlaps with other light emitting elements. The light scattering structure overlaps with the light transmitting material, but the light scattering structure does not overlap with the wavelength conversion material.

在本發明至少一實施例中,半透光光罩為半色調光罩。In at least one embodiment of the present invention, the semi-transparent light mask is a half-tone light mask.

在本發明至少一實施例中,顯示裝置的製造方法還包含在形成光發散結構之後,在對向基板上形成一透光層。此透光層覆蓋光發散結構的一表面,且透光層的折射率小於光阻層的折射率。In at least one embodiment of the present invention, the manufacturing method of the display device further includes forming a light-transmitting layer on the opposite substrate after forming the light-scattering structure. The light-transmitting layer covers a surface of the light-scattering structure, and the refractive index of the light-transmitting layer is less than the refractive index of the photoresist layer.

在本發明至少一實施例中,顯示裝置的製造方法還包含在對向基板上形成一黑色矩陣層,且黑色矩陣層覆蓋波長轉換材料以及透光材料之間的間隙。In at least one embodiment of the present invention, the manufacturing method of the display device further includes forming a black matrix layer on the opposite substrate, and the black matrix layer covers the gap between the wavelength conversion material and the light-transmitting material.

在上述實施例中,光發散結構重疊波長轉換陣列層的透光材料,而未重疊波長轉換陣例層的波長轉換材料。藉由光發散結構使通過透光材料後的光線產生偏折,進而提升此光線的視角。如此一來,可以降低光線通過波長轉換材料與通過透光材料所呈現出的視角差異,從而改善視角色差的情形。In the above embodiment, the light scattering structure overlaps the light-transmitting material of the wavelength conversion array layer, but does not overlap the wavelength conversion material of the wavelength conversion array layer. The light scattering structure deflects the light after passing through the light-transmitting material, thereby increasing the viewing angle of the light. In this way, the difference in viewing angle between the light passing through the wavelength conversion material and the light passing through the light-transmitting material can be reduced, thereby improving the color difference of the viewing angle.

本發明將以下列實施例進行詳細說明。須注意的是, 以下本發明實施例的敘述在此僅用於舉例說明, 並非旨在詳盡無遺地揭示所有實施態樣或是限制本發明的具體實施態樣。舉例而言,敘述中之「第一特徵形成於第二特徵上」包含多種實施方式,其中涵蓋第一特徵與第二特徵直接接觸,亦涵蓋額外的特徵形成於第一特徵與第二特徵之間而使兩者不直接接觸。此外,圖式及說明書中所採用的相同元件符號會盡可能表示相同或相似的元件。The present invention will be described in detail with the following embodiments. It should be noted that the following description of the embodiments of the present invention is only used for illustration and is not intended to disclose all embodiments in detail or to limit the specific embodiments of the present invention. For example, the description of "a first feature formed on a second feature" includes a variety of implementations, including the first feature and the second feature directly contacting each other, and also including additional features formed between the first feature and the second feature so that the two do not directly contact each other. In addition, the same component symbols used in the drawings and the specification will represent the same or similar components as much as possible.

空間相對的詞彙,例如「下層的」、「低於」、「下方」、「高於」、「上方」等相關詞彙,於此用以簡單描述如圖所示之元件或特徵與另一元件或特徵的關係。這些空間相對的詞彙除了圖中所描繪的轉向之外,也涵蓋在使用或操作裝置時的不同的轉向。此外,當元件可旋轉(旋轉90度或其他角度)時,在此使用之空間相對的描述語也可作對應的解讀。Spatially relative terms such as "inferior," "lower than," "below," "above," and related terms are used herein to simply describe the relationship of an element or feature as shown in the figure to another element or feature. These spatially relative terms cover different orientations when the device is in use or operating in addition to the orientation depicted in the figure. In addition, when the element is rotatable (rotated 90 degrees or other angles), the spatially relative descriptors used herein can also be interpreted accordingly.

在以下的內文中,為了清楚呈現本案的技術特徵,圖式中的元件(例如層、膜、基板以及區域等)的尺寸(例如長度、寬度、厚度與深度)會以不等比例的方式放大。因此,下文實施例的說明與解釋不受限於圖式中的元件所呈現的尺寸與形狀,而應涵蓋如實際製程及/或公差所導致的尺寸、形狀以及兩者的偏差。例如,圖式所示的平坦表面可以具有粗糙及/或非線性的特徵,而圖式所示的銳角可以是圓的。所以,本案圖式所呈示的元件主要是用於示意,並非旨在精準地描繪出元件的實際形狀,也非用於限制本案的申請專利範圍。In the following text, in order to clearly present the technical features of the present invention, the dimensions (e.g., length, width, thickness, and depth) of the elements (e.g., layers, films, substrates, and regions, etc.) in the drawings will be enlarged in unequal proportions. Therefore, the description and explanation of the embodiments below are not limited to the dimensions and shapes presented by the elements in the drawings, but should cover the dimensions, shapes, and deviations therefrom caused by actual processes and/or tolerances. For example, the flat surface shown in the drawings may have rough and/or nonlinear features, and the sharp corners shown in the drawings may be rounded. Therefore, the elements presented in the drawings of the present invention are mainly used for illustration, and are not intended to accurately depict the actual shapes of the elements, nor are they intended to limit the scope of the patent application of the present invention.

更甚者,本案內容中所出現的「約」、「近似」或「實質上」等這類用字不僅涵蓋明確記載的數值與數值範圍,而且也涵蓋發明所屬技術領域中具有通常知識者所能理解的可允許偏差範圍,其中此偏差範圍可由測量時所產生的誤差來決定,而此誤差例如是起因於測量系統或製程條件兩者的限制。此外,「約」可表示在上述數值的一個或多個標準偏差內,例如±30%、±20%、±10%或±5%內。本案文中所出現的「約」、「近似」或「實質上」等這類用字可依光學性質、蝕刻性質、機械性質或其他性質來選擇可以接受的偏差範圍或標準偏差,並非單以一個標準偏差來套用以上光學性質、蝕刻性質、機械性質以及其他性質等所有性質。Furthermore, the words "approximately", "approximately" or "substantially" used in the present case not only cover the numerical values and numerical ranges clearly recorded, but also cover the permissible deviation ranges that can be understood by a person of ordinary skill in the art to which the invention belongs, wherein the deviation range can be determined by the error generated during measurement, and the error is caused by, for example, the limitation of the measurement system or the process conditions. In addition, "approximately" can mean within one or more standard deviations of the above numerical values, such as ±30%, ±20%, ±10% or ±5%. The words "approximately", "approximately" or "substantially" used in this text may select an acceptable range of deviation or standard deviation according to the optical, etching, mechanical or other properties, and do not apply a single standard deviation to all the above optical, etching, mechanical and other properties.

圖1為本發明一實施例的顯示裝置10的局部剖視示意圖。請參閱圖1,顯示裝置10包含畫素陣列基板100、發光元件120B與發光元件120G、波長轉換陣列層140以及光發散結構160。畫素陣列基板100可以是例如薄膜電晶體(Thin film transistor;TFT)基板或類似的電子元件驅動基板。FIG1 is a partial cross-sectional schematic diagram of a display device 10 according to an embodiment of the present invention. Referring to FIG1 , the display device 10 includes a pixel array substrate 100, light-emitting elements 120B and 120G, a wavelength conversion array layer 140, and a light scattering structure 160. The pixel array substrate 100 may be, for example, a thin film transistor (TFT) substrate or a similar electronic element driving substrate.

發光元件120B與發光元件120G呈陣列排列於畫素陣列基板100上,並且電性連接畫素陣列基板100。發光元件120B與發光元件120G分別與畫素陣列基板100電性連接,詳細而言,每一個發光元件(發光元件120B與發光元件120G)通過其各自對應的電極(未繪示)而與畫素陣列基板100電性連接。在本發明各式各樣的實施例中,發光元件120B與發光元件120G可以包含例如有機發光二極體(Organic Light Emitting Diode;OLED)、微發光二極體(Micro LED)或者其他類似的固態發光元件。The light-emitting elements 120B and the light-emitting elements 120G are arranged in an array on the pixel array substrate 100 and are electrically connected to the pixel array substrate 100. The light-emitting elements 120B and the light-emitting elements 120G are electrically connected to the pixel array substrate 100, respectively. Specifically, each light-emitting element (the light-emitting element 120B and the light-emitting element 120G) is electrically connected to the pixel array substrate 100 through its corresponding electrode (not shown). In various embodiments of the present invention, the light-emitting elements 120B and the light-emitting elements 120G may include, for example, an organic light-emitting diode (OLED), a micro-light-emitting diode (Micro LED) or other similar solid-state light-emitting elements.

在本實施例中,發光元件120B發出光線的波長範圍落在400nm至495nm之間,而發光元件120G發出光線的波長範圍落在495nm至570nm之間。然而,本發明中發光元件的配置不限於此。舉例而言,圖2為本發明另一實施例的顯示裝置20的局部剖視示意圖。在此實施例中,顯示裝置20可以僅包含發光元件120B。In this embodiment, the wavelength range of the light emitted by the light emitting element 120B falls between 400nm and 495nm, and the wavelength range of the light emitted by the light emitting element 120G falls between 495nm and 570nm. However, the configuration of the light emitting elements in the present invention is not limited thereto. For example, FIG. 2 is a partial cross-sectional schematic diagram of a display device 20 of another embodiment of the present invention. In this embodiment, the display device 20 may include only the light emitting element 120B.

除此之外,顯示裝置10還可以包含畫素定義層102(Pixel Define Layer;PDL)。此畫素定義層102設置於畫素陣列基板100上,並且分隔每一個發光元件120B以及發光元件120G。特別一提的是,畫素陣列基板100上還設置有一層密封層104,此密封層104包覆發光元件120B以及發光元件120G,並且在發光元件120B、發光元件120G以及畫素定義層102上方形成一表面104s(標示於圖1)。In addition, the display device 10 may further include a pixel definition layer 102 (Pixel Define Layer; PDL). The pixel definition layer 102 is disposed on the pixel array substrate 100 and separates each light-emitting element 120B and the light-emitting element 120G. In particular, a sealing layer 104 is also disposed on the pixel array substrate 100. The sealing layer 104 covers the light-emitting element 120B and the light-emitting element 120G, and forms a surface 104s (marked in FIG. 1 ) above the light-emitting element 120B, the light-emitting element 120G and the pixel definition layer 102.

波長轉換陣列層140設置於畫素陣列基板100上,而發光元件120B與發光元件120G皆位於波長轉換陣列層140以及畫素陣列基板100之間。波長轉換陣列層140還包含多個波長轉換材料142以及多個透光材料144,且這些透光材料144與波長轉換材料142彼此分隔。發光元件120B與發光元件120G可以朝向波長轉換陣列層140發出光線L1,而光線L1則進入波長轉換陣列層140的波長轉換材料142以及透光材料144。The wavelength conversion array layer 140 is disposed on the pixel array substrate 100, and the light emitting element 120B and the light emitting element 120G are both located between the wavelength conversion array layer 140 and the pixel array substrate 100. The wavelength conversion array layer 140 further includes a plurality of wavelength conversion materials 142 and a plurality of light-transmitting materials 144, and the light-transmitting materials 144 are separated from the wavelength conversion materials 142. The light emitting element 120B and the light emitting element 120G can emit light L1 toward the wavelength conversion array layer 140, and the light L1 enters the wavelength conversion material 142 and the light-transmitting material 144 of the wavelength conversion array layer 140.

波長轉換陣列層140還包含了分隔層146,分布於各個波長轉換材料142以及透光材料144之間。特別一提的是,如圖1所示,波長轉換陣列層140的分隔層146是依照畫素陣列基板100上的畫素定義層102而分布,且分隔層146與畫素定義層102重疊。另一方面,波長轉換材料142分別與其中一些發光元件120B重疊,而透光材料144分別與其他發光元件(例如發光元件120G以及另一發光元件120B)重疊。換言之,分隔層146亦可以視為定義畫素的分界。The wavelength conversion array layer 140 further includes a spacer layer 146, which is distributed between each wavelength conversion material 142 and the light-transmitting material 144. In particular, as shown in FIG1 , the spacer layer 146 of the wavelength conversion array layer 140 is distributed according to the pixel definition layer 102 on the pixel array substrate 100, and the spacer layer 146 overlaps with the pixel definition layer 102. On the other hand, the wavelength conversion material 142 overlaps with some of the light-emitting elements 120B, and the light-transmitting material 144 overlaps with other light-emitting elements (such as the light-emitting element 120G and another light-emitting element 120B). In other words, the spacer layer 146 can also be regarded as a boundary for defining pixels.

在本實施例中,波長轉換材料142可以包含例如量子點、螢光粉(Fluorescent Pigments)或者其他類似的材料。另一方面,透光材料144可以包含例如環氧樹脂、矽氧烷樹脂、高分子光阻或類似的材料。值得一提的是,波長範圍落在400nm至495nm之間的光線L1對透光材料144的穿透率大於此光線L1對波長轉換材料142的穿透率。In this embodiment, the wavelength conversion material 142 may include, for example, quantum dots, fluorescent pigments, or other similar materials. On the other hand, the light-transmitting material 144 may include, for example, epoxy resin, silicone resin, polymer photoresist, or similar materials. It is worth mentioning that the light L1 with a wavelength range of 400nm to 495nm has a greater penetration rate through the light-transmitting material 144 than the light L1 has through the wavelength conversion material 142.

舉例而言,在本實施例中,當光線L1的波長落在藍光的波長範圍(即400nm至495nm)時,大部分的光線L1可以穿透過透光材料144但卻無法通過波長轉換材料142。然而,本發明不限於此,除了上述藍光的波長範圍外,當光線L1的波長範圍落在495nm至570nm之間(即綠光的波長範圍)時,光線L1對透光材料144的穿透率也可以大於此光線L1對波長轉換材料142的穿透率。例如,光線L1對透光材料144的穿透率可介於50%至100%之間,而光線L1對波長轉換材料142的穿透率可介於0%至20%之間。For example, in this embodiment, when the wavelength of the light L1 falls within the wavelength range of blue light (i.e., 400nm to 495nm), most of the light L1 can pass through the light-transmitting material 144 but cannot pass through the wavelength conversion material 142. However, the present invention is not limited thereto, and in addition to the wavelength range of the above-mentioned blue light, when the wavelength range of the light L1 falls within the wavelength range of 495nm to 570nm (i.e., the wavelength range of green light), the transmittance of the light L1 through the light-transmitting material 144 may also be greater than the transmittance of the light L1 through the wavelength conversion material 142. For example, the transmittance of the light L1 through the light-transmitting material 144 may be between 50% and 100%, and the transmittance of the light L1 through the wavelength conversion material 142 may be between 0% and 20%.

雖然圖1的實施例中波長轉換材料142包含紅色(波長範圍約在620nm至750nm)量子點材料142R,但本發明不限於此,波長轉換材料142還可以包含綠色量子點材料142G。請參考圖2,在此實施例中,一部分的波長轉換材料142包含紅色量子點材料142R,而另一部分的波長轉換材料142則包含綠色量子點材料142G。Although the wavelength conversion material 142 in the embodiment of FIG. 1 includes a red (wavelength range of about 620nm to 750nm) quantum dot material 142R, the present invention is not limited thereto, and the wavelength conversion material 142 may also include a green quantum dot material 142G. Referring to FIG. 2 , in this embodiment, a portion of the wavelength conversion material 142 includes a red quantum dot material 142R, and another portion of the wavelength conversion material 142 includes a green quantum dot material 142G.

除此之外,波長轉換陣列層140還可以包含兩層覆蓋層145,其中波長轉換材料142以及透光材料144夾設於兩層覆蓋層145之間。換言之,覆蓋層145分別位於波長轉換陣列層140的相對兩側。這些覆蓋層145可以包含例如氧化矽或者類似的透明材料。In addition, the wavelength conversion array layer 140 may further include two cover layers 145, wherein the wavelength conversion material 142 and the light-transmitting material 144 are sandwiched between the two cover layers 145. In other words, the cover layers 145 are located at two opposite sides of the wavelength conversion array layer 140. These cover layers 145 may include, for example, silicon oxide or similar transparent materials.

光發散結構160設置於波長轉換陣列層140上,如圖1所示,光發散結構160與透光材料144重疊,但光發散結構160與波長轉換材料142不重疊。詳細而言,光發散結構160的一部分覆蓋於透光材料144的上方。由於光線L1通過透光材料144之後近乎無偏折,如此一來,穿透過透光材料144的光線L1得以進入覆蓋於透光材料144上方的光發散結構160。The light scattering structure 160 is disposed on the wavelength conversion array layer 140. As shown in FIG1 , the light scattering structure 160 overlaps with the light-transmitting material 144, but the light scattering structure 160 does not overlap with the wavelength conversion material 142. Specifically, a portion of the light scattering structure 160 covers the top of the light-transmitting material 144. Since the light L1 passes through the light-transmitting material 144 with almost no deflection, the light L1 that passes through the light-transmitting material 144 can enter the light scattering structure 160 covering the top of the light-transmitting material 144.

請參考圖1,每一個光發散結構160包含多個平凸透鏡162,且平凸透鏡162是面向波長轉換陣列層140而凸出。換言之,平凸透鏡162的凸面是面對波長轉換陣列層140。在本實施例中,每一個平凸透鏡162的寬度範圍落在1µm至10µm之間,然而本發明不限於此。在本發明的其他實施例中,平凸透鏡162的寬度的合適範圍取決於顯示畫素的尺寸。1 , each light diverging structure 160 includes a plurality of plano-convex lenses 162, and the plano-convex lenses 162 are protruding toward the wavelength conversion array layer 140. In other words, the convex surface of the plano-convex lens 162 faces the wavelength conversion array layer 140. In this embodiment, the width of each plano-convex lens 162 ranges from 1 μm to 10 μm, but the present invention is not limited thereto. In other embodiments of the present invention, the appropriate range of the width of the plano-convex lens 162 depends on the size of the display pixel.

顯示裝置10還包含黑色矩陣層180,此黑色矩陣層180位於波長轉換陣列層140上,並且位於光發散結構160以及波長轉換陣列層140之間。在本實施例中,黑色矩陣層180具有多個開口185,這些開口185連通黑色矩陣層180的相對兩側。除此之外,顯示裝置10還包含了多個濾光層190,這些濾光層190分布於黑色矩陣層180的開口185中。The display device 10 further includes a black matrix layer 180, which is located on the wavelength conversion array layer 140 and between the light scattering structure 160 and the wavelength conversion array layer 140. In this embodiment, the black matrix layer 180 has a plurality of openings 185, and the openings 185 connect two opposite sides of the black matrix layer 180. In addition, the display device 10 further includes a plurality of filter layers 190, which are distributed in the openings 185 of the black matrix layer 180.

請參考圖1,濾光層190的分布位置對應於發光元件120B與發光元件120G的分布位置。詳細而言,每一個濾光層190會與一個發光元件120B或者一個發光元件120G重疊。且由於波長轉換陣列層140中的波長轉換材料142以及透光材料144的分布位置也是對應於發光元件120B與發光元件120G,故每一個濾光層190亦與一個波長轉換材料142或者一個透光材料144重疊。Please refer to FIG1 , the distribution position of the filter layer 190 corresponds to the distribution position of the light-emitting element 120B and the light-emitting element 120G. In detail, each filter layer 190 overlaps with one light-emitting element 120B or one light-emitting element 120G. And because the distribution positions of the wavelength conversion material 142 and the light-transmitting material 144 in the wavelength conversion array layer 140 also correspond to the light-emitting element 120B and the light-emitting element 120G, each filter layer 190 also overlaps with one wavelength conversion material 142 or one light-transmitting material 144.

濾光層190的顏色可以包含紅色、藍色以及綠色,但本發明不限於此。在其他實施例中,濾光層190的顏色也可以包含這三種顏色以外的任何顏色,例如青色(cyan)、洋紅色(magenta)及黃色。黑色矩陣層180的材料可以包含例如樹脂、金屬薄膜(例如氧化鉻膜)或者類似的光阻材料。濾光層190的材料則可以包含具有染料(Dye)或顏料(Pigment)的高分子樹脂或者類似的光阻材料。The color of the filter layer 190 may include red, blue and green, but the present invention is not limited thereto. In other embodiments, the color of the filter layer 190 may also include any color other than these three colors, such as cyan, magenta and yellow. The material of the black matrix layer 180 may include, for example, resin, metal film (such as chromium oxide film) or similar photoresist material. The material of the filter layer 190 may include a polymer resin with dye or pigment or similar photoresist material.

除此之外,顯示裝置10還包含透光層170,此透光層170位於黑色矩陣層180以及光發散結構160之間,並且覆蓋每一個平凸透鏡162的凸面。值得一提的是,透光層170的折射率小於平凸透鏡162的折射率。舉例而言,透光層170可以包含例如球形氧化矽或者高分子光阻材料等低折射率材料,其折射率約落在1.3至1.6之間。而平凸透鏡162可以是添加二氧化鋯或二氧化鈦粒子的高分子光阻或者樹脂材料等高折射率材料,其折射率約落在1.6至2.0之間。In addition, the display device 10 further includes a light-transmitting layer 170, which is located between the black matrix layer 180 and the light-scattering structure 160 and covers the convex surface of each plano-convex lens 162. It is worth mentioning that the refractive index of the light-transmitting layer 170 is less than the refractive index of the plano-convex lens 162. For example, the light-transmitting layer 170 may include a low-refractive index material such as spherical silicon oxide or a polymer photoresist material, and the refractive index thereof is approximately between 1.3 and 1.6. The plano-convex lens 162 may be a high-refractive index material such as a polymer photoresist or a resin material to which zirconium dioxide or titanium dioxide particles are added, and the refractive index thereof is approximately between 1.6 and 2.0.

藉由在顯示裝置10中加入光發散結構160,可以使光線L1通過平凸透鏡162而發生偏折,並使原本在波長轉換陣列層140中直進的光線L1改變行進方向,以達到光發散的效果。值得一提的是,在本實施例中,平凸透鏡162的焦距小於對向基板150的厚度。如此一來,使各個平凸透鏡162的焦點位置會落在對向基板150內部,進而使光線L1在離開對向基板150後呈發散。By adding the light diverging structure 160 to the display device 10, the light L1 can be deflected when passing through the plano-convex lens 162, and the light L1 originally traveling straight in the wavelength conversion array layer 140 can be changed in direction, so as to achieve the effect of light divergence. It is worth mentioning that in this embodiment, the focal length of the plano-convex lens 162 is less than the thickness of the opposite substrate 150. In this way, the focal point position of each plano-convex lens 162 will fall inside the opposite substrate 150, thereby making the light L1 diverge after leaving the opposite substrate 150.

雖然上述實施例的黑色矩陣層180位於光發散結構160以及波長轉換陣列層140之間,但本發明不限於此。圖3為本發明另一實施例的顯示裝置30的局部剖視示意圖,顯示裝置30的結構相似於顯示裝置10。兩者之間的差異在於,顯示裝置30的各個光發散結構160分別位於黑色矩陣層180的開口185中,而位於開口185中的濾光層190則覆蓋光發散結構160中平凸透鏡162的凸面。此外,顯示裝置30與顯示裝置10之間的另一個差異在於,顯示裝置30不包含透光層170。Although the black matrix layer 180 of the above embodiment is located between the light scattering structure 160 and the wavelength conversion array layer 140, the present invention is not limited thereto. FIG. 3 is a partial cross-sectional schematic diagram of a display device 30 according to another embodiment of the present invention. The structure of the display device 30 is similar to that of the display device 10. The difference between the two is that each light scattering structure 160 of the display device 30 is located in the opening 185 of the black matrix layer 180, and the filter layer 190 located in the opening 185 covers the convex surface of the plano-convex lens 162 in the light scattering structure 160. In addition, another difference between the display device 30 and the display device 10 is that the display device 30 does not include the light-transmitting layer 170.

請回到圖1,顯示裝置10還可以包含對向基板150,光發散結構160位於此對向基板150上,但光發散結構160是位於對向基板150以及波長轉換陣列層140之間。此外,對向基板150可以是透明基板,例如玻璃板或透明塑膠基板,而對向基板150、光發散結構160、透光層170、黑色矩陣層180與濾光層190可形成彩色濾光基板。在本實施例中,光發散結構160以及透光層170分隔了對向基板150以及黑色矩陣層180,但本發明不限於此。在其他實施例中,對向基板150以及黑色矩陣層180之間可以不存有光發散結構160以及透光層170。Returning to FIG. 1 , the display device 10 may further include an opposite substrate 150, on which the light scattering structure 160 is located, but between the opposite substrate 150 and the wavelength conversion array layer 140. In addition, the opposite substrate 150 may be a transparent substrate, such as a glass plate or a transparent plastic substrate, and the opposite substrate 150, the light scattering structure 160, the light-transmitting layer 170, the black matrix layer 180 and the light-filtering layer 190 may form a color light-filtering substrate. In this embodiment, the light scattering structure 160 and the light-transmitting layer 170 separate the opposite substrate 150 and the black matrix layer 180, but the present invention is not limited thereto. In other embodiments, the light diffusion structure 160 and the light-transmitting layer 170 may not exist between the opposite substrate 150 and the black matrix layer 180 .

特別一提的是,雖然未繪示於圖中,但波長轉換陣列層140的其中一層覆蓋層145與密封層104的表面104s(標示於圖1)之間包含一層接合層(未繪示)。這些接合層可以包含例如光學膠(Optical clear adhesive;OCA)或者類似的接合材料。It is worth mentioning that, although not shown in the figure, a bonding layer (not shown) is included between one of the covering layers 145 of the wavelength conversion array layer 140 and the surface 104s (marked in FIG. 1 ) of the sealing layer 104. These bonding layers may include, for example, optical clear adhesive (OCA) or similar bonding materials.

本發明至少一實施例揭露顯示裝置10的製造方法,由圖4A至圖4B與圖5A至圖5D中的一系列步驟來說明。請參考圖4A,首先,提供畫素陣列基板100,並且設置多個發光元件(例如發光元件120B與發光元件120G)在此畫素陣列基板100上,並且使發光元件120B與發光元件120G電性連接至畫素陣列基板100。此外,在畫素陣列基板100上設置畫素定義層102,並且使畫素定義層102分隔每一個發光元件120B以及發光元件120G。At least one embodiment of the present invention discloses a method for manufacturing a display device 10, which is described by a series of steps in FIG. 4A to FIG. 4B and FIG. 5A to FIG. 5D. Referring to FIG. 4A, first, a pixel array substrate 100 is provided, and a plurality of light-emitting elements (such as light-emitting element 120B and light-emitting element 120G) are disposed on the pixel array substrate 100, and the light-emitting element 120B and the light-emitting element 120G are electrically connected to the pixel array substrate 100. In addition, a pixel definition layer 102 is disposed on the pixel array substrate 100, and the pixel definition layer 102 separates each light-emitting element 120B and each light-emitting element 120G.

請參考圖5A,顯示裝置10的步驟還包含在一個對向基板150上形成光阻層160’。接著,如圖5B所示,以一個半透光光罩(未繪示)作為遮罩,並且藉由例如微影(Lithography)的方式圖案化光阻層160’,以形成多個光發散結構160。5A , the display device 10 further includes forming a photoresist layer 160′ on an opposing substrate 150. Next, as shown in FIG5B , a semi-transparent mask (not shown) is used as a mask, and the photoresist layer 160′ is patterned by, for example, lithography to form a plurality of light diffusion structures 160.

值得一提的是,本實施例中採用的半透光光罩為半色調光罩(Halftone)。藉由採用半透光光罩,可以在微影製程的過程中,針對光阻層160’上的不同區域產生不同程度的光遮蔽效果,進而造成不同區域的光阻層160’被移除的深度差異。如此一來,便能形成如本實施例中光發散結構160上的透鏡陣列。It is worth mentioning that the semi-transparent mask used in this embodiment is a halftone mask. By using a semi-transparent mask, different degrees of light shielding effects can be produced for different areas on the photoresist layer 160' during the lithography process, thereby causing different depths of removal of the photoresist layer 160' in different areas. In this way, a lens array on the light diverging structure 160 in this embodiment can be formed.

請參考圖5C,在形成光發散結構160之後,在對向基板150上形成透光層170。透光層170覆蓋光發散結構160的表面160s,且透光層170的折射率會小於光阻層160’的折射率(即光發散結構160的折射率)。光發散結構160是由光阻層160’圖案化而成,因此,光阻層160’的材料相同於光發散結構160的材料。 Please refer to FIG. 5C . After the light scattering structure 160 is formed, a light-transmitting layer 170 is formed on the opposite substrate 150. The light-transmitting layer 170 covers the surface 160s of the light scattering structure 160, and the refractive index of the light-transmitting layer 170 is smaller than the refractive index of the photoresist layer 160' (i.e., the refractive index of the light scattering structure 160). The light scattering structure 160 is formed by patterning the photoresist layer 160', and therefore, the material of the photoresist layer 160' is the same as the material of the light scattering structure 160.

除此之外,在本發明的部分實施例中,還包含在對向基板150上形成黑色矩陣層180。請一併參考圖4B與圖5C,黑色矩陣層180覆蓋波長轉換材料142以及透光材料144之間的間隙。換句話而言,黑色矩陣層180覆蓋波長轉換陣列層140的分隔層146。 In addition, in some embodiments of the present invention, a black matrix layer 180 is formed on the opposite substrate 150. Please refer to FIG. 4B and FIG. 5C together. The black matrix layer 180 covers the gap between the wavelength conversion material 142 and the light-transmitting material 144. In other words, the black matrix layer 180 covers the separation layer 146 of the wavelength conversion array layer 140.

特別一提的是,在本實施例中,是先形成光發散結構160以及透光層170之後,才在透光層170上形成黑色矩陣層180,但本發明不限於此。在其他不包含透光層170的實施例中(請參考圖3的顯示裝置30),可以先形成光發散結構160再形成黑色矩陣層180。也可以先形成黑色矩陣層180,再於黑色矩陣層180的開口185中形成光發散結構160。 It is particularly noted that in this embodiment, the light scattering structure 160 and the light-transmitting layer 170 are formed first, and then the black matrix layer 180 is formed on the light-transmitting layer 170, but the present invention is not limited thereto. In other embodiments that do not include the light-transmitting layer 170 (please refer to the display device 30 in FIG. 3 ), the light scattering structure 160 may be formed first and then the black matrix layer 180 may be formed. Alternatively, the black matrix layer 180 may be formed first, and then the light scattering structure 160 may be formed in the opening 185 of the black matrix layer 180.

請參考圖5D,形成波長轉換陣列層140於光發散結構160上,此波長轉換陣列層140包含彼此分隔的多個波長轉換材料142以及多個透光材料144。光發散結構160與透光材料144重疊,但光發散結構160與波長轉換材料142不重疊。 Referring to FIG. 5D , a wavelength conversion array layer 140 is formed on the light scattering structure 160. The wavelength conversion array layer 140 includes a plurality of wavelength conversion materials 142 and a plurality of light-transmitting materials 144 separated from each other. The light scattering structure 160 overlaps with the light-transmitting material 144, but the light scattering structure 160 does not overlap with the wavelength conversion material 142.

接著,請回到圖4B,在形成波長轉換陣列層140之後,將對向基板150設置於發光元件(包含發光元件120B與發光元件120G)上,使光發散結構160與波長轉換陣列層140位於對向基板150以及發光元件(包含發光元件120B與發光元件120G)之間,並且藉由接合層(未繪示)將波長轉換陣列層140的覆蓋層145貼合於發光元件(包含發光元件120B與發光元件120G)及畫素定義層102上。波長轉換材料142分別與其中一些發光元件(發光元件120B)重疊,而透光材料144則分別與另一些發光元件(包含發光元件120B與發光元件120G)重疊。Next, please return to FIG. 4B . After the wavelength conversion array layer 140 is formed, the counter substrate 150 is disposed on the light-emitting elements (including the light-emitting elements 120B and 120G), so that the light scattering structure 160 and the wavelength conversion array layer 140 are located between the counter substrate 150 and the light-emitting elements (including the light-emitting elements 120B and 120G), and the covering layer 145 of the wavelength conversion array layer 140 is bonded to the light-emitting elements (including the light-emitting elements 120B and 120G) and the pixel definition layer 102 via a bonding layer (not shown). The wavelength conversion material 142 overlaps with some of the light-emitting elements (the light-emitting element 120B), and the light-transmitting material 144 overlaps with other light-emitting elements (including the light-emitting element 120B and the light-emitting element 120G).

綜上所述,本發明中的光發散結構重疊於波長轉換陣列層中的透光材料,令發光元件所發出的光線通過透光材料之後能進入光發散結構,並且藉由光發散結構使得部分直進的光線產生偏折,進而在離開光發散結構時呈發散狀態。如此一來,可以提升光線通過透光材料之後呈現的視角,降低其與光線通過波長轉換材料而呈現的視角之間的差異,從而改善視角色差的狀況。In summary, the light scattering structure in the present invention is superimposed on the light-transmitting material in the wavelength conversion array layer, so that the light emitted by the light-emitting element can enter the light scattering structure after passing through the light-transmitting material, and the light scattering structure deflects part of the straight light, and then it is in a divergent state when leaving the light scattering structure. In this way, the viewing angle presented by the light after passing through the light-transmitting material can be improved, and the difference between the viewing angle presented by the light after passing through the wavelength conversion material can be reduced, thereby improving the color difference of the visual angle.

雖然本發明之實施例已揭露如上,然其並非用以限定本發明之實施例,任何所屬技術領域中具有通常知識者,在不脫離本發明之實施例的精神和範圍內,當可作些許的更動與潤飾,故本發明之實施例的保護範圍當視後附的申請專利範圍所界定者為準。Although the embodiments of the present invention have been disclosed above, they are not intended to limit the embodiments of the present invention. Any person with ordinary knowledge in the relevant technical field may make some changes and modifications without departing from the spirit and scope of the embodiments of the present invention. Therefore, the protection scope of the embodiments of the present invention shall be defined by the scope of the attached patent application.

10、20、30:顯示裝置 100:畫素陣列基板 102:畫素定義層 104:密封層 104s, 160s:表面 120B, 120G:發光元件 140:波長轉換陣列層 142:波長轉換材料 142R, 142G:量子點材料 144:透光材料 145:覆蓋層 146:分隔層 150:對向基板 160:光發散結構 160’:光阻層 162:平凸透鏡 170:透光層 180:黑色矩陣層 185:開口 190:濾光層 L1:光線 10, 20, 30: display device 100: pixel array substrate 102: pixel definition layer 104: sealing layer 104s, 160s: surface 120B, 120G: light-emitting element 140: wavelength conversion array layer 142: wavelength conversion material 142R, 142G: quantum dot material 144: light-transmitting material 145: cover layer 146: partition layer 150: opposite substrate 160: light scattering structure 160’: photoresist layer 162: plano-convex lens 170: light-transmitting layer 180: black matrix layer 185: opening 190: filter layer L1: light

從以下詳細敘述並搭配圖式檢閱,可理解本發明的態樣。應注意,多種特徵並未以產業上實務標準的比例繪製。事實上,為了討論上的清楚易懂,各種特徵的尺寸可以任意地增加或減少。 圖1繪示本發明一實施例的顯示裝置的局部剖視示意圖。 圖2繪示本發明另一實施例的顯示裝置的局部剖視示意圖。 圖3繪示本發明另一實施例的顯示裝置的局部剖視示意圖。 圖4A至圖4B繪示本發明一實施例的顯示裝置製造方法的局部剖視示意圖。 圖5A至圖5D繪示本發明一實施例的顯示裝置製造方法的局部剖視示意圖。 The present invention can be understood from the following detailed description and the accompanying drawings. It should be noted that various features are not drawn in proportion to industry practice standards. In fact, the sizes of various features can be increased or decreased arbitrarily for the sake of clarity of discussion. Figure 1 shows a partial cross-sectional schematic diagram of a display device of an embodiment of the present invention. Figure 2 shows a partial cross-sectional schematic diagram of a display device of another embodiment of the present invention. Figure 3 shows a partial cross-sectional schematic diagram of a display device of another embodiment of the present invention. Figures 4A to 4B show partial cross-sectional schematic diagrams of a display device manufacturing method of an embodiment of the present invention. Figures 5A to 5D show partial cross-sectional schematic diagrams of a display device manufacturing method of an embodiment of the present invention.

10:顯示裝置 10: Display device

100:畫素陣列基板 100: Pixel array substrate

102:畫素定義層 102: Pixel definition layer

104:密封層 104: Sealing layer

104s:表面 104s: Surface

120B,120G:發光元件 120B, 120G: Light-emitting element

140:波長轉換陣列層 140: Wavelength conversion array layer

142:波長轉換材料 142: Wavelength conversion material

142R:量子點材料 142R: Quantum dot materials

144:透光材料 144: Translucent material

145:覆蓋層 145: Covering layer

146:分隔層 146:Separation layer

150:對向基板 150: Opposite substrate

160:光發散結構 160: Light diverging structure

162:平凸透鏡 162: Plano-convex lens

170:透光層 170: Translucent layer

180:黑色矩陣層 180: Black matrix layer

185:開口 185: Open mouth

190:濾光層 190: Filter layer

L1:光線 L1: Light

Claims (11)

一種顯示裝置,包含: 一畫素陣列基板; 多個發光元件,呈陣列排列於該畫素陣列基板上,並電性連接該畫素陣列基板; 一波長轉換陣列層,設置於該畫素陣列基板上,其中該些發光元件位於該波長轉換陣列層以及該畫素陣列基板之間,而該波長轉換陣列層包含: 多個波長轉換材料;以及 多個透光材料,與該些波長轉換材料彼此分隔,其中該些波長轉換材料分別與該些發光元件的其中一些重疊,而該些透光材料分別與其他該些發光元件重疊;以及 多個光發散結構,設置於該波長轉換陣列層上,其中該些光發散結構與該些透光材料重疊,但該些光發散結構與該些波長轉換材料不重疊; 其中波長範圍落在400nm至495nm之間的一光線對該些透光材料的穿透率大於該光線對該些波長轉換材料的穿透率。 A display device comprises: a pixel array substrate; a plurality of light-emitting elements arranged in an array on the pixel array substrate and electrically connected to the pixel array substrate; a wavelength conversion array layer disposed on the pixel array substrate, wherein the light-emitting elements are located between the wavelength conversion array layer and the pixel array substrate, and the wavelength conversion array layer comprises: a plurality of wavelength conversion materials; and a plurality of light-transmitting materials separated from the wavelength conversion materials, wherein the wavelength conversion materials overlap with some of the light-emitting elements, and the light-transmitting materials overlap with other light-emitting elements; and A plurality of light scattering structures are disposed on the wavelength conversion array layer, wherein the light scattering structures overlap with the light-transmitting materials, but the light scattering structures do not overlap with the wavelength conversion materials; wherein the transmittance of a light ray with a wavelength range of 400nm to 495nm through the light-transmitting materials is greater than the transmittance of the light ray through the wavelength conversion materials. 如請求項1所述之顯示裝置,其中該些光發散結構的每一者包含: 多個平凸透鏡,且該些平凸透鏡是面向該波長轉換陣列層而凸出,其中該些平凸透鏡的每一者的寬度範圍落在1µm至10µm之間。 A display device as described in claim 1, wherein each of the light diverging structures comprises: A plurality of plano-convex lenses, and the plano-convex lenses protrude toward the wavelength conversion array layer, wherein the width of each of the plano-convex lenses ranges from 1µm to 10µm. 如請求項2所述之顯示裝置,還包含: 一黑色矩陣層,位於該些光發散結構以及該波長轉換陣列層之間;以及 一透光層,位於該黑色矩陣層以及該光發散結構之間,並且覆蓋該些平凸透鏡的凸面。 The display device as described in claim 2 further comprises: a black matrix layer located between the light scattering structures and the wavelength conversion array layer; and a light-transmitting layer located between the black matrix layer and the light scattering structure and covering the convex surfaces of the plano-convex lenses. 如請求項3所述之顯示裝置,其中該透光層的折射率小於該些平凸透鏡的折射率。A display device as described in claim 3, wherein the refractive index of the light-transmitting layer is smaller than the refractive index of the plano-convex lenses. 如請求項2所述之顯示裝置,還包含: 一黑色矩陣層,位於該波長轉換陣列層上,其中該黑色矩陣層具有多個開口,而該些光發散結構分別位於該些開口中;以及 多個濾光層,分布於該黑色矩陣層的該些開口中,並且覆蓋該些平凸透鏡的凸面。 The display device as described in claim 2 further comprises: a black matrix layer located on the wavelength conversion array layer, wherein the black matrix layer has a plurality of openings, and the light diverging structures are respectively located in the openings; and a plurality of filter layers distributed in the openings of the black matrix layer and covering the convex surfaces of the plano-convex lenses. 如請求項1所述之顯示裝置,其中該些波長轉換材料包含紅色量子點材料。A display device as described in claim 1, wherein the wavelength conversion materials include red quantum dot materials. 如請求項6所述之顯示裝置,其中部分該些波長轉換材料包含綠色量子點材料。A display device as described in claim 6, wherein some of the wavelength conversion materials include green quantum dot materials. 一種顯示裝置的製造方法,包含: 提供一畫素陣列基板; 設置多個發光元件於該畫素陣列基板上,其中該些發光元件電性連接至該畫素陣列基板; 在一對向基板上形成一光阻層; 以一半透光光罩作為遮罩,圖案化該光阻層,以形成多個光發散結構; 形成一波長轉換陣列層於該些光發散結構上,且該波長轉換陣列層包含彼此分隔的多個波長轉換材料以及多個透光材料;以及 在形成該波長轉換陣列層之後,將該對向基板設置於該些發光元件上,使該些光發散結構與該波長轉換陣列層位於該對向基板以及該些發光元件之間; 其中該些波長轉換材料分別與該些發光元件的其中一些重疊,而該些透光材料分別與其他該些發光元件重疊; 其中該些光發散結構與該些透光材料重疊,但該些光發散結構與該些波長轉換材料不重疊。 A method for manufacturing a display device, comprising: Providing a pixel array substrate; Disposing a plurality of light-emitting elements on the pixel array substrate, wherein the light-emitting elements are electrically connected to the pixel array substrate; Forming a photoresist layer on an opposing substrate; Using a semi-transparent mask as a mask, patterning the photoresist layer to form a plurality of light-scattering structures; Forming a wavelength conversion array layer on the light-scattering structures, wherein the wavelength conversion array layer comprises a plurality of wavelength conversion materials and a plurality of light-transmitting materials separated from each other; and After forming the wavelength conversion array layer, disposing the opposing substrate on the light-emitting elements, so that the light-scattering structures and the wavelength conversion array layer are located between the opposing substrate and the light-emitting elements; The wavelength conversion materials overlap with some of the light-emitting elements, and the light-transmitting materials overlap with other light-emitting elements; The light-scattering structures overlap with the light-transmitting materials, but the light-scattering structures do not overlap with the wavelength conversion materials. 如請求項8所述之方法,其中該半透光光罩為半色調光罩。The method as described in claim 8, wherein the semi-transparent mask is a half-tone mask. 如請求項8所述之方法,還包含: 在形成該些光發散結構之後,在該對向基板上形成一透光層,其中該透光層覆蓋該光發散結構的一表面,且該透光層的折射率小於該光阻層的折射率。 The method as described in claim 8 further comprises: After forming the light scattering structures, forming a light-transmitting layer on the opposite substrate, wherein the light-transmitting layer covers a surface of the light scattering structure, and the refractive index of the light-transmitting layer is less than the refractive index of the photoresist layer. 如請求項8所述之方法,還包含: 在對向基板上形成一黑色矩陣層,且該黑色矩陣層覆蓋該些波長轉換材料以及該些透光材料之間的間隙。 The method as described in claim 8 further comprises: Forming a black matrix layer on the opposite substrate, and the black matrix layer covers the gaps between the wavelength conversion materials and the light-transmitting materials.
TW112132177A 2023-08-25 2023-08-25 Display device and method for manufacturing the same TWI845403B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112132177A TWI845403B (en) 2023-08-25 2023-08-25 Display device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112132177A TWI845403B (en) 2023-08-25 2023-08-25 Display device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TWI845403B true TWI845403B (en) 2024-06-11
TW202509598A TW202509598A (en) 2025-03-01

Family

ID=92541746

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112132177A TWI845403B (en) 2023-08-25 2023-08-25 Display device and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI845403B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI878193B (en) * 2024-09-25 2025-03-21 友達光電股份有限公司 Display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202243903A (en) * 2021-05-12 2022-11-16 日商大日本印刷股份有限公司 Barrier film for wavelength conversion sheet, wavelength conversion sheet, backlight, and liquid crystal display device using barrier film, and method for selecting barrier film for wavelength conversion sheet
TW202301710A (en) * 2021-04-30 2023-01-01 南韓商三星顯示器有限公司 Display device and method of manufacturing the same
TW202316680A (en) * 2021-09-27 2023-04-16 南韓商三星顯示器有限公司 Apparatus for fabricating display panel and fabricating method thereof
TW202318655A (en) * 2021-07-09 2023-05-01 南韓商三星顯示器有限公司 Pixel and display device including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202301710A (en) * 2021-04-30 2023-01-01 南韓商三星顯示器有限公司 Display device and method of manufacturing the same
TW202243903A (en) * 2021-05-12 2022-11-16 日商大日本印刷股份有限公司 Barrier film for wavelength conversion sheet, wavelength conversion sheet, backlight, and liquid crystal display device using barrier film, and method for selecting barrier film for wavelength conversion sheet
TW202318655A (en) * 2021-07-09 2023-05-01 南韓商三星顯示器有限公司 Pixel and display device including the same
TW202316680A (en) * 2021-09-27 2023-04-16 南韓商三星顯示器有限公司 Apparatus for fabricating display panel and fabricating method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI878193B (en) * 2024-09-25 2025-03-21 友達光電股份有限公司 Display device

Also Published As

Publication number Publication date
TW202509598A (en) 2025-03-01

Similar Documents

Publication Publication Date Title
US10347698B2 (en) Electrooptical device, manufacturing method of electrooptical device, and electronic equipment
JP7353834B2 (en) Display devices and display systems
CN111653683A (en) Display panels and display devices
US11244985B2 (en) Color film assembly, display substrate and method for fabricating same, and display apparatus
TWI696870B (en) Display device
JP6686497B2 (en) Electro-optical device and electronic equipment
US20230135035A1 (en) Color filters and display devices
TWI756995B (en) Display apparatus
US12114535B2 (en) Counter substrate, display panel, and display apparatus
JP2017147059A (en) Electro-optical device and electronic apparatus
TWI845403B (en) Display device and method for manufacturing the same
CN113936306B (en) Light shielding element substrate and display device
CN114284314B (en) Display panel, electronic device and manufacturing method of display panel
US20240040899A1 (en) Display panel
JP4729754B2 (en) Display device using a plurality of organic EL light emitting elements
US11764340B2 (en) Micro LED display device and manufacturing method thereof
JP7608740B2 (en) Color filter and display device
CN118368936A (en) Display device and method of manufacturing the same
CN113782695A (en) Display panel and display device
CN112635694A (en) OLED display panel
US20250105218A1 (en) Display light engine and augmented reality display
US20240268175A1 (en) Display Panel and Display Apparatus
TWI869704B (en) Display device and manufacturing method thereof
US20240413140A1 (en) Display apparatus and manufacturing method thereof
TW202339295A (en) Optical structure and electric device including the same