[go: up one dir, main page]

TWI845378B - Method for establishing operation model for solar tracking system based on demand response - Google Patents

Method for establishing operation model for solar tracking system based on demand response Download PDF

Info

Publication number
TWI845378B
TWI845378B TW112126531A TW112126531A TWI845378B TW I845378 B TWI845378 B TW I845378B TW 112126531 A TW112126531 A TW 112126531A TW 112126531 A TW112126531 A TW 112126531A TW I845378 B TWI845378 B TW I845378B
Authority
TW
Taiwan
Prior art keywords
solar panel
threshold value
battery module
time
power consumption
Prior art date
Application number
TW112126531A
Other languages
Chinese (zh)
Other versions
TW202505865A (en
Inventor
任才俊
吳紀彥
易佑玫
蘇宇祥
張慶寶
Original Assignee
崑山科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 崑山科技大學 filed Critical 崑山科技大學
Priority to TW112126531A priority Critical patent/TWI845378B/en
Application granted granted Critical
Publication of TWI845378B publication Critical patent/TWI845378B/en
Publication of TW202505865A publication Critical patent/TW202505865A/en

Links

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention is related to a method for establishing operation model for solar tracking system based on demand response. The method comprises: mounting a light-sensitive element and a power-consumption detecting module on a solar panel of a battery module so as to obtain an actual power generation and an actual power consumption of the battery module at each detection time; and determining within which zone between thresholds A-C a ratio of the actual power consumption relative to a load-specified value falls so as to optionally rotate the solar panel to an angle thereof related to the sun, prolong the detection time, or reduce a rotation range of the solar panel, so that the battery module can be operated safely and stably.

Description

基於需量反應之追日太陽能系統運作模型的建立方法Method for establishing an operation model of a sun-chasing solar energy system based on demand response

本發明有關一種太陽能系統運作模型的建立方法,尤指一種可於不同程度的需量反應條件下,調整太陽能板之運轉決策的模型的建立方法。 The present invention relates to a method for establishing a solar system operation model, and in particular to a method for establishing a model that can adjust the operation decision of solar panels under different levels of demand response conditions.

太陽能為現代主流的再生能源,由於其在生產電力的過程中不需消耗資源,且,不會產生環境汙染,因此其可確實地達成環保、永續、與減少碳排放之效果。其中,於現有的太陽能發電裝置、或系統中,主要的技術著重點是在於提升電力生產的效率,因此其技術之發展方向會集中在「追日」的即時性與準確性,然而,目前尚未有相關技術揭露對於太陽能追日系統與供電系統供電能力間之控管,其中可以理解地,若太陽能追日系統所在之電網內電能消耗與儲能供給或外部電網供給電量間失衡時,可能會導致電網或微電網安全機制開啟,而使太陽能電池斷電,並中斷電源之供給與輸出,此結果對於電力之供應端、或需求端而言皆會產生重大的損失。因此,有鑑於上述之問題,提供一種可同時考量電網內之電能供給量、與電網內的耗電量之間的比例關係,以調整同處電網內的太陽能系統之運轉策略的方法,實為時勢所需。 Solar energy is the mainstream renewable energy in modern times. Since it does not consume resources in the process of producing electricity and does not cause environmental pollution, it can truly achieve the effects of environmental protection, sustainability, and reducing carbon emissions. Among them, in the existing solar power generation devices or systems, the main technical emphasis is on improving the efficiency of power production, so the direction of its technical development will focus on the timeliness and accuracy of "sun tracking". However, there is no relevant technology to disclose the control between the solar tracking system and the power supply capacity of the power supply system. It can be understood that if there is an imbalance between the power consumption and energy storage supply or the external power supply in the power grid where the solar tracking system is located, it may cause the power grid or microgrid safety mechanism to be opened, causing the solar battery to be powered off and the power supply and output to be interrupted. This result will cause significant losses to the power supply or demand side. Therefore, in view of the above problems, it is necessary to provide a method that can simultaneously consider the proportional relationship between the power supply and power consumption in the power grid to adjust the operation strategy of the solar energy system in the same power grid.

本發明所欲解決的問題在於:提供一種可判斷太陽能板之電池模組於每一時間單位內的最大發電功率、以及最大耗電功率,以根據所處電網負載的總耗電量實際或預估值(定義為P)相對於電網內可供給能量額定值的比例調整太陽能板之運轉策略的太陽能系統運作模型的建立方法。 The problem that the present invention aims to solve is to provide a method for establishing a solar system operation model that can determine the maximum power generation and maximum power consumption of the battery module of the solar panel in each time unit, so as to adjust the operation strategy of the solar panel according to the ratio of the actual or estimated total power consumption of the grid load (defined as P) to the rated value of energy available in the grid.

為了達成上述之目的,本發明提供一種基於需量反應之追日太陽能系統運作模型的建立方法,包含以下步驟:(S1)於一電池模組之一太陽能板的至少4個位置分別設置一感光元件、以及於該電池模組上設置一耗電功率感測模組;(S2)利用一終端機蒐集該感光元件於一放置時間、以及一相關參數條件下的一感光元件照度資料,並儲存至一資料庫中;(S3)該終端機以一遞迴式模糊類神經網路為預測器,來針對該資料庫中之該感光元件照度資料進行一訓練預測數學模型的建立,並形成一最大發電功率預測模組;(S4)每過一測定時間,以該最大發電功率預測模組檢測該電池模組的一真實發電量、以及以該耗電功率感測模組檢測該電池模組的一真實耗電量,其中該測定時間滿足下列公式:T=T0+P(Q1+Q2),其中:T為該測定時間、T0為一基準時間、P為一延長時間、Q1為一門檻值B>該真實耗電量P

Figure 112126531-A0305-02-0003-13
一門檻值A時的次數、Q2為一門檻值C>該真實耗電量P
Figure 112126531-A0305-02-0003-12
該門檻值B時的次數;(S5)依照太陽移動軌跡判斷是否已日落、或已至設定結束追日之時間、或角度?如是,則使該太陽能板復位至一初始位置,如否,進入步驟(S6);(S6)判斷該真實耗電量P是否
Figure 112126531-A0305-02-0003-14
該門檻值A?如是,進入步驟(S7),如否,則該太陽能板跟隨太陽於該測定時間內之移動軌跡轉動一水平角、以及一俯仰角,並使Q1、與Q2之計數歸零後,進入步驟(S4);(S7)判斷該真實耗電量是否
Figure 112126531-A0305-02-0003-15
該門檻值B,其中該門檻值B>該門檻值A?如是,進入步驟(S8),如否,則該太陽能板跟隨太陽於該測定時間內之移動軌跡轉動該水平角、以及該俯仰角,並 等待該延長時間後進入步驟(S4);(S8)判斷該真實耗電量P是否
Figure 112126531-A0305-02-0004-16
該門檻值C,其中該門檻值C>該門檻值B?如是,進入步驟(S9),如否,則該太陽能板跟隨太陽於該測定時間內之移動軌跡轉動該水平角、或該俯仰角,並等待該延長時間後進入步驟(S4);以及(S9)使該太陽能板保持靜止狀態並持續一緩衝時間,再進入步驟(S4)。 In order to achieve the above-mentioned purpose, the present invention provides a method for establishing an operation model of a sun-tracking solar energy system based on demand response, comprising the following steps: (S1) respectively setting a photosensitive element at at least four positions of a solar panel of a battery module, and setting a power consumption sensing module on the battery module; (S2) using a terminal to collect a photosensitive element illumination data of the photosensitive element under a placement time and a related parameter condition, and storing it in a database ; (S3) The terminal uses a recursive fuzzy neural network as a predictor to establish a training prediction mathematical model for the illumination data of the photosensitive element in the database, and forms a maximum power generation prediction module; (S4) Every time a measurement time passes, the maximum power generation prediction module detects a real power generation of the battery module, and the power consumption sensing module detects a real power consumption of the battery module, wherein the measurement time satisfies the following formula: T=T 0 +P(Q 1 +Q 2 ), wherein: T is the measurement time, T 0 is a reference time, P is an extension time, Q 1 is a threshold value B> the real power consumption P
Figure 112126531-A0305-02-0003-13
The number of times when the threshold value A is reached, Q2 is the threshold value C> the actual power consumption P
Figure 112126531-A0305-02-0003-12
The number of times when the threshold value B is reached; (S5) according to the movement trajectory of the sun, determine whether the sun has set, or whether the time or angle for ending the sun tracking has been reached? If so, the solar panel is reset to an initial position; if not, proceed to step (S6); (S6) determine whether the actual power consumption P
Figure 112126531-A0305-02-0003-14
The threshold value A? If yes, proceed to step (S7). If no, the solar panel rotates a horizontal angle and a pitch angle to follow the movement trajectory of the sun during the measurement time, and after returning the counts of Q1 and Q2 to zero, proceed to step (S4); (S7) determine whether the actual power consumption is
Figure 112126531-A0305-02-0003-15
The threshold value B, wherein the threshold value B> the threshold value A? If so, proceed to step (S8); if not, the solar panel follows the movement trajectory of the sun within the measurement time to rotate the horizontal angle and the pitch angle, and waits for the extension time before proceeding to step (S4); (S8) Determine whether the actual power consumption P
Figure 112126531-A0305-02-0004-16
The threshold value C, wherein the threshold value C> the threshold value B? If so, proceed to step (S9); if not, the solar panel follows the movement trajectory of the sun within the measurement time to rotate the horizontal angle or the pitch angle, and waits for the extension time before proceeding to step (S4); and (S9) the solar panel is kept stationary for a buffer time, and then proceeds to step (S4).

更佳者,其中:該門檻值A為該電網內可供給能量額定值的60%至80%;該門檻值B為該電網內可供給能量額定值的70%至90%;以及該門檻值C為該電網內可供給能量額定值的80%至99%。 More preferably, wherein: the threshold value A is 60% to 80% of the rated energy available in the power grid; the threshold value B is 70% to 90% of the rated energy available in the power grid; and the threshold value C is 80% to 99% of the rated energy available in the power grid.

更佳者,其中:於步驟(S2)中,該相關參數條件包含:一系統相關參數,係選自以下所組成之參數群組,或其結合:該太陽能板之電壓、該太陽能板之電流、該太陽能板之溫度、該太陽能板之總幅照度、該電池模組之電壓、該電池模組之電流、該電池模組之溫度、該電池模組之總輻照度、該太陽能板相對於該初始位置之一水平角角度、以及該太陽能板相對於該初始位置之一俯仰角角度。 More preferably, in step (S2), the relevant parameter condition includes: a system-related parameter selected from the following parameter group, or a combination thereof: the voltage of the solar panel, the current of the solar panel, the temperature of the solar panel, the total irradiance of the solar panel, the voltage of the battery module, the current of the battery module, the temperature of the battery module, the total irradiance of the battery module, a horizontal angle of the solar panel relative to the initial position, and a pitch angle of the solar panel relative to the initial position.

更佳者,其中:於步驟(S2)中,該相關參數條件包含:一環境相關參數,係選自以下所組成之參數群組,或其結合:該太陽能板周遭環境之溫度、該太陽能板周遭環境之相對濕度、該太陽能板設置場址之全天日射量、該太陽能板設置場址之日照強度、該太陽能板設置場址之風速、該太陽能板設置場址之風力強度、該太陽能板設置場址之空氣質量指數、以及該太陽能板設置場址之雲層的偵測高度。 More preferably, in step (S2), the relevant parameter condition includes: an environment-related parameter selected from the following parameter group, or a combination thereof: the temperature of the environment surrounding the solar panel, the relative humidity of the environment surrounding the solar panel, the total daytime solar radiation at the solar panel installation site, the sunshine intensity at the solar panel installation site, the wind speed at the solar panel installation site, the wind strength at the solar panel installation site, the air quality index at the solar panel installation site, and the detected cloud height at the solar panel installation site.

更佳者,其中該遞迴式模糊類神經網路之數學方程式為:

Figure 112126531-A0305-02-0005-5
,其中,m ij 、 σ ij,n
Figure 112126531-A0305-02-0005-1
Figure 112126531-A0305-02-0005-2
為可調整之控制參數,σ ij,L 為中心點在m ij 之歸屬函數左側寬度參 數,σ ij,R 為中心點在m ij 之歸屬函數右側寬度參數。 More preferably, the mathematical equation of the recursive fuzzy neural network is:
Figure 112126531-A0305-02-0005-5
, where m ij , σ ij,n ,
Figure 112126531-A0305-02-0005-1
,
Figure 112126531-A0305-02-0005-2
is an adjustable control parameter, σ ij,L is the width parameter on the left side of the attribution function with the center point at mij , and σ ij,R is the width parameter on the right side of the attribution function with the center point at mij .

本發明另提供一種基於需量反應之追日太陽能系統運作模型的建立方法,包含以下步驟:(P1)於一電池模組之一太陽能板的至少4個位置分別設置一感光元件、以及於該電池模組上設置一耗電功率感測模組;(P2)利用一終端機蒐集該感光元件於一放置時間、以及一相關參數條件下,於未被遮蔽、部分被遮蔽、或完全被遮蔽時的一感光元件照度資料,並儲存至一資料庫中;(P3)該終端機以一遞迴式模糊類神經網路為預測器,來針對該資料庫中之該感光元件照度資料進行一訓練預測數學模型的建立,並形成一最大發電功率預測模組;(P4)每過一測定時間,以該最大發電功率預測模組檢測該電池模組的一真實發電量、以及以該耗電功率感測模組檢測該電池模組的一真實耗電量,其中該測定時間滿足下列公式:T=T0+P(Q1+Q2),其中:T為該測定時間、T0為一基準時間、P為一延長時間、Q1為一門檻值B>該真實耗電量

Figure 112126531-A0305-02-0005-17
一門檻值A時的次數、Q2為一門檻值C>該真實耗電量
Figure 112126531-A0305-02-0005-18
該門檻值B時的次數;(P5)依照太陽移動軌跡判斷是否已日落、或已至設定結束追日之時間、或角度?如是,則使該太陽能板復位至一初始位置,如否,進入步驟(P6);(P6)判斷該真實發電量是否>一最低運轉所需電量?如是,進入步驟(P7),如否,則該太陽能板不轉動,並進入步驟(P4);(P7)判斷該太陽能板進行轉動時,是否可減少其表面上的遮陰面積?如是,進入步驟(P8),如否,則該太陽能板不轉動,並進入步驟(P4);(P8)判斷該真實耗電量是否
Figure 112126531-A0305-02-0005-19
該門檻值A?如是,進入步驟(P9),如否,判斷該太陽能板於單軸轉動、或雙軸轉動時,以何種方式進行轉動能移除更多的遮陰面積,並依照可獲得最高發電功率之方式,使該太陽能板沿著太陽於該測定時間內之移動軌跡轉動至該太陽能 板之受光面積最大的位置,並使Q1、與Q2之計數歸零後進入步驟(P4);(P9)判斷該真實耗電量是否
Figure 112126531-A0305-02-0006-20
該門檻值B,其中該門檻值B>該門檻值A?如是,進入步驟(P10),如否,判斷該太陽能板於單軸轉動、或雙軸轉動時,以何種方式進行轉動能移除更多的遮陰面積,並依照可獲得最高發電功率之方式,使該太陽能板沿著太陽於該測定時間內之移動軌跡轉動至該太陽能板之受光面積最大的位置,並等待該延長時間後進入步驟(P4);(P10)判斷該真實耗電量是否
Figure 112126531-A0305-02-0006-21
該門檻值C,其中該門檻值C>該門檻值B?如是,進入步驟(P11),如否,判斷該太陽能板於單軸轉動、或雙軸轉動時,以何種方式進行轉動能移除更多的遮陰面積,其中:若為單軸轉動,則該太陽能板不轉動,並回到步驟(P4);以及若為雙軸轉動,則判斷該太陽能板於轉動水平角、或轉動俯仰角時,以何種方式進行轉動能移除更多的遮陰面積,並依照可獲得最高發電功率之方式,使該太陽能板沿著太陽於該測定時間內之移動軌跡轉動至該太陽能板之受光面積最大的位置,並等待該延長時間後進入步驟(P4);以及(P11)使該太陽能板保持靜止狀態持續一緩衝時間,並進入步驟(P4)。 The present invention also provides a method for establishing an operation model of a sun-tracking solar energy system based on demand response, comprising the following steps: (P1) respectively setting a photosensitive element at at least four positions of a solar panel of a battery module, and setting a power consumption sensing module on the battery module; (P2) using a terminal to collect illumination data of the photosensitive element when the photosensitive element is not shaded, partially shaded, or completely shaded under a placement time and a related parameter condition, and storing the data in a a database; (P3) the terminal uses a recursive fuzzy neural network as a predictor to establish a training prediction mathematical model for the illumination data of the photosensitive element in the database, and forms a maximum power generation prediction module; (P4) every time a measurement time passes, the maximum power generation prediction module detects a real power generation of the battery module, and the power consumption sensing module detects a real power consumption of the battery module, wherein the measurement time satisfies the following formula: T=T 0 +P(Q 1 +Q 2 ), wherein: T is the measurement time, T 0 is a reference time, P is an extension time, and Q 1 is a threshold value B>the real power consumption
Figure 112126531-A0305-02-0005-17
The number of times when the threshold value A is reached, Q2 is the threshold value C> the actual power consumption
Figure 112126531-A0305-02-0005-18
The number of times when the threshold value B is reached; (P5) According to the trajectory of the sun's movement, is it determined whether the sun has set, or whether the time or angle for ending the sun tracking has been reached? If so, the solar panel is reset to an initial position; if not, the process proceeds to step (P6); (P6) Is the actual power generation greater than the minimum power required for operation? If so, the process proceeds to step (P7); if not, the solar panel does not rotate, and the process proceeds to step (P4); (P7) Is it possible to reduce the shaded area on the surface of the solar panel when it rotates? If so, the process proceeds to step (P8); if not, the solar panel does not rotate, and the process proceeds to step (P4); (P8) Is the actual power consumption greater than the minimum power required for operation?
Figure 112126531-A0305-02-0005-19
Is the threshold value A? If yes, proceed to step (P9); if no, determine which way the solar panel can be rotated to remove more shaded area when rotating on a single axis or a double axis, and according to the way to obtain the highest power generation, rotate the solar panel along the moving trajectory of the sun within the measurement time to the position where the solar panel has the largest light receiving area, and return the counts of Q1 and Q2 to zero before proceeding to step (P4); (P9) determine whether the actual power consumption is
Figure 112126531-A0305-02-0006-20
The threshold value B, wherein the threshold value B> the threshold value A? If so, proceed to step (P10); if not, determine which way the solar panel is rotated in a single-axis or dual-axis manner to remove more shaded area, and according to the method that can obtain the highest power generation, make the solar panel rotate along the movement trajectory of the sun within the measurement time to the position where the solar panel has the largest light receiving area, and wait for the extension time before proceeding to step (P4); (P10) determine whether the actual power consumption is
Figure 112126531-A0305-02-0006-21
The threshold value C, wherein the threshold value C> the threshold value B? If so, proceed to step (P11); if not, determine in which way the solar panel is rotated to remove more shaded area when rotating on a single axis or a double axis, wherein: if it is a single axis rotation, the solar panel does not rotate, and returns to step (P4); and if it is a double axis rotation, determine in which way the solar panel is rotated when rotating the horizontal angle or the pitch angle. The rotation can remove more shaded area, and in a manner that can obtain the highest power generation, the solar panel is rotated along the movement trajectory of the sun within the measured time to a position where the solar panel's light-receiving area is the largest, and after waiting for the extended time, the step (P4) is entered; and (P11) the solar panel is kept stationary for a buffer time, and the step (P4) is entered.

更佳者,其中:該最低運轉所需電量為該感光元件於無受到遮蔽之狀態時,該太陽能板所能產生之最大發電功率的30至80%;該門檻值A為該電池模組的負載額定值的60%至80%;該門檻值B為該電池模組的負載額定值的70%至90%;以及該門檻值C為該電池模組的負載額定值的80%至99%。 More preferably, the minimum power required for operation is 30% to 80% of the maximum power generated by the solar panel when the photosensitive element is not shielded; the threshold value A is 60% to 80% of the load rating of the battery module; the threshold value B is 70% to 90% of the load rating of the battery module; and the threshold value C is 80% to 99% of the load rating of the battery module.

更佳者,本發明又提供一種基於需量反應之追日太陽能系統運作模型的建立方法,包含以下步驟:(L1)於一電網中設置至少一太陽能追日系統,其中:該電網包含一電能管理系統;以及該太陽能追日系統包含一控制單元以及一太陽能板,係與該控制單元電連接;(L2)該電能管理系統於每一時間間隔將該電網的一負載額定值以及一真實耗電量以信號傳送至該控制單元中,其中該時間間隔滿足下列公式:T=T0+P(Q1+Q2),其中:T為該時間間隔、T0為一基準 時間、P為一延長時間、Q1為一門檻值B>該真實耗電量

Figure 112126531-A0305-02-0007-22
一門檻值A時的次數、Q2為一門檻值C>該真實耗電量
Figure 112126531-A0305-02-0007-23
該門檻值B時的次數;(L3)以該控制單元判斷該真實耗電量是否
Figure 112126531-A0305-02-0007-24
一門檻值A,如是,進入步驟(L4),如否,則該控制單元控制該太陽能板跟隨太陽於該時間間隔內之移動軌跡轉動一水平角、以及一俯仰角,並將Q1與Q2的數值歸零後回到步驟(L2);(L4)以該控制單元判斷該真實耗電量是否
Figure 112126531-A0305-02-0007-25
一門檻值B,其中該門檻值B>該門檻值A?如是,進入步驟(L5),如否,則該控制單元控制該太陽能板跟隨太陽於該時間間隔內之移動軌跡轉動該水平角、以及該俯仰角,並等待該延長時間後進入步驟(L2);(L5)以該控制單元判斷該真實耗電量是否
Figure 112126531-A0305-02-0007-26
一門檻值C,其中該門檻值C>該門檻值B?如是,進入步驟(L6),如否,則該控制單元控制該太陽能板跟隨太陽於該時間間隔內之移動軌跡轉動該水平角、或該俯仰角,並等待該延長時間後進入步驟(L2);以及(L6)使該太陽能板保持靜止狀態並持續一緩衝時間,再進入步驟(L2)。 More preferably, the present invention provides a method for establishing an operation model of a solar tracking system based on demand response, comprising the following steps: (L1) at least one solar tracking system is installed in a power grid, wherein: the power grid includes an electric energy management system; and the solar tracking system includes a control unit and a solar panel, which is electrically connected to the control unit; (L2) the electric energy management system transmits a load rating of the power grid and an actual power consumption to the control unit in the form of a signal at each time interval, wherein the time interval satisfies the following formula: T=T0+P(Q1+Q2), wherein: T is the time interval, T0 is a reference time, P is an extended time, Q1 is a threshold value B>the actual power consumption
Figure 112126531-A0305-02-0007-22
The number of times when the threshold value A is reached, Q2 is the threshold value C> the actual power consumption
Figure 112126531-A0305-02-0007-23
The number of times when the threshold value B is reached; (L3) the control unit determines whether the actual power consumption
Figure 112126531-A0305-02-0007-24
If the value is a threshold value A, the process proceeds to step (L4). If not, the control unit controls the solar panel to follow the movement trajectory of the sun within the time interval and rotates a horizontal angle and a pitch angle, and returns the values of Q1 and Q2 to zero and then returns to step (L2); (L4) the control unit determines whether the actual power consumption is
Figure 112126531-A0305-02-0007-25
a threshold value B, wherein the threshold value B> the threshold value A? If so, proceed to step (L5); if not, the control unit controls the solar panel to follow the movement trajectory of the sun within the time interval to rotate the horizontal angle and the pitch angle, and waits for the extension time before proceeding to step (L2); (L5) the control unit determines whether the actual power consumption
Figure 112126531-A0305-02-0007-26
a threshold value C, wherein the threshold value C>the threshold value B? If so, proceed to step (L6); if not, the control unit controls the solar panel to follow the moving trajectory of the sun in the time interval to rotate the horizontal angle or the pitch angle, and waits for the extension time before proceeding to step (L2); and (L6) keeps the solar panel stationary for a buffer time, and then proceeds to step (L2).

本發明再提供一種基於需量反應之追日太陽能系統運作模型的建立方法,包含以下步驟:(K1)於一電網中設置至少一太陽能追日系統,其中:該電網包含一電能管理系統;以及該太陽能追日系統包含一控制單元以及一太陽能板,係與該控制單元電連接;(K2)該電能管理系統於每一時間間隔將該電網的真實耗電量相對於其負載額定值的百分比儲存成一輸出結果,並傳送至該控制單元中,其中:該輸出結果包含:N、A、B、與C,且C>B>A>N;以及該時間間隔滿足下列公式:T=T0+P(Q1+Q2),其中:T為該時間間隔、T0為一基準時間、P為一延長時間、Q1為該輸出結果為A的次數、Q2為該輸出結果為B的次數,其中:當該控制單元接收之該輸出結果為N時,該控制單元控制該太陽能板跟隨太陽於該時間間隔內之移動軌跡轉動一水平角、以及一俯仰角,並將Q1與Q2的數值歸零後重新執行步驟(K2);當該控制單元接收之該輸出結果為A時,該控制單元控制該太陽能板跟隨太陽於該時間間隔內之移動軌跡轉動一 水平角、以及一俯仰角,並等待該延長時間後重新執行步驟(K2);當該控制單元接收之該輸出結果為B時,該控制單元控制該太陽能板跟隨太陽於該時間間隔內之移動軌跡轉動一水平角、或一俯仰角,並等待該延長時間後重新執行步驟(K2);以及當該控制單元接收之該輸出結果為C時,使該太陽能板保持靜止狀態並持續一緩衝時間後重新執行步驟(K2)。 The present invention further provides a method for establishing an operation model of a solar tracking system based on demand response, comprising the following steps: (K1) at least one solar tracking system is installed in a power grid, wherein: the power grid includes an electric energy management system; and the solar tracking system includes a control unit and a solar panel, which is electrically connected to the control unit; (K2) the electric energy management system compares the actual power consumption of the power grid with its negative power consumption at each time interval. The percentage of the load rating is stored as an output result and transmitted to the control unit, wherein: the output result includes: N, A, B, and C, and C>B>A>N; and the time interval satisfies the following formula: T=T0+P(Q1+Q2), wherein: T is the time interval, T0 is a reference time, P is an extended time, Q1 is the number of times the output result is A, Q2 is the number of times the output result is B, wherein: when the control When the output result received by the control unit is N, the control unit controls the solar panel to follow the moving track of the sun in the time interval and rotate a horizontal angle and a pitch angle, and resets the values of Q1 and Q2 to zero and then re-executes step (K2); when the output result received by the control unit is A, the control unit controls the solar panel to follow the moving track of the sun in the time interval and rotate a horizontal angle and a pitch angle, and waits for the delay time to be reached. After a long time, step (K2) is re-executed; when the output result received by the control unit is B, the control unit controls the solar panel to follow the movement trajectory of the sun within the time interval and rotate a horizontal angle or a pitch angle, and waits for the extended time before re-executing step (K2); and when the output result received by the control unit is C, the solar panel is kept stationary and continues for a buffer time before re-executing step (K2).

由於該相關參數條件、以及該遞迴式模糊類神經網路之數學方程式已於上述進行說明,因此於此不多做贅述。 Since the relevant parameter conditions and the mathematical equations of the recursive fuzzy neural network have been explained above, no further details will be given here.

本發明相對於先前技術之功效在於:於現有的太陽能系統運作模型中,僅考量到如何保持太陽能板的受光面積、以及太陽能板接受光線的角度,以提升電池模組的發電功率,因此可以理解地,於先前技術中的著重點是在於提升太陽能系統的「儲能」效率。然而,當電池模組於儲能的同時進行電力消耗時,若電池模組的用電負荷大於負載額定功率,則可能導致其內部的保護機制開啟,並強行將電源切斷,此結果將造成電池模組的儲能、以及電力供給之過程中斷,並使基於太陽能運轉的機械或裝置停止運作,而影響工業的產能或良率。綜上所述,為了確保太陽能系統的儲能、與耗能皆能穩定運行,需於電池模組的用電負荷超過一定門檻值時,降低太陽能系統本身運作所需消耗的功率,以減輕電池模組的負擔,而本發明所提供之方法則可藉由多層的判斷機制,使電池模組的用電負荷達不同程度的負載額定值時,可以進行相對應地運轉策略,以防止因電池模組電量的供需不平衡而導致斷電之情形發生,且,可提升電池模組的使用壽命以及安全性能。 The effectiveness of the present invention over the prior art is that in the existing solar system operation model, only the light-receiving area of the solar panel and the angle at which the solar panel receives light are considered to increase the power generation of the battery module. Therefore, it is understandable that the focus of the prior art is on improving the "energy storage" efficiency of the solar system. However, when the battery module consumes electricity while storing energy, if the power load of the battery module is greater than the rated power of the load, it may cause its internal protection mechanism to open and forcibly cut off the power supply. This will result in the interruption of the battery module's energy storage and power supply process, and cause the machinery or equipment based on solar energy to stop operating, affecting the industry's production capacity or yield. In summary, in order to ensure that the energy storage and energy consumption of the solar energy system can operate stably, it is necessary to reduce the power consumed by the solar energy system itself when the power load of the battery module exceeds a certain threshold value to reduce the burden on the battery module. The method provided by the present invention can use a multi-layer judgment mechanism to make the corresponding operation strategy when the power load of the battery module reaches different load ratings to prevent power outages caused by imbalanced supply and demand of the battery module, and can also improve the service life and safety performance of the battery module.

S1~S9:步驟編號 S1~S9: Step number

P1~P11:步驟編號 P1~P11: Step number

L1~L6:步驟編號 L1~L6: Step number

K1~K2:步驟編號 K1~K2: Step number

1:太陽能板 1: Solar panels

2:感光元件 2: Photosensitive element

3:遮陰區域 3: Shaded area

圖1A至1B為一系列的流程圖,用以說明本發明的系統運作模型的建立方法的第一實施態樣;圖2A至2B為一系列的流程圖,用以說明本發明的系統運作模型的建立方法的第二實施態樣;圖3A至3B為一系列的立體圖,用以說明太陽能板根據遮陰區域而進行水平轉動之實施態樣;圖4A至4B為一系列的立體圖,用以說明太陽能板根據遮陰區域而進行垂直轉動之實施態樣;圖5A至5B為一系列的立體圖,用以說明太陽能板根據遮陰區域而同時進行水平轉動、以及垂直轉動之實施態樣;圖6為一立體圖,用以說明太陽能板根據遮陰區域而選擇不進行轉動之實施態樣;圖7為一流程圖,用以說明本發明的系統運作模型的建立方法的第三實施態樣;圖8為一流程圖,用以說明本發明的系統運作模型的建立方法的第四實施態樣。 FIG. 1A to FIG. 1B are a series of flow charts for illustrating a first embodiment of a method for establishing a system operation model of the present invention; FIG. 2A to FIG. 2B are a series of flow charts for illustrating a second embodiment of a method for establishing a system operation model of the present invention; FIG. 3A to FIG. 3B are a series of three-dimensional diagrams for illustrating an embodiment in which a solar panel is horizontally rotated according to a shaded area; and FIG. 4A to FIG. 4B are a series of three-dimensional diagrams for illustrating an embodiment in which a solar panel is vertically rotated according to a shaded area. Implementation; Figures 5A to 5B are a series of three-dimensional diagrams for illustrating the implementation of the solar panel rotating horizontally and vertically at the same time according to the shaded area; Figure 6 is a three-dimensional diagram for illustrating the implementation of the solar panel choosing not to rotate according to the shaded area; Figure 7 is a flow chart for illustrating the third implementation of the method for establishing the system operation model of the present invention; Figure 8 is a flow chart for illustrating the fourth implementation of the method for establishing the system operation model of the present invention.

為讓本發明上述及/或其他目的、功效、特徵更明顯易懂,下文特舉較佳實施方式,作詳細說明於下:本發明的一目的在於提供一種基於需量反應之追日太陽能系統運作模型的建立方法,其中如圖1A至圖1B所示,包含以下步驟:(S1)於一電池模組之一太陽能板(1)的至少4個位置分別設置一感光元件(2)、以及於該電池模組上設置一耗電功率感測模組;(S2)利用一終端機蒐集該感光元件(2)於一放置時 間、以及一相關參數條件下的一感光元件照度資料,並儲存至一資料庫中;(S3)該終端機以一遞迴式模糊類神經網路為預測器,來針對該資料庫中之該感光元件照度資料進行一訓練預測數學模型的建立,並形成一最大發電功率預測模組;(S4)每過一測定時間,以該最大發電功率預測模組檢測該電池模組的一真實發電量、以及以該耗電功率感測模組檢測該電池模組的一真實耗電量,其中該測定時間滿足下列公式:T=T0+P(Q1+Q2),其中:T為該測定時間、T0為一基準時間、P為一延長時間、Q1為一門檻值B>該真實耗電量

Figure 112126531-A0305-02-0010-27
一門檻值A時的次數、Q2為一門檻值C>該真實耗電量
Figure 112126531-A0305-02-0010-28
該門檻值B時的次數;(S5)依照太陽移動軌跡判斷是否已日落、或已至設定結束追日之時間、或角度?如是,則使該太陽能板(1)復位至一初始位置,如否,進入步驟(S6);(S6)判斷該真實耗電量是否
Figure 112126531-A0305-02-0010-30
該門檻值A?如是,進入步驟(S7),如否,則該太陽能板(1)跟隨太陽於該測定時間內之移動軌跡轉動一水平角、以及一俯仰角,並使Q1、與Q2之計數歸零後,進入步驟(S4);(S7)判斷該真實耗電量是否
Figure 112126531-A0305-02-0010-32
該門檻值B,其中該門檻值B>該門檻值A?如是,進入步驟(S8),如否,則該太陽能板(1)跟隨太陽於該測定時間內之移動軌跡轉動該水平角、以及該俯仰角,並等待該延長時間後進入步驟(S4);(S8)判斷該真實耗電量是否
Figure 112126531-A0305-02-0010-33
該門檻值C,其中該門檻值C>該門檻值B?如是,進入步驟(S9),如否,則該太陽能板(1)跟隨太陽於該測定時間內之移動軌跡轉動該水平角、或該俯仰角,並等待該延長時間後進入步驟(S4);以及(S9)使該太陽能板(1)保持靜止狀態並持續一緩衝時間,再進入步驟(S4)。具體而言,該基準時間為每次進行步驟(S4)時,測定該真實發電量、以及該真實耗電量的最短時間、該延長時間為每一次進行加時的時間長度。 In order to make the above and/or other purposes, effects, and features of the present invention more clearly understood, the following is a detailed description of a preferred embodiment: One purpose of the present invention is to provide a method for establishing an operation model of a solar tracking system based on demand response, which includes the following steps as shown in FIG. 1A to FIG. 1B: (S1) a photosensitive element (2) is respectively arranged at at least four positions of a solar panel (1) of a battery module, and a power consumption sensing module is arranged on the battery module; (S2) a terminal is used to collect the data of the photosensitive element (2) during a placement time; , and a photosensitive element illumination data under a related parameter condition, and store it in a database; (S3) the terminal uses a recursive fuzzy neural network as a predictor to establish a training prediction mathematical model for the photosensitive element illumination data in the database, and forms a maximum power generation prediction module; (S4) every time a measurement time passes, the maximum power generation prediction module detects a real power generation of the battery module, and the power consumption sensing module detects a real power consumption of the battery module, wherein the measurement time satisfies the following formula: T=T 0 +P(Q 1 +Q 2 ), wherein: T is the measurement time, T 0 is a reference time, P is an extension time, Q 1 is a threshold value B> the real power consumption
Figure 112126531-A0305-02-0010-27
The number of times when the threshold value A is reached, Q2 is the threshold value C> the actual power consumption
Figure 112126531-A0305-02-0010-28
The number of times when the threshold value B is reached; (S5) judging whether the sun has set or the set end-of-sun tracking time or angle has been reached according to the sun's moving trajectory? If so, the solar panel (1) is reset to an initial position; if not, proceeding to step (S6); (S6) judging whether the actual power consumption is
Figure 112126531-A0305-02-0010-30
The threshold value A? If yes, proceed to step (S7); if no, the solar panel (1) follows the movement trajectory of the sun within the measurement time and rotates a horizontal angle and a pitch angle, and after returning the counts of Q1 and Q2 to zero, proceed to step (S4); (S7) determine whether the actual power consumption is
Figure 112126531-A0305-02-0010-32
The threshold value B, wherein the threshold value B> the threshold value A? If so, proceed to step (S8); if not, the solar panel (1) follows the movement trajectory of the sun within the measurement time to rotate the horizontal angle and the pitch angle, and waits for the extension time before proceeding to step (S4); (S8) determines whether the actual power consumption is
Figure 112126531-A0305-02-0010-33
The threshold value C, wherein the threshold value C> the threshold value B? If so, proceed to step (S9), if not, the solar panel (1) follows the movement trajectory of the sun within the measurement time to rotate the horizontal angle or the pitch angle, and waits for the extension time before proceeding to step (S4); and (S9) the solar panel (1) is kept stationary for a buffer time, and then proceeds to step (S4). Specifically, the reference time is the shortest time for measuring the actual power generation and the actual power consumption each time step (S4) is performed, and the extension time is the length of time for each overtime.

更佳者,為了根據電池模組的電力損耗占其負載額定值的比例,以進行相對應程度的節能策略,以避免該真實耗電量大於或等於該電池模組的負載額定值,而導致電池模組的充放電系統斷電、或故障,其中:該門檻值A為 該電池模組的負載額定值的60%至80%,較佳為65%至75%,更佳為70%;該門檻值B為該電池模組的負載額定值的70%至90%,較佳為75%至85%,更佳為80%;以及該門檻值C為該電池模組的負載額定值的80%至99%,較佳為85%至95%,更佳為90%,但不以此為限。具體而言,所述「負載額定值」係指:電網、或微電網之管理系統當下、或下一時間間隔所能提供之電能的最大值;或儲能系統之消耗量。舉例而言,當真實耗電量達電池模組之負載額定值的90%時,表示:於單位時間內,太陽能板(1)產生並儲存至電池模組中的發電功率有90%被用於消耗,僅剩餘10%係儲存至電池模組中。 Preferably, in order to implement a corresponding energy-saving strategy according to the ratio of the power loss of the battery module to its load rating, so as to avoid the actual power consumption being greater than or equal to the load rating of the battery module, thereby causing the charging and discharging system of the battery module to be disconnected or malfunction, wherein: the threshold value A is 60% to 80% of the load rating of the battery module %, preferably 65% to 75%, more preferably 70%; the threshold value B is 70% to 90% of the load rating of the battery module, preferably 75% to 85%, more preferably 80%; and the threshold value C is 80% to 99% of the load rating of the battery module, preferably 85% to 95%, more preferably 90%, but not limited thereto. Specifically, the "load rating" refers to: the maximum value of the electric energy that the management system of the power grid or microgrid can provide at the moment or in the next time interval; or the consumption of the energy storage system. For example, when the actual power consumption reaches 90% of the load rating of the battery module, it means that within a unit of time, 90% of the power generated by the solar panel (1) and stored in the battery module is consumed, and only the remaining 10% is stored in the battery module.

更佳者,於上述步驟(S7)、或步驟(S8)中,使太陽能板(1)等待延長時間的目的為:降低最大發電功率預測模組、以及耗電功率感測模組運行的頻率,具體而言,每次對電池模組進行真實發電量、或真實耗電量的檢測時,最大發電功率預測模組、或耗電功率感測模組皆會消耗電池模組中固定額度的電量,因此可以理解地,每當最大發電功率預測模組、或耗電功率感測模組運行時,會導致電池模組之真實耗電量相對於其負載額定值的比例升高,若此時與該電池模組連接之裝置的耗能突然增加,則很有可能導致該電池模組瞬間的真實耗電量突然超過其負載額定值,而導致電池模組內部的保護機制開啟,並切斷儲能、與耗能的通道,此結果不僅使電能的供應者需要消耗人力與物力進行太陽儲能裝置之調整、與重啟,亦會影響電能的使用者的生產時程、或品質管控,而大大地影響產能。而本發明則是藉由設定3層把關程序,假定真實耗電量為W,當門檻值B>W

Figure 112126531-A0305-02-0011-34
門檻值A時,此時適當地延長測定時間,以減緩電池模組耗電量的負載壓力;當門檻值C>W
Figure 112126531-A0305-02-0011-35
門檻值B時,此時同時延長測定時間,並使太陽能板(1)的運轉策略進行「降級」,使雙軸運轉更改為單軸運轉、 或使單軸運轉更改為不運轉,以更進一步地減緩電池模組耗電量的負載壓力;以及當W
Figure 112126531-A0305-02-0012-36
門檻值C時,此時表示電池模組的真實耗電量已經非常接近,且隨時有可能超過負載額定值,因此,此時不可讓太陽能板(1)進行運轉、或重新進行真實發電量、或真實耗電量的測定,而是使太陽能板(1)維持靜止,並等待電池模組的真實耗電量相對於負載額定值之比例下降至一安全區間後,再重新回到步驟(S4),並重新進行判定流程。 Preferably, in the above step (S7) or step (S8), the purpose of making the solar panel (1) wait for a longer time is to reduce the frequency of operation of the maximum power generation prediction module and the power consumption sensing module. Specifically, each time the real power generation or real power consumption of the battery module is detected, the maximum power generation prediction module or the power consumption sensing module will consume a fixed amount of power in the battery module. Therefore, it can be understood that each time the maximum power generation prediction module or the power consumption sensing module is running, it will cause The ratio of the actual power consumption of the battery module to its load rating increases. If the energy consumption of the device connected to the battery module suddenly increases, it is very likely that the instantaneous actual power consumption of the battery module will suddenly exceed its load rating, causing the internal protection mechanism of the battery module to open and cut off the energy storage and energy consumption channels. This result not only requires the power supplier to consume manpower and material resources to adjust and restart the solar energy storage device, but also affects the production schedule or quality control of the power user, greatly affecting the production capacity. The present invention sets a three-level control procedure. Assuming that the actual power consumption is W, when the threshold value B>W
Figure 112126531-A0305-02-0011-34
When the threshold value is A, the measurement time is appropriately extended to reduce the load pressure of the battery module power consumption; when the threshold value is C>W
Figure 112126531-A0305-02-0011-35
When the threshold value is B, the measurement time is extended at the same time, and the operation strategy of the solar panel (1) is "downgraded" to change the dual-axis operation to single-axis operation, or change the single-axis operation to non-operation, so as to further reduce the load pressure of the battery module power consumption; and when W
Figure 112126531-A0305-02-0012-36
When the threshold value C is reached, it means that the actual power consumption of the battery module is very close to and may exceed the load rating at any time. Therefore, the solar panel (1) cannot be operated or the actual power generation or actual power consumption cannot be re-measured. Instead, the solar panel (1) is kept stationary and the ratio of the actual power consumption of the battery module to the load rating is waited to drop to a safe range before returning to step (S4) and re-performing the determination process.

更佳者,為了取得充足之感光元件照度資料,以優化該最大發電功率預測模組,使其可更精準地測量該太陽能板(1)之發電功率、或為了使該最大發電功率預測模組可以測得「實際」太陽能板(1)所能產生的最大功率,而不會使測得的數值過於理想化,而與實際數值產生較大地偏差,其中:於步驟(S2)中,該相關參數條件包含:一系統相關參數,係選自以下所組成之參數群組,或其結合:該太陽能板(1)之電壓、該太陽能板(1)之電流、該太陽能板(1)之溫度、該太陽能板(1)之總幅照度、該電池模組之電壓、該電池模組之電流、該電池模組之溫度、該電池模組之總幅照度、該太陽能板(1)相對於該初始位置之一水平角角度、以及該太陽能板(1)相對於該初始位置之一俯仰角角度。於一較佳實施例中:於步驟(S2)中,該相關參數條件包含:一環境相關參數,係選自以下所組成之參數群組,或其結合:該太陽能板(1)周遭環境之溫度、該太陽能板(1)周遭環境之相對濕度、該太陽能板(1)設置場址之全天日射量、該太陽能板(1)設置場址之日照強度、該太陽能板(1)設置場址之風速、該太陽能板(1)設置場址之風力強度、該太陽能板(1)設置場址之空氣質量指數、以及該太陽能板(1)設置場址之雲層的偵測高度等。具體而言,可以同時以該終端機收集多組感光元件照度資料,並儲存至資料庫中,以優化該最大發電功率預測模組,並提升測量該太陽能板(1)之發 電功率的準確性。於一較佳實施例中,該放置時間可為1天至1年,但不以此為限,其中:當僅以1組感光元件照度資料來取得最大發電功率預測模組時,需進行較長的放置時間,才能維持最大發電功率預測模組測量太陽能板(1)發電功率的準確性;然而,當同時以多組感光元件照度資料來形成最大發電功率預測模組時,可以大量地縮短放置時間,並使最大發電功率預測模組可準確地測量太陽能板(1)的發電功率。於另一較佳實施例中,該放置時間為一天、一周、一月、一季、半年、上述時間單位之倍數、或上述時間單位之組合,但不以此為限。 Preferably, in order to obtain sufficient illumination data of the photosensitive element to optimize the maximum power generation prediction module so that it can more accurately measure the power generation of the solar panel (1), or in order to enable the maximum power generation prediction module to measure the maximum power that the "actual" solar panel (1) can generate without making the measured value too idealized and causing a large deviation from the actual value, wherein: in step (S2), the relevant parameter conditions include: a system of relevant parameters, It is selected from the following parameter group, or a combination thereof: the voltage of the solar panel (1), the current of the solar panel (1), the temperature of the solar panel (1), the total irradiance of the solar panel (1), the voltage of the battery module, the current of the battery module, the temperature of the battery module, the total irradiance of the battery module, a horizontal angle of the solar panel (1) relative to the initial position, and a pitch angle of the solar panel (1) relative to the initial position. In a preferred embodiment: in step (S2), the relevant parameter condition includes: an environment-related parameter, which is selected from the following parameter group, or a combination thereof: the temperature of the environment surrounding the solar panel (1), the relative humidity of the environment surrounding the solar panel (1), the total daytime solar radiation at the site where the solar panel (1) is installed, the sunshine intensity at the site where the solar panel (1) is installed, the wind speed at the site where the solar panel (1) is installed, the wind strength at the site where the solar panel (1) is installed, the air quality index at the site where the solar panel (1) is installed, and the detected height of the cloud layer at the site where the solar panel (1) is installed. Specifically, the terminal can collect multiple sets of illumination data of the photosensitive element at the same time and store them in a database to optimize the maximum power generation prediction module and improve the accuracy of measuring the power generation of the solar panel (1). In a preferred embodiment, the placement time can be 1 day to 1 year, but is not limited to this. When only one set of illumination data of the photosensitive element is used to obtain the maximum power generation prediction module, a longer placement time is required to maintain the accuracy of the maximum power generation prediction module in measuring the power generation of the solar panel (1); however, when multiple sets of illumination data of the photosensitive element are used to form the maximum power generation prediction module at the same time, the placement time can be greatly shortened, and the maximum power generation prediction module can accurately measure the power generation of the solar panel (1). In another preferred embodiment, the placement time is one day, one week, one month, one quarter, half a year, multiples of the above time units, or a combination of the above time units, but is not limited thereto.

更佳者,其中該遞迴式模糊類神經網路之數學方程式為:

Figure 112126531-A0305-02-0013-8
Figure 112126531-A0305-02-0013-7
,其中,m ij 、σ ij,n
Figure 112126531-A0305-02-0013-9
Figure 112126531-A0305-02-0013-10
為可調整之控制參數,σ ij,L 為中心點在m ij 之歸屬函數左側寬度參數,σ ij,R 為中心點在m ij 之歸屬函數右側寬度參數。 More preferably, the mathematical equation of the recursive fuzzy neural network is:
Figure 112126531-A0305-02-0013-8
Figure 112126531-A0305-02-0013-7
, where m ij ij,n ,
Figure 112126531-A0305-02-0013-9
,
Figure 112126531-A0305-02-0013-10
is an adjustable control parameter, σ ij,L is the width parameter on the left side of the attribution function with the center point at mij , and σ ij,R is the width parameter on the right side of the attribution function with the center point at mij .

更佳者,為了提升預測真實發電量的準確度,該感光元件(2)係分散地設置於該太陽能板(1)上,以使各感光元件(2)相連所圍繞之面積盡可能地擴張,具體而言,當該感光元件(2)之數量為R時,該兩兩相鄰之感光元件(2)的重心分別與該太陽能板(1)之重心的連線所形成之夾角為360°/R,但不以此為限。 Preferably, in order to improve the accuracy of predicting the actual power generation, the photosensitive elements (2) are dispersedly arranged on the solar panel (1) so that the area surrounded by the connected photosensitive elements (2) can be expanded as much as possible. Specifically, when the number of the photosensitive elements (2) is R, the angle formed by the line connecting the center of gravity of the two adjacent photosensitive elements (2) and the center of gravity of the solar panel (1) is 360°/R, but not limited to this.

本發明的另一目的在於提供一種基於需量反應之追日太陽能系統運作模型的建立方法,其中如圖2A至圖2B所示,包含以下步驟:(P1)於一電池模組之一太陽能板(1)的至少4個位置分別設置一感光元件(2)、以及於該電池模組上設置一耗電功率感測模組;(P2)利用一終端機蒐集該感光元件(2)於一放置時間、以及一相關參數條件下,於未被遮蔽、部分被遮蔽、或完全被遮蔽時的一感光元件照度資料,並儲存至一資料庫中;(P3)該終端機以一遞迴式模糊類神經網路為預測器,來針對該資料庫中之該感光元件照度資料進行一訓練預測數學 模型的建立,並形成一最大發電功率預測模組;(P4)每過一測定時間,以該最大發電功率預測模組檢測該電池模組的一真實發電量、以及以該耗電功率感測模組檢測該電池模組的一真實耗電量,其中該測定時間滿足下列公式:T=T0+P(Q1+Q2),其中:T為該測定時間、T0為一基準時間、P為一延長時間、Q1為一門檻值B>該真實耗電量

Figure 112126531-A0305-02-0014-39
一門檻值A時的次數、Q2為一門檻值C>該真實耗電量
Figure 112126531-A0305-02-0014-38
該門檻值B時的次數;(P5)依照太陽移動軌跡判斷是否已日落、或已至設定結束追日之時間、或角度?如是,則使該太陽能板(1)復位至一初始位置,如否,進入步驟(P6);(P6)判斷該真實發電量是否>一最低運轉所需電量?如是,進入步驟(P7),如否,則該太陽能板(1)不轉動,並進入步驟(P4);(P7)判斷該太陽能板(1)進行轉動時,是否可減少其表面上的遮陰面積?如是,進入步驟(P8),如否,則該太陽能板(1)不轉動,並進入步驟(P4);(P8)判斷該真實耗電量是否
Figure 112126531-A0305-02-0014-40
該門檻值A?如是,進入步驟(P9),如否,判斷該太陽能板(1)於單軸轉動、或雙軸轉動時,以何種方式進行轉動能移除更多的遮陰面積,並依照可獲得最高發電功率之方式,使該太陽能板(1)沿著太陽於該測定時間內之移動軌跡轉動至該太陽能板(1)之受光面積最大的位置,並使Q1、與Q2之計數歸零後進入步驟(P4);(P9)判斷該真實耗電量是否
Figure 112126531-A0305-02-0014-41
該門檻值B,其中該門檻值B>該門檻值A?如是,進入步驟(P10),如否,判斷該太陽能板(1)於單軸轉動、或雙軸轉動時,以何種方式進行轉動能移除更多的遮陰面積,並依照可獲得最高發電功率之方式,使該太陽能板(1)沿著太陽於該測定時間內之移動軌跡轉動至該太陽能板(1)之受光面積最大的位置,並等待該延長時間後進入步驟(P4);(P10)判斷該電池模組的真實耗電量是否
Figure 112126531-A0305-02-0014-42
該門檻值C,其中該門檻值C>該門檻值B?如是,進入步驟(P11),如否,判斷該太陽能板(1)於單軸轉動、或雙軸轉動時,以何種方式進行轉動能移除更 多的遮陰面積,其中:若為單軸轉動,則該太陽能板(1)不轉動,並回到步驟(P4);以及若為雙軸轉動,則判斷該太陽能板(1)於轉動水平角、或轉動俯仰角時,以何種方式進行轉動能移除更多的遮陰面積,並依照可獲得最高發電功率之方式,使該太陽能板(1)沿著太陽於該測定時間內之移動軌跡轉動至該太陽能板(1)之受光面積最大的位置,並等待該延長時間後進入步驟(P4);以及(P11)使該太陽能板(1)保持靜止狀態持續一緩衝時間,並進入步驟(P4)。於一較佳實施例中,該最低運轉所需電量為該感光元件於無受到遮蔽之狀態時,該太陽能板所能產生之最大發電功率的30至80%,但不以此為限。其中,本實施態樣與上述實施態樣之差別僅在於有無考量遮陰之狀態,於其他部分大致近似,因此於此不多做贅述。 Another object of the present invention is to provide a method for establishing an operation model of a sun-tracking solar energy system based on demand response, wherein as shown in FIG. 2A to FIG. 2B, the method comprises the following steps: (P1) respectively setting a photosensitive element (2) at at least four positions of a solar panel (1) of a battery module, and setting a power consumption sensing module on the battery module; (P2) using a terminal to collect the power consumption of the photosensitive element (2) under a placement time and a related parameter condition when it is not shaded, partially shaded, or completely shaded. a photosensitive element illumination data and stores it in a database; (P3) the terminal uses a recursive fuzzy neural network as a predictor to establish a training prediction mathematical model for the photosensitive element illumination data in the database and form a maximum power generation prediction module; (P4) every time a measurement time passes, the maximum power generation prediction module detects a real power generation of the battery module, and the power consumption sensing module detects a real power consumption of the battery module, wherein the measurement time satisfies the following formula: T=T 0 +P(Q 1 +Q 2 ), wherein: T is the measurement time, T 0 is a reference time, P is an extension time, Q 1 is a threshold value B> the real power consumption
Figure 112126531-A0305-02-0014-39
The number of times when the threshold value A is reached, Q2 is the threshold value C> the actual power consumption
Figure 112126531-A0305-02-0014-38
The number of times when the threshold value B is reached; (P5) According to the movement trajectory of the sun, is it determined whether the sun has set, or the time or angle for ending the sun tracking has been reached? If so, the solar panel (1) is reset to an initial position; if not, the process proceeds to step (P6); (P6) Is the actual power generation greater than a minimum power required for operation? If so, the process proceeds to step (P7); if not, the solar panel (1) does not rotate, and the process proceeds to step (P4); (P7) Is it possible to reduce the shaded area on the surface of the solar panel (1) when the solar panel (1) rotates? If yes, proceed to step (P8); if no, the solar panel (1) does not rotate and proceeds to step (P4); (P8) determines whether the actual power consumption is
Figure 112126531-A0305-02-0014-40
Is the threshold value A? If yes, proceed to step (P9); if no, determine which way the solar panel (1) can be rotated to remove more shaded area when rotating on a single axis or a double axis, and according to the way to obtain the highest power generation, rotate the solar panel (1) along the moving trajectory of the sun within the measurement time to the position where the light receiving area of the solar panel (1) is the largest, and return the counts of Q1 and Q2 to zero before proceeding to step (P4); (P9) determine whether the actual power consumption is
Figure 112126531-A0305-02-0014-41
The threshold value B, wherein the threshold value B> the threshold value A? If so, proceed to step (P10); if not, determine which way the solar panel (1) is rotated in a single axis or a double axis to remove more shaded area, and according to the way to obtain the highest power generation, make the solar panel (1) rotate along the moving track of the sun within the measurement time to the position where the light receiving area of the solar panel (1) is the largest, and wait for the extension time before proceeding to step (P4); (P10) determine whether the actual power consumption of the battery module is
Figure 112126531-A0305-02-0014-42
The threshold value C, wherein the threshold value C> the threshold value B? If so, proceed to step (P11); if not, determine in which way the solar panel (1) is rotated in a single axis or in a dual axis to remove more shaded area, wherein: if it is a single axis rotation, the solar panel (1) does not rotate, and returns to step (P4); and if it is a dual axis rotation, determine in which way the solar panel (1) is rotated in a horizontal angle or in a pitch angle. The rotation can remove more shaded areas, and in a manner that can obtain the highest power generation, the solar panel (1) is rotated along the movement trajectory of the sun within the measured time to the position where the light receiving area of the solar panel (1) is the largest, and after waiting for the extended time, the step (P4) is entered; and (P11) the solar panel (1) is kept stationary for a buffer time, and the step (P4) is entered. In a preferred embodiment, the minimum power required for operation is 30 to 80% of the maximum power generation that the solar panel can generate when the photosensitive element is not shaded, but is not limited thereto. Among them, the difference between this embodiment and the above-mentioned embodiment is only whether the shading state is taken into consideration, and the other parts are roughly similar, so no further elaboration is made here.

更佳者,當同時考量太陽能板(1)被陰影遮蔽下的轉動決策時,其調整依據係包含下述4種實施態樣,其中於該4種實施態樣中,以圖3A作為參照,該太陽能板(1)需往左水平轉動、或往上垂直轉動,其轉動之軌跡才符合太陽的移動路徑。其中於「第一實施態樣」中,如圖3A所示,可發現太陽能板(1)之右半部分的感光元件(2)皆被一遮陰區域(3)所遮蔽,且,遮陰區域(3)是往太陽能板(1)之右半部分延伸,因此,為了使太陽能板(1)最大化地取得更多的照射面積,以提升發電功率,此時應改變太陽能板(1)之水平角(方位角),使其往相對於遮陰區域(3)之部分旋轉,因此,此時最佳的轉動決策是向左方進行水平方向的旋轉。其中如圖3B所示,可發現:當太陽能板(1)於進行水平方向的旋轉後,可使太陽能板(1)右半部分的感光元件(2)受光,以提升太陽能板(1)之發電功率。其中於「第二實施態樣」中,如圖4A所示,可發現太陽能板(1)之下半部分的感光元件(2)皆被一遮陰區域(3)所遮蔽,且,遮陰區域(3)是往太陽能板(1)之下半部分延伸,因此,為了使太陽能板(1)最大化地取得更多的照射面積,以提升發電功率,此時應 改變太陽能板(1)之俯仰角,使其往相對於遮陰區域(3)之部分旋轉,因此,此時最佳的轉動決策是向上進行垂直方向的旋轉。其中如圖4B所示,可發現:當太陽能板(1)於進行垂直方向的旋轉後,可使太陽能板(1)下半部分的感光元件(2)受光,以提升太陽能板(1)之發電功率。其中於「第三實施態樣」中,如圖5A所示,可發現太陽能板(1)的右半部分、以及下半部分的感光元件(2)皆被一遮陰區域(3)所遮蔽,且,遮陰區域(3)是往太陽能板(1)之右半部分、以及下半部分延伸,因此,為了使太陽能板(1)最大化地取得更多的照射面積,以提升發電功率,此時應同時改變太陽能板(1)的方位角、以及俯仰角,使其往相對於遮陰區域(3)之部分旋轉,因此,此時最佳的轉動決策是同時進行向左水平方向的旋轉、以及向上垂直方向的旋轉。其中如圖5B所示,可發現:當太陽能板(1)於同時進行水平、與垂直方向的旋轉後,可使太陽能板(1)的右半部分、以及下半部分的感光元件(2)受光,以提升太陽能板(1)之發電功率。其中於「第四實施態樣」中,如圖6所示,可發現太陽能板(1)的左半部分、以及上半部分的感光元件(2)皆被一遮陰區域(3)所遮蔽,且,遮陰區域(3)是往太陽能板(1)之左半部分、以及上半部分延伸,因此,此時若轉動太陽能板(1),會造成太陽能板(1)往遮陰區域(3)移動,使太陽能板(1)之受光面積減少,由於太陽能板(1)於轉動後所能產生的發電功率低於轉動前所能產生的發電功率,為了避免不必要的耗能,此時太陽能板(1)的轉動策略為不轉動,並重新回到步驟(S4),待經過另一時間單位後,再重新對轉動決策進行判斷。其中,雖然於第四實施態樣中,使太陽能板(1)往右側水平轉動、以及往下方垂直轉動可增加太陽能板(1)的受光面積,然而,其轉動方向會與太陽實際移動軌跡相反,使得太陽照射角度產生大量偏移,並造成太陽能板(1)之發電功率大大下降,因此,為了避免上述情形發生,於太陽能板(1)之轉動策略中,其轉 動方向必須跟隨太陽實際之移動軌跡進行旋轉,以使太陽能板(1)於遮陰狀態、或非遮陰狀態時,皆能穩定地進行儲能。 More preferably, when considering the rotation decision of the solar panel (1) when it is shaded, the adjustment basis includes the following four implementation modes. Among the four implementation modes, with reference to FIG. 3A, the solar panel (1) needs to be rotated horizontally to the left or vertically upward so that its rotation trajectory conforms to the movement path of the sun. In the "first implementation", as shown in FIG3A, it can be found that the photosensitive elements (2) on the right half of the solar panel (1) are all shielded by a shade area (3), and the shade area (3) extends to the right half of the solar panel (1). Therefore, in order to maximize the illumination area of the solar panel (1) to increase the power generation, the horizontal angle (azimuth) of the solar panel (1) should be changed to rotate relative to the shade area (3). Therefore, the best rotation decision is to rotate horizontally to the left. As shown in FIG3B, it can be found that: after the solar panel (1) rotates horizontally, the photosensitive elements (2) on the right half of the solar panel (1) can receive light to increase the power generation of the solar panel (1). In the "second implementation", as shown in FIG4A, it can be found that the photosensitive elements (2) in the lower half of the solar panel (1) are all shielded by a shade area (3), and the shade area (3) extends to the lower half of the solar panel (1). Therefore, in order to maximize the illumination area of the solar panel (1) to increase the power generation, the pitch angle of the solar panel (1) should be changed to rotate it relative to the shade area (3). Therefore, the best rotation decision at this time is to rotate it vertically upward. As shown in FIG4B, it can be found that: after the solar panel (1) is rotated in the vertical direction, the photosensitive elements (2) in the lower half of the solar panel (1) can receive light to increase the power generation of the solar panel (1). In the "third implementation", as shown in FIG. 5A, it can be found that the right half of the solar panel (1) and the photosensitive element (2) in the lower half are both shielded by a shade area (3), and the shade area (3) extends to the right half and the lower half of the solar panel (1). Therefore, in order to maximize the irradiation area of the solar panel (1) to increase the power generation, the azimuth and pitch angles of the solar panel (1) should be changed at the same time so that it rotates relative to the shade area (3). Therefore, the best rotation decision at this time is to rotate to the left horizontally and to the upper vertically at the same time. As shown in FIG. 5B , it can be found that: when the solar panel (1) is rotated in the horizontal and vertical directions at the same time, the right half of the solar panel (1) and the photosensitive element (2) in the lower half can receive light, thereby increasing the power generation of the solar panel (1). In the "fourth embodiment", as shown in FIG. 6 , it can be found that the left half of the solar panel (1) and the photosensitive element (2) in the upper half are both shielded by a shade area (3), and the shade area (3) extends to the left half and the upper half of the solar panel (1). Therefore, if the solar panel (1) is rotated at this time, it will cause the solar panel (1) to move toward the shade area. The region (3) moves, so that the light receiving area of the solar panel (1) decreases. Since the power generated by the solar panel (1) after the rotation is lower than the power generated before the rotation, in order to avoid unnecessary energy consumption, the rotation strategy of the solar panel (1) is not to rotate, and returns to step (S4). After another time unit has passed, the rotation decision is re-determined. Among them, although in the fourth embodiment, the solar panel (1) can be rotated horizontally to the right and vertically downward to increase the light receiving area of the solar panel (1), its rotation direction will be opposite to the actual movement trajectory of the sun, causing a large deviation in the solar irradiation angle and causing the power generation of the solar panel (1) to be greatly reduced. Therefore, in order to avoid the above situation, in the rotation strategy of the solar panel (1), its rotation direction must follow the actual movement trajectory of the sun to rotate, so that the solar panel (1) can stably store energy in both the shaded state and the non-shaded state.

更佳者,其中更包含一監控機構,係設置於該太陽能板(1)上,用以取得該太陽能板(1)之一地理座標位置,並計算太陽於各個時刻對該地理座標位置照射之俯仰角、以及方位角,以取得一太陽照射角度資訊,使太陽能板(1)可依照該太陽照射角度資訊相對應地移動,以使太陽能板(1)可接收直射之太陽光線,並產生高發電功率。具體而言,在全日照、以及無陰影存在之環境條件下,太陽能板(1)於每一單位時間過後都會依照該太陽照射角度資訊進行水平方向、以及垂直方向的雙軸轉動,以使太陽能板(1)保持與太陽光照射角度垂直之狀態,以產生最大的發電功率。此外,當太陽能板(1)於受到遮陰狀態下影響時,若太陽能板(1)當前所能產生的發電功率低於轉動太陽能板(1)所需消耗的功率,表示運轉太陽能板(1)會造成發電總量下降,此時不宜使太陽能板(1)進行轉動;若太陽能板(1)當前所能產生的發電功率高於轉動太陽能板(1)所需消耗的功率時,此時可以計算:太陽能板(1)於依據該太陽照射角度資訊進行水平轉動、垂直轉動、或同時進行水平與垂直兩方向的雙軸轉動時,何者運轉模式可使太陽能板(1)上的受光面積最大化地增加,並依據可最大化增加受光面積的轉動模式,使太陽能板(1)依據該太陽照射角度資訊進行轉動。具體而言,本發明考量到太陽能板(1)於各種遮陰模式下運轉時所可能面臨的發電功率低落的問題,並最大化地增加太陽能板(1)的發電功率、以及避免儲存於太陽能電池的電能因太陽能板(1)的不當運轉而流失。於一較佳實施例中,該監控機構可調整太陽能板(1)移動至當前太陽照射位置下所能產生最高功率點之方位角、以及俯仰角,以使太陽能板(1)跟隨太陽移動軌跡轉動時,可持續產生最高的發電功率。於另一較佳實施例中,該 地理座標位置係由經度、與緯度所構成的二維座標系、或係由經度、緯度、與高度所構成的三維坐標系,但不以此為限。 Preferably, the device further comprises a monitoring mechanism disposed on the solar panel (1) for obtaining a geographical coordinate position of the solar panel (1) and calculating the elevation angle and azimuth angle of the sun's illumination of the geographical coordinate position at each moment to obtain solar illumination angle information, so that the solar panel (1) can move accordingly according to the solar illumination angle information, so that the solar panel (1) can receive direct sunlight and generate high power. Specifically, under full sunlight and no shadow environment conditions, the solar panel (1) will rotate horizontally and vertically according to the solar radiation angle information after each unit time, so that the solar panel (1) remains perpendicular to the solar radiation angle to generate the maximum power generation. In addition, when the solar panel (1) is affected by the shade, if the power generation that the solar panel (1) can currently generate is lower than the power required to rotate the solar panel (1), it means that operating the solar panel (1) will cause the total power generation to decrease, and it is not appropriate to rotate the solar panel (1) at this time; if the power generation that the solar panel (1) can currently generate is higher than the power required to rotate the solar panel (1), it means that operating the solar panel (1) will cause the total power generation to decrease, and the solar panel (1) should not be rotated at this time; if the power generation that the solar panel (1) can currently generate is higher than the power required to rotate the solar panel (1), it means that operating the solar panel (1) will cause the total power generation to decrease, and the solar panel (1) should not be rotated at this time. When the power is calculated, it can be calculated: when the solar panel (1) rotates horizontally, vertically, or rotates in both horizontal and vertical directions according to the solar illumination angle information, which operation mode can maximize the increase of the light-receiving area on the solar panel (1), and according to the rotation mode that can maximize the increase of the light-receiving area, the solar panel (1) is rotated according to the solar illumination angle information. Specifically, the present invention takes into account the problem of low power generation that may be encountered when the solar panel (1) operates in various shading modes, and maximizes the power generation of the solar panel (1) and prevents the power stored in the solar battery from being lost due to improper operation of the solar panel (1). In a preferred embodiment, the monitoring mechanism can adjust the azimuth and elevation angle of the solar panel (1) to generate the highest power point under the current solar irradiation position, so that the solar panel (1) can continuously generate the highest power when rotating along the sun's moving trajectory. In another preferred embodiment, the geographic coordinate position is a two-dimensional coordinate system composed of longitude and latitude, or a three-dimensional coordinate system composed of longitude, latitude, and altitude, but is not limited thereto.

更佳者,其中於步驟(P5)中,係於該太陽能板(1)上裝設一追蹤裝置,並利用該追蹤裝置追蹤太陽當前的位置,以確認該太陽能板(1)是否處於可受光之狀態。具體而言,當該太陽能板(1)僅係處於遮陰狀態而暫時不產生功率時,由於太陽於遮陰部份消失後尚可照射至太陽能板(1)上,因此其係為「可受光之狀態」,此時由於太陽能板(1)不產生發電功率,若使太陽能板(1)轉動會造成太陽能電池中的總電能下降,因此該太陽能板(1)的轉動策略為不轉動,並回到步驟(P4),重新等待一測定時間後,再重新進行發電功率之判斷;以及當該太陽能板(1)係因為太陽已日落而不產生功率時,此時太陽能板(1)無法接收陽光係為確定、且無法改變之事項,因此其係為「不可受光之狀態」,且,由於太陽日落代表一天的追日過程已結束,為了使太陽能板(1)於隔日能重新進行追日,當太陽能板(1)處於不可受光之狀態時,其會自動復位至初始位置。於一較佳實施例中,於太陽能板(1)復位至初始位置後,會進行一段休眠時間,待接近日出之時間後再重新啟動,以減少待機時間之電量損耗。 More preferably, in step (P5), a tracking device is installed on the solar panel (1), and the tracking device is used to track the current position of the sun to confirm whether the solar panel (1) is in a state where it can receive light. Specifically, when the solar panel (1) is only in a shaded state and does not generate power temporarily, since the sun can still shine on the solar panel (1) after the shaded part disappears, it is in a "light-receiving state". At this time, since the solar panel (1) does not generate power, if the solar panel (1) is rotated, the total power in the solar battery will decrease. Therefore, the rotation strategy of the solar panel (1) is not to rotate, and return to step (P4) to wait for a measured time again. , and then re-determine the power generation; and when the solar panel (1) does not generate power because the sun has set, the solar panel (1) cannot receive sunlight, which is a certain and unchangeable matter, so it is in a "state that cannot receive light". In addition, since the sun sets, it means that the solar panel (1) has completed the process of chasing the sun for a day. In order to enable the solar panel (1) to chase the sun again the next day, when the solar panel (1) is in a state that cannot receive light, it will automatically reset to the initial position. In a preferred embodiment, after the solar panel (1) is reset to the initial position, it will sleep for a period of time and restart when it is close to sunrise to reduce the power consumption during the standby time.

更佳者,「單軸轉動」係指:使該太陽能板(1)轉動一水平角度單位的方位角、或使該太陽能板(1)轉動一垂直角度單位的俯仰角;以及「雙軸轉動」係指:分別使該太陽能板(1)轉動一水平角度單位的方位角、以及一垂直角度單位的俯仰角。其中:當耗電功率感測模組感測該電池模組的耗電量達負載額定值的一定門檻後,會使太陽能板(1)之轉動策略進行「降級」,即:使單軸轉動變為不轉動、以及使雙軸轉動變為單軸轉動,以減輕該電池模組之負荷,避免耗電量突然增加而導致電池模組的耗電量超過其負載額定值的上限,並使電池模組內部的安全系統自動開啟,而造成電池模組的輸入端、與輸出端同時斷電。於一 較佳實施例中,其中該水平角度單位、或該垂直角度單位為1至20°,但不以此為限。 More preferably, "single-axis rotation" means: rotating the solar panel (1) by an azimuth angle of a horizontal angle unit, or rotating the solar panel (1) by an elevation angle of a vertical angle unit; and "double-axis rotation" means: rotating the solar panel (1) by an azimuth angle of a horizontal angle unit, and by an elevation angle of a vertical angle unit, respectively. Wherein: when the power consumption sensing module senses that the power consumption of the battery module reaches a certain threshold of the load rating, the rotation strategy of the solar panel (1) will be "downgraded", that is, the single-axis rotation is changed to non-rotation, and the double-axis rotation is changed to single-axis rotation, so as to reduce the load of the battery module, avoid a sudden increase in power consumption causing the power consumption of the battery module to exceed the upper limit of its load rating, and automatically start the safety system inside the battery module, causing the input end and the output end of the battery module to be powered off at the same time. In a preferred embodiment, the horizontal angle unit or the vertical angle unit is 1 to 20°, but is not limited thereto.

更佳者,本發明的又一目的在於:提供一種基於需量反應之追日太陽能系統運作模型的建立方法,如圖7所示,包含以下步驟:(L1)於一電網中設置至少一太陽能追日系統,其中:該電網包含一電能管理系統;以及該太陽能追日系統包含一控制單元以及一太陽能板(1),係與該控制單元電連接;(L2)該電能管理系統於每一時間間隔將該電網的一負載額定值以及一真實耗電量以信號傳送至該控制單元中,其中該時間間隔滿足下列公式:T=T0+P(Q1+Q2),其中:T為該時間間隔、T0為一基準時間、P為一延長時間、Q1為一門檻值B>該真實耗電量

Figure 112126531-A0305-02-0019-43
一門檻值A時的次數、Q2為一門檻值C>該真實耗電量
Figure 112126531-A0305-02-0019-44
該門檻值B時的次數;(L3)以該控制單元判斷該真實耗電量是否
Figure 112126531-A0305-02-0019-45
一門檻值A,如是,進入步驟(L4),如否,則該控制單元控制該太陽能板(1)跟隨太陽於該時間間隔內之移動軌跡轉動一水平角、以及一俯仰角,並將Q1與Q2的數值歸零後回到步驟(L2);(L4)以該控制單元判斷該真實耗電量是否
Figure 112126531-A0305-02-0019-46
一門檻值B,其中該門檻值B>該門檻值A?如是,進入步驟(L5),如否,則該控制單元控制該太陽能板(1)跟隨太陽於該時間間隔內之移動軌跡轉動該水平角、以及該俯仰角,並等待該延長時間後進入步驟(L2);(L5)以該控制單元判斷該真實耗電量是否
Figure 112126531-A0305-02-0019-47
一門檻值C,其中該門檻值C>該門檻值B?如是,進入步驟(L6),如否,則該控制單元控制該太陽能板(1)跟隨太陽於該時間間隔內之移動軌跡轉動該水平角、或該俯仰角,並等待該延長時間後進入步驟(L2);以及(L6)使該太陽能板(1)保持靜止狀態並持續一緩衝時間,再進入步驟(L2)。具體而言,該電網可為一發電廠、或電源供應站,其中是藉由判斷太陽能追日系統所處電網中,當下或每一時間間隔內電網所能供應的負載 額定值、以及其中電能的消耗量相對於負載額定值的百分比是處於門檻值A至C中的哪一區間,以藉此調整太陽能追日系統中太陽能板(1)的運轉策略,並調控整體電網中的耗電量,使電網可穩定供給電源至太陽能追日系統中、或使太陽能追日系統可穩定供給電源至與其連接的電器元件中,而不會產生斷電的問題。於一較佳實施例中,該門檻值A為該電網內可供給能量額定值的60%至80%、該門檻值B為該電網內可供給能量額定值的70%至90%、該門檻值C為該電網內可供給能量額定值的80%至99%,但不以此為限。 Preferably, another object of the present invention is to provide a method for establishing a demand response-based solar tracking system operation model, as shown in FIG7 , comprising the following steps: (L1) at least one solar tracking system is installed in a power grid, wherein: the power grid includes an electric energy management system; and the solar tracking system includes a control unit and a solar panel (1), which is connected to the control unit. Unit is electrically connected; (L2) the power management system transmits a load rating of the power grid and a real power consumption to the control unit by signal at each time interval, wherein the time interval satisfies the following formula: T=T0+P(Q1+Q2), wherein: T is the time interval, T0 is a reference time, P is an extended time, Q1 is a threshold value B> the real power consumption
Figure 112126531-A0305-02-0019-43
The number of times when the threshold value A is reached, Q2 is the threshold value C> the actual power consumption
Figure 112126531-A0305-02-0019-44
The number of times when the threshold value B is reached; (L3) the control unit determines whether the actual power consumption
Figure 112126531-A0305-02-0019-45
If the value is a threshold value A, the process proceeds to step (L4). If not, the control unit controls the solar panel (1) to rotate a horizontal angle and a pitch angle to follow the movement trajectory of the sun within the time interval, and returns to step (L2) after returning the values of Q1 and Q2 to zero. (L4) The control unit determines whether the actual power consumption is
Figure 112126531-A0305-02-0019-46
a threshold value B, wherein the threshold value B> the threshold value A? If so, proceed to step (L5); if not, the control unit controls the solar panel (1) to follow the movement trajectory of the sun within the time interval to rotate the horizontal angle and the pitch angle, and waits for the extension time before proceeding to step (L2); (L5) the control unit determines whether the actual power consumption is
Figure 112126531-A0305-02-0019-47
a threshold value C, wherein the threshold value C>the threshold value B? If so, proceed to step (L6); if not, the control unit controls the solar panel (1) to follow the moving trajectory of the sun in the time interval to rotate the horizontal angle or the pitch angle, and waits for the extension time before proceeding to step (L2); and (L6) keeps the solar panel (1) in a stationary state for a buffer time, and then proceeds to step (L2). Specifically, the power grid can be a power plant or a power supply station, wherein the load rating that the power grid can supply at the moment or in each time interval in the power grid where the solar tracking system is located, and the percentage of the power consumption relative to the load rating is determined in which range of threshold values A to C, so as to adjust the operation strategy of the solar panels (1) in the solar tracking system and regulate the power consumption in the entire power grid, so that the power grid can stably supply power to the solar tracking system, or the solar tracking system can stably supply power to the electrical components connected thereto without causing power outages. In a preferred embodiment, the threshold value A is 60% to 80% of the rated energy available in the power grid, the threshold value B is 70% to 90% of the rated energy available in the power grid, and the threshold value C is 80% to 99% of the rated energy available in the power grid, but is not limited thereto.

本發明的再一目的是提供一種基於需量反應之追日太陽能系統運作模型的建立方法,其中如圖8所示,包含以下步驟:(K1)於一電網中設置至少一太陽能追日系統,其中:該電網包含一電能管理系統;以及該太陽能追日系統包含一控制單元以及一太陽能板(1),係與該控制單元電連接;(K2)該電能管理系統於每一時間間隔將該電網的真實耗電量相對於其負載額定值的百分比儲存成一輸出結果,並傳送至該控制單元中,其中:該輸出結果包含:N、A、B、與C,且C>B>A>N;以及該時間間隔滿足下列公式:T=T0+P(Q1+Q2),其中:T為該時間間隔、T0為一基準時間、P為一延長時間、Q1為該輸出結果為A的次數、Q2為該輸出結果為B的次數,其中:當該控制單元接收之該輸出結果為N時,該控制單元控制該太陽能板(1)跟隨太陽於該時間間隔內之移動軌跡轉動一水平角、以及一俯仰角,並將Q1與Q2的數值歸零後重新執行步驟(K2);當該控制單元接收之該輸出結果為A時,該控制單元控制該太陽能板(1)跟隨太陽於該時間間隔內之移動軌跡轉動一水平角、以及一俯仰角,並等待該延長時間後重新執行步驟(K2);當該控制單元接收之該輸出結果為B時,該控制單元控制該太陽能板(1)跟隨太陽於該時間間隔內之移動軌跡轉動一水平角、或一俯仰角,並等待該延長 時間後重新執行步驟(K2);以及當該控制單元接收之該輸出結果為C時,使該太陽能板(1)保持靜止狀態並持續一緩衝時間後重新執行步驟(K2)。於一較佳實施例中,N為0至70%、A為60至80%、B為70至90%、以及C為80至99%,但不以此為限。 Another object of the present invention is to provide a method for establishing an operation model of a solar tracking system based on demand response, which, as shown in FIG8, comprises the following steps: (K1) at least one solar tracking system is installed in a power grid, wherein: the power grid comprises an electric energy management system; and the solar tracking system comprises a control unit and a solar panel (1) which is electrically connected to the control unit; (K2) the electric energy management system transmits the real power of the power grid to the control unit at each time interval. The percentage of actual power consumption relative to its load rating is stored as an output result and transmitted to the control unit, wherein: the output result includes: N, A, B, and C, and C>B>A>N; and the time interval satisfies the following formula: T=T0+P(Q1+Q2), wherein: T is the time interval, T0 is a reference time, P is an extended time, Q1 is the number of times the output result is A, Q2 is the number of times the output result is B, wherein: when When the output result received by the control unit is N, the control unit controls the solar panel (1) to rotate a horizontal angle and a pitch angle following the moving track of the sun in the time interval, and resets the values of Q1 and Q2 to zero before re-executing step (K2); when the output result received by the control unit is A, the control unit controls the solar panel (1) to rotate a horizontal angle and a pitch angle following the moving track of the sun in the time interval, and waits for the After the extended time, step (K2) is re-executed; when the output result received by the control unit is B, the control unit controls the solar panel (1) to follow the movement trajectory of the sun within the time interval and rotate a horizontal angle or a pitch angle, and waits for the extended time to re-execute step (K2); and when the output result received by the control unit is C, the solar panel (1) is kept stationary and continues for a buffer time before re-executing step (K2). In a preferred embodiment, N is 0 to 70%, A is 60 to 80%, B is 70 to 90%, and C is 80 to 99%, but it is not limited thereto.

本發明相對於先前技術之功效在於:於現有的太陽能系統運作模型中,僅考量到如何保持太陽能板(1)的受光面積、以及太陽能板(1)接受光線的角度,以提升電池模組的發電功率,因此可以理解地,於先前技術中的著重點是在於提升太陽能系統的「儲能」效率。然而,當電池模組於儲能的同時進行電力消耗時,若電池模組的用電負荷大於負載額定功率,則可能導致其內部的保護機制開啟,並強行將電源切斷,此結果將造成電池模組的儲能、以及電力供給之過程中斷,並使基於太陽能運轉的機械或裝置停止運作,而影響工業的產能或良率。綜上所述,為了確保太陽能系統的儲能、與耗能皆能穩定運行,需於電池模組的用電負荷超過一定門檻值時,降低太陽能系統本身運作所需消耗的功率,以減輕電池模組的負擔,而本發明所提供之方法則可藉由多層的判斷機制,使電池模組的用電負荷達不同程度的負載額定值時,可以進行相對應地運轉策略,以防止因電池模組電量的供需不平衡而導致斷電之情形發生,且,可提升電池模組的使用壽命以及安全性能。 The benefit of the present invention over the prior art is that in the existing solar system operation model, only the light receiving area of the solar panel (1) and the angle at which the solar panel (1) receives light are considered to increase the power generation of the battery module. Therefore, it is understandable that the focus of the prior art is on improving the "energy storage" efficiency of the solar system. However, when the battery module consumes electricity while storing energy, if the power load of the battery module is greater than the rated power, its internal protection mechanism may be activated and the power supply may be forcibly cut off. This will result in the interruption of the battery module's energy storage and power supply process, and cause the machinery or equipment based on solar energy to stop operating, affecting the industry's production capacity or yield. In summary, in order to ensure that the energy storage and energy consumption of the solar energy system can operate stably, it is necessary to reduce the power consumed by the solar energy system itself when the power load of the battery module exceeds a certain threshold value to reduce the burden on the battery module. The method provided by the present invention can use a multi-layer judgment mechanism to make the corresponding operation strategy when the power load of the battery module reaches different load ratings to prevent power outages caused by imbalanced supply and demand of the battery module power, and can also improve the service life and safety performance of the battery module.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。另 外,說明書中提及的第一、第二等用語,僅用以表示元件的名稱,並非用來限制組件數量上的上限或下限。 However, the above is only the preferred embodiment of the present invention, and it cannot be used to limit the scope of the implementation of the present invention. That is, all simple equivalent changes and modifications made according to the scope of the patent application and the content of the invention description are still within the scope of the present invention. In addition, any embodiment or patent application scope of the present invention does not need to achieve all the purposes, advantages or features disclosed by the present invention. In addition, the abstract and title are only used to assist in searching patent documents, and are not used to limit the scope of the rights of the present invention. In addition, the first, second, etc. terms mentioned in the specification are only used to indicate the name of the component, and are not used to limit the upper or lower limit of the number of components.

S4~S9:步驟編號 S4~S9: Step number

Claims (3)

一種基於需量反應之追日太陽能系統運作模型的建立方法,包含以下步驟:(P1)於一電池模組之一太陽能板的至少4個位置分別設置一感光元件、以及於該電池模組上設置一耗電功率感測模組;(P2)利用一終端機蒐集該感光元件於一放置時間、以及一相關參數條件下,於未被遮蔽、部分被遮蔽、或完全被遮蔽時的一感光元件照度資料,並儲存至一資料庫中;(P3)該終端機以一遞迴式模糊類神經網路為預測器,來針對該資料庫中之該感光元件照度資料進行一訓練預測數學模型的建立,並形成一最大發電功率預測模組;(P4)每過一測定時間,以該最大發電功率預測模組檢測該電池模組的一真實發電量、以及以該耗電功率感測模組檢測該電池模組的一真實耗電量,其中該測定時間滿足下列公式:T=T0+P(Q1+Q2),其中:T為該測定時間、T0為一基準時間、P為一延長時間、Q1為一門檻值B>該真實耗電量
Figure 112126531-A0305-02-0023-48
一門檻值A時的次數、Q2為一門檻值C>該真實耗電量
Figure 112126531-A0305-02-0023-49
該門檻值B時的次數;(P5)依照太陽移動軌跡判斷是否已日落、或已至設定結束追日之時間、或角度?如是,則使該太陽能板復位至一初始位置,如否,進入步驟(P6);(P6)判斷該真實發電量是否>一最低運轉所需電量?如是,進入步驟(P7),如否,則該太陽能板不轉動,並進入步驟(P4);(P7)判斷該太陽能板進行轉動時,是否可減少其表面上的遮陰面積?如是,進入步驟(P8),如否,則該太陽能板不轉動,並進入步驟(P4); (P8)判斷該真實耗電量是否
Figure 112126531-A0305-02-0024-50
該門檻值A?如是,進入步驟(P9),如否,判斷該太陽能板於單軸轉動、或雙軸轉動時,以何種方式進行轉動能移除更多的遮陰面積,並依照可獲得最高發電功率之方式,使該太陽能板沿著太陽於該測定時間內之移動軌跡轉動至該太陽能板之受光面積最大的位置,並使Q1、與Q2之計數歸零後進入步驟(P4);(P9)判斷該真實耗電量是否
Figure 112126531-A0305-02-0024-51
該門檻值B,其中該門檻值B>該門檻值A?如是,進入步驟(P10),如否,判斷該太陽能板於單軸轉動、或雙軸轉動時,以何種方式進行轉動能移除更多的遮陰面積,並依照可獲得最高發電功率之方式,使該太陽能板沿著太陽於該測定時間內之移動軌跡轉動至該太陽能板之受光面積最大的位置,並等待該延長時間後進入步驟(P4);(P10)判斷該真實耗電量是否
Figure 112126531-A0305-02-0024-52
該門檻值C,其中該門檻值C>該門檻值B?如是,進入步驟(P11),如否,判斷該太陽能板於單軸轉動、或雙軸轉動時,以何種方式進行轉動能移除更多的遮陰面積,其中:若為單軸轉動,則該太陽能板不轉動,並回到步驟(P4);以及若為雙軸轉動,則判斷該太陽能板於轉動水平角、或轉動俯仰角時,以何種方式進行轉動能移除更多的遮陰面積,並依照可獲得最高發電功率之方式,使該太陽能板沿著太陽於該測定時間內之移動軌跡轉動至該太陽能板之受光面積最大的位置,並等待該延長時間後進入步驟(P4);以及(P11)使該太陽能板保持靜止狀態持續一緩衝時間,並進入步驟(P4)。
A method for establishing an operation model of a solar tracking system based on demand response includes the following steps: (P1) respectively setting a photosensitive element at at least four positions of a solar panel of a battery module, and setting a power consumption sensing module on the battery module; (P2) using a terminal to collect illumination data of the photosensitive element when the photosensitive element is not shaded, partially shaded, or completely shaded under a placement time and a related parameter condition, and storing the data in a data database; (P3) the terminal uses a recursive fuzzy neural network as a predictor to establish a training prediction mathematical model for the illumination data of the photosensitive element in the database, and forms a maximum power generation prediction module; (P4) every time a measurement time passes, the maximum power generation prediction module detects a real power generation of the battery module, and the power consumption sensing module detects a real power consumption of the battery module, wherein the measurement time satisfies the following formula: T=T 0 +P(Q 1 +Q 2 ), wherein: T is the measurement time, T 0 is a reference time, P is an extension time, Q 1 is a threshold value B> the real power consumption
Figure 112126531-A0305-02-0023-48
The number of times when the threshold value A is reached, Q2 is the threshold value C> the actual power consumption
Figure 112126531-A0305-02-0023-49
The number of times when the threshold value B is reached; (P5) According to the trajectory of the sun's movement, is it determined whether the sun has set, or whether the time or angle for ending the sun tracking has been reached? If so, the solar panel is reset to an initial position; if not, the process proceeds to step (P6); (P6) Is the actual power generation greater than the minimum power required for operation? If so, the process proceeds to step (P7); if not, the solar panel does not rotate, and the process proceeds to step (P4); (P7) Is it possible to reduce the shaded area on the surface of the solar panel when it rotates? If so, the process proceeds to step (P8); if not, the solar panel does not rotate, and the process proceeds to step (P4); (P8) Is the actual power consumption greater than the minimum power required for operation?
Figure 112126531-A0305-02-0024-50
Is the threshold value A? If yes, proceed to step (P9); if no, determine which way the solar panel can be rotated to remove more shaded area when rotating on a single axis or a double axis, and according to the way to obtain the highest power generation, rotate the solar panel along the moving trajectory of the sun within the measurement time to the position where the solar panel has the largest light receiving area, and return the counts of Q1 and Q2 to zero before proceeding to step (P4); (P9) determine whether the actual power consumption is
Figure 112126531-A0305-02-0024-51
The threshold value B, wherein the threshold value B> the threshold value A? If so, proceed to step (P10); if not, determine which way the solar panel is rotated in a single-axis or dual-axis manner to remove more shaded area, and according to the method that can obtain the highest power generation, make the solar panel rotate along the movement trajectory of the sun within the measurement time to the position where the solar panel has the largest light receiving area, and wait for the extension time before proceeding to step (P4); (P10) determine whether the actual power consumption is
Figure 112126531-A0305-02-0024-52
The threshold value C, wherein the threshold value C> the threshold value B? If so, proceed to step (P11); if not, determine in which way the solar panel is rotated to remove more shaded area when rotating on a single axis or a double axis, wherein: if it is a single axis rotation, the solar panel does not rotate, and returns to step (P4); and if it is a double axis rotation, determine in which way the solar panel is rotated when rotating the horizontal angle or the pitch angle. The rotation can remove more shaded area, and in a manner that can obtain the highest power generation, the solar panel is rotated along the movement trajectory of the sun within the measured time to a position where the solar panel's light-receiving area is the largest, and after waiting for the extended time, the step (P4) is entered; and (P11) the solar panel is kept stationary for a buffer time, and the step (P4) is entered.
如請求項1所述之方法,其中:該最低運轉所需電量為該感光元件於無受到遮蔽之狀態時,該太陽能板所能產生之最大發電功率的30至80%;該門檻值A為該電池模組的負載額定值的60%至80%; 該門檻值B為該電池模組的負載額定值的70%至90%;以及該門檻值C為該電池模組的負載額定值的80%至99%。 The method as described in claim 1, wherein: the minimum power required for operation is 30% to 80% of the maximum power generated by the solar panel when the photosensitive element is not shielded; the threshold value A is 60% to 80% of the load rating of the battery module; the threshold value B is 70% to 90% of the load rating of the battery module; and the threshold value C is 80% to 99% of the load rating of the battery module. 如請求項1所述之方法,其中:於步驟(P2)中,該相關參數條件包含:一系統相關參數,係選自以下所組成之參數群組,或其結合:該太陽能板之電壓、該太陽能板之電流、該太陽能板之溫度、該太陽能板之總幅照度、該電池模組之電壓、該電池模組之電流、該電池模組之溫度、該電池模組之總幅照度、該太陽能板相對於該初始位置之一水平角角度、以及該太陽能板相對於該初始位置之一俯仰角角度。 The method as claimed in claim 1, wherein: in step (P2), the relevant parameter condition includes: a system-related parameter selected from the following parameter group, or a combination thereof: the voltage of the solar panel, the current of the solar panel, the temperature of the solar panel, the total irradiance of the solar panel, the voltage of the battery module, the current of the battery module, the temperature of the battery module, the total irradiance of the battery module, a horizontal angle of the solar panel relative to the initial position, and a pitch angle of the solar panel relative to the initial position.
TW112126531A 2023-07-17 2023-07-17 Method for establishing operation model for solar tracking system based on demand response TWI845378B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112126531A TWI845378B (en) 2023-07-17 2023-07-17 Method for establishing operation model for solar tracking system based on demand response

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112126531A TWI845378B (en) 2023-07-17 2023-07-17 Method for establishing operation model for solar tracking system based on demand response

Publications (2)

Publication Number Publication Date
TWI845378B true TWI845378B (en) 2024-06-11
TW202505865A TW202505865A (en) 2025-02-01

Family

ID=92541753

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112126531A TWI845378B (en) 2023-07-17 2023-07-17 Method for establishing operation model for solar tracking system based on demand response

Country Status (1)

Country Link
TW (1) TWI845378B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111865203A (en) * 2020-07-23 2020-10-30 上海亮衡信息科技有限公司 Photovoltaic power generation method, device, computer equipment and storage medium
US20210103303A1 (en) * 2019-10-02 2021-04-08 Array Technologies, Inc. Solar tracking during persistent cloudy conditions
US20210141047A1 (en) * 2017-07-07 2021-05-13 Nextracker Inc. Systems for and methods of positioning solar panels in an array of solar panels to efficiently capture sunlight
US20210216093A1 (en) * 2020-01-14 2021-07-15 Dish Network L.L.C. Systems and methods for optimizing solar device operations
TW202308291A (en) * 2021-08-02 2023-02-16 崑山科技大學 Method for establishing a power generation prediction model of a dual-axis solar tracking system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210141047A1 (en) * 2017-07-07 2021-05-13 Nextracker Inc. Systems for and methods of positioning solar panels in an array of solar panels to efficiently capture sunlight
US20210103303A1 (en) * 2019-10-02 2021-04-08 Array Technologies, Inc. Solar tracking during persistent cloudy conditions
US20210216093A1 (en) * 2020-01-14 2021-07-15 Dish Network L.L.C. Systems and methods for optimizing solar device operations
CN111865203A (en) * 2020-07-23 2020-10-30 上海亮衡信息科技有限公司 Photovoltaic power generation method, device, computer equipment and storage medium
TW202308291A (en) * 2021-08-02 2023-02-16 崑山科技大學 Method for establishing a power generation prediction model of a dual-axis solar tracking system

Also Published As

Publication number Publication date
TW202505865A (en) 2025-02-01

Similar Documents

Publication Publication Date Title
Chen et al. Forecasting-based power ramp-rate control strategies for utility-scale PV systems
CN103268115A (en) Power demand side monitoring system and method
CN103762937A (en) MPPT photovoltaic inverter control system and control method thereof
CN110518643A (en) A kind of energy storage joint fired power generating unit participates in the control method and device of AGC frequency modulation
CN106936160A (en) A kind of smart micro-grid system power coordination control method based on distributed power generation
Kichou et al. Energy performance enhancement of a research centre based on solar potential analysis and energy management
CN118572667A (en) Light and storage integrated collaborative optimization method
CN118432176A (en) Energy storage photovoltaic off-grid micro-grid control method and system for thin cloud layer disturbance
CN109713734B (en) A photovoltaic power regulation method, device, equipment and medium
CN114696352A (en) An operation control method of a battery energy storage system in a new energy distribution network
CN113054670A (en) Energy local area network-based optimization planning system
CN118409549A (en) Equipment control method and system based on green energy-saving building
TWI845378B (en) Method for establishing operation model for solar tracking system based on demand response
CN115333473A (en) Distributed power grid-connected control method, device and power grid operation monitoring system
CN119670232A (en) Design method for photovoltaic building integrated renovation in old residential areas
CN118868176A (en) An optimization scheduling method and system for energy storage system
CN119030009A (en) A photovoltaic power generation control method
TWI804942B (en) Method for establishing a power generation prediction model of a dual-axis solar tracking system
Yilmaz et al. The analysis on the impact of the roof angle on electricity energy generation of photovoltaic panels in Kahramanmaras, Turkey—A case study for all seasons
TWI838895B (en) Method for establishing a dual-axis sun-tracking solar power system operating model with shadow mode
CN108549416B (en) Sunlight tracking method and device for photovoltaic panel
Ganesan et al. Dynamic and intelligent load servicing strategy for a stand-alone solar PV-based microgrid
TWI765821B (en) Method for predicting maximum power generation of solar system in shadow mode
Odadzic et al. Energy efficiency and renewable energy solution in telecommunication
CN119962929B (en) Electric power scheduling method, system and storage medium of micro-grid based on Internet of things