TWI844453B - Electromagnetic interference suppressing method - Google Patents
Electromagnetic interference suppressing method Download PDFInfo
- Publication number
- TWI844453B TWI844453B TW112131725A TW112131725A TWI844453B TW I844453 B TWI844453 B TW I844453B TW 112131725 A TW112131725 A TW 112131725A TW 112131725 A TW112131725 A TW 112131725A TW I844453 B TWI844453 B TW I844453B
- Authority
- TW
- Taiwan
- Prior art keywords
- current
- conversion circuit
- electromagnetic interference
- output voltage
- interference suppression
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000006243 chemical reaction Methods 0.000 claims abstract description 129
- 230000001629 suppression Effects 0.000 claims abstract description 70
- 238000001514 detection method Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
本案為一種電源供應器領域,尤指一種電磁干擾抑制方法。 This case is related to the field of power supply, and in particular to a method for suppressing electromagnetic interference.
隨著資訊產業的快速發展,電源供應器已扮演著不可或缺的角色。電源供應器所接收的輸入電壓分為交流電和直流電。另外,電源供應器一般可分為兩個級別,即第一轉換電路及第二轉換電路,其中第二轉換電路可例如為諧振式轉換電路。 With the rapid development of the information industry, power supplies have played an indispensable role. The input voltage received by the power supply is divided into alternating current and direct current. In addition, the power supply can generally be divided into two levels, namely the first conversion circuit and the second conversion circuit, wherein the second conversion circuit can be, for example, a resonant conversion circuit.
當第一轉換電路接收交流電能時,第一轉換電路的輸出電壓具有兩倍頻市電壓特性。為諧振式轉換電路的第二轉換電路為了調節第一轉換電路的輸出電壓,諧振式轉換電路的切換頻率在額定功率下約±6kHz的變化,這種頻率變動類似頻率抖動(frequency Jitter)的特性,這樣的特性可以使第二轉換電路產生的電磁干擾的頻率平均分散在±6kHz範圍(<150kHz),以及兩倍頻約±12kHz範圍(>150kHz),故能夠獲得較好的電磁干擾抑制特性。 When the first conversion circuit receives AC power, the output voltage of the first conversion circuit has a twice-frequency mains voltage characteristic. The second conversion circuit, which is a resonant conversion circuit, adjusts the output voltage of the first conversion circuit. The switching frequency of the resonant conversion circuit varies by about ±6kHz at rated power. This frequency variation is similar to the characteristic of frequency jitter. Such characteristics can make the frequency of electromagnetic interference generated by the second conversion circuit evenly dispersed in the range of ±6kHz (<150kHz) and the twice-frequency range of about ±12kHz (>150kHz), so that better electromagnetic interference suppression characteristics can be obtained.
然而,當第一轉換電路接收直流電能時,第一轉換電路的輸出電壓中不再出現兩倍頻市電壓。對應地第二轉換電路的切換頻率便僅以±0.2kHz的小幅度變化。由於這種頻率變動量很小,因此第二轉換電路所產生的電磁干擾的 頻率會集中於當下的切換頻率的N倍(N=1,2,3....),如此一來,由於沒有頻率抖動的特性,因此當第一轉換電路接收直流電能時,電源供應器的電磁干擾抑制效果極差。 However, when the first conversion circuit receives DC power, the output voltage of the first conversion circuit no longer has a double frequency mains voltage. Correspondingly, the switching frequency of the second conversion circuit changes only by a small amplitude of ±0.2kHz. Since this frequency variation is very small, the frequency of the electromagnetic interference generated by the second conversion circuit will be concentrated at N times the current switching frequency (N=1,2,3....). In this way, since there is no frequency jitter characteristic, when the first conversion circuit receives DC power, the electromagnetic interference suppression effect of the power supply is extremely poor.
因此,實有必要發展一種電磁干擾抑制方法,以解決先前技術所面臨之問題。 Therefore, it is necessary to develop an electromagnetic interference suppression method to solve the problems faced by previous technologies.
本案之目的在於提供一種電磁干擾抑制方法,以解決傳統電源供應器在接收直流輸入電壓時,電源供應器的電磁干擾抑制效果極差之缺失。 The purpose of this case is to provide an electromagnetic interference suppression method to solve the problem that the electromagnetic interference suppression effect of the traditional power supply is extremely poor when receiving a DC input voltage.
為達上述目的,本案的一較佳實施例為一種電磁干擾抑制方法,應用於至少一電源供應器中,每一電源供應器包含第一轉換電路及第二轉換電路,第一轉換電路接收輸入電壓,並輸出第一輸出電壓及輸出電流,第二轉換電路以頻率調變進行控制,且接收第一輸出電壓及輸出電流,並輸出負載電流及第二輸出電壓,電磁干擾抑制方法包含:於至少一電源供應器之第一轉換電路接收的輸入電壓為直流電壓時,至少一電源供應器執行電磁干擾抑制動作;以及在電磁干擾抑制動作下,判斷負載電流是否大於預設電流及是否小於電流上限,且於判斷結果為負載電流小於預設電流或大於電流上限時,控制第一輸出電壓為固定,於負載電流大於預設電流且小於電流上限時,控制第一輸出電壓為變動,且控制第一輸出電壓的峰對峰值在不同負載電流下不為零。 To achieve the above-mentioned purpose, a preferred embodiment of the present invention is a method for suppressing electromagnetic interference, which is applied to at least one power supply. Each power supply includes a first conversion circuit and a second conversion circuit. The first conversion circuit receives an input voltage and outputs a first output voltage and an output current. The second conversion circuit is controlled by frequency modulation and receives the first output voltage and the output current, and outputs a load current and a second output voltage. The electromagnetic interference suppression method includes: connecting the first conversion circuit of at least one power supply to the first conversion circuit of the power supply. When the received input voltage is a direct current voltage, at least one power supply performs an electromagnetic interference suppression action; and in the electromagnetic interference suppression action, it is determined whether the load current is greater than a preset current and less than a current upper limit, and when the load current is less than the preset current or greater than the current upper limit, the first output voltage is controlled to be fixed, and when the load current is greater than the preset current and less than the current upper limit, the first output voltage is controlled to be variable, and the peak-to-peak value of the first output voltage is controlled to be non-zero under different load currents.
為達上述目的,本案的另一較佳實施例為一種電磁干擾抑制方法,應用於至少一電源供應器中,每一電源供應器包含第一轉換電路及第二轉換電路,第一轉換電路接收輸入電壓,並輸出第一輸出電壓及輸出電流,第二轉換 電路以頻率調變進行控制,且接收第一輸出電壓及輸出電流,並輸出負載電流及第二輸出電壓,電磁干擾抑制方法包含:於至少一電源供應器之第一轉換電路接收的輸入電壓為直流電壓時,至少電源供應器執行電磁干擾抑制動作;以及在電磁干擾抑制動作下,判斷負載電流是否大於預設電流及是否小於電流上限,於負載電流大於預設電流且小於電流上限時,控制第一輸出電壓為變動,且控制第一輸出電壓的峰對峰值在不同負載電流下不為零。 To achieve the above-mentioned purpose, another preferred embodiment of the present invention is an electromagnetic interference suppression method, which is applied to at least one power supply, each power supply comprising a first conversion circuit and a second conversion circuit, the first conversion circuit receiving an input voltage and outputting a first output voltage and an output current, the second conversion circuit being controlled by frequency modulation, receiving the first output voltage and the output current, and outputting a load current and a second output voltage, the electromagnetic interference suppression method The method includes: when the input voltage received by the first conversion circuit of at least one power supply is a DC voltage, at least the power supply performs an electromagnetic interference suppression action; and under the electromagnetic interference suppression action, it is determined whether the load current is greater than a preset current and less than the current upper limit, and when the load current is greater than the preset current and less than the current upper limit, the first output voltage is controlled to change, and the peak-to-peak value of the first output voltage is controlled to be non-zero under different load currents.
1:電源供應器 1: Power supply
2:第一轉換電路 2: First conversion circuit
3:第二轉換電路 3: Second conversion circuit
Vin:輸入電壓 Vin: Input voltage
Vo1:第一輸出電壓 Vo1: first output voltage
Io:輸出電流 Io: output current
IL:負載電流 IL: load current
IL_stop:預設電流 IL_stop: default current
IL_max:電流上限 IL_max: current upper limit
Vo2:第二輸出電壓 Vo2: Second output voltage
4:第一控制器 4: First controller
5:第二控制器 5: Second controller
S1~S2:電磁干擾抑制方法的步驟 S1~S2: Steps of electromagnetic interference suppression method
Vo1_ref:電壓參考值 Vo1_ref: voltage reference value
△Vo1:峰對峰值 △Vo1: Peak to peak value
△fsw:變化量 △fsw: Variation
第1圖為本案較佳實施例的電磁干擾抑制方法的步驟流程圖;第2圖為第1圖所示之電磁干擾抑制方法所應用的電源供應器的結構示意圖;第3圖為第1圖所示之電磁干擾抑制方法在控制第一輸出電壓為變動,且第一輸出電壓的峰對峰值在不同負載下為固定時,電源供應器的特性曲線圖;第4圖為第1圖所示之電磁干擾抑制方法在控制第一輸出電壓為變動,且第一輸出電壓的峰對峰值隨不同負載電流而線性改變的特性曲線圖;第5圖為第2圖所示之電源供應器的個數在複數個情況下時的連接示意圖;第6圖為讓複數個電源供應器的複數個第一轉換電路所輸出的複數個第一輸出電壓存在相位差時的電壓、電流時序示意圖。 FIG. 1 is a flow chart of the steps of the electromagnetic interference suppression method of the preferred embodiment of the present invention; FIG. 2 is a schematic diagram of the structure of the power supply to which the electromagnetic interference suppression method shown in FIG. 1 is applied; FIG. 3 is a characteristic curve of the power supply when the electromagnetic interference suppression method shown in FIG. 1 controls the first output voltage to be variable and the peak-to-peak value of the first output voltage is fixed under different loads; FIG. 4 is a characteristic curve of the power supply shown in FIG. 1; The magnetic interference suppression method controls the first output voltage to be variable, and the peak-to-peak value of the first output voltage changes linearly with different load currents. Figure 5 is a connection diagram of the power supply shown in Figure 2 in multiple situations. Figure 6 is a voltage and current timing diagram when multiple first output voltages output by multiple first conversion circuits of multiple power supplies have phase differences.
第7圖為未讓複數個電源供應器的複數個第一轉換電路所輸出的複數個第一輸出電壓存在相位差及讓複數個電源供應器的複數個第一轉換電路 所輸出的複數個第一輸出電壓存在相位差時,電源供應器的電壓、電流時序示意圖。 Figure 7 is a schematic diagram of the voltage and current timing of the power supply when the multiple first output voltages output by the multiple first conversion circuits of the multiple power supplies do not have a phase difference and when the multiple first output voltages output by the multiple first conversion circuits of the multiple power supplies have a phase difference.
體現本案特徵與優點的一些典型實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖式在本質上系當作說明之用,而非用於限制本案。 Some typical embodiments that embody the features and advantages of this case will be described in detail in the following description. It should be understood that this case can have various variations in different forms, all of which do not deviate from the scope of this case, and the descriptions and drawings therein are essentially for illustrative purposes rather than for limiting this case.
請參閱第1圖、第2圖、第3圖及第4圖,其中第1圖為本案較佳實施例的電磁干擾抑制方法的步驟流程圖,第2圖為第1圖所示之電磁干擾抑制方法所應用的電源供應器的結構示意圖,第3圖為第1圖所示之電磁干擾抑制方法在控制第一輸出電壓為變動,且第一輸出電壓的峰對峰值在不同負載下為固定時,電源供應器的特性曲線圖,第4圖為第1圖所示之電磁干擾抑制方法在控制第一輸出電壓為變動,且第一輸出電壓的峰對峰值隨不同負載電流而線性改變的特性曲線圖。本實施例的電磁干擾抑制方法可應用於如第2圖所示的電源供應器1中,其中電源供應器1包含第一轉換電路2及第二轉換電路3。第一轉換電路2接收輸入電壓Vin,並輸出第一輸出電壓Vo1及輸出電流Io,第二轉換電路3以頻率調變進行控制,且接收第一輸出電壓Vo1及輸出電流Io,並輸出負載電流IL及第二輸出電壓Vo2。由上可知,第一轉換電路2所輸出的第一輸出電壓Vo1及輸出電流Io即為第二轉換電路3所接收的輸入電壓及輸入電流。 Please refer to Figures 1, 2, 3 and 4, wherein Figure 1 is a step flow chart of the electromagnetic interference suppression method of the preferred embodiment of the present invention, Figure 2 is a structural schematic diagram of the power supply to which the electromagnetic interference suppression method shown in Figure 1 is applied, Figure 3 is a characteristic curve diagram of the power supply when the electromagnetic interference suppression method shown in Figure 1 controls the first output voltage to be variable and the peak-to-peak value of the first output voltage is fixed under different loads, and Figure 4 is a characteristic curve diagram of the electromagnetic interference suppression method shown in Figure 1 when the first output voltage is controlled to be variable and the peak-to-peak value of the first output voltage changes linearly with different load currents. The electromagnetic interference suppression method of this embodiment can be applied to a power supply 1 as shown in FIG. 2, wherein the power supply 1 includes a first conversion circuit 2 and a second conversion circuit 3. The first conversion circuit 2 receives an input voltage Vin and outputs a first output voltage Vo1 and an output current Io. The second conversion circuit 3 is controlled by frequency modulation and receives the first output voltage Vo1 and the output current Io, and outputs a load current IL and a second output voltage Vo2. As can be seen from the above, the first output voltage Vo1 and the output current Io output by the first conversion circuit 2 are the input voltage and the input current received by the second conversion circuit 3.
請參閱第5圖,其為第2圖所示之電源供應器的個數在複數個情況下時的連接示意圖。本案所提及之電磁干擾抑制方法可不只應用於如第2圖所示的單一電源供應器1中,亦可應用於複數個電源供應器1中,其中複數個電源供應 器1的輸入端並聯電連接,即複數個電源供應器1的複數個第一轉換電路2的輸入端並聯連接。另外,複數個電源供應器1的輸出端為並聯電連接,即複數個電源供應器1的複數個第二轉換電路3的輸出端為並聯連接。 Please refer to Figure 5, which is a schematic diagram of the connection of the power supply shown in Figure 2 in multiple situations. The electromagnetic interference suppression method mentioned in this case can be applied not only to a single power supply 1 as shown in Figure 2, but also to multiple power supplies 1, wherein the input ends of multiple power supplies 1 are electrically connected in parallel, that is, the input ends of multiple first conversion circuits 2 of multiple power supplies 1 are connected in parallel. In addition, the output ends of multiple power supplies 1 are electrically connected in parallel, that is, the output ends of multiple second conversion circuits 3 of multiple power supplies 1 are connected in parallel.
於一些實施例中,第一轉換電路2可為但不限於升壓電路或降壓電路,第二轉換電路3可為諧振式轉換電路,例如LLC諧振式轉換電路或LCL諧振式轉換電路等。另外,電源供應器1更包含第一控制器4及第二控制器5,第一控制器4用以控制第一轉換電路2之運作,第二控制器5用以控制第二轉換電路3之運作,且第一控制器4及第二控制器5彼此相通訊。 In some embodiments, the first conversion circuit 2 may be, but is not limited to, a boost circuit or a buck circuit, and the second conversion circuit 3 may be a resonant conversion circuit, such as an LLC resonant conversion circuit or an LCL resonant conversion circuit. In addition, the power supply 1 further includes a first controller 4 and a second controller 5, the first controller 4 is used to control the operation of the first conversion circuit 2, the second controller 5 is used to control the operation of the second conversion circuit 3, and the first controller 4 and the second controller 5 communicate with each other.
本實施例的電磁干擾抑制方法包含步驟如下。步驟S1,於電源供應器1之第一轉換電路2接收的輸入電壓Vin為直流電壓時,至少一電源供應器1執行電磁干擾抑制動作。由於在輸入電壓Vin為交流電壓時,電源供應器1之第二轉換電路3具有良好的電磁干擾抑制效果,因此本案的電磁干擾抑制方法的電磁干擾抑制動作會於輸入電壓Vin為直流電壓時執行。 The electromagnetic interference suppression method of this embodiment includes the following steps. Step S1, when the input voltage Vin received by the first conversion circuit 2 of the power supply 1 is a DC voltage, at least one power supply 1 performs an electromagnetic interference suppression action. Since the second conversion circuit 3 of the power supply 1 has a good electromagnetic interference suppression effect when the input voltage Vin is an AC voltage, the electromagnetic interference suppression action of the electromagnetic interference suppression method of this case will be performed when the input voltage Vin is a DC voltage.
步驟S2,在電磁干擾抑制動作下,判斷負載電流IL是否大於預設電流IL_stop及是否小於電流上限IL_max,且於判斷結果為負載電流IL小於預設電流IL_stop或大於電流上限IL_max時,控制第一輸出電壓Vo1為固定,即第一輸出電壓Vo1的峰對峰值△Vo1為零(即第一輸出電壓Vo1等於電壓參考值Vo1_ref),於負載電流IL大於預設電流IL_stop且小於電流上限IL_max時,控制第一輸出電壓Vo1為變動,且控制第一輸出電壓Vo1的峰對峰值在不同負載電流IL下不為零。於一些實施例中,在步驟S2中,於負載電流IL大於預設電流IL_stop且小於電流上限IL_max時,可控制第一輸出電壓Vo1的峰對峰值△Vo1在不同負載電流IL下為固定,或控制第一輸出電壓Vo1的峰對峰值△Vo1隨不同負載電流IL 而線性改變。值得一提,本案所指第一輸出電壓Vo1的峰對峰值△Vo1為零是指理想情況下為零,然實際應用時,因第一轉換電路2為切換式電源轉換電路,故第一輸出電壓Vo1即便控制在固定輸出值時亦會存在微小漣波,此微小漣波在此忽略不考慮。 In step S2, under the electromagnetic interference suppression action, it is determined whether the load current IL is greater than the preset current IL_stop and less than the current upper limit IL_max. When the determination result is that the load current IL is less than the preset current IL_stop or greater than the current upper limit IL_max, the first output voltage Vo1 is controlled to be fixed, that is, the peak-to-peak value △Vo1 of the first output voltage Vo1 is zero (that is, the first output voltage Vo1 is equal to the voltage reference value Vo1_ref). When the load current IL is greater than the preset current IL_stop and less than the current upper limit IL_max, the first output voltage Vo1 is controlled to be variable, and the peak-to-peak value of the first output voltage Vo1 is controlled to be non-zero under different load currents IL. In some embodiments, in step S2, when the load current IL is greater than the preset current IL_stop and less than the current upper limit IL_max, the peak-to-peak value △Vo1 of the first output voltage Vo1 can be controlled to be fixed under different load currents IL, or the peak-to-peak value △Vo1 of the first output voltage Vo1 can be controlled to change linearly with different load currents IL. It is worth mentioning that the peak-to-peak value △Vo1 of the first output voltage Vo1 referred to in this case is zero, which means zero under ideal conditions. However, in actual application, because the first conversion circuit 2 is a switching power conversion circuit, the first output voltage Vo1 will have a small ripple even when it is controlled at a fixed output value. This small ripple is ignored here.
以下將針對本案之電磁干擾抑制方法的原理及步驟S2進一步說明。當輸入電壓Vin為直流電壓時,本案通過控制第一轉換電路2的第一輸出電壓Vo1為變動來調節第二轉換電路3所接收之輸入電壓。當負載(即負載電流IL)增加時,本案增加控制第一輸出電壓Vo1,而在負載減少時,本案則降低控制第一輸出電壓Vo1。更進一步說明,第一轉換電路2的第一輸出電壓Vo1連接到第二轉換電路3的輸入。由於第二轉換電路3以頻率調變進行控制,且第二轉換電路3所接收的輸入電壓(即第一輸出電壓Vo1)受到變化的影響,為了調整第二輸出電壓Vo2為定值,第二轉換電路3會相應地改變其切換頻率fsw。如果第一輸出電壓Vo1的變動量較大,則切換頻率fsw的變化也較大。相反,如果第一輸出電壓Vo1的變動量較小,則切換頻率fsw的變化也較小。 The following will further explain the principle and step S2 of the electromagnetic interference suppression method of this case. When the input voltage Vin is a DC voltage, this case adjusts the input voltage received by the second conversion circuit 3 by controlling the first output voltage Vo1 of the first conversion circuit 2 to change. When the load (i.e., the load current IL) increases, this case increases the control of the first output voltage Vo1, and when the load decreases, this case reduces the control of the first output voltage Vo1. Further explanation, the first output voltage Vo1 of the first conversion circuit 2 is connected to the input of the second conversion circuit 3. Since the second conversion circuit 3 is controlled by frequency modulation, and the input voltage received by the second conversion circuit 3 (i.e., the first output voltage Vo1) is affected by the change, in order to adjust the second output voltage Vo2 to a constant value, the second conversion circuit 3 will change its switching frequency fsw accordingly. If the variation of the first output voltage Vo1 is large, the variation of the switching frequency fsw is also large. On the contrary, if the variation of the first output voltage Vo1 is small, the variation of the switching frequency fsw is also small.
此外,在任何轉換電路的電磁干擾特性中(包括諧振轉換電路),可以觀察到以下情況,即當負載增加時,轉換電路產生的N階諧波能量也隨之增加。相反地,當負載減少時,轉換電路產生的N階諧波能量則減少。 In addition, in the electromagnetic interference characteristics of any conversion circuit (including resonant conversion circuits), it can be observed that when the load increases, the N-order harmonic energy generated by the conversion circuit also increases. Conversely, when the load decreases, the N-order harmonic energy generated by the conversion circuit decreases.
這種物理特性在電磁干擾規範的限制可知。當負載增加時,產生的諧波能量會越接近最大限制值;反之,當負載減少時,產生的諧波能量則會遠離最大限制值。藉此,本案利用第一轉換電路2輸出的第一輸出電壓Vo1和第二轉換電路3的電磁干擾特性,根據不同的負載狀況,調整第一轉換電路2輸出的第一輸出電壓Vo1。當負載增加時,產生的諧波能量也會隨之增加,為了符合 規範限制,第一轉換電路2輸出的第一輸出電壓Vo1的變動量也會隨之增加。反之,當負載減小時,產生的諧波能量也會減少,因此可以通過第一轉換電路2輸出的第一輸出電壓Vo1使其變動量變小或保持不變。 This physical property is known from the limits of electromagnetic interference specifications. When the load increases, the harmonic energy generated will be closer to the maximum limit value; conversely, when the load decreases, the harmonic energy generated will be far away from the maximum limit value. In this way, the first output voltage Vo1 output by the first conversion circuit 2 and the electromagnetic interference characteristics of the second conversion circuit 3 are used in this case to adjust the first output voltage Vo1 output by the first conversion circuit 2 according to different load conditions. When the load increases, the harmonic energy generated will also increase. In order to meet the regulatory limits, the variation of the first output voltage Vo1 output by the first conversion circuit 2 will also increase. Conversely, when the load decreases, the generated harmonic energy will also decrease, so the variation of the first output voltage Vo1 output by the first conversion circuit 2 can be reduced or kept unchanged.
因此當步驟S2控制第一輸出電壓Vo1為變動,且第一輸出電壓Vo1的峰對峰值△Vo1在不同負載電流IL下為固定時,則如第3圖所示,電源供應器1存在三個操作區間,即第I操作區間至第III操作區間。第I操作區間對應為負載電流IL小於預設電流IL_stop,其中預設電流IL_stop可等於電源供應器1產生的諧波能量在符合法規限制時的負載電流IL的最小值,而在第I操作區間中,第一轉換電路2輸出的第一輸出電壓Vo1被控制為固定。第II操作區間對應為負載電流IL大於預設電流IL_stop但小於電流上限IL_max,在第II操作區間中,第一轉換電路2輸出的第一輸出電壓Vo1被控制為變動,且第一輸出電壓Vo1的峰對峰值△Vo1在不同負載電流IL下為固定。此外,對應於峰對峰值△Vo1在不同負載電流IL下為固定,故第二轉換電路3切換頻率fsw的變化量△fsw在不同負載電流IL下也為固定。第III操作區間對應為負載電流IL大於電流上限IL_max,其中電流上限IL_max可為但不限於電源供應器1的最大額定輸出電流,而在第III操作區間中,第一轉換電路2輸出的第一輸出電壓Vo1被控制為固定。 Therefore, when the first output voltage Vo1 is controlled to be variable in step S2, and the peak-to-peak value △Vo1 of the first output voltage Vo1 is fixed under different load currents IL, as shown in FIG. 3, the power supply 1 has three operating ranges, namely, the first operating range to the third operating range. The first operating range corresponds to the load current IL being less than the preset current IL_stop, wherein the preset current IL_stop may be equal to the minimum value of the load current IL when the harmonic energy generated by the power supply 1 meets the regulatory limits, and in the first operating range, the first output voltage Vo1 output by the first conversion circuit 2 is controlled to be fixed. The second operation range corresponds to the load current IL being greater than the preset current IL_stop but less than the current upper limit IL_max. In the second operation range, the first output voltage Vo1 output by the first conversion circuit 2 is controlled to be variable, and the peak-to-peak value △Vo1 of the first output voltage Vo1 is fixed under different load currents IL. In addition, corresponding to the peak-to-peak value △Vo1 being fixed under different load currents IL, the variation △fsw of the switching frequency fsw of the second conversion circuit 3 is also fixed under different load currents IL. The third operation range corresponds to the load current IL being greater than the current upper limit IL_max, wherein the current upper limit IL_max may be but is not limited to the maximum rated output current of the power supply 1, and in the third operation range, the first output voltage Vo1 output by the first conversion circuit 2 is controlled to be fixed.
另外,當步驟S2控制第一輸出電壓Vo1為變動,且第一輸出電壓Vo1的峰對峰值△Vo1隨不同負載電流IL而線性改變時,則如第4圖所示,電源供應器1存在三個操作區間,即第I操作區間至第III操作區間,其中第4圖所示的第I操作區間及第III操作區間的執行條件及電源供應器1的控制方式相似於第3圖所示的第I操作區間及第III操作區間的執行條件及電源供應器1的控制方式,於此不 再贅述。在第4圖中,第II操作區間對應為負載電流IL大於預設電流IL_stop但小於電流上限IL_max,在第II操作區間中,第一轉換電路2輸出的第一輸出電壓Vo1被控制為變動,且第一輸出電壓Vo1的峰對峰值△Vo1隨不同負載電流IL而線性改變。此外,對應於峰對峰值△Vo1隨不同負載電流IL而線性改變,故第二轉換電路3切換頻率fsw的變化量△fsw在不同負載電流IL也線性改變。此外,於一些實施例中,第一輸出電壓Vo1的峰對峰值△Vo1等於負載電流IL與預設電流IL_stop的相減後乘上固定值。 In addition, when the first output voltage Vo1 is controlled to be variable in step S2, and the peak-to-peak value △Vo1 of the first output voltage Vo1 changes linearly with different load currents IL, as shown in FIG. 4, the power supply 1 has three operating ranges, namely, the first operating range to the third operating range, wherein the execution conditions of the first operating range and the third operating range and the control method of the power supply 1 shown in FIG. 4 are similar to the execution conditions of the first operating range and the third operating range and the control method of the power supply 1 shown in FIG. 3, and are not further described here. In Figure 4, the second operation range corresponds to the load current IL being greater than the preset current IL_stop but less than the current upper limit IL_max. In the second operation range, the first output voltage Vo1 output by the first conversion circuit 2 is controlled to be variable, and the peak-to-peak value △Vo1 of the first output voltage Vo1 changes linearly with different load currents IL. In addition, corresponding to the linear change of the peak-to-peak value △Vo1 with different load currents IL, the change △fsw of the switching frequency fsw of the second conversion circuit 3 also changes linearly with different load currents IL. In addition, in some embodiments, the peak-to-peak value △Vo1 of the first output voltage Vo1 is equal to the subtraction of the load current IL and the preset current IL_stop multiplied by a fixed value.
於上述內容可知,本案的電磁干擾抑制方法在電源供應器1之第一轉換電路2接收的輸入電壓Vin為直流電壓時,讓電源供應器1執行電磁干擾抑制動作,以在負載電流IL大於預設電流IL_stop且小於電流上限IL_max時,控制第一輸出電壓Vo1為變動,且控制第一輸出電壓Vo1的峰對峰值△Vo1在不同負載電流IL下不為零,例如第一輸出電壓Vo1的峰對峰值△Vo1在不同負載電流IL下為固定,或第一輸出電壓Vo1的峰對峰值△Vo1隨不同負載電流IL而線性改變,藉此進行電磁干擾抑制,反之,當負載電流IL小於預設電流IL_stop或大於電流上限IL_max而無電磁干擾抑制需求時,則控制第一輸出電壓Vo1為固定,如此一來,可提升電源供應器1的電磁干擾抑制效果。 As can be seen from the above content, the electromagnetic interference suppression method of the present case allows the power supply 1 to perform electromagnetic interference suppression when the input voltage Vin received by the first conversion circuit 2 of the power supply 1 is a DC voltage, so that when the load current IL is greater than the preset current IL_stop and less than the current upper limit IL_max, the first output voltage Vo1 is controlled to be variable, and the peak-to-peak value △Vo1 of the first output voltage Vo1 is controlled to be non-zero under different load currents IL. For example, the first output The peak-to-peak value △Vo1 of the voltage Vo1 is fixed under different load currents IL, or the peak-to-peak value △Vo1 of the first output voltage Vo1 changes linearly with different load currents IL, thereby suppressing electromagnetic interference. On the contrary, when the load current IL is less than the preset current IL_stop or greater than the current upper limit IL_max and there is no electromagnetic interference suppression requirement, the first output voltage Vo1 is controlled to be fixed. In this way, the electromagnetic interference suppression effect of the power supply 1 can be improved.
於一些實施例中,第二控制器5檢測負載電流IL的大小,並將檢測結果通知第一控制器4,使第一控制器4依據檢測結果中的電壓參考值Vo1_ref(圖第3圖或第4圖所示)控制第一轉換電路2的第一輸出電壓Vo1。 In some embodiments, the second controller 5 detects the magnitude of the load current IL and notifies the first controller 4 of the detection result, so that the first controller 4 controls the first output voltage Vo1 of the first conversion circuit 2 according to the voltage reference value Vo1_ref (as shown in FIG. 3 or FIG. 4) in the detection result.
請參閱第6圖,其係為讓兩個電源供應器的兩個第一轉換電路所輸出的兩個第一輸出電壓存在相位差時,電源供應器的電壓、電流時序示意圖。於一些實施例中,當本案的電磁干擾抑制方法應用如第5圖所示之複數個電源供 應器1中,可透過例如外部控制器(未圖示)或複數個電源供應器1內部控制器之間的互相通訊等讓複數個電源供應器1的複數個第一轉換電路2所輸出的複數個第一輸出電壓Vo1變動量存在相位差,使複數個第一轉換電路2所輸出的複數個輸出電流Io的電流漣波也存在相位差而相互抵消,如此一來,可避免複數個電源供應器1並聯連接時所加成的輸出電流Io漣波過大問題。另外,複數個電源供應器1的複數個第一轉換電路2所輸出的複數個第一輸出電壓Vo1的相位差為360°/N,N為電源供應器1的個數。如第6圖所示,當本案的電磁干擾抑制方法應用兩個電源供應器1中時,則讓兩個電源供應器1的兩個第一轉換電路2所輸出的兩個第一輸出電壓Vo1(在第6圖中其中之一第一轉換電路2所輸出的第一輸出電壓標示為a,另一第一轉換電路2所輸出的第一輸出電壓標示為b)存在(360°/2)=180°的相位差,使得兩個第一轉換電路2所輸出的兩個輸出電流Io(在第6圖中其中之一第一轉換電路2所輸出的輸出電流Io標示為a1,另一第一轉換電路2所輸出的輸出電流Io標示為b1)也存在180°的相位差,因此兩個輸出電流Io的電流漣波會相互抵消(如第6圖中的Io總和(a1+b1))。 Please refer to FIG. 6 , which is a schematic diagram of the voltage and current timing of the power supply when there is a phase difference between the two first output voltages output by the two first conversion circuits of the two power supplies. In some embodiments, when the electromagnetic interference suppression method of the present invention is applied to a plurality of power supplies 1 as shown in FIG. 5, a phase difference can be created in the variation of a plurality of first output voltages Vo1 output by a plurality of first conversion circuits 2 of the plurality of power supplies 1, for example, through mutual communication between an external controller (not shown) or controllers inside the plurality of power supplies 1, so that the current ripples of a plurality of output currents Io output by the plurality of first conversion circuits 2 also have a phase difference and cancel each other out. In this way, the problem of excessive ripples in the output current Io added when the plurality of power supplies 1 are connected in parallel can be avoided. In addition, the phase difference of the plurality of first output voltages Vo1 output by the plurality of first conversion circuits 2 of the plurality of power supplies 1 is 360°/N, where N is the number of power supplies 1. As shown in FIG6 , when the electromagnetic interference suppression method of the present case is applied to two power supplies 1, the two first output voltages Vo1 output by the two first conversion circuits 2 of the two power supplies 1 (the first output voltage output by one of the first conversion circuits 2 is marked as a, and the first output voltage output by the other first conversion circuit 2 is marked as b in FIG6 ) are (360°/2)=180°. The phase difference makes the two output currents Io output by the two first conversion circuits 2 (in Figure 6, the output current Io output by one of the first conversion circuits 2 is marked as a1, and the output current Io output by the other first conversion circuit 2 is marked as b1) also have a phase difference of 180°, so the current ripples of the two output currents Io will cancel each other (such as the sum of Io (a1+b1) in Figure 6).
請參閱第7圖,其係為未讓複數個電源供應器的複數個第一轉換電路所輸出的複數個第一輸出電壓存在相位差及讓複數個電源供應器的複數個第一轉換電路所輸出的複數個第一輸出電壓存在相位差時,電源供應器的電壓、電流時序示意圖。在第7圖中,是以兩個並聯連接的電源供應器1為例來示範性說明,其中A1為第一個電源供應器1的第一轉換電路2所輸出的輸出電流Io的波形,A2為第二個電源供應器1的第一轉換電路2所輸出的輸出電流Io的波形,A3為第一個電源供應器1的第一轉換電路2所輸出的第一輸出電壓Vo1的波形,A4為第二個電源供應器1的第一轉換電路2所輸出的第一輸出電壓Vo1的波形,A5為第 一個電源供應器1的第一轉換電路2所輸出的輸出電流Io及第二個電源供應器1的第一轉換電路2所輸出的輸出電流Io兩者總和後的波形,T為未讓複數個電源供應器的複數個第一轉換電路所輸出的複數個第一輸出電壓存在相位差及讓複數個電源供應器的複數個第一轉換電路所輸出的複數個第一輸出電壓存在相位差的判斷點。由第7圖所示可知,當在T點以後,由於已讓兩個電源供應器1的兩個第一轉換電路2所輸出兩個第一輸出電壓Vo1存在180°相位差,故可使兩個第一轉換電路2所輸出的兩個輸出電流Io的電流漣波相互抵消。 Please refer to Figure 7, which is a schematic diagram of the voltage and current timing of the power supply when there is no phase difference between the multiple first output voltages output by the multiple first conversion circuits of the multiple power supplies and when there is a phase difference between the multiple first output voltages output by the multiple first conversion circuits of the multiple power supplies. In Figure 7, two power supplies 1 connected in parallel are used as an example for illustrative explanation, wherein A1 is the waveform of the output current Io output by the first conversion circuit 2 of the first power supply 1, A2 is the waveform of the output current Io output by the first conversion circuit 2 of the second power supply 1, A3 is the waveform of the first output voltage Vo1 output by the first conversion circuit 2 of the first power supply 1, and A4 is the waveform of the first output voltage Vo1 output by the first conversion circuit 2 of the second power supply 1. A5 is the waveform of an output voltage Vo1, A5 is the waveform of the sum of the output current Io output by the first conversion circuit 2 of the first power supply 1 and the output current Io output by the first conversion circuit 2 of the second power supply 1, and T is the judgment point for not allowing the multiple first output voltages output by the multiple first conversion circuits of the multiple power supplies to have a phase difference and allowing the multiple first output voltages output by the multiple first conversion circuits of the multiple power supplies to have a phase difference. As shown in Figure 7, after point T, since the two first output voltages Vo1 output by the two first conversion circuits 2 of the two power supplies 1 have a 180° phase difference, the current ripples of the two output currents Io output by the two first conversion circuits 2 can cancel each other.
當然於其他實施例中,前述電磁干擾抑制方法的步驟S2可改為:在電磁干擾抑制動作下,判斷負載電流IL是否大於預設電流IL_stop及是否小於電流上限IL_max,且於判斷結果為負載電流IL大於預設電流IL_stop且小於電流上限IL_max時,控制第一輸出電壓Vo1為變動,且控制第一輸出電壓Vo1的峰對峰值在不同負載電流IL下不為零,例如控制第一輸出電壓Vo1的峰對峰值△Vo1在不同負載電流IL下為固定,或控制第一輸出電壓Vo1的峰對峰值△Vo1隨不同負載電流IL而線性改變。 Of course, in other embodiments, step S2 of the aforementioned electromagnetic interference suppression method can be changed to: in the electromagnetic interference suppression action, determine whether the load current IL is greater than the preset current IL_stop and less than the current upper limit IL_max, and when the determination result is that the load current IL is greater than the preset current IL_stop and less than the current upper limit IL_max, control the first output voltage Vo1 to be variable, and control the peak-to-peak value of the first output voltage Vo1 to be non-zero under different load currents IL, for example, control the peak-to-peak value △Vo1 of the first output voltage Vo1 to be fixed under different load currents IL, or control the peak-to-peak value △Vo1 of the first output voltage Vo1 to change linearly with different load currents IL.
綜上所述,本案提供一種電磁干擾抑制方法,電磁干擾抑制方法在電源供應器之第一轉換電路接收的輸入電壓為直流電壓時,讓電源供應器執行電磁干擾抑制動作,以在負載電流大於預設電流且小於電流上限時,控制第一輸出電壓為變動,且控制第一輸出電壓的峰對峰值在不同負載電流下不為零,反之,當負載電流小於預設電流或大於電流上限而無電磁干擾抑制需求時,則控制第一輸出電壓為固定,如此一來,可提升電源供應器的電磁干擾抑制效果。 In summary, this case provides an electromagnetic interference suppression method. When the input voltage received by the first conversion circuit of the power supply is a DC voltage, the electromagnetic interference suppression method allows the power supply to perform electromagnetic interference suppression action, so that when the load current is greater than a preset current and less than the current upper limit, the first output voltage is controlled to be variable, and the peak-to-peak value of the first output voltage is controlled to be non-zero under different load currents. On the contrary, when the load current is less than the preset current or greater than the current upper limit and there is no electromagnetic interference suppression requirement, the first output voltage is controlled to be fixed. In this way, the electromagnetic interference suppression effect of the power supply can be improved.
S1~S2:電磁干擾抑制方法的步驟 S1~S2: Steps of electromagnetic interference suppression method
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112131725A TWI844453B (en) | 2023-08-23 | 2023-08-23 | Electromagnetic interference suppressing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112131725A TWI844453B (en) | 2023-08-23 | 2023-08-23 | Electromagnetic interference suppressing method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI844453B true TWI844453B (en) | 2024-06-01 |
TW202510481A TW202510481A (en) | 2025-03-01 |
Family
ID=92541510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112131725A TWI844453B (en) | 2023-08-23 | 2023-08-23 | Electromagnetic interference suppressing method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI844453B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101325367A (en) * | 2007-06-14 | 2008-12-17 | 海尔集团公司 | Circuit for correcting part active power factor |
CN104377951A (en) * | 2014-11-12 | 2015-02-25 | 广东美的制冷设备有限公司 | Power factor correction method and device, air conditioner and electric appliance |
CN105226953A (en) * | 2015-09-23 | 2016-01-06 | 成都芯源系统有限公司 | Jitter frequency control circuit and control method thereof |
CN105978317A (en) * | 2015-03-13 | 2016-09-28 | 富士电机株式会社 | Switching power supply device control circuit and switching power supply device |
CN113162426A (en) * | 2021-04-21 | 2021-07-23 | 深圳南云微电子有限公司 | Control method and controller of isolated converter |
US20210313875A1 (en) * | 2020-04-02 | 2021-10-07 | Stmicroelectronics S.R.L. | Method to control a variable frequency switching converter, and corresponding variable frequency converter apparatus |
-
2023
- 2023-08-23 TW TW112131725A patent/TWI844453B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101325367A (en) * | 2007-06-14 | 2008-12-17 | 海尔集团公司 | Circuit for correcting part active power factor |
CN104377951A (en) * | 2014-11-12 | 2015-02-25 | 广东美的制冷设备有限公司 | Power factor correction method and device, air conditioner and electric appliance |
CN105978317A (en) * | 2015-03-13 | 2016-09-28 | 富士电机株式会社 | Switching power supply device control circuit and switching power supply device |
CN105226953A (en) * | 2015-09-23 | 2016-01-06 | 成都芯源系统有限公司 | Jitter frequency control circuit and control method thereof |
US20210313875A1 (en) * | 2020-04-02 | 2021-10-07 | Stmicroelectronics S.R.L. | Method to control a variable frequency switching converter, and corresponding variable frequency converter apparatus |
CN113162426A (en) * | 2021-04-21 | 2021-07-23 | 深圳南云微电子有限公司 | Control method and controller of isolated converter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5104947B2 (en) | Switching power supply | |
CN103513685B (en) | Current mode voltage regulator with auto-compensation | |
JP5273158B2 (en) | PFC converter | |
US8004262B2 (en) | Method and apparatus to control a power factor correction circuit | |
US8456875B2 (en) | Power supply device and uniform current control method | |
US9158323B2 (en) | Power control circuit and power supply system employing the same | |
TWI496409B (en) | Single-phase three-wire power control system and power control method therefor | |
US9287803B2 (en) | Inverter for converting direct current power into alternating current power and direct current bus voltage regulating method thereof and application using the same | |
US8300437B2 (en) | Multi-output DC-to-DC conversion apparatus with voltage-stabilizing function | |
JP2013021861A (en) | Power-supply device and method of controlling the same | |
CN112152441A (en) | Power factor corrector circuit with discontinuous conduction mode and continuous conduction mode | |
JP6824362B1 (en) | Power converter | |
JP2001008452A (en) | Power supply device | |
WO2015052743A1 (en) | Electrical power converter | |
TWI844453B (en) | Electromagnetic interference suppressing method | |
WO2019150694A1 (en) | Power conversion device and power conversion method | |
TW202510481A (en) | Electromagnetic interference suppressing method | |
EP4224995B1 (en) | Feedback-controlled switched converter for a led load | |
CN119519409A (en) | Electromagnetic interference suppression method | |
TW201308859A (en) | Power supply with over current protection and control circuit thereof and method of over current protection | |
TWI867701B (en) | Resonant converter and method of operation the same | |
TWI783340B (en) | Voltage control method | |
US20250070655A1 (en) | Resonant converter and method of operating the same | |
US20240178740A1 (en) | Power converter with reduced power consumption and method of operating the same | |
TWI422135B (en) | Power supply device |