[go: up one dir, main page]

TWI832812B - Liquid-crystalline medium and liquid-crystal display comprising the same - Google Patents

Liquid-crystalline medium and liquid-crystal display comprising the same Download PDF

Info

Publication number
TWI832812B
TWI832812B TW107105692A TW107105692A TWI832812B TW I832812 B TWI832812 B TW I832812B TW 107105692 A TW107105692 A TW 107105692A TW 107105692 A TW107105692 A TW 107105692A TW I832812 B TWI832812 B TW I832812B
Authority
TW
Taiwan
Prior art keywords
group
atoms
compounds
formula
liquid crystal
Prior art date
Application number
TW107105692A
Other languages
Chinese (zh)
Other versions
TW201840535A (en
Inventor
尹鉉軫
鄭知苑
李殷圭
崔昌錫
陳旻玉
尹容國
Original Assignee
德商馬克專利公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商馬克專利公司 filed Critical 德商馬克專利公司
Publication of TW201840535A publication Critical patent/TW201840535A/en
Application granted granted Critical
Publication of TWI832812B publication Critical patent/TWI832812B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0466Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the linking chain being a -CF2O- chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3004Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/301Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K2019/3422Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a six-membered ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

The present invention relates to a liquid-crystalline medium (LC medium) comprising a polymerizable piperidine derivative as an additive for stabilization, to the use thereof for electro-optical purposes, and to LC displays containing this medium, particularly to liquid-crystal displays which use the IPS (in-plane switching) or the FFS (fringe field switching) effect using dielectrically positive liquid crystals.

Description

液晶介質及含彼之液晶顯示器Liquid crystal media and liquid crystal displays containing them

本發明係關於一種包含作為用於穩定之添加劑之可聚合哌啶衍生物的液晶介質(LC介質),係關於其用於電光目的之用途,且係關於含有此介質之LC顯示器,尤其係關於使用利用介電正性液晶的共平面切換型(i n-p lanes witching,IPS)或邊緣場切換型(f ringef ields witching,FFS)效應之液晶顯示器。The present invention relates to a liquid crystal medium (LC medium) containing a polymerizable piperidine derivative as an additive for stabilization, to its use for electro-optical purposes, and to LC displays containing this medium, in particular to Use a liquid crystal display that utilizes the in - plane switching (IPS ) or fringe field switching (FFS) effect of dielectric positive liquid crystals.

液晶主要在顯示裝置中用作介電質,因為該等物質之光學特性可藉由施加電壓來改質。熟習此項技術者極其熟知基於之液晶電光裝置,且可基於各種效應。該等裝置之實例為具有動態散射之單元、對準相變形(deformation of aligned phase,DAP)單元、賓/主單元、具有「扭轉向列」結構之TN單元、「超扭轉向列」(「super-twisted nematic」,STN)單元、「超雙折射效應」(「superbirefringence effect」,SBE)單元及「光模干擾」(「optical mode interference」,OMI)單元。最常見之顯示裝置係基於沙特-黑爾弗里希效應(Schadt-Helfrich effect)且具有扭轉向列結構。另外,亦存在藉由平行於基板及液晶平面之電場運行的單元,諸如「共平面切換型」(「in-plane switching」,IPS)單元。TN、STN、邊緣場切換型(fringe field switching,FFS)及IPS單元尤其為當前商業上所關注的用於根據本發明之介質之應用領域。 液晶材料必須具有良好化學及熱穩定性以及對電場及電磁輻射的良好穩定性。此外,液晶材料應具有低黏度,且在單元中產生短定址時間、低臨限電壓及高對比度。 此外,其應具有適合中間相,例如在常見操作溫度下,亦即在高於及低於室溫之最廣泛可能範圍內,用於上文所提及之單元的向列型或膽固醇型中間相。由於液晶通常以複數種組分之混合物形式使用,所以組分易於彼此混溶至關重要。諸如導電性、介電各向異性及光學各向異性之其他特性必須滿足視單元類型及應用領域而定之各種要求。舉例而言,用於具有扭轉向列結構之單元的材料應具有正介電各向異性及低導電性。 舉例而言,對於具有用於切換個別像素(MLC顯示器)之整合式非線性元件的矩陣液晶顯示器,需要具有較大正介電各向異性、寬向列相、相對較低雙折射率、極高比電阻、良好UV及溫度穩定性以及低蒸氣壓之介質。 此類矩陣液晶顯示器為已知的。可用於單獨地切換個別像素之非線性元件之實例為主動元件(亦即電晶體)。隨後使用術語「主動式矩陣」,其中可在兩種類型之間加以區分: 1. 矽晶圓上之金屬氧化物半導體(metal oxide semiconductor,MOS)或其他二極體作為基板。 2. 玻璃板上之薄膜電晶體(thin-film transistor,TFT)作為基板。 使用單晶矽作為基板材料限制了顯示器尺寸,因為即使各種部分顯示器之模組總成亦會在接合處產生問題。 在更有前景之類型2 (其為較佳的)之情況下,所用電光效應通常為TN效應。在以下兩種技術之間加以區分:包含諸如CdSe之化合物半導體的TFT,或基於多晶或非晶矽的TFT。全世界正對後一技術進行密集研究。 將TFT矩陣施加於顯示器之一個玻璃板的內部,而另一玻璃板在其內部上攜有透明相對電極。相比於像素電極之大小,TFT極小且對影像幾乎無不良影響。此技術亦可擴展為全色功能顯示器(fully colour-capable display),其中以濾光器元件與各可切換像素相對之方式佈置紅光、綠光及藍光濾光器之馬賽克(mosaic)。 TFT顯示器通常用作在透射中具有交叉偏光器之TN單元,且為背光的。 本文之術語MLC顯示器涵蓋具有整合式非線性元件的任何矩陣顯示器,亦即除主動式矩陣以外,顯示器亦具有被動元件,諸如變阻器或二極體(MIM=金屬-絕緣體-金屬)。 此類MLC顯示器尤其適合TV應用(例如口袋型電視(pocket television))或適用於電腦應用(膝上型電腦)之高資訊顯示器及用於汽車或飛機建構中。除了有關對比度之角度依賴性及響應時間的問題以外,由於液晶混合物之比電阻不夠高,在MLC顯示器中亦產生困難[TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, 1984年9月: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, 第141頁及以下, Paris;STROMER, M., Proc. Eurodisplay 84, 1984年9月: Design of Thin Film Transistors for Matrix Addressing of Television Liquid Crystal Displays, 第145頁及以下, Paris]。隨著電阻減小,MLC顯示器之對比度降低,且會出現殘像消除之問題。因為液晶混合物之比電阻會由於與顯示器之內表面之相互作用而通常隨MLC顯示器之壽命下降,所以為了獲得可接受的使用期限,高(初始)電阻極為重要。尤其就低伏混合物而言,其迄今不可能達成極高比電阻值。另外,隨著溫度升高且在加熱及/或UV曝光之後,比電阻呈現最小可能的增加至關重要。先前技術之混合物之低溫性質亦尤其不利。需要甚至在低溫下無結晶及/或近晶相出現,且黏度之溫度依賴性儘可能低。因此,先前技術之MLC顯示器不滿足現今之要求。 除使用背光,亦即以透射方式且視需要以透射反射方式操作之液晶顯示器以外,反射式液晶顯示器亦尤其令人感興趣。此等反射式液晶顯示器將環境光用於資訊顯示器。因此,其比具有相應尺寸及解析度之背光液晶顯示器消耗顯著更少的能量。因為TN效應之特徵在於極佳對比度,所以此類反射式顯示器即使在明亮的環境條件下仍可很好地閱讀。此已知為如例如用於手錶及口袋型計算器之簡單的反射式TN顯示器。然而,該原理亦可應用於諸如TFT顯示器之高品質、較高解析度之主動式矩陣定址顯示器。在本文中,如在通常習知之透射式TFT-TN顯示器中,使用具有低雙折射率(Δn)之液晶為必需的,以便達成低光阻滯(d·Dn)。此低光阻滯導致通常可接受的較低的對比度視角依賴性(參見DE 30 22 818)。在反射式顯示器中,使用具有低雙折射率之液晶甚至比在透射式顯示器中更重要,此係因為在反射式顯示器中,光穿過之有效層厚度大約為具有相同層厚度之透射式顯示器的兩倍。 對於TV及視訊應用而言,需要具有快速響應時間之顯示器以使得能夠以接近逼真的品質再現多媒體內容,例如電影及視訊遊戲。尤其若使用黏度值低、尤其旋轉黏度γ1 值低且光學各向異性(Δn)高的液晶介質,則可實現該等短的響應時間。 為了藉助於快門眼鏡達成3D效應,尤其使用具有低旋轉黏度及相應地高光學各向異性(Δn)之快速切換混合物。藉助於電光透鏡系統,顯示器之2維圖像可轉換為3維自動立體圖像,可使用具有高光學各向異性(Δn)之混合物來實現。 在TN (沙特-黑爾弗里希)單元之情況下,需要在單元中促成以下優點之介質: - 擴展之向列相範圍(尤其降至低溫) - 在極其低的溫度下之切換能力(戶外使用、汽車、航空電子設備) - 提高之UV輻射耐受性(較長使用期限) - 低臨限電壓。 獲自先前技術之介質無法在保留其他參數的同時實現此等優點。 在超扭轉(STN)單元之情況下,需要促進更大的多路傳輸性及/或更低的臨限電壓及/或更寬的向列相範圍(尤其在低溫下)之介質。為此目的,迫切地需要進一步加寬可獲得之參數寬容度(清澈點、近晶-向列轉移或熔點、黏度、介電參數、彈性參數)。 現代LCD之最重要特性中之一者為正確再現移動影像。若所用液晶介質之響應速度太慢,則此在該等內容物之顯示器中造成非所需假像。基本上判定液晶混合物之響應時間之物理參數為旋轉黏度γ1 及彈性常數。後者對於確保LCD之良好的黑色狀態亦尤其至關重要。然而,一般而言,觀測到混合物之清澈點且因此混合物之旋轉黏度亦隨著彈性常數增大而增加,意謂響應時間不可能得到改善。尤其在用於TV及視訊應用(例如LCD TV、監視器、PDA、筆記型電腦、遊戲控制台)之LC顯示器之情況下,需要回應時間顯著減少。LC單元中之LC介質之層厚度d (「單元間隙」)的減少理論上產生更快的響應時間,但需要LC介質具有較高雙折射率Δn以確保足夠的光阻滯(d. Δn)。然而,自先前技術已知之高雙折射率之LC材料通常同時亦具有高旋轉黏度,其繼而對響應時間有不良影響。 因此,仍非常需要具有良好可靠性特性的液晶介質,諸如高電壓保持率(voltage holding ratio,VHR),其不呈現此等特性或僅以較小程度呈現此等特性。 本發明係基於提供介質之目標,尤其向此類型之IPS、FFS、HB (=高亮度)-FFS、PS (=聚合物穩定化)-FFS、PS-IPS顯示器,其具有上文所指示之所需特性,且不呈現上文所指示之缺點或僅以降低的程度呈現上文所指示之缺點。尤其,LC介質應具有快速響應時間及低旋轉黏度同時具有相對較高雙折射率。另外,LC介質應具有高清澈點及極佳低溫穩定性(low-temperature stability,LTS)。 然而,根據本申請案,具有呈均勻對準之介電正性液晶介質的IPS或FFS效應較佳。 已經揭示用於IPS及FFS顯示器的具有正介電各向異性之液晶介質。在下文中將給出一些實例。 WO 2012/079676 A1揭示具有高正介電各向異性之液晶介質。公開案WO 2013/182271 A1揭示具有正介電各向異性之液晶介質,其另外由Tinuvin 770®穩定化。在WO 2016/116119 A1中如本文所揭示之可聚合哌啶衍生物已提出作為可聚合液晶介質中之添加劑。 此效應於電光顯示器元件中之工業應用需要LC相,其必須滿足多種要求。本文中特別重要的係針對水分、空氣及物理影響(諸如熱、紅外光、可見光及紫外光區域中之輻射)以及直流(DC)及交流(AC)電場之耐化學性。 本文之術語MLC顯示器涵蓋具有整合式非線性元件的任何矩陣顯示器,亦即除主動式矩陣以外,顯示器亦具有被動元件,諸如變阻器或二極體(MIM=金屬-絕緣體-金屬)。 此類MLC顯示器尤其適合TV應用、監視器及筆記型電腦或適用於具有高資訊密度之顯示器,例如用於汽車製造或飛機建構中。除了有關對比度之角度依賴性及響應時間的問題以外,由於液晶混合物之比電阻不夠高,在MLC顯示器中亦產生困難[TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, 1984年9月: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, 第141頁及以下, Paris;STROMER, M., Proc. Eurodisplay 84, 1984年9月: Design of Thin Film Transistors for Matrix Addressing of Television Liquid Crystal Displays, 第145頁及以下, Paris]。隨著電阻減小,MLC顯示器之對比度劣化。由於液晶混合物之比電阻通常因與顯示器內表面相互作用而隨MLC顯示器之壽命下降,因此對於必須在長操作時間段內具有可接受之電阻值的顯示器,高(初始)電阻極為重要。 此類介質尤其可用於具有針對IPS或FFS顯示器定址之主動式矩陣之電光顯示器。 目前已發現若使用包含一或多種式I化合物之LC介質,則此目標可實現。Liquid crystals are primarily used as dielectrics in display devices because the optical properties of these substances can be modified by the application of voltage. Those skilled in the art are very familiar with liquid crystal based electro-optical devices and can be based on various effects. Examples of such devices are cells with dynamic scattering, deformation of aligned phase (DAP) cells, guest/host cells, TN cells with a "twisted nematic" structure, "supertwisted nematic"("supertwistednematic")"super-twistednematic" (STN) unit, "superbirefringence effect" (SBE) unit and "optical mode interference" (OMI) unit. The most common display device is based on the Schadt-Helfrich effect and has a twisted nematic structure. In addition, there are also cells that operate by an electric field parallel to the substrate and the liquid crystal plane, such as "in-plane switching" (IPS) cells. TN, STN, fringe field switching (FFS) and IPS units are particularly currently commercially interesting application areas for media according to the present invention. Liquid crystal materials must have good chemical and thermal stability as well as good stability to electric fields and electromagnetic radiation. In addition, the liquid crystal material should have low viscosity and produce short address times, low threshold voltages and high contrast ratios in the cell. Furthermore, it should have suitable mesophases, such as nematic or cholesteric mesophases for the units mentioned above, at common operating temperatures, that is to say in the widest possible range above and below room temperature. Mutually. Since liquid crystals are usually used as a mixture of several components, it is important that the components are easily miscible with each other. Other properties such as electrical conductivity, dielectric anisotropy and optical anisotropy must meet various requirements depending on the unit type and application area. For example, materials used for cells with twisted nematic structures should have positive dielectric anisotropy and low conductivity. For example, for matrix LCDs with integrated nonlinear elements for switching individual pixels (MLC displays), large positive dielectric anisotropy, broad nematic phase, relatively low birefringence, extremely high Medium with specific resistance, good UV and temperature stability and low vapor pressure. Matrix liquid crystal displays of this type are known. Examples of non-linear elements that can be used to switch individual pixels individually are active elements (ie transistors). The term "active matrix" is then used, where a distinction can be made between two types: 1. Metal oxide semiconductor (MOS) or other diodes on a silicon wafer as substrate. 2. A thin-film transistor (TFT) on a glass plate is used as the substrate. The use of monocrystalline silicon as the substrate material limits the display size because even various partial display module assemblies can cause problems at the joints. In the case of the more promising type 2, which is better, the electro-optical effect used is usually the TN effect. A distinction is made between two technologies: TFTs containing compound semiconductors such as CdSe, or TFTs based on polycrystalline or amorphous silicon. The latter technology is being researched intensively around the world. The TFT matrix is applied to the interior of one glass plate of the display, while the other glass plate carries transparent counter electrodes on its interior. Compared with the size of pixel electrodes, TFTs are extremely small and have almost no adverse effects on images. This technology can also be extended to a fully colour-capable display, in which a mosaic of red, green and blue filters is arranged with filter elements facing each switchable pixel. TFT displays are commonly used as TN cells with crossed polarizers in transmission and are backlit. The term MLC display herein covers any matrix display with integrated nonlinear elements, that is, in addition to the active matrix, the display also has passive elements such as varistors or diodes (MIM = Metal-Insulator-Metal). This type of MLC display is particularly suitable for TV applications (such as pocket television) or high information displays for computer applications (laptops) and in automobile or aircraft construction. In addition to problems related to the angle dependence of contrast and response time, difficulties arise in MLC displays because the specific resistance of the liquid crystal mixture is not high enough [TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E. , SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, September 1984: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, pp. 141 et seq., Paris; STROMER, M., Proc. Eurodisplay 84, September 1984: Design of Thin Film Transistors for Matrix Addressing of Television Liquid Crystal Displays, pp. 145 et seq., Paris]. As the resistance decreases, the contrast of the MLC display decreases, and the problem of afterimage elimination occurs. Because the specific resistance of the liquid crystal mixture typically decreases with the life of an MLC display due to interaction with the inner surface of the display, a high (initial) resistance is extremely important in order to obtain an acceptable lifetime. Particularly in the case of low-voltage mixtures, extremely high specific resistance values have not been possible so far. Additionally, it is critical that the specific resistance exhibits the smallest possible increase as the temperature increases and after heating and/or UV exposure. The low temperature properties of prior art mixtures are also particularly disadvantageous. It is necessary that no crystallization and/or smectic phases occur even at low temperatures and that the temperature dependence of the viscosity is as low as possible. Therefore, prior art MLC displays do not meet today's requirements. In addition to LCDs using backlights, ie operating in a transmissive manner and optionally in a transflective manner, reflective LCDs are also of particular interest. These reflective LCD displays use ambient light for information display. Therefore, it consumes significantly less energy than a backlit LCD display of comparable size and resolution. Because the TN effect is characterized by excellent contrast, such reflective displays can be read well even in bright ambient conditions. This is known as simple reflective TN displays such as those used in watches and pocket calculators. However, this principle can also be applied to high quality, higher resolution active matrix addressed displays such as TFT displays. Here, as in commonly known transmissive TFT-TN displays, it is necessary to use liquid crystals with low birefringence (Δn) in order to achieve low light blocking (d·Dn). This low light blocking results in a generally acceptable lower viewing angle dependence of the contrast (see DE 30 22 818). In reflective displays, the use of liquid crystals with low birefringence is even more important than in transmissive displays, because in reflective displays the effective layer thickness through which light passes is approximately the same as in transmissive displays with the same layer thickness twice. For TV and video applications, displays with fast response times are required to enable reproduction of multimedia content, such as movies and video games, with near-lifelike quality. These short response times can be achieved especially if a liquid crystal medium with a low viscosity value, especially a low rotational viscosity γ1 value, and a high optical anisotropy (Δn) is used. In order to achieve the 3D effect with the aid of shutter glasses, fast-switching mixtures with low rotational viscosity and correspondingly high optical anisotropy (Δn) are used. With the help of an electro-optical lens system, the 2D image of the display can be converted into a 3D autostereoscopic image, which can be achieved using a mixture with high optical anisotropy (Δn). In the case of TN (Schaud-Helfrich) cells, media are needed that facilitate the following advantages in the cell: - Extended nematic phase range (especially down to low temperatures) - Switching capabilities at extremely low temperatures ( Outdoor use, automotive, avionics) - Improved UV radiation tolerance (longer service life) - Low threshold voltage. Media derived from prior art are unable to achieve these advantages while retaining other parameters. In the case of supertwisted (STN) cells, there is a need for media that facilitate greater multiplexing and/or lower threshold voltages and/or wider nematic phase range, especially at low temperatures. For this purpose, there is an urgent need to further broaden the available parameter latitude (clearing point, smectic-nematic transition or melting point, viscosity, dielectric parameters, elastic parameters). One of the most important characteristics of modern LCDs is the correct reproduction of moving images. If the response speed of the liquid crystal medium used is too slow, this can cause undesirable artifacts in displays of such content. Basically the physical parameters that determine the response time of a liquid crystal mixture are the rotational viscosity γ 1 and the elastic constant. The latter is also particularly important to ensure good black status of the LCD. However, in general, it is observed that the clearing point of the mixture and therefore the rotational viscosity of the mixture also increases with increasing elastic constant, meaning that the response time is unlikely to be improved. Especially in the case of LC displays used in TV and video applications (such as LCD TVs, monitors, PDAs, notebook computers, game consoles), the response time required is significantly reduced. Reducing the layer thickness d ("cell gap") of the LC medium in an LC cell theoretically produces faster response times, but requires the LC medium to have a higher birefringence Δn to ensure adequate light blocking (d . Δn) . However, high birefringence LC materials known from the prior art usually also have high rotational viscosity, which in turn has a negative impact on the response time. Therefore, there is still a great need for liquid crystal media with good reliability properties, such as high voltage holding ratio (VHR), which do not exhibit these properties or only exhibit these properties to a small extent. The present invention is based on the object of providing media, in particular for IPS, FFS, HB (=High Brightness)-FFS, PS (=Polymer Stabilized)-FFS, PS-IPS displays of this type, which have the properties indicated above. required properties and exhibiting none of the disadvantages indicated above or only exhibiting the disadvantages indicated above to a reduced extent. In particular, the LC medium should have a fast response time and low rotational viscosity while having a relatively high birefringence. In addition, the LC medium should have a high clarity point and excellent low-temperature stability (LTS). However, according to the present application, the IPS or FFS effect is better with uniformly aligned dielectric positive liquid crystal media. Liquid crystal media with positive dielectric anisotropy have been disclosed for IPS and FFS displays. Some examples are given below. WO 2012/079676 A1 discloses a liquid crystal medium with high positive dielectric anisotropy. Publication WO 2013/182271 A1 discloses liquid crystalline media with positive dielectric anisotropy, which are additionally stabilized by Tinuvin 770®. In WO 2016/116119 A1 polymerizable piperidine derivatives as disclosed herein have been proposed as additives in polymerizable liquid crystal media. The industrial application of this effect in electro-optical display components requires an LC phase, which must meet various requirements. Of particular importance here is the chemical resistance against moisture, air and physical influences such as heat, radiation in the infrared, visible and ultraviolet regions, as well as direct current (DC) and alternating current (AC) electric fields. The term MLC display herein covers any matrix display with integrated nonlinear elements, that is, in addition to the active matrix, the display also has passive elements such as varistors or diodes (MIM = Metal-Insulator-Metal). Such MLC displays are particularly suitable for TV applications, monitors and notebook computers or for displays with high information density, such as those used in automobile manufacturing or aircraft construction. In addition to problems related to the angle dependence of contrast and response time, difficulties arise in MLC displays because the specific resistance of the liquid crystal mixture is not high enough [TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E. , SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, September 1984: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, pp. 141 et seq., Paris; STROMER, M., Proc. Eurodisplay 84, September 1984: Design of Thin Film Transistors for Matrix Addressing of Television Liquid Crystal Displays, pp. 145 et seq., Paris]. As the resistance decreases, the contrast ratio of the MLC display deteriorates. Since the specific resistance of the liquid crystal mixture typically decreases with the life of the MLC display due to interaction with the inner surface of the display, high (initial) resistance is extremely important for displays that must have acceptable resistance values over long periods of operation. This type of media is particularly useful in electro-optical displays with active matrix addressing for IPS or FFS displays. It has now been found that this objective can be achieved if an LC medium containing one or more compounds of formula I is used.

出人意料地,已發現有可能得到液晶顯示器,其尤其在IPS及FFS顯示器中具有響應時間短的低臨限電壓、足夠寬向列相、有利雙折射率(Δn)且同時具有高透射率、藉由加熱及藉由UV曝光分解的良好穩定性,且在使用包含至少一種如下式I化合物或包含其聚合形式之聚合物之向列型液晶混合物之情況下具有穩定的高VHR, P-Sp-(A2 -Z2 -A1 )m1 -Z1 -T I 其中基團彼此獨立地且在每次出現時相同或不同地具有以下含義 T 選自下式之基團Rg H或具有1至10個C原子、較佳具有1至6個C原子、極佳具有1至4個C原子之直鏈或分支鏈烷基或烷氧基烷基,或苯甲基,最佳為H, Ra 、Rb 、Rc 、Rd 具有1至10個C原子、較佳具有1至6個C原子、極佳具有1至4個C原子之直鏈或分支鏈烷基, P 乙烯基氧基、丙烯酸酯、甲基丙烯酸酯、氟丙烯酸酯、氯丙烯酸酯、氧雜環丁烷或環氧基,較佳為丙烯酸酯、甲基丙烯酸酯、氟丙烯酸酯、氯丙烯酸酯,且更佳為丙烯酸酯或甲基丙烯酸酯,最佳為甲基丙烯酸酯, Sp 間隔基團或單鍵, A1 、A2 具有4至30個環原子之脂環基、雜環基、芳族基或雜芳族基,其亦可含有稠環且視情況經一或多個基團L或R-(A3 -Z3 )m2 -取代,且A1 及A2 中之一者亦可表示單鍵,A3 具有4至30個環原子之脂環基、雜環基、芳族基或雜芳族基,其亦可含有稠環且視情況經一或多個基團L取代, Z1 -O-、-S-、-CO-、-CO-O-、-O-CO-、-O-CO-O-、-OCH2 -、-CH2 O-、-SCH2 -、-CH2 S-、-CF2 O-、-OCF2 -、-CF2 S-、-SCF2 -、-(CH2 )n -、-CF2 CH2 -、-CH2 CF2 -、-(CF2 )n -、-CH=CH-、-CF=CF-、-CH=CF-、-CF=CH-、-CºC-、-CH=CH-CO-O-、-O-CO-CH=CH-、-CH2 -CH2 -CO-O-、-O-CO-CH2 -CH2 -、-CR00 R000 -或單鍵,其限制條件為若m1為0,則Z1 為單鍵, Z2 、Z3 -O-、-S-、-CO-、-CO-O-、-O-CO-、-O-CO-O-、-OCH2 -、-CH2 O-、-SCH2 -、-CH2 S-、-CF2 O-、-OCF2 -、-CF2 S-、-SCF2 -、-(CH2 )n -、-CF2 CH2 -、-CH2 CF2 -、-(CF2 )n -、-CH=CH-、-CF=CF-、-CH=CF-、-CF=CH-、-CºC-、-CH=CH-CO-O-、-O-CO-CH=CH-、-CH2 -CH2 -CO-O-、-O-CO-CH2 -CH2 -、-CR00 R000 -或單鍵, R00 、R000 H或具有1至12個C原子之烷基, R P-Sp-、H、F、Cl、CN,或具有1至25個C原子的直鏈、分支鏈或環狀烷基,其中一或多個不相鄰CH2 -基團視情況由-O-、-S-、-CO-、-CO-O-、-O-CO-、-O-CO-O-置換,其方式為使得O原子及/或S原子不直接彼此相連,且其中一或多個H原子視情況分別由F、Cl或P-Sp-置換,或基團T, L P-Sp-、F、Cl、CN或具有1至25個C原子之直鏈、分支鏈或環狀烷基,一或多個不相鄰CH2 -基團視情況由-O-、-S-、-CO-、-CO-O-、-O-CO-、-O-CO-O-以使得O原子及/或S原子不直接彼此連接的方式置換,且其中一或多個H原子各自視情況由F、Cl或P-Sp-置換,或選自式1、2及3之基團, m1 0、1、2、3或4, m2 0、1、2、3或4,且 n 1、2、3或4。 本發明係關於一種具有向列相且介電各向異性(Δε)為1.5或更大之液晶介質,其特徵在於其包含一或多種如上文及下文所描述之式I化合物或包含含有一或多種聚合形式的式I化合物之聚合物。Surprisingly, it has been found that it is possible to obtain liquid crystal displays, especially in IPS and FFS displays, with a low threshold voltage with a short response time, a sufficiently wide nematic phase, a favorable birefringence (Δn) and at the same time a high transmittance, by Good stability to decomposition by heating and by UV exposure, and stable high VHR in the case of using nematic liquid crystal mixtures containing at least one compound of the formula I or a polymer containing a polymerized form thereof, P-Sp- (A 2 -Z 2 -A 1 ) m1 -Z 1 -TI in which the groups independently of each other and on each occurrence the same or different have the following meanings T is selected from the group consisting of the following formulas R g H or linear or branched alkyl or alkoxyalkyl having 1 to 10 C atoms, preferably 1 to 6 C atoms, most preferably 1 to 4 C atoms, or benzyl , preferably H, R a , R b , R c , R d have 1 to 10 C atoms, preferably 1 to 6 C atoms, preferably straight or branched chains with 1 to 4 C atoms Alkyl group, P vinyloxy, acrylate, methacrylate, fluoroacrylate, chloroacrylate, oxetane or epoxy group, preferably acrylate, methacrylate, fluoroacrylate, Chloroacrylate, and more preferably acrylate or methacrylate, most preferably methacrylate, Sp spacer group or single bond, A 1 and A 2 have an alicyclic group of 4 to 30 ring atoms, hetero Cyclic, aromatic or heteroaromatic groups, which may also contain fused rings and are optionally substituted by one or more groups L or R-(A 3 -Z 3 ) m2 -, and in A 1 and A 2 One of them can also represent a single bond. A 3 has an alicyclic group, a heterocyclic group, an aromatic group or a heteroaromatic group with 4 to 30 ring atoms. It can also contain a fused ring and is optionally passed through one or more Group L substituted, Z 1 -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O-, -OCH 2 -, -CH 2 O-, -SCH 2 -, -CH 2 S-, -CF 2 O-, -OCF 2 -, -CF 2 S- , -SCF 2 -, -(CH 2 ) n -, -CF 2 CH 2 -, -CH 2 CF 2 -, -(CF 2 ) n -, -CH=CH-, -CF=CF-, -CH=CF-, -CF=CH-, -CºC-, -CH=CH-CO-O- , -O-CO-CH=CH-, -CH 2 -CH 2 -CO-O-, -O-CO-CH 2 -CH 2 -, -CR 00 R 000 - or single bond, the restriction condition is if m1 is 0, then Z 1 is a single bond, Z 2 , Z 3 -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O-, -OCH 2 -, -CH 2 O-, -SCH 2 -, -CH 2 S-, -CF 2 O-, -OCF 2 -, -CF 2 S-, -SCF 2 -, -(CH 2 ) n -, -CF 2 CH 2 -, -CH 2 CF 2 -, -(CF 2 ) n -, -CH=CH-, -CF=CF-, -CH=CF-, -CF=CH-, -CºC-, -CH=CH-CO-O-, -O-CO-CH=CH-, -CH 2 -CH 2 -CO-O-, -O-CO-CH 2 -CH 2 -, -CR 00 R 000 - Or single bond, R 00 , R 000 H or alkyl group with 1 to 12 C atoms, R P-Sp-, H, F, Cl, CN, or straight or branched chain with 1 to 25 C atoms or cyclic alkyl, in which one or more non-adjacent CH 2 - groups are optionally represented by -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO -O- substitution, in such a way that the O atoms and/or S atoms are not directly connected to each other, and one or more of the H atoms are replaced by F, Cl or P-Sp- respectively, as appropriate, or the group T, L P -Sp-, F, Cl, CN or straight chain, branched chain or cyclic alkyl group with 1 to 25 C atoms, one or more non-adjacent CH 2 - groups are optionally represented by -O-, -S -, -CO-, -CO-O-, -O-CO-, -O-CO-O- are substituted in such a way that the O atoms and/or S atoms are not directly connected to each other, and one or more of the H atoms Each is optionally substituted by F, Cl or P-Sp-, or is selected from a group of formulas 1, 2 and 3, m1 0, 1, 2, 3 or 4, m2 0, 1, 2, 3 or 4, and n 1, 2, 3 or 4. The present invention relates to a liquid crystal medium having a nematic phase and a dielectric anisotropy (Δε) of 1.5 or greater, characterized in that it contains one or more compounds of the formula I as described above and below or contains one or Polymers of compounds of formula I in various polymeric forms.

本發明更具體言之係關於一種液晶介質,該液晶介質包含 - 可聚合組分A),該組分包含一或多種可聚合化合物,該等可聚合化合物中至少一種為式I化合物,及 - 液晶組分B),下文中亦稱作「LC主體混合物」,其包含一或多種液晶原基或液晶化合物,較佳由其組成。 根據本發明之液晶介質之液晶組分B)在下文中亦稱作「LC主體混合物」,且較佳包含一或多種、較佳至少兩種選自不可聚合之低分子量化合物之液晶原基或LC化合物。 此外,本發明係關於一種如上文及下文所描述之液晶介質,其中LC主體混合物或組分B)包含至少一種包含烯基之液晶原基或LC化合物。 此外,本發明係關於一種如上文及下文所描述之液晶介質或LC顯示器,其中式I化合物或組分A)之可聚合化合物為經聚合的。 此外,本發明係關於一種製備如上文及下文所描述之液晶介質之方法,該方法包含以下步驟:將一或多種液晶原基或LC化合物或如上文及下文所描述之LC主體混合物或LC組分B)與一或多種式I化合物混合,且視情況與其他LC化合物及/或添加劑混合。 此類介質尤其可用於具有針對IPS或FFS顯示器定址之主動式矩陣之電光顯示器。 根據本發明之介質較佳另外包含一或多種選自式II化合物及式III化合物之群的化合物、較佳一或多種式II化合物、更佳另外一或多種式III化合物、及最佳另外一或多種選自式IV化合物及式V化合物之群的化合物。 根據本發明之混合物在澄清點≥70℃下展現極寬之向列相範圍、具有相對較高的保持率(VHR)值、極有利的電容臨限值、及同時在-20℃及-30℃下之良好低溫穩定性、以及極低的旋轉黏度。此外,根據本發明之混合物係藉由澄清點及旋轉黏度之良好比率及相對較高的正介電各向異性區分。值得注意地,混合物之可靠性經提高。觀測到極少殘像(image burning)。即使在擴展使用後或類似地在標準老化測試(如加速光負載、熱或UV測試)後,電壓保持率高。 一方面,較佳地,根據本發明之液晶介質之介電各向異性值為2或更大,較佳為3.5或更佳為4.5或更大。另一方面,其介電各向異性較佳為25或更小。 在一較佳實施例中,根據本發明之液晶介質之正介電各向異性較佳在2.0或更大至25或更小的範圍內,更佳在3.0或更大至22或更小的範圍內,且最佳在8.0或更大至20或更小的範圍內。 所有%按重量計,式I化合物較佳以0.0005重量%至2重量%範圍內、更佳0.001重量%至1重量%範圍內、尤其較佳0.005重量%至0.05重量%範圍內之濃度用於液晶介質。 根據本發明之液晶介質中之可聚合或聚合組分之總含量較佳為低於0.1重量%,更佳為低於0.05重量%,且最佳低於0.02重量% (200 ppm)。 液晶介質較佳包含 a) 一或多種式I化合物, b) 一或多種選自式II化合物及式III化合物之群、較佳選自介電各向異性各大於3之化合物之群的介電正性化合物:其中 R2 表示具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基、具有2至7個C原子之烯基、烯基氧基、烷氧基烷基或氟化烯基,且較佳表示烷基或烯基, L21 及L22 表示H或F,較佳地L21 表示F, X2 表示鹵素、具有1至3個C原子之鹵化烷基或烷氧基或具有2或3個C原子之鹵化烯基或烯基氧基,較佳為F、Cl、-OCF3 、-O-CH2 CF3 、 -O-CH=CH2 、-O-CH=CF2 或-CF3 ,極佳為F、Cl、CF3 、-O-CH=CF2 或-OCF3 , m 表示0、1、2或3,較佳表示1或2且尤其較佳表示1, R3 表示具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基、具有2至7個C原子之烯基、烯基氧基、烷氧基烷基或氟化烯基,且較佳表示烷基或烯基, L31 及L32 , 彼此獨立地表示H或F,較佳地L31 表示F, X3 表示鹵素、具有1至3個C原子之鹵化烷基或烷氧基或具有2或3個C原子之鹵化烯基或烯基氧基、F、Cl、-OCF3 、-OCHF2 、-O-CH2 CF3 、 -O-CH=CF2 、-O-CH=CH2 或-CF3 ,極佳表示F、Cl、-O-CH=CF2 、-OCHF2 或-OCF3 , Z3 表示-CH2 CH2 -、-CF2 CF2 -、-COO-、反-CH=CH-、反-CF=CF-、-CH2 O-或單鍵,較佳表示-CH2 CH2 -、-COO-、反-CH=CH-或單鍵,且極佳表示-COO-、反-CH=CH-或單鍵,且 n 表示0、1、2或3,較佳表示1、2或3且尤其較佳表示1, 及 c) 視情況一或多種選自式IV及V之群之介電中性化合物:其中 R41 及R42 , 彼此獨立地具有上文根據式II關於R2 所指示之含義,較佳地R41 表示烷基且R42 表示烷基或烷氧基,或R41 表示烯基且R42 表示烷基, Z41 及Z42 , 彼此獨立地且若Z41 出現兩次,則此等基團亦彼此獨立地表示-CH2 CH2 -、-COO-、反-CH=CH-、反-CF=CF-、-CH2 O-、-CF2 O-、-C≡C-或單鍵,較佳地其一或多者表示單鍵,且 p 表示0、1或2,較佳表示0或1,且 R51 及R52 , 彼此獨立地具有針對R41 和R42 給定的含義中的一種,且較佳表示具有1至7個C原子之烷基,較佳表示正烷基,尤其較佳表示具有1至5個C原子之正烷基,表示具有1至7個C原子之烷氧基,較佳表示正烷氧基,尤其較佳表示具有2至5個C原子之正烷氧基,表示具有2至7個C原子較佳地具有2至4個C原子之烷氧基烷基、烯基或烯基氧基,較佳表示烯基氧基, 較佳為 較佳地, 且若存在,則 Z51 至Z53 各自彼此獨立地表示-CH2 -CH2 -、-CH2 -O-、-CH=CH-、-C≡C-、-COO-或單鍵,較佳表示-CH2 -CH2 -、-CH2 -O-或單鍵,且尤其較佳表示單鍵, i及j 各自彼此獨立地表示0或1, (i + j) 較佳表示0、1或2,更佳表示0或1且最佳表示1。 根據本申請案之液晶介質較佳具有向列相。 在整個本申請案中且尤其針對R1 烷基之定義意謂烷基,其可為直鏈或分支鏈。此等基團中之各者較佳為直鏈,且較佳具有1、2、3、4、5、6、7或8個C原子,且相應地較佳為甲基、乙基、正丙基、正丁基、正戊基、正己基或正庚基。 在烷基意謂分支鏈烷基之情況下,其較佳意謂2-烷基、2-甲基烷基或2-(2-乙基)-烷基,較佳為2-丁基(=1-甲基丙基)、2-甲基丁基、2-甲基戊基、3-甲基戊基、2-乙基己基、2-丙基戊基,尤其為2-甲基丁基、2-甲基丁氧基4-甲基己基、2-己基、2-辛基、2-壬基、2-癸基及2-十二烷基。此等基團最佳為2-己基及2-辛基。 各別分支鏈基團,尤其針對R1 (其產生對掌性化合物)在本申請案中亦稱為對掌性基團。尤其較佳對掌性基團為2-烷基、2-烷氧基、2-甲基烷基、2-甲基烷氧基、2-氟烷基、2-氟烷氧基、2-(2-乙炔)-烷基、2-(2-乙炔)-烷氧基、1,1,1-三氟-2-烷基及1,1,1-三氟-2-烷氧基。 舉例而言,尤其較佳對掌性基團為2-丁基(=1-甲基丙基)、2-甲基丁基、2-甲基戊基、3-甲基戊基、2-乙基己基、2-丙基戊基,尤其為2-甲基丁基、2-甲基丁氧基、2-甲基戊氧基、3-甲基戊氧基、2-乙基已氧基、1-甲基已氧基、2-辛氧基、2-氧雜-3-甲基丁基、3-氧雜-4-甲基戊基、4-甲基己基、2-己基、2-辛基、2-壬基、2-癸基、2-十二烷基、6-甲氧基辛氧基、6-甲基辛氧基、6-甲基辛醯氧基、5-甲基庚氧基羰基、2-甲基丁醯氧基、3-甲基戊醯氧基、4-甲基己醯氧基、2-氯丙醯氧基、2-氯-3-甲基丁醯氧基、2-氯-4-甲基戊醯氧基、2-氯-3-甲基戊醯氧基、2-甲基-3-氧雜戊基、2-甲基-3-氧雜己基、1-甲氧基丙基-2-氧基、1-乙氧基丙基-2-氧基、1-丙氧基丙基-2-氧基、1-丁氧基丙基-2-氧基、2-氟辛氧基、2-氟癸氧基、1,1,1-三氟化-2-辛氧基、1,1,1-三氟-2-辛基、2-氟甲基辛氧基。極佳為2-己基、2-辛基、2-辛氧基、1,1,1-三氟-2-己基、1,1,1-三氟-2-辛基及1,1,1-三氟-2-辛氧基。 式I化合物根據WO 2016/116119 A1製備或為可商購的。 此外,本發明係關於根據本發明之液晶混合物及液晶介質在IPS及FFS顯示器中之使用,尤其在含有液晶介質中之使用,以用於提高電壓保持率(voltage-holding-ratio)。 此外,本發明係關於一種含有根據本發明之液晶介質的液晶顯示器,尤其為IPS或FFS顯示器,尤其較佳為IPS顯示器。 根據本發明之顯示器較佳係藉由主動式矩陣(a ctivem atrix LCD ,簡稱AMD),較佳藉由薄膜電晶體(TFT)矩陣定址。然而,根據本發明之液晶亦可以有利的方式用於具有其他已知定址方法之顯示器中。 此外,本發明係關於一種藉由以下製備根據本發明之液晶介質的方法:使一或多種式I化合物與一或多種低分子量液晶化合物、或液晶混合物混合,且視情況與其他液晶化合物及/或添加劑混合,得到具有向列相且介電各向異性(Δε)為1.5或更大之液晶介質。 上文及下文適用以下含義: 如本文所使用,術語「反應性液晶原基」及「RM」應理解為意謂一種含有液晶原基或液晶骨架及附接至其上之適用於聚合反應的一或多個官能基的化合物。該等基團亦稱為「可聚合基團」或「P」。 除非另外說明,否則如本文所用之術語「可聚合化合物」應理解為意謂可聚合單體化合物。 如本文所使用,術語「低分子量化合物」應理解為意謂為單體及/或並非藉由聚合反應製備之化合物,與「聚合化合物」或「聚合物」相反。 術語「鹵素」係指氟、氯或溴,較佳為氟或氯且尤其係指氟。類似地使用術語鹵化。 如本文所使用,術語「不可聚合化合物」應理解為意謂不含有適用於在通常應用於RM聚合反應之條件下聚合之官能基的化合物。 術語「液晶原基」為熟習此項技術者已知的且描述於文獻中,且表示由於其吸引及排斥相互作用之各向異性而基本上有助於低分子量或聚合物質中液晶(LC)相產生之基團。含有液晶原基之化合物(液晶原基化合物)本身不必具有液晶相。液晶原基化合物亦有可能僅在與其他化合物混合之後及/或在聚合反應之後呈現出液晶相行為。典型液晶原基為例如剛性棒狀或圓盤狀單元。結合液晶原基或液晶化合物使用之術語及定義之概述在Pure Appl. Chem. 73(5), 888 (2001)及C. Tschierske, G. Pelzl, S. Diele, Angew. Chem. 2004, 116, 6340-6368中給出。 上文及下文之術語「間隔基團」或簡稱「間隔基」,亦稱為「Sp」,為熟習此項技術者已知且描述於文獻中,參見例如Pure Appl. Chem. 73(5), 888 (2001)及C. Tschierske, G. Pelzl, S. Diele, Angew. Chem. 2004, 116, 6340-6368中。除非另外指示,否則上文及下文之術語「間隔基團」或「間隔基」表示在可聚合液晶原基化合物中將液晶原基及可聚合基團彼此連接之可撓性基團。儘管液晶原基一般含有環,但間隔基團一般無環系統,亦即為鏈形式,其中鏈亦可為分支鏈。術語鏈係用於例如伸烷基。鏈上及鏈中一般包括例如由-O-或-COO-進行之取代。在官能基術語中,間隔基(間隔基團)為分子的官能性結構部分之間的鍵聯基團,其有助於此等部分之間的特定空間可撓性。在一較佳實施例中,間隔基表示伸烷基(如-(CH2 )n -且n=1至10)或伸烷基氧基,較佳具有2至5個碳原子。 上文及下文中,表示反-1,4-伸環己基環,且表示1,4-伸苯基環。 出於本發明的目的,術語「液晶介質」意欲表示包含液晶混合物及一或多種可聚合化合物(諸如,例如,式I或反應性液晶原基)之介質。術語「液晶混合物」(或「主體混合物」)意欲表示僅由不可聚合之低分子量化合物組成,較佳由兩種或更多種液晶化合物及視情況選用之其他添加劑,諸如對掌性摻雜劑或穩定劑組成之液晶混合物。 尤其較佳為具有向列相,尤其室溫下之向列相的液晶混合物及液晶介質。 此外,存在式I之添加劑之較佳實施例。 較佳地,式I中之m1為0或1,最佳為0。 更佳為選自下式之化合物之群的式I化合物,其中T為選自下式之基團其中 Ra b c d 獨立地為具有1至10個C原子之直鏈或分支鏈烷基。 較佳地,式I中之Z1 表示-CO-O-、-O-CO-或單鍵,極佳為-CO-O-或單鍵。 較佳地,式I中之Z2 及Z3 表示-CO-O-、-O-CO-或單鍵,極佳為單鍵。 較佳地,式I中之P為丙烯酸酯或甲基丙烯酸酯基團。 較佳地,式I中之Sp為單鍵。 較佳地,式I中之A3 表示具有6至24個環原子之芳族基或雜芳族基,其亦可含有稠環且視情況經一或多個基團L取代。 極佳地,式I中之A3 表示苯或萘,其視情況經一或多個基團L取代。 較佳地,式I中之A1 及A2 表示具有6至24個環原子之芳族基或雜芳族基,其亦可含有稠環且視情況經一或多個基團L或R-(A3 -Z3 )m2 -取代,或A1 為單鍵。 極佳地,式I中之A1 及A2 表示苯、伸環己基、萘、菲或蒽,其視情況經一或多個基團L或R-(A3 -Z3 )m2 -取代,或A1 為單鍵。 較佳地,式I中之-(A2 -Z2 -A1 )m1 -表示苯、聯伸二苯、對聯伸三苯(1,4-二苯基苯)、間聯伸三苯(1,3-二苯基苯)、伸萘基、2-苯基-伸萘基、菲或蒽,其皆視情況經一或多個基團L取代。 極佳地,-(A2 -Z2 -A1 )m1 -表示聯伸二苯、對聯伸三苯或間聯伸三苯,其皆視情況經一或多個基團L取代。 較佳基團-(A2 -Z2 -A1 )m1 -係選自下式 其中L如式I中所定義或具有如上文及下文所描述之較佳含義之一,r為0、1、2、3或4,s為0、1、2或3,t為0、1或2且u為0、1、2、3、4或5。 尤其較佳為式A1、A2、A3、A4及A5之基團。 較佳之式I化合物選自以下子式 其中P、Sp、Ra - d 、Z1 、L及R如式I中所定義或具有如上文及下文所描述之較佳含義之一, Re 為具有1至12個C原子之烷基, r為0、1、2、3或4且 s為0、1、2或3。 較佳地,式I及I-1至I-45中之Z1 表示-CO-O-、-O-CO-或單鍵,極佳為-CO-O-或單鍵。 較佳地,式I及I-1至I-45中之P為丙烯酸酯或甲基丙烯酸酯。 較佳地,式I及I-1至I-45中之Sp為單鍵。 較佳地,式I及I-1至I-45中之Ra 、Rb 、Rc 及Rd 為甲基。 較佳地,式I中之Rg 為H。 I-1至I-45中之較佳結構為結構I-1及I-23,尤其為結構I-23。 式I及其子式I-1至I-45之更佳化合物獨立地選自以下較佳實施例,其包括其任何組合: - 該等化合物恰好含有一種可聚合基團(表示為基團P), - P為丙烯酸酯或甲基丙烯酸酯, - Sp為單鍵, - Sp在不同於單鍵時選自 -(CH2 )a -O-、-(CH2 )a -CO-O-、-(CH2 )a -及-(CH2 )a -O-CO-,其中如適用,為2、3、4、5或6,且O原子或CO-基團分別連接至下一環A2或基團T, - Ra 、Rb 、Rc 及Rd 為甲基, - Re 為甲基、乙基、正丙基、異丙基、第三丁基、正丁基或正戊基, - Rg 為H, - m1為0、1或2, - m2為0、1或2, - Z1 表示-CO-O-、-O-CO-或單鍵,較佳為-CO-O-, - Z2 表示-CO-O-、-O-CO-或單鍵,較佳為單鍵, - L表示F、Cl、CN或具有1至6個C原子之視情況經氟化之烷基或烷氧基,極佳為F、Cl、CN、CH3 、OCH3 、OCF3 、OCF2 H或OCFH2 ,最佳為F, - L中之一或多者表示基團T, - r為0或1, - s為0, - t為0 - u為0、1或2。 在本發明之一較佳實施例中,液晶介質包含介電各向異性大於3的一或多種介電正性化合物,其係選自式II-1及II-2之化合物之群:其中參數具有上文根據式II所指示之各別含義,且L23 及L24 彼此獨立地表示H或F,較佳地,L23 表示F,及 且在式II-1及II-2之情況下,X2 較佳表示F或OCF3 ,尤其較佳表示F,且在式II-2之情況下, 及/或選自式III-1及III-2之化合物之群:其中參數具有根據式III所給之含義, 且作為式III-1及/或III-2之化合物之替代方案或除該等化合物外,根據本發明之介質可包含一或多種式III-3之化合物,其中參數具有上文所指示之各別含義,且參數L31 及L32 彼此獨立地且與其他參數獨立地表示H或F。 液晶介質較佳包含選自式II-1及II-2之化合物之群的化合物,其中L21 及L22 及/或L23 及L24 均表示F。 在一較佳實施例中,液晶介質包含選自式II-1及II-2之化合物之群的化合物,其中L21 、L22 、L23 及L24 均表示F。 液晶介質較佳包含一或多種式II-1之化合物。式II-1之化合物較佳選自式II-1a至II-1e之化合物之群,較佳為式II-1a及/或II-1b及/或II-1d、較佳為一或多種式II-1a及/或II-1d或II-1b及/或II-1d、最佳為式II-1d之化合物: 其中參數具有上文所指示之各別含義,且參數L25 及L26 彼此獨立地且與其他參數獨立地表示H或F,且較佳地 在式II-1a及II-1b中, L21 及L22 均表示F, 在式II-1c及II-1d中, L21 及L22 均表示F,且/或L23 及L24 均表示F,及 在式II-1e中, L21 、L22 及L23 表示F。 液晶介質較佳包含一或多種式II-2之化合物,該等化合物較佳選自式II-2a至II-2k之化合物之群,較佳為一或多種式II-2a、II-2h、II-2k及/或II-2j中之各者之化合物: 其中參數具有上文所指示之各別含義,且L25 至L28 彼此獨立地表示H或F,較佳地,L27 及L28 均表示H,尤其較佳地,L26 表示H。 液晶介質較佳包含選自式II-2a至II-2k之化合物之群的化合物,其中L21 及L22 均表示F,且/或L23 及L24 均表示F。 在一較佳實施例中,液晶介質包含選自式II-2a至II-2k之化合物之群的化合物,其中L21 、L22 、L23 及L24 均表示F。 尤其較佳的式II-2之化合物為下式之化合物,尤其較佳為式II-2a-1、II-2h-1及/或II-2k-1及/或II-2j--1之化合物: 其中R2 及X2 具有上文所指示之含義,且X2 較佳表示F。 液晶介質較佳包含一或多種式III-1之化合物。式III-1之化合物較佳選自式III-1a至III-1j之化合物之群,較佳選自式III-1c、III-1f、III-1g及III-1k: 其中參數具有上文所給出之含義,且較佳地其中參數具有上文所指示之各別含義,參數L33 及L34 彼此獨立地且與其他參數獨立地表示H或F,且參數L35 及L36 彼此獨立地且與其他參數獨立地表示H或F。 液晶介質較佳包含一或多種式III-1c之化合物,該等化合物較佳選自式III-1c-1至III-1c-5之化合物之群,較佳為式III-1c-1及/或III-1c-2之化合物,最佳為式III-1c-1之化合物:其中R3 具有上文所指示之含義。 液晶介質較佳包含一或多種式III-1f之化合物,該等化合物較佳選自式III-1f-1至III-1f-6之化合物之群,較佳為式III-1f-1及/或III-1f-2及/或III-1f-3及/或III-1f-6之化合物,更佳為式III-1f-3及/或III-1f-6之化合物,更佳為式III-1f-6之化合物:其中R3 具有上文所指示之含義。 液晶介質較佳包含一或多種式III-1g化合物,該等化合物較佳選自式III-1g-1至III-1g-5之化合物之群,較佳為式III-1g-3之化合物:其中R3 具有上文所指示之含義。 液晶介質較佳包含一或多種式III-1h之化合物,該等化合物較佳選自式III-1h-1至III-1h-3之化合物之群,較佳為式III-1h-3之化合物:其中參數具有上文所給出之含義,且X3 較佳表示F。 液晶介質較佳包含一或多種式III-1i之化合物,該等化合物較佳選自式III-1i-1及III-1i-2之化合物之群,較佳為式III-1i-1之化合物: 其中參數具有上文所給出之含義,且X3 較佳表示F。 液晶介質較佳包含一或多種式III-1j之化合物,該等化合物較佳選自式III-1j-1及III-1j-2之化合物之群,較佳為式III-1j-1之化合物:其中參數具有上文所給出之含義。 液晶介質較佳包含一或多種式III-1k之化合物,該等化合物較佳選自式III-1k-1及III-1k-2之化合物之群,較佳為式III-1k-1之化合物: 其中參數具有上文所給出之含義。 液晶介質較佳包含一或多種式III-2之化合物。式III-2之化合物較佳選自式III-2a及III-2b之化合物之群,較佳為式III-2b之化合物:其中參數具有上文所指示之各別含義,且參數L33 及L34 彼此獨立地且與其他參數獨立地表示H或F。 液晶介質較佳包含一或多種式III-2a之化合物,該等化合物較佳選自式III-2a-1至III-2a-6之化合物之群: 其中R3 具有上文所指示之含義。 液晶介質較佳包含一或多種式III-2b之化合物,該等化合物較佳選自式III-2b-1至III-2b-4之化合物之群,較佳為式III-2b-4之化合物: 其中R3 具有上文所指示之含義。 且作為式III-1及/或III-2之化合物之替代方案或除該等化合物外,根據本發明之介質可包含一或多種式III-3之化合物,其中參數具有上文根據式III所指示之各別含義。 該等化合物較佳選自式III-3a及III-3b之群:其中R3 具有上文所指示之含義。 在一更佳實施例中,液晶介質除式I化合物及式II化合物外仍包含一或多種式III-1h-3之化合物及一或多種式III-1j-1之化合物。 根據本發明之液晶介質較佳包含一或多種介電各向異性在-1.5至3範圍內之介電中性化合物。 在本申請案中,該等要素均包括其各別同位素。尤其,該等化合物中之一或多個H可經D置換,且在一些實施例中,此亦為尤其較佳的。相應化合物之相應高氘化程度能夠例如偵測及識別該等化合物。在一些情況下,此為極有幫助的,尤其在式I化合物之情況下。 在本申請案中, 烷基 尤其較佳表示直鏈烷基,尤其CH3 -、C2 H5 -、n -C3 H7 -、n -C4 H9 -或n -C5 H11 -,且 烯基 尤其較佳表示CH2 =CH-、E -CH3 -CH=CH-、CH2 =CH-CH2 -CH2 -、E -CH3 -CH=CH-CH2 -CH2 -或E -(n -C3 H7 )-CH=CH-。 在另一較佳實施例中,該介質包含一或多種式IV-A之化合物其中 R41 表示具有1至7個C原子的未經取代之烷基或具有2至7個C原子、較佳為正烷基、尤其較佳為具有2、3、4或5個C原子的未經取代之烯基,及 R42 表示具有1至7個C原子的未經取代之烷基、具有2至7個C原子的未經取代之烯基或具有1至6個C原子的未經取代之烷氧基, 其中基團較佳具有2至5個C原子,且較佳為具有2、3或4個C原子的未經取代之烯基,更佳為乙烯基或1-丙烯基,且尤其為乙烯基。 在一尤其較佳實施例中,該介質包含一或多種選自式IV-1至IV-4之化合物之群的式IV化合物,較佳為式IV-1之化合物,其中 烷基及烷基', 彼此獨立地表示具有1至7個C原子、較佳具有2至5個C原子之烷基, 烯基及烯基', 彼此獨立地表示具有2至5個C原子、較佳具有2至4個C原子、尤其較佳具有2個C原子之烯基, 烯基' 較佳表示具有2至5個C原子、較佳具有2至4個C原子、尤其較佳具有2至3個C原子之烯基,且 烷氧基 表示具有1至5個C原子、較佳具有2至4個C原子之烷氧基。 在一尤其較佳實施例中,根據本發明之介質包含一或多種式IV-1之化合物及/或一或多種式IV-2之化合物。 在另一較佳實施例中,該介質包含一或多種式V化合物。 根據本發明之介質較佳以如下所指示之總濃度包含以下化合物: 0.001-1重量%之一或多種式I化合物, 5-60重量%之一或多種式II化合物,其較佳選自式II-1及II-2之化合物之群,及/或 5-25重量%之一或多種式III化合物,及/或 5-60重量%之一或多種式IV化合物,及/或 3-25重量%之一或多種式V化合物, 其中所有式I化合物及式II至V化合物(其存在於介質中)之總含量較佳為95%或更高,更佳為97%或更高,且最佳為100%。 對總含量之條件較佳適用於根據本申請案之所有介質。 在另一較佳實施例中,根據本發明之介質另外較佳包含一或多種介電中性化合物,該等化合物較佳選自總濃度在5%或更高至90%或更低、更佳10%或更高至80%或更低、尤其較佳20%或更高至70%或更低之範圍內的式IV及V之化合物之群。 在一尤其較佳實施例中,根據本發明之介質包含: 一或多種總濃度在15重量%或更高至65%或更低之範圍內、較佳在30%或更高至55%或更低之範圍內的式II化合物,及/或 一或多種總濃度在5%或更高至30%或更低之範圍內的式III化合物。 在本發明之一較佳實施例中,介質中式II化合物之濃度在15重量%或更高至65%或更低、更佳在15%或更高至60%或更低、更佳在20%或更高至55%或更低、且最佳在25%或更高至40%或更低之範圍內。 本發明亦係關於含有根據本發明之液晶介質的電光顯示器或電光組件。較佳為基於IPS或FFS效應、較佳基於IPS效應之電光顯示器,且尤其為藉助於主動式矩陣定址裝置來定址的顯示器。 因此,本發明同樣係關於根據本發明之液晶介質在電光顯示器中或在電光組件中之使用,且係關於一種製備根據本發明之液晶介質的方法,其特徵在於使一或多種式I化合物與一或多種式II化合物及視情況選用之其他化合物及添加劑混合。 在另一較佳實施例中,該介質包含一或多種選自式IV-2及IV-3之化合物之群的式IV化合物,其中 烷基及烷基', 彼此獨立地表示具有1至7個C原子、較佳具有2至5個C原子之烷基, 烷氧基 表示具有1至5個C原子、較佳具有2至4個C原子之烷氧基。 在另一較佳實施例中,該介質包含一或多種式V化合物,其選自式V-1及V-2、較佳式V-1之化合物之群, 其中參數具有上文根據式V所給出之含義,且較佳地, R51 表示具有1至7個C原子之烷基或具有2至7個C原子之烯基,且 R52 表示具有1至7個C原子之烷基、具有2至7個C原子之烯基或具有1至6個C原子之烷氧基,較佳為烷基或烯基,尤其較佳為烷基。 在另一較佳實施例中,該介質包含一或多種選自式V-1a及V-1b之化合物之群的式V-1之化合物,其中 烷基及烷基', 彼此獨立地表示具有1至7個C原子、較佳具有2至5個C原子之烷基,且 烯基 表示具有2至7個C原子、較佳具有2至5個C原子之烯基。 除式I至V之化合物以外,亦可存在其他成分,例如其量佔混合物整體至多45%,但較佳佔至多35%,尤其佔至多10%。 根據本發明之介質亦可視情況包含介電負性組分,按全部介質計,其總濃度較佳為20%或更低,更佳為10%或更低。 在一個較佳實施例中,按整體混合物計,根據本發明之液晶介質總計包含 25%或更高至65%或更低、較佳30%或更高至60%或更低、尤其較佳35%或更高至55%或更低的式II及/或III之化合物,及 5%或更高至60%或更低、較佳25%或更高至55%或更低、尤其較佳35%或更高至55%或更低之式IV及/或V之化合物。 根據本發明之液晶介質可包含一或多種對掌性化合物。 本發明之尤其較佳實施例滿足以下條件中之一或多者, 其中首字母縮寫詞(縮寫)解釋於表A至C中且以表D中之實例說明。 較佳地,根據本發明之介質滿足以下條件中之一或多者。 i. 液晶介質之雙折射率為0.060或更高,尤其較佳為0.070或更高。 ii. 液晶介質之雙折射率為0.200或更低,尤其較佳為0.180或更低。 iii. 液晶介質之雙折射率在0.090或更高至0.160或更低之範圍內。 iv. 液晶介質包含較佳選自(子)式I-1及I-23、最佳(子)式I-23之一或多種尤其較佳式I化合物。 v. 式II合物在整體混合物中之總濃度為25%或更高,較佳為30%或更高,且較佳在25%或更高至49%或更低範圍內,尤其較佳在29%或更高至47%或根底範圍內,且極其較佳在37%或更高至44%或更低範圍內。 vi. 液晶介質包含一或多種選自下式化合物之群的式IV化合物:CC-n-V及/或CC-n-Vm及/或CC-V-V及/或CC-V-Vn及/或CC-nV-Vn,尤其較佳為CC-3-V,其濃度較佳為至多60%或更低,尤其較佳為至多50%或更低;及視情況另外存在之CC-3-V1,其濃度較佳為至多15%或更低;及/或CC-4-V,其濃度較佳為至多40%或更低,尤其較佳為至多30%或更低。 vii. 該等介質包含式CC-n-V、較佳式CC-3-V之化合物,其濃度較佳為1%或更高至60%或更低,濃度更佳為3%或更高至38%或更低。 viii. 式CC-3-V之化合物在整體混合物中之總濃度較佳為15%或更低,較佳為10%或更低,或20%或更低,較佳為25%或更高。 此外,本發明係關於一種具有基於IPS或FFS效應定址之主動式矩陣的電光顯示器,其特徵在於,其含有根據本發明之液晶介質作為介電質。 液晶混合物之向列相範圍較佳具有至少70度之寬度。 旋轉黏度γ1 較佳為350 mPa•s或更低,較佳為250 mPa•s或更低,且尤其為150 mPa•s或更低。 根據本發明之混合物適用於使用介電正性液晶介質之所有IPS及FFS-TFT應用,諸如SG-FFS。 根據本發明之液晶介質較佳幾乎完全由4至15種、尤其5至12種且尤其較佳10種或更少化合物組成。此等化合物較佳選自式I、II、III、IV、V、VI、VII、VIII及IX之化合物之群。 根據本發明之液晶介質亦可視情況包含超過18種化合物。在此情況下,其較佳包含18至25種化合物。 在一較佳實施例中,根據本發明之液晶介質主要包含不含氰基之化合物,較佳基本上由其組成且最佳幾乎完全由其組成。 在一較佳實施例中,根據本發明之液晶介質包含選自式I、II及II、IV及V之化合物之群,較佳選自式I、II-1、II-2、IV及V之化合物之群的化合物;其較佳主要由該等式之化合物組成,尤其較佳基本上由其組成且極其較佳幾乎完全由其組成。 根據本發明之液晶介質的向列相在各情況下較佳為至少-10℃或更低至70℃或更高,尤其較佳為-20℃或更低至80℃或更高,極其較佳為-30℃或更低至85℃或更高且最佳為-40℃或更低至90℃或更高。 表述「具有向列相」在本文中意謂:一方面,在相應溫度在低溫下未觀測到近晶相及結晶,且另一方面,在自向列相加熱時不出現清澈。在低溫下之研究係在相應溫度下在流量式黏度計中進行,且藉由在單元厚度對應於電光應用之測試單元中儲存至少100小時進行檢驗。若在相應測試單元中在-20℃溫度下之儲存穩定性為1000小時或更多,則認為該介質在此溫度下為穩定的。在-30℃及-40℃之溫度下,相應時間分別為500小時及250小時。在高溫下,藉由習知方法在毛細管中量測清澈點。 在一個較佳實施例中,根據本發明之液晶介質係藉由在中等至較低範圍中之光學各向異性值表徵。雙折射率值較佳在0.075或更高至0.130或更低之範圍內,尤其較佳在0.085或更高至0.120或更低之範圍內且極其較佳在0.090或更高至0.115或更低之範圍內。 在此實施例中,根據本發明之液晶介質具有正介電各向異性及相對較高的介電各向異性Δε絕對值,其較佳在9.0或更高至22或更低、更佳至18或更低、更佳10或更高至15或更低、尤其較佳4.0或更高至9.0或更低、且極其較佳4.5或更高至8.0或更低範圍內。 根據本發明之液晶介質較佳具有相對較低的臨限電壓(V0 )值,其在1.0 V或更高至5.0 V或更低、較佳至2.5 V或更低、較佳1.2 V或更高至2.2 V或更低、尤其較佳1.3 V或更高至2.0 V或更低範圍內。 另外,根據本發明之液晶介質在液晶單元中具有較高的VHR值。 在單元中在20℃下新填充之單元中,此等介質之VHR值大於或等於95%,較佳大於或等於97%,尤其較佳大於或等於98%且極其較佳大於或等於99%,且在5分鐘之後在烘箱中在100℃下之單元中,此等VHR值大於或等於90%,較佳大於或等於93%,尤其較佳大於或等於96%且極其較佳大於或等於98%。 一般而言,具有低定址電壓或臨限電壓之液晶介質在本文中比具有較高定址電壓或臨限電壓之彼等液晶介質具有更低的VHR,且反之亦然。 在各情況下,個別物理特性之該等較佳值較佳亦係藉由根據本發明之介質彼此之組合來維持。 在本申請案中,除非另外明確指示,否則術語「化合物(compounds/compound(s)」意謂一種及複數種化合物。 在一較佳實施例中,根據本發明之液晶介質包含 一或多種式I化合物,較佳選自式I-1及/或I-23之群,及/或 一或多種式II化合物,較佳選自式PUQU-n-F、CDUQU-n-F、APUQU-n-F及PGUQU-n-F及/或CPUQU-n-F之群,及/或 一或多種式III化合物,較佳選自式CCP-n-OT、CGG-n-F及CGG-n-OD之群,及/或 一或多種式IV及/或V之化合物,較佳選自式CC-n-V、CCP-n-m、CCP-V-n、CCP-V2-n及CGP-n-n之群,及/或 視情況較佳強制性地為一或多種式IV化合物,較佳選自式CC-n-V、CC-n-Vm、CC-n-mVl及CC-nV-Vm、較佳CC-3-V、CC-3-V1、CC-4-V、CC-5-V、CC-3-2V1及CC-V-V之化合物之群,尤其較佳選自化合物CC-3-V、CC-3-V1、CC-4-V、CC-3-2V1及CC-V-V之群,極其較佳為化合物CC-3-V,及視情況另外為化合物CC-4-V及/或CC-3-V1及/或CC-3-2V1及/或CC-V-V,及/或 視情況較佳強制性地地為一或多種式V化合物,較佳選自式CCP-V-1及/或CCP-V2-1之群。 對於本發明,除非在個別情況下另外指示,否則結合組合物各成分之說明應用以下定義: - 「包含」:組合物中所討論之成分之濃度較佳為5%或更高,尤其較佳為10%或更高,極其較佳為20%或更高, - 「主要由……組成」:組合物中所討論之成分之濃度較佳為50%或更高,尤其較佳為55%或更高且極其較佳為60%或更高, - 「基本上由……組成」:組合物中所討論之成分之濃度較佳為80%或更高,尤其較佳為90%或更高且極佳為95%或更高,及 - 「幾乎完全由……組成」:組合物中所討論之成分之濃度較佳為98%或更高,尤其較佳為99%或更高且極其較佳為100.0%。 此同時適用於呈具有其成分之組合物形式的介質,該等組合物可為組分及化合物,以及具有其成分之組分、化合物。僅就個別化合物相對於介質整體之濃度而言,術語包含意謂:所討論之化合物之濃度較佳為1%或更高,尤其較佳為2%或更高,極其較佳為4%或更高。 對於本發明,「≤」意謂小於或等於,較佳為小於,且「≥」意謂大於或等於,較佳為大於。 對於本發明表示反-1,4-伸環己基,表示順-1,4-伸環己基及反-1,4-伸環己基之混合物, 且表示1,4-伸苯基。 對於本發明,表述「介電正性化合物」意謂Δε > 1.5之化合物,表述「介電中性化合物」意謂-1.5 ≤ Δε ≤ 1.5之該等化合物,且表述「介電負性化合物」意謂Δε < -1.5之該等化合物。 用於量測Δε為介電正性及介電中性化合物之主體混合物為ZLI-4792,且用於介電負性化合物之主體混合物為ZLI-2857,兩者均來自Merck KGaA, Germany。待研究之各別化合物的值係自添加待研究化合物且外插至100%所用化合物之後主體混合物之介電常數的改變獲得。將待研究化合物溶解於呈10%之量的主體混合物中。若物質之溶解度過低而無法用於此目的,則在步驟中濃度減半,直至研究可在所需溫度下進行為止。 必要時,根據本發明之液晶介質亦可進一步包含常用量之添加劑,諸如穩定劑及/或多色(例如雙色)染料及/或對掌性摻雜劑。以整個混合物之量計,所用該等添加劑之量較佳為總計0%或更高至10%或更低,尤其較佳為0.1%或更高至6%或更低。所用個別化合物之濃度較佳為0.1%或更高至3%或更低。當指定液晶介質中液晶化合物之濃度及濃度範圍時,一般不考慮此等添加劑及類似添加劑之濃度。 在一特殊實施例中,根據本發明之液晶介質可包含聚合物前驅體,其包含一或多種反應性化合物,較佳為反應性液晶原基,且必要時,該等液晶介質亦進一步包含常用量之添加劑,諸如聚合反應引發劑及/或聚合反應減速劑。按整個混合物之量計,所用此等添加劑之量總計為0%或更高至10%或更低,較佳為0.1%或更高至2%或更低。當指定液晶介質中液晶化合物之濃度及濃度範圍時,不考慮此等添加劑及類似添加劑之濃度。 該等組合物由以習知方式混合的複數種化合物、較佳3種或更多至30種或更少、尤其較佳6種或更多至20種或更少,且極其較佳10種或更多至16種或更少化合物組成。一般而言,將以較少量使用的組分之所需量溶解於構成該混合物之主要成分的組分中。此有利地在高溫下進行。若選定溫度高於主要成分之澄清點,則尤其易於觀測到溶解操作之完成。然而,亦有可能以其他習知方式,例如使用預混物,或由所謂的「多瓶系統(multi-bottle system)」製備液晶混合物。 根據本發明之混合物呈現澄清點為65℃或更高之極寬向列相範圍、極有利的電容臨限值、相對較高的保持率值且同時在-30℃及-40℃下極佳之低溫穩定性。另外,根據本發明之混合物係藉由低旋轉黏度γ1 區分。 不言而喻,對於熟習此項技術者而言,根據本發明之介質亦可包含其中例如H、N、O、Cl、F已經相應同位素置換之化合物。 根據本發明之IPS液晶顯示器之結構對應於常用幾何結構,如例如US 2001022569 A或US 2002030782 A中所描述。 根據本發明之液晶相可藉助於適合添加劑改質,以此方式使得其可用於例如迄今已揭示的任何類型之IPS及FFS LCD顯示器中。 下表E指示可添加至根據本發明之混合物中的可能摻雜劑。若混合物包含一或多種摻雜劑,則量為0.01%至4%,較佳為0.1%至1.0%。 可為添加例如至根據本發明之混合物之額外穩定劑較佳以0.001%至6%、尤其0.1%至3%之量展示於下表F中。 在本發明之一較佳實施例中,液晶介質另外包含選自酚類之穩定劑,更佳為選自2,6-二第三-丁基酚之衍生物,其較佳為下表F中所列彼等酚,且最佳選自式S-1及S-2之群:其中 RS 表示具有1至9個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基、具有2至9個C原子之烯基、烯基氧基、烷氧基烷基。 式S-1或S-2之尤其較佳的結構為式S-1-3及S-2-3之化合物: 出於本發明之目的,除非另外明確指出,否則所有濃度均以重量百分比指示,且除非另外明確指示,否則係關於相應整體混合物或整體混合物組分。在此上下文中,術語「混合物」描述液晶介質。 除非另外明確指示,否則本申請案中所指示之所有溫度值,諸如熔點T(C,N)、近晶相(S)至向列相(N)之相變T(S,N)及清澈點T(N,I),均以攝氏度(℃)指示,且所有溫度差異相應地均以度數差異(°或度)指示。 對於本發明,除非另外明確指示,否則術語「臨限電壓」係關於電容臨限值(V0 ),亦稱為弗雷德里克臨限值(Freedericks threshold)。 除非在各情況下另外明確指示,否則所有物理特性均係且已根據「Merck Liquid Crystals, Physical Properties of Liquid Crystals」, Status 1997年11月,Merck KGaA, Germany來測定且適用於20℃之溫度,且Δn係在436 nm、589 nm及633 nm下測定且Δε係在1 kHz下測定。 在本文中,化合物之介電各向異性係藉由以下步驟測定:將10%化合物溶解於液晶主體中,且在各情況下測定所得混合物在至少一個測試單元中之電容,該測試單元之單元厚度為20 µm,且在1 kHz下具有垂直及均勻表面對準。量測電壓通常為0.3 V至1.0 V,但始終低於所研究之各別液晶混合物之電容臨限值。 使用Merck生產之測試單元測定臨限電壓以及所有其他電光特性。用於測定Δε之測試單元之單元厚度為約20 µm。電極為具有1.13 cm2 面積及保護環之圓形ITO電極。定向層為用於垂直定向(ε|| )之來自Nissan Chemicals, Japan之SE-1211,且用於均質定向(ε )之來自JSR, Japan之聚醯亞胺AL-1054。使用Solatron 1260頻率回應分析器,使用正弦波以0.3 Vrms 之電壓來測定電容。用於電光量測之光為白光。本文中使用利用可購自Autronic-Melchers,Germany之DMS儀器之裝備。已在垂直觀測下測定特徵電壓。分別針對10%、50%及90%相對對比度測定臨限(V10 )、中灰(V50 )及飽和(V90 )電壓。 除非另外指示,否則對掌性摻雜劑並未添加至所用液晶混合物中,但後者亦尤其適於需要此類摻雜之應用。 旋轉黏度係使用旋轉永久磁體方法及流動黏度在改良之烏氏黏度計(Ubbelohde viscometer)中測定。對於液晶混合物ZLI-2293、ZLI-4792及MLC-6608 (所有產品均來自Merck KGaA, Darmstadt, Germany),在20℃下測定的旋轉黏度值分別為161 mPa·s、133 mPa·s及186 mPa·s,且流動黏度值(ν)分別為21 mm2 ·s- 1 、14 mm2 ·s- 1 及27 mm2 ·s- 1 。 除非另作明確規定,否則出於實用之目的,材料之色散可便利地以本申請案通篇使用之以下方式表徵。雙折射率值係在20℃溫度下在若干固定波長下,於接觸該材料之稜鏡側面上使用改良之阿貝折射計(Abbé refractometer)以垂直對準之表面測定。雙折射率值在特定波長值436 nm (各別選擇的低壓汞燈之光譜線)、589 nm (鈉「D」線)及633 nm (HE-Ne雷射器(與衰減器/擴散器組合使用以防止損害觀測者之眼睛)之波長)下測定。在下表中,Δn在589 nm下給出且Δ(Δn)給出為Δ(Δn) = Δn(436 nm) - Δn(633 nm)。 除非另外明確指示,否則使用以下符號: V0 臨限電壓,在20℃下之電容[V], ne 在20℃及589 nm下量測之異常折射率, no 在20℃及589 nm下量測之普通折射率, Dn 在20℃及589 nm下量測之光學各向異性, λ 波長λ [nm], Dn(λ) 在20℃及波長λ下量測之光學各向異性, D(Dn) 如下所定義之光學各向異性變化: Dn(20℃,436 nm) - Dn(20℃,633 nm), D(Dn*) 如下所定義之「光學各向異性之相對變化」: D(Dn)/Dn(20℃,589 nm), e^ 在20℃及1 kHz下,垂直於引向器之介電磁感率, e÷÷ 在20℃及1 kHz下,平行於指向矢之介電磁感率, De 在20℃及1 kHz下之介電各向異性, T(N,I)或clp. 清澈點[℃], n 在20℃下量測之流動黏度[mm2 ·s- 1 ], g1 在20℃下之旋轉黏度[mPa·s], k11 彈性常數,在20℃下之「傾斜」變形[pN]; k22 彈性常數,在20℃下之「扭轉」變形[pN], k33 彈性常數,在20℃下「彎曲」變形[pN], LTS 在測試單元中測定之相的低溫穩定性, VHR 電壓保持率(VHR ), DVHR 電壓保持率之降低,及 Srel VHR之相對穩定性, 以下實例用來解釋本發明而不限制本發明。然而,其向熟習此項技術者展示較佳混合物概念與較佳使用之化合物及其各別濃度及其彼此之組合。此外,實例說明可獲得的特性及特性組合。 對於本發明而言及在以下實例中,藉助於首字母縮寫詞指示液晶化合物之結構,其中根據下表A至表C進行化學式之轉化。所有基團Cn H2n + 1 、Cm H2m + 1 及Cl H2l + 1 或Cn H2n 、Cm H2m 及Cl H2l 均為直鏈烷基或伸烷基,在各情況下分別具有n、m及l個C原子。較佳地,n、m及l彼此獨立地為1、2、3、4、5、6或7。表A展示化合物之原子核之環形元素的編碼,表B列出橋接單元,且表C列出分子之左右端基之符號的含義。首字母縮寫詞由以下構成:具有視情況鍵聯基團之環形元素的編碼,隨後第一連字符及左側端基的編碼,以及第二連字符及右側端基之編碼。表D展示化合物之說明性結構連同其各別縮寫。 A :環形元素 B :橋接單元 C 端基 其中n及m各為整數,且三個點「...」為來自此表之其他縮寫之占位符。 除式B化合物之外,根據本發明之混合物較佳包含一或多種如下所述之化合物的化合物。 使用以下縮寫: (n、m、k及l各自彼此獨立地為整數,較佳為1至9,較佳為1至7,k及l可能亦可為0,且較佳為0至4,更佳為0或2,且最佳為2,n較佳為1、2、3、4或5,在組合「-nO-」中其較佳為1、2、3或4,較佳為2或4,m較佳為1、2、3、4或5,在組合「-Om」中其較佳為1、2、3或4,更佳為2或4。組合「-lVm」較佳為「2V1」。) D 示例性、較佳的介電正性化合物 示例性、較佳的介電中性化合物 表E展示較佳用於根據本發明之混合物中的對掌性摻雜劑。 E 在本發明之一較佳實施例中,根據本發明之介質包含一或多種選自表E中之化合物之群的化合物。 表F展示除式I化合物外,亦可較佳用於根據本發明之混合物中的穩定劑。本文中參數n表示在1至12範圍內之整數。尤其,所示苯酚衍生物可因其充當抗氧化劑而用作另外的穩定劑。 F 其中n彼此獨立地為1、2、3、4、5、6或7。實例 以下實例解釋本發明而不以任何方式對其進行限制。然而,物理特性使得熟習此項技術者瞭解可實現何種特性及其可在什麼範圍內進行改質。尤其,因此熟習此項技術者非常清楚可較佳達成之多種特性之組合。 使用以下可聚合穩定劑(可聚合哌啶衍生物):來源:Santa Cruz Biotechnology Inc. (CAS 31582-45-3) 添加劑之合成實例 示例性式I化合物如下或根據WO 2016/116119 A1 (實例)合成。合成實例 如下製備化合物RH - 2將4-羥基TEMPO (8.00 g,45.5 mmol)及4-(二甲胺基)吡啶(0.30 g,2.46 mmol)添加至100 ml DCM中。在冷卻至2℃之後,將三乙胺(25.00 ml,180.35 mmol)添加至以上溶液中,隨後將3-溴基-丙醯氯(6.00 ml,50.6 mmol)逐滴添加至50 ml DCM中。在完成添加之後,使反應混合物升溫至室溫。在完成藉由TLC指示之轉換之後,添加水性氯化銨溶液。用DCM萃取水相。將有機相合並且經無水硫酸鈉乾燥且過濾。在真空中移除溶劑之後,使用DCM/甲基第三丁基醚(MTBE) 95:5作為溶離劑藉由矽膠管柱層析純化固體殘餘物,且自庚烷/MTBE進一步再結晶以得到呈紅色晶體之3 (4.2 g,m.p. 102℃)。1 H-NMR (CDCl3 , 500 MHz): d (ppm): 6.54 (br. m., 1 H, H烯烴 ), 6.24 (br. m., 1 H, H烯烴 ), 6.00 (br. m., 1 H, H烯烴 ), MS (EI+ ) m/z: C12 H20 NO3 的[M]+ 計算值: 226.3;實驗值226.1。額外穩定劑 作為額外穩定劑,可有利地使用選自結構S-1-3或S-2-3之化合物,其具有以下結構: 混合物實例 以下主體混合物H1H4 用於製造根據本發明之實例:H1 向列型主體 - 混合物 H2 向列型主體 - 混合物 H3 向列型主體 - 混合物 H4 向列型主體 - 混合物 比較實例 A 混合物(A)藉由使主體混合物H1與0.05重量%之不可聚合穩定劑S-1-3混合來製備。背光負載測試前後在電壓保持率方面研究混合物。混合物實例 1 向比較實例(A)之混合物(A)中添加濃度為0.01重量%的可聚合添加劑RH-1。混合物實例 2 向比較實例(A)之混合物(A)中添加濃度為0.01重量%的可聚合添加劑RH-2。VHR 量測 可聚合哌啶衍生物在背光負載下之效應 具有(a)摩擦聚醯亞胺及(b)具有光對準聚醯亞胺之測試單元填充有前述實例之介質。針對(a)及(b) (表1及2)在密集光負載(120 min)前後量測測試單元的電壓保持率(VHR)。照射光等效於500 h之用於顯示器的典型白色CCFL背光。 表1:摩擦聚醯亞胺之結果(OPTMER® AL16301, JSR Corp.): *BL =背光負載測試; 120 h加速基於LED之背光 表2:光對準聚醯亞胺之結果: *BL =背光負載測試;120 h加速基於LED之背光比較實例 B 混合物(B)藉由使主體混合物H1與0.05重量%之不可聚合穩定劑S-2-3混合來製備。背光負載測試前後在電壓保持率方面研究混合物。混合物實例 3 向比較實例(B)之混合物(B)中添加濃度為0.01重量%的可聚合添加劑RH-1。混合物實例 4 向比較實例(B)之混合物(B)中添加濃度為0.01重量%的可聚合添加劑RH-2。VHR 量測:可聚合哌啶衍生物在背光負載下之效應 (a)摩擦聚醯亞胺及(b)光對準聚醯亞胺之測試單元填充有前述實例之介質,且如上量測VHR (表3及4)。 表3:摩擦聚醯亞胺之結果(OPTMER® AL16301, JSR Corp.): *BL =背光負載測試;144 h加速基於LED之背光 表4:光對準聚醯亞胺之結果: *BL =背光負載測試;120 h加速基於LED之背光 藉由使用如式RH-1或RH-2之化合物之可聚合添加劑,避免在背光負載之後VHR下降。填充有實例1至4之混合物之測試單元展示背光負載後VHR幾乎不減少,而無任何可聚合添加劑之比較實例(實例A及B)展示VHR顯著下降。The present invention relates more particularly to a liquid crystal medium comprising - a polymerizable component A) which comprises one or more polymerizable compounds, at least one of which is a compound of formula I, and - Liquid crystal component B), hereinafter also referred to as "LC host mixture", contains, preferably consists of, one or more mesogens or liquid crystal compounds. The liquid crystal component B) of the liquid crystal medium according to the invention is also referred to as "LC host mixture" in the following and preferably contains one or more, preferably at least two, mesogens or LC selected from non-polymerizable low molecular weight compounds. compound. Furthermore, the invention relates to a liquid-crystalline medium as described above and below, wherein the LC host mixture or component B) contains at least one mesogen or LC compound containing alkenyl groups. Furthermore, the invention relates to a liquid crystal medium or LC display as described above and below, in which the compound of formula I or the polymerizable compound of component A) is polymerized. Furthermore, the present invention relates to a method for preparing a liquid crystal medium as described above and below, which method comprises the step of combining one or more mesogens or LC compounds or an LC host mixture or LC group as described above and below. Part B) is mixed with one or more compounds of formula I and, optionally, other LC compounds and/or additives. This type of media is particularly useful in electro-optical displays with active matrix addressing for IPS or FFS displays. The medium according to the invention preferably additionally contains one or more compounds selected from the group of compounds of formula II and compounds of formula III, preferably one or more compounds of formula II, more preferably another one or more compounds of formula III, and most preferably another or a plurality of compounds selected from the group of compounds of formula IV and compounds of formula V. The mixture according to the present invention exhibits an extremely wide nematic phase range at a clearing point ≥70°C, has a relatively high retention rate (VHR) value, an extremely favorable capacitance threshold value, and simultaneously operates at -20°C and -30°C. Excellent low temperature stability at ℃ and extremely low rotational viscosity. Furthermore, the mixtures according to the invention are distinguished by a good ratio of clearing point and rotational viscosity and a relatively high positive dielectric anisotropy. Notably, the reliability of the mixture was improved. Very little image burning was observed. High voltage retention even after extended use or similarly after standard aging tests such as accelerated light load, thermal or UV testing. On the one hand, preferably, the dielectric anisotropy value of the liquid crystal medium according to the present invention is 2 or more, preferably 3.5 or more preferably 4.5 or more. On the other hand, its dielectric anisotropy is preferably 25 or less. In a preferred embodiment, the positive dielectric anisotropy of the liquid crystal medium according to the present invention is preferably in the range of 2.0 or more to 25 or less, more preferably in the range of 3.0 or more to 22 or less range, and optimally within the range of 8.0 or greater to 20 or less. All % are by weight. The compound of formula I is preferably used at a concentration in the range of 0.0005 to 2% by weight, more preferably in the range of 0.001 to 1% by weight, especially preferably in the range of 0.005 to 0.05% by weight. Liquid crystal media. The total content of polymerizable or polymerizable components in the liquid crystal medium according to the present invention is preferably less than 0.1% by weight, more preferably less than 0.05% by weight, and most preferably less than 0.02% by weight (200 ppm). The liquid crystal medium preferably contains a) one or more compounds of formula I, b) one or more dielectric compounds selected from the group of compounds of formula II and compounds of formula III, preferably selected from the group of compounds with dielectric anisotropy each greater than 3. Positive compounds: Where R 2 represents an alkyl group, alkoxy group, fluorinated alkyl group or fluorinated alkoxy group with 1 to 7 C atoms, an alkenyl group, alkenyloxy group, alkoxyalkyl group with 2 to 7 C atoms. group or fluorinated alkenyl group, and preferably represents an alkyl group or alkenyl group, L 21 and L 22 represent H or F, preferably L 21 represents F, and Or alkenyloxy group, preferably F, Cl, -OCF 3 , -O-CH 2 CF 3 , -O-CH=CH 2 , -O-CH=CF 2 or -CF 3 , most preferably F, Cl, CF 3 , -O-CH=CF 2 or -OCF 3 , m represents 0, 1, 2 or 3, preferably 1 or 2 and particularly preferably 1, R 3 represents 1 to 7 C atoms alkyl, alkoxy, fluorinated alkyl or fluorinated alkoxy, alkenyl, alkenyloxy, alkoxyalkyl or fluorinated alkenyl having 2 to 7 C atoms, and preferably alkyl or alkenyl, L 31 and L 32 independently represent H or F, preferably L 31 represents F, and X 3 represents halogen, halogenated alkyl or alkoxy group with 1 to 3 C atoms or 2 or 3 C atoms. Halogenated alkenyl or alkenyloxy, F, Cl, -OCF 3 , -OCHF 2 , -O-CH 2 CF 3 , -O-CH=CF 2 , -O-CH=CH 2 or -CF 3 , Excellent means F, Cl, -O-CH=CF 2 , -OCHF 2 or -OCF 3 , Z 3 means -CH 2 CH 2 -, -CF 2 CF 2 -, -COO-, anti-CH=CH- , anti-CF=CF-, -CH 2 O- or single bond, preferably means -CH 2 CH 2 -, -COO-, anti-CH=CH- or single bond, and best means -COO-, anti -CH=CH- or a single bond, and n represents 0, 1, 2 or 3, preferably 1, 2 or 3 and especially preferably 1, and c) optionally one or more of the formulas IV and V Group of dielectrically neutral compounds: wherein R 41 and R 42 independently have the meanings indicated above for R 2 according to formula II, preferably R 41 represents an alkyl group and R 42 represents an alkyl group or an alkoxy group, or R 41 represents an alkenyl group and R 42 represents an alkyl group, Z 41 and Z 42 , independently of each other and if Z 41 appears twice, these groups also independently represent -CH 2 CH 2 -, -COO-, anti-CH=CH-, anti-CF=CF -, -CH 2 O-, -CF 2 O-, -C≡C- or single bond, preferably one or more of them represent a single bond, and p represents 0, 1 or 2, preferably 0 or 1 , and R 51 and R 52 , independently of each other, have one of the meanings given for R 41 and R 42 , and preferably represent an alkyl group having 1 to 7 C atoms, preferably represent an n-alkyl group, especially more Preferably represents an n-alkyl group having 1 to 5 C atoms, preferably represents an alkoxy group having 1 to 7 C atoms, preferably represents an n-alkoxy group, and particularly preferably represents an n-alkoxy group having 2 to 5 C atoms. radical, which means an alkoxyalkyl, alkenyl or alkenyloxy group having 2 to 7 C atoms, preferably having 2 to 4 C atoms, preferably alkenyloxy group, Preferably Preferably, And if exists, then Z 51 to Z 53 each independently represent -CH 2 -CH 2 -, -CH 2 -O-, -CH=CH-, -C≡C-, -COO- or a single bond, preferably -CH 2 -CH 2 -, -CH 2 -O- or a single bond, and particularly preferably represents a single bond, i and j each independently represent 0 or 1, (i + j) preferably represents 0, 1 or 2, more preferably Best means 0 or 1 and Best means 1. The liquid crystal medium according to the present application preferably has a nematic phase. The definition of alkyl throughout this application and in particular for R 1 means alkyl, which may be straight or branched. Each of these groups is preferably straight chain, and preferably has 1, 2, 3, 4, 5, 6, 7 or 8 C atoms, and is accordingly preferably methyl, ethyl, n- Propyl, n-butyl, n-pentyl, n-hexyl or n-heptyl. In the case where alkyl means branched chain alkyl, it preferably means 2-alkyl, 2-methylalkyl or 2-(2-ethyl)-alkyl, preferably 2-butyl ( =1-methylpropyl), 2-methylbutyl, 2-methylpentyl, 3-methylpentyl, 2-ethylhexyl, 2-propylpentyl, especially 2-methylbutyl base, 2-methylbutoxy 4-methylhexyl, 2-hexyl, 2-octyl, 2-nonyl, 2-decyl and 2-dodecyl. Preferably these groups are 2-hexyl and 2-octyl. The respective branched chain groups, in particular for R 1 which give rise to chiral compounds, are also referred to in this application as chiral groups. Particularly preferred chiral groups are 2-alkyl, 2-alkoxy, 2-methylalkyl, 2-methylalkoxy, 2-fluoroalkyl, 2-fluoroalkoxy, 2- (2-ethynyl)-alkyl, 2-(2-ethynyl)-alkoxy, 1,1,1-trifluoro-2-alkyl and 1,1,1-trifluoro-2-alkoxy. For example, particularly preferred chiral groups are 2-butyl (=1-methylpropyl), 2-methylbutyl, 2-methylpentyl, 3-methylpentyl, 2- Ethylhexyl, 2-propylpentyl, especially 2-methylbutyl, 2-methylbutoxy, 2-methylpentyloxy, 3-methylpentyloxy, 2-ethylhexyloxy base, 1-methylhexyloxy, 2-octyloxy, 2-oxa-3-methylbutyl, 3-oxa-4-methylpentyl, 4-methylhexyl, 2-hexyl, 2-octyl, 2-nonyl, 2-decyl, 2-dodecyl, 6-methoxyoctyloxy, 6-methyloctyloxy, 6-methyloctyloxy, 5- Methylheptyloxycarbonyl, 2-methylbutyloxy, 3-methylpentyloxy, 4-methylhexyloxy, 2-chloropropyloxy, 2-chloro-3-methyl Butyloxy, 2-chloro-4-methylpentyloxy, 2-chloro-3-methylpentyloxy, 2-methyl-3-oxopentyl, 2-methyl-3- Oxahexyl, 1-methoxypropyl-2-oxy, 1-ethoxypropyl-2-oxy, 1-propoxypropyl-2-oxy, 1-butoxypropyl -2-oxy, 2-fluorooctyloxy, 2-fluorodecanyloxy, 1,1,1-trifluoro-2-octyloxy, 1,1,1-trifluoro-2-octyl, 2-Fluoromethyloctyloxy. Excellent ones are 2-hexyl, 2-octyl, 2-octyloxy, 1,1,1-trifluoro-2-hexyl, 1,1,1-trifluoro-2-octyl and 1,1,1 -Trifluoro-2-octyloxy. Compounds of formula I are prepared according to WO 2016/116119 A1 or are commercially available. Furthermore, the present invention relates to the use of liquid crystal mixtures and liquid crystal media according to the invention in IPS and FFS displays, especially in media containing liquid crystal, for improving the voltage-holding-ratio. Furthermore, the present invention relates to a liquid crystal display containing a liquid crystal medium according to the present invention, especially an IPS or FFS display, particularly preferably an IPS display. The display according to the present invention is preferably addressed by an active matrix LCD ( AMD for short), preferably by a thin film transistor (TFT) matrix. However, the liquid crystals according to the invention can also be used in an advantageous manner in displays with other known addressing methods. Furthermore, the invention relates to a method for preparing a liquid crystal medium according to the invention by mixing one or more compounds of the formula I with one or more low molecular weight liquid crystal compounds, or liquid crystal mixtures, and optionally with other liquid crystal compounds and/ Or additives are mixed to obtain a liquid crystal medium with a nematic phase and a dielectric anisotropy (Δε) of 1.5 or greater. The following meanings apply above and below: As used herein, the terms "reactive mesogen" and "RM" shall be understood to mean a reactive mesogen containing a mesogen or a liquid crystal skeleton attached thereto and suitable for polymerization reactions. Compounds with one or more functional groups. These groups are also referred to as "polymerizable groups" or "P". Unless otherwise stated, the term "polymerizable compound" as used herein is understood to mean a polymerizable monomeric compound. As used herein, the term "low molecular weight compound" should be understood to mean a compound that is monomeric and/or not prepared by polymerization, as opposed to a "polymeric compound" or "polymer." The term "halogen" means fluorine, chlorine or bromine, preferably fluorine or chlorine and especially fluorine. The term halogenation is used analogously. As used herein, the term "non-polymerizable compound" is understood to mean a compound that does not contain functional groups suitable for polymerization under conditions typically applied in RM polymerization reactions. The term "mesogene" is known to those skilled in the art and described in the literature, and means a liquid crystal (LC) in low molecular weight or polymeric substances that essentially contributes to the formation of liquid crystals (LC) in low molecular weight or polymeric materials due to the anisotropy of their attractive and repulsive interactions. Phase generating group. The compound containing a mesogen (mesogen compound) does not need to have a liquid crystal phase itself. It is also possible that mesogen compounds exhibit liquid crystalline phase behavior only after mixing with other compounds and/or after polymerization. Typical mesogens are, for example, rigid rod-shaped or disk-shaped units. An overview of terms and definitions used in connection with mesogens or liquid crystal compounds is provided in Pure Appl. Chem. 73(5), 888 (2001) and C. Tschierske, G. Pelzl, S. Diele, Angew. Chem. 2004, 116, Given in 6340-6368. The term "spacer" or simply "spacer", also referred to as "Sp", above and below, is known to those skilled in the art and is described in the literature, see for example Pure Appl. Chem. 73(5) , 888 (2001) and C. Tschierske, G. Pelzl, S. Diele, Angew. Chem. 2004, 116, 6340-6368. Unless otherwise indicated, the term "spacer group" or "spacer" above and below means a flexible group connecting the mesogen group and the polymerizable group to each other in the polymerizable mesogen compound. Although the mesogen group generally contains rings, the spacer group is generally an acyclic system, that is, in the form of a chain, where the chain can also be a branched chain. The term chain is used, for example, for alkylene groups. Substitutions such as -O- or -COO- are generally included both on and in the chain. In functional group terminology, a spacer (spacer group) is a linking group between functional structural parts of a molecule that contributes to specific steric flexibility between such parts. In a preferred embodiment, the spacer group represents an alkylene group (such as -(CH 2 ) n - and n=1 to 10) or an alkyleneoxy group, preferably having 2 to 5 carbon atoms. Above and below, represents trans-1,4-cyclohexyl ring, and Represents 1,4-phenylene ring. For the purposes of the present invention, the term "liquid-crystalline medium" is intended to mean a medium comprising a liquid crystal mixture and one or more polymerizable compounds such as, for example, Formula I or reactive mesogens. The term "liquid crystal mixture" (or "host mixture") is intended to mean consisting solely of non-polymerizable low molecular weight compounds, preferably two or more liquid crystal compounds and optionally other additives such as chiral dopants Or a liquid crystal mixture composed of stabilizers. Particularly preferred are liquid crystal mixtures and liquid crystal media having a nematic phase, especially a nematic phase at room temperature. Furthermore, there are preferred embodiments of additives of formula I. Preferably, m1 in Formula I is 0 or 1, with 0 being the best. More preferred is a compound of formula I selected from the group of compounds of the following formula, wherein T is a group selected from the group of the following formula Wherein R a , b , c , d are independently linear or branched chain alkyl groups having 1 to 10 C atoms. Preferably, Z 1 in formula I represents -CO-O-, -O-CO- or a single bond, preferably -CO-O- or a single bond. Preferably, Z 2 and Z 3 in formula I represent -CO-O-, -O-CO- or a single bond, preferably a single bond. Preferably, P in formula I is an acrylate or methacrylate group. Preferably, Sp in formula I is a single bond. Preferably, A 3 in Formula I represents an aromatic group or a heteroaromatic group with 6 to 24 ring atoms, which may also contain a fused ring and optionally be substituted by one or more groups L. Advantageously, A 3 in formula I represents benzene or naphthalene, optionally substituted by one or more groups L. Preferably, A 1 and A 2 in formula I represent an aromatic group or a heteroaromatic group with 6 to 24 ring atoms, which may also contain a fused ring and optionally pass through one or more groups L or R -(A 3 -Z 3 ) m2 -substituted, or A 1 is a single bond. Advantageously, A 1 and A 2 in formula I represent benzene, cyclohexylene, naphthalene, phenanthrene or anthracene, optionally substituted by one or more groups L or R-(A 3 -Z 3 ) m2 - , or A 1 is a single bond. Preferably, -(A 2 -Z 2 -A 1 ) m1 - in formula I represents benzene, diphenyl, p-triphenyl (1,4-diphenylbenzene), meta-triphenyl (1,3 -diphenylbenzene), naphthyl, 2-phenyl-naphthyl, phenanthrene or anthracene, all of which are optionally substituted by one or more groups L. Preferably, -(A 2 -Z 2 -A 1 ) m1 - represents biphenylene, p-biphenylene or meta-biphenylene, each of which is optionally substituted by one or more groups L. The preferred group -(A 2 -Z 2 -A 1 ) m1 - is selected from the following formula wherein L is as defined in formula I or has one of the preferred meanings as described above and below, r is 0, 1, 2, 3 or 4, s is 0, 1, 2 or 3, and t is 0, 1 or 2 and u is 0, 1, 2, 3, 4 or 5. Particularly preferred are groups of the formulas A1, A2, A3, A4 and A5. Preferred compounds of formula I are selected from the following sub-formulas wherein P, Sp, R a - d , Z 1 , L and R are as defined in formula I or have one of the preferred meanings as described above and below, and Re is an alkyl group having 1 to 12 C atoms , r is 0, 1, 2, 3 or 4 and s is 0, 1, 2 or 3. Preferably, Z 1 in formula I and I-1 to I-45 represents -CO-O-, -O-CO- or a single bond, preferably -CO-O- or a single bond. Preferably, P in formula I and I-1 to I-45 is acrylate or methacrylate. Preferably, Sp in formula I and I-1 to I-45 is a single bond. Preferably, R a , R b , R c and R d in formula I and I-1 to I-45 are methyl groups. Preferably, R g in formula I is H. Preferred structures among I-1 to I-45 are structures I-1 and I-23, especially structure I-23. More preferred compounds of formula I and its subformulas I-1 to I-45 are independently selected from the following preferred embodiments, including any combination thereof: - these compounds contain exactly one polymerizable group (denoted as group P ), - P is acrylate or methacrylate, - Sp is a single bond, - Sp is selected from -(CH 2 ) a -O-, -(CH 2 ) a -CO-O- when it is different from a single bond , -(CH 2 ) a - and -(CH 2 ) a -O-CO-, where 2, 3, 4, 5 or 6, as applicable, and the O atom or CO- group is respectively connected to the next ring A2 Or group T, - R a , R b , R c and R d are methyl, - R e is methyl, ethyl, n-propyl, isopropyl, tert-butyl, n-butyl or n-pentyl base, - R g is H, - m1 is 0, 1 or 2, - m2 is 0, 1 or 2, - Z 1 represents -CO-O-, -O-CO- or a single bond, preferably -CO -O-, - Z 2 represents -CO-O-, -O-CO- or a single bond, preferably a single bond, - L represents F, Cl, CN or fluorine as appropriate with 1 to 6 C atoms The alkyl or alkoxy group of T, - r is 0 or 1, - s is 0, - t is 0 - u is 0, 1 or 2. In a preferred embodiment of the present invention, the liquid crystal medium contains one or more dielectrically positive compounds with a dielectric anisotropy greater than 3, which are selected from the group of compounds of formulas II-1 and II-2: wherein the parameters have their respective meanings as indicated above according to formula II, and L 23 and L 24 independently represent H or F, preferably, L 23 represents F, and And in the case of formula II-1 and II-2, X 2 preferably represents F or OCF 3 , particularly preferably represents F, and in the case of formula II-2, And/or selected from the group of compounds of formula III-1 and III-2: wherein the parameters have the meanings given according to formula III, and as an alternative to or in addition to the compounds of formula III-1 and/or III-2, the medium according to the invention may comprise one or more compounds of formula III-3 compound, wherein the parameters have their respective meanings as indicated above, and parameters L 31 and L 32 represent H or F independently of each other and independently of the other parameters. The liquid crystal medium preferably contains a compound selected from the group of compounds of formulas II-1 and II-2, wherein L 21 and L 22 and/or L 23 and L 24 both represent F. In a preferred embodiment, the liquid crystal medium includes a compound selected from the group of compounds of formulas II-1 and II-2, wherein L 21 , L 22 , L 23 and L 24 all represent F. The liquid crystal medium preferably contains one or more compounds of formula II-1. The compound of formula II-1 is preferably selected from the group of compounds of formula II-1a to II-1e, preferably formula II-1a and/or II-1b and/or II-1d, preferably one or more formulas II-1a and/or II-1d or II-1b and/or II-1d, preferably the compound of formula II-1d: wherein the parameters have the respective meanings indicated above, and the parameters L 25 and L 26 represent H or F independently of each other and independently of the other parameters, and preferably in formulas II-1a and II-1b, L 21 and L 22 both represent F, in formula II-1c and II-1d, L 21 and L 22 both represent F, and/or L 23 and L 24 both represent F, and in formula II-1e, L 21 , L 22 and L 23 represent F. The liquid crystal medium preferably contains one or more compounds of formula II-2, and these compounds are preferably selected from the group of compounds of formulas II-2a to II-2k, preferably one or more compounds of formulas II-2a, II-2h, Compounds of each of II-2k and/or II-2j: The parameters have the respective meanings indicated above, and L 25 to L 28 independently represent H or F. Preferably, L 27 and L 28 both represent H, and particularly preferably, L 26 represents H. The liquid crystal medium preferably contains a compound selected from the group of compounds of formulas II-2a to II-2k, wherein both L 21 and L 22 represent F, and/or both L 23 and L 24 represent F. In a preferred embodiment, the liquid crystal medium includes a compound selected from the group of compounds of formulas II-2a to II-2k, wherein L 21 , L 22 , L 23 and L 24 all represent F. Particularly preferred compounds of formula II-2 are compounds of the following formula, particularly preferred compounds of formula II-2a-1, II-2h-1 and/or II-2k-1 and/or II-2j--1 Compounds: wherein R 2 and X 2 have the meanings indicated above, and X 2 preferably represents F. The liquid crystal medium preferably contains one or more compounds of formula III-1. The compound of formula III-1 is preferably selected from the group of compounds of formula III-1a to III-1j, preferably selected from the group of compounds of formula III-1c, III-1f, III-1g and III-1k: wherein the parameters have the meanings given above, and preferably wherein the parameters have the respective meanings indicated above, the parameters L 33 and L 34 represent H or F independently of each other and independently of the other parameters, and the parameter L 35 and L 36 represent H or F independently of each other and other parameters. The liquid crystal medium preferably contains one or more compounds of formula III-1c. These compounds are preferably selected from the group of compounds of formulas III-1c-1 to III-1c-5, preferably formulas III-1c-1 and/or Or a compound of III-1c-2, preferably a compound of formula III-1c-1: wherein R 3 has the meaning indicated above. The liquid crystal medium preferably contains one or more compounds of formula III-1f. These compounds are preferably selected from the group of compounds of formulas III-1f-1 to III-1f-6, preferably formulas III-1f-1 and/or Or compounds of III-1f-2 and/or III-1f-3 and/or III-1f-6, more preferably compounds of formula III-1f-3 and/or III-1f-6, more preferably compounds of formula III Compounds of -1f-6: wherein R 3 has the meaning indicated above. The liquid crystal medium preferably contains one or more compounds of formula III-1g. These compounds are preferably selected from the group of compounds of formula III-1g-1 to III-1g-5, and are preferably compounds of formula III-1g-3: wherein R 3 has the meaning indicated above. The liquid crystal medium preferably contains one or more compounds of formula III-1h. These compounds are preferably selected from the group of compounds of formula III-1h-1 to III-1h-3, and are preferably compounds of formula III-1h-3. : The parameters have the meanings given above, and X 3 preferably represents F. The liquid crystal medium preferably contains one or more compounds of formula III-1i. These compounds are preferably selected from the group of compounds of formula III-1i-1 and III-1i-2, and are preferably compounds of formula III-1i-1. : The parameters have the meanings given above, and X 3 preferably represents F. The liquid crystal medium preferably contains one or more compounds of formula III-1j. These compounds are preferably selected from the group of compounds of formula III-1j-1 and III-1j-2, and are preferably compounds of formula III-1j-1. : The parameters have the meaning given above. The liquid crystal medium preferably contains one or more compounds of formula III-1k. These compounds are preferably selected from the group of compounds of formula III-1k-1 and III-1k-2, and are preferably compounds of formula III-1k-1. : The parameters have the meaning given above. The liquid crystal medium preferably contains one or more compounds of formula III-2. The compound of formula III-2 is preferably selected from the group of compounds of formula III-2a and III-2b, and is preferably a compound of formula III-2b: wherein the parameters have their respective meanings as indicated above, and parameters L 33 and L 34 represent H or F independently of each other and independently of the other parameters. The liquid crystal medium preferably contains one or more compounds of formula III-2a, and these compounds are preferably selected from the group of compounds of formulas III-2a-1 to III-2a-6: wherein R 3 has the meaning indicated above. The liquid crystal medium preferably contains one or more compounds of formula III-2b. These compounds are preferably selected from the group of compounds of formula III-2b-1 to III-2b-4, and are preferably compounds of formula III-2b-4. : wherein R 3 has the meaning indicated above. And as an alternative to or in addition to the compounds of formula III-1 and/or III-2, the medium according to the invention may comprise one or more compounds of formula III-3, The parameters have the respective meanings indicated above according to Formula III. These compounds are preferably selected from the group of formulas III-3a and III-3b: wherein R 3 has the meaning indicated above. In a more preferred embodiment, the liquid crystal medium further includes one or more compounds of formula III-1h-3 and one or more compounds of formula III-1j-1 in addition to the compound of formula I and the compound of formula II. The liquid crystal medium according to the present invention preferably contains one or more dielectrically neutral compounds with dielectric anisotropy in the range of -1.5 to 3. In this application, such elements include their respective isotopes. In particular, one or more H's in these compounds may be replaced by D, and in some embodiments, this is also particularly preferred. A correspondingly high degree of deuteration of the corresponding compounds enables, for example, the detection and identification of these compounds. In some cases this is extremely helpful, especially in the case of compounds of formula I. In this application, alkyl particularly preferably means a straight-chain alkyl group, especially CH 3 -, C 2 H 5 -, n -C 3 H 7 -, n -C 4 H 9 - or n -C 5 H 11 -, and alkenyl group preferably represents CH 2 =CH-, E -CH 3 -CH=CH-, CH 2 =CH-CH 2 -CH 2 -, E -CH 3 -CH=CH-CH 2 -CH 2 - or E -( n -C 3 H 7 )-CH=CH-. In another preferred embodiment, the medium contains one or more compounds of formula IV-A Wherein R 41 represents an unsubstituted alkyl group with 1 to 7 C atoms or an alkyl group with 2 to 7 C atoms, preferably n-alkyl group, especially preferably with 2, 3, 4 or 5 C atoms. Unsubstituted alkenyl, and R 42 represents an unsubstituted alkyl group having 1 to 7 C atoms, an unsubstituted alkenyl group having 2 to 7 C atoms, or an unsubstituted alkenyl group having 1 to 6 C atoms. Substituted alkoxy group, wherein the group preferably has 2 to 5 C atoms, and is preferably an unsubstituted alkenyl group with 2, 3 or 4 C atoms, more preferably vinyl or 1-propene base, and especially vinyl. In a particularly preferred embodiment, the medium contains one or more compounds of formula IV selected from the group of compounds of formulas IV-1 to IV-4, preferably compounds of formula IV-1, Wherein alkyl and alkyl', independently represent an alkyl group having 1 to 7 C atoms, preferably 2 to 5 C atoms, and alkenyl and alkenyl', independently represent an alkyl group having 2 to 5 C atoms Atoms, preferably alkenyl having 2 to 4 C atoms, especially preferably 2 C atoms, alkenyl' preferably means having 2 to 5 C atoms, preferably 2 to 4 C atoms, especially more Preferred are alkenyl groups having 2 to 3 C atoms, and alkoxy groups represent alkoxy groups having 1 to 5 C atoms, preferably 2 to 4 C atoms. In a particularly preferred embodiment, the medium according to the invention contains one or more compounds of formula IV-1 and/or one or more compounds of formula IV-2. In another preferred embodiment, the medium contains one or more compounds of formula V. The medium according to the invention preferably contains the following compounds in a total concentration as indicated below: 0.001-1% by weight of one or more compounds of the formula I, 5-60% by weight of one or more compounds of the formula II, preferably selected from the group consisting of the formula The group of compounds of II-1 and II-2, and/or 5-25% by weight of one or more compounds of formula III, and/or 5-60% by weight of one or more compounds of formula IV, and/or 3-25 % by weight of one or more compounds of formula V, wherein the total content of all compounds of formula I and compounds of formulas II to V (which are present in the medium) is preferably 95% or higher, more preferably 97% or higher, and Best is 100%. The conditions for total content preferably apply to all media according to this application. In another preferred embodiment, the medium according to the invention further preferably contains one or more dielectrically neutral compounds, which compounds are preferably selected from the group consisting of a total concentration of 5% or higher to 90% or lower, and more The group of compounds of formulas IV and V is preferably in the range of 10% or higher to 80% or lower, particularly preferably 20% or higher to 70% or lower. In a particularly preferred embodiment, the medium according to the invention contains: one or more total concentrations in the range of 15% by weight or more to 65% or less, preferably 30% or more to 55% or a compound of formula II in a lower range, and/or one or more compounds of formula III in a total concentration in the range of 5% or higher to 30% or lower. In a preferred embodiment of the present invention, the concentration of the compound of formula II in the medium is 15% by weight or higher to 65% or lower, more preferably 15% or higher to 60% or lower, more preferably 20% by weight. % or higher to 55% or lower, and preferably in the range of 25% or higher to 40% or lower. The invention also relates to electro-optical displays or electro-optical components containing a liquid crystal medium according to the invention. Preference is given to electro-optical displays based on the IPS or FFS effect, preferably based on the IPS effect, and in particular displays addressed by means of active matrix addressing means. The invention therefore also relates to the use of a liquid-crystalline medium according to the invention in electro-optical displays or in electro-optical components, and to a method for preparing a liquid-crystalline medium according to the invention, characterized in that one or more compounds of the formula I are combined with One or more compounds of formula II are mixed with optional other compounds and additives. In another preferred embodiment, the medium contains one or more compounds of formula IV selected from the group of compounds of formulas IV-2 and IV-3, Wherein alkyl and alkyl' independently represent an alkyl group having 1 to 7 C atoms, preferably 2 to 5 C atoms, and alkoxy group represents an alkyl group having 1 to 5 C atoms, preferably 2 to 5 C atoms. Alkoxy group with 4 C atoms. In another preferred embodiment, the medium contains one or more compounds of formula V, which are selected from the group of compounds of formula V-1 and V-2, preferably formula V-1, wherein the parameters have the meanings given above according to formula V, and preferably, R 51 represents an alkyl group having 1 to 7 C atoms or an alkenyl group having 2 to 7 C atoms, and R 52 represents a group having 1 An alkyl group with 7 C atoms, an alkenyl group with 2 to 7 C atoms, or an alkoxy group with 1 to 6 C atoms is preferably an alkyl group or an alkenyl group, and particularly preferably an alkyl group. In another preferred embodiment, the medium contains one or more compounds of formula V-1 selected from the group of compounds of formulas V-1a and V-1b, Wherein alkyl and alkyl' independently represent an alkyl group having 1 to 7 C atoms, preferably 2 to 5 C atoms, and alkenyl represents an alkyl group having 2 to 7 C atoms, preferably 2 to 5 C atoms. Alkenyl group with 5 C atoms. In addition to the compounds of the formulas I to V, other ingredients may also be present, for example in an amount of up to 45% of the total mixture, but preferably up to 35%, especially up to 10%. The medium according to the present invention may optionally contain a dielectric negative component, and its total concentration based on the entire medium is preferably 20% or lower, more preferably 10% or lower. In a preferred embodiment, based on the total mixture, the liquid crystal medium according to the present invention contains a total of 25% or higher to 65% or lower, preferably 30% or higher to 60% or lower, especially preferably 35% or more to 55% or less of the compounds of formula II and/or III, and 5% or more to 60% or less, preferably 25% or more to 55% or less, especially more Preferably 35% or more to 55% or less of compounds of formula IV and/or V. Liquid-crystalline media according to the invention may contain one or more chiral compounds. Particularly preferred embodiments of the invention satisfy one or more of the following conditions, wherein the acronyms (abbreviations) are explained in Tables A to C and are illustrated by the examples in Table D. Preferably, the medium according to the present invention satisfies one or more of the following conditions. i. The birefringence of the liquid crystal medium is 0.060 or higher, especially preferably 0.070 or higher. ii. The birefringence of the liquid crystal medium is 0.200 or lower, especially preferably 0.180 or lower. iii. The birefringence of the liquid crystal medium is in the range of 0.090 or higher to 0.160 or lower. iv. The liquid crystal medium contains preferably one or more compounds of formula I selected from (sub)formulas I-1 and I-23, the best (sub)formula I-23, and particularly preferred compounds of formula I. v. The total concentration of the compound of formula II in the overall mixture is 25% or higher, preferably 30% or higher, and preferably in the range of 25% or higher to 49% or lower, especially preferably Within the range of 29% or higher to 47% or lower, and most preferably within the range of 37% or higher to 44% or lower. vi. The liquid crystal medium contains one or more compounds of formula IV selected from the group of compounds of the following formula: CC-nV and/or CC-n-Vm and/or CC-VV and/or CC-V-Vn and/or CC- nV-Vn, especially preferably CC-3-V, its concentration is preferably at most 60% or lower, especially preferably at most 50% or lower; and optionally additional CC-3-V1, which The concentration is preferably at most 15% or lower; and/or CC-4-V, the concentration is preferably at most 40% or lower, especially preferably at most 30% or lower. vii. These media contain compounds of formula CC-nV, preferably formula CC-3-V, preferably in a concentration of 1% or higher to 60% or lower, and preferably in a concentration of 3% or higher to 38 % or lower. viii. The total concentration of the compound of formula CC-3-V in the overall mixture is preferably 15% or lower, preferably 10% or lower, or 20% or lower, preferably 25% or higher . Furthermore, the invention relates to an electro-optical display with an active matrix based on IPS or FFS effect addressing, characterized in that it contains a liquid crystal medium according to the invention as a dielectric. The nematic phase range of the liquid crystal mixture preferably has a width of at least 70 degrees. The rotational viscosity γ 1 is preferably 350 mPa·s or less, preferably 250 mPa·s or less, and especially 150 mPa·s or less. The mixtures according to the invention are suitable for all IPS and FFS-TFT applications using dielectrically positive liquid crystal media, such as SG-FFS. The liquid-crystalline medium according to the invention preferably consists almost entirely of 4 to 15 compounds, in particular 5 to 12 compounds and particularly preferably 10 compounds or less. These compounds are preferably selected from the group of compounds of formulas I, II, III, IV, V, VI, VII, VIII and IX. Liquid crystal media according to the invention may optionally contain more than 18 compounds. In this case, it preferably contains 18 to 25 compounds. In a preferred embodiment, the liquid-crystalline medium according to the invention mainly contains, preferably essentially consists of and most preferably almost entirely consists of cyano-free compounds. In a preferred embodiment, the liquid crystal medium according to the present invention comprises a group of compounds selected from formulas I, II and II, IV and V, preferably selected from the group consisting of formulas I, II-1, II-2, IV and V A compound of the group of compounds; it is preferably mainly composed of the compound of the formula, especially preferably it consists essentially of it and most preferably it consists almost entirely of it. The nematic phase of the liquid crystal medium according to the invention is in each case preferably at least -10°C or lower to 70°C or higher, particularly preferably -20°C or lower to 80°C or higher, extremely preferably Preferably it is -30°C or lower to 85°C or higher and most preferably -40°C or lower to 90°C or higher. The expression “having a nematic phase” means here that, on the one hand, no smectic phase and crystallization are observed at low temperatures at the corresponding temperatures, and, on the other hand, that no clearing occurs on heating from the nematic phase. Studies at low temperatures were carried out in flow viscometers at corresponding temperatures and verified by storage in test cells with cell thickness corresponding to the electro-optical application for at least 100 hours. If the storage stability at -20°C in the corresponding test unit is 1000 hours or more, the medium is considered stable at this temperature. At temperatures of -30°C and -40°C, the corresponding times are 500 hours and 250 hours respectively. At high temperatures, the clear point is measured in the capillary tube by conventional methods. In a preferred embodiment, the liquid crystal medium according to the invention is characterized by optical anisotropy values in the medium to low range. The birefringence value is preferably in the range of 0.075 or higher to 0.130 or lower, particularly preferably in the range of 0.085 or higher to 0.120 or lower and extremely preferably in the range of 0.090 or higher to 0.115 or lower within the range. In this embodiment, the liquid crystal medium according to the present invention has positive dielectric anisotropy and a relatively high absolute value of dielectric anisotropy Δε, which is preferably between 9.0 or higher and 22 or lower, and more preferably between 18 or lower, preferably 10 or higher to 15 or lower, particularly preferably 4.0 or higher to 9.0 or lower, and extremely preferably 4.5 or higher to 8.0 or lower. The liquid crystal medium according to the present invention preferably has a relatively low threshold voltage (V 0 ) value, which is between 1.0 V or higher and 5.0 V or lower, preferably 2.5 V or lower, preferably 1.2 V or lower. Higher to 2.2 V or lower, particularly preferably 1.3 V or higher to 2.0 V or lower. In addition, the liquid crystal medium according to the present invention has a higher VHR value in the liquid crystal cell. The VHR value of these media is greater than or equal to 95%, preferably greater than or equal to 97%, particularly preferably greater than or equal to 98% and extremely preferably greater than or equal to 99% in a newly filled cell at 20°C. , and after 5 minutes in the oven at 100°C in the unit, these VHR values are greater than or equal to 90%, preferably greater than or equal to 93%, especially preferably greater than or equal to 96% and extremely preferably greater than or equal to 98%. In general, liquid crystal media having a low addressing voltage or threshold voltage are herein described to have a lower VHR than those having a higher addressing voltage or threshold voltage, and vice versa. In each case, these preferred values of the individual physical properties are preferably also maintained by combining the media with one another according to the invention. In this application, unless otherwise expressly indicated, the term "compounds/compound(s)" means one and a plurality of compounds. In a preferred embodiment, the liquid crystal medium according to the present invention includes one or more formulas Compound I, preferably selected from the group of formulas I-1 and/or I-23, and/or one or more compounds of formula II, preferably selected from the group of formulas PUQU-nF, CDUQU-nF, APUQU-nF and PGUQU-nF and/or the group of CPUQU-nF, and/or one or more compounds of formula III, preferably selected from the group of formulas CCP-n-OT, CGG-nF and CGG-n-OD, and/or one or more compounds of formula IV and/or compounds of V, preferably selected from the group of formulas CC-nV, CCP-nm, CCP-Vn, CCP-V2-n and CGP-nn, and/or optionally preferably one or more Compounds of formula IV are preferably selected from the group consisting of formulas CC-nV, CC-n-Vm, CC-n-mVl and CC-nV-Vm, preferably CC-3-V, CC-3-V1, CC-4-V , the group of compounds of CC-5-V, CC-3-2V1 and CC-VV, especially preferably selected from the group consisting of compounds CC-3-V, CC-3-V1, CC-4-V, CC-3-2V1 and CC-VV, extremely preferably the compound CC-3-V, and optionally the compound CC-4-V and/or CC-3-V1 and/or CC-3-2V1 and/or CC- VV, and/or optionally preferably one or more compounds of formula V, preferably selected from the group of formulas CCP-V-1 and/or CCP-V2-1. For the present invention, unless in individual cases otherwise indicated below, otherwise the following definitions shall apply in conjunction with the description of the ingredients of the composition: - "Contains": the concentration of the ingredient in question in the composition is preferably 5% or higher, particularly preferably 10% or higher, and extremely Preferably 20% or more, - "consisting essentially of": the concentration of the ingredient in question in the composition is preferably 50% or more, particularly preferably 55% or more and extremely preferably 60% or more, - "consisting essentially of": the concentration of the ingredient in question in the composition is preferably 80% or more, particularly preferably 90% or more and most preferably 95% or more Higher, and - "consisting almost entirely of": The concentration of the ingredient in question in the composition is preferably 98% or higher, particularly preferably 99% or higher and very preferably 100.0%. This Also applies to a medium in the form of a composition with its constituents, which may be components and compounds, as well as components, compounds with its constituents. Only with respect to the concentration of the individual compounds relative to the medium as a whole, the term includes Meaning: The concentration of the compound in question is preferably 1% or higher, particularly preferably 2% or higher, extremely preferably 4% or higher. For the purposes of the present invention, "≤" means less than or equal to , preferably less than, and "≥" means greater than or equal to, preferably greater than. For the present invention Represents trans-1,4-cyclohexylene, represents a mixture of cis-1,4-cyclohexylene and trans-1,4-cyclohexylene, and Represents 1,4-phenylene group. For the present invention, the expression "dielectrically positive compound" means a compound with Δε > 1.5, the expression "dielectrically neutral compound" means such a compound with -1.5 ≤ Δε ≤ 1.5, and the expression "dielectrically negative compound" It means those compounds with Δε < -1.5. The host mixture used for measuring Δε was ZLI-4792 for dielectrically positive and dielectrically neutral compounds, and the host mixture for dielectrically negative compounds was ZLI-2857, both from Merck KGaA, Germany. The values for the individual compounds under investigation are obtained from the change in the dielectric constant of the bulk mixture after addition of the compound under investigation and extrapolated to 100% of the compound used. The compound to be studied is dissolved in an amount of 10% of the main mixture. If the solubility of the substance is too low for this purpose, the concentration is halved during the procedure until the study can be carried out at the required temperature. If necessary, the liquid crystal medium according to the present invention may further comprise conventional amounts of additives, such as stabilizers and/or polychromatic (eg bichromatic) dyes and/or chiral dopants. The additives are preferably used in a total amount of 0% or more to 10% or less, based on the total mixture, particularly preferably 0.1% or more to 6% or less. The concentrations of individual compounds used are preferably 0.1% or higher and 3% or lower. The concentration of these and similar additives is generally not considered when specifying the concentration and concentration range of liquid crystal compounds in a liquid crystal medium. In a special embodiment, the liquid crystal medium according to the present invention may include a polymer precursor, which includes one or more reactive compounds, preferably reactive mesogens, and if necessary, the liquid crystal medium further includes commonly used amount of additives such as polymerization initiators and/or polymerization moderators. The amount of these additives used totals 0% or more to 10% or less, preferably 0.1% or more to 2% or less, based on the total mixture. The concentrations of these and similar additives are not taken into account when specifying concentrations and concentration ranges of liquid crystal compounds in liquid crystal media. Such compositions consist of a plurality of compounds mixed in a conventional manner, preferably 3 or more to 30 or less, particularly preferably 6 or more to 20 or less, and extremely preferably 10. or more to 16 or less compounds. Generally, the required amount of the component used in smaller amounts is dissolved in the components constituting the main component of the mixture. This is advantageously carried out at high temperatures. The completion of the dissolution operation is particularly easy to observe if the selected temperature is higher than the clearing point of the main component. However, it is also possible to prepare the liquid crystal mixture in other conventional ways, such as using a premix or a so-called "multi-bottle system". Mixtures according to the invention exhibit a very wide nematic range with a clearing point of 65°C or higher, a very favorable capacitance threshold, a relatively high retention value and are excellent at -30°C and -40°C at the same time The low temperature stability. Furthermore, the mixtures according to the invention are distinguished by a low rotational viscosity γ 1 . It goes without saying to those skilled in the art that the medium according to the present invention may also contain compounds in which, for example, H, N, O, Cl, F have been replaced with corresponding isotopes. The structure of the IPS liquid crystal display according to the present invention corresponds to commonly used geometric structures, as described for example in US 2001022569 A or US 2002030782 A. The liquid crystal phase according to the invention can be modified by means of suitable additives in such a way that it can be used, for example, in any type of IPS and FFS LCD displays that have been disclosed so far. Table E below indicates possible dopants that may be added to the mixture according to the invention. If the mixture contains one or more dopants, the amount is from 0.01% to 4%, preferably from 0.1% to 1.0%. Additional stabilizers which may be added, for example, to the mixture according to the invention are preferably shown in Table F below in an amount of 0.001% to 6%, especially 0.1% to 3%. In a preferred embodiment of the present invention, the liquid crystal medium additionally contains a stabilizer selected from phenols, more preferably selected from derivatives of 2,6-di-tert-butylphenol, which is preferably listed in Table F below. The phenols listed in are preferably selected from the group of formulas S-1 and S-2: Where R S represents an alkyl group, alkoxy group, fluorinated alkyl group or fluorinated alkoxy group with 1 to 9 C atoms, an alkenyl group, alkenyloxy group, alkoxyalkyl group with 2 to 9 C atoms. base. Particularly preferred structures of formula S-1 or S-2 are compounds of formula S-1-3 and S-2-3: For the purposes of this invention, all concentrations are indicated in weight percent and, unless expressly stated otherwise, relate to the respective overall mixture or total mixture component. In this context, the term "mixture" describes a liquid crystalline medium. Unless otherwise expressly indicated, all temperature values indicated in this application, such as melting point T(C,N), phase transition T(S,N) from smectic (S) to nematic (N), and clarity Points T(N,I), are indicated in degrees Celsius (°C), and all temperature differences are correspondingly indicated in degrees of difference (° or degrees). For the present invention, unless otherwise explicitly indicated, the term "threshold voltage" refers to the capacitance threshold (V 0 ), also known as the Freedericks threshold. Unless otherwise expressly indicated in each case, all physical properties are and have been determined in accordance with "Merck Liquid Crystals, Physical Properties of Liquid Crystals", Status November 1997, Merck KGaA, Germany and apply at a temperature of 20°C, And Δn is measured at 436 nm, 589 nm and 633 nm and Δε is measured at 1 kHz. In this context, the dielectric anisotropy of a compound is determined by dissolving 10% of the compound in a liquid crystal host and in each case determining the capacitance of the resulting mixture in at least one test cell, the unit of which 20 µm thick with vertical and uniform surface alignment at 1 kHz. The measured voltages were typically 0.3 V to 1.0 V, but were always below the capacitance threshold of the respective liquid crystal mixtures studied. The threshold voltage and all other electro-optical characteristics are determined using test units produced by Merck. The cell thickness of the test cell used to determine Δε was approximately 20 µm. The electrode is a circular ITO electrode with an area of 1.13 cm2 and a protective ring. The alignment layers were SE-1211 from Nissan Chemicals, Japan for vertical orientation (ε || ) and polyimide AL-1054 from JSR, Japan for homogeneous orientation (ε ). Use a Solatron 1260 frequency response analyzer to measure capacitance using a sine wave with a voltage of 0.3 V rms . The light used for electro-optical measurement is white light. Equipment utilizing a DMS instrument commercially available from Autronic-Melchers, Germany was used in this paper. The characteristic voltage has been determined under vertical observation. Threshold (V 10 ), mid-grey (V 50 ) and saturation (V 90 ) voltages were measured for 10%, 50 % and 90% relative contrast respectively. Unless otherwise indicated, chiral dopants are not added to the liquid crystal mixtures used, although the latter are particularly suitable for applications requiring such doping. Rotational viscosity is measured using the rotating permanent magnet method and flow viscosity in a modified Ubbelohde viscometer. For the liquid crystal mixtures ZLI-2293, ZLI-4792 and MLC-6608 (all products from Merck KGaA, Darmstadt, Germany), the rotational viscosity values measured at 20°C were 161 mPa·s, 133 mPa·s and 186 mPa respectively. ·s, and the flow viscosity values (ν) are 21 mm 2 ·s - 1 , 14 mm 2 ·s - 1 and 27 mm 2 ·s - 1 respectively. Unless otherwise expressly stated, for practical purposes the dispersion of a material may conveniently be characterized in the following manner as used throughout this application. Birefringence values are measured at a temperature of 20°C and at several fixed wavelengths using a modified Abbé refractometer with a vertically aligned surface on the side contacting the material. Birefringence values at specific wavelengths 436 nm (spectral line of individually selected low-pressure mercury lamps), 589 nm (sodium "D" line) and 633 nm (HE-Ne laser (in combination with attenuator/diffuser) Measured at a wavelength that is designed to prevent damage to the observer's eyes. In the table below, Δn is given at 589 nm and Δ(Δn) is given as Δ(Δn) = Δn(436 nm) - Δn(633 nm). Unless otherwise explicitly indicated, the following symbols are used: V 0 threshold voltage, capacitance [V] at 20°C, n e Abnormal refractive index measured at 20°C and 589 nm, n o at 20°C and 589 nm Ordinary refractive index measured below, Dn Optical anisotropy measured at 20°C and 589 nm, λ Wavelength λ [nm], Dn(λ) Optical anisotropy measured at 20°C and wavelength λ, D(Dn) is the change in optical anisotropy defined as follows: Dn(20℃, 436 nm) - Dn(20℃, 633 nm), D(Dn*) is the "relative change in optical anisotropy" as defined below : D(Dn)/Dn(20℃, 589 nm), e ^ at 20℃ and 1 kHz, perpendicular to the dielectric susceptibility of the director, e ÷÷ at 20℃ and 1 kHz, parallel to the direction Arrow dielectric susceptibility, De dielectric anisotropy at 20°C and 1 kHz, T(N,I) or clp. Clear point [°C], n Flow viscosity measured at 20°C [mm 2 ·s - 1 ], g 1 rotational viscosity at 20°C [mPa·s], k 11 elastic constant, "tilt" deformation at 20°C [pN]; k 22 elastic constant, "tilt" deformation at 20°C Torsional deformation [pN], elastic constant k 33 , bending deformation [pN] at 20°C, LTS Low temperature stability of the phase measured in the test cell, VHR voltage retention rate ( VHR ), DVHR voltage retention rate of reduction, and the relative stability of S rel VHR. The following examples are used to illustrate the present invention without limiting it. However, it is intended to demonstrate to those skilled in the art the concept of preferred mixtures and the compounds preferred to be used, their respective concentrations and their combinations with each other. In addition, examples illustrate available properties and combinations of properties. For the purposes of the present invention and in the following examples, the structures of the liquid crystal compounds are indicated by means of acronyms, the conversion of the chemical formulas being carried out according to Tables A to C below. All the groups C n H 2n + 1 , C m H 2m + 1 and C l H 2l + 1 or C n H 2n , C m H 2m and C l H 2l are linear alkyl or alkylene groups, in In each case there are n, m and l C atoms respectively. Preferably, n, m and l are 1, 2, 3, 4, 5, 6 or 7 independently of each other. Table A shows the coding of the ring elements of the nucleus of the compound, Table B lists the bridging units, and Table C lists the meanings of the symbols of the left and right end groups of the molecule. The acronym consists of the code of the cyclic element with optional linking groups, followed by the code of the first hyphen and the left-hand end group, and the second hyphen and the code of the right-hand end group. Table D shows the illustrative structures of the compounds along with their respective abbreviations. Table A : Ring Elements Table B : Bridge Unit Table C : Terminal group where n and m are each an integer, and the three dots "..." are placeholders for other abbreviations from this table. In addition to the compound of formula B, the mixture according to the invention preferably contains one or more compounds as described below. The following abbreviations are used: (n, m, k and l are each independently an integer, preferably 1 to 9, preferably 1 to 7, k and l may also be 0, and preferably 0 to 4, More preferably, it is 0 or 2, and most preferably is 2, n is preferably 1, 2, 3, 4 or 5, in the combination "-nO-", it is preferably 1, 2, 3 or 4, preferably 2 or 4, m is preferably 1, 2, 3, 4 or 5, in the combination "-Om" it is preferably 1, 2, 3 or 4, more preferably 2 or 4. The combination "-lVm" is more Preferably "2V1".) Table D Exemplary and preferred dielectric positive compounds Exemplary, preferred dielectrically neutral compounds Table E shows preferred chiral dopants for use in mixtures according to the present invention. Table E In a preferred embodiment of the invention, the medium according to the invention contains one or more compounds selected from the group of compounds in Table E. Table F shows, in addition to the compounds of formula I, stabilizers which may also be preferably used in the mixtures according to the invention. The parameter n in this article represents an integer in the range of 1 to 12. In particular, the phenol derivatives shown can be used as additional stabilizers due to their role as antioxidants. Table F where n is 1, 2, 3, 4, 5, 6 or 7 independently of each other. Examples The following examples illustrate the invention without limiting it in any way. However, the physical properties allow those skilled in the art to understand what properties can be achieved and to what extent they can be modified. In particular, those skilled in the art are well aware of the combinations of properties that can be best achieved. The following polymerizable stabilizers (polymerizable piperidine derivatives) are used: Source: Santa Cruz Biotechnology Inc. (CAS 31582-45-3) Synthesis Examples of Additives Exemplary compounds of formula I are synthesized as follows or according to WO 2016/116119 A1 (Examples). Synthesis Example Compound RH - 2 was prepared as follows. 4-HydroxyTEMPO (8.00 g, 45.5 mmol) and 4-(dimethylamino)pyridine (0.30 g, 2.46 mmol) were added to 100 ml DCM. After cooling to 2°C, triethylamine (25.00 ml, 180.35 mmol) was added to the above solution, followed by 3-bromo-propionyl chloride (6.00 ml, 50.6 mmol) added dropwise to 50 ml DCM. After the addition was complete, the reaction mixture was allowed to warm to room temperature. After completion of conversion indicated by TLC, aqueous ammonium chloride solution was added. Extract the aqueous phase with DCM. The organic phases were combined, dried over anhydrous sodium sulfate and filtered. After removing the solvent in vacuo, the solid residue was purified by silica column chromatography using DCM/methyl tert-butyl ether (MTBE) 95:5 as eluent, and further recrystallized from heptane/MTBE to obtain 3 as red crystals (4.2 g, mp 102℃). 1 H-NMR (CDCl 3 , 500 MHz): d (ppm): 6.54 (br. m., 1 H, H olefins ), 6.24 (br. m., 1 H, H olefins ), 6.00 (br. m ., 1 H, H olefins ), MS (EI + ) m/z: [M] + calculated for C 12 H 20 NO 3 : 226.3; found 226.1. Additional stabilizers As additional stabilizers it is advantageous to use compounds selected from structures S-1-3 or S-2-3, which have the following structures: Examples of Mixtures The following host mixtures H1 to H4 were used to produce examples according to the invention: H1 : Nematic host - mixture H2 : Nematic host - mixture H3 : Nematic host - mixture H4 : Nematic host - mixture Comparative Example A Mixture (A) was prepared by mixing main mixture H1 with 0.05% by weight of non-polymerizable stabilizer S-1-3. The mixtures were studied in terms of voltage retention before and after the backlight load test. Mixture Example 1 To mixture (A) of Comparative Example (A) was added the polymerizable additive RH-1 at a concentration of 0.01% by weight. Mixture Example 2 To mixture (A) of Comparative Example (A) was added the polymerizable additive RH-2 at a concentration of 0.01% by weight. VHR Measurements : Effect of Polymerizable Piperidine Derivatives under Backlight Loading Test cells with (a) rubbed polyimide and (b) with photo-aligned polyimide were filled with the media of the previous examples. For (a) and (b) (Tables 1 and 2), the voltage retention rate (VHR) of the test unit was measured before and after intensive light load (120 min). The illumination light is equivalent to 500 h of a typical white CCFL backlight used in displays. Table 1: Results of rubbing polyimide (OPTMER® AL16301, JSR Corp.): *BL = Backlight load test; 120 h accelerated LED-based backlight Table 2: Results of light-aligned polyimide: *BL = Backlight Load Test; 120 h Accelerated LED Based Backlight Comparative Example B Mixture (B) was prepared by mixing host mix H1 with 0.05 wt% of non-polymerizable stabilizer S-2-3. The mixtures were studied in terms of voltage retention before and after the backlight load test. Mixture Example 3 To mixture (B) of Comparative Example (B) was added the polymerizable additive RH-1 at a concentration of 0.01% by weight. Mixture Example 4 To mixture (B) of Comparative Example (B) was added the polymerizable additive RH-2 at a concentration of 0.01% by weight. VHR measurement: Effect of polymerizable piperidine derivatives under backlight loading Test cells of (a) rubbed polyimide and (b) photo-aligned polyimide were filled with the media of the previous examples, and VHR was measured as above (Tables 3 and 4). Table 3: Results of rubbing polyimide (OPTMER® AL16301, JSR Corp.): *BL = Backlight load test; 144 h accelerated LED-based backlight Table 4: Results of light-aligned polyimide: *BL = Backlight load test; 120 h Accelerate LED-based backlighting by using polymerizable additives such as compounds of formula RH-1 or RH-2 to avoid VHR drop after backlight load. Test units filled with the mixtures of Examples 1 to 4 showed little reduction in VHR after backlight loading, while the comparative examples without any polymerizable additive (Examples A and B) showed a significant reduction in VHR.

Claims (13)

一種具有向列相且介電各向異性(△ε)為1.5至25之液晶介質,其特徵在於其包含至少一種式I之可聚合化合物或包含其聚合形式之聚合物,P-Sp-(A2-Z2-A1)m1-Z1-T I其中基團彼此獨立地且在每次出現時相同或不同地具有以下含義T 選自以下式之基團
Figure 107105692-A0305-02-0099-2
Figure 107105692-A0305-02-0099-4
Figure 107105692-A0305-02-0099-5
Rg H或具有1至10個C原子之直鏈或分支鏈烷基或烷氧基烷基,或苯甲基,Ra、Rb、Rc、Rd具有1至10個C原子之直鏈或分支鏈烷基,P 乙烯基氧基、丙烯酸酯、甲基丙烯酸酯、氟丙烯酸酯、氯丙烯酸酯、氧雜環丁烷或環氧基,Sp 間隔基團或單鍵,A1、A2 具有4至30個環原子之脂環基、雜環基、芳族基或雜芳族基,其亦可含有稠環且係未經取代或經一或多個基團L或R-(A3-Z3)m2-取 代,且A1及A2中之一者亦可表示單鍵,A3 具有4至30個環原子之脂環基、雜環基、芳族基或雜芳族基,其亦可含有稠環且係未經取代或經一或多個基團L取代,Z1 -O-、-S-、-CO-、-CO-O-、-O-CO-、-O-CO-O-、-OCH2-、-CH2O-、-SCH2-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-SCF2-、-(CH2)n-、-CF2CH2-、-CH2CF2-、-(CF2)n-、-CH=CH-、-CF=CF-、-CH=CF-、-CF=CH-、-C≡C-、-CH=CH-CO-O-、-O-CO-CH=CH-、-CH2-CH2-CO-O-、-O-CO-CH2-CH2-、-CR00R000-或單鍵,其限制條件為若m1為0且Sp為單鍵,則Z1為單鍵,Z2、Z3 -O-、-S-、-CO-、-CO-O-、-O-CO-、-O-CO-O-、-OCH2-、-CH2O-、-SCH2-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-SCF2-、-(CH2)n-、-CF2CH2-、-CH2CF2-、-(CF2)n-、-CH=CH-、-CF=CF-、-CH=CF-、-CF=CH-、-C≡C-、-CH=CH-CO-O-、-O-CO-CH=CH-、-CH2-CH2-CO-O-、-O-CO-CH2-CH2-、-CR00R000-或單鍵,R00、R000 H或具有1至12個C原子之烷基,R P-Sp-、H、F、Cl、CN或具有1至25個C原子之直鏈、分支鏈或環狀烷基,其中一或多個不相鄰CH2-基團未由或由-O-、-S-、-CO-、-CO-O-、-O-CO-、-O-CO-O-以使得O原子及/或S原子不直接彼此連接的方式置換,且其中一或多個H原子各自未由或由F、Cl或P-Sp-置換,或R為選自式1、2、3及4之基團,L P-Sp-、F、Cl、CN或具有1至25個C原子之直鏈、分支鏈或環狀烷基,其中一或多個不相鄰CH2-基團未由或由-O-、-S-、-CO-、-CO-O-、-O-CO-、-O-CO-O-以使得O原子及/或S原子不直接彼此連接的 方式置換,且其中一或多個H原子各自未由或由F、Cl或P-Sp-置換,或L為選自式1、2、3及4之基團,m1 0、1、2、3或4,m2 0、1、2、3或4,且n 1、2、3或4,及30重量%至55重量%之一或多種選自式II化合物之群的化合物,
Figure 107105692-A0305-02-0101-29
其中R2 表示具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基、具有2至7個C原子之烯基、烯基氧基、烷氧基烷基或氟化烯基,
Figure 107105692-A0305-02-0101-6
Figure 107105692-A0305-02-0101-8
在每次出現時彼此獨立地表示
Figure 107105692-A0305-02-0101-30
Figure 107105692-A0305-02-0102-9
Figure 107105692-A0305-02-0102-10
L21及L22表示H或F,X2 表示鹵素、具有1至3個C原子之鹵化烷基或烷氧基或具有2或3個C原子之鹵化烯基或烯基氧基,及m 表示0、1、2或3。
A liquid-crystalline medium having a nematic phase and a dielectric anisotropy (Δε) of 1.5 to 25, characterized in that it contains at least one polymerizable compound of formula I or a polymer containing its polymerized form, P-Sp-( A 2 -Z 2 -A 1 ) m1 -Z 1 -TI in which the radicals independently of one another and on each occurrence the same or different have the following meaning T radicals selected from the following formulas
Figure 107105692-A0305-02-0099-2
Figure 107105692-A0305-02-0099-4
Figure 107105692-A0305-02-0099-5
R g H or linear or branched chain alkyl or alkoxyalkyl with 1 to 10 C atoms, or benzyl, R a , R b , R c , R d have 1 to 10 C atoms Linear or branched alkyl, P vinyloxy, acrylate, methacrylate, fluoroacrylate, chloroacrylate, oxetane or epoxy group, Sp spacer group or single bond, A 1 , A 2 has an alicyclic group, heterocyclic group, aromatic group or heteroaromatic group with 4 to 30 ring atoms, which may also contain a fused ring and be unsubstituted or modified by one or more groups L or R -(A 3 -Z 3 ) m2 -substituted, and one of A 1 and A 2 can also represent a single bond, A 3 has an alicyclic group, heterocyclic group, aromatic group with 4 to 30 ring atoms, or Heteroaromatic groups, which may also contain fused rings and are unsubstituted or substituted by one or more groups L, Z 1 -O-, -S-, -CO-, -CO-O-, -O- CO-, -O-CO-O-, -OCH 2 -, -CH 2 O-, -SCH 2 -, -CH 2 S-, -CF 2 O-, -OCF 2 -, -CF 2 S-, -SCF 2 -, -(CH 2 ) n -, -CF 2 CH 2 -, -CH 2 CF 2 -, -(CF 2 ) n -, -CH=CH-, -CF=CF-, -CH= CF-, -CF=CH-, -C≡C-, -CH=CH-CO-O-, -O-CO-CH=CH-, -CH 2 -CH 2 -CO-O-, -O- CO-CH 2 -CH 2 -, -CR 00 R 000 - or single bond, the restriction condition is that if m1 is 0 and Sp is a single bond, then Z 1 is a single bond, Z 2 , Z 3 -O-, - S-, -CO-, -CO-O-, -O-CO-, -O-CO-O-, -OCH 2 -, -CH 2 O-, -SCH 2 -, -CH 2 S-, - CF 2 O-, -OCF 2 -, -CF 2 S-, -SCF 2 -, -(CH 2 ) n -, -CF 2 CH 2 -, -CH 2 CF 2 -, -(CF 2 ) n - , -CH=CH-, -CF=CF-, -CH=CF-, -CF=CH-, -C≡C-, -CH=CH-CO-O-, -O-CO-CH=CH- , -CH 2 -CH 2 -CO-O-, -O-CO-CH 2 -CH 2 -, -CR 00 R 000 - or single bond, R 00 , R 000 H or one with 1 to 12 C atoms Alkyl, R P-Sp-, H, F, Cl, CN or linear, branched or cyclic alkyl with 1 to 25 C atoms, in which one or more non-adjacent CH 2 - groups are not Substituted by or by -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O- in such a way that the O atoms and/or the S atoms are not directly connected to each other , and one or more of the H atoms are each not replaced by or replaced by F, Cl or P-Sp-, or R is a group selected from formulas 1, 2, 3 and 4, L P-Sp-, F, Cl , CN or straight chain, branched chain or cyclic alkyl group with 1 to 25 C atoms, in which one or more non-adjacent CH 2 - groups are not or are composed of -O-, -S-, -CO- , -CO-O-, -O-CO-, -O-CO-O- are substituted in such a way that the O atoms and/or S atoms are not directly connected to each other, and one or more of the H atoms are each not or by F, Cl or P-Sp-substitution, or L is a group selected from formulas 1, 2, 3 and 4, m1 0, 1, 2, 3 or 4, m2 0, 1, 2, 3 or 4, and n 1, 2, 3 or 4, and 30% by weight to 55% by weight of one or more compounds selected from the group of compounds of formula II,
Figure 107105692-A0305-02-0101-29
Where R 2 represents an alkyl group, alkoxy group, fluorinated alkyl group or fluorinated alkoxy group with 1 to 7 C atoms, an alkenyl group, alkenyloxy group, alkoxyalkyl group with 2 to 7 C atoms. base or fluorinated alkenyl group,
Figure 107105692-A0305-02-0101-6
and
Figure 107105692-A0305-02-0101-8
represent independently of each other on each occurrence
Figure 107105692-A0305-02-0101-30
Figure 107105692-A0305-02-0102-9
or
Figure 107105692-A0305-02-0102-10
L 21 and L 22 represent H or F, X 2 represents halogen, a halogenated alkyl or alkoxy group having 1 to 3 C atoms or a halogenated alkenyl or alkenyloxy group having 2 or 3 C atoms, and m Represents 0, 1, 2 or 3.
如請求項1之液晶介質,其中在式I中m1 為0或1。 Such as the liquid crystal medium of claim 1, wherein m1 in formula I is 0 or 1. 如請求項1之液晶介質,其中該等式I化合物係選自下式之化合物的群,其中T 為選自以下之基團
Figure 107105692-A0305-02-0102-31
Figure 107105692-A0305-02-0102-32
其中Ra、Rb、Rc、Rd獨立地為具有1至10個C原子之直鏈或分支鏈烷基。
The liquid crystal medium of claim 1, wherein the compound of formula I is selected from the group of compounds of the following formula, wherein T is a group selected from the following
Figure 107105692-A0305-02-0102-31
or
Figure 107105692-A0305-02-0102-32
Wherein R a , R b , R c , R d are independently linear or branched chain alkyl groups having 1 to 10 C atoms.
如請求項1至3中任一項之液晶介質,其中其包含一或多種選自式III化合物之群的化合物,
Figure 107105692-A0305-02-0103-33
其中R3 表示具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基、具有2至7個C原子之烯基、烯基氧基、烷氧基烷基或氟化烯基,
Figure 107105692-A0305-02-0103-12
Figure 107105692-A0305-02-0103-13
在每次出現時彼此獨立地為
Figure 107105692-A0305-02-0103-35
Figure 107105692-A0305-02-0103-37
Figure 107105692-A0305-02-0103-36
L31及L32,彼此獨立地表示H或F,X3 表示F、Cl、-OCF3、-OCHF2、 -O-CH2CF3、-O-CH=CF2、-O-CH=CH2或-CF3,Z3 表示-CH2CH2-、-CF2CF2-、-COO-、反-CH=CH-、反-CF=CF-、-CH2O-或單鍵,且n表示0、1、2或3。
The liquid crystal medium of any one of claims 1 to 3, wherein it contains one or more compounds selected from the group of compounds of formula III,
Figure 107105692-A0305-02-0103-33
Where R 3 represents an alkyl group, alkoxy group, fluorinated alkyl group or fluorinated alkoxy group with 1 to 7 C atoms, an alkenyl group, alkenyloxy group, alkoxyalkyl group with 2 to 7 C atoms. base or fluorinated alkenyl group,
Figure 107105692-A0305-02-0103-12
and
Figure 107105692-A0305-02-0103-13
independently of each other on each occurrence of
Figure 107105692-A0305-02-0103-35
Figure 107105692-A0305-02-0103-37
or
Figure 107105692-A0305-02-0103-36
L 31 and L 32 independently represent H or F, and X 3 represents F, Cl, -OCF 3 , -OCHF 2 , -O-CH 2 CF 3 , -O-CH=CF 2 , -O-CH= CH 2 or -CF 3 , Z 3 represents -CH 2 CH 2 -, -CF 2 CF 2 -, -COO-, anti-CH=CH-, anti-CF=CF-, -CH 2 O- or single bond , and n represents 0, 1, 2 or 3.
如請求項1至3中任一項之液晶介質,其中其包含一或多種選自式IV及式V之群的介電中性化合物:
Figure 107105692-A0305-02-0104-38
Figure 107105692-A0305-02-0104-39
其中R41及R42,彼此獨立地表示具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基、具有2至7個C原子之烯基、烯基氧基、烷氧基烷基或氟化烯基,
Figure 107105692-A0305-02-0104-16
Figure 107105692-A0305-02-0104-17
彼此獨立地且若
Figure 107105692-A0305-02-0104-19
出現兩次,則此等亦彼此獨立地表示
Figure 107105692-A0305-02-0105-40
Figure 107105692-A0305-02-0105-20
Figure 107105692-A0305-02-0105-21
Z41及Z42,彼此獨立地且若Z41出現兩次,則此等亦彼此獨立地表示-CH2CH2-、-COO-、反-CH=CH-、反-CF=CF-、-CH2O-、-CF2O-、-C≡C-或單鍵,p 表示0、1或2,R51及R52,彼此獨立地表示具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基、具有2至7個C原子之烯基、烯基氧基、烷氧基烷基或氟化烯基,
Figure 107105692-A0305-02-0105-23
Figure 107105692-A0305-02-0105-24
若存在,則各自彼此獨立地表示
Figure 107105692-A0305-02-0106-41
Figure 107105692-A0305-02-0106-43
Figure 107105692-A0305-02-0106-42
Z51至Z53 各自彼此獨立地表示-CH2-CH2-、-CH2-O-、-CH=CH-、-C≡C-、-COO-或單鍵,且i及j 各自彼此獨立地表示0或1。
The liquid crystal medium of any one of claims 1 to 3, wherein it contains one or more dielectric neutral compounds selected from the group of formula IV and formula V:
Figure 107105692-A0305-02-0104-38
Figure 107105692-A0305-02-0104-39
wherein R 41 and R 42 independently represent an alkyl group, an alkoxy group, a fluorinated alkyl group or a fluorinated alkoxy group having 1 to 7 C atoms, an alkenyl group or an alkenyl group having 2 to 7 C atoms. oxy, alkoxyalkyl or fluorinated alkenyl,
Figure 107105692-A0305-02-0104-16
and
Figure 107105692-A0305-02-0104-17
independently of each other and if
Figure 107105692-A0305-02-0104-19
appear twice, they also represent independently of each other
Figure 107105692-A0305-02-0105-40
Figure 107105692-A0305-02-0105-20
or
Figure 107105692-A0305-02-0105-21
Z 41 and Z 42 , independently of each other and if Z 41 appears twice, these also independently of each other represent -CH 2 CH 2 -, -COO-, anti-CH=CH-, anti-CF=CF-, -CH 2 O-, -CF 2 O-, -C≡C- or single bond, p represents 0, 1 or 2, R 51 and R 52 independently represent an alkyl group with 1 to 7 C atoms, Alkoxy, fluorinated alkyl or fluorinated alkoxy, alkenyl, alkenyloxy, alkoxyalkyl or fluorinated alkenyl having 2 to 7 C atoms,
Figure 107105692-A0305-02-0105-23
to
Figure 107105692-A0305-02-0105-24
If present, each represents independently of the other
Figure 107105692-A0305-02-0106-41
Figure 107105692-A0305-02-0106-43
or
Figure 107105692-A0305-02-0106-42
Z 51 to Z 53 each independently represent -CH 2 -CH 2 -, -CH 2 -O-, -CH=CH-, -C≡C-, -COO- or a single bond, and i and j each represent each other Independently represents 0 or 1.
如請求項5之液晶介質,其中其包含一或多種選自式S-1及式S-2之群的化合物
Figure 107105692-A0305-02-0106-44
Figure 107105692-A0305-02-0106-45
其中RS 表示具有1至9個C原子之烷基、烷氧基、氟化烷基或氟化烷氧 基,或具有2至9個C原子之烯基、烯基氧基或烷氧基烷基。
The liquid crystal medium of claim 5, wherein it contains one or more compounds selected from the group of formula S-1 and formula S-2
Figure 107105692-A0305-02-0106-44
Figure 107105692-A0305-02-0106-45
where R S represents an alkyl, alkoxy, fluorinated alkyl or fluorinated alkoxy group having 1 to 9 C atoms, or an alkenyl, alkenyloxy or alkoxy group having 2 to 9 C atoms alkyl.
如請求項1至3中任一項之液晶介質,其中整體上該介質中之該等式I化合物的總濃度為0.001重量%或更高至0.05重量%或更低。 The liquid crystal medium of any one of claims 1 to 3, wherein the total concentration of the compounds of Formula I in the medium as a whole is 0.001% by weight or higher to 0.05% by weight or lower. 如請求項1至3中任一項之液晶介質,其中其另外包含一或多種式IV-A化合物
Figure 107105692-A0305-02-0107-46
其中R41 表示具有1至7個C原子的未經取代之烷基或具有2至7個C原子的未經取代之烯基,及R42 表示具有1至7個C原子的未經取代之烷基、具有2至7個C原子的未經取代之烯基或具有1至6個C原子的未經取代之烷氧基。
The liquid crystal medium of any one of claims 1 to 3, wherein it additionally contains one or more compounds of formula IV-A
Figure 107105692-A0305-02-0107-46
wherein R 41 represents an unsubstituted alkyl group having 1 to 7 C atoms or an unsubstituted alkenyl group having 2 to 7 C atoms, and R 42 represents an unsubstituted alkenyl group having 1 to 7 C atoms. Alkyl, unsubstituted alkenyl having 2 to 7 C atoms or unsubstituted alkoxy having 1 to 6 C atoms.
一種電光顯示器或電光組件,其特徵在於其包含如請求項1至8中任一項之液晶介質。 An electro-optical display or electro-optical component, characterized in that it contains the liquid crystal medium according to any one of claims 1 to 8. 如請求項9之電光顯示器或電光組件,其中其係基於IPS模式或FFS模式。 Such as the electro-optical display or electro-optical component of claim 9, wherein it is based on IPS mode or FFS mode. 如請求項9或10之電光顯示器或電光組件,其中其含有主動式矩陣定址裝置。 The electro-optical display or electro-optical component of claim 9 or 10, wherein it contains an active matrix addressing device. 一種如請求項1至8中任一項之液晶介質的用途,其用於電光顯示器或電光組件中。 A use of the liquid crystal medium according to any one of claims 1 to 8, which is used in electro-optical displays or electro-optical components. 一種製備如請求項1至8中任一項之液晶介質的方法,其特徵在於將一或多種式I化合物與一或多種額外液晶原基化合物及與或未與一或多種添加劑混合。 A method for preparing a liquid-crystalline medium according to any one of claims 1 to 8, characterized in that one or more compounds of the formula I are mixed with one or more additional mesogen compounds and with or without one or more additives.
TW107105692A 2017-02-21 2018-02-21 Liquid-crystalline medium and liquid-crystal display comprising the same TWI832812B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
??17157039.3 2017-02-21
EP17157039.3 2017-02-21
EP17157039 2017-02-21

Publications (2)

Publication Number Publication Date
TW201840535A TW201840535A (en) 2018-11-16
TWI832812B true TWI832812B (en) 2024-02-21

Family

ID=58098538

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107105692A TWI832812B (en) 2017-02-21 2018-02-21 Liquid-crystalline medium and liquid-crystal display comprising the same

Country Status (4)

Country Link
KR (1) KR20190121791A (en)
CN (1) CN110325620A (en)
TW (1) TWI832812B (en)
WO (1) WO2018153803A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201229217A (en) * 2010-12-10 2012-07-16 Merck Patent Gmbh Liquid-crystalline medium and electro-optical display
TW201631132A (en) * 2015-01-19 2016-09-01 馬克專利公司 Polymerisable compounds and the use thereof in liquid-crystal displays

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3022818C2 (en) 1980-06-19 1986-11-27 Merck Patent Gmbh, 6100 Darmstadt Liquid crystal display element
TW454101B (en) 1995-10-04 2001-09-11 Hitachi Ltd In-plane field type liquid crystal display device comprising liquid crystal molecules with more than two different kinds of reorientation directions and its manufacturing method
KR100393642B1 (en) 2000-09-14 2003-08-06 엘지.필립스 엘시디 주식회사 liquid crystal display with wide viewing angle
US8349210B2 (en) * 2008-06-27 2013-01-08 Transitions Optical, Inc. Mesogenic stabilizers
DE102011119144A1 (en) * 2010-12-07 2012-06-14 Merck Patent Gmbh Liquid-crystalline medium and liquid-crystal display
KR101972177B1 (en) 2010-12-17 2019-04-24 메르크 파텐트 게엠베하 Liquid crystalline medium
CN104334688A (en) 2012-06-05 2015-02-04 默克专利股份有限公司 Liquid crystal medium and liquid crystal display
US20180002604A1 (en) * 2016-06-30 2018-01-04 Merck Patent Gmbh Liquid-crystalline medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201229217A (en) * 2010-12-10 2012-07-16 Merck Patent Gmbh Liquid-crystalline medium and electro-optical display
TW201631132A (en) * 2015-01-19 2016-09-01 馬克專利公司 Polymerisable compounds and the use thereof in liquid-crystal displays

Also Published As

Publication number Publication date
KR20190121791A (en) 2019-10-28
CN110325620A (en) 2019-10-11
TW201840535A (en) 2018-11-16
WO2018153803A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
KR102512438B1 (en) Liquid crystal medium and liquid crystal display including the same
CN106047370B (en) Liquid crystal medium and liquid crystal display comprising same
TWI740927B (en) Liquid-crystalline medium and liquid-crystal display comprising the same
CN106281357B (en) Liquid crystal medium and liquid crystal display comprising same
KR102735232B1 (en) Liquid-crystalline medium and liquid-crystal display comprising the same
TWI628268B (en) Liquid-crystalline medium
JP7274185B2 (en) liquid crystal medium
TWI421331B (en) Liquid-crystalline medium
CN102732261A (en) Liquid-crystalline medium and liquid-crystal display
JP6411351B2 (en) Liquid crystal medium
CN113088294A (en) Liquid-crystalline medium, liquid-crystal display comprising same and compound
CN113004908A (en) Liquid crystal medium and liquid crystal display comprising same
CN113508168A (en) Compound, liquid crystal medium and liquid crystal display comprising same
KR20220028108A (en) Liquid-crystal media, liquid-crystal displays comprising same, and compounds
TWI832812B (en) Liquid-crystalline medium and liquid-crystal display comprising the same
TW202212544A (en) Liquid-crystalline medium and liquid-crystal display comprising the same and compounds
TW202235593A (en) Liquid-crystalline medium and liquid-crystal display comprising the same and compounds
CN112996882A (en) Liquid crystal medium and liquid crystal display comprising same
EP4074808B1 (en) Liquid crystalline medium
TW202400757A (en) Liquid crystalline medium
JP2020186371A (en) Liquid-crystal medium