TWI832131B - Management system of energy demand - Google Patents
Management system of energy demand Download PDFInfo
- Publication number
- TWI832131B TWI832131B TW110148506A TW110148506A TWI832131B TW I832131 B TWI832131 B TW I832131B TW 110148506 A TW110148506 A TW 110148506A TW 110148506 A TW110148506 A TW 110148506A TW I832131 B TWI832131 B TW I832131B
- Authority
- TW
- Taiwan
- Prior art keywords
- processing device
- power consumption
- data
- load
- energy demand
- Prior art date
Links
- 238000012545 processing Methods 0.000 claims abstract description 60
- 238000013528 artificial neural network Methods 0.000 claims abstract description 17
- 230000005611 electricity Effects 0.000 claims description 30
- 238000013527 convolutional neural network Methods 0.000 claims description 12
- 238000012795 verification Methods 0.000 claims description 7
- 238000012549 training Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 238000005457 optimization Methods 0.000 claims description 2
- 230000004044 response Effects 0.000 abstract description 3
- 238000007726 management method Methods 0.000 description 41
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000006403 short-term memory Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007787 long-term memory Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06312—Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/003—Load forecast, e.g. methods or systems for forecasting future load demand
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Physics & Mathematics (AREA)
- Strategic Management (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Marketing (AREA)
- Entrepreneurship & Innovation (AREA)
- General Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Operations Research (AREA)
- Game Theory and Decision Science (AREA)
- Quality & Reliability (AREA)
- Development Economics (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Biomedical Technology (AREA)
- Educational Administration (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Computing Systems (AREA)
- Molecular Biology (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Power Engineering (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Primary Health Care (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
Description
本案有關一種管理系統,特別是一種能源需量管理系統與方法。 This case relates to a management system, especially an energy demand management system and method.
能源使用情形可能由於產能、氣候、設備運轉等等的變數而無法掌握,從而使得調控能源與訂定契約容量相當被動。以習知的訂定契約容量方式而言,例如:一年一次以人力調整契約容量的方式,無法即時反應用電情形,調控能源的效率降低,導致所訂定的契約容量過高,進而造成基本電費的提升。因此,要如何發展能夠克服上述問題之相關技術為本領域重要之課題。 Energy usage may be difficult to control due to variables such as production capacity, climate, equipment operation, etc., making regulating energy and establishing contract capacity quite passive. Taking the conventional method of setting contract capacity, for example, manually adjusting the contract capacity once a year, it cannot reflect the power consumption situation in real time, and the efficiency of energy control is reduced, resulting in the contract capacity being set to be too high, which in turn causes Increase in basic electricity bills. Therefore, how to develop related technologies that can overcome the above problems is an important issue in this field.
本案的一個實施例是一種能源需量管理系統,包含電力管理裝置以及處理裝置。電力管理裝置調控電網的負載。處理裝置耦接上述電力管理裝置,並根據多個特徵資料透過類神經網路預測對應多個第一時間段的多個第一預測用電量。處理裝置將第一預測用電量與最佳化契約容量相比較。當相應於第一時間段之第一者的第一預測用電量的第一者大於最佳契約容量時,處理裝置在第一時間段之 第一者時監控該負載以產生管制訊號至電力管理裝置,並且上述電力管理裝置響應於管制訊號調降負載。 One embodiment of this case is an energy demand management system, including a power management device and a processing device. Power management devices regulate the load on the grid. The processing device is coupled to the power management device, and predicts a plurality of first predicted power consumption corresponding to a plurality of first time periods through a neural network based on a plurality of characteristic data. The processing device compares the first predicted power consumption with the optimized contract capacity. When the first predicted power consumption corresponding to the first time period is greater than the optimal contract capacity, the processing device The first is to monitor the load to generate a control signal to the power management device, and the power management device reduces the load in response to the control signal.
100:能源需量管理系統 100:Energy Demand Management System
110:電力管理裝置 110:Power management device
112:電網 112:Power grid
120:處理裝置 120: Processing device
122:管制訊號 122:Control signal
124:輸入裝置 124:Input device
126:顯示裝置 126:Display device
128:使用者輸入 128:User input
300:能源需量的管理方法 300: Energy Demand Management Methods
310,320,330,340,350:步驟 310,320,330,340,350: steps
C1:實際用電量 C1: Actual electricity consumption
C2:預測用電量 C2: Predict electricity consumption
C3,C4:曲線 C3,C4: Curve
L1:契約容量 L1: Contract capacity
L2:最佳化契約容量 L2: Optimized contract capacity
T1:時間點 T1: time point
為讓本案之上述和其他目的、特徵、優點與實施例能更明顯易懂,結合附圖閱讀時可以最好地理解本案內容的各方面。 In order to make the above and other purposes, features, advantages and embodiments of this case more obvious and understandable, all aspects of the content of this case can best be understood when read in conjunction with the accompanying drawings.
第1圖是根據一實施例的能源需量管理系統的示意圖。 Figure 1 is a schematic diagram of an energy demand management system according to an embodiment.
第2A圖是根據一實施例的能源需量管理系統之用電量的示意圖。 Figure 2A is a schematic diagram of electricity consumption of an energy demand management system according to an embodiment.
第2B圖是根據一實施例的能源需量管理系統之預測用電量的示意圖。 Figure 2B is a schematic diagram of predicted power consumption of the energy demand management system according to an embodiment.
第3圖是根據一實施例所繪示的能源需量的管理方法的流程圖。 Figure 3 is a flow chart of an energy demand management method according to an embodiment.
於本文中,當一元件被稱為「連接」或「耦接」時,可指「電性連接」或「電性耦接」。「連接」或「耦接」亦可用以表示二或多個元件間相互搭配操作或互動。此外,雖然本文中使用「第一」、「第二」、…等用語描述不同元件,該用語僅是用以區別以相同技術用語描述的元件或操作。除非上下文清楚指明,否則該用語並非特別指稱或暗示次序或順位,亦非用以限定本案。 In this document, when an element is referred to as "connected" or "coupled," it may mean "electrically connected" or "electrically coupled." "Connection" or "coupling" can also be used to indicate the coordinated operation or interaction between two or more components. In addition, although terms such as "first", "second", ... are used to describe different elements herein, the terms are only used to distinguish elements or operations described with the same technical terms. Unless the context clearly indicates otherwise, this term does not specifically refer to or imply a sequence or sequence, nor is it used to qualify the case.
這裡使用的術語僅僅是為了描述特定實施例的目 的,而不是限制性的。如本文所使用的,除非內容清楚地指示,否則單數形式「一」、「一個」和「該」旨在包括複數形式,包括「至少一個」。「或」表示「及/或」。如本文所使用的,術語「及/或」包括一個或多個相關所列項目的任何和所有組合。還應當理解,當在本說明書中使用時,術語「包括」及/或「包含」指定所述特徵、區域、整體、步驟、操作、元件的存在及/或部件,但不排除一個或多個其它特徵、區域整體、步驟、操作、元件、部件及/或其組合的存在或添加。 The terminology used herein is for the purpose of describing particular embodiments only. , rather than restrictive. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms including "at least one" unless the content clearly dictates otherwise. "Or" means "and/or". As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. It will also be understood that when used in this specification, the terms "comprises" and/or "includes" designate the presence of stated features, regions, integers, steps, operations, elements and/or components but do not exclude one or more The presence or addition of other features, regions, steps, operations, elements, parts and/or combinations thereof.
第1圖是根據一些實施例的能源需量管理系統100的示意圖。能源需量管理系統100包含電力管理裝置110以及處理裝置120。電力管理裝置110用以調控電網112的負載。處理裝置120耦接於電力管理裝置110,並用以根據多個特徵資料透過類神經網路預測對應多個時間段的多個預測用電量,並進一步用以將預測用電量與最佳化契約容量相比較。當相應於上述多個時間段中一者的多個預測用電量中一者大於最佳化契約容量時,處理裝置120更用以在上述多個時間段中一者時監控該負載以產生管制訊號122至電力管理裝置110,並且電力管理裝置110更用以響應於管制訊號122調降負載。
Figure 1 is a schematic diagram of an energy
舉例而言,在一些實施例中,處理裝置120對相應二十四小時的預測用電量與其相應的最佳化契約容量進行比較,當預測用電量中一者大於相應的最佳化契約容量時,即表示當預測的二十四個小時用電量其中有一個小時
的用電量超過預期的最佳化契約容量時,處理裝置120會在相應超過預期的最佳化契約容量的上述時間點時監控電網112的負載,並產生管制訊號122至電力管理裝置110。接著,電力管理裝置110會根據管制訊號122調降電網112的負載。例如:今日預測明日中午12點用電量是77kW,而最佳化契約容量是75kW,處理裝置120會在隔日中午12點(即超過預期的最佳化契約容量75kW的時間點)時監控電網112的負載。在一些實施例中,處理裝置120更計算當時實際用電量與最佳化契約容量之間的差值,並根據該差值傳送管制訊號122至電力管理裝置110。
For example, in some embodiments, the
在一些實施例中,調降電網112的負載可包含,例如:減載或卸載連接至電網112的用電裝置。
In some embodiments, reducing the load of the
第2A圖是根據一些實施例的能源需量管理系統100之用電量的示意圖,以及第2B圖是根據一些實施例的能源需量管理系統100之預測用電量的示意圖。接著將參照第1圖的能源需量管理系統100說明第2A圖與第2B圖。
FIG. 2A is a schematic diagram of the power consumption of the energy
如第2A圖所示,直線L1表示原本的契約容量,直線L2表示最佳化契約容量,曲線C1表示實際用電量,曲線C2表示預測用電量,其中預測用電量C2由處理裝置120根據特徵資料透過類神經網路所預測。在一些實施例中,特徵資料相應於多個時間段,並包含氣象溫溼度資料、產能資料、即時需量資料、契約容量資料或以上的結合,
上述產能資料可以是包括產出和投入的多維產能資料,上述即時需量資料可以是即時用電最大需量。
As shown in Figure 2A, the straight line L1 represents the original contracted capacity, the straight line L2 represents the optimized contracted capacity, the curve C1 represents the actual power consumption, and the curve C2 represents the predicted power consumption, where the predicted power consumption C2 is obtained by the
如第1圖與第2A圖所示,在一些實施例中,處理裝置120取得最佳化契約容量L2與實際用電量C1的差值,並根據差值產生管制訊號122以調整負載。舉例而言,當最佳化契約容量L2減去實際用電量C1小於0.5MW(例如,在第2A圖的時間點T1)時,處理裝置120產生用於減載電網112的用電裝置的管制訊號122。
As shown in Figures 1 and 2A, in some embodiments, the
而當最佳化契約容量L2低於實際用電量C1時,處理裝置120產生用於啟動電網112的發電機的管制訊號122,以在尖峰用電時補充供電量,避免供電量不足的情況。
When the optimal contract capacity L2 is lower than the actual power consumption C1, the
在另一實施例中,當最佳化契約容量L2減去實際用電量C1大於0.5MW時,處理裝置120保持監控電網112的負載,並且耦接處理裝置120的顯示裝置126根據上述用電狀態顯示不同燈號。
In another embodiment, when the optimized contract capacity L2 minus the actual power consumption C1 is greater than 0.5MW, the
在一些實施例中,預測用電量C2由處理裝置120透過類神經網路預測所得。在訓練類神經網路的過程中,處理裝置120以多個訓練特徵資料與對應的多個訓練預測用電量進行訓練,上述類神經網路包含卷積神經網路(Convolutional Neural Network,CNN)。
In some embodiments, the predicted power consumption C2 is predicted by the
接著,處理裝置120根據多個驗證特徵資料預測多個預測用電量,並在預測用電量不同於相應驗證特徵資料的驗證預測用電量時,處理裝置120的至少一參數被調
整。在另一實施例中,如第2B圖所示,處理裝置120透過類神經網路根據多個驗證特徵資料預測多個預測用電量,並在多個預測用電量中的一者(例如,P點)超過信賴預測區間時,處理裝置120的至少一參數被調整。
Next, the
舉例而言,以預測二十四個小時的最大用電量為例,處理裝置120以七十二個小時的特徵資料與相應的用電量訓練卷積神經網路並驗證。處理裝置120藉由卷積神經網路中的濾波器篩選全部七十二個小時的特徵資料,以取得七十二個小時的特徵資料的權重,其中篩選條件可包含,例如:用電量的多寡、何時具有最大用電量等等。在驗證經訓練的卷積神經網路的過程中,當七十二個小時的驗證預測用電量與相應七十二小時的預測用電量不同時,處理裝置120會調整上述權重。而當預測用電量(例如,第2B圖的P點)超過信賴預測區間(即曲線C3與C4之間的區域)時,處理裝置120會調整上述權重。接著,處理裝置120利用經驗證的權重取得二十四個小時的最大用電量。藉此調整權重的方式,使預測用電量允許更大的誤差以更貼近實際操作情況。
For example, taking the prediction of the maximum power consumption for twenty-four hours as an example, the
在另一實施例中,相對於等於或大於二十四小時的時間段,處理裝置120透過卷積神經網路預測相應的預測用電量。對於預測小於二十四小時的時間段的用電量預測而言,以預測兩個小時的用電量為例,處理裝置120利用八個小時的特徵資料及對應的用電量訓練長短期記憶(Long Short-term Memory,LSTM)網路並驗證,以
取得兩個小時的最大用電量。長短期記憶網路是一種具有時間循環的類神經網路,可以在任意時間間隔內儲存資訊,並在後續操作中使用前一個時間段所儲存的資訊。舉例而言,每十五分鐘的資料作為一筆特徵資料,處理裝置120透過長短期記憶網路將前一筆特徵資料(即前十五分鐘的資料)與後一筆特徵資料(即後十五分鐘的資料)作為輸入資料,並結合上述特徵資料的狀態條件(例如,是否處於高溼度)與相應的用電量,以取得兩個小時的最大用電量。
In another embodiment, relative to a time period equal to or greater than twenty-four hours, the
在另一實施例中,針對短暫性特殊用電的情況,處理裝置120以具有特殊用電資料的特徵資料及對應的用電量訓練卷積神經網路並驗證,並在相應特殊用電資料的預測用電量超過信賴預測區間(例如,第2B圖的P點)時,處理裝置120將權重調整至進入信賴預測區間,藉此使特殊用電的預測用電量更貼近實際短暫性的特殊用電情況。
In another embodiment, for the situation of temporary special power consumption, the
在一些實施例中,處理裝置120根據對應多個較短時間段(例如,上述實施例中的二十四個小時)的多個預測用電量預測對應多個較長時間段的多個預測用電量。舉例而言,當取得的二十四個小時預測用電量C2皆小於相應的最佳化契約容量L2時,處理裝置120透過卷積神經網路根據二十四個小時的預測用電量C2預測十二個月的預測用電量,以取得十二個月的最佳化契約容量。
In some embodiments, the
在一些實施例中,最佳化契約容量由處理裝置120根據電費公式取得與十二個月中的最大用電量相應的電費,再結合過去契約容量L1所得。在一些實施例中,電費公式
所需的電費參數包含基本電費、超約附加費、復電費等等。在另一實施例中,如第1圖所示,耦接處理裝置120的輸入裝置124接收用於調整電費參數的使用者輸入128。
In some embodiments, the optimized contract capacity is obtained by the
與習知一年一次以人力調整契約容量的方式相比,藉由本案的配置,可節省至少2%的費用,達到有效且即時能源效率調控。 Compared with the traditional method of manually adjusting the contract capacity once a year, through the configuration of this case, at least 2% of the cost can be saved, achieving effective and real-time energy efficiency control.
第3圖是根據一些實施例所繪示的能源需量的管理方法300的流程圖。能源需量的管理包含步驟310、步驟320、步驟330、步驟340以及步驟350。接著將參照第1圖的能源需量管理系統100說明能源需量的管理方法300。
Figure 3 is a flow chart of an energy
如第3圖所示,在步驟310中,透過處理裝置120中的類神經網路根據多個特徵資料預測對應多個第一時間段的多個第一預測用電量以取得最大用電量時間段。在一些實施例中,第一時間段相應於一日,處理裝置120透過卷積神經網路預測七日的預測用電量,以取得七日內的最大用電量時間段。
As shown in Figure 3, in
在步驟320中,透過處理裝置120中的類神經網路預測對應多個第二時間段的多個第二預測用電量。在一些實施例中,第二時間段相應於一個小時,處理裝置120透過卷積神經網路預測二十四個小時的預測用電量,以取得二十四個小時內的最大用電量時間段。
In
在步驟330中,將多個第二預測用電量與多個最佳化契約容量之一者相比較。在一些實施例中,處理裝置
120將二十四個小時的預測用電量與相應的最佳化契約容量進行比較。
In
在一些實施例中,當第二預測用電量小於最佳化契約容量之一者時,能源需量的管理方法300執行步驟340。相對地,當第二預測用電量中的至少一者大於最佳化契約容量中的一者時,能源需量的管理方法300執行步驟350。
In some embodiments, the energy
在步驟340中,透過類神經網路根據第二預測用電量預測對應多個第三時間段的多個第三預測用電量,處理裝置120根據多個第三預測用電量、電費公式以及過去契約容量計算對應於多個第三時間段的最佳化契約容量。在一些實施例中,第三時間段相應於一個月。處理裝置120透過卷積神經網路根據二十四個小時的用電量預測相應十二個月的預測用電量,以根據十二個月的預測用電量由電費公式與過去契約容量計算最佳化契約容量。
In
在步驟350中,透過電力管理裝置110調整電網112的負載,其中透過電力管理裝置110調整電網112的負載包含:卸載連接於電網112的用電裝置。舉例而言,在一些實施例中,於二十四個小時的預測用電量中有一個小時的預測用電量大於相應的最佳化契約容量時,處理裝置120根據最佳化契約容量與實際用電量間的差值產生管制訊號122至電力管理裝置110,以透過電力管理裝置110調整電網112的負載。
In
綜上所述,本案藉由所提及的能源需量管理系統與 方法,基於以類神經網路預測的最佳化契約容量調控電網的負載,提前掌握能源使用趨勢,以即時調度電力,節省基本電費,進而使能源的調控更有效率、更精準。 In summary, this case uses the mentioned energy demand management system and This method regulates the load of the power grid based on the optimized contract capacity predicted by a neural network, and grasps the energy usage trend in advance to dispatch power in real time, save basic electricity bills, and thereby make energy regulation more efficient and precise.
雖然本案已以實施例揭露如上,然其並非用以限定本案,任何所屬技術領域中具有通常知識者,在不脫離本案的精神和範圍內,當可作些許的更動與潤飾,故本案的保護範圍當視後附的申請專利範圍所界定者為準。 Although this case has been disclosed as above using embodiments, they are not intended to limit this case. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of this case. Therefore, the protection of this case The scope shall be determined by the appended patent application scope.
100:能源需量管理系統 100:Energy Demand Management System
110:電力管理裝置 110:Power management device
112:電網 112:Power grid
120:處理裝置 120: Processing device
122:管制訊號 122:Control signal
124:輸入裝置 124:Input device
126:顯示裝置 126:Display device
128:使用者輸入 128:User input
Claims (5)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110148506A TWI832131B (en) | 2021-12-23 | 2021-12-23 | Management system of energy demand |
CN202210498304.XA CN114676938A (en) | 2021-12-23 | 2022-05-09 | Energy demand management system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110148506A TWI832131B (en) | 2021-12-23 | 2021-12-23 | Management system of energy demand |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202326578A TW202326578A (en) | 2023-07-01 |
TWI832131B true TWI832131B (en) | 2024-02-11 |
Family
ID=82079880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110148506A TWI832131B (en) | 2021-12-23 | 2021-12-23 | Management system of energy demand |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114676938A (en) |
TW (1) | TWI832131B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9002761B2 (en) * | 2008-10-08 | 2015-04-07 | Rey Montalvo | Method and system for automatically adapting end user power usage |
TWI504094B (en) * | 2013-08-02 | 2015-10-11 | 元智大學 | Power load monitoring and predicting system and method thereof |
CN105512455A (en) * | 2014-10-07 | 2016-04-20 | 英科德技术股份有限公司 | Method and apparatus for estimating power consumption based on temperature |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102034143A (en) * | 2010-10-26 | 2011-04-27 | 中华电信股份有限公司 | Cost-saving energy-saving management system and method thereof |
KR101865924B1 (en) * | 2011-10-24 | 2018-06-11 | 한국전력공사 | Appratus and method for estimation of weekly power load to improve processing time using neural network and revision factor |
JP6221337B2 (en) * | 2013-05-13 | 2017-11-01 | 富士電機株式会社 | Demand control device and demand control system |
CN104751233A (en) * | 2013-12-27 | 2015-07-01 | 台达电子工业股份有限公司 | Contract capacity optimization system and optimization method |
CN106934497B (en) * | 2017-03-08 | 2021-04-16 | 青岛卓迅电子科技有限公司 | Intelligent community power consumption real-time prediction method and device based on deep learning |
KR102327413B1 (en) * | 2021-02-25 | 2021-11-16 | 국민대학교산학협력단 | Power managing apparatus and method for the same |
-
2021
- 2021-12-23 TW TW110148506A patent/TWI832131B/en active
-
2022
- 2022-05-09 CN CN202210498304.XA patent/CN114676938A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9002761B2 (en) * | 2008-10-08 | 2015-04-07 | Rey Montalvo | Method and system for automatically adapting end user power usage |
TWI504094B (en) * | 2013-08-02 | 2015-10-11 | 元智大學 | Power load monitoring and predicting system and method thereof |
CN105512455A (en) * | 2014-10-07 | 2016-04-20 | 英科德技术股份有限公司 | Method and apparatus for estimating power consumption based on temperature |
Also Published As
Publication number | Publication date |
---|---|
TW202326578A (en) | 2023-07-01 |
CN114676938A (en) | 2022-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11714441B2 (en) | Method and apparatus for delivering power using external data | |
US11201491B2 (en) | Method for balancing frequency instability on an electric grid using networked distributed energy storage systems | |
CN102075014B (en) | Large grid real-time scheduling method for accepting access of wind power | |
CN107230984B (en) | A method and control system for power demand response to participate in distribution network voltage regulation | |
CN107887933A (en) | A kind of Multiple Time Scales rolling optimization microgrid energy optimum management method | |
CN108565874A (en) | A kind of source lotus collaboration frequency modulation method based on LOAD FREQUENCY Controlling model | |
CN103001219A (en) | Optimal coordination control method of multiple flexible alternative current transmission systems (FACTSs) based on trend entropy | |
CN104699051A (en) | Demand response control method of temperature control device | |
JP2017050919A (en) | Demand power prediction device, demand power prediction method and computer program | |
TWI832131B (en) | Management system of energy demand | |
CN104156785A (en) | Generation schedule optimization method taking into consideration thermal power unit-driven coal mill start and stop | |
US12015269B2 (en) | Methods, systems, and apparatuses for the reset of a setpoint for committed demand | |
JP7557464B2 (en) | Self-delivery system and self-delivery method | |
JP7492957B2 (en) | Self-delivery system and self-delivery method | |
CN110994639B (en) | Simulation constant volume method, device and equipment for power plant energy storage auxiliary frequency modulation | |
CN106816878A (en) | A kind of demand response regulation device and method for being applied to drainage and irrigation hyelectric power facility | |
CN109167350B (en) | Construction method of industrial load response model | |
CN111832898A (en) | A Demand Response Scheduling Method for Power System Based on Air Conditioning Multifunction | |
CN108631368B (en) | Energy storage configuration method for wind storage system joint dispatch considering energy storage operation loss | |
CN115954952A (en) | Flexible resource planning method based on time sequence operation simulation | |
CN106655175A (en) | Intelligent method for scheduling and optimizing electricity of resident users | |
CN104299055A (en) | Power generation plan optimizing method for restraining unit reverse regulation in power plant | |
Li et al. | Preventive control considering aggregated controllable loads for voltage stability in electrical power systems | |
Liao et al. | Low-carbon demand response strategy of power system based on event-driven mechanism | |
CN119382139A (en) | A virtual power plant dispatching system and method for power transmission |