TWI792988B - Voltage generating circuit and semiconductor device - Google Patents
Voltage generating circuit and semiconductor device Download PDFInfo
- Publication number
- TWI792988B TWI792988B TW111115201A TW111115201A TWI792988B TW I792988 B TWI792988 B TW I792988B TW 111115201 A TW111115201 A TW 111115201A TW 111115201 A TW111115201 A TW 111115201A TW I792988 B TWI792988 B TW I792988B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- leakage current
- reference voltage
- leakage
- circuit
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 25
- 238000012544 monitoring process Methods 0.000 claims abstract description 41
- 238000001514 detection method Methods 0.000 claims abstract description 27
- 230000007423 decrease Effects 0.000 claims description 27
- 229910044991 metal oxide Inorganic materials 0.000 claims description 7
- 150000004706 metal oxides Chemical class 0.000 claims description 7
- 238000009966 trimming Methods 0.000 claims description 7
- 230000000295 complement effect Effects 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 abstract description 43
- 238000010586 diagram Methods 0.000 description 19
- 230000015654 memory Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- RDYMFSUJUZBWLH-UHFFFAOYSA-N endosulfan Chemical compound C12COS(=O)OCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl RDYMFSUJUZBWLH-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is DC
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
- G05F1/565—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Power Engineering (AREA)
- Dram (AREA)
- Continuous-Control Power Sources That Use Transistors (AREA)
- Control Of Electrical Variables (AREA)
- Emergency Protection Circuit Devices (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
本發明涉及一種電壓生成電路及半導體裝置,尤其涉及一種抑制漏電流的電壓生成電路及半導體裝置。 The present invention relates to a voltage generating circuit and a semiconductor device, in particular to a voltage generating circuit and a semiconductor device that suppress leakage current.
在半導體裝置中,通常生成與操作溫度相對應的經溫度補償後的電壓,使電路運行,以維持電路的可靠性。例如在記憶體中,在資料讀出時,若因溫度變化導致讀出電流降低,則讀出裕度降低,無法再進行準確的資料讀出。因此,藉由使用經溫度補償後的電壓來進行資料的讀出而防止讀出電流的降低。例如日本專利特開2021-82094號公報公開了一種不需要片上(on chip)溫度感測器或者用於根據其結果來算出溫度補償電壓的邏輯的、削減了電路規模的電壓生成電路。 In a semiconductor device, a temperature-compensated voltage corresponding to an operating temperature is generally generated to operate a circuit to maintain reliability of the circuit. For example, in a memory, when reading data, if the reading current decreases due to temperature changes, the reading margin will decrease, and accurate data reading will no longer be possible. Therefore, by using the temperature-compensated voltage to read the data, the decrease of the read current is prevented. For example, Japanese Patent Application Laid-Open No. 2021-82094 discloses a voltage generating circuit that does not require an on-chip temperature sensor or logic for calculating a temperature compensation voltage based on the result, and reduces the circuit scale.
電阻變化型記憶體等半導體器件能在低電壓及定電流下操作,適合用於物聯網(Internet of Things,IoT)等的行動設備。當在行動設備等的運用範圍擴大時,操作環境下的溫度範圍也同時擴大。因此,半導體器件中通常搭載的電壓生成電路可生成經溫度 補償後的電壓。 Semiconductor devices such as resistance variable memory can operate at low voltage and constant current, and are suitable for mobile devices such as the Internet of Things (IoT). When the range of application in mobile devices, etc. expands, the temperature range in the operating environment also expands. Therefore, a voltage generating circuit usually mounted in a semiconductor device can generate Compensated voltage.
圖1為習知的經溫度補償後的電壓生成電路的一例的圖。電壓生成電路10包含:帶差參考電路(BGR(Bandgap reference)電路)20,生成不相關於外部電源電壓的變動的參考電壓Vref;以及內部電壓生成電路30,根據從BGR電路20輸出的參考電壓Vref來生成內部供給電壓INTVDD。
FIG. 1 is a diagram showing an example of a conventional temperature-compensated voltage generating circuit. The
內部電壓生成電路30包含運算放大器OP、正通道金屬氧化物半導體(Positive Channel Metal Oxide Semiconductor,PMOS)電晶體Q1。參考電壓Vref輸入至運算放大器OP的反相輸入端子(-),節點N的電壓VN藉由負回饋輸入至非反相輸入端子(+)。運算放大器OP的輸出連接於電晶體Q1的閘極,周邊電路40的負載連接於節點N。運算放大器OP控制電晶體Q1的閘極電壓以使節點N的電壓VN變得與參考電壓Vref相等(VN=Vref)。如此,流過電晶體Q1的電流成為不相關於供給電壓VDD的變動的定電流,從而對周邊電路40供給定電流的內部供給電壓INTVDD(INTVDD=VN)。
The internal
如快閃記憶體在待命(stand by)模式下待機時,若操作溫度變為高溫,則流至周邊電路40的漏電流增加。周邊電路40中形成有使用互補金屬氧化物半導體(Complementary Metal Oxide Semiconductor,CMOS)電晶體等的各種積體電路,這些電路的正負接面(Positive-Negative junction,PN junction)漏電流和電晶體的閾值漏電流隨著溫度的上升而增加。另外,漏電流相關於電
壓,所以,當外因導致內部供給電壓INTVDD增加時,漏電流也增加。
For example, when the flash memory is on standby in the stand by mode, if the operating temperature becomes high, the leakage current flowing to the
為了抑制漏電流,有的半導體器件採用深度省電模式(Deep Power Down模式,DPD模式),相較於待命模式可進一步削減耗電。在DPD模式下,停止內部電壓生成電路30的操作,例如在供給電壓VDD與電晶體Q1之間設置開關,Q1在內部電壓生成電路30的操作停止階段關閉,由此來切斷供給電壓VDD的電力供給。
In order to suppress the leakage current, some semiconductor devices adopt the deep power down mode (Deep Power Down mode, DPD mode), which can further reduce power consumption compared with the standby mode. In the DPD mode, the operation of the internal
然而,DPD模式存在如下的問題:當藉由DPD模式來切斷供給電壓VDD時,周邊電路40變為浮置(floating),在從DPD模式恢復時,必須對周邊電路40的電路元件、線路等的電容進行充電,導致耗時而無法迅速進行下一動作。
However, the DPD mode has the following problem: when the supply voltage VDD is cut off by the DPD mode, the
為解決上述問題,本發明提供一種可在不使用DPD模式的情況下抑制漏電流的電壓生成電路。 In order to solve the above-mentioned problems, the present invention provides a voltage generating circuit capable of suppressing leakage current without using a DPD mode.
本發明的電壓生成電路包含:參考電壓生成部,生成參考電壓;漏電流監視部,生成與半導體裝置的內部電路的漏電流相對應的監視用漏電流;控制部,根據所述監視用漏電流來控制所述參考電壓;以及內部電壓生成部,接收經所述控制部控制後的參考電壓,根據所述控制後的參考電壓對所述內部電路供給內部電壓。 The voltage generation circuit of the present invention includes: a reference voltage generation unit that generates a reference voltage; a leakage current monitoring unit that generates a leakage current for monitoring corresponding to a leakage current in an internal circuit of a semiconductor device; to control the reference voltage; and an internal voltage generating unit that receives the reference voltage controlled by the control unit and supplies an internal voltage to the internal circuit according to the controlled reference voltage.
本發明的半導體裝置可包含本發明任一實施例的電壓生 成電路,且包含在低耗電下操作,可在待命模式時對內部電路供給內部電壓。 The semiconductor device of the present invention may include the voltage generator of any embodiment of the present invention Into a circuit, and including operation under low power consumption, the internal voltage can be supplied to the internal circuit in the standby mode.
根據本發明,根據監視內部電路的漏電流的監視用漏電流來控制參考電壓,並根據所述控制後的參考電壓對內部電路供給內部電壓,因此能自主生成經溫度補償後的參考電壓,從而能將內部電路的漏電流抑制在最小限度。 According to the present invention, the reference voltage is controlled based on the leakage current for monitoring the leakage current of the internal circuit, and the internal voltage is supplied to the internal circuit based on the controlled reference voltage, so that the temperature-compensated reference voltage can be autonomously generated, thereby The leakage current of the internal circuit can be suppressed to a minimum.
10:電壓生成電路 10: Voltage generating circuit
100、200、200A、400、500:電壓生成電路 100, 200, 200A, 400, 500: voltage generating circuit
110:參考電壓生成電路(BGR電路)/參考電壓生成部 110: Reference voltage generation circuit (BGR circuit)/reference voltage generation unit
112:運算放大器 112: Operational amplifier
20:帶差參考電路(BGR電路) 20: Band difference reference circuit (BGR circuit)
210、210A:參考電壓生成部 210, 210A: reference voltage generating unit
220:漏電流監視部 220: Leakage current monitoring department
230、310、310A、310B、410:輸出電壓控制部 230, 310, 310A, 310B, 410: output voltage control unit
240:待命電壓生成部 240: standby voltage generation unit
250:周邊電路 250: peripheral circuit
260:有功電壓生成部 260:Active voltage generation unit
30、120:內部電壓生成電路 30, 120: Internal voltage generating circuit
300:電壓降檢測部 300: voltage drop detection unit
320:電壓偏移部 320: voltage offset part
40:周邊電路 40: Peripheral circuit
BP1、BP2:雙極電晶體(PNP雙極電晶體) BP1, BP2: bipolar transistor (PNP bipolar transistor)
IA、IB、IC、IN:漏電流 IA, IB, IC, IN: leakage current
iBGR:在BGR電路中流通的電流 iBGR: the current flowing in the BGR circuit
ILEAK:漏電流 I LEAK : Leakage current
IN:反相器 IN: Inverter
INTVDD:內部供給電壓 INTVDD: Internal supply voltage
IPMOS、INMOS:斷態漏電流(漏電流) IPMOS, INMOS: off-state leakage current (leakage current)
N、N1、N2、N3、N4、N5:節點 N, N1, N2, N3, N4, N5: nodes
OP:運算放大器 OP: operational amplifier
OP1:單位增益緩衝器 OP1: Unity gain buffer
Q1、Q3、Q5、Q10、Q20:電晶體(PMOS電晶體) Q1, Q3, Q5, Q10, Q20: transistors (PMOS transistors)
Q2:電晶體 Q2: Transistor
Q4:電晶體(NMOS電晶體) Q4: Transistor (NMOS transistor)
R1、R2、R3、R4、Rf:電阻 R1, R2, R3, R4, Rf: resistance
Trim:修整訊號 Trim: Trim the signal
VDD:供給電壓/電源電壓/外部電源電壓/外部供給電壓 VDD: supply voltage/power supply voltage/external power supply voltage/external supply voltage
Vref、Vref_NTc:參考電壓 Vref, Vref_NTc: reference voltage
Vref_C:控制後的參考電壓 Vref_C: reference voltage after control
圖1為習知的電壓生成電路的示意圖。 FIG. 1 is a schematic diagram of a conventional voltage generating circuit.
圖2為本發明第一實施例的電壓生成電路的示意圖。 FIG. 2 is a schematic diagram of a voltage generating circuit according to a first embodiment of the present invention.
圖3為本發明第二實施例的電壓生成電路的結構的方塊圖。 FIG. 3 is a block diagram showing the structure of a voltage generating circuit of a second embodiment of the present invention.
圖4A的(A)、圖4A的(B)、圖4A的(C)、圖4A的(D)為本發明實施例的漏電流監視部的示意圖。 (A) of FIG. 4A , (B) of FIG. 4A , (C) of FIG. 4A , and (D) of FIG. 4A are schematic diagrams of a leakage current monitoring unit according to an embodiment of the present invention.
圖4B的(A)、圖4B的(B)為本發明實施例的漏電流監視部的示意圖。 (A) of FIG. 4B and (B) of FIG. 4B are schematic diagrams of a leakage current monitoring unit according to an embodiment of the present invention.
圖5為本發明第二實施例的電壓生成電路的示意圖。 FIG. 5 is a schematic diagram of a voltage generating circuit according to a second embodiment of the present invention.
圖6為本發明第三實施例的電壓生成電路的結構的方塊圖。 FIG. 6 is a block diagram showing the structure of a voltage generating circuit of a third embodiment of the present invention.
圖7為本發明第三實施例的電壓生成電路的第一例的示意圖。 7 is a schematic diagram of a first example of a voltage generating circuit according to a third embodiment of the present invention.
圖8為本發明第三實施例的電壓生成電路的第二例的示意圖。 FIG. 8 is a schematic diagram of a second example of the voltage generating circuit of the third embodiment of the present invention.
圖9為本發明第三實施例的電壓生成電路的第三例的示意 圖。 Fig. 9 is a schematic diagram of a third example of the voltage generating circuit of the third embodiment of the present invention picture.
圖10為本發明第四實施例的電壓生成電路的示意圖。 FIG. 10 is a schematic diagram of a voltage generating circuit according to a fourth embodiment of the present invention.
圖11為本發明第五實施例的電壓生成電路的示意圖。 FIG. 11 is a schematic diagram of a voltage generating circuit according to a fifth embodiment of the present invention.
本發明的電壓生成電路搭載於快閃記憶體、動態記憶體、靜態記憶體、電阻變化型記憶體、磁記憶體等半導體記憶體或者邏輯電路、訊號處理等的半導體器件中。 The voltage generation circuit of the present invention is mounted on semiconductor memories such as flash memory, dynamic memory, static memory, resistance variable memory, and magnetic memory, or semiconductor devices such as logic circuits and signal processing.
參照圖2,本實施例的電壓生成電路100包含參考電壓生成電路(BGR電路)110和內部電壓生成電路120。電壓生成電路100例如搭載於快閃記憶體中,在快閃記憶體處於待命狀態時對周邊電路40供給內部供給電壓INTVDD。在此期間,周邊電路40變為低耗電模式,但在從外部輸入指令等情況下,將響應指令而運行。
Referring to FIG. 2 , the
BGR電路110利用半導體材料矽的物性即帶差電壓來生成對於溫度和電源電壓的變動相關性低的穩定的參考電壓。BGR電路110在電源電壓VDD與接地(Ground,GND)之間包含第一及第二電流路徑。第一電流路徑包含串聯的PMOS電晶體Q10、電阻R1、正負正(Positive-Negative-Positive,PNP)雙極電晶體BP1。第二電流路徑包含串聯的PMOS電晶體Q11(與電晶體Q10相同結構)、電阻R2(與電阻R1相同的電阻值)、電阻Rf、PNP雙極電晶體BP2。BGR電路110還包含運算放大器112,其中電阻R1與雙極電晶體BP1的連接節點N1連接至運算放大器112的
反相輸入端子(-),電阻R2與電阻Rf的連接節點N2連接至運算放大器112的非反相輸入端子(+),而運算放大器112的輸出端子共通連接至電晶體Q10、電晶體Q11的閘極。
The
雙極電晶體BP1與BP2的射極面積比為1:n(n為大於1的數),雙極電晶體BP1的電流密度為雙極電晶體BP2的n倍。再者,雖然此處例示雙極電晶體,也可使用面積比為1:n的二極體代替雙極電晶體。 The emitter area ratio of the bipolar transistor BP1 and BP2 is 1:n (n is a number greater than 1), and the current density of the bipolar transistor BP1 is n times that of the bipolar transistor BP2. Furthermore, although a bipolar transistor is exemplified here, a diode having an area ratio of 1:n may also be used instead of the bipolar transistor.
運算放大器112控制電晶體Q10、電晶體Q11的閘極電壓以使節點N1的電壓與節點N2的電壓變得相等,由此在第一電流路徑及第二電流路徑中流通相等的電流IB。電阻Rf的端子間電壓VRf由下式表示。
The
VRf=kT/qIn(n) V Rf =kT/qIn(n)
k為波茲曼常數,T為絕對溫度,q為電子的電荷量。 k is the Boltzmann constant, T is the absolute temperature, and q is the electric charge of the electron.
電阻Rf中流通的電流IB由下式表示。 The current I B flowing through the resistor Rf is represented by the following equation.
IB=VRf/Rf=T/Rf×k/qln(n) I B =V Rf /Rf=T/Rf×k/qln(n)
相關於溫度的因數為T/Rf,電流IB具有正溫度係數。 The temperature-dependent factor is T/Rf, and the current I B has a positive temperature coefficient.
另外,若將電阻R2的所選擇的接頭位置的電阻設為電阻R2',則參考電壓Vref_NTc由下式表示。 In addition, assuming that the resistance at the selected joint position of the resistor R2 is the resistor R2', the reference voltage Vref_NTc is represented by the following equation.
Vref_NTc=VN2+IBR2' Vref_NTc=V N2 +I B R2'
VN2為節點N2的電壓。 V N2 is the voltage of node N2.
在優選實施例中,電阻R2包含具有負溫度係數的半導體材料。即,隨著溫度的上升而電阻降低,反之,隨著溫度的降低
而電阻升高。電阻R2例如由摻雜有高濃度摻質的導電多晶矽層、N+的擴散區域構成。可藉由適當選擇電阻R2的接頭位置而使參考電壓Vref_NTc具有期望的負溫度係數。接頭位置或負溫度係數是根據在預想的最大溫度時對內部電壓生成電路120供給多大的參考電壓來決定。
In a preferred embodiment, resistor R2 comprises a semiconductor material with a negative temperature coefficient. That is, as the temperature increases, the resistance decreases, and vice versa, as the temperature decreases
And the resistance increases. The resistor R2 is composed of, for example, a conductive polysilicon layer doped with a high-concentration dopant, and an N+ diffusion region. The reference voltage Vref_NTc can have a desired negative temperature coefficient by properly selecting the junction position of the resistor R2. The joint position or the negative temperature coefficient is determined according to how much reference voltage is supplied to the internal
內部電壓生成電路120與圖1所示的內部電壓生成電路30有相同構成。參照圖2,由BGR電路110生成的參考電壓Vref_NTc輸入至內部電壓生成電路120的運算放大器OP的反相輸入端子(-),節點N的電壓VN藉由負回饋輸入至非反相輸入端子(+)。內部電壓生成電路120將根據參考電壓Vref_NTc生成的內部供給電壓INTVDD從節點N供給至周邊電路40。
The internal
在本實施例中,快閃記憶體不採用DPD模式,即,不會從待命模式轉變為DPD模式,而是在待命模式時將周邊電路40中產生的漏電流抑制在最小限度。在待命模式下待機時,當操作溫度變為高溫時,BGR電路110中生成的參考電壓Vref_NTc因具有負溫度係數所以降低。參考電壓Vref_NTc降低使得由內部電壓生成電路120生成的內部供給電壓INTVDD也同樣降低。周邊電路40的PN接面洩漏、電晶體的斷態洩漏等所產生的漏電流隨著操作溫度的上升而增加,但這些漏電流相關於內部供給電壓INTVDD,若內部供給電壓INTVDD降低,則漏電流也相應地降低。
In this embodiment, the flash memory does not adopt the DPD mode, that is, it does not change from the standby mode to the DPD mode, but the leakage current generated in the
在本實施例中,由於參考電壓Vref_NTc具有負溫度係
數,因此,若溫度上升,則參考電壓Vref_NTc降低,抵消周邊電路40增加的漏電流。另外,由於不採用DPD模式,因此可在不考慮從DPD模式恢復的延遲時間的情況下實施下一有功動作。
In this embodiment, since the reference voltage Vref_NTc has a negative temperature range
Therefore, if the temperature rises, the reference voltage Vref_NTc decreases to offset the increased leakage current of the
在第一實施例中,必須在製造或出廠時對電阻R2進行修整,以便在操作溫度上升時使得參考電壓Vref_NTc落在一定的電壓範圍內。但實際上,漏電流的增加不是線性的,而是以某一溫度為界而呈指數函數增加,因此其修整極為繁複。另外,在操作溫度超過了設想溫度的情況下,參考電壓Vref_NTc會脫離所述一定的電壓範圍,結果,例如當參考電壓Vref_NTc低於周邊電路40的CMOS電晶體的最低操作電壓時,周邊電路40無法再響應待命狀態下輸入的指令等而運行。因此,第二實施例提供一種可在不進行參考電壓生成部110的修整的情況下自主生成經溫度補償後的參考電壓Vref的電壓生成電路。
In the first embodiment, the resistor R2 must be trimmed during manufacture or delivery, so that the reference voltage Vref_NTc falls within a certain voltage range when the operating temperature rises. But in fact, the increase of the leakage current is not linear, but increases exponentially with a certain temperature as the boundary, so its trimming is extremely complicated. In addition, when the operating temperature exceeds the assumed temperature, the reference voltage Vref_NTc will deviate from the certain voltage range. As a result, for example, when the reference voltage Vref_NTc is lower than the minimum operating voltage of the CMOS transistor of the
參照圖3,第二實施例的電壓生成電路200包含:參考電壓生成部210,生成參考電壓Vref;漏電流監視部220,監視待命狀態的周邊電路250的漏電流ILEAK_PERI而生成對應的漏電流ILEAK;輸出電壓控制部230,接收參考電壓Vref,並輸出根據由漏電流監視部220生成的漏電流ILEAK加以控制後的參考電壓Vref_C;以及待命電壓生成部240,根據控制後的參考電壓Vref_C來生成內部供給電壓INTVDD。周邊電路250在待命狀態時藉由以待命電壓生成部240生成的內部供給電壓INTVDD而在低耗電下操作,在有功狀態時藉由以有功電壓生成部260生成的內部供
給電壓INTVDD來操作。
Referring to FIG. 3 , the
參考電壓生成部210例如包含圖2所示的BGR電路,將參考電壓Vref提供給輸出電壓控制部230。漏電流監視部220生成與待命狀態的周邊電路250中產生的漏電流ILEAK_PERI具有一定的比(ratio)的漏電流ILEAK。周邊電路250包含使用CMOS電晶體等的各種電路,在快閃記憶體為待命模式時,這些電路處於可藉由來自待命電壓生成部240的內部供給電壓INTVDD來運行的狀態。另一方面,電晶體的閾值電壓的降低以及電晶體的微型化使得在電晶體的源極/汲極間流通的斷態漏電流(off-state leakage current)(也包括PN接面洩漏和閘極洩漏)增加,因此須將待命狀態的周邊電路250的漏電流抑制在最小限度。
The reference
在一實施例中,漏電流監視部220包含將至少1個PMOS電晶體與NMOS電晶體串聯而成的CMOS電晶體,以監視周邊電路250的漏電流。PMOS電晶體和NMOS電晶體各自的通道寬度相對於周邊電路250的整體CMOS電晶體的PMOS電晶體與NMOS電晶體的合計的通道寬度具有一定的比R。換言之,漏電流監視部220的CMOS電晶體的斷態漏電流ILEAK×R近似於周邊電路250的斷態漏電流ILEAK_PERI。
In one embodiment, the leakage
為了進一步提高漏電流監視部220所生成的漏電流ILEAK的精度,也可考慮周邊電路250的CMOS電晶體的結構。即,CMOS電晶體的斷態洩漏中,有如圖4A的(A)所示在輸入訊號為高(High,H)準位時,PMOS電晶體斷開、NMOS電晶體導通的情
況下的斷態漏電流IPMOS,以及如圖4A的(B)所示在輸入訊號為低(Low,L)準位時,PMOS電晶體導通、NMOS電晶體斷開的情況下的斷態漏電流INMOS。斷態漏電流IPMOS與斷態漏電流INMOS大小不同,因此算出周邊電路250的PMOS電晶體斷開的CMOS電晶體的總數S_P和NMOS電晶體斷開的CMOS電晶體的總數S_N。漏電流監視部220包含洩漏電路A和洩漏電路B,所述洩漏電路A中,相對於如圖4A的(C)所示的總數S_P的PMOS電晶體的通道寬度的合計而成一定的比,PMOS電晶體成為斷態洩漏電晶體,所述洩漏電路B中,相對於如圖4A的(D)所示的總數S_N的NMOS電晶體的通道寬度的合計而成一定的比,NMOS電晶體成為斷態洩漏電晶體。將洩漏電路A與洩漏電路B並聯,漏電流IPMOS與漏電流INMOS的合計成為漏電流ILEAK。
In order to further improve the accuracy of the leakage current I LEAK generated by the leakage
漏電流監視部220也可包含多種洩漏電路,以生成考慮了周邊電路250的更多洩漏特性的漏電流ILEAK。周邊電路250中形成有利用CMOS電晶體的各種邏輯電路(反相器、及閘(AND Gate)、反及閘(NAND Gate)等),各邏輯電路使得漏電流的大小不一樣。因此,如圖4B(A)所示,可準備洩漏特性不同的各種洩漏電路A、洩漏電路B、洩漏電路C~洩漏電路N,並根據周邊電路250的結構使藉由修整訊號Trim來選擇的洩漏電路運行。
The leakage
例如,洩漏電路A生成PMOS電晶體的斷態漏電流,洩漏電路B生成NMOS電晶體的斷態漏電流,洩漏電路C生成PMOS電晶體和NMOS電晶體的斷態漏電流,洩漏電路N生成反及閘的 PMOS電晶體的斷態漏電流。修整訊號Trim例如使藉由熔斷保險絲來選擇的洩漏電路A~洩漏電路N運行。 For example, leakage circuit A generates the off-state leakage current of the PMOS transistor, leakage circuit B generates the off-state leakage current of the NMOS transistor, leakage circuit C generates the off-state leakage current of the PMOS transistor and the NMOS transistor, and leakage circuit N generates the off-state leakage current of the NMOS transistor. And gate The off-state leakage current of a PMOS transistor. The trimming signal Trim, for example, operates leakage circuits A to N selected by blowing a fuse.
另外,洩漏電路A、洩漏電路B、洩漏電路C、…、洩漏電路N各者對周邊電路250的對應的邏輯電路的漏電流的比進行尺度轉換(scaling),因此包含多組CMOS電晶體,使從多組CMOS電晶體中選擇的數量的CMOS電晶體運行。所述選擇由修整訊號Trim進行。例如,在有P組並聯的洩漏電路A的情況下,為了相對於周邊電路250的對應的CMOS反相器的漏電流而獲得一定的比,使藉由修整訊號Trim從P組中選擇的數量的洩漏電路A運行。例如,使藉由修整訊號Trim使保險絲熔斷來選擇的數量的洩漏電路A運行。
In addition, each of the leakage circuit A, leakage circuit B, leakage circuit C, ..., leakage circuit N performs scale conversion (scaling) on the ratio of the leakage current of the corresponding logic circuit in the
洩漏電路A、洩漏電路B、洩漏電路C、…、洩漏電路N並聯,由各洩漏電路生成的漏電流IA、漏電流IB、漏電流IC、…、漏電流IN的合計成為漏電流ILEAK。當操作溫度增加時,漏電流ILEAK增加,當操作溫度降低時,漏電流ILEAK降低。 Leakage circuit A, leakage circuit B, leakage circuit C, ..., leakage circuit N are connected in parallel, and the sum of leakage current I A , leakage current I B , leakage current I C , ..., leakage current I N generated by each leakage circuit becomes the leakage current Current I LEAK . When the operating temperature increases, the leakage current I LEAK increases, and when the operating temperature decreases, the leakage current I LEAK decreases.
如此,漏電流監視部220生成對待命狀態時的周邊電路250的漏電流ILEAK_PERI進行監視得到的漏電流ILEAK,並將生成的漏電流ILEAK提供給輸出電壓控制部230。
In this way, the leakage
輸出電壓控制部230根據漏電流ILEAK來控制參考電壓Vref。具體而言,當漏電流ILEAK增加時,輸出電壓控制部230使參考電壓Vref_C降低,當漏電流ILEAK減少時,輸出電壓控制部230使參考電壓Vref_C增加。經輸出電壓控制部230控制後的參
考電壓Vref_C提供給待命電壓生成部240。
The output
待命電壓生成部240例如與圖2所示的內部電壓生成電路120有相同構成。待命電壓生成部240接收參考電壓Vref_C,並將變得與參考電壓Vref_C相等的內部供給電壓INTVDD提供給周邊電路250。當周邊電路250的操作溫度上升時,參考電壓Vref_C降低,伴隨於此,內部供給電壓INTVDD降低,因此周邊電路250的漏電流ILEAK_PERI得到抑制,從而達到省電。當從待命狀態轉變為有功狀態時,內部供給電壓INTVDD從有功電壓生成部260供給至周邊電路250。
Standby
圖5為第二實施例的電壓生成電路200的詳細電路示意圖。參考電壓生成部210使用BGR電路來生成參考電壓Vref,並將所述參考電壓Vref提供給輸出電壓控制部230。再者,不同於第一實施例的參考電壓Vref_NTc,參考電壓Vref具有正溫度係數。
FIG. 5 is a detailed circuit schematic diagram of the
與待命電壓生成部240一樣,輸出電壓控制部230包含定電流電路(單位增益緩衝器OP1、電晶體Q2),並在節點N3上生成不相關於外部電源電壓VDD的變動的電壓Vref。電阻R3連接於節點N3與節點N4之間,在節點N4上生成定電流IC。定電流IC相對於由待命電壓生成部240生成的定電流IC_PERI具有一定的比(ILEAK_PERI:ILEAK=IC_PERI:IC)。即,電晶體Q2的通道寬度相對於電晶體Q1的通道寬度而被調整為一定的比。
Like
漏電流監視部220連接於輸出電壓控制部230的節點N4。此處示出了漏電流監視部220包含洩漏電路A的例子。節點
N4上生成的定電流IC因由漏電流監視部220生成的漏電流ILEAK而流至GND,結果,在節點N4上生成被定電流IC與漏電流ILEAK的差(IC-ILEAK)控制的參考電壓Vref_C。即,當因溫度上升而使得漏電流ILEAK增加時,參考電壓Vref_C降低,當因溫度減少而使得漏電流ILEAK減少時,參考電壓Vref_C增加,從而自主生成與溫度變化相應的控制後的參考電壓Vref_C。
The leakage
第二實施例中是根據溫度變化來自主改變參考電壓Vref_C,但由於漏電流會以某一溫度為界而急劇增大,因此有參考電壓Vref_C低於周邊電路250的CMOS的最低操作電壓之虞。因此,在第三實施例中進行避免參考電壓Vref_C低於CMOS的最低操作電壓這樣的回饋控制。
In the second embodiment, the reference voltage Vref_C is automatically changed according to the temperature change, but since the leakage current will increase sharply at a certain temperature, the reference voltage Vref_C may be lower than the minimum operating voltage of the CMOS of the
參照圖6,第三實施例的電壓生成電路200A包含電壓降檢測部300和輸出電壓控制部310,除此以外的參考電壓生成部210、漏電流監視部220、待命電壓生成部240與第二實施例相同。
Referring to FIG. 6, the
電壓降檢測部300對輸出電壓控制部310所輸出的經溫度補償後的參考電壓Vref_C進行監視,檢測參考電壓Vref_C下降到CMOS的最低操作電壓Vmin附近的閾值電壓Vth這一情況(Vref_C-Vmin≦閾值電壓Vth),並將所述檢測結果提供給輸出電壓控制部310。
The voltage
與第二實施例一樣,輸出電壓控制部310輸出與漏電流監視部220的漏電流ILEAK相應的參考電壓Vref_C,但在檢測到參考電壓Vref_C已下降到閾值電壓Vth這一情況時,控制參考電壓
Vref_C以使所述參考電壓Vref_C變得大於閾值電壓Vth。在某一實施例中,輸出電壓控制部310藉由增加從外部電源電壓VDD流至節點N3的定電流IC來抵消漏電流ILEAK,從而增加參考電壓Vref_C。在另一實施例中,輸出電壓控制部310藉由使直流(Direct Current,DC)電壓偏移來增加參考電壓Vref_C。由此,防止待命電壓生成部240的內部供給電壓INTVDD低於CMOS的最低操作電壓,保證周邊電路250的運行。
Like the second embodiment, the output
圖7為表示本發明的第三實施例的電壓生成電路200A的第一結構例的圖,對與圖5的結構相同的結構標注有同一參照符號。電壓降檢測部300對節點N4的經溫度補償後的參考電壓Vref_C進行監視。電壓降檢測部300包含源極連接於節點N4的PMOS電晶體Q3、連接於電晶體Q3與接地之間的流通定電流的電阻R4、以及連接於電晶體Q3與電阻R4之間的節點N5的反相器IN。電晶體Q3的閘極接地,電晶體Q3為導通狀態。
FIG. 7 is a diagram showing a first configuration example of a
在參考電壓Vref_C相較於CMOS的最低操作電壓而言足夠高時,電晶體Q3強導通,由此使得節點N5變為H準位、反相器IN的輸出變為L準位。當參考電壓Vref_C降低而變為Vref_C-Vmin≦Vth時,電晶體Q3的閘極-源極間電壓VGS減小、電晶體Q3的汲極電流減小、節點N5變為L準位、反相器IN的輸出變為H準位。 When the reference voltage Vref_C is sufficiently higher than the lowest operating voltage of CMOS, the transistor Q3 is strongly turned on, so that the node N5 becomes H level, and the output of the inverter IN becomes L level. When the reference voltage Vref_C decreases to become Vref_C-Vmin≦Vth, the gate-source voltage V GS of transistor Q3 decreases, the drain current of transistor Q3 decreases, node N5 becomes L level, and the reverse The output of the phaser IN becomes H level.
輸出電壓控制部310包含與電晶體Q2並聯於外部供給電壓VDD與節點N3之間的NMOS電晶體Q4,電晶體Q4的閘極連
接於電壓降檢測部300的反相器IN的輸出。當參考電壓Vref_C降低、反相器IN的輸出變為H時,電晶體Q4導通,對節點N3供給電流IADD。電晶體Q4的尺寸以如下方式加以調整:電流IADD抵消隨著溫度上升而急劇增加的漏電流ILEAK,而且參考電壓Vref_C變得高於由電壓降檢測部300檢測到的準位。
The output
當參考電壓Vref_C相較於CMOS的最低操作電壓而言充分增加時,電壓降檢測部300的反相器IN的輸出變為L準位,停止電流IADD的供給。再者,電流IADD的供給方法不限於所述方法,也可藉由其他方法來進行。
When the reference voltage Vref_C is sufficiently increased compared with the lowest operating voltage of CMOS, the output of the inverter IN of the voltage
圖8為表示本發明的第三實施例的電壓生成電路200A的第二結構例的圖,對與圖7的結構相同的結構標注有同一參照符號。在第二結構例中,輸出電壓控制部310A包含電壓偏移部320,所述電壓偏移部320根據電壓降檢測部300的反相器IN的輸出使參考電壓Vref_C的電壓朝正方向增加。電壓偏移部320例如包含用於將參考電壓Vref_C連接至外部電源電壓VDD的上拉用的電晶體,所述電晶體響應於反相器IN的H準位的輸出而導通,使參考電壓Vref_C朝正方向偏移。
FIG. 8 is a diagram showing a second configuration example of the
當參考電壓Vref_C相較於CMOS的最低操作電壓而言充分增加時,電壓降檢測部300的反相器IN的輸出變為L準位,並停止電壓偏移部320進行的電壓偏移。再者,電壓偏移的方法不限於所述方法,也可藉由其他方法來進行。
When the reference voltage Vref_C is sufficiently increased compared to the lowest operating voltage of the CMOS, the output of the inverter IN of the voltage
圖9為表示本發明的第三實施例的電壓生成電路200A的
第三結構例的圖,對與圖7及圖8的結構相同的結構標注有同一參照符號。在第三結構例中,輸出電壓控制部310B分別包含圖7所示的用於供給電流IADD的電晶體Q4和圖8所示的用於使參考電壓Vref_C朝正方向偏移的電壓偏移部320。電晶體Q4及電壓偏移部320響應於由電壓降檢測部300檢測到參考電壓Vref_C的下降這一情況而增加參考電壓Vref_C,以避免低於CMOS的最低操作電壓。根據第三結構例,與第一結構例及第二結構例相比,可在短時間內提升參考電壓Vref_C。
FIG. 9 is a diagram showing a third configuration example of a
接著,對本發明的第四實施例進行說明。圖10為表示第四實施例的電壓生成電路的示意圖,對與圖9的結構相同的結構標注有同一參照符號。在本實施例的電壓生成電路400中,輸出電壓生成部410包含參考電壓生成部210的BGR電路的電晶體Q10、與電晶體Q20構成電流鏡的PMOS電晶體Q5。電晶體Q5連接於外部電源電壓VDD與電晶體Q2之間,電晶體Q5的閘極共通地連接於電晶體Q10、電晶體Q20的閘極。
Next, a fourth embodiment of the present invention will be described. FIG. 10 is a schematic diagram showing a voltage generating circuit of the fourth embodiment, and the same reference numerals are assigned to the same configurations as those in FIG. 9 . In the
電晶體Q5構成為相對於電晶體Q10/Q20而成一定的電流鏡比K的尺寸,流至輸出電壓控制部410的電流IC為iBGR的K倍(K為1以上的值)。另外,在BGR電路中流通的電流(iBGR)具有正溫度係數,因此流至輸出電壓控制部410的電流IC也具有正溫度係數。因此,當溫度上升時,電流IC增加,同時,由漏電流監視部220生成的漏電流ILEAK也增加,結果,防止參考電壓Vref_C急劇降低。再者,雖然輸出電壓控制部410包含響應於電
壓降檢測部300的檢測結果而附加電流IADD的電晶體Q4及電壓偏移部320,但也可為包含任一者的結構。
Transistor Q5 is configured to have a constant current mirror ratio K with respect to transistors Q10/Q20, and current IC flowing to output voltage control unit 410 is K times iBGR (K is a value equal to or greater than 1). In addition, since the current (iBGR) flowing in the BGR circuit has a positive temperature coefficient, the current IC flowing to the output
接著,對本發明的第五實施例進行說明。圖11為表示第五實施例的電壓生成電路的示意圖,對與圖10的結構相同的結構標注有同一參照符號。在本實施例的電壓生成電路500中,參考電壓生成部210A與第一實施例有相同構成。即,參考電壓生成部210A將具有負溫度係數的參考電壓Vref_NTc提供給輸出電壓控制部410。
Next, a fifth embodiment of the present invention will be described. FIG. 11 is a schematic diagram showing a voltage generating circuit according to a fifth embodiment, and the same reference numerals are assigned to the same configurations as those in FIG. 10 . In the
在本實施例中,當溫度上升時,參考電壓Vref_NTc降低,另一方面,電流IC增加,漏電流ILEAK也增加。若電流IC的增加被漏電流ILEAK抵消,則參考電壓Vref_C因參考電壓Vref_NTc的降低而降低,周邊電路250的漏電流得到抑制。再者,雖然輸出電壓控制部410包含響應於電壓降檢測部300的檢測結果而附加電流IADD的電晶體Q4及電壓偏移部320,但也可為包含任一者的結構。
In this embodiment, when the temperature rises, the reference voltage Vref_NTc decreases, on the other hand, the current I C increases, and the leakage current I LEAK also increases. If the increase of the current IC is offset by the leakage current ILEAK , the reference voltage Vref_C decreases due to the decrease of the reference voltage Vref_NTc, and the leakage current of the
將本實施例的電壓生成電路的特徵歸納如下。 The features of the voltage generating circuit of this embodiment are summarized as follows.
1.待命電壓生成部240的內部供給電壓INTVDD在進行溫度補償的整個範圍內保證CMOS的最小操作電壓。
1. The internal supply voltage INTVDD of the standby
2.在進行溫度補償的範圍的最高溫度下,待命電壓生成部240的內部供給電壓INTVDD被控制在最小的DC準位。
2. At the highest temperature in the temperature compensation range, the internal supply voltage INTVDD of the
3.藉由使用更低的內部供給電壓INTVDD,可將周邊電路250內的積體電路的接面漏電流、閘極漏電流、電晶體的斷態漏電流
抑制在最小限度。
3. By using a lower internal supply voltage INTVDD, the junction leakage current, gate leakage current, and transistor off-state leakage current of the integrated circuit in the
4.藉由維持更低準位的內部供給電壓INTVDD來代替深度省電模式(DPD)下的電力供給的切斷,與深度省電模式時相比,可縮短恢復到有功動作的時間。 4. By maintaining a lower level internal supply voltage INTVDD instead of cutting off the power supply in deep power saving mode (DPD), compared with deep power saving mode, the time to return to active operation can be shortened.
再者,本實施例的電壓生成電路運用於快閃記憶體的待命狀態,但這是一例,本發明可以與待命狀態無關地運用於對內部電路的電壓供給。進而,本發明可以運用於對快閃記憶體以外的其他半導體器件的內部電路提供期望的內部電壓的電壓生成電路。 In addition, the voltage generating circuit of this embodiment is applied to the standby state of the flash memory, but this is an example, and the present invention can be applied to the voltage supply to the internal circuit regardless of the standby state. Furthermore, the present invention can be applied to a voltage generation circuit that supplies a desired internal voltage to an internal circuit of a semiconductor device other than a flash memory.
對本發明的優選實施方式進行了詳細敘述,但本發明並不限定於特定實施方式,可以在權利要求書中記載的本發明的主旨的範圍內進行各種變形、變更。 Preferred embodiments of the present invention have been described in detail, but the present invention is not limited to the specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims.
200A:電壓生成電路 200A: Voltage generating circuit
210:參考電壓生成部 210: Reference voltage generation unit
220:漏電流監視部 220: Leakage current monitoring department
240:待命電壓生成部 240: standby voltage generation unit
250:周邊電路 250: peripheral circuit
300:電壓降檢測部 300: voltage drop detection unit
310:輸出電壓控制部 310: output voltage control unit
ILEAK:漏電流 I LEAK : Leakage current
INTVDD:內部供給電壓 INTVDD: Internal supply voltage
Vref:參考電壓 Vref: reference voltage
Vref_C:控制後的參考電壓 Vref_C: reference voltage after control
Claims (17)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021153901A JP7103742B1 (en) | 2021-09-22 | 2021-09-22 | Voltage generation circuit |
JP2021-153901 | 2021-09-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI792988B true TWI792988B (en) | 2023-02-11 |
TW202314446A TW202314446A (en) | 2023-04-01 |
Family
ID=82482463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111115201A TWI792988B (en) | 2021-09-22 | 2022-04-21 | Voltage generating circuit and semiconductor device |
Country Status (5)
Country | Link |
---|---|
US (1) | US12032396B2 (en) |
JP (1) | JP7103742B1 (en) |
KR (1) | KR102643770B1 (en) |
CN (1) | CN115903992A (en) |
TW (1) | TWI792988B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115617113B (en) * | 2022-11-08 | 2023-03-10 | 电子科技大学 | A Voltage Reference Source for Extremely Low Temperatures |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001117654A (en) * | 1999-10-21 | 2001-04-27 | Nec Kansai Ltd | Reference voltage generating circuit |
WO2009060907A1 (en) * | 2007-11-08 | 2009-05-14 | Rohm Co., Ltd. | Semiconductor device, power supply provided with semiconductor device, and processing unit |
JP2013200767A (en) * | 2012-03-26 | 2013-10-03 | Toyota Motor Corp | Band gap reference circuit |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3825300B2 (en) * | 2001-10-31 | 2006-09-27 | Necエレクトロニクス株式会社 | Internal step-down circuit |
JP2005050473A (en) * | 2003-07-31 | 2005-02-24 | Renesas Technology Corp | Semiconductor device |
JP4764086B2 (en) * | 2005-07-27 | 2011-08-31 | パナソニック株式会社 | Semiconductor integrated circuit device |
JP4814705B2 (en) * | 2005-10-13 | 2011-11-16 | パナソニック株式会社 | Semiconductor integrated circuit device and electronic device |
DE102014213963B4 (en) | 2014-07-17 | 2021-03-04 | Dialog Semiconductor (Uk) Limited | Leakage reduction technology for low voltage LDOs |
JP6416650B2 (en) * | 2015-02-06 | 2018-10-31 | エイブリック株式会社 | Constant voltage circuit and oscillation device |
FR3042304B1 (en) * | 2015-10-09 | 2017-11-24 | Commissariat Energie Atomique | METHOD AND CIRCUIT FOR CONTROLLING PROGRAMMING CURRENT IN NON-VOLATILE MEMORY MATRIX |
TWI557529B (en) * | 2016-01-12 | 2016-11-11 | 新唐科技股份有限公司 | Reference voltage circuit |
TWI664798B (en) | 2017-11-20 | 2019-07-01 | 國立成功大學 | Power supply system |
CN110568895A (en) | 2019-10-11 | 2019-12-13 | 思瑞浦微电子科技(苏州)股份有限公司 | Circuit for LDO adaptive leakage compensation |
JP2021082094A (en) | 2019-11-21 | 2021-05-27 | ウィンボンド エレクトロニクス コーポレーション | Voltage generation circuit and semiconductor device using the same |
-
2021
- 2021-09-22 JP JP2021153901A patent/JP7103742B1/en active Active
-
2022
- 2022-04-21 TW TW111115201A patent/TWI792988B/en active
- 2022-06-07 CN CN202210637061.3A patent/CN115903992A/en active Pending
- 2022-06-22 US US17/846,017 patent/US12032396B2/en active Active
- 2022-06-24 KR KR1020220077477A patent/KR102643770B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001117654A (en) * | 1999-10-21 | 2001-04-27 | Nec Kansai Ltd | Reference voltage generating circuit |
WO2009060907A1 (en) * | 2007-11-08 | 2009-05-14 | Rohm Co., Ltd. | Semiconductor device, power supply provided with semiconductor device, and processing unit |
JP2013200767A (en) * | 2012-03-26 | 2013-10-03 | Toyota Motor Corp | Band gap reference circuit |
Also Published As
Publication number | Publication date |
---|---|
JP7103742B1 (en) | 2022-07-20 |
KR102643770B1 (en) | 2024-03-06 |
US20230087732A1 (en) | 2023-03-23 |
CN115903992A (en) | 2023-04-04 |
KR20230042620A (en) | 2023-03-29 |
JP2023045472A (en) | 2023-04-03 |
TW202314446A (en) | 2023-04-01 |
US12032396B2 (en) | 2024-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7504876B1 (en) | Substrate bias feedback scheme to reduce chip leakage power | |
TWI505062B (en) | Temperature independent reference circuit | |
US6448844B1 (en) | CMOS constant current reference circuit | |
JP3321246B2 (en) | Current control voltage generation circuit | |
CN113157033B (en) | Constant current circuit and semiconductor device | |
US7589513B2 (en) | Reference voltage generator circuit | |
US8791685B2 (en) | Bandgap reference voltage generator | |
JP2008108009A (en) | Reference voltage generation circuit | |
JP2008015925A (en) | Reference voltage generation circuit | |
GB2425419A (en) | An overtemperature detector for integrated circuits, using hysteresis | |
US8902679B2 (en) | Memory array with on and off-state wordline voltages having different temperature coefficients | |
JP2009535829A (en) | Ultra-low power analog compensation circuit | |
JP2002373942A (en) | Semiconductor integrated circuit | |
US7642840B2 (en) | Reference voltage generator circuit | |
US7816976B2 (en) | Power supply circuit using insulated-gate field-effect transistors | |
TWI792988B (en) | Voltage generating circuit and semiconductor device | |
JP2007060544A (en) | Method and apparatus for producing power on reset having small temperature coefficient | |
US20070007934A1 (en) | MOSFET triggered current boosting technique for power devices | |
JP2000124744A (en) | Constant voltage generation circuit | |
TW202303330A (en) | Reference current/ voltage generator and circuit system | |
JP2014026680A (en) | Current compensation circuit and semiconductor memory device | |
JP2006285337A (en) | Reference current generating circuit | |
JP2006244228A (en) | Power source circuit | |
KR101015543B1 (en) | Voltage generator circuit | |
CN115047935A (en) | High-voltage low-power-consumption E/D reference circuit |