TWI778460B - Online prediction method of tool-electrode consumption and prediction method of machining accuracy - Google Patents
Online prediction method of tool-electrode consumption and prediction method of machining accuracy Download PDFInfo
- Publication number
- TWI778460B TWI778460B TW109141912A TW109141912A TWI778460B TW I778460 B TWI778460 B TW I778460B TW 109141912 A TW109141912 A TW 109141912A TW 109141912 A TW109141912 A TW 109141912A TW I778460 B TWI778460 B TW I778460B
- Authority
- TW
- Taiwan
- Prior art keywords
- machining
- discharge
- electrode consumption
- value
- average
- Prior art date
Links
- 238000003754 machining Methods 0.000 title claims abstract description 161
- 238000000034 method Methods 0.000 title claims abstract description 63
- 238000009760 electrical discharge machining Methods 0.000 claims abstract description 52
- 238000010219 correlation analysis Methods 0.000 claims abstract description 12
- 238000012545 processing Methods 0.000 claims description 41
- 238000005259 measurement Methods 0.000 claims description 22
- 230000002159 abnormal effect Effects 0.000 claims description 14
- 238000000605 extraction Methods 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 6
- 238000013401 experimental design Methods 0.000 claims description 5
- 238000001134 F-test Methods 0.000 claims description 2
- 238000000692 Student's t-test Methods 0.000 claims description 2
- 238000004458 analytical method Methods 0.000 claims description 2
- 238000012353 t test Methods 0.000 claims description 2
- 238000004439 roughness measurement Methods 0.000 claims 2
- 238000013400 design of experiment Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 238000005070 sampling Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Images
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
本發明是有關於一種加工精度預測方法,且特別是有關於一種加工電極消耗的線上預測方法以及加工精度的預測方法。The present invention relates to a method for predicting machining accuracy, and in particular, to an online predicting method for machining electrode consumption and a method for predicting machining accuracy.
當進行放電加工時,常因為設備的排渣不良、異常短路或電極消耗等因素,造成工件尺寸不如預期、工件表面粗糙度大等品質不佳的情形。再者,一般的放電加工設備並無法在加工過程中有效地預測工件的加工精度,只能透過量測設備對加工後的工件進行離線加工精度量測。When electrical discharge machining is performed, the workpiece size is not as expected, and the surface roughness of the workpiece is often poor due to factors such as poor slag discharge, abnormal short circuit or electrode consumption. Furthermore, the general electrical discharge machining equipment cannot effectively predict the machining accuracy of the workpiece during the machining process, and can only measure the machining accuracy of the machined workpiece off-line through the measuring equipment.
為了解決上述缺失,目前已有透過預測模型,而在放電加工的過程中監測相關加工資訊,以預測後續工件的加工精度。然而,上述模型並未能即時反映放電電極的消耗,僅能依靠離線後的量測而取得放電電極的消耗量,因而大幅影響放電加工設備的稼動率。In order to solve the above deficiencies, a prediction model has been used to monitor relevant machining information during the process of electrical discharge machining to predict the machining accuracy of subsequent workpieces. However, the above model cannot reflect the consumption of the discharge electrode in real time, and the consumption of the discharge electrode can only be obtained by off-line measurement, which greatly affects the utilization rate of the electrical discharge machining equipment.
有鑑於此,便有需要提供一種放電加工精度的預測方法,來解決前述的問題。In view of this, there is a need to provide a method for predicting the accuracy of electrical discharge machining to solve the aforementioned problems.
本發明提供一種加工電極消耗的線上預測方法與加工精度的預測方法,以在放電加工過程中即時預測放電電極的消耗量,並據以調整放電加工設備的加工參數,而取得較佳的放電加工精度。The present invention provides an on-line prediction method of machining electrode consumption and a prediction method of machining accuracy, so as to predict the consumption of electric discharge electrodes in real time in the process of electric discharge machining, and adjust the machining parameters of electric discharge machining equipment accordingly, so as to obtain better electric discharge machining precision.
本發明的加工電極消耗的線上預測方法,適用於放電加工設備,包括:實驗設計、從放電加工設備的加工參數萃取出影響電極消耗變數,以及藉由相關性分析而取得加工參數與影響電極消耗變數的關聯性,以取得能預測出加工電極與工件有效接觸面積的模型。The online prediction method of machining electrode consumption of the present invention is suitable for electric discharge machining equipment, including: experimental design, extraction of variables affecting electrode consumption from machining parameters of electric discharge machining equipment, and obtaining machining parameters and influencing electrode consumption through correlation analysis. The correlation of variables to obtain a model that can predict the effective contact area between the machining electrode and the workpiece.
本發明的加工精度的預測方法,包括:以建模基底萃取方法萃取放電加工設備的多個關鍵加工特徵值,其中關鍵加工特徵值包括電極前述加工電極消耗的線上預測方法所取得;將這些關鍵加工特徵值建立放電加工精度預測模型;以及即時感測放電加工設備的多組放電電壓訊號及多組放電電流訊號作為輸入值,並傳送至加工精度預測模型,以即時輸出至少一放電加工精度預測值作為輸出值。The method for predicting machining accuracy of the present invention includes: extracting a plurality of key machining characteristic values of electrical discharge machining equipment by a modeling substrate extraction method, wherein the key machining characteristic values include those obtained by the online prediction method of the aforementioned machining electrode consumption; The machining characteristic value establishes a prediction model of electric discharge machining accuracy; and real-time sensing of multiple sets of discharge voltage signals and multiple sets of discharge current signals of the electric discharge machining equipment are used as input values, and sent to the machining accuracy prediction model to output at least one electric discharge machining accuracy prediction in real time. value as the output value.
基於上述,藉由加工電極消耗的線上預測方法,以透過其實驗設計、從放電加工設備的加工參數萃取出影響電極消耗變數,以及藉由相關性分析而取得加工參數與影響電極消耗變數的關聯性,而取得能預測出加工電極與工件有效接觸面積的模型。如此一來,從所述模型取得的有效接觸面積即能代表當下放電電極所能對工件進行的放電加工能力,也相當於反映出放電電極於前次加工後的消耗程度,故而相關控制系統即能依據放電電極目前的放電加工能力而適應地調整放電加工設備的相關加工參數,以適配於工件所需的被加工過程而增益於加工精度。Based on the above, through the online prediction method of machining electrode consumption, through its experimental design, the variables affecting the electrode consumption are extracted from the machining parameters of the electrical discharge machining equipment, and the correlation between the machining parameters and the variables affecting the electrode consumption is obtained by correlation analysis. to obtain a model that can predict the effective contact area between the machining electrode and the workpiece. In this way, the effective contact area obtained from the model can represent the discharge machining capability that the current discharge electrode can perform on the workpiece, and it is also equivalent to reflect the consumption level of the discharge electrode after the previous processing, so the relevant control system is The relevant machining parameters of the electric discharge machining equipment can be adjusted adaptively according to the current electric discharge machining capability of the electric discharge electrode, so as to be adapted to the machining process required by the workpiece and gain the machining accuracy.
圖1是本發明一實施例放電加工精度的預測系統的示意圖。請參考圖1,本實施例的放電加工精度的預測系統200包括放電加工設備210以及資料處理模組220,且資料處理模組220訊息連接放電加工設備210。放電加工設備210具有主軸211及設置於主軸211的加工電極(tool-electrode)211a,以透過加工電極211a而對工件P1進行放電加工。資料處理模組220包括控制回授單元221、感測單元222與處理單元223。控制回授單元221用以感測距離訊號,而作為判斷感測單元222是否要擷取放電加工設備210在線加工時的製程資料(包括放電電壓訊號及放電電流訊號)。處理單元223則可根據感測單元222所擷取的製程資料建立多個加工特徵,並可根據量測機台300所處理的不同量測項目的量測值(量測值是指放電加工設備加工處理工件後,工件品質的量測值),再從加工特徵中彙整出與加工精度有關的關鍵加工特徵值,以提供給自動化伺服器400並據以建立放電加工精度預測模型,以預測放電加工設備210後續之加工精度。FIG. 1 is a schematic diagram of a prediction system of electric discharge machining accuracy according to an embodiment of the present invention. Referring to FIG. 1 , the electric discharge machining
舉例來說,自動化伺服器400是以類神經網路(Neural Network,NN)方法與回歸分析(Regression Analysis)方法(例如部分最小平方法PLS)而建立放電加工精度預測模型。欲陳明者,本實施例使用的預測模型可為如專利號TW I349867所揭示之自動化伺服器所建立之加工精度預測模型,但此並非用以限制本發明。For example, the
大致而言,本實施例之建模基底萃取方法主要是蒐集放電加工設備210在放電過程中的製程資料(例如電極消耗值、放電電壓訊號及放電電流訊號),然後根據這些製程資料建立出多個加工特徵,並應用資料前處理技術(Data Pre-Processing Technology)從這些加工特徵中萃取出可用於推估加工精度之關鍵加工特徵值。這些彙整出的關鍵加工特徵值主要可提供給自動化伺服器400,以建立放電加工精度預測模型,用來預測放電加工設備210之加工精度。Roughly speaking, the modeling substrate extraction method of this embodiment mainly collects process data (such as electrode consumption value, discharge voltage signal and discharge current signal) of the electrical
詳細來說,圖2A與圖2B分別繪示本發明建立預測模型的示意圖。圖2C是放電加工精度預測模型的輸入輸出示意圖。圖3A是本發明放電加工精度預測模型的建立流程。圖3B是建立圖2A預測模型的流程圖。圖3C是建立圖2B放電加工精度預測模型的流程圖。在此,圖2A的模型建立對應於圖3A流程中的步驟S110,圖2B的模型建立對應於圖3A流程中的步驟S130。In detail, FIG. 2A and FIG. 2B are schematic diagrams of establishing a prediction model according to the present invention, respectively. FIG. 2C is a schematic diagram of the input and output of the electric discharge machining accuracy prediction model. FIG. 3A is a flow chart of the establishment of the electric discharge machining accuracy prediction model of the present invention. Figure 3B is a flow chart of building the prediction model of Figure 2A. FIG. 3C is a flow chart of establishing the electric discharge machining accuracy prediction model of FIG. 2B . Here, the model establishment in FIG. 2A corresponds to step S110 in the flow of FIG. 3A , and the model establishment in FIG. 2B corresponds to step S130 in the flow of FIG. 3A .
請先參考圖2A與圖3A,在步驟S110中,以建模基底萃取方法萃取放電加工設備210的關鍵加工特徵值群組A,以建立初建預測模型,其中關鍵加工特徵值群組A包括離線電極消耗值。接著,在步驟S120中,藉由加工電極消耗的線上預測方法而從初建預測模型取得加工電極消耗的線上預測模型。接著,在步驟S130中,以建模基底萃取方法萃取放電加工設備210的關鍵加工特徵值群組B,以建立放電加工精度預測模型,其中關鍵加工特徵值群組B包括由加工電極消耗的線上預測模型所取得的線上電極消耗值。最後,在步驟S140中,當放電加工設備210在進行後續放電加工時,便能即時感測放電加工設備210的多組放電電壓訊號及多組放電電流訊號作為輸入值,並傳送至放電加工精度預測模型,以產生新加工電流值與至少一放電加工精度預測值作為輸出值,其中所產生的新加工電流值便得以傳送至控制器212,而讓放電加工設備210能以此作為驅動接下來放電加工動作的依據。Please refer to FIG. 2A and FIG. 3A first, in step S110 , the key processing feature value group A of the electrical
簡單地說,在放電加工過程中,由於加工電極消耗的線上預測模型能即時反映出加工電極211a的現狀,故而從前述步驟S140所產生的效果便是除了提供放電加工精度預測值而讓操作者得知之外,也會據以調整放電電流(即上述的新加工電流值),而能因應加工電極211a在放電加工過程中的消耗進行適當地調整。To put it simply, during the EDM process, since the online prediction model of machining electrode consumption can instantly reflect the current state of the
請參考圖3B,在此進一步地描述步驟S110的相關細部步驟。在步驟S111中,以放電加工設備210分別處理多個工件P1而獲取多組製程資料,其中每組製程資料包括離線電極消耗值、放電電壓訊號與放電電流訊號。在此,可利用高壓探棒以及電流勾表來感測放電加工設備210的放電電壓以及放電電流,而可利用影像感測器222a量測電極消耗值。接著,在步驟S112中,則將這些製程資料建立多個加工特徵。Please refer to FIG. 3B , which further describes the relevant detailed steps of step S110 . In step S111 , the electrical
需說明是,本實施例的加工特徵包括電極消耗值、放電頻率、開路比、短路比、平均短路時間、短路時間標準差、平均短路電流、短路電流標準差、平均延遲時間、延遲時間標準差、平均放電峰值電流、峰值電流標準差、平均放電時間、放電時間標準差、平均放電能量以及放電能量標準差。It should be noted that the processing characteristics of this embodiment include electrode consumption value, discharge frequency, open circuit ratio, short circuit ratio, average short circuit time, short circuit time standard deviation, average short circuit current, short circuit current standard deviation, average delay time, delay time standard deviation , average discharge peak current, peak current standard deviation, average discharge time, discharge time standard deviation, average discharge energy and discharge energy standard deviation.
在上述加工特徵中,平均延遲時間與短路比是從放電電壓訊號所建立,其中,平均延遲時間定義為從已建立足夠開路電壓的時間點開始到電壓脈衝穿過電極與工件間的間隙,並開始有放電電流為止的時間差。短路比(Short circuit ratio)的定義為短路脈衝(short circuit pulse,SCP)數除以放電脈衝數,其中短路脈衝為於一放電脈衝周期內,開路電壓值持續小於指定電壓門檻時,則該次的放電脈衝期間則紀錄為一次短路脈衝。In the above machining features, the average delay time and the short circuit ratio are established from the discharge voltage signal, wherein the average delay time is defined as the time from the point when a sufficient open circuit voltage has been established until the voltage pulse crosses the gap between the electrode and the workpiece, and Time difference until discharge current starts. Short circuit ratio (Short circuit ratio) is defined as the number of short circuit pulses (SCP) divided by the number of discharge pulses, where the short circuit pulse is when the open circuit voltage value is continuously lower than the specified voltage threshold during a discharge pulse period, then the current The discharge pulse period is recorded as a short-circuit pulse.
在上述加工特徵中,放電頻率、平均放電峰值電流以及平均放電時間是從放電電流訊號所建立,其中,平均放電頻率(Average spark frequency)的定義為在一脈衝時間內,若該次電流波峰值超過最小門檻峰值,則定義為出現電流火花,而放電頻率定義為取樣期間內出現火花的總數。平均放電峰值電流(Average peak discharge current)定義為在取樣期間內,所有放電峰值電流(peak current)的平均數,其中,峰值電流為脈衝期間內,通過電極到達工件的大電流值。平均放電電流脈衝持續時間(Average discharge current pulse duration)定義為在取樣期間內,所有電流脈衝持續時間的平均值,其中,電流脈衝持續時間為放電電流波形開始點到結束點間的時間差。In the above processing features, the discharge frequency, the average discharge peak current and the average discharge time are established from the discharge current signal, wherein the average spark frequency (Average spark frequency) Exceeding the minimum threshold peak value is defined as the occurrence of current sparks, and the discharge frequency is defined as the total number of sparks occurring during the sampling period. The average peak discharge current (Average peak discharge current) is defined as the average of all discharge peak currents (peak current) during the sampling period, where the peak current is the high current value that reaches the workpiece through the electrode during the pulse period. The average discharge current pulse duration (Average discharge current pulse duration) is defined as the average value of all current pulse durations during the sampling period, where the current pulse duration is the time difference between the start point and the end point of the discharge current waveform.
在上述加工特徵中,平均短路時間、開路比、平均放電能量以及平均短路電流則是根據放電電流訊號以及放電電壓訊號所共同建立,其中,平均短路時間與短路持續時間有關,且短路持續時間(Short circuit duration)定義為當一段放電脈衝期間內(需連續兩個脈衝以上)發生多次連續短路,則短路持續時間為多次連續短路期間內,第一個短路峰(short circuit peak)到最後一個短路脈衝峰的時間差。開路比是定義為取樣期間內,開路次數除以放電脈衝總數,其中,在某一脈衝時間內,當電壓峰結束時,並沒有跟著電流峰上升時,即稱之為開路(Open circuit)。若發生開路時,則代表一電壓峰(Ignition Voltage)未能導引出後續電流峰(Discharge Current),此電壓峰即為無效脈衝。平均放電能量主要是用來保持放電加工製程的穩定性以確保加工品質,而第i次放電的放電能量(E)公式如以下公式,其中t ei為放電持續時間,U i為放電電壓,I pi為放電峰電流,此公式是假設在放電過程中,放電電壓保持不變。 In the above processing features, the average short-circuit time, open-circuit ratio, average discharge energy and average short-circuit current are jointly established according to the discharge current signal and the discharge voltage signal, wherein the average short-circuit time is related to the short-circuit duration, and the short-circuit duration ( Short circuit duration) is defined as when multiple consecutive short circuits occur during a period of discharge pulse (more than two consecutive pulses are required), then the short circuit duration is the period from the first short circuit peak (short circuit peak) to the last The time difference between the peaks of a short-circuit pulse. The open circuit ratio is defined as the number of open circuits divided by the total number of discharge pulses during the sampling period. In a certain pulse time, when the voltage peak ends and the current peak does not rise, it is called an open circuit (Open circuit). If an open circuit occurs, it means that a voltage peak (Ignition Voltage) cannot lead to a subsequent current peak (Discharge Current), and this voltage peak is an invalid pulse. The average discharge energy is mainly used to maintain the stability of the discharge machining process to ensure the processing quality, and the discharge energy (E) formula of the i-th discharge is as follows, where t ei is the discharge duration, U i is the discharge voltage, and I pi is the discharge peak current, this formula assumes that the discharge voltage remains unchanged during the discharge process.
欲陳明者,根據前述揭露內容,短路時間標準差、短路電流標準差、延遲時間標準差、峰值電流標準差、 放電時間標準差以及放電能量標準差之標準差值的計算方式為本發明所屬技術領域中之具有通常知識者所熟知,故在此不再贅述。To clarify, according to the foregoing disclosure, the calculation methods of the standard deviation values of the short-circuit time standard deviation, the short-circuit current standard deviation, the delay time standard deviation, the peak current standard deviation, the discharge time standard deviation and the discharge energy standard deviation belong to the present invention. It is well known to those with ordinary knowledge in the technical field, so it is not repeated here.
請再參考圖3B,接著,在步驟S113中,以量測機台300量測多個工件P1而取得多個量測值,其中每一量測值分別為放電加工設備210根據多組製程資料所加工處理多個工件P1的量測值。舉例來說,以不同外形及不同尺寸加工電極211a對多個工件P1進行放電加工而形成盲孔,完成之後即以量測機台300對這些盲孔進行尺寸與粗糙度的量測。Please refer to FIG. 3B again. Next, in step S113 , a plurality of workpieces P1 are measured by the measuring
完成量測值的量測動作後,即能以步驟S114進行相關性分析,以獲得多個加工特徵與多個量測值間的多個相關性數值。在找出加工特徵與量測值間之相關性數值後,接著進行步驟S115,從相關性數值中選取具有較大之相關性數值的加工特徵,作為多個關鍵加工特徵值(也就是前述的關鍵加工特徵值群組A),其中,本實施例是選取相關性數值絕對值大於0.3的加工特徵。屆此,即能完成步驟S110所需,也就是將包含離線電極消耗值在內的相關關鍵加工特徵值建構成為初建預測模型。After the measurement of the measurement values is completed, the correlation analysis can be performed in step S114 to obtain a plurality of correlation values between the plurality of processing features and the plurality of measurement values. After finding out the correlation value between the machining feature and the measured value, then step S115 is performed, and the machining feature with the larger correlation value is selected from the correlation value as a plurality of key machining feature values (that is, the aforementioned Key processing feature value group A), wherein, in this embodiment, processing features whose absolute value of correlation value is greater than 0.3 are selected. At this point, it is necessary to complete step S110 , that is, to construct the relevant key processing characteristic values including the offline electrode consumption value as an initial prediction model.
圖4A與圖4B是建立圖2B預測模型的流程圖。請同時參考圖4A與圖4B,在此對前述步驟S120所述進行詳細說明。在本實施例中,先進行步驟S210的實驗設計,接著進行步驟S220,從放電加工設備210的加工參數萃取出影響電極消耗變數。在此所述加工參數即是從前述初建預測模型的相關加工特徵(且特別是除了前述離線電極消耗值之外的其他關鍵加工特徵值中取得)。最後在步驟S230中,藉由相關性分析而取得加工參數與影響電極消耗變數的關聯性,以建立加工電極消耗預測模型。請再參考圖4B,更進一步地說,前述步驟S230更包括步驟S231,判斷資料是否異常,若是,則重新執行步驟S220,也就是重新從放電加工設備的加工參數萃取出影響電極消耗變數;若否,則執行步驟S232,藉由F檢驗(F-test)判斷回歸方程式是否可行,若是,則續行後續步驟S233,若否,則返回步驟S220,重新從放電加工設備210的加工參數萃取影響電極消耗變數;若是,則接著在步驟S233中進行殘差分析判斷,而後,則執行步驟S234,藉由t檢驗(t-test)找出相關性極低的影響電極消耗變數並予以移除。屆此,即完成步驟S230建立加工電極消耗預測模型之所需。4A and 4B are flowcharts of establishing the prediction model of FIG. 2B . Please refer to FIG. 4A and FIG. 4B at the same time, and the foregoing step S120 will be described in detail here. In this embodiment, the experimental design of step S210 is performed first, and then step S220 is performed to extract the variables affecting electrode consumption from the machining parameters of the electrical
接著,請參考圖2B與圖3C,當如上述從初建預測模型取得加工電極消耗預測模型後,即代表放電加工設備210能在放電加工過程中取得加工電極211a的消耗情形(線上電極消耗值),故再次以類似於圖3B所示流程,而在圖3C所示步驟S111A中,以放電加工設備210分別處理多個工件P1而獲取多組製程資料,其中每組製程資料包括線上電極消耗值、放電電壓訊號與放電電流訊號。接著,執行步驟S112至S114,其已如圖3B所示。最終,於步驟S115A中,從多個相關性數值中選取具有相關性數值絕對值大於0.3的加工特徵作為關鍵加工特徵值群組B,並據以將其投入圖3A所示步驟S130,也就是將包含線上電極消耗值在內的關鍵加工特徵群組B藉由建模基底萃取方法而建立放電加工預測模型。最終,即如圖2C與圖3A的步驟S140所示,在放電加工過程中,由即時感測到的放電電壓訊號與放電電流訊號搭配線上電極消耗值,便能順利地預測出放電加工精度,且產生新加工電流值供放電加工設備210進行後續的加工,其中關鍵加工特徵值群組B即是作為提升模型預測能力之用。Next, referring to FIGS. 2B and 3C , after obtaining the machining electrode consumption prediction model from the initial prediction model as described above, it means that the electric
在本實施例中,於前述步驟S220所提及的影響電極消耗變數包括有效放電次數、加工深度以及累計加工時間,其中有效放電次數是總放電次數扣除異常放電次數。在此,異常放電次數包括放電時額定電壓(Ue)低於設定準位(相當於異常放電R A)的發次與放電延遲時間(TD)低於標準時間(相當於異常放電R B)的發次。圖5繪示放電電壓波形示意圖。圖6提供影響電極消耗變數與有效接觸面積的實驗數據。請同時參考圖5與圖6,在本實施例的步驟S230中,相關性分析所建構的回歸方程式為: A eff=A 1+A 2*N total-A 3*R B-A 4*L+A 5*T+A 6*L*T-A 7*R B*L+A 8*N total*L+A 9*N total*R B-A 10N total*T-A 11*N total*L*T+A 12N total*L*T*R B, In this embodiment, the variables affecting electrode consumption mentioned in the aforementioned step S220 include the number of effective discharges, the machining depth and the accumulated machining time, wherein the effective number of discharges is the total number of discharges minus the number of abnormal discharges. Here, the number of abnormal discharges includes the times when the rated voltage (Ue) is lower than the set level (equivalent to abnormal discharge R A ) during discharge and the discharge delay time (TD) is lower than the standard time (equivalent to abnormal discharge R B ) send times. FIG. 5 is a schematic diagram of a discharge voltage waveform. Figure 6 provides experimental data affecting electrode consumption variables and effective contact area. Please refer to FIG. 5 and FIG. 6 at the same time. In step S230 of this embodiment, the regression equation constructed by the correlation analysis is: A eff =A 1 +A 2 *N total -A 3 *R B -A 4 *L +A 5 *T+A 6 *L*TA 7 *R B *L+A 8 *N total *L+A 9 *N total *R B -A 10 N total *TA 11 *N total *L*T +A 12 N total *L*T*R B ,
上述A
eff是加工電極211a與工件P1之間的有效接觸面積,N
total是總放電次數,在此同時將R
B視為放電延遲時間(TD)低於設定時間的發次,L是加工深度,T是累計加工時間。如圖5所示三種電壓訊號的波形,其中最左側為符合加工所需標準放電的電壓波形,具有標準電壓準位V
S與標準放電延遲時間TD
S,而中間為異常放電R
A,也就是放電時額定電壓低於標準準位V
S的放電電壓波形,右側則為異常放電R
B,也就是放電延遲時間低於標準時間TD
S的放電電壓波形,因此有效放電次數即是將總放電次數扣除如圖5所示的異常放電(R
A與R
B)的次數。還需說明的是,上述回歸方程式所採參數可依據實際加工設備的條件而予以適當變更。舉例來說,若經由電路控制而使放電加工設備能避免放電時額定電壓(Ue)低於設定準位的異常放電情形時,則如上述回歸方程式即不需將其列入。
The above A eff is the effective contact area between the
此外,如圖6所示,其藉由實驗驗證所述影響電極消耗變數,也就是總放電次數N
total、異常放電(R
A與R
B)的次數、加工深度L、累計加工時間T與有效接觸面積(A
eff)的關聯性,其以表格中的關聯性指標(FITS)作為標示,從中即能清楚得知,隨著有效接觸面積(A
eff)降低,其關聯性指標(FITS)也會隨之降低,此即代表這些影響電極消耗變數確實與有效接觸面積存在正相關。同時,對於放電加工製程而言,加工電極211a的外形(包括幾何形狀與尺寸)是作為影響其放電加工精度的主因之一,故而本實施例在加工過程中能即時取得有效接觸面積即代表具備掌握放電加工精度的條件。據此,本實施例藉由加工電極的線上預測方法(及其模型),便能即時掌握加工電極211a的現狀,而據以提出對應的適配方案。
In addition, as shown in FIG. 6 , the variables that affect the electrode consumption are verified by experiments, that is, the total number of discharges N total , the number of abnormal discharges ( RA and R B ), the machining depth L, the accumulated machining time T and the effective The correlation of the contact area (A eff ), which is indicated by the correlation index (FITS) in the table, from which it can be clearly seen that as the effective contact area (A eff ) decreases, the correlation index (FITS) also will decrease accordingly, which means that these variables affecting electrode consumption are indeed positively correlated with the effective contact area. At the same time, for the electrical discharge machining process, the shape (including geometric shape and size) of the
綜上所述,在本發明的上述實施例中,藉由加工電極消耗的線上預測方法,以透過其實驗設計、從放電加工設備的加工參數萃取出影響電極消耗變數,以及藉由相關性分析而取得加工參數與影響電極消耗變數的關聯性,而取得能預測出加工電極與工件有效接觸面積的模型。如此一來,從所述模型取得的有效接觸面積即能代表當下放電電極所能對工件進行的放電加工能力,也相當於反映出放電電極於前次加工後的消耗程度,故而相關控制系統即能依據放電電極目前的放電加工能力而適應地調整放電加工設備的相關加工參數,以適配於工件所需的被加工過程而增益於加工精度。To sum up, in the above-mentioned embodiments of the present invention, the on-line prediction method of machining electrode consumption is used to extract the variables affecting electrode consumption from the machining parameters of electric discharge machining equipment through its experimental design, and through correlation analysis The correlation between the machining parameters and the variables affecting the electrode consumption is obtained, and a model that can predict the effective contact area between the machining electrode and the workpiece is obtained. In this way, the effective contact area obtained from the model can represent the discharge machining capability that the current discharge electrode can perform on the workpiece, and it is also equivalent to reflect the consumption level of the discharge electrode after the previous processing, so the relevant control system is The relevant machining parameters of the electric discharge machining equipment can be adjusted adaptively according to the current electric discharge machining capability of the electric discharge electrode, so as to be adapted to the machining process required by the workpiece and gain the machining accuracy.
200:放電加工精度的預測系統
210:放電加工設備
211:主軸
211a:加工電極
220:資料處理模組
221:控制回授單元
222:感測單元
223:處理單元
300:量測機台
400:自動化伺服器
P1:工件
S110~S140、S111~S115、S111A:步驟
S210~S230、S231~S234:步驟
200: Prediction system for electrical discharge machining accuracy
210: Electric Discharge Machining Equipment
211:
圖1是本發明一實施例放電加工精度的預測系統的示意圖。 圖2A與圖2B分別繪示本發明建立預測模型的示意圖。 圖2C是放電加工精度預測模型的輸入輸出示意圖。 圖3A是本發明放電加工精度預測模型的建立流程。 圖3B是建立圖2A預測模型的流程圖。 圖3C是建立圖2B放電加工精度預測模型的流程圖。 圖4A與圖4B是建立圖2B預測模型的流程圖。 圖5繪示放電電壓波形示意圖。 圖6提供影響電極消耗變數與有效接觸面積的實驗數據。 FIG. 1 is a schematic diagram of a prediction system of electric discharge machining accuracy according to an embodiment of the present invention. 2A and 2B are schematic diagrams of establishing a prediction model according to the present invention, respectively. FIG. 2C is a schematic diagram of the input and output of the electric discharge machining accuracy prediction model. FIG. 3A is a flow chart of the establishment of the electric discharge machining accuracy prediction model of the present invention. Figure 3B is a flow chart of building the prediction model of Figure 2A. FIG. 3C is a flow chart of establishing the electric discharge machining accuracy prediction model of FIG. 2B . 4A and 4B are flowcharts of establishing the prediction model of FIG. 2B . FIG. 5 is a schematic diagram of a discharge voltage waveform. Figure 6 provides experimental data affecting electrode consumption variables and effective contact area.
S210、S220、S230:步驟 S210, S220, S230: steps
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109141912A TWI778460B (en) | 2020-11-27 | 2020-11-27 | Online prediction method of tool-electrode consumption and prediction method of machining accuracy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109141912A TWI778460B (en) | 2020-11-27 | 2020-11-27 | Online prediction method of tool-electrode consumption and prediction method of machining accuracy |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202221335A TW202221335A (en) | 2022-06-01 |
TWI778460B true TWI778460B (en) | 2022-09-21 |
Family
ID=83062489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109141912A TWI778460B (en) | 2020-11-27 | 2020-11-27 | Online prediction method of tool-electrode consumption and prediction method of machining accuracy |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI778460B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI863466B (en) * | 2023-07-27 | 2024-11-21 | 財團法人金屬工業研究發展中心 | Electrical discharge machining evaluation system and electrical discharge machining evaluation method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201837732A (en) * | 2017-03-30 | 2018-10-16 | 日商發那科股份有限公司 | Control device of wire electric discharge machine and machine learning device |
TW201924828A (en) * | 2017-11-30 | 2019-07-01 | 財團法人金屬工業研究發展中心 | Method for predicting accuracy of electrical discharge machining capable of establishing or modifying a electrical discharge machining accuracy prediction model, and can predict the accuracy of electrical discharge machining |
-
2020
- 2020-11-27 TW TW109141912A patent/TWI778460B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201837732A (en) * | 2017-03-30 | 2018-10-16 | 日商發那科股份有限公司 | Control device of wire electric discharge machine and machine learning device |
TW201924828A (en) * | 2017-11-30 | 2019-07-01 | 財團法人金屬工業研究發展中心 | Method for predicting accuracy of electrical discharge machining capable of establishing or modifying a electrical discharge machining accuracy prediction model, and can predict the accuracy of electrical discharge machining |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI863466B (en) * | 2023-07-27 | 2024-11-21 | 財團法人金屬工業研究發展中心 | Electrical discharge machining evaluation system and electrical discharge machining evaluation method |
Also Published As
Publication number | Publication date |
---|---|
TW202221335A (en) | 2022-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI632968B (en) | Prediction method of electrical discharge machining accuracy | |
US10413984B2 (en) | Method for predicting precision of electrical discharge machine | |
TWI628021B (en) | Method for extracting intelligent features for predicting precision of electrical discharge machine and predicting method | |
TWI778460B (en) | Online prediction method of tool-electrode consumption and prediction method of machining accuracy | |
CN106513879B (en) | A kind of spark discharge state recognition and detection method based on chaology | |
CN111331211B (en) | On-line penetration detection method and penetration detection system for EDM small hole machining | |
Jegan et al. | Determination of electro discharge machining parameters in AISI202 stainless steel using grey relational analysis | |
Weiwen et al. | Break-out detection for high-speed small hole drilling EDM based on machine learning | |
CN103962659A (en) | Method and system for electric spark machining control | |
CN102672293B (en) | Electric discharge machine | |
CN105975737B (en) | State-Inspect of High-Voltage Circuit method, the system of turning point computation model and current of electric | |
US11904399B2 (en) | Online prediction method of tool-electrode consumption and prediction method of machining accuracy | |
TWI796014B (en) | Electro-chemical machining process accuracy monitoring system and method thereof | |
CN112783138B (en) | Intelligent monitoring and abnormity diagnosis method and device for processing stability of production line equipment | |
CN118914796A (en) | TVS tube detection system and detection method | |
JP2005161446A (en) | Electric discharge machine | |
EP3539705A1 (en) | System and method for control of an edm drilling process | |
CN115754781B (en) | Battery abnormality warning method, system, device, electronic device and storage medium | |
TWI783796B (en) | Cross-process accuracy monitoring system and cross-process accuracy monitoring method | |
CN116275329A (en) | Wire-cut electric discharge machining quality on-line monitoring and evaluating system and method | |
CN115320105B (en) | Control method, system and storage medium of additive manufacturing device | |
TWI717122B (en) | Surface roughness prediction method of wire electrical discharge machining workpiece | |
JP2024016960A (en) | Cutting tool inspection device and method | |
CN110632411A (en) | On-line monitoring and energy-saving optimization method of energy efficiency in wire electric discharge machining | |
CN118938786B (en) | Industrial automation equipment control system based on intelligent network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |