TWI776611B - Polarization twisting double-pulse beam generating device - Google Patents
Polarization twisting double-pulse beam generating device Download PDFInfo
- Publication number
- TWI776611B TWI776611B TW110127481A TW110127481A TWI776611B TW I776611 B TWI776611 B TW I776611B TW 110127481 A TW110127481 A TW 110127481A TW 110127481 A TW110127481 A TW 110127481A TW I776611 B TWI776611 B TW I776611B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- beam splitter
- polarization
- pulse
- wave plate
- Prior art date
Links
Images
Landscapes
- Polarising Elements (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
Description
本發明係關於一種脈衝光產生裝置,且特別關於一種偏振扭轉雙脈衝光產生裝置。The present invention relates to a pulsed light generating device, and particularly to a polarization-twisted double pulsed light generating device.
目前任意偏振之雙脈衝產生系統並不常見,並且有諸多不便與限制,例如:無法改變操作頻率、無法大幅度調整雙脈衝的間隔與脈衝旋性(helicity)不可改變等。At present, dual-pulse generation systems with arbitrary polarization are not common, and have many inconveniences and limitations, such as the inability to change the operating frequency, the inability to greatly adjust the interval of the dual-pulse, and the invariability of the pulse helicity.
目前的產生旋光系統主要分為兩種:一為利用波片,即一種被動光學元件,例如二分之一波片或四分之一波片,使得光源的偏振態發生改變;二是利用空間光調制器(spatial light modulator, SLM)調整脈衝光之相位,使得經過調制器後光的偏振態發生改變。此二主要方法有其侷限性。若是利用波片等被動元件,則操作頻率會受限,且元件製作完成後無法再更動其操作頻率,對於不同波長的光無法適用同一套系統;而利用空間光調制器相關的方法,則受限於破壞閥值(damage threshold),因此脈衝光的能量將會受限,尤其是雷射放大器的輸出脈衝,且雙脈衝的間隔受限於調制器之空間解析度,通常脈衝間隔不容易超過10皮秒。傳統技術所採用的雙脈衝光產生方法是用邁克生干涉儀之兩臂分別產生一脈衝,其偏振為線性偏振,且雙脈衝的偏振固定為互相垂直的線偏振,即一為水平,另一為垂直,除此之外,無法產生任何其他的偏振狀態。雖然此方法的脈衝間隔相較於前述方法有較高的自由度,但偏振的侷限使得此系統只限用於線偏振之應用。The current generation of optical rotation systems are mainly divided into two types: one is to use a wave plate, that is, a passive optical element, such as a half-wave plate or a quarter-wave plate, to change the polarization state of the light source; the second is to use the space A spatial light modulator (SLM) adjusts the phase of the pulsed light, so that the polarization state of the light changes after passing through the modulator. These two main methods have their limitations. If passive components such as wave plates are used, the operating frequency will be limited, and the operating frequency cannot be changed after the component is fabricated, so the same system cannot be applied to light of different wavelengths; and the method related to the use of spatial light modulators is subject to Limited to the damage threshold, so the energy of the pulsed light will be limited, especially the output pulse of the laser amplifier, and the interval of the double pulse is limited by the spatial resolution of the modulator, usually the pulse interval is not easy to exceed 10 picoseconds. The double-pulse light generation method used in the traditional technology is to use the two arms of the Michelson interferometer to generate a pulse, and its polarization is linear polarization, and the polarization of the double pulse is fixed to be linear polarization perpendicular to each other, that is, one is horizontal, and the other is horizontal. is vertical, and other than that, no other polarization state can be produced. Although the pulse interval of this method has a higher degree of freedom than the previous method, the limitation of polarization makes this system limited to linear polarization applications.
因此,本發明係在針對上述的困擾,提出一種雙脈衝光產生裝置,以解決習知所產生的問題。Therefore, the present invention is aimed at solving the above-mentioned problems, and proposes a double-pulse light generating device to solve the conventional problems.
本發明提供一種雙脈衝光產生裝置,其係產生任意偏振與扭轉之雙脈衝光源。此架構不但擁有更高的破壞閥值與自由度,其可控性也比傳統的偏振控制系統,例如利用被動元件波片或是空間光調制器等更佳。除了扭轉頻率、旋性及脈衝間隔可任意調控外,此架構更可依據不同目的做及時的調整。也由於擁有更高的破壞閥值,因此對於具偏振選擇性的樣品,例如對於磁性或自旋相關的材料,更有機會利用激發探測光譜技術等方法做量測,例如以前脈衝做激發光,而後脈衝做探測光等。The invention provides a double-pulse light generating device, which is a double-pulse light source with arbitrary polarization and twist. This architecture not only has a higher destruction threshold and degree of freedom, but also has better controllability than traditional polarization control systems, such as passive wave plates or spatial light modulators. Besides the torsional frequency, rotation and pulse interval can be adjusted arbitrarily, this structure can be adjusted in time according to different purposes. Also because of its higher destruction threshold, for samples with polarization selectivity, such as magnetic or spin-related materials, there is more opportunity to use excitation detection spectroscopy and other methods for measurement, such as the previous pulse as excitation light, Then the pulse is used as probe light and so on.
在本發明之一實施例中,提供一種偏振扭轉雙脈衝光產生裝置,其包含一極化分光鏡、一第一四分之一波片、一第一薄膜分光鏡、一第一反射鏡、一第二四分之一波片、一第二薄膜分光鏡與一第二反射鏡。極化分光鏡位於一入射脈衝光的傳遞路徑上。極化分光鏡用以將入射脈衝光分成一第一線偏振脈衝光與一第二線偏振脈衝光,且用以反射第一線偏振脈衝光。第一四分之一波片相對極化分光鏡而配置,第一四分之一波片用以轉換第一線偏振脈衝光為一第一圓偏振脈衝光。第一薄膜分光鏡相對於第一四分之一波片而配置,第一反射鏡相對第一薄膜分光鏡而配置。第一薄膜分光鏡與第一反射鏡用以分別轉換第一圓偏振脈衝光為一第二圓偏振脈衝光與一第三圓偏振脈衝光。第一四分之一波片用以轉換第二圓偏振脈衝光與第三圓偏振脈衝光分別為依序穿透極化分光鏡的一第三線偏振脈衝光與一第四線偏振脈衝光。第二四分之一波片相對極化分光鏡而配置,第二四分之一波片用以轉換第二線偏振脈衝光為一第四圓偏振脈衝光。第二薄膜分光鏡相對於第二四分之一波片而配置,第二反射鏡相對於第二薄膜分光鏡而配置。第二薄膜分光鏡與第二反射鏡用以分別轉換第四圓偏振脈衝光為一第五圓偏振脈衝光與一第六圓偏振脈衝光,第二四分之一波片用以轉換第五圓偏振脈衝光與第六圓偏振脈衝光分別為一第五線偏振脈衝光與一第六線偏振脈衝光,且極化分光鏡用以依序反射的第五圓偏振脈衝光與第六圓偏振脈衝光。In one embodiment of the present invention, a polarization-twisted double-pulse light generating device is provided, which includes a polarization beam splitter, a first quarter-wave plate, a first thin-film beam splitter, a first reflection mirror, A second quarter wave plate, a second thin film beam splitter and a second reflector. The polarizing beam splitter is located on the transmission path of an incident pulsed light. The polarization beam splitter is used for dividing the incident pulse light into a first linearly polarized pulse light and a second linearly polarized pulse light, and for reflecting the first linearly polarized pulse light. The first quarter-wave plate is disposed opposite the polarization beam splitter, and the first quarter-wave plate is used for converting the first linearly polarized pulse light into a first circularly polarized pulse light. The first pellicle beam splitter is disposed relative to the first quarter wave plate, and the first reflecting mirror is disposed relative to the first pellicle beam splitter. The first thin-film beam splitter and the first reflecting mirror are used for converting the first circularly polarized pulse light into a second circularly polarized pulsed light and a third circularly polarized pulsed light respectively. The first quarter-wave plate is used for converting the second circularly polarized pulse light and the third circularly polarized pulsed light into a third linearly polarized pulsed light and a fourth linearly polarized pulsed light respectively passing through the polarization beam splitter in sequence. The second quarter-wave plate is disposed opposite the polarization beam splitter, and the second quarter-wave plate is used for converting the second linearly polarized pulse light into a fourth circularly polarized pulse light. The second pellicle beam splitter is arranged relative to the second quarter wave plate, and the second mirror is arranged relative to the second pellicle beam splitter. The second thin-film beam splitter and the second mirror are used to convert the fourth circularly polarized pulse light into a fifth circularly polarized pulsed light and a sixth circularly polarized pulsed light respectively, and the second quarter wave plate is used to convert the fifth circularly polarized pulsed light The circularly polarized pulse light and the sixth circularly polarized pulsed light are respectively a fifth linearly polarized pulsed light and a sixth linearly polarized pulsed light, and the polarized beam splitter is used for the fifth circularly polarized pulsed light and the sixth circularly polarized pulsed light to be reflected in sequence. Polarized pulsed light.
在本發明之一實施例中,偏振扭轉雙脈衝光產生裝置更包含一波片,其中波片配置於極化分光鏡旁,並位於入射脈衝光的傳遞路徑上。In an embodiment of the present invention, the polarization-twisted double-pulse light generating device further includes a wave plate, wherein the wave plate is disposed beside the polarization beam splitter and located on the transmission path of the incident pulse light.
在本發明之一實施例中,波片為二分之一波片。In an embodiment of the present invention, the wave plate is a half wave plate.
在本發明之一實施例中,偏振扭轉雙脈衝光產生裝置更包含一光脈衝展寬器,其中光脈衝展寬器配置於極化分光鏡前,並位於入射脈衝光的傳遞路徑上。In an embodiment of the present invention, the polarization-twisted double-pulse light generating device further includes an optical pulse stretcher, wherein the optical pulse stretcher is disposed in front of the polarization beam splitter and located on the transmission path of the incident pulse light.
在本發明之一實施例中,光脈衝展寬器為稜鏡對或光柵對。In an embodiment of the present invention, the optical pulse stretcher is a pair of crystals or a pair of gratings.
在本發明之一實施例中,第一薄膜分光鏡沿著第一圓偏振脈衝光的傳遞路徑而相對第一四分之一波片移動。In an embodiment of the present invention, the first pellicle beam splitter moves relative to the first quarter-wave plate along the transmission path of the first circularly polarized pulse light.
在本發明之一實施例中,第一反射鏡沿著第一圓偏振脈衝光的傳遞路徑而相對第一薄膜分光鏡移動。In an embodiment of the present invention, the first reflecting mirror moves relative to the first pellicle beam splitter along the transmission path of the first circularly polarized pulse light.
在本發明之一實施例中,第二薄膜分光鏡沿著第四圓偏振脈衝光的傳遞路徑而相對第二四分之一波片移動。In an embodiment of the present invention, the second pellicle beam splitter moves relative to the second quarter-wave plate along the transmission path of the fourth circularly polarized pulse light.
在本發明之一實施例中,第二反射鏡沿著第四圓偏振脈衝光的傳遞路徑而相對第二薄膜分光鏡移動。In one embodiment of the present invention, the second mirror moves relative to the second pellicle beam splitter along the transmission path of the fourth circularly polarized pulsed light.
在本發明之一實施例中,偏振扭轉雙脈衝光產生裝置更包含一第三四分之一波片,其中第三四分之一波片相對極化分光鏡而配置,並位於第三線偏振脈衝光、第四線偏振脈衝光、第五線偏振脈衝光與第六線偏振脈衝光的傳遞路徑上In an embodiment of the present invention, the polarization-twisted double-pulse light generating device further includes a third quarter-wave plate, wherein the third quarter-wave plate is disposed opposite the polarization beam splitter and is located in the third linear polarization On the transmission path of the pulsed light, the fourth linearly polarized pulsed light, the fifth linearly polarized pulsed light, and the sixth linearly polarized pulsed light
在本發明之一實施例中,入射脈衝光為雷射脈衝光束。In an embodiment of the present invention, the incident pulse light is a laser pulse beam.
基於上述,偏振扭轉雙脈衝光產生裝置利用四分之一波片,並調整薄膜分光鏡與反射鏡之相對位置,以產生任意偏振與扭轉之雙脈衝光源。此架構不但擁有更高的破壞閥值與自由度,其可控性也比傳統的偏振控制系統,例如利用被動元件波片或是空間光調制器等更佳。除了扭轉頻率、旋性及脈衝間隔可任意調控外,此架構更可依據不同目的做及時的調整。也由於擁有更高的破壞閥值,因此對於具偏振選擇性的樣品,例如對於磁性或自旋相關的材料,更有機會利用激發探測光譜技術等方法做量測,例如以前脈衝做激發光,而後脈衝做探測光等。Based on the above, the polarization-twisted double-pulse light generating device utilizes a quarter-wave plate, and adjusts the relative positions of the thin-film beam splitter and the reflector, so as to generate a double-pulse light source with arbitrary polarization and twist. This architecture not only has a higher destruction threshold and degree of freedom, but also has better controllability than traditional polarization control systems, such as passive wave plates or spatial light modulators. Besides the torsional frequency, rotation and pulse interval can be adjusted arbitrarily, this structure can be adjusted in time according to different purposes. Also because of its higher destruction threshold, for samples with polarization selectivity, such as magnetic or spin-related materials, there is more opportunity to use excitation detection spectroscopy and other methods for measurement, such as the previous pulse as excitation light, Then the pulse is used as probe light and so on.
茲為使 貴審查委員對本發明的結構特徵及所達成的功效更有進一步的瞭解與認識,謹佐以較佳的實施例圖及配合詳細的說明,說明如後:Hereby, in order to make your examiners have a further understanding and understanding of the structural features of the present invention and the effects achieved, I would like to assist with the preferred embodiment drawings and coordinate detailed descriptions, and the descriptions are as follows:
本發明之實施例將藉由下文配合相關圖式進一步加以解說。盡可能的,於圖式與說明書中,相同標號係代表相同或相似構件。於圖式中,基於簡化與方便標示,形狀與厚度可能經過誇大表示。可以理解的是,未特別顯示於圖式中或描述於說明書中之元件,為所屬技術領域中具有通常技術者所知之形態。本領域之通常技術者可依據本發明之內容而進行多種之改變與修改。Embodiments of the present invention will be further explained with the help of the related drawings below. Wherever possible, in the drawings and the description, the same reference numbers refer to the same or similar components. In the drawings, shapes and thicknesses may be exaggerated for simplicity and convenience. It should be understood that the elements not particularly shown in the drawings or described in the specification have forms known to those of ordinary skill in the art. Those skilled in the art can make various changes and modifications based on the content of the present invention.
在說明書及申請專利範圍中使用了某些詞彙來指稱特定的元件。然而,所屬技術領域中具有通常知識者應可理解,同樣的元件可能會用不同的名詞來稱呼。說明書及申請專利範圍並不以名稱的差異做為區分元件的方式,而是以元件在功能上的差異來做為區分的基準。在說明書及申請專利範圍所提及的「包含」為開放式的用語, 故應解釋成「包含但不限定於」。另外,「耦接」在此包含任何直接及間接的連接手段。因此,若文中描述第一元件耦接於第二元件,則代表第一元件可通過電性連接或無線傳輸、光學傳輸等信號連接方式而直接地連接於第二元件,或者通過其他元件或連接手段間接地電性或信號連接至該第二元件。Certain terms are used in the specification and claims to refer to particular elements. However, those of ordinary skill in the art should understand that the same elements may be referred to by different nouns. The description and the scope of the patent application do not use the difference in name as a way of distinguishing elements, but use the difference in function of the elements as a basis for distinguishing. The "comprising" mentioned in the description and the scope of the patent application is an open-ended term, so it should be interpreted as "including but not limited to". In addition, "coupled" herein includes any direct and indirect means of connection. Therefore, if it is described in the text that the first element is coupled to the second element, it means that the first element can be directly connected to the second element through electrical connection or signal connection such as wireless transmission or optical transmission, or through other elements or connections. The means are indirectly electrically or signally connected to the second element.
於下文中關於“一個實施例”或“一實施例”之描述係指關於至少一實施例內所相關連之一特定元件、結構或特徵。因此,於下文中多處所出現之“一個實施例”或 “一實施例”之多個描述並非針對同一實施例。再者,於一或多個實施例中之特定構件、結構與特徵可依照一適當方式而結合。The following description of "one embodiment" or "an embodiment" refers to a particular element, structure or feature associated with at least one embodiment. Thus, the appearances of "one embodiment" or "an embodiment" in various places below are not directed to the same embodiment. Furthermore, the specific components, structures and features in one or more embodiments may be combined in a suitable manner.
除非特別說明,一些條件句或字詞,例如「可以(can)」、「可能(could)」、「也許(might)」,或「可(may)」,通常是試圖表達本案實施例具有,但是也可以解釋成可能不需要的特徵、元件,或步驟。在其他實施例中,這些特徵、元件,或步驟可能是不需要的。Unless otherwise specified, some conditional sentences or words, such as "can", "could", "might", or "may", are usually intended to express that the embodiments of this case have, However, it can also be interpreted as features, elements, or steps that may not be required. In other embodiments, these features, elements, or steps may not be required.
第1圖為本發明之偏振扭轉雙脈衝光產生裝置之第一實施例之示意圖。請參閱第1圖,以下介紹本發明之偏振扭轉雙脈衝光產生裝置之第一實施例。偏振扭轉雙脈衝光產生裝置1包含一極化分光鏡(polarizing beam splitter)10、一第一四分之一波片11、一第一薄膜分光鏡(pellicle beam splitter)12、一第一反射鏡13、一第二四分之一波片14、一第二薄膜分光鏡15與一第二反射鏡16,其中極化分光鏡10、第一四分之一波片11、第一薄膜分光鏡12、第一反射鏡13、第二四分之一波片14、第二薄膜分光鏡15與第二反射鏡16可組成一類邁克生干涉儀(Michelson interferometer),第一四分之一波片11、第一薄膜分光鏡12與第一反射鏡13組成類邁克生干涉儀之H臂,第二四分之一波片14、第二薄膜分光鏡15與第二反射鏡16組成類邁克生干涉儀之V臂。極化分光鏡10由兩塊稜鏡所組成,並具有一第一平面101、一第二平面102、一出光面103與位於第一平面101與第二平面102之間的分光介面104。極化分光鏡10位於一入射脈衝光P的傳遞路徑上。第一四分之一波片11相對極化分光鏡10之第一平面101而配置,第一薄膜分光鏡12相對於第一四分之一波片11而配置,第一反射鏡13相對第一薄膜分光鏡12而配置。第二四分之一波片14相對極化分光鏡10之第二平面102而配置,第二薄膜分光鏡15相對於第二四分之一波片14而配置,第二反射鏡16相對於第二薄膜分光鏡15而配置。偏振扭轉雙脈衝光產生裝置1更可包含一光脈衝展寬器17,例如為稜鏡對或光柵對。光脈衝展寬器17配置於極化分光鏡10前,並位於入射脈衝光P的傳遞路徑上。在一實施例中,入射脈衝光P可來自於一脈衝光源,其可以是脈衝雷射振盪器(pulsed laser oscillator),如奈秒(nanosecond)、皮秒(picosecond)或飛秒(femtosecond)雷射振盪器,因此入射脈衝光P可以是一種雷射脈衝光束。在另一實施例中,脈衝光源也可以是線性偏振的脈衝閃光燈(pulsed flash lamp)或線性偏振的脈衝發光二極體(Pulsed Light Emitting Diode,Pulsed LED),所以入射脈衝光P也可以是醫學用的脈衝光,而不限定是雷射脈衝光束。FIG. 1 is a schematic diagram of the first embodiment of the polarization-twisted double-pulse light generating device of the present invention. Referring to FIG. 1, the following describes a first embodiment of the polarization-twisted double-pulse light generating device of the present invention. The polarization twisted double pulse
光脈衝展寬器17可展寬入射脈衝光P,即先降低入射脈衝光P的尖峰功率,並增加雙脈衝光產生裝置之可控範圍後,將入射脈衝光P傳送至極化分光鏡10。接著,極化分光鏡10將入射脈衝光P分成一穿過極化分光鏡10之第一平面101的第一線偏振脈衝光L1與一穿過極化分光鏡10之分光介面104與第二平面102的第二線偏振脈衝光L2,且極化分光鏡10之分光介面104反射第一線偏振脈衝光L1。其中,第一線偏振脈衝光L1與第二線偏振脈衝光L2之偏振方向互相垂直,例如第一線偏振脈衝光L1與第二線偏振脈衝光L2分別為S偏振脈衝光與P偏振脈衝光,或分別為P偏振脈衝光與S偏振脈衝光。The
第一四分之一波片11轉換第一線偏振脈衝光L1為一第一圓偏振脈衝光C1。第一圓偏振脈衝光C1之一部份被第一薄膜分光鏡12反射,其餘部分則穿透第一薄膜分光鏡12,並由第一反射鏡13反射。故第一薄膜分光鏡12與第一反射鏡13分別轉換第一圓偏振脈衝光C1為一第二圓偏振脈衝光C2與一第三圓偏振脈衝光C3。其中第一圓偏振脈衝光C1與第二圓偏振脈衝光C2之偏振態為相反,例如第一圓偏振脈衝光C1與第二圓偏振脈衝光C2分別為左旋光與右旋光,或分別為右旋光與左旋光。第一圓偏振脈衝光C1與第三圓偏振脈衝光C3之偏振態也為相反。第一四分之一波片11轉換第二圓偏振脈衝光C2與第三圓偏振脈衝光C3分別為依序穿透極化分光鏡10之第一平面101與分光介面104的一第三線偏振脈衝光L3與一第四線偏振脈衝光L4。最後,第三線偏振脈衝光L3與第四線偏振脈衝光L4由極化分光鏡10之出光面103射出。The first
類似地,第二四分之一波片14轉換第二線偏振脈衝光L2為一第四圓偏振脈衝光C4。第二薄膜分光鏡15與第二反射鏡16分別轉換第四圓偏振脈衝光C4為一第五圓偏振脈衝光C5與一第六圓偏振脈衝光C6。其中第四圓偏振脈衝光C4與第五圓偏振脈衝光C5之偏振態為相反,例如第四圓偏振脈衝光C4與第五圓偏振脈衝光C5分別為左旋光與右旋光,或分別為右旋光與左旋光。第四圓偏振脈衝光C4與第六圓偏振脈衝光C6之偏振態也為相反。第二四分之一波片14轉換第五圓偏振脈衝光C5與第六圓偏振脈衝光C6分別為一第五線偏振脈衝光L5與一第六線偏振脈衝光L6,且極化分光鏡10之分光介面104依序反射的第五線偏振脈衝光L5與第六線偏振脈衝光L6。最後,第五線偏振脈衝光L5與第六線偏振脈衝光L6由極化分光鏡10之出光面103射出。Similarly, the second
為了計算偏振扭轉雙脈衝光的扭轉頻率(twisting frequency),偏振扭轉雙脈衝光產生裝置1更可包含一第三四分之一波片18,其中第三四分之一波片18相對極化分光鏡10之出光面103而配置,並位於第三線偏振脈衝光L3、第四線偏振脈衝光L4、第五線偏振脈衝光L5與第六線偏振脈衝光L6的傳遞路徑上。第三四分之一波片18轉換第三線偏振脈衝光L3、第四線偏振脈衝光L4、第五線偏振脈衝光L5與第六線偏振脈衝光L6分別為第二圓偏振脈衝光C2、第三圓偏振脈衝光C3、第五圓偏振脈衝光C5與第六圓偏振脈衝光C6。由於第二圓偏振脈衝光C2與第五圓偏振脈衝光C5是被薄膜分光鏡反射,故稱第二圓偏振脈衝光C2與第五圓偏振脈衝光C5為偏振扭轉雙脈衝之前脈衝(leading pulse),第三圓偏振脈衝光C3與第六圓偏振脈衝光C6是被反射鏡反射,故稱第三圓偏振脈衝光C3與第六圓偏振脈衝光C6為偏振扭轉雙脈衝之後脈衝(lagging pulse)。假設第三四分之一波片18的角度設定為45度,表示前脈衝為右旋偏振扭轉脈衝,後脈衝為左旋偏振扭轉脈衝。為了產生任意偏振與扭轉之雙脈衝光源,第一薄膜分光鏡12可沿著第一圓偏振脈衝光C1的傳遞路徑而相對第一四分之一波片11移動,第一反射鏡13可沿著第一圓偏振脈衝光C1的傳遞路徑而相對第一薄膜分光鏡12移動,第二薄膜分光鏡15可沿著第四圓偏振脈衝光C4的傳遞路徑而相對第二四分之一波片14移動,第二反射鏡16可沿著第四圓偏振脈衝光C4的傳遞路徑而相對第二薄膜分光鏡15移動。如此,可影響第一薄膜分光鏡12與第一反射鏡13之間的距離,亦可影響第二薄膜分光鏡15與第二反射鏡16之間的距離。In order to calculate the twisting frequency of the polarization-twisted double-pulse light, the polarization-twisted double-pulse
第2圖為本發明之第二圓偏振脈衝光、第三圓偏振脈衝光、第五圓偏振脈衝光與第六圓偏振脈衝光之零相位圖。利用零相位圖可以計算雙脈衝的扭轉頻率,此扭轉頻率可以視為差頻產生(differential frequency generation, DFG)之結果,因此欲計算扭轉頻率,只要將任一時間點上V臂的瞬時頻率減去H臂的瞬時頻率即可,其中定義右旋偏振扭轉脈衝之頻率為正。如第1圖與第2圖所示,前脈衝的扭轉頻率為D1,後脈衝的扭轉頻率為-D2,其中光脈衝展寬器17可調整扭轉頻率的上、下限。顯而易見的,只要調整薄膜分光鏡與終端反射鏡的相對位置,則可達成任意頻率、任意間隔與任意旋性(helicity)的旋光雙脈衝,其中旋性即表示扭轉頻率的正負,若兩臂的功率比不相同,則可達成任意偏振之雙脈衝。實務上,若要量測某脈衝的零相位圖,可以利用交叉頻域分辨光學開關(cross frequency-resolved optical gating,XFROG)量測。雖然XFROG之量測結果會含有非零相位之結果,但仍可估算出雙脈衝之扭轉頻率。
FIG. 2 is a zero-phase diagram of the second circularly polarized pulse light, the third circularly polarized pulsed light, the fifth circularly polarized pulsed light, and the sixth circularly polarized pulsed light of the present invention. The torsional frequency of the double pulse can be calculated by using the zero-phase diagram. This torsional frequency can be regarded as the result of differential frequency generation (DFG). Therefore, to calculate the torsional frequency, it is only necessary to subtract the instantaneous frequency of the V arm at any time point from the The instantaneous frequency of the H arm can be removed, and the frequency of the right-handed polarized twist pulse is defined as positive. As shown in Figures 1 and 2, the twist frequency of the pre-pulse is D1, and the twist frequency of the post-pulse is -D2, wherein the
第3圖為本發明之偏振扭轉雙脈衝光產生裝置之第二實施例之示意圖。請參閱第3圖,以下介紹本發明之偏振扭轉雙脈衝光產生裝置之第二實施例。第二實施例與第一實施例差別在於第二實施例的偏振扭轉雙脈衝光產生裝置1更包含一波片19,例如二分之一波片,其中波片19配置於極化分光鏡10旁,並位於入射脈衝光P與一初始脈衝光P’的傳遞路徑上。產生初始脈衝光P’的方法介紹如下:首先,脈衝光源產生初始脈衝光P’,其中初始脈衝光P’是由脈衝光源所直接發出,且初始脈衝光P’可以是雷射脈衝光束或其他非雷射振盪器,例如脈衝閃光燈或脈衝發光二極體所產生的脈衝光,因此本發明不限定初始脈衝光P’為雷射脈衝光束。接著,令初始脈衝光P’依序通過光脈衝展寬器17與波片19,也就是讓波片19位於初始脈衝光P’的傳遞路徑上。光脈衝展寬器17可展寬初始脈衝光P’,接著當初始脈衝光P’通過波片19時,波片19會改變初始脈衝光P’的偏振態,以轉換初始脈衝光P’為入射脈衝光P,讓入射脈衝光P可含有S偏振光與P偏振光。此外,將波片19旋轉能改變入射脈衝光P中的S偏振光與P偏振光二者的能量比例,例如調高S偏振光的能量,降低P偏振光的能量;或是調高P偏振光的能量,降低S偏振光的能量。
FIG. 3 is a schematic diagram of a second embodiment of the polarization-twisted double-pulse light generating device of the present invention. Referring to FIG. 3, the second embodiment of the polarization-twisted double-pulse light generating device of the present invention will be described below. The difference between the second embodiment and the first embodiment is that the polarization-twisted double-pulse
根據上述實施例,偏振扭轉雙脈衝光產生裝置利用四分之一波片,並調整薄膜分光鏡與反射鏡之相對位置,以產生任意偏振與扭轉之雙脈衝光源。此架構不但擁有更高的破壞閥值與自由度,其可控性也比傳統的偏振控制系統,例如利用被動元件波片或是空間光調制器等更佳。除了扭轉頻率、旋性及脈衝間隔可任意調控外,此架構更可依據不同目的做及時的調整。也由於此雙脈衝光產生裝置中的元件擁有更高的破壞閥值,因此對於具偏振選擇性的樣品,例如對於磁性或自旋相關的材料,更有機會利用激發探測光譜技術等方法做量測,例如以前脈衝做激發光,而後脈衝做探測光等。 According to the above-mentioned embodiment, the polarization-twisted double-pulse light generating device utilizes a quarter-wave plate and adjusts the relative positions of the thin-film beam splitter and the reflecting mirror, so as to generate a double-pulse light source with arbitrary polarization and twist. This architecture not only has a higher destruction threshold and degree of freedom, but also has better controllability than traditional polarization control systems, such as passive wave plates or spatial light modulators. Besides the torsional frequency, rotation and pulse interval can be adjusted arbitrarily, this structure can be adjusted in time according to different purposes. Also, because the components in this double-pulse light generating device have a higher destruction threshold, for samples with polarization selectivity, such as magnetic or spin-related materials, there is more opportunity to use excitation detection spectroscopy and other methods for quantitative analysis. For example, the former pulse is used as the excitation light, and the latter pulse is used as the detection light, etc.
以上所述者,僅為本發明一較佳實施例而已,並非用來限定本發明實施之範圍,故舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。The above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Therefore, all changes and modifications made in accordance with the shape, structure, feature and spirit described in the scope of the patent application of the present invention are equivalent. , shall be included in the scope of the patent application of the present invention.
1:偏振扭轉雙脈衝光產生裝置 1: Polarization Twisted Double Pulse Light Generation Device
10:極化分光鏡 10: Polarization Beamsplitter
101:第一平面 101: The first plane
102:第二平面 102: Second plane
103:出光面 103: light-emitting surface
104:分光介面 104: Spectral Interface
11:第一四分之一波片 11: The first quarter wave plate
12:第一薄膜分光鏡 12: The first thin film beamsplitter
13:第一反射鏡 13: The first reflector
14:第二四分之一波片 14: Second quarter wave plate
15:第二薄膜分光鏡 15: Second Thin Film Beamsplitter
16:第二反射鏡16: Second reflector
17:光脈衝展寬器17: Optical Pulse Stretcher
18:第三四分之一波片18: Third quarter wave plate
19:波片19: wave plate
P:入射脈衝光P: Incident pulsed light
L1:第一線偏振脈衝光L1: The first linearly polarized pulsed light
L2:第二線偏振脈衝光L2: The second linearly polarized pulsed light
C1:第一圓偏振脈衝光C1: The first circularly polarized pulsed light
C2:第二圓偏振脈衝光C2: The second circularly polarized pulsed light
C3:第三圓偏振脈衝光C3: The third circularly polarized pulsed light
L3:第三線偏振脈衝光L3: The third linearly polarized pulsed light
L4:第四線偏振脈衝光L4: Fourth linearly polarized pulsed light
C4:第四圓偏振脈衝光C4: Fourth circularly polarized pulsed light
C5:第五圓偏振脈衝光C5: Fifth circularly polarized pulsed light
C6:第六圓偏振脈衝光C6: Sixth circularly polarized pulsed light
L5:第五線偏振脈衝光L5: Fifth linearly polarized pulsed light
L6:第六線偏振脈衝光L6: Sixth linearly polarized pulsed light
D1、D2:扭轉頻率D1, D2: torsion frequency
P’:初始脈衝光P': initial pulsed light
第1圖為本發明之偏振扭轉雙脈衝光產生裝置之第一實施例之示意圖。 第2圖為本發明之第二圓偏振脈衝光、第三圓偏振脈衝光、第五圓偏振脈衝光與第六圓偏振脈衝光之零相位圖。 第3圖為本發明之偏振扭轉雙脈衝光產生裝置之第二實施例之示意圖。 FIG. 1 is a schematic diagram of the first embodiment of the polarization-twisted double-pulse light generating device of the present invention. FIG. 2 is a zero-phase diagram of the second circularly polarized pulse light, the third circularly polarized pulsed light, the fifth circularly polarized pulsed light, and the sixth circularly polarized pulsed light of the present invention. FIG. 3 is a schematic diagram of a second embodiment of the polarization-twisted double-pulse light generating device of the present invention.
1:偏振扭轉雙脈衝光產生裝置 1: Polarization Twisted Double Pulse Light Generation Device
10:極化分光鏡 10: Polarization Beamsplitter
101:第一平面 101: The first plane
102:第二平面 102: Second plane
103:出光面 103: light-emitting surface
104:分光介面 104: Spectral Interface
11:第一四分之一波片 11: The first quarter wave plate
12:第一薄膜分光鏡 12: The first thin film beamsplitter
13:第一反射鏡 13: The first reflector
14:第二四分之一波片 14: Second quarter wave plate
15:第二薄膜分光鏡 15: Second Thin Film Beamsplitter
16:第二反射鏡 16: Second reflector
17:光脈衝展寬器 17: Optical Pulse Stretcher
18:第三四分之一波片 18: Third quarter wave plate
P:入射脈衝光 P: Incident pulsed light
L1:第一線偏振脈衝光 L1: The first linearly polarized pulsed light
L2:第二線偏振脈衝光 L2: The second linearly polarized pulsed light
C1:第一圓偏振脈衝光 C1: The first circularly polarized pulsed light
C2:第二圓偏振脈衝光 C2: The second circularly polarized pulsed light
C3:第三圓偏振脈衝光 C3: The third circularly polarized pulsed light
L3:第三線偏振脈衝光 L3: The third linearly polarized pulsed light
L4:第四線偏振脈衝光 L4: Fourth linearly polarized pulsed light
C4:第四圓偏振脈衝光 C4: Fourth circularly polarized pulsed light
C5:第五圓偏振脈衝光 C5: Fifth circularly polarized pulsed light
C6:第六圓偏振脈衝光 C6: Sixth circularly polarized pulsed light
L5:第五線偏振脈衝光 L5: Fifth linearly polarized pulsed light
L6:第六線偏振脈衝光 L6: Sixth linearly polarized pulsed light
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110127481A TWI776611B (en) | 2021-07-27 | 2021-07-27 | Polarization twisting double-pulse beam generating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110127481A TWI776611B (en) | 2021-07-27 | 2021-07-27 | Polarization twisting double-pulse beam generating device |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI776611B true TWI776611B (en) | 2022-09-01 |
TW202306263A TW202306263A (en) | 2023-02-01 |
Family
ID=84957969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110127481A TWI776611B (en) | 2021-07-27 | 2021-07-27 | Polarization twisting double-pulse beam generating device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI776611B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080225231A1 (en) * | 2004-01-22 | 2008-09-18 | Francois Lacombe | Device and Method for Measuring the Contrast of the Fringes in a Michelson Interferometer and System for Examination of the Eye Comprising Such a Device |
US20110134523A1 (en) * | 2009-12-04 | 2011-06-09 | Industrial Technology Research Institute | Dual pulsed light generation apparatus and method for dual pulsed lights generation thereof |
US20130235383A1 (en) * | 2010-09-17 | 2013-09-12 | Lltech Management | Full-field optical coherence tomography system for imaging an object |
CN105092541A (en) * | 2015-08-28 | 2015-11-25 | 中国科学技术大学 | Device for measuring inhomogeneous broadening at highest energy level during cascade radiation |
TW202026592A (en) * | 2018-08-07 | 2020-07-16 | 美商金柏電子印第安納公司 | Interferometric waviness detection systems |
-
2021
- 2021-07-27 TW TW110127481A patent/TWI776611B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080225231A1 (en) * | 2004-01-22 | 2008-09-18 | Francois Lacombe | Device and Method for Measuring the Contrast of the Fringes in a Michelson Interferometer and System for Examination of the Eye Comprising Such a Device |
US20110134523A1 (en) * | 2009-12-04 | 2011-06-09 | Industrial Technology Research Institute | Dual pulsed light generation apparatus and method for dual pulsed lights generation thereof |
US20130235383A1 (en) * | 2010-09-17 | 2013-09-12 | Lltech Management | Full-field optical coherence tomography system for imaging an object |
CN105092541A (en) * | 2015-08-28 | 2015-11-25 | 中国科学技术大学 | Device for measuring inhomogeneous broadening at highest energy level during cascade radiation |
TW202026592A (en) * | 2018-08-07 | 2020-07-16 | 美商金柏電子印第安納公司 | Interferometric waviness detection systems |
Also Published As
Publication number | Publication date |
---|---|
TW202306263A (en) | 2023-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10983048B2 (en) | Terahertz full-polarization-state detection spectrograph | |
CN105784634A (en) | Terahertz time domain spectrograph capable of measuring transmission and reflection simultaneously under vertical incidence | |
JP2009300108A (en) | Terahertz spectroscopic device | |
CN105790044B (en) | Two-color fields chevilled silk induction THz electric field based on pulse polarization shaping enhances system | |
CN106441583B (en) | Spectrum phase interference device and the spectral interference measuring system for rebuilding ultrafast light field | |
CN104181146A (en) | Multipulse laser-induced breakdown spectrum on-line detection system | |
CN107884079B (en) | Single-shot ultrashort laser pulse width measuring device and measuring method | |
CN100595536C (en) | Ultrashort optical pulse measurement device based on SPIDER technology | |
CN105182674B (en) | The special LASER Light Source of laser projection | |
CN110007459A (en) | A kind of laser Sodium guide star full transmitting link compensation system | |
CN113178774A (en) | Method for locking Fabry-Perot cavity from semiconductor laser frequency to high-fineness | |
CN109060150B (en) | Ultra-short pulse time width measuring device and method based on spectral interference | |
CN108536001B (en) | A device and method for detecting POP rubidium atomic clock with balanced beat | |
TWI644491B (en) | Fiber laser system and method for generating pulse laser light | |
TWI776611B (en) | Polarization twisting double-pulse beam generating device | |
CN104236726B (en) | Spectrum phase interference device and ultrashort light pulse electric field direct reconstruction system | |
CN108759770B (en) | Space angle measuring system and method for enlarging received signal light beam range | |
CN109709685A (en) | A device for converting unpolarized laser to linearly polarized laser | |
JPH11337589A (en) | Probe for electro-optics sampling oscilloscope | |
CN206514951U (en) | The polarization spectrum characteristic measuring device of Terahertz material | |
CN113466883A (en) | Device and method for improving detection distance in sea fog environment based on wide-spectrum circular polarization | |
CN116298373B (en) | Device and method for measuring angular velocity of object based on rotary Doppler effect | |
CN205484006U (en) | Multi -functional optical pumping detection instrument | |
CN2551982Y (en) | Flying laser pulse autocorelation measurer | |
CN206959990U (en) | A kind of self-reference Terahertz electro-optic sampling spectrointerferometer and measuring system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |