[go: up one dir, main page]

TWI767267B - Memory controller - Google Patents

Memory controller Download PDF

Info

Publication number
TWI767267B
TWI767267B TW109122557A TW109122557A TWI767267B TW I767267 B TWI767267 B TW I767267B TW 109122557 A TW109122557 A TW 109122557A TW 109122557 A TW109122557 A TW 109122557A TW I767267 B TWI767267 B TW I767267B
Authority
TW
Taiwan
Prior art keywords
signal
delay
control signal
controller
write
Prior art date
Application number
TW109122557A
Other languages
Chinese (zh)
Other versions
TW202203013A (en
Inventor
森郁
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW109122557A priority Critical patent/TWI767267B/en
Publication of TW202203013A publication Critical patent/TW202203013A/en
Application granted granted Critical
Publication of TWI767267B publication Critical patent/TWI767267B/en

Links

Images

Landscapes

  • Dram (AREA)
  • Valve Device For Special Equipments (AREA)
  • Control Of Stepping Motors (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

A memory controller is provided. The memory controller is suitable for a pseudo static random access memory. The memory controller includes a mode register, a mode register write controller and a latency controller. The mode register is configured to generate a latency control signal according to a write instruction signal. The mode register write controller is configured to generate the write instruction signal during a mode register write operation and generate a write mask signal according to a chip selection signal. The latency controller generates a latency type control signal according to the latency control signal and the write mask signal.

Description

記憶體控制器memory controller

本發明是有關於一種記憶體技術,且特別是有關於一種記憶體控制器。The present invention relates to a memory technology, and more particularly, to a memory controller.

偽靜態隨機存取記憶體(Pseudo Static Random Access Memory,以下簡稱pSRAM)是以DRAM作為記憶體晶胞陣列來儲存資料,並且重新設計DRAM的存取介面,使其相容於SRAM的存取介面,且存取時序的特性也與SRAM類似。Pseudo Static Random Access Memory (Pseudo Static Random Access Memory, hereinafter referred to as pSRAM) uses DRAM as a memory cell array to store data, and redesigns the access interface of DRAM to make it compatible with the access interface of SRAM , and the characteristics of access timing are similar to SRAM.

在習知的記憶體技術中,通常會利用記憶體控制器來判斷pSRAM是否發生自刷新碰撞(self refresh collision),並利用記憶體控制器來控制模式暫存器所產生的延遲控制信號LTCX2_t以及延遲控制器所產生的延遲型態控制信號LTNCY2_t的狀態,以設定pSRAM的存取延遲(latency)的延遲型態。In the conventional memory technology, the memory controller is usually used to determine whether a self refresh collision occurs in the pSRAM, and the memory controller is used to control the delay control signals LTCX2_t generated by the mode register and The state of the delay type control signal LTNCY2_t generated by the delay controller is used to set the delay type of the access delay (latency) of the pSRAM.

圖1A以及圖1B繪示習知的偽靜態隨機存取記憶體的信號時序圖。請參照圖1A以及圖1B,其為pSRAM執行於模式暫存器寫入(Mode Register Write,MRW)動作且操作於寫入模式下,當記憶體控制器判斷出自刷新碰撞並未發生,並將pSRAM的存取延遲調整為不同的延遲型態時,pSRAM所分別對應的信號時序圖。1A and FIG. 1B are signal timing diagrams of a conventional pseudo-static random access memory. Please refer to FIG. 1A and FIG. 1B , the pSRAM performs a Mode Register Write (MRW) operation and operates in the write mode. When the memory controller determines that the self-refresh collision has not occurred, and When the access delay of the pSRAM is adjusted to different delay types, the signal timing diagrams corresponding to the pSRAM respectively.

在圖1A的情境中,當所述記憶體控制器欲將pSRAM的存取延遲從2倍的延遲時間調整為1倍的延遲時間(亦即,將延遲型態從固定延遲型態轉換至可變延遲型態)時,pSRAM的反相晶片選擇信號(Chip Select Signal)CS#被設定為低電壓準位,並且此時的延遲控制信號LTCX2_t以及延遲型態控制信號LTNCY2_t會先被設定為高電壓準位。In the scenario of FIG. 1A, when the memory controller wants to adjust the access delay of the pSRAM from 2 times the delay time to 1 times the delay time (ie, switching the delay type from the fixed delay type to the variable delay type When changing the delay type), the inverting chip select signal (Chip Select Signal) CS# of the pSRAM is set to a low voltage level, and the delay control signal LTCX2_t and the delay type control signal LTNCY2_t at this time will be set to high first voltage level.

然而,在習知技術中,由於反相晶片選擇信號CS#從低電壓準位轉換至高電壓準位的時間區間(亦即,tCSH與tCSHI)的反應時間過短,使得延遲控制信號LTCX2_t以及延遲型態控制信號LTNCY2_t無法在所述時間區間中立即地轉換至低電壓準位。However, in the prior art, because the response time of the time interval (ie, tCSH and tCSHI) in which the inverting chip selection signal CS# transitions from the low voltage level to the high voltage level is too short, the delay control signal LTCX2_t and the delay The type control signal LTNCY2_t cannot immediately transition to the low voltage level in the time interval.

在此情況下,可能會導致讀寫資料擷取(Read/Write Data Strobe)腳位(以下簡稱RWDS腳位)所輸出的讀寫資料擷取信號RWDS會在記憶體晶胞陣列進行寫入操作時,發生誤動作的情況。In this case, the read/write data capture signal RWDS output by the Read/Write Data Strobe pin (hereinafter referred to as the RWDS pin) may be written in the memory cell array. , a malfunction occurs.

相對的,在圖1B的情境中,當所述記憶體控制器欲將pSRAM的存取延遲從1倍的延遲時間調整為2倍的延遲時間(亦即,將延遲型態從可變延遲型態轉換至固定延遲型態)時,pSRAM的反相晶片選擇信號(Chip Select Signal)CS#被設定為低電壓準位,並且此時的延遲控制信號LTCX2_t以及延遲型態控制信號LTNCY2_t會先被設定為低電壓準位。In contrast, in the situation of FIG. 1B , when the memory controller wants to adjust the access delay of the pSRAM from 1 times the delay time to 2 times the delay time (that is, changing the delay type from the variable delay type When the state is converted to the fixed delay type), the inverting chip select signal CS# of the pSRAM is set to a low voltage level, and the delay control signal LTCX2_t and the delay type control signal LTNCY2_t at this time will be first Set to low voltage level.

然而,由於反相晶片選擇信號CS#從低電壓準位轉換至高電壓準位的時間區間(亦即,tCSH與tCSHI)的反應時間過短,使得延遲控制信號LTCX2_t以及延遲型態控制信號LTNCY2_t無法在所述時間區間中立即地轉換至高電壓準位。However, the delay control signal LTCX2_t and the delay type control signal LTNCY2_t cannot be used because the response time of the time interval (ie, tCSH and tCSHI) during which the inverting chip select signal CS# transitions from the low voltage level to the high voltage level is too short. Immediately transition to the high voltage level during the time interval.

在此情況下,同樣可能會導致RWDS腳位所輸出的讀寫資料擷取信號RWDS會在記憶體晶胞陣列進行寫入操作時,發生誤動作的情況。In this case, the read/write data capture signal RWDS output by the RWDS pin may also malfunction when the memory cell array performs the write operation.

換言之,在上述圖1A以及圖1B的情況下,RWDS腳位所輸出的讀寫資料擷取信號RWDS會受到所述時間區間(亦即,tCSH與tCSHI)過短的影響,使得讀寫資料擷取信號RWDS會在記憶體晶胞陣列進行寫入操作時發生誤動作,進而造成pSRAM無法在正確的時序控制下寫入有效的資料,並導致整體的記憶體系統無法正常地運作。In other words, in the case of FIG. 1A and FIG. 1B , the read/write data capture signal RWDS output by the RWDS pin will be affected by the short time interval (ie, tCSH and tCSHI), so that the read/write data capture signal RWDS is too short. The fetching of the signal RWDS will cause a malfunction during the writing operation of the memory cell array, which will cause the pSRAM to fail to write valid data under correct timing control, and cause the overall memory system to fail to operate normally.

本發明提供一種記憶體控制器,能夠有效地降低記憶體控制器在設定pSRAM的存取延遲的延遲型態時發生誤動作的情況,藉以提升記憶體系統的操作品質。The present invention provides a memory controller, which can effectively reduce the malfunction of the memory controller when setting the delay pattern of the access delay of the pSRAM, so as to improve the operation quality of the memory system.

本發明的記憶體控制器適用於偽靜態隨機存取記憶體。記憶體控制器包括模式暫存器、模式暫存器寫入控制器以及延遲控制器。模式暫存器用以依據寫入指示信號以產生延遲控制信號。模式暫存器寫入控制器用以在模式暫存器寫入動作中產生寫入指示信號,並依據晶片選擇信號以產生寫入遮蔽信號。延遲控制器耦接至模式暫存器以及模式暫存器寫入控制器,並依據延遲控制信號以及寫入遮蔽信號以產生延遲型態控制信號。The memory controller of the present invention is suitable for pseudo-static random access memory. The memory controller includes a mode register, a mode register write controller, and a delay controller. The mode register is used for generating the delay control signal according to the write instruction signal. The mode register write controller is used for generating a write instruction signal during the mode register write operation, and generates a write mask signal according to the chip selection signal. The delay controller is coupled to the mode register and the mode register write controller, and generates a delay type control signal according to the delay control signal and the write mask signal.

基於上述,本發明諸實施例所述記憶體控制器可以在記憶體晶胞陣列進行寫入操作,並且在反相晶片選擇信號為禁能狀態時,使延遲控制器可以依據具有高電壓準位的寫入遮蔽信號而控制延遲型態控制信號維持於致能狀態,以使得RWDS腳位所輸出的讀寫資料擷取信號可在記憶體晶胞陣列進行寫入操作時不會發生誤動作,進而有效地提升記憶體系統的操作品質。Based on the above, the memory controller according to the embodiments of the present invention can perform a write operation on the memory cell array, and when the inverting chip select signal is in a disabled state, the delay controller can be based on a high voltage level The write mask signal of the control delay type control signal is maintained in the enabled state, so that the read and write data capture signal output by the RWDS pin can not malfunction during the write operation of the memory cell array, and then Effectively improve the operating quality of the memory system.

圖2是依照本發明的一實施例說明偽靜態隨機存取記憶體的概要示意圖。請參照圖2,pSRAM 200包括記憶體控制器300、輸入輸出介面、X解碼器電路、Y解碼器電路、記憶體晶胞陣列、資料閂鎖器電路及資料傳輸路徑。其中,本實施例的pSRAM 200可例如是以擴展序列週邊介面(Expanded Serial Peripheral Interface,以下簡稱xSPI)或HyperBus™介面作為其存取介面的xSPI pSRAM或HyperRAM pSRAM,但本發明並不加以限制。FIG. 2 is a schematic diagram illustrating a pseudo-static random access memory according to an embodiment of the present invention. 2, the pSRAM 200 includes a memory controller 300, an input/output interface, an X decoder circuit, a Y decoder circuit, a memory cell array, a data latch circuit, and a data transmission path. The pSRAM 200 of this embodiment may be, for example, an xSPI pSRAM or a HyperRAM pSRAM with an Expanded Serial Peripheral Interface (Expanded Serial Peripheral Interface, hereinafter referred to as xSPI) or a HyperBus™ interface as its access interface, but the invention is not limited thereto.

在本實施例中,pSRAM 200的輸入輸出介面可依據反相晶片選擇信號CS#而提供晶片選擇信號CS_t至記憶體控制器300。其中,當晶片選擇信號CS_t為致能(例如為高電壓準位)時,pSRAM 200可以執行資料存取動作。而當晶片選擇信號CS_t為禁能(例如為低電壓準位)時,pSRAM 200則無法執行資料存取動作。其中,在本實施例中,晶片選擇信號CS_t與反相晶片選擇信號CS#的狀態可為互補。In this embodiment, the I/O interface of the pSRAM 200 can provide the chip select signal CS_t to the memory controller 300 according to the inverted chip select signal CS#. Wherein, when the chip selection signal CS_t is enabled (eg, at a high voltage level), the pSRAM 200 can perform a data access operation. When the chip selection signal CS_t is disabled (eg, at a low voltage level), the pSRAM 200 cannot perform data access operations. Wherein, in this embodiment, the states of the chip selection signal CS_t and the inverted chip selection signal CS# may be complementary.

需注意到的是,圖2所示的記憶體控制器300、輸入輸出介面、X解碼器電路、Y解碼器電路、記憶體晶胞陣列、資料閂鎖器電路及資料傳輸路徑的詳細功能及實施方式,可以由所屬技術領域的通常知識獲致足夠的教示、建議與實施說明。It should be noted that the detailed functions of the memory controller 300, the I/O interface, the X decoder circuit, the Y decoder circuit, the memory cell array, the data latch circuit and the data transmission path shown in FIG. In the implementation, sufficient teachings, suggestions and implementation descriptions can be obtained from ordinary knowledge in the technical field.

圖3是依照本發明的一實施例說明圖2所示的記憶體控制器的電路示意圖。請參照圖3,記憶體控制器300可適用於圖2所示的pSRAM 200的記憶體控制器。在本實施例中,記憶體控制器300包括模式暫存器310、模式暫存器寫入控制器320、延遲控制器330以及自刷新控制器340。FIG. 3 is a schematic circuit diagram illustrating the memory controller shown in FIG. 2 according to an embodiment of the present invention. Referring to FIG. 3 , the memory controller 300 can be applied to the memory controller of the pSRAM 200 shown in FIG. 2 . In this embodiment, the memory controller 300 includes a mode register 310 , a mode register write controller 320 , a delay controller 330 and a self-refresh controller 340 .

在本實施例中,模式暫存器310接收寫入指示信號MRW_t以及模式暫存器寫入資料DATA,並依據寫入指示信號MRW_t以及模式暫存器寫入資料DATA以產生延遲控制信號LTCX2_t。其中,當延遲控制信號LTCX2_t為致能(例如為高電壓準位)狀態時,延遲控制信號LTCX2_t可指示延遲控制器330產生用以控制pSRAM 200的存取延遲為第一型態的延遲型態控制信號LTNCY2_t。相對的,當延遲控制信號LTCX2_t為禁能(例如為低電壓準位)狀態時,延遲控制信號LTCX2_t可指示延遲控制器330產生用以控制pSRAM 200的存取延遲為第二型態的延遲型態控制信號LTNCY2_t。In this embodiment, the mode register 310 receives the write instruction signal MRW_t and the mode register write data DATA, and generates the delay control signal LTCX2_t according to the write instruction signal MRW_t and the mode register write data DATA. Wherein, when the delay control signal LTCX2_t is in an enabled state (eg, a high voltage level), the delay control signal LTCX2_t can instruct the delay controller 330 to generate a delay type for controlling the access delay of the pSRAM 200 to be the first type Control signal LTNCY2_t. On the other hand, when the delay control signal LTCX2_t is in a disabled state (eg, a low voltage level), the delay control signal LTCX2_t can instruct the delay controller 330 to generate a delay type for controlling the access delay of the pSRAM 200 to be the second type state control signal LTNCY2_t.

自刷新控制器340接收自刷新請求RE以及晶片選擇信號CS_t,並依據自刷新請求RE以及晶片選擇信號CS_t以產生自刷新等待信號WAITSR_t。The self-refresh controller 340 receives the self-refresh request RE and the chip selection signal CS_t, and generates the self-refresh wait signal WAITSR_t according to the self-refresh request RE and the chip selection signal CS_t.

在本實施例中,模式暫存器寫入控制器320包括第一級電路321以及第二級電路322。模式暫存器寫入控制器320可通過第一級電路321來接收命令COM,並且依據命令COM來在模式暫存器寫入(MRW)動作中產生寫入指示信號MRW_t。藉此,模式暫存器寫入控制器320可通過寫入指示信號MRW_t來判斷出pSRAM 200是否執行MRW動作。In this embodiment, the mode register write controller 320 includes a first-stage circuit 321 and a second-stage circuit 322 . The mode register write controller 320 can receive the command COM through the first stage circuit 321, and according to the command COM, generate the write instruction signal MRW_t in the mode register write (MRW) operation. In this way, the mode register write controller 320 can determine whether the pSRAM 200 performs the MRW operation through the write instruction signal MRW_t.

另一方面,第二級電路322耦接至第一級電路321。第二級電路322可依據寫入指示信號MRW_t、晶片選擇信號CS_t以及初始化控制信號CHRDY_t以產生寫入遮蔽信號WAITMRW_t。On the other hand, the second stage circuit 322 is coupled to the first stage circuit 321 . The second stage circuit 322 can generate the write mask signal WAITMRW_t according to the write instruction signal MRW_t, the chip selection signal CS_t and the initialization control signal CHRDY_t.

具體而言,第二級電路322包括閂鎖器323、脈寬調整電路325、邏輯閘AND以及反相器INV7。其中,本實施例的邏輯閘AND可例如是及閘(AND Gate),但本發明並不限於此。Specifically, the second-stage circuit 322 includes a latch 323, a pulse width adjustment circuit 325, a logic gate AND, and an inverter INV7. Wherein, the logic gate AND of this embodiment may be, for example, an AND gate (AND Gate), but the present invention is not limited thereto.

在本實施例中,脈寬調整電路325可接收晶片選擇信號CS_t,並針對晶片選擇信號CS_t的脈寬進行調整,以產生為互補的控制信號CSD_t以及反相控制信號CSD_c。此外,閂鎖器323耦接至脈寬調整電路325以及第一級電路321。閂鎖器323可依據控制信號CSD_t、反相控制信號CSD_c以及寫入指示信號MRW_t以產生輸出信號n01。In this embodiment, the pulse width adjustment circuit 325 can receive the chip selection signal CS_t, and adjust the pulse width of the chip selection signal CS_t to generate the complementary control signal CSD_t and the inverted control signal CSD_c. In addition, the latch 323 is coupled to the pulse width adjustment circuit 325 and the first stage circuit 321 . The latch 323 can generate the output signal n01 according to the control signal CSD_t, the inverted control signal CSD_c and the write instruction signal MRW_t.

另一方面,邏輯閘AND的第一輸入端耦接至脈寬調整電路325,以接收控制信號CSD_t,邏輯閘AND的第二輸入端耦接至閂鎖器323,以接收輸出信號n01。並且,邏輯閘AND可對控制信號CSD_t以及輸出信號n01進行及運算,以於邏輯閘AND的輸出端產生寫入遮蔽信號WAITMRW_t。此外,反相器INV7的輸入端接收初始化控制信號CHRDY_t,反相器INV7的輸出端耦接至閂鎖器323。On the other hand, the first input terminal of the logic gate AND is coupled to the pulse width adjustment circuit 325 to receive the control signal CSD_t, and the second input terminal of the logic gate AND is coupled to the latch 323 to receive the output signal n01. In addition, the logic gate AND can perform AND operation on the control signal CSD_t and the output signal n01 to generate the write mask signal WAITMRW_t at the output end of the logic gate AND. In addition, the input terminal of the inverter INV7 receives the initialization control signal CHRDY_t, and the output terminal of the inverter INV7 is coupled to the latch 323 .

關於脈寬調整電路325的細部電路架構,脈寬調整電路325包括反相器INV1、INV4、多個相互串接的反相器(例如,INV2與INV3)以及反及閘(NAND Gate)NAND。詳細來說,反相器INV1的輸入端接收晶片選擇信號CS_t。所述多個相互串接的反相器的輸入端耦接至反相器INV1的輸出端。反及閘NAND的第一輸入端耦接至反相器INV1的輸出端,反及閘NAND的第二輸入端耦接至所述多個相互串接的反相器的輸出端。並且,反及閘NAND可對反相器INV1所產生的信號以及所述多個相互串接的反相器所產生的信號進行反與及運算,以於反及閘NAND的輸出端產生控制信號CSD_t。Regarding the detailed circuit structure of the pulse width adjustment circuit 325 , the pulse width adjustment circuit 325 includes inverters INV1 , INV4 , a plurality of inverters connected in series (eg, INV2 and INV3 ), and a NAND gate (NAND gate) NAND. In detail, the input terminal of the inverter INV1 receives the chip selection signal CS_t. The input terminals of the plurality of inverters connected in series are coupled to the output terminal of the inverter INV1. The first input terminal of the inversion gate NAND is coupled to the output terminal of the inverter INV1, and the second input terminal of the inversion gate NAND is coupled to the output terminals of the plurality of inverters connected in series. In addition, the inversion gate NAND can perform inversion and operation on the signal generated by the inverter INV1 and the signals generated by the plurality of inverters connected in series, so as to generate a control signal at the output end of the inversion gate NAND CSD_t.

此外,反相器INV4的輸入端耦接至反及閘NAND的輸出端,以接收控制信號CSD_t。並且,反相器INV4可對控制信號CSD_t進行反相運算,以於反相器INV4的輸出端產生反相控制信號CSD_c。In addition, the input terminal of the inverter INV4 is coupled to the output terminal of the inversion gate NAND to receive the control signal CSD_t. In addition, the inverter INV4 can perform an inversion operation on the control signal CSD_t, so as to generate an inversion control signal CSD_c at the output end of the inverter INV4.

關於閂鎖器323的細部電路架構,閂鎖器323包括三態反相器324、反相器INV5以及反或閘(NOR Gate)NOR。其中,本實施例的三態反相器324可以由反相器INV6、P型電晶體M1以及N型電晶體M2所構成。Regarding the detailed circuit structure of the latch 323 , the latch 323 includes a tri-state inverter 324 , an inverter INV5 and a NOR gate NOR. Wherein, the tri-state inverter 324 in this embodiment may be composed of an inverter INV6, a P-type transistor M1 and an N-type transistor M2.

詳細來說,在三態反相器324中,反相器INV6的輸入端可接收寫入指示信號MRW_t。P型電晶體M1可受控於控制信號CSD_t,且N型電晶體M2可受控於反相控制信號CSD_c。並且,閂鎖器323可依據控制信號CSD_t以及反相控制信號CSD_c的狀態而致能三態反相器324,以使P型電晶體M1以及N型電晶體M2可分別依據控制信號CSD_t以及反相控制信號CSD_c而被導通,進而使反相器INV6可於輸出端產生反相的寫入指示信號MRW_t。In detail, in the tri-state inverter 324, the input terminal of the inverter INV6 can receive the write indication signal MRW_t. The P-type transistor M1 can be controlled by the control signal CSD_t, and the N-type transistor M2 can be controlled by the inverted control signal CSD_c. In addition, the latch 323 can enable the tri-state inverter 324 according to the state of the control signal CSD_t and the inversion control signal CSD_c, so that the P-type transistor M1 and the N-type transistor M2 can be respectively in accordance with the control signal CSD_t and inversion The phase control signal CSD_c is turned on, so that the inverter INV6 can generate an inverted write instruction signal MRW_t at the output end.

此外,反或閘NOR的第一輸入端耦接至反相器INV7的輸出端,反或閘NOR的第二輸入端耦接至反相器INV6的輸出端。並且,反或閘NOR可對反相器INV7所產生的信號以及反相的寫入指示信號MRW_t進行反與或運算,以於反或閘NOR的輸出端產生輸出信號n01。另外,反相器INV5耦接於反或閘NOR的輸出端以及反或閘NOR的第二輸入端之間。因此,閂鎖器323可以通過反相器INV5而將輸出信號n01回授至反或閘NOR的第二輸入端。In addition, the first input terminal of the inverting-OR gate NOR is coupled to the output terminal of the inverter INV7, and the second input terminal of the inverting-OR gate NOR is coupled to the output terminal of the inverter INV6. In addition, the inversion-OR gate NOR can perform an inverse-OR operation on the signal generated by the inverter INV7 and the inverted write-instructing signal MRW_t, so as to generate an output signal n01 at the output end of the inversion-OR gate NOR. In addition, the inverter INV5 is coupled between the output terminal of the inverting-OR gate NOR and the second input terminal of the inverting-ORing gate NOR. Therefore, the latch 323 can feed back the output signal n01 to the second input terminal of the inverting OR gate NOR through the inverter INV5.

需注意到的是,本實施例的閂鎖器323、三態反相器324以及脈寬調整電路325可以由本領域技術人員所熟知的閂鎖器、三態反相器(tri-state inverter)以及脈寬調整電路來實施,本發明並不侷限於上述所提出的電路架構。It should be noted that the latch 323 , the tri-state inverter 324 and the pulse width adjustment circuit 325 in this embodiment can be a latch and a tri-state inverter known to those skilled in the art. And the pulse width adjustment circuit is implemented, the present invention is not limited to the above proposed circuit structure.

另一方面,延遲控制器330耦接至模式暫存器310、模式暫存器寫入控制器320以及自刷新控制器340。在本實施例中,延遲控制器330可以依據自刷新等待信號WAITSR_t、延遲控制信號LTCX2_t以及寫入遮蔽信號WAITMRW_t以產生延遲型態控制信號LTNCY2_t。On the other hand, the delay controller 330 is coupled to the mode register 310 , the mode register write controller 320 and the self-refresh controller 340 . In this embodiment, the delay controller 330 can generate the delay type control signal LTNCY2_t according to the self-refresh wait signal WAITSR_t, the delay control signal LTCX2_t and the write mask signal WAITMRW_t.

值得一提的是,本實施例的延遲控制器330可以通過延遲型態控制信號LTNCY2_t來控制pSRAM 200的存取延遲為第一型態或第二型態。舉例而言,當延遲型態控制信號LTNCY2_t為致能狀態(例如為高電壓準位)時,所述存取延遲的延遲型態可被定義為固定延遲型態(對應於第一型態)。而當延遲型態控制信號LTNCY2_t為禁能狀態(例如為低電壓準位)時,所述存取延遲的延遲型態可被定義為可變延遲型態(對應於第二型態)。It is worth mentioning that the delay controller 330 of this embodiment can control the access delay of the pSRAM 200 to be the first type or the second type through the delay type control signal LTNCY2_t. For example, when the delay type control signal LTNCY2_t is in an enabled state (eg, a high voltage level), the delay type of the access delay can be defined as a fixed delay type (corresponding to the first type) . When the delay type control signal LTNCY2_t is in a disabled state (eg, a low voltage level), the delay type of the access delay can be defined as a variable delay type (corresponding to the second type).

進一步來說,在本實施例中,所述第一型態可對應於第一延遲時間,而所述第二型態可對應於第二延遲時間,並且所述第一延遲時間為所述第二延遲時間的整數倍(例如為2倍,但本發明並不限於此)。Further, in this embodiment, the first type may correspond to a first delay time, and the second type may correspond to a second delay time, and the first delay time is the first delay time 2 is an integer multiple of the delay time (for example, 2 times, but the present invention is not limited to this).

關於延遲控制器330的細部電路架構,延遲控制器330包括邏輯閘OR1以及邏輯閘OR2,其中這些邏輯閘OR1、OR2可例如為或閘(OR Gate),但本發明並不限於此。具體而言,邏輯閘OR1的第一輸入端耦接至模式暫存器310,以接收延遲控制信號LTCX2_t,邏輯閘OR1的第二輸入端耦接至模式暫存器寫入控制器320,以接收寫入遮蔽信號WAITMRW_t。Regarding the detailed circuit structure of the delay controller 330 , the delay controller 330 includes a logic gate OR1 and a logic gate OR2 , wherein the logic gates OR1 and OR2 can be, for example, OR gates, but the invention is not limited thereto. Specifically, the first input terminal of the logic gate OR1 is coupled to the mode register 310 to receive the delay control signal LTCX2_t, and the second input terminal of the logic gate OR1 is coupled to the mode register write controller 320 to receive the delay control signal LTCX2_t. The write mask signal WAITMRW_t is received.

此外,邏輯閘OR2的第一輸入端耦接至自刷新控制器340,以接收自刷新等待信號WAITSR_t,邏輯閘OR2的第二輸入端耦接至邏輯閘OR1的輸出端。並且,邏輯閘OR2可對自刷新等待信號WAITSR_t以及邏輯閘OR1所輸出的信號進行或運算,以於輸出端產生延遲型態控制信號LTNCY2_t。In addition, the first input terminal of the logic gate OR2 is coupled to the self-refresh controller 340 to receive the self-refresh wait signal WAITSR_t, and the second input terminal of the logic gate OR2 is coupled to the output terminal of the logic gate OR1. In addition, the logic gate OR2 can perform OR operation on the self-refresh waiting signal WAITSR_t and the signal output by the logic gate OR1, so as to generate the delay type control signal LTNCY2_t at the output end.

也就是說,在本實施例中,當自刷新等待信號WAITSR_t、延遲控制信號LTCX2_t以及寫入遮蔽信號WAITMRW_t中的任一被設定為致能(例如為高電壓準位)時,延遲控制器330可通過延遲型態控制信號LTNCY2_t來控制pSRAM 200的存取延遲為所述第一型態(亦即,固定延遲型態)。That is to say, in this embodiment, when any one of the self-refresh wait signal WAITSR_t, the delay control signal LTCX2_t and the write mask signal WAITMRW_t is set to be enabled (eg, a high voltage level), the delay controller 330 The access delay of the pSRAM 200 can be controlled to be the first type (ie, the fixed delay type) by the delay type control signal LTNCY2_t.

圖4是依照本發明的一實施例說明記憶體控制器控制偽靜態隨機存取記憶體的存取延遲從固定延遲型態轉換至可變延遲型態時的信號時序圖。其中,圖4實施例為假設pSRAM 200操作於寫入模式且並未發生自刷新碰撞。4 is a signal timing diagram illustrating when the memory controller controls the access delay of the pseudo-static random access memory to switch from a fixed delay type to a variable delay type according to an embodiment of the present invention. The embodiment of FIG. 4 assumes that the pSRAM 200 operates in the write mode and no self-refresh collision occurs.

在此請同時參照圖2至圖4,在本實施例中,當pSRAM 200操作於啟動(例如,開機)前的初始時間時,記憶體控制器300未執行MRW動作,並且初始化控制信號CHRDY_t可以被設定為禁能(例如為低電壓準位)狀態。在此情況下,模式暫存器寫入控制器320的閂鎖器323可依據為禁能的初始化控制信號CHRDY_t來初始化輸出信號n01,以使輸出信號n01於所述初始時間被設定為低電壓準位狀態。Please refer to FIG. 2 to FIG. 4 at the same time. In this embodiment, when the pSRAM 200 operates at an initial time before startup (eg, power-on), the memory controller 300 does not perform the MRW operation, and the initialization control signal CHRDY_t can be is set to a disabled (eg, low voltage level) state. In this case, the latch 323 of the mode register write controller 320 can initialize the output signal n01 according to the disabled initialization control signal CHRDY_t, so that the output signal n01 is set to a low voltage at the initial time Alignment status.

接著,當pSRAM 200完成上電動作之後,初始化控制信號CHRDY_t可以再被設定為致能(例如為高電壓準位)狀態,並且完成初始化輸出信號n01的狀態。Next, after the power-on operation of the pSRAM 200 is completed, the initialization control signal CHRDY_t can be set to an enabled state (eg, a high voltage level), and the state of the initialization output signal n01 is completed.

接著,當pSRAM 200操作於時間區間T11時,反相晶片選擇信號CS#以及寫入指示信號MRW_t皆被設定為禁能(例如為低電壓準位)狀態。此時,脈寬調整電路325可依據為致能(例如為高電壓準位)的晶片選擇信號CS_t而產生具有高電壓準位的控制信號CSD_t以及具有低電壓準位的反相控制信號CSD_c。Next, when the pSRAM 200 operates in the time interval T11, the inverted chip selection signal CS# and the write instruction signal MRW_t are both set to a disabled (eg, low voltage level) state. At this time, the pulse width adjustment circuit 325 can generate a control signal CSD_t with a high voltage level and an inverted control signal CSD_c with a low voltage level according to the chip selection signal CS_t which is enabled (eg, a high voltage level).

在此情況下,三態反相器324的電晶體M1、M2會分別依據控制信號CSD_t以及反相控制信號CSD_c而被斷開,使得閂鎖器323可以將輸出信號n01的狀態進行閂鎖(亦即,輸出信號n01的狀態維持於低電壓準位)。在此同時,模式暫存器寫入控制器320可依據具有高電壓準位的控制信號CSD_t以及具有低電壓準位的輸出信號n01而產生為禁能(例如為低電壓準位)的寫入遮蔽信號WAITMRW_t。In this case, the transistors M1 and M2 of the tri-state inverter 324 are respectively turned off according to the control signal CSD_t and the inverted control signal CSD_c, so that the latch 323 can latch the state of the output signal n01 ( That is, the state of the output signal n01 is maintained at the low voltage level). At the same time, the mode register write controller 320 can generate write disabled (eg, low voltage level) according to the control signal CSD_t with a high voltage level and the output signal n01 with a low voltage level Mask the signal WAITMRW_t.

值得一提的是,當pSRAM 200操作於時間區間T11的初始時間時,模式暫存器寫入控制器320可依據寫入指示信號MRW_t而判斷出記憶體控制器300未執行於MRW動作。It is worth mentioning that when the pSRAM 200 operates at the initial time of the time interval T11, the mode register write controller 320 can determine that the memory controller 300 is not performing the MRW operation according to the write instruction signal MRW_t.

接著,當pSRAM 200操作於時間區間T11之後的時間區間T21時,反相晶片選擇信號CS#以及寫入指示信號MRW_t皆被設定為致能(例如為高電壓準位)狀態。此時,脈寬調整電路325可依據為禁能(例如為低電壓準位)的晶片選擇信號CS_t而產生具有低電壓準位的控制信號CSD_t以及具有高電壓準位的反相控制信號CSD_c。Next, when the pSRAM 200 operates in the time interval T21 after the time interval T11 , the inverted chip selection signal CS# and the write instruction signal MRW_t are both set to the enabled (eg, high voltage level) state. At this time, the pulse width adjustment circuit 325 can generate a control signal CSD_t with a low voltage level and an inverted control signal CSD_c with a high voltage level according to the chip selection signal CS_t which is disabled (eg, a low voltage level).

在此情況下,三態反相器324的電晶體M1、M2會分別依據控制信號CSD_t以及反相控制信號CSD_c而被導通,使得閂鎖器323可以依據具有高電壓準位的寫入指示信號MRW_t以及具有高電壓準位的初始化控制信號CHRDY_t而產生具有高電壓準位的輸出信號n01。並且,模式暫存器寫入控制器320可依據輸出信號n01以及控制信號CSD_t而產生為禁能(例如為低電壓準位)的寫入遮蔽信號WAITMRW_t。In this case, the transistors M1 and M2 of the tri-state inverter 324 are turned on according to the control signal CSD_t and the inversion control signal CSD_c, respectively, so that the latch 323 can respond to the write instruction signal with a high voltage level The MRW_t and the initialization control signal CHRDY_t with a high voltage level generate an output signal n01 with a high voltage level. In addition, the mode register write controller 320 can generate the write mask signal WAITMRW_t which is disabled (eg, a low voltage level) according to the output signal n01 and the control signal CSD_t.

另一方面,當pSRAM 200操作於時間區間T21之後的時間區間T31時,表示pSRAM 200的記憶體晶胞陣列可以開始進行寫入操作。此時,反相晶片選擇信號CS#被設定為禁能(例如為低電壓準位)狀態,而寫入指示信號MRW_t可以在時間區間T31的初始時間維持於致能(例如為高電壓準位)狀態。因此,脈寬調整電路325可依據為致能(例如為高電壓準位)的晶片選擇信號CS_t而產生具有高電壓準位的控制信號CSD_t以及具有低電壓準位的反相控制信號CSD_c。On the other hand, when the pSRAM 200 operates in the time interval T31 after the time interval T21, the memory cell array representing the pSRAM 200 can start to perform a write operation. At this time, the inverting chip selection signal CS# is set to a disabled state (eg, a low voltage level), and the write instruction signal MRW_t can be maintained at an enable (eg, a high voltage level) at the initial time of the time interval T31 )state. Therefore, the pulse width adjustment circuit 325 can generate the control signal CSD_t with a high voltage level and the inverted control signal CSD_c with a low voltage level according to the chip selection signal CS_t which is enabled (eg, a high voltage level).

在此情況下,三態反相器324的電晶體M1、M2會分別依據控制信號CSD_t以及反相控制信號CSD_c而被斷開,使得閂鎖器323可以將輸出信號n01的狀態進行閂鎖(亦即,輸出信號n01的狀態維持於高電壓準位)。In this case, the transistors M1 and M2 of the tri-state inverter 324 are respectively turned off according to the control signal CSD_t and the inverted control signal CSD_c, so that the latch 323 can latch the state of the output signal n01 ( That is, the state of the output signal n01 is maintained at the high voltage level).

在此同時,模式暫存器寫入控制器320可依據具有高電壓準位的控制信號CSD_t以及具有高電壓準位的輸出信號n01而產生為致能(例如為高電壓準位)的寫入遮蔽信號WAITMRW_t。At the same time, the mode register write controller 320 can generate a write that is enabled (eg, a high voltage level) according to the control signal CSD_t with a high voltage level and the output signal n01 with a high voltage level Mask the signal WAITMRW_t.

換言之,在pSRAM 200的記憶體晶胞陣列進行寫入操作(亦即,時間區間T31)中,延遲控制器330可以依據具有高電壓準位的寫入遮蔽信號WAITMRW_t而產生為致能的延遲型態控制信號LTNCY2_t,以使得RWDS腳位所輸出的讀寫資料擷取信號RWDS在記憶體晶胞陣列進行寫入操作時不會發生誤動作。In other words, when the memory cell array of the pSRAM 200 performs the write operation (ie, the time interval T31 ), the delay controller 330 can generate an enabled delay type according to the write mask signal WAITMRW_t with a high voltage level The state control signal LTNCY2_t is used, so that the read and write data capture signal RWDS output by the RWDS pin does not malfunction when the memory cell array performs the write operation.

除此之外,在本實施例中,模式暫存器寫入控制器320可以在pSRAM 200的記憶體晶胞陣列進行寫入操作的初始時間時,判斷出pSRAM 200執行於MRW動作。並且,由於此時模式暫存器310會依據寫入指示信號MRW_t而產生為禁能的延遲控制信號LTCX2_t,因此,記憶體控制器300可以在pSRAM 200的記憶體晶胞陣列進行寫入操作時,將pSRAM 200的存取延遲設定為可變延遲型態,並且延遲型態控制信號LTNCY2_t仍可維持於高電壓準位。Besides, in this embodiment, the mode register write controller 320 may determine that the pSRAM 200 is performing the MRW operation at the initial time of the write operation in the memory cell array of the pSRAM 200 . In addition, since the mode register 310 will generate the disabled delay control signal LTCX2_t according to the write instruction signal MRW_t at this time, the memory controller 300 can perform the write operation when the memory cell array of the pSRAM 200 is written. , the access delay of the pSRAM 200 is set to a variable delay mode, and the delay mode control signal LTNCY2_t can still be maintained at a high voltage level.

接著,當pSRAM 200操作於時間區間T31之後的時間區間T41時,表示pSRAM 200的記憶體晶胞陣列已完成寫入操作。此時,反相晶片選擇信號CS#被設定為致能(例如為高電壓準位)狀態,而寫入指示信號MRW_t被設定為禁能(例如為低電壓準位)狀態。因此,脈寬調整電路325可依據為禁能(例如為低電壓準位)的晶片選擇信號CS_t而產生具有低電壓準位的控制信號CSD_t以及具有高電壓準位的反相控制信號CSD_c。Next, when the pSRAM 200 operates in the time interval T41 after the time interval T31, it indicates that the memory cell array of the pSRAM 200 has completed the writing operation. At this time, the inverting chip selection signal CS# is set to an enabled state (eg, a high voltage level), and the write instruction signal MRW_t is set to a disabled (eg, a low voltage level) state. Therefore, the pulse width adjustment circuit 325 can generate the control signal CSD_t with a low voltage level and the inverted control signal CSD_c with a high voltage level according to the chip selection signal CS_t which is disabled (eg, a low voltage level).

在此情況下,三態反相器324的電晶體M1、M2會分別依據控制信號CSD_t以及反相控制信號CSD_c而被導通,使得閂鎖器323可以依據具有低電壓準位的寫入指示信號MRW_t以及具有高電壓準位的初始化控制信號CHRDY_t而產生具有低電壓準位的輸出信號n01。並且,模式暫存器寫入控制器320可依據輸出信號n01以及控制信號CSD_t而產生為禁能(例如為低電壓準位)的寫入遮蔽信號WAITMRW_t。In this case, the transistors M1 and M2 of the tri-state inverter 324 are turned on according to the control signal CSD_t and the inversion control signal CSD_c, respectively, so that the latch 323 can respond to the write instruction signal with a low voltage level The MRW_t and the initialization control signal CHRDY_t with a high voltage level generate an output signal n01 with a low voltage level. In addition, the mode register write controller 320 can generate the write mask signal WAITMRW_t which is disabled (eg, a low voltage level) according to the output signal n01 and the control signal CSD_t.

圖5是依照本發明的一實施例說明記憶體控制器控制偽靜態隨機存取記憶體的存取延遲從可變延遲型態轉換至固定延遲型態時的信號時序圖。其中,圖5實施例為假設pSRAM 200操作於寫入模式且並未發生自刷新碰撞。5 is a signal timing diagram illustrating when the memory controller controls the access delay of the pseudo-static random access memory to switch from a variable delay type to a fixed delay type according to an embodiment of the present invention. The embodiment of FIG. 5 assumes that the pSRAM 200 operates in the write mode and no self-refresh collision occurs.

需注意到的是,在圖5所示的實施例中,pSRAM 200操作於時間區間T12~T22的操作細節可以參照圖4所示實施例中的時間區間T11~T21的相關說明來類推,故不再贅述。It should be noted that, in the embodiment shown in FIG. 5, the operation details of the pSRAM 200 operating in the time interval T12-T22 can be deduced by referring to the relevant description of the time interval T11-T21 in the embodiment shown in FIG. No longer.

在此請同時參照圖2、圖3以及圖5,當pSRAM 200操作於時間區間T22之後的時間區間T32時,表示pSRAM 200的記憶體晶胞陣列可以開始進行寫入操作。此時,反相晶片選擇信號CS#被設定為禁能(例如為低電壓準位)狀態,而寫入指示信號MRW_t可以在時間區間T32的初始時間維持於致能(例如為高電壓準位)狀態。因此,脈寬調整電路325可依據為致能(例如為高電壓準位)的晶片選擇信號CS_t而產生具有高電壓準位的控制信號CSD_t以及具有低電壓準位的反相控制信號CSD_c。2 , 3 and 5 , when the pSRAM 200 operates in a time interval T32 after the time interval T22 , the memory cell array of the pSRAM 200 can start to perform a write operation. At this time, the inverting chip selection signal CS# is set to a disabled state (eg, a low voltage level), and the write instruction signal MRW_t can be maintained at an enable (eg, a high voltage level) at the initial time of the time interval T32 )state. Therefore, the pulse width adjustment circuit 325 can generate the control signal CSD_t with a high voltage level and the inverted control signal CSD_c with a low voltage level according to the chip selection signal CS_t which is enabled (eg, a high voltage level).

在此情況下,三態反相器324的電晶體M1、M2會分別依據控制信號CSD_t以及反相控制信號CSD_c而被斷開,使得閂鎖器323可以將輸出信號n01的狀態進行閂鎖(亦即,輸出信號n01的狀態維持於高電壓準位)。In this case, the transistors M1 and M2 of the tri-state inverter 324 are respectively turned off according to the control signal CSD_t and the inverted control signal CSD_c, so that the latch 323 can latch the state of the output signal n01 ( That is, the state of the output signal n01 is maintained at the high voltage level).

在此同時,模式暫存器寫入控制器320可依據具有高電壓準位的控制信號CSD_t以及具有高電壓準位的輸出信號n01而產生為致能(例如為高電壓準位)的寫入遮蔽信號WAITMRW_t。At the same time, the mode register write controller 320 can generate a write that is enabled (eg, a high voltage level) according to the control signal CSD_t with a high voltage level and the output signal n01 with a high voltage level Mask the signal WAITMRW_t.

換言之,在pSRAM 200的記憶體晶胞陣列進行寫入操作(亦即,時間區間T32)中,延遲控制器330可以依據具有高電壓準位的寫入遮蔽信號WAITMRW_t而產生為致能的延遲型態控制信號LTNCY2_t,以使得RWDS腳位所輸出的讀寫資料擷取信號RWDS在記憶體晶胞陣列進行寫入操作時不會發生誤動作。In other words, when the memory cell array of the pSRAM 200 performs the write operation (ie, the time interval T32 ), the delay controller 330 can generate an enabled delay type according to the write mask signal WAITMRW_t with a high voltage level The state control signal LTNCY2_t is used, so that the read and write data capture signal RWDS output by the RWDS pin does not malfunction when the memory cell array performs the write operation.

除此之外,在本實施例中,模式暫存器寫入控制器320可以在pSRAM 200的記憶體晶胞陣列進行寫入操作的初始時間時,判斷出pSRAM 200執行於MRW動作。並且,由於此時模式暫存器310會依據寫入指示信號MRW_t而產生為致能的延遲控制信號LTCX2_t,因此,記憶體控制器300可以在pSRAM 200的記憶體晶胞陣列進行寫入操作時,將pSRAM 200的存取延遲設定為固定延遲型態,並且延遲型態控制信號LTNCY2_t仍可維持於高電壓準位。Besides, in this embodiment, the mode register write controller 320 may determine that the pSRAM 200 is performing the MRW operation at the initial time of the write operation in the memory cell array of the pSRAM 200 . In addition, since the mode register 310 will generate the enabled delay control signal LTCX2_t according to the write instruction signal MRW_t at this time, the memory controller 300 can perform the write operation when the memory cell array of the pSRAM 200 is written. , the access delay of the pSRAM 200 is set to a fixed delay type, and the delay type control signal LTNCY2_t can still be maintained at a high voltage level.

接著,當pSRAM 200操作於時間區間T32之後的時間區間T42時,表示pSRAM 200的記憶體晶胞陣列已完成寫入操作。此時,反相晶片選擇信號CS#被設定為致能(例如為高電壓準位)狀態,而寫入指示信號MRW_t被設定為禁能(例如為低電壓準位)狀態。因此,脈寬調整電路325可依據為禁能(例如為低電壓準位)的晶片選擇信號CS_t而產生具有低電壓準位的控制信號CSD_t以及具有高電壓準位的反相控制信號CSD_c。Next, when the pSRAM 200 operates in the time interval T42 after the time interval T32, it indicates that the memory cell array of the pSRAM 200 has completed the writing operation. At this time, the inverting chip selection signal CS# is set to an enabled state (eg, a high voltage level), and the write instruction signal MRW_t is set to a disabled (eg, a low voltage level) state. Therefore, the pulse width adjustment circuit 325 can generate the control signal CSD_t with a low voltage level and the inverted control signal CSD_c with a high voltage level according to the chip selection signal CS_t which is disabled (eg, a low voltage level).

在此情況下,三態反相器324的電晶體M1、M2會分別依據控制信號CSD_t以及反相控制信號CSD_c而被導通,使得閂鎖器323可以依據具有低電壓準位的寫入指示信號MRW_t以及具有高電壓準位的初始化控制信號CHRDY_t而產生具有低電壓準位的輸出信號n01。並且,模式暫存器寫入控制器320可依據輸出信號n01以及控制信號CSD_t而產生為禁能(例如為低電壓準位)的寫入遮蔽信號WAITMRW_t。In this case, the transistors M1 and M2 of the tri-state inverter 324 are turned on according to the control signal CSD_t and the inversion control signal CSD_c, respectively, so that the latch 323 can respond to the write instruction signal with a low voltage level The MRW_t and the initialization control signal CHRDY_t with a high voltage level generate an output signal n01 with a low voltage level. In addition, the mode register write controller 320 can generate the write mask signal WAITMRW_t which is disabled (eg, a low voltage level) according to the output signal n01 and the control signal CSD_t.

依據上述圖4以及圖5實施例的說明內容可以得知,無論記憶體控制器300欲將pSRAM 200的存取延遲從可變延遲型態轉換至固定延遲型態,或者是將pSRAM 200的存取延遲從固定延遲型態轉換至可變延遲型態,並且,即使pSRAM 200操作在反應時間較短的時間區間tCSH、tCSHI中,本實施例的RWDS腳位所輸出的讀寫資料擷取信號RWDS在記憶體晶胞陣列進行寫入操作時,可不受延遲型態的誤解而發生誤動作。According to the descriptions of the above-mentioned embodiments in FIGS. 4 and 5 , it can be known that whether the memory controller 300 wants to convert the access delay of the pSRAM 200 from the variable delay type to the fixed delay type, or whether the memory controller 300 wants to The fetch delay is converted from a fixed delay type to a variable delay type, and even if the pSRAM 200 operates in the time interval tCSH and tCSHI with a short response time, the read and write data capture signal output by the RWDS pin of this embodiment When the RWDS performs the write operation in the memory cell array, it can not be misunderstood by the delay type and malfunction.

綜上所述,本發明所述記憶體控制器可以在記憶體晶胞陣列進行寫入操作,並且在反相晶片選擇信號為禁能狀態時,使延遲控制器可以依據具有高電壓準位的寫入遮蔽信號而控制延遲型態控制信號維持於致能狀態,以使得RWDS腳位所輸出的讀寫資料擷取信號可在記憶體晶胞陣列進行寫入操作時不會發生誤動作,進而有效地提升記憶體系統的操作品質。To sum up, the memory controller of the present invention can perform writing operations in the memory cell array, and when the inverting chip select signal is in a disabled state, the delay controller can Write the mask signal to control the delay type control signal to maintain the enabled state, so that the read and write data capture signal output by the RWDS pin can not malfunction during the write operation of the memory cell array, and thus effectively to improve the operating quality of the memory system.

200:偽靜態隨機存取記憶體 300:記憶體控制器 310:模式暫存器 320:模式暫存器寫入控制器 321:第一級電路 322:第二級電路 323:閂鎖器 324:三態反相器 325:脈寬調整電路 330:延遲控制器 340:自刷新控制器 AND、OR1、OR2:邏輯閘 COM:命令 CS_t:晶片選擇信號 CSD_t:控制信號 CSD_c:反相控制信號 CHRDY_t:初始化控制信號 DATA:模式暫存器寫入資料 INV1~INV7:反相器 LTCX2_t:延遲控制信號 LTNCY2_t:延遲型態控制信號 NOR:反或閘 NAND:反及閘 n01:輸出信號 MRW_t:寫入指示信號 M1、M2:電晶體 RE:自刷新請求 RWDS:讀寫資料擷取信號 T11~T41、T12~T42、tCSH、tCSHI:時間區間 WAITSR_t:自刷新等待信號 WAITMRW_t:寫入遮蔽信號200: Pseudo-Static Random Access Memory 300: Memory Controller 310: Mode Scratchpad 320: Mode register write controller 321: First stage circuit 322: Second stage circuit 323: Latch 324: Tri-state inverter 325: Pulse width adjustment circuit 330: Delay Controller 340: Self-refresh controller AND, OR1, OR2: logic gate COM:command CS_t: Chip select signal CSD_t: control signal CSD_c: Inverted control signal CHRDY_t: Initialization control signal DATA: mode register write data INV1~INV7: Inverter LTCX2_t: Delay control signal LTNCY2_t: Delay type control signal NOR: reverse or gate NAND: Invert and Gate n01: output signal MRW_t: write indication signal M1, M2: Transistor RE: Self-refresh request RWDS: read and write data capture signal T11~T41, T12~T42, tCSH, tCSHI: time interval WAITSR_t: Self-refresh wait signal WAITMRW_t: write mask signal

圖1A以及圖1B繪示習知的偽靜態隨機存取記憶體的信號時序圖。 圖2是依照本發明的一實施例說明偽靜態隨機存取記憶體的概要示意圖。 圖3是依照本發明的一實施例說明圖2所示的記憶體控制器的電路示意圖。 圖4是依照本發明的一實施例說明記憶體控制器控制偽靜態隨機存取記憶體的存取延遲從固定延遲型態轉換至可變延遲型態時的信號時序圖。 圖5是依照本發明的一實施例說明記憶體控制器控制偽靜態隨機存取記憶體的存取延遲從可變延遲型態轉換至固定延遲型態時的信號時序圖。1A and FIG. 1B are signal timing diagrams of a conventional pseudo-static random access memory. FIG. 2 is a schematic diagram illustrating a pseudo-static random access memory according to an embodiment of the present invention. FIG. 3 is a schematic circuit diagram illustrating the memory controller shown in FIG. 2 according to an embodiment of the present invention. 4 is a signal timing diagram illustrating when the memory controller controls the access delay of the pseudo-static random access memory to switch from a fixed delay type to a variable delay type according to an embodiment of the present invention. 5 is a signal timing diagram illustrating when the memory controller controls the access delay of the pseudo-static random access memory to switch from a variable delay type to a fixed delay type according to an embodiment of the present invention.

300:記憶體控制器300: Memory Controller

310:模式暫存器310: Mode Scratchpad

320:模式暫存器寫入控制器320: Mode register write controller

321:第一級電路321: First stage circuit

322:第二級電路322: Second stage circuit

323:閂鎖器323: Latch

324:三態反相器324: Tri-state inverter

325:脈寬調整電路325: Pulse width adjustment circuit

330:延遲控制器330: Delay Controller

340:自刷新控制器340: Self-refresh controller

AND、OR1、OR2:邏輯閘AND, OR1, OR2: logic gate

COM:命令COM:command

CS_t:晶片選擇信號CS_t: Chip select signal

CSD_t:控制信號CSD_t: control signal

CSD_c:反相控制信號CSD_c: Inverted control signal

CHRDY_t:初始化控制信號CHRDY_t: Initialization control signal

DATA:模式暫存器寫入資料DATA: mode register write data

INV1~INV7:反相器INV1~INV7: Inverter

LTCX2_t:延遲控制信號LTCX2_t: Delay control signal

LTNCY2_t:延遲型態控制信號LTNCY2_t: Delay type control signal

NOR:反或閘NOR: reverse or gate

NAND:反及閘NAND: Invert and Gate

n01:輸出信號n01: output signal

MRW_t:寫入指示信號MRW_t: write indication signal

M1、M2:電晶體M1, M2: Transistor

RE:自刷新請求RE: Self-refresh request

WAITSR_t:自刷新等待信號WAITSR_t: Self-refresh wait signal

WAITMRW_t:寫入遮蔽信號WAITMRW_t: write mask signal

Claims (10)

一種記憶體控制器,適用於偽靜態隨機存取記憶體,包括: 模式暫存器,用以依據寫入指示信號以產生延遲控制信號; 模式暫存器寫入控制器,用以在模式暫存器寫入動作中產生所述寫入指示信號,並依據晶片選擇信號以產生寫入遮蔽信號;以及 延遲控制器,耦接至所述模式暫存器以及所述模式暫存器寫入控制器,並依據所述延遲控制信號以及所述寫入遮蔽信號以產生延遲型態控制信號。A memory controller suitable for pseudo-static random access memory, comprising: a mode register for generating a delay control signal according to the write instruction signal; a mode register write controller, used for generating the write instruction signal during the mode register write operation, and generating the write mask signal according to the chip selection signal; and The delay controller is coupled to the mode register and the mode register write controller, and generates a delay type control signal according to the delay control signal and the write mask signal. 如請求項1所述的記憶體控制器,其中於所述晶片選擇信號被致能下,所述模式暫存器寫入控制器依據所述寫入指示信號判斷所述模式暫存器寫入動作是否被執行,並且所述模式暫存器寫入控制器依據判斷結果以產生所述寫入遮蔽信號,以使所述延遲控制器通過所述延遲型態控制信號來控制所述偽靜態隨機存取記憶體的存取延遲為第一型態或第二型態。The memory controller of claim 1, wherein when the chip selection signal is enabled, the mode register write controller determines the mode register write according to the write instruction signal whether the action is executed, and the mode register write controller generates the write mask signal according to the judgment result, so that the delay controller controls the pseudo static random by the delay type control signal The access delay for accessing the memory is either the first type or the second type. 如請求項2所述的記憶體控制器,其中當所述寫入指示信號指示所述模式暫存器寫入動作被執行時,所述模式暫存器寫入控制器產生為致能的所述寫入遮蔽信號,並使所述延遲控制器通過所述延遲型態控制信號來控制所述偽靜態隨機存取記憶體的所述存取延遲為所述第一型態。The memory controller of claim 2, wherein when the write instruction signal indicates that the mode register write action is performed, the mode register write controller generates all enabled The write mask signal is used to make the delay controller control the access delay of the pseudo-static random access memory to the first type through the delay type control signal. 如請求項3所述的記憶體控制器,其中所述第一型態對應於第一延遲時間,所述第二型態對應於第二延遲時間,其中所述第一延遲時間為所述第二延遲時間的整數倍。The memory controller of claim 3, wherein the first type corresponds to a first delay time, and the second type corresponds to a second delay time, wherein the first delay time is the first delay time Two integer multiples of the delay time. 如請求項1所述的記憶體控制器,還包括: 自刷新控制器,用以依據自刷新請求以及所述晶片選擇信號以產生自刷新等待信號, 其中,所述延遲控制器還耦接至所述自刷新控制器,並且所述延遲控制器還依據所述自刷新等待信號以產生所述延遲型態控制信號。The memory controller of claim 1, further comprising: The self-refresh controller is used for generating the self-refresh waiting signal according to the self-refresh request and the chip selection signal, The delay controller is further coupled to the self-refresh controller, and the delay controller also generates the delay-type control signal according to the self-refresh wait signal. 如請求項5所述的記憶體控制器,其中所述延遲控制器包括: 第一邏輯閘,其第一輸入端接收所述延遲控制信號,其第二輸入端接收所述寫入遮蔽信號;以及 第二邏輯閘,其第一輸入端接收所述自刷新等待信號,其第二輸入端耦接至所述第一邏輯閘的輸出端,其輸出端產生所述延遲型態控制信號。The memory controller of claim 5, wherein the delay controller comprises: a first logic gate, the first input terminal of which receives the delay control signal and the second input terminal of which receives the write mask signal; and The second logic gate has a first input terminal for receiving the self-refresh waiting signal, a second input terminal of which is coupled to an output terminal of the first logic gate, and an output terminal of which generates the delay type control signal. 如請求項5所述的記憶體控制器,其中當所述自刷新等待信號、所述延遲控制信號以及所述寫入遮蔽信號中的任一為致能時,所述延遲控制器通過所述延遲型態控制信號來控制所述偽靜態隨機存取記憶體的所述存取延遲為所述第一型態。The memory controller of claim 5, wherein when any one of the self-refresh wait signal, the delay control signal, and the write mask signal is enabled, the delay controller passes the A delay type control signal controls the access delay of the pseudo-static random access memory to the first type. 如請求項1所述的記憶體控制器,其中所述模式暫存器寫入控制器包括: 第一級電路,用以依據命令以產生所述寫入指示信號;以及 第二級電路,耦接至所述第一級電路,並依據所述寫入指示信號、所述晶片選擇信號以及初始化控制信號,以產生所述寫入遮蔽信號。The memory controller of claim 1, wherein the mode register write controller comprises: a first-stage circuit for generating the write instruction signal according to a command; and The second stage circuit is coupled to the first stage circuit and generates the write mask signal according to the write instruction signal, the chip selection signal and the initialization control signal. 如請求項8所述的記憶體控制器,其中所述第二級電路包括: 脈寬調整電路,接收所述晶片選擇信號,並依據所述晶片選擇信號產生控制信號以及反相控制信號; 閂鎖器,耦接至所述脈寬調整電路以及所述第一級電路,並依據所述控制信號、所述反相控制信號以及所述寫入指示信號以產生輸出信號;以及 邏輯閘,其第一輸入端接收所述控制信號,其第二輸入端接收所述輸出信號,其輸出端產生所述寫入遮蔽信號。The memory controller of claim 8, wherein the second stage circuit comprises: a pulse width adjustment circuit, receiving the chip selection signal, and generating a control signal and an inversion control signal according to the chip selection signal; a latch, coupled to the pulse width adjustment circuit and the first-stage circuit, and generating an output signal according to the control signal, the inversion control signal and the write instruction signal; and The logic gate has a first input terminal for receiving the control signal, a second input terminal for receiving the output signal, and an output terminal for generating the write mask signal. 如請求項9所述的記憶體控制器,其中所述脈寬調整電路針對所述晶片選擇信號的脈寬進行調整以產生為互補的所述控制信號以及反相控制信號。The memory controller of claim 9, wherein the pulse width adjustment circuit adjusts the pulse width of the die select signal to generate the control signal and the inverted control signal that are complementary.
TW109122557A 2020-07-03 2020-07-03 Memory controller TWI767267B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109122557A TWI767267B (en) 2020-07-03 2020-07-03 Memory controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109122557A TWI767267B (en) 2020-07-03 2020-07-03 Memory controller

Publications (2)

Publication Number Publication Date
TW202203013A TW202203013A (en) 2022-01-16
TWI767267B true TWI767267B (en) 2022-06-11

Family

ID=80787668

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109122557A TWI767267B (en) 2020-07-03 2020-07-03 Memory controller

Country Status (1)

Country Link
TW (1) TWI767267B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7187609B2 (en) * 2004-11-03 2007-03-06 Samsung Electronics, Co., Ltd. Self refresh circuit of PSRAM for real access time measurement and operating method for the same
TWI276111B (en) * 2004-04-20 2007-03-11 Hynix Semiconductor Inc Method and circuit for controlling operation mode of PSRAM
TWI306265B (en) * 2005-05-30 2009-02-11 Hynix Semiconductor Inc Pseudo sram capable of operating in continuous burst mode and method of controlling burst mode operation thereof
TWI498890B (en) * 2012-08-10 2015-09-01 Etron Technology Inc Method of operating psram and related memory device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI276111B (en) * 2004-04-20 2007-03-11 Hynix Semiconductor Inc Method and circuit for controlling operation mode of PSRAM
US7187609B2 (en) * 2004-11-03 2007-03-06 Samsung Electronics, Co., Ltd. Self refresh circuit of PSRAM for real access time measurement and operating method for the same
TWI306265B (en) * 2005-05-30 2009-02-11 Hynix Semiconductor Inc Pseudo sram capable of operating in continuous burst mode and method of controlling burst mode operation thereof
TWI498890B (en) * 2012-08-10 2015-09-01 Etron Technology Inc Method of operating psram and related memory device

Also Published As

Publication number Publication date
TW202203013A (en) 2022-01-16

Similar Documents

Publication Publication Date Title
US7180807B2 (en) Semiconductor memory device having a delay circuit
KR100319886B1 (en) Semiconductor memory device having test mode in which automic refresh can be controlled by external address and automatic refresh mehtod thereof
US8023339B2 (en) Pipe latch circuit and semiconductor memory device using the same
US7710804B2 (en) Auto precharge circuit sharing a write auto precharge signal generating unit
JPH05342114A (en) Memory device
KR100326085B1 (en) Auto Precharge Control Signal Generating Circuits of Semiconductor Memory Device and Auto Precharge Control Method
JP2001052498A (en) Semiconductor memory
US7768852B2 (en) Precharge control circuit in semiconductor memory apparatus
TWI767267B (en) Memory controller
KR100587873B1 (en) Semiconductor memory device
US8493803B2 (en) Auto-precharge signal generator
CN113936718B (en) Memory Controller
JP6970244B1 (en) Memory controller
KR102374978B1 (en) Memory controller
US8054709B2 (en) Power control circuit and semiconductor memory device using the same
JPH1064268A (en) Input buffer circuit of semiconductor memory element
CN112992222B (en) Control circuit applied to pseudo-static random access memory and control method thereof
US8059483B2 (en) Address receiving circuit for a semiconductor apparatus
US6278652B1 (en) Input initial stage circuit for semiconductor memory
WO2023226112A1 (en) Refresh control circuit, memory and refresh control method
KR20050045060A (en) Bank active/precharge command decoder in semiconductor device
TW202121420A (en) Control circuit and control method thereof for pseudo static random access memory
JP4263004B2 (en) Semiconductor memory device
CN113628646A (en) Electronic device for controlling clock generation
KR20070025715A (en) Internal Clock Generation Circuit