TWI766127B - Method for optimizing focal parameters of lithographic process - Google Patents
Method for optimizing focal parameters of lithographic process Download PDFInfo
- Publication number
- TWI766127B TWI766127B TW107141121A TW107141121A TWI766127B TW I766127 B TWI766127 B TW I766127B TW 107141121 A TW107141121 A TW 107141121A TW 107141121 A TW107141121 A TW 107141121A TW I766127 B TWI766127 B TW I766127B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- pattern
- images
- pattern images
- focus
- Prior art date
Links
Images
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
本說明書是有關於一種半導體製程,且特別是有關於一種黃光微影製程(lithography process)。This specification relates to a semiconductor process, and in particular to a lithography process.
在半導體製程技術中,當要將一個圖案從光罩轉移至光阻時,需要使用能量來活化光阻。能量的來源一般是由輻射線,例如紫外光源(UV),所提供。對焦(Focus)是將輻射光的輻射能量聚集在一個單獨點上。對焦的準確與否直接影響到微影製程的精確程度。一般來說,不同圖案設計需要不同的輻射能量與不同的焦點位置。習知技術通常係藉由檢視己曝光圖案的關鍵尺寸(Critical Dimension,CD)、線路末端縮短(LES)以及側壁角度(Side Wall Angle,SWA)等參數來監控微影製程的對焦,以優化製程品質。其中,線路末端縮短是指,線路末端光阻的實際印刷位置和預定位置之間的差異;側璧角度是指光阻在經能量曝光後的輪廓(Profile)。In semiconductor process technology, when a pattern is to be transferred from a photomask to a photoresist, energy is required to activate the photoresist. The source of energy is typically provided by radiation, such as an ultraviolet light source (UV). Focus is to focus the radiant energy of the radiant light on a single point. The accuracy of focusing directly affects the accuracy of the lithography process. In general, different pattern designs require different radiation energy and different focus positions. The conventional technology usually monitors the focus of the lithography process by inspecting parameters such as the critical dimension (CD), end-of-line shortening (LES) and side wall angle (SWA) of the exposed pattern to optimize the process quality. Among them, the shortening of the end of the line refers to the difference between the actual printing position and the predetermined position of the photoresist at the end of the line; the side wall angle refers to the profile of the photoresist after energy exposure.
然而,關鍵尺寸、線路末端縮短以及側壁角度,都是藉由偵測裝置來量測由光罩所出射的光線之繞射值,再經過模擬所得到的參數。在背景雜訊過大、微影失焦或量測位置錯誤的情形下,仍會持續提供不正確的參數資訊,無法即時反應異常狀況,導致監控失效,而無法得到較佳的對焦,以優化微影製程的操作品質。However, the critical dimension, the shortening of the line end and the side wall angle are all parameters obtained by the detection device to measure the diffraction value of the light emitted from the mask, and then through the simulation. When the background noise is too large, the lithography is out of focus, or the measurement position is wrong, incorrect parameter information will continue to be provided, and the abnormal situation cannot be responded to in real time, resulting in failure of monitoring and better focusing. The operating quality of the film process.
因此,有需要提供一種更先進的優化微影對焦參數的方法,以改善習知技術所面臨的問題。Therefore, there is a need to provide a more advanced method for optimizing the focus parameters of lithography to improve the problems faced by the prior art.
本說明書的一個面向是有關於一種優化微影對焦參數的方法,包括下述步驟:首先,以複數個焦點位置對第一受測圖案(pattern)進行第一影像擷取步驟,以獲取複數個第一圖案影像。之後,由這些第一圖案影像中選取對應於這些焦點位置之中間值的多個第一圖案影像,並進行第一疊圖步驟,以形成第一參考影像。接著,根據第一參考影像,從這些第一圖案影像中移除複數個錯誤影像。再由對應於這些焦點中間值的多個剩餘的第一圖案影像之中選取至少二者,進行第二疊圖步驟,以形成第一標準影像。後續,根據第一標準影像對剩餘的第一圖案影像進行第一相似度分析以獲取複數個第一影像分數,並藉以判斷出最佳焦點位置。One aspect of the present specification relates to a method for optimizing lithography focusing parameters, including the following steps: firstly, a first image capturing step is performed on a first tested pattern (pattern) with a plurality of focus positions to obtain a plurality of The first pattern image. Afterwards, a plurality of first pattern images corresponding to the intermediate values of the focal positions are selected from the first pattern images, and a first overlay step is performed to form a first reference image. Then, according to the first reference image, a plurality of erroneous images are removed from the first pattern images. Then, at least two of the remaining first pattern images corresponding to the intermediate values of the focal points are selected, and a second overlay step is performed to form a first standard image. Afterwards, a first similarity analysis is performed on the remaining first pattern images according to the first standard image to obtain a plurality of first image scores, thereby determining the best focus position.
根據上述實施例,本說明書提供一種優化微影對焦參數的方法。其係採用影像分析方法,先選擇包括較佳焦距範圍的多個焦點位置來進行圖案影像的擷取。之後,由對應於這些焦點位置中間值的多個圖案影像之中選取多個圖案影像進行疊圖,以形成複數個參考影像。將參考影像與所擷取的圖案影像進行影像對比分析,藉以剔除因背景雜訊過大、微影失焦或量測位置錯等因素所造成的誤錯誤影像。剔除誤錯誤影像之後,再由對應於焦點位置中間值的剩餘圖案影像中選取至少二個來進行另一次疊圖,以得到複數個標準影像。將標準影像與剩餘的圖案影像進行再一次的影像對比分析,計算出可代表每一個剩餘的圖案影像品質的影像分數,再根據影像分數進行統計分析,得出最佳的焦點位置。在一些實施例中,影像分數係指每一個剩餘的圖案影像與其所對應之標準影像二者之間的相關程度。According to the above-mentioned embodiments, the present specification provides a method for optimizing lithography focus parameters. It adopts an image analysis method, and firstly selects a plurality of focal positions including a better focal length range to capture the pattern image. Afterwards, a plurality of pattern images are selected from among the plurality of pattern images corresponding to the intermediate values of the focal positions and overlapped to form a plurality of reference images. Perform image comparison analysis between the reference image and the captured pattern image, so as to eliminate erroneous images caused by factors such as excessive background noise, out-of-focus lithography, or wrong measurement positions. After the erroneous images are eliminated, at least two of the remaining pattern images corresponding to the median value of the focus position are selected to perform another overlay to obtain a plurality of standard images. The standard image and the remaining pattern images are compared and analyzed again to calculate the image score representing the quality of each remaining pattern image, and then statistical analysis is performed according to the image score to obtain the best focus position. In some embodiments, the image score refers to the degree of correlation between each remaining pattern image and its corresponding standard image.
藉由本案上述實施例所提供的微影對焦參數優化方法,可以在微影製程中即時地剔除可能造成量測失效的錯誤影像,確保製程的監控,並且獲得更好的對焦,以優化微影製程的操作品質。With the lithography focusing parameter optimization method provided by the above-mentioned embodiments of the present application, the erroneous images that may cause measurement failure can be eliminated in the lithography process in real time, so as to ensure the monitoring of the process, and obtain better focusing to optimize the lithography Operational quality of the process.
本說明書是揭露一種優化微影對焦參數的方法。為了對本說明書之上述實施例及其他目的、特徵和優點能更明顯易懂,下文特舉數個較佳實施例,並配合所附圖式作詳細說明。但必須注意的是,這些特定的實施案例與方法,並非用以限定本發明。本發明仍可採用其他實施例的不同特徵、元件、方法及參數來加以實施。較佳實施例的提出,僅係用以例示本發明的技術特徵,並非用以限定本發明的申請專利範圍。該技術領域中具有通常知識者,將可根據以下說明書的描述,在不脫離本發明的精神範圍內,作均等的修飾與變化。在不同實施例與圖式之中,相同的元件,將以相同的元件符號加以表示。This specification discloses a method for optimizing lithography focus parameters. In order to make the above-mentioned embodiments and other objects, features and advantages of the present specification more clearly understood, several preferred embodiments are hereinafter described in detail with the accompanying drawings. However, it must be noted that these specific implementation cases and methods are not intended to limit the present invention. The present invention may still be practiced using the various features, elements, methods, and parameters of other embodiments. The preferred embodiments are provided only to illustrate the technical features of the present invention, and not to limit the scope of the present invention. Those with ordinary knowledge in the technical field will be able to make equivalent modifications and changes based on the description of the following specification without departing from the spirit and scope of the present invention. In different embodiments and drawings, the same elements will be represented by the same element symbols.
請參照第1圖,第1圖係根據本說明書的一實施例所繪示的一種優化微影對焦參數的方法流程圖。其中,優化微影對焦參數的方法包括下述步驟:首先,以複數個焦點位置對至少一個受測圖案進行影像擷取步驟,以獲取複數個圖案影像(步驟101)。Please refer to FIG. 1. FIG. 1 is a flowchart of a method for optimizing lithography focusing parameters according to an embodiment of the present specification. Wherein, the method for optimizing lithography focusing parameters includes the following steps: firstly, performing an image capturing step on at least one tested pattern at a plurality of focus positions to acquire a plurality of pattern images (step 101 ).
在本說明書的一些實施例中,影像擷取步驟可以根據微影製程所要移轉的電路布局,選擇多個不同位置的局部圖案(受測圖案)進行影像擷取。另外在一些實施例中,也可以採用不同的光能量(例如,紫外光)的光線,來照射相同的受測圖案以擷取不同的圖案影像。其中,複數個焦點位置的選擇,可以是針對電路布局的關鍵尺寸、圖案複雜程度或其他製程因素,選擇可能包含在較佳焦距範圍之內的多個焦點位置,來進行圖案影像的擷取。In some embodiments of this specification, the image capturing step may select a plurality of partial patterns (tested patterns) at different positions for image capturing according to the circuit layout to be transferred in the lithography process. In addition, in some embodiments, light with different light energies (eg, ultraviolet light) can also be used to illuminate the same pattern under test to capture different pattern images. The selection of the plurality of focal positions may be based on the critical dimension of the circuit layout, the complexity of the pattern or other process factors, and the selection of the plurality of focal positions that may be included in the preferred focal length range to capture the pattern image.
例如,請參照第2圖,第2圖係根據本說明書的一實施例,繪示對至少一個受測圖案進行影像擷取之後的結果。在本實施中,採用3種不同的光能量,例如能量1(例如23.5微焦耳(microjoule,mJ))、能量2(例如32.2微焦耳)和能量3(例如28微焦耳),以11種不同的焦點位置(焦距由小至大排列,分別為焦距-5微米(micrometer,µm)、-4微米、-3微米、-2微米、-1微米、0微米、1微米、2微米、3微米、4微米和5微米),分別針對5種不同受測圖案,例如第一受測圖案201A、第二受測圖案201B、第三受測圖案201C、第四受測圖案201D和第五受測圖案201E,進行影像擷取,共得到165(3×11×5)張圖案影像。For example, please refer to FIG. 2 . FIG. 2 shows the result after image capturing of at least one tested pattern according to an embodiment of the present specification. In this implementation, 3 different light energies, eg, energy 1 (eg, 23.5 microjoules (mJ)), energy 2 (eg, 32.2 microjoules), and energy 3 (eg, 28 microjoules), were used in 11 different The focal position (the focal length is arranged from small to large, respectively focal length -5 microns (micrometer, µm), -4 microns, -3 microns, -2 microns, -1 microns, 0 microns, 1 microns, 2 microns, 3 microns , 4 microns and 5 microns), respectively for 5 different tested patterns, such as the first tested
如第2圖所繪示,上方、中間和下方三個實心方框中的每一者,分別包含採用不同的光能量(例如能量1、能量2和能量3)對第一受測圖案201A、第二受測圖案201B、第三受測圖案201C、第四受測圖案201D和第五受測圖案201E,進行影像擷取所得到的55張圖案影像。另外,根據受測圖案(第一受測圖案201A、第二受測圖案201B、第三受測圖案201C、第四受測圖案201D和第五受測圖案201E),可以將這165張圖案影像分成三組,分別為第一圖案影像202A、第二圖案影像202B、第三圖案影像202C、第四圖案影像202D和第五圖案影像202D。As shown in FIG. 2, each of the upper, middle, and lower solid boxes respectively includes applying different light energies (eg,
其中,第一圖案影像202A分別包含11張(位於上方實心方框中的第一排)採用能量1所擷取的圖案影像、11張(位於中間實心方框中的第一排)採用能量2所擷取的圖案影像和11張(位於下方實心方框中的第一排)採用能量3所擷取的圖案影像。第二圖案影像202B分別包含11張(位於上方實心方框中的第二排)採用能量1所擷取的圖案影像、11張(位於中間實心方框中的第二排)採用能量2所擷取的圖案影像和11張(位於下方實心方框中的第二排)採用能量3所擷取的圖案影像。第三圖案影像202C分別包含11張(位於上方實心方框中的第三排)採用能量1所擷取的圖案影像、11張(位於中間實心方框中的第三排)採用能量2所擷取的圖案影像和11張(位於下方實心方框中的第三排)採用能量3所擷取的圖案影像。第四圖案影像202D分別包含11張(位於上方實心方框中的第四排)採用能量1所擷取的圖案影像、11張(位於中間實心方框中的第四排)採用能量2所擷取的圖案影像和11張(位於下方實心方框中的第四排)採用能量3所擷取的圖案影像。第五圖案影像202E分別包含11張(位於上方實心方框中的第五排)採用能量1所擷取的圖案影像、11張(位於中間實心方框中的第五排)採用能量2所擷取的圖案影像和11張(位於下方實心方框中的第五排)採用能量3所擷取的圖案影像。The
然而值得注意的是,受測圖案、所採用的能量、焦點位置和圖案影像的數量並不以此為限,任何該技術領域中具有通常知識者,皆可依照實際需要,選擇所需要的圖案、能量和焦點,及增加或減少以上所述元件的數量。However, it is worth noting that the pattern to be tested, the energy used, the focal position and the number of pattern images are not limited by this. Anyone with ordinary knowledge in the technical field can select the desired pattern according to actual needs. , energy and focus, and increase or decrease the number of elements described above.
之後,分別由每一組圖案影像中選取對應於焦點位置之中間值的多個圖案影像,並進行第一疊圖步驟,以形成複數個參考影像(步驟102)。例如,請參照第3圖,第3圖係繪示由第2圖中的55張第三圖案影像202C選取對應於11個焦點位置之中間值(0微米)的12張第三圖案影像(如虛線方框所表示),並將所選取的12張第三圖案影像進行第一疊圖步驟204,以形成一個參考影像203的方法示意圖。Afterwards, a plurality of pattern images corresponding to the median value of the focus position are respectively selected from each group of pattern images, and a first overlay step is performed to form a plurality of reference images (step 102 ). For example, please refer to FIG. 3, which shows 12 third pattern images (eg, 55
在本說明書的一些實施例之中,第一疊圖步驟204係將所選取的12張第三圖案影像加以重疊,以形成一個具有重疊影像的第三參考影像203。同時,第一圖案影像202A、第二圖案影像202B、第四圖案影像202D和第五圖案影像202D也以採用相同的方式,進行上述的第一疊圖步驟204,藉以形成具有重疊影像的第一參考影像、第二參考影像、第四參考影像和第五參考影像(未繪示)。In some embodiments of the present specification, the
在本說明書的一些實施例中,進行第一疊圖步驟204之前,可以選擇性地(optionally)對所選取的12張第三圖案影像進行一個雜訊濾除步驟。例如,在本實施例中,係採用高斯模糊(Gaussian Blur) 技術,對所選取的12張第三圖案影像進行預處理,以減少圖像雜訊。In some embodiments of the present specification, before the
接著,根據第一參考影像、第二參考影像(未繪示)第三參考影像203、第四參考影像和第五參考影像(未繪示),從第一圖案影像202A、第二圖案影像202B、第三圖案影像202C、第四圖案影像202D和第五圖案影像202E中移除複數個錯誤影像(步驟103)。在本說明書的一些實施之中,從第一圖案影像202A、第二圖案影像202B、第三圖案影像202C、第四圖案影像202D和第五圖案影像202E中移除複數個錯誤影像的步驟,可以包括計算每一個第一圖案影像202A與第一參考影像的IOU(intersection-over-union,IOU)指標;計算每一個第二圖案影像202B與第二參考影像的IOU指標;計算每一個第三圖案影像202C與第三參考影像203的IOU指標;計算每一個第四圖案影像202D與第四參考影像的IOU指標以及計算每一個第五圖案影像202E與第五參考影像的IOU指標。之後,刪除具有小於預定IOU指標數值的其中一個或多個(也可能是零個)第一圖案影像202A、第二圖案影像202B、第三圖案影像202C、第四圖案影像202D和第五圖案影像202E。Next, according to the first reference image, the second reference image (not shown), the
請參照第4圖,第4圖係根據本說明書的一實施例所繪示,計算圖案影像與參考影像之IOU指標的方法簡化示意圖。以第三圖案影像202C和第三參考影像203為例,計算每一個第三圖案影像202C與第三參考影像203的IOU指標的方法,包括將每一個第三圖案影像202C與第三參考影像203二者的影像交集部分除以二者的影像聯集部分。其中,第三圖案影像202C與第三參考影像203二者的影像交集部分,係指第三圖案影像202C與第三參考影像203二者相互重疊的影像面積A1。第三圖案影像202C與第三參考影像203二者的影像聯集部分,係指第三圖案影像202C未與第三參考影像203重疊的影像面積A2,加上第三參考影像203未與第三圖案影像202C重疊的影像面積A3,再加上二者重疊的影像面積A1。IOU指標可以算式(1)表示: IOU=A1/(A1+A2+A3) ....(1) 在本實施例中,參照計算所得的結果,刪除IOU指標數值小於自訂的下限值的11張錯誤的第三圖案影像202C (如第3圖實心方框所繪示),餘留下22個剩餘的第三圖案影像202C。Please refer to FIG. 4. FIG. 4 is a simplified schematic diagram of a method for calculating the IOU index of a pattern image and a reference image according to an embodiment of the present specification. Taking the
在本說明書的一些實施例中,從第一圖案影像202A、第二圖案影像202B、第三圖案影像202C、第四圖案影像202D和第五圖案影像202E中移除複數個錯誤影像的步驟,還可以包括評估每一個第一圖案影像202A與第一參考影像之間的相關程度;評估每一個第二圖案影像202B與第二參考影像之間的相關程度;評估每一個第三圖案影像202C與第三參考影像203之間的相關程度;評估每一個第四圖案影像202D與第四參考影像之間的相關程度以及評估每一個第五圖案影像202E與第五參考影像之間的相關程度。之後,刪除與相對應之第一參考影像、第二參考影像、第三參考影像、第四參考影像和第五參考影像相關程度低的其中一個或多個(也可能是零個)第一圖案影像202A、第二圖案影像202B、第三圖案影像202C、第四圖案影像202D和第五圖案影像202E。In some embodiments of this specification, the step of removing a plurality of false images from the
以第三圖案影像202C和第三參考影像203為例,評估每一個第三圖案影像202C與第三參考影像203之間的相關程度的步驟,包括計算每一個第三圖案影像202C與第三參考影像203之間的相關係數(correlation coefficient)。首先,分別獲取第三圖案影像202C其中之一者和第三參考影像203的影像畫素值。例如在本實施例中,第三圖案影像202C其中之一者的影像畫素值,可以由一個25個數字元素所構成的第一矩陣來代表;第三參考影像203的影像畫素值,可以由一個25個數字元素構成的第二矩陣來代表。接著,分別將第一矩陣和第二矩陣轉換為一個25個數字元素所構成的數列。例如,將第一矩陣轉換為第一數列A(x):[0 6 12.... 132 138 134];將第二矩陣轉換為第二數列B(y):[50 52 54....94 96 98]。計算第一數列A(x)和第二數列B(y)的相關係數rxy
,相關係數rxy
以算式(2)表示:其中Sx
和Sy
分別為第一數列A(x)和第二數列B(y)的標準差。在本實施例中,參照計算所得的結果,刪除相關係數數值小於自訂的值的11張錯誤的第三圖案影像202C(如第3圖實線方框所繪示),餘留下22個剩餘的第三圖案影像202C。Taking the
而值得注意的是,從第一圖案影像202A、第二圖案影像202B、第三圖案影像202C、第四圖案影像202D和第五圖案影像202E中移除複數個錯誤影像的步驟,可以單獨進行IOU指標的計算或單獨進行相關性的評估,也可以同時包含二者。It is worth noting that the step of removing a plurality of erroneous images from the
然後,再由對應於焦點中間值的多個剩餘的圖案影像之中選取至少二者,進行第二疊圖步驟205,以形成一個標準影像(步驟104)。請參照第5圖,第5圖係根據本說明書的一實施例,繪示在移除複數個錯誤影像之後,進行第二疊圖步驟205的實施方法。在本說明書的一些實施例之中,第二疊圖步驟205包括下述步驟:首先,由已移除複數個錯誤影像(以叉號表示)後的剩餘之第一圖案影像202A、第二圖案影像202B、第三圖案影像202C、第四圖案影像202D和第五圖案影像202E之中,分別選取多個採用相同的光能量所擷取的圖案影像。例如在本實施例中,選取採用能量2所擷取的11張第一圖案影像202A、11張第二圖案影像202B、7張第三圖案影像202C、10張第四圖案影像202D和9張第五圖案影像202E。Then, at least two of the remaining pattern images corresponding to the median value of the focus are selected, and the
再分別由這些採用相同的光能量所擷取的圖案影像 (11張第一圖案影像202A、11張第二圖案影像202B、7張第三圖案影像202C、10張第四圖案影像202D和9張第五圖案影像202E) 中,選取對應於焦點位置中間值(焦距為0微米)的多個圖案影像(例如,分別如虛線方框所示的3張第一圖案影像202A、3張第二圖案影像202B、3張第三圖案影像202C、3張第四圖案影像202D和3張第五圖案影像202E),再分別對所選取的3張第一圖案影像202A、3張第二圖案影像202B、3張第三圖案影像202C、3張第四圖案影像202D和3張第五圖案影像202E進行第二疊圖步驟205,藉以形成具有重疊影像的第一標準影像206A、第二標準影像206B、第三標準影像206C、第四標準影像206D和第五標準影像206E。The pattern images (11
其中,第二疊圖步驟205的實施方法大致與前述第一疊圖步驟204類似,都是選取對應於焦點位置中間值的圖案影像。差別僅在於第二疊圖步驟205所選擇的圖案影像,必須是採用相同的光能量所擷取的圖案影像。Wherein, the implementation method of the second stacking
後續,根據第一標準影像206A、第二標準影像206B、第三標準影像206C、第四標準影像206D和第五標準影像206E對已移除錯誤影像(以叉號表示)後的剩餘第一圖案影像202A、第二圖案影像202B、第三圖案影像202C、第四圖案影像202D和第五圖案影像202E,進行相似度分析,以分別獲取複數個第一影像分數、第二影像分數、第三影像分數、第四影像分數和第五影像分數(步驟105)。Subsequently, the remaining first patterns after the error images (indicated by the cross) are removed according to the first
在本說明書的一些實施例中,根據第一標準影像206A、第二標準影像206B、第三標準影像206C、第四標準影像206D和第五標準影像206E所進行的相似度分析,包括計算每一張剩餘的第一圖案影像202A與第一標準影像20A6二者之間的第一相關係數、計算每一張剩餘的第二圖案影像202B與第二標準影像206B二者之間的第二相關係數、計算每一張剩餘的第三圖案影像202C與第三標準影像206C二者之間的第三相關係數、計算每一張剩餘的第四圖案影像202D與第四標準影像206D二者之間的第四相關係數以及計算每一張剩餘的第五圖案影像202E與第五標準影像206E二者之間的第五相關係數。In some embodiments of the present specification, the similarity analysis performed according to the first
所獲得的每一個第一相關係數、第二相關係數、第三相關係數、第四相關係數以及第五相關係數,經過數據的標準化(normalization)之後,即可分別作為每一張剩餘的第一圖案影像202A、第二圖案影像202B、第三圖案影像202C、第四圖案影像202D以及第五圖案影像202E的第一影像分數、第二影像分數、第三影像分數、第四影像分數和第五影像分數。Each of the obtained first correlation coefficient, second correlation coefficient, third correlation coefficient, fourth correlation coefficient and fifth correlation coefficient can be used as each remaining first correlation coefficient after normalization of data.
後續,藉由第一影像分數、第二影像分數、第三影像分數、第四影像分數和第五影像分數來判斷最佳焦點位置(步驟106)。在本說明書的一些實施例之中,判斷最佳焦點位置的步驟,包括根據每一張剩餘的第一圖案影像202A、第二圖案影像202B、第三圖案影像202C、第四圖案影像202D以及第五圖案影像202E的第一影像分數、第二影像分數、第三影像分數、第四影像分數和第五影像分數,配合其所對應的焦點位置(焦距),分別做成一條第一焦點-影像分數關係曲線601、一條第二焦點-影像分數關係曲線602、一條第三焦點-影像分數關係曲線603、一條第四焦點-影像分數關係曲線604和一條第五焦點-影像分數關係曲線605。Next, the best focus position is determined according to the first image score, the second image score, the third image score, the fourth image score and the fifth image score (step 106). In some embodiments of this specification, the step of judging the best focus position includes according to each remaining
例如,請參照第6圖,第6圖係根據本說明書的一實施例所繪示用來判斷最佳焦點位置的複數條焦點-影像分數關係曲線圖。其中,第6圖橫軸為焦點位置(焦距),縱軸為經過標準化之後的影像分數。其中,焦點位置分布於焦距為-6微米至6微米之間,影像分數則分布於-0.1至0.1之間。這顯示每一張剩餘的第一圖案影像202A、第二圖案影像202B、第三圖案影像202C、第四圖案影像202D以及第五圖案影像202E,分別與第一標準影像206A、第二標準影像206B、第三標準影像206C、第四標準影像206D和第五標準影像206E具有極高的相似度。換言之,大多數導因於背景雜訊過大、微影失焦或量測位置錯誤等問題的失效影像已被剔除。For example, please refer to FIG. 6 . FIG. 6 is a graph showing a plurality of focus-image score relationships for determining the best focus position according to an embodiment of the present specification. Among them, the horizontal axis of Fig. 6 is the focal position (focal length), and the vertical axis is the image score after normalization. Among them, the focal position is distributed between the focal length of -6 microns to 6 microns, and the image fraction is distributed between -0.1 to 0.1. This shows that each of the remaining
接著,分別對第一焦點-影像分數關係曲線601、第二焦點-影像分數關係曲線602、第三焦點-影像分數關係曲線603、第四焦點-影像分數關係曲線604和第五焦點-影像分數關係曲線605的影像分數進行線性迴歸(linear regression),以得到一條二次曲線( curve of second order)606。再對二次曲線605進行微分,所求得的二次曲線606的頂點607座標,即為最佳的焦點位置。在本實施例中,最佳的焦點位置為0.45微米。Next, compare the first focus-image
根據上述實施例,本說明書提供一種優化微影對焦參數的方法。其係採用影像分析方法,先選擇包括較佳焦距範圍的多個焦點位置來進行圖案影像的擷取。之後,由對應於這些焦點位置中間值的多個圖案影像之中選取多個圖案影像進行疊圖,以形成複數個參考影像。將參考影像與所擷取的圖案影像進行影像對比分析,藉以剔除因背景雜訊過大、微影失焦或量測位置錯等因素所造成的誤錯誤影像。剔除誤錯誤影像之後,再由對應於焦點位置中間值的剩餘圖案影像中選取至少二個來進行另一次疊圖,以得到複數個標準影像。將標準影像與剩餘的圖案影像進行再一次的影像對比分析,計算出可代表每一個剩餘的圖案影像品質的影像分數,再根據影像分數進行統計分析,得出最佳的焦點位置。在一些實施例中,影像分數係指每一個剩餘的圖案影像與其所對應之標準影像二者之間的相關程度。According to the above-mentioned embodiments, the present specification provides a method for optimizing lithography focus parameters. It adopts an image analysis method, and firstly selects a plurality of focal positions including a better focal length range to capture the pattern image. Afterwards, a plurality of pattern images are selected from among the plurality of pattern images corresponding to the intermediate values of the focal positions and overlapped to form a plurality of reference images. Perform image comparison analysis between the reference image and the captured pattern image, so as to eliminate erroneous images caused by factors such as excessive background noise, out-of-focus lithography, or wrong measurement positions. After the erroneous images are eliminated, at least two of the remaining pattern images corresponding to the median value of the focus position are selected to perform another overlay to obtain a plurality of standard images. The standard image and the remaining pattern images are compared and analyzed again to calculate the image score representing the quality of each remaining pattern image, and then statistical analysis is performed according to the image score to obtain the best focus position. In some embodiments, the image score refers to the degree of correlation between each remaining pattern image and its corresponding standard image.
藉由本案上述實施例所提供的微影對焦參數優化方法,可以在微影製程中即時地剔除可能造成量測失效的錯誤影像,確保製程的監控,並且獲得更好的對焦,以優化微影製程的操作品質。With the lithography focusing parameter optimization method provided by the above-mentioned embodiments of the present application, the erroneous images that may cause measurement failure can be eliminated in the lithography process in real time, so as to ensure the monitoring of the process, and obtain better focusing to optimize the lithography Operational quality of the process.
雖然本說明書已以較佳實施例揭露如上,然其並非用以限定本發明,任何該技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although this specification has disclosed the above with preferred embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the scope of the appended patent application.
101:以複數個焦點位置對至少一個受測圖案進行影像擷取步驟,以獲取複數個圖案影像102:由複數個圖案影像中選取對應於焦點位置中間值的多個圖案影像,並進行第一疊步驟,以形成複數個參考影像103:根據這些參考影像從複數個圖案影像中移除複數個錯誤影像104:再由對應於焦點位置中間值的多個剩餘的圖案影像之中選取至少二者,進行第二疊圖步驟,以形成複數個標準影像105:根據這些標準影像對已移除複數個錯誤影像後的剩餘圖案影像進行相似度分析,以分別獲取複數個影像分數106:藉由這些影像分數來判斷出最佳焦點位置201A:第一受測圖案201B:第二受測圖案201C:第三受測圖案201D:第四受測圖案201E:第五受測圖案202A:第一圖案影像202B:第二圖案影像202C:第三圖案影像202D:第四圖案影像202D:第五圖案影像204、205:疊圖步驟203:第三參考影像206A:第一標準影像206B:第二標準影像206C:第三標準影像206D:第四標準影像206E:第五標準影像601、602、603、604、605:焦點-影像分數關係曲線606:二次曲線607:二次曲線頂點101: Perform an image capturing step on at least one tested pattern with a plurality of focus positions to obtain a plurality of pattern images 102: Select a plurality of pattern images corresponding to the median value of the focus position from the plurality of pattern images, and perform a first Stacking steps to form a plurality of reference images 103: remove a plurality of false images 104 from a plurality of pattern images according to these reference images: and select at least two from among a plurality of remaining pattern images corresponding to the median value of the focus position , perform a second stacking step to form a plurality of standard images 105: perform similarity analysis on the remaining pattern images after removing the plurality of wrong images according to these standard images to obtain a plurality of image scores 106: by these 201A: First tested pattern 201B: Second tested pattern 201C: Third tested pattern 201D: Fourth tested pattern 201E: Fifth tested pattern 202A: First pattern image 202B: Second pattern image 202C: Third pattern image 202D: Fourth pattern image 202D: Fifth pattern image 204, 205: Overlay step 203: Third reference image 206A: First standard image 206B: Second standard image 206C : third standard image 206D: fourth standard image 206E: fifth standard image 601, 602, 603, 604, 605: focus-image score relationship curve 606: quadratic curve 607: quadratic curve vertex
為了使發明書上述實施例及其他目的、特徵和優點能更明顯易懂,特舉數個較佳實施例,並配合所附圖式,作詳細說明如下: 第1圖係根據本說明書的一實施例所繪示的一種優化微影對焦參數的方法流程圖; 第2圖係根據本說明書的一實施例繪示對至少一個受測圖案進行影像擷取之後的結果; 第3圖係繪示由第2圖中的55張第三圖案影像中選取對應於焦點位置中間值的12張第三圖案影像進行第一疊圖步驟,以形成一個參考影像的方法示意圖; 第4圖係根據本說明書的一實施例所繪示,計算圖案影像與參考影像之IOU指標的方法簡化示意圖; 第5圖係根據本說明書的一實施例繪示在移除複數個錯誤影像之後,進行第二疊圖步驟的實施方法:以及 第6圖係根據本說明書的一實施例所繪示用來判斷出最佳焦點位置的複數條焦點-影像分數關係曲線圖。In order to make the above-mentioned embodiments and other purposes, features and advantages of the present invention more obvious and easy to understand, a few preferred embodiments are given and described in detail as follows in conjunction with the accompanying drawings: A flow chart of a method for optimizing lithography focusing parameters according to the embodiment; FIG. 2 shows the result after image capturing of at least one tested pattern according to an embodiment of the present specification; FIG. 3 shows the result From the 55 third pattern images in Fig. 2, 12 third pattern images corresponding to the median value of the focal position are selected to perform the first overlay step to form a reference image. Fig. 4 is based on this specification. Figure 5 shows a simplified schematic diagram of a method for calculating the IOU index of a pattern image and a reference image according to an embodiment of the present specification; Figure 5 shows a second overlay step after removing a plurality of wrong images according to an embodiment of the present specification The implementation method of : and FIG. 6 is a graph showing a plurality of focus-image score relationship curves used to determine the optimal focus position according to an embodiment of the present specification.
101:以複數個焦點位置對至少一個受測圖案進行影像擷取步驟,以獲取複數個圖案影像 101: Perform an image capturing step on at least one tested pattern with a plurality of focus positions to obtain a plurality of pattern images
102:由複數個圖案影像中選取對應於焦點位置中間值的多個圖案影像,並進行第一疊步驟,以形成複數個參考影像 102: Select a plurality of pattern images corresponding to the median value of the focus position from the plurality of pattern images, and perform a first stack of steps to form a plurality of reference images
103:根據這些參考影像從複數個圖案影像中移除複數個錯誤影像 103: Remove a plurality of erroneous images from a plurality of pattern images according to these reference images
104:再由對應於焦點位置中間值的多個剩餘圖案影像之中選取至少二者,進行第二疊圖步驟,以形成複數個標準影像 104: Select at least two of the remaining pattern images corresponding to the median value of the focus position, and perform a second overlay step to form a plurality of standard images
105:根據這些標準影像對已移除複數個錯誤影像後的剩餘 圖案影像進行相似度分析,以分別獲取複數個影像分數 105: According to these standard image pairs, the remainder after removing a plurality of erroneous images Similarity analysis is performed on pattern images to obtain multiple image scores separately
106:藉由這些影像分數來判斷出最佳焦點位置 106: Use these image scores to determine the best focus position
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107141121A TWI766127B (en) | 2018-11-19 | 2018-11-19 | Method for optimizing focal parameters of lithographic process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107141121A TWI766127B (en) | 2018-11-19 | 2018-11-19 | Method for optimizing focal parameters of lithographic process |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202020933A TW202020933A (en) | 2020-06-01 |
TWI766127B true TWI766127B (en) | 2022-06-01 |
Family
ID=72175494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107141121A TWI766127B (en) | 2018-11-19 | 2018-11-19 | Method for optimizing focal parameters of lithographic process |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI766127B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080233487A1 (en) * | 2007-03-21 | 2008-09-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and System for Optimizing Lithography Focus and/or Energy Using a Specially-Designed Optical Critical Dimension Pattern |
US20100039630A1 (en) * | 2008-07-31 | 2010-02-18 | Paul Francis Michaloski | Optimization of focused spots for maskless lithography |
TW201539226A (en) * | 2014-04-14 | 2015-10-16 | Asml Netherlands Bv | Flows of optimization for lithographic processes |
CN105785724A (en) * | 2016-05-20 | 2016-07-20 | 中国科学院微电子研究所 | Mask graph optimization method, optimal focal plane position measurement method and system |
US20160246168A1 (en) * | 2008-12-18 | 2016-08-25 | Asml Netherlands B.V | Method and system for lithography process-window-maximizing optical proximity correction |
-
2018
- 2018-11-19 TW TW107141121A patent/TWI766127B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080233487A1 (en) * | 2007-03-21 | 2008-09-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and System for Optimizing Lithography Focus and/or Energy Using a Specially-Designed Optical Critical Dimension Pattern |
US20100039630A1 (en) * | 2008-07-31 | 2010-02-18 | Paul Francis Michaloski | Optimization of focused spots for maskless lithography |
US20160246168A1 (en) * | 2008-12-18 | 2016-08-25 | Asml Netherlands B.V | Method and system for lithography process-window-maximizing optical proximity correction |
TW201539226A (en) * | 2014-04-14 | 2015-10-16 | Asml Netherlands Bv | Flows of optimization for lithographic processes |
CN105785724A (en) * | 2016-05-20 | 2016-07-20 | 中国科学院微电子研究所 | Mask graph optimization method, optimal focal plane position measurement method and system |
Also Published As
Publication number | Publication date |
---|---|
TW202020933A (en) | 2020-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4597859B2 (en) | Pattern qualification, pattern formation process, or pattern formation apparatus in the production of microlithographic patterns | |
JP7216822B2 (en) | Using Deep Learning Defect Detection and Classification Schemes for Pixel-Level Image Quantification | |
JP4906078B2 (en) | Method and apparatus for detecting defects in a reticle design pattern | |
US8213704B2 (en) | Methods and systems for detecting defects in a reticle design pattern | |
US6902855B2 (en) | Qualifying patterns, patterning processes, or patterning apparatus in the fabrication of microlithographic patterns | |
US7383530B2 (en) | System and method for examining mask pattern fidelity | |
CN107078073A (en) | The virtual checking system characterized for process window | |
JP5198397B2 (en) | Photomask characteristic detection apparatus and photomask characteristic detection method | |
US20160110859A1 (en) | Inspection method for contact by die to database | |
TWI750363B (en) | System, method and computer program product for systematic and stochastic characterization of pattern defects identified from a semiconductor wafer | |
TWI766127B (en) | Method for optimizing focal parameters of lithographic process | |
JP4950806B2 (en) | Defect inspection apparatus, defect inspection method, semiconductor device manufacturing system, and semiconductor device manufacturing method | |
TW202312099A (en) | Mask inspection for semiconductor specimen fabrication | |
US10068323B2 (en) | Aware system, method and computer program product for detecting overlay-related defects in multi-patterned fabricated devices | |
TWI717508B (en) | System, method and computer program product for detecting defects in a fabricated target component using consistent modulation for the target and reference components | |
JP2000258349A (en) | Apparatus for visual examination of photomask | |
TWI515428B (en) | Electron beam inspection optimization | |
Fanton | ess Wind |