TWI765740B - Symmetrical switching type high boost dc converter - Google Patents
Symmetrical switching type high boost dc converter Download PDFInfo
- Publication number
- TWI765740B TWI765740B TW110121010A TW110121010A TWI765740B TW I765740 B TWI765740 B TW I765740B TW 110121010 A TW110121010 A TW 110121010A TW 110121010 A TW110121010 A TW 110121010A TW I765740 B TWI765740 B TW I765740B
- Authority
- TW
- Taiwan
- Prior art keywords
- converter
- diode
- capacitor
- boost
- voltage
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 23
- 239000003990 capacitor Substances 0.000 claims description 42
- 230000008878 coupling Effects 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 238000005859 coupling reaction Methods 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 22
- 238000005516 engineering process Methods 0.000 description 9
- 238000010248 power generation Methods 0.000 description 9
- 230000009471 action Effects 0.000 description 7
- 238000004804 winding Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
本發明係有關於一種對稱切換型高升壓直流轉換器,尤其是指一種應用於再生能源,其同時具有切換式電感升壓功能及耦合電感倍增模組升壓功能,可使轉換器的升壓比具有變壓器匝數比n,達到高功率應用、高升壓增益及高轉換效率,而在其整體施行使用上更增實用功效特性者。The present invention relates to a symmetrical switching type high-boost DC converter, in particular to a regenerative energy source, which has both a switching inductance boosting function and a coupled inductance multiplying module boosting function, so that the boosting of the converter can be improved. The voltage ratio has the transformer turns ratio n, which achieves high power applications, high boost gain and high conversion efficiency, and enhances utility characteristics in its overall implementation.
按,地球升溫情況加劇使地球氣候異常變化嚴重,世界各國均開始積極審視眼前這嚴重的問題,因此,從1997年12月有38個國家及歐盟在日本簽署「京都議定書」開始,中間經2015年法國巴黎舉行的第21屆聯合國氣候變化會議[COP 21],通過歷史性的「巴黎協定」,195個與會國家一致同意控制溫室氣體的排放及至工業化至2100年前全球升溫不超過攝氏2度且努力控制於1.5度內,再到2018年於波蘭舉辦的第24屆聯合國氣候變化會議[COP 24],均不斷確保各國碳減排的國際標準與減碳目標。隨著太陽能與風力發電技術提升與成本漸降,再生能源的發電技術開發與電源轉換的高效率技術是未來科技發展必然的趨勢,如此,可避免石化能源過度使用,以減少二氧化碳排放量。According to the fact that the increase in the temperature of the earth has caused serious changes in the earth's climate, all countries in the world have begun to actively examine this serious problem. Therefore, from December 1997, 38 countries and the European Union signed the "Kyoto Protocol" in Japan, and in the middle of 2015 At the 21st United Nations Climate Change Conference [COP 21] held in Paris, France, through the historic "Paris Agreement", 195 participating countries unanimously agreed to control greenhouse gas emissions and to industrialize until 2100. Global warming does not exceed 2 degrees Celsius And efforts are made to control it within 1.5 degrees, and then to the 24th United Nations Climate Change Conference [COP 24] held in Poland in 2018, all countries will continue to ensure international standards and carbon reduction targets for carbon reduction. With the improvement of solar and wind power generation technology and the gradual cost reduction, the development of renewable energy power generation technology and the high-efficiency technology of power conversion are the inevitable trends of future technological development. In this way, excessive use of fossil energy can be avoided and carbon dioxide emissions can be reduced.
再生能源或綠色能源方面,常見有太陽能、潮汐能、風力能、水力能、生質能、地熱能與燃料電池等,在這些再生能源中以太陽能及燃料電池發電系統的技術在分散式之直流發電系統中,最常被應用與討論。再生能源分散式發電電力系統係包含太陽能組件、燃料電池組件、高升壓直流轉換器[high step-up dc-dc converter]、逆變器[inverter,dc-dc power converter]及負載或電網。以太陽能發電系統而言,太陽能陣列將光能轉換為電能,而每個太陽能陣列可透過數個太陽能模組串聯或並聯所組成,但是太陽能陣列串聯過多會造成晶格不匹配[lattice mismatch],或因無法避免遮蔽效應影響,因此限制了太陽能陣列的輸出電壓,通常低於50V,所以該系統需要具有高升壓轉換器以匯入高直流排電壓400V,以作為後級DC-AC變頻器的高直流輸入電壓,再由變頻器輸出功率給AC負載[如馬達]或與市電並聯,因此,高升壓轉換器在分散式發電系統中扮演著很重要的角色。In terms of renewable energy or green energy, solar energy, tidal energy, wind energy, hydraulic energy, biomass energy, geothermal energy and fuel cells are common. In the power generation system, it is most often used and discussed. The renewable energy distributed power generation system includes solar modules, fuel cell modules, high step-up dc-dc converters, inverters (inverters, dc-dc power converters), and loads or grids. For solar power generation systems, solar arrays convert light energy into electrical energy, and each solar array can be composed of several solar modules in series or in parallel, but too many solar arrays in series will cause lattice mismatch. Or because the shading effect cannot be avoided, the output voltage of the solar array is limited, which is usually lower than 50V, so the system needs to have a high boost converter to sink the high DC voltage of 400V as a downstream DC-AC inverter The high DC input voltage of the inverter is then used to output power to the AC load (such as a motor) or in parallel with the mains. Therefore, the high boost converter plays an important role in the distributed power generation system.
在分散式發電系統中,太陽能發電及燃料電池是最重要的再生能源之一,但是在居家應用中,為了使用環境的安全以及可靠度,再生能源的輸出側一般都是低直流電壓,通常低於40V dc,為了後續併網發電或連接至直流微電網的需求,先透過升壓型轉換器提升低電壓至高電壓直流匯流排,通常提升電壓約10倍左右,以產生變頻器[DC-AC Inverter]所需要的高直流電壓。應用再生能源之電力系統,例如:對一個單相交流220V的電網系統而言,此高電壓直流匯流排通常為380V~400V,以利DC-AC後端變頻器的負載應用或併聯市電使用。 In distributed power generation systems, solar power generation and fuel cells are one of the most important renewable energy sources, but in home applications, for the safety and reliability of the use environment, the output side of renewable energy is generally low DC voltage, usually low At 40V dc , for the subsequent grid-connected power generation or connection to the DC micro-grid, the low-voltage to high-voltage DC busbar is firstly upgraded through a boost converter, usually about 10 times, to generate an inverter [DC-AC Inverter] required high DC voltage. Power systems using renewable energy, for example, for a single-phase AC 220V power grid system, the high-voltage DC busbar is usually 380V~400V, which is convenient for the load application of DC-AC back-end inverters or the use of parallel mains.
然而,由上述高升壓技術可知,傳統切換電感升壓式技術雖可達到電路簡單,能提升轉換器之電壓轉換比的預期功效,但也在其實際施行使用上發現,該技術並無法再進一步提升轉換器升壓比;另,耦合電感升壓式技術則係因為電路拓樸本身限制,而無法具有切換電感的升壓功能,致令其在整體電路設計上仍存在有改進之空間。However, it can be seen from the above high boosting technology that although the traditional switching inductor boosting technology can achieve the expected effect of simple circuit and can improve the voltage conversion ratio of the converter, it is also found in its actual implementation that this technology can no longer be used. The boost ratio of the converter is further improved; in addition, the coupled inductor boost technology cannot have the boost function of switching inductors due to the limitation of the circuit topology itself, so there is still room for improvement in the overall circuit design.
緣是,發明人有鑑於此,秉持多年該相關行業之豐富設計開發及實際製作經驗,針對現有之結構及缺失再予以研究改良,提供一種對稱切換型高升壓直流轉換器,以期達到更佳實用價值性之目的者。The reason is that, in view of this, the inventor, adhering to years of rich experience in design, development and actual production in the related industry, researches and improves the existing structure and defects, and provides a symmetrical switching type high-boost DC converter, in order to achieve a better The purpose of practical value.
本發明之主要目的在於提供一種對稱切換型高升壓直流轉換器,主要係應用於再生能源,其同時具有切換式電感升壓功能及耦合電感倍增模組升壓功能,可使轉換器的升壓比具有變壓器匝數比n,達到高功率應用、高升壓增益及高轉換效率,而在其整體施行使用上更增實用功效特性者。The main purpose of the present invention is to provide a symmetrical switching type high-boost DC converter, which is mainly used in renewable energy sources, and has both a switching inductance boosting function and a coupled inductance multiplication module boosting function, which can increase the boosting of the converter. The voltage ratio has the transformer turns ratio n, which achieves high power applications, high boost gain and high conversion efficiency, and enhances utility characteristics in its overall implementation.
為令本發明所運用之技術內容、發明目的及其達成之功效有更完整且清楚的揭露,茲於下詳細說明之,並請一併參閱所揭之圖式及圖號:In order to make the technical content used in the present invention, the purpose of the invention and the effect achieved by the present invention more completely and clearly disclosed, it is explained in detail below, and please refer to the disclosed drawings and drawing numbers together:
首先,請參閱第一圖本發明之電路圖所示,本發明之轉換器(1)主要係於輸入電壓 之正極分別連接第一電容 之正極、第一功率開關 之第一端及第一耦合電感一次側 之第一端,該第一耦合電感一次側 形成有第一磁化電感 ,該輸入電壓 之負極分別連接第二電容 之負極、第二功率開關 之第二端及第二耦合電感一次側 之第一端,該第二耦合電感一次側 形成有第二磁化電感 ,該第一電容 之負極分別連接該第二電容 之正極、第三電容 之負極及第四電容 之正極,該第一功率開關 之第二端分別連接該第二耦合電感一次側 之第二端及第四二極體 之負極,該第一耦合電感一次側 之第二端分別連接該第二功率開關 之第一端及第三二極體 之正極,該第三二極體 之負極分別連接該第三電容 之正極、第六電容 之負極及第二二極體 之正極,該第六電容 之正極分別連接第五電容 之負極及第二耦合電感二次側 之第二端,且於該第六電容 之正極與該第二耦合電感二次側 之第二端之間形成有漏電感 ,該第二二極體 之負極分別連接第一耦合電感二次側 之第二端及第一二極體 之正極,該第一耦合電感二次側 之第一端與該第二耦合電感二次側 之第一端相連接,該第一二極體 之負極分別連接該第五電容 之正極及負載 之第一端,該負載 之第二端則分別連接該第四電容 之負極及該第四二極體 之正極。 First of all, please refer to the circuit diagram of the present invention as shown in the first figure, the converter (1) of the present invention is mainly related to the input voltage The positive poles are respectively connected to the first capacitor The positive pole, the first power switch the first end and the primary side of the first coupled inductor the first end, the primary side of the first coupled inductor A first magnetizing inductance is formed , the input voltage The negative poles are respectively connected to the second capacitor The negative pole, the second power switch the second end and the primary side of the second coupled inductor the first end of the second coupled inductor primary side A second magnetizing inductance is formed , the first capacitor The negative poles are respectively connected to the second capacitor The positive electrode, the third capacitor The negative electrode and the fourth capacitor the positive pole of the first power switch The second ends are respectively connected to the primary side of the second coupled inductor the second end and the fourth diode the negative pole, the primary side of the first coupled inductor The second ends are respectively connected to the second power switch the first terminal and the third diode the positive electrode, the third diode The negative poles are respectively connected to the third capacitor The positive electrode, the sixth capacitor The negative electrode and the second diode the positive pole, the sixth capacitor The positive poles are respectively connected to the fifth capacitor the negative pole and the secondary side of the second coupled inductor the second end of the sixth capacitor the positive pole and the secondary side of the second coupled inductor A leakage inductance is formed between the second ends of , the second diode The negative poles are respectively connected to the secondary side of the first coupling inductor the second terminal and the first diode the positive pole, the secondary side of the first coupled inductor the first end and the secondary side of the second coupled inductor connected to the first end of the first diode The negative poles are respectively connected to the fifth capacitor positive and load the first end of the load The second terminals are respectively connected to the fourth capacitor the negative electrode and the fourth diode the positive pole.
而對該轉換器(1)之電路動作原理作簡易分析,以確定該轉換器(1)之高升壓性能;假設:And a simple analysis of the circuit operation principle of the converter (1) is carried out to determine the high boost performance of the converter (1); it is assumed that:
1.第一功率開關 與第二功率開關 以交錯式驅動。 1. The first power switch with second power switch Drive in a staggered manner.
2.轉換器(1)操作於連續導通模式[CCM]。2. The converter (1) operates in continuous conduction mode [CCM].
3.轉換器(1)已達到穩態。3. Converter (1) has reached steady state.
4.電路中所有開關及二極體皆為理想元件。4. All switches and diodes in the circuit are ideal components.
5.電路中所有電感以及電容皆為理想元件,不具有寄生阻抗。5. All inductors and capacitors in the circuit are ideal components without parasitic impedance.
6.各電容相當大,可忽略電壓漣波,使得電容電壓為常數,故電容電壓可視為電壓源,輸出電壓視 為常數。 6. Each capacitor is quite large, and the voltage ripple can be ignored, so that the capacitor voltage is constant, so the capacitor voltage can be regarded as a voltage source, and the output voltage depends on the output voltage. is a constant.
且根據各開關切換和各二極體導通與否,可以將該轉換器(1)在一個切換週期的動作,分成四個線性階段,在一個切換週期 的電力轉換器之時序及波形,請再一併參閱第二圖本發明之時序圖所示: And according to the switching of each switch and the conduction of each diode, the action of the converter (1) in one switching cycle can be divided into four linear stages, and in one switching cycle For the timing and waveform of the power converter, please also refer to the second diagram of the timing diagram of the present invention:
預備階段[ ]:[第一功率開關 :ON、第二功率開關 :ON、第一二極體 :OFF、第二二極體 :ON、第三二極體 :OFF、第四二極體 :OFF]:請再一併參閱第三圖本發明之預備階段等效線性電路圖所示,在預備階段時,該第一功率開關 與該第二功率開關 導通[ON]持續一段時間,該第一二極體 、該第三二極體 、該第四二極體 皆因逆向偏壓而OFF,此時該第一磁化電感 、該第二磁化電感 因跨該輸入電壓 ,則電流以斜率 、 線性上升。當該第一功率開關 由ON切換至OFF時,該第二二極體 由ON切換至OFF,該第一二極體 、該第四二極體 由OFF切換至ON,則該轉換器(1)進入在一個切換週期 下之第一階段電路動作。 preparatory stage ]: [First power switch : ON, second power switch : ON, first diode : OFF, second diode : ON, third diode : OFF, fourth diode : OFF]: Please also refer to Figure 3, as shown in the equivalent linear circuit diagram of the preliminary stage of the present invention, in the preliminary stage, the first power switch with this second power switch Conduction [ON] continues for a period of time, the first diode , the third diode , the fourth diode are all turned OFF due to reverse bias, at this time the first magnetizing inductance , the second magnetizing inductance due to the input voltage across this , then the current slopes , rise linearly. When the first power switch When switching from ON to OFF, the second diode switched from ON to OFF, the first diode , the fourth diode switched from OFF to ON, the converter (1) enters in a switching cycle The following first stage circuit operation.
第一階段[ ]:[第一功率開關 :OFF、第二功率開關 :ON、第一二極體 :ON、第二二極體 :OFF、第三二極體 :OFF、第四二極體 :ON]:請再一併參閱第四圖本發明之第一階段等效線性電路圖所示,該第一功率開關 已由ON切換至OFF,該第二二極體 由ON切換至OFF,該第一二極體 、該第四二極體 由OFF切換至ON,該第二功率開關 保持為ON,此時該第一磁化電感 因跨該輸入電壓 ,則電流以斜率 線性上升,第二磁化電感電流 以斜率 線性下降,當該第一功率開關 由OFF切換至ON,而該第二二極體 由OFF切換至ON,該第一二極體 、該第四二極體 由ON切換至OFF時,則該轉換器(1)進入在一個切換週期 下之第二階段電路動作。 The first stage[ ]: [First power switch : OFF, second power switch : ON, first diode : ON, second diode : OFF, third diode : OFF, fourth diode :ON]: Please also refer to the fourth figure of the first-stage equivalent linear circuit diagram of the present invention, the first power switch has been switched from ON to OFF, the second diode switched from ON to OFF, the first diode , the fourth diode switched from OFF to ON, the second power switch remains ON, at this time the first magnetizing inductance due to the input voltage across this , then the current slopes rising linearly, the second magnetizing inductor current with slope drops linearly when the first power switch switched from OFF to ON, and the second diode switched from OFF to ON, the first diode , the fourth diode When switching from ON to OFF, the converter (1) enters a switching cycle in The following second stage circuit operation.
第二階段[ ]:[第一功率開關 :ON、第二功率開關 :ON、第一二極體 :OFF、第二二極體 :ON、第三二極體 :OFF、第四二極體 :OFF]:請再一併參閱第五圖本發明之第二階段等效線性電路圖所示,本階段該第一功率開關 由OFF切換至ON,該第二功率開關 保持為ON,而該第二二極體 由OFF切換至ON,該第一二極體 、該第四二極體 由ON切換至OFF,此時電路動作與預備階段相同;當該第二功率開關 由ON切換至OFF時,則該轉換器(1)進入在一個切換週期 下之第三階段電路動作。 second stage[ ]: [First power switch : ON, second power switch : ON, first diode : OFF, second diode : ON, third diode : OFF, fourth diode : OFF]: Please also refer to the second-stage equivalent linear circuit diagram of the present invention in Fig. 5, the first power switch in this stage switched from OFF to ON, the second power switch remains ON while the second diode switched from OFF to ON, the first diode , the fourth diode From ON to OFF, the circuit action is the same as the preparatory stage; when the second power switch When switching from ON to OFF, the converter (1) enters a switching cycle in The third stage circuit action below.
第三階段[ ]:[第一功率開關 :ON、第二功率開關 :OFF、第一二極體 :ON、第二二極體 :OFF、第三二極體 :ON、第四二極體 :OFF]:請再一併參閱第六圖本發明之第三階段等效線性電路圖所示,該第二功率開關 已由ON轉變為OFF,則該第二二極體 由ON切換至OFF,此時該第一二極體 、該第三二極體 由OFF切換至ON,該第一功率開關 保持為ON,此時該第二磁化電感 因跨該輸入電壓 ,電流以斜率 線性上升,則第一磁化電感電流 以斜率 線性下降,當該第一功率開關 由OFF切換至ON,而該第二二極體 由OFF切換至ON,該第一二極體 、該第三二極體 由ON切換至OFF時,則該轉換器(1)進入在一個切換週期 下之第四階段電路動作。 The third phase[ ]: [First power switch : ON, second power switch : OFF, first diode : ON, second diode : OFF, third diode : ON, fourth diode : OFF]: Please also refer to the third-stage equivalent linear circuit diagram of the present invention in Fig. 6, the second power switch has been turned from ON to OFF, the second diode switch from ON to OFF, at this time the first diode , the third diode switched from OFF to ON, the first power switch remains ON, at this time the second magnetizing inductance due to the input voltage across this , the current with a slope rises linearly, the first magnetizing inductor current with slope drops linearly when the first power switch switched from OFF to ON, and the second diode switched from OFF to ON, the first diode , the third diode When switching from ON to OFF, the converter (1) enters a switching cycle in The fourth stage circuit action below.
第四階段[ ]:[第一功率開關 :ON、第二功率開關 :ON、第一二極體 :OFF、第二二極體 :ON、第三二極體 :OFF、第四二極體 :OFF]:請再一併參閱第七圖本發明之第四階段等效線性電路圖所示,本階段該第二功率開關 由OFF切換至ON,該第一功率開關 保持為ON,而該第二二極體 由OFF切換至ON,該第一二極體 、該第三二極體 由ON切換至OFF,此時電路動作與預備階段相同;當該第一功率開關 由ON切換至OFF時,則該轉換器(1)進入下一階段,完成一個切換週期 下之電路動作。 the fourth stage ]: [First power switch : ON, second power switch : ON, first diode : OFF, second diode : ON, third diode : OFF, fourth diode : OFF]: Please refer to Figure 7, which is the equivalent linear circuit diagram of the fourth stage of the present invention, the second power switch in this stage. switched from OFF to ON, the first power switch remains ON while the second diode switched from OFF to ON, the first diode , the third diode From ON to OFF, the circuit action is the same as the preparatory stage; when the first power switch When switching from ON to OFF, the converter (1) enters the next stage and completes a switching cycle The following circuit operates.
而依據上述電路動作分析,該轉換器(1)即可能到電壓轉換比:And according to the above circuit action analysis, the converter (1) is possible to the voltage conversion ratio:
另,以元件試誤法驗證所提出之數據及參數及電氣規格,請參下表1所示,使用IsSpice模擬軟體[請再一併參閱第八圖本發明之模擬電路示意圖所示],再以模擬結果驗證:輸入電壓
、輸出電壓
、導通比D之關係,以確認該轉換器(1)之高升壓比之性能,也同時確認該轉換器(1)之電路動作正確性。
模擬結果如下:The simulation results are as follows:
1.該轉換器(1)以交錯式切換操作之電氣規格驗證:1. The converter (1) is verified with electrical specifications for staggered switching operation:
輸入電壓 、輸出電壓 、導通比D,由電壓轉換比可算得當輸入電壓 、輸出電壓 之導通比D的理論值為0.64,請再一併參閱第九圖本發明之開關驅動信號 、 與輸入電壓 及輸出電壓 的模擬波形圖[交錯式切換操作]所示,由該第九圖可知,輸入電壓 、輸出電壓 時,導通比D的模擬值為0.74,其數值比理論值大許多,需進一步回歸分析探討升壓性能,否則轉換效率會不佳。 Input voltage ,The output voltage , the conduction ratio D, the input voltage can be calculated from the voltage conversion ratio ,The output voltage The theoretical value of the conduction ratio D is 0.64, please refer to the switch driving signal of the present invention in Figure 9. , with input voltage and output voltage As shown in the analog waveform diagram of [Interleaved Switching Operation], it can be seen from this ninth diagram that the input voltage ,The output voltage When , the analog value of the conduction ratio D is 0.74, which is much larger than the theoretical value. Further regression analysis is required to discuss the boost performance, otherwise the conversion efficiency will be poor.
2.該轉換器(1)以同步式切換操作之電氣規格驗證:2. The converter (1) is verified with electrical specifications for synchronous switching operation:
輸入電壓 、輸出電壓 、導通比D,由電壓轉換比可算得當輸入電壓 、輸出電壓 之導通比D的理論值為0.64,請再一併參閱第十圖本發明之開關驅動信號 、 與輸入電壓 及輸出電壓 的模擬波形圖[同步式切換操作]所示,由該第十圖可知,輸入電壓 、輸出電壓 時,導通比D的模擬值為0.65,其數值比理論值略大,這代表同步切換操作會具有佳的升壓性能和轉換效率。 Input voltage ,The output voltage , the conduction ratio D, the input voltage can be calculated from the voltage conversion ratio ,The output voltage The theoretical value of the conduction ratio D is 0.64. Please refer to the switch driving signal of the present invention in Figure 10. , with input voltage and output voltage As shown in the analog waveform diagram of [Synchronous switching operation], it can be seen from the tenth diagram that the input voltage ,The output voltage When , the analog value of the conduction ratio D is 0.65, which is slightly larger than the theoretical value, which means that the synchronous switching operation will have good boost performance and conversion efficiency.
而該轉換器(1)與相關文獻所發表之高升壓轉換器相比,具有較佳的高升壓轉換比及優勢,以下就該轉換器(1)與相關文中之高升壓轉換器,在電壓轉換比、開關應力、二極體數量及耦合電感繞組數做比較,詳細比較分項敘述如下[請再一併參閱下表2所示]:The converter (1) has better high boost conversion ratio and advantages compared with the high boost converters published in related literatures. The following describes the converter (1) and the high boost converters in related literatures. , compare the voltage conversion ratio, switching stress, the number of diodes and the number of coupled inductor windings. The detailed comparison is described as follows [please refer to Table 2 below]:
1.責任導通比比較:本發明之該轉換器(1)的電壓轉換比並無限制,而文獻[2]及[3]所提出之高升壓轉換器,由於要滿足上下均有升壓式轉換器之電路動作特性,故必須操作在D>0.5。因此,本發明之該轉換器(1)具有較大的工作應用範圍。1. Comparison of duty conduction ratio: the voltage conversion ratio of the converter (1) of the present invention is not limited, and the high boost converters proposed in the literature [2] and [3] have to meet the requirements of boosting both up and down. The circuit action characteristics of the converter must be operated at D>0.5. Therefore, the converter (1) of the present invention has a wider working application range.
2.電壓轉換比:請再一併參閱第十一圖本發明於匝數比n=1時之電壓轉換比比較曲線圖所示,本發明之該轉換器(1)在匝數比n=1時,其電壓增益雖略低於文獻[2]之轉換器,但其並無導通比的限制,且在n=3時,請再一併參閱第十二圖本發明於匝數比n=3時之電壓轉換比比較曲線圖所示,本發明之該轉換器(1)僅需操作在D=0.28則升壓比達10倍時,而文獻[2]雖升壓比高,但卻無法在D<0.5下操作,故無法達成10倍升壓。此外,本發明之該轉換器(1)在相同電氣條件,其電壓增益均大於文獻[1]傳統切換式電感高升壓轉換器,在n=3時,兩者電壓增益差距更是大。2. Voltage conversion ratio: Please refer to Figure 11. The voltage conversion ratio of the present invention when the turns ratio n=1 is shown in the comparison graph. The converter (1) of the present invention is at the turns ratio n=1 1, the voltage gain is slightly lower than that of the converter in the literature [2], but there is no restriction on the conduction ratio, and when n=3, please refer to the twelfth figure again. As shown in the comparison graph of the voltage conversion ratio when D = 3, the converter (1) of the present invention only needs to operate at D = 0.28 and the boost ratio is 10 times. However, it cannot operate under D<0.5, so it cannot achieve a 10-fold boost. In addition, under the same electrical conditions, the voltage gain of the converter (1) of the present invention is greater than that of the traditional switching inductance high boost converter in reference [1]. When n=3, the difference between the voltage gains is even greater.
3.開關電壓應力:本發明之該轉換器(1)在匝比n=1條件下,該轉換器(1)的開關應力小於輸出電壓的1/4,雖在D>0.5時略大於文獻[3]轉換器之開關應力,但是其電路架構卻相對於文獻[3]簡單許多。3. Switching voltage stress: under the condition of the turns ratio n=1 of the converter (1) of the present invention, the switching stress of the converter (1) is less than 1/4 of the output voltage, although it is slightly larger than the literature when D>0.5 [3] The switching stress of the converter, but its circuit structure is much simpler than the literature [3].
4.電感繞組做比較:本發明之該轉換器(1)及文獻[2],其電壓增益小於文獻[3]之轉換器,主要就是在於耦合電感繞組數少2組之原因。
因此,在元件數量差不多的條件下,本發明之該轉換器(1)具有高電壓轉換比之最佳應用價值。Therefore, under the condition that the number of components is similar, the converter (1) of the present invention has the best application value of high voltage conversion ratio.
參考文獻:references:
[1]L. S. Yang, T. J. Liang, and J. F. Chen, “Transformerless DC-DC converter with high step-up voltage gain,” IEEE Trans. Industrial Electronics, Vol. 56, No. 8, pp. 3144-3152, 2009. [1] LS Yang, TJ Liang, and JF Chen, “Transformerless DC-DC converter with high step-up voltage gain,” IEEE Trans. Industrial Electronics , Vol. 56, No. 8, pp. 3144-3152, 2009.
[2]K. C. Tseng and C. C. Huang, “High Step-Up High-Efficiency Interleaved Converter with Voltage Multiplier Module for Renewable Energy System,” IEEE Transactions on Power Electronics, Vol. 61, No. 3, pp. 1311-1319, March 2014. [2] KC Tseng and CC Huang, “High Step-Up High-Efficiency Interleaved Converter with Voltage Multiplier Module for Renewable Energy System,” IEEE Transactions on Power Electronics , Vol. 61, No. 3, pp. 1311-1319, March 2014.
[3]李欣達,具繞組交越耦合電感之嶄新交錯式高升壓DC-DC轉換器研製,碩士論文,崑山科技大學電機工程系,2017。[3] Li Xinda, Development of a New Interleaved High Boost DC-DC Converter with Winding Cross-Coupling Inductance, Master's Thesis, Department of Electrical Engineering, Kunshan University of Science and Technology, 2017.
藉由以上所述,本發明之使用實施說明可知,本發明與現有技術手段相較之下,本發明主要係具有下列優點:From the above, the use and implementation description of the present invention shows that compared with the prior art means, the present invention mainly has the following advantages:
1.簡單創新電路:轉換器電路對稱不複雜且元件少,利用切換式耦合電感技術,同時達到切換式電感及電壓倍增模組的功用,使轉換器達到高升壓之特性。1. Simple and innovative circuit: The converter circuit is not symmetrical and has few components. Using the switch-type coupled inductor technology, it achieves the functions of the switch-type inductor and the voltage multiplier module at the same time, so that the converter can achieve the characteristics of high boost.
2.較高升壓增益:不操作在極端寬大的導通責任比下,轉換器亦能具有高升壓的電壓轉換比,且可利用匝數比進一步提高轉換器之電壓增益。2. Higher boost gain: The converter can also have a high boost voltage conversion ratio without operating at an extremely wide turn-on duty ratio, and the turns ratio can be used to further increase the voltage gain of the converter.
3.較高功率應用:在不增加元件耐壓、耐流下,使轉換器可以處理更大的功率,最大輸出功率為1 kW。3. Higher power application: The converter can handle higher power without increasing the voltage and current resistance of the components, and the maximum output power is 1 kW.
4.較低電壓應力:在同樣功率的應用下,因轉換器之對稱架構,以分壓方式負擔一半的高輸出電壓,故可降低開關元件上的電壓應力。4. Lower voltage stress: Under the same power application, due to the symmetrical structure of the converter, half of the high output voltage is borne by the voltage division method, so the voltage stress on the switching element can be reduced.
5.高的轉換效率:因開關具有低電壓應力,故可用較低額定耐壓之開關,能降低導通電阻,使效率提升,亦可降低開關的成本,且交錯操作及對稱架構使電流均流分擔,在相同導通比下,除了可達成其他轉換器無法達到的高電壓增益,預期最高效率,可達92 %以上。5. High conversion efficiency: Because the switch has low voltage stress, a switch with a lower rated withstand voltage can be used, which can reduce the on-resistance, improve the efficiency, and also reduce the cost of the switch, and the interleaved operation and symmetrical structure allow the current to flow. Under the same conduction ratio, in addition to the high voltage gain that other converters cannot achieve, the expected maximum efficiency can reach more than 92%.
然而前述之實施例或圖式並非限定本發明之產品結構或使用方式,任何所屬技術領域中具有通常知識者之適當變化或修飾,皆應視為不脫離本發明之專利範疇。However, the foregoing embodiments or drawings do not limit the product structure or usage of the present invention, and any appropriate changes or modifications made by those with ordinary knowledge in the technical field should be regarded as not departing from the scope of the present invention.
綜上所述,本發明實施例確能達到所預期之使用功效,又其所揭露之具體構造,不僅未曾見諸於同類產品中,亦未曾公開於申請前,誠已完全符合專利法之規定與要求,爰依法提出發明專利之申請,懇請惠予審查,並賜准專利,則實感德便。To sum up, the embodiment of the present invention can indeed achieve the expected use effect, and the specific structure disclosed is not only not seen in similar products, but also has not been disclosed before the application, which fully complies with the provisions of the patent law In accordance with the requirements, I would like to file an application for an invention patent in accordance with the law, and I sincerely request that it be reviewed and granted the patent.
1:轉換器1: Converter
:輸入電壓 :Input voltage
:第一電容 : first capacitor
:第二電容 : second capacitor
:第三電容 : The third capacitor
:第四電容 : Fourth capacitor
:第五電容 : Fifth capacitor
:第六電容 : sixth capacitor
:第一功率開關 : first power switch
:第二功率開關 : Second power switch
:第一耦合電感一次側 : Primary side of the first coupled inductor
:第一耦合電感二次側 : Secondary side of the first coupled inductor
:第一磁化電感 : first magnetizing inductance
:第二耦合電感一次側 : Primary side of the second coupled inductor
:第二耦合電感二次側 : Secondary side of the second coupled inductor
:第二磁化電感 : Second magnetizing inductance
:漏電感 : leakage inductance
:第一二極體 : first diode
:第二二極體 : second diode
:第三二極體 : third diode
:第四二極體 : Fourth diode
:負載 :load
第一圖:本發明之電路圖The first picture: the circuit diagram of the present invention
第二圖:本發明之時序圖所The second figure: the timing diagram of the present invention
第三圖:本發明之預備階段等效線性電路圖Figure 3: Equivalent linear circuit diagram in the preliminary stage of the present invention
第四圖:本發明之第一階段等效線性電路圖Figure 4: Equivalent linear circuit diagram of the first stage of the present invention
第五圖:本發明之第二階段等效線性電路圖Figure 5: Equivalent linear circuit diagram of the second stage of the present invention
第六圖:本發明之第三階段等效線性電路圖Figure 6: Equivalent linear circuit diagram of the third stage of the present invention
第七圖:本發明之第四階段等效線性電路圖Figure 7: Equivalent linear circuit diagram of the fourth stage of the present invention
第八圖:本發明之模擬電路示意圖Figure 8: Schematic diagram of the analog circuit of the present invention
第九圖:本發明之開關驅動信號 、 與輸入電壓 及輸出電壓 的模擬波形圖[交錯式切換操作] Figure 9: The switch driving signal of the present invention , with input voltage and output voltage Analog waveform diagram of [Interleaved switching operation]
第十圖:本發明之開關驅動信號 、 與輸入電壓 及輸出電壓 的模擬波形圖[同步式切換操作] Figure 10: Switch driving signal of the present invention , with input voltage and output voltage [Synchronous switching operation]
第十一圖:本發明於匝數比n=1時之電壓轉換比比較曲線圖The eleventh figure: the comparison curve of the voltage conversion ratio of the present invention when the turns ratio n=1
第十二圖:本發明於匝數比n=3時之電壓轉換比比較曲線圖The twelfth figure: the comparison curve of the voltage conversion ratio of the present invention when the turns ratio n=3
1:轉換器 1: Converter
V in:輸入電壓 V in : input voltage
C 1:第一電容 C 1 : the first capacitor
C 2:第二電容 C 2 : second capacitor
C 3:第三電容 C 3 : the third capacitor
C 4:第四電容 C 4 : Fourth capacitor
C 5:第五電容 C 5 : Fifth capacitor
C 6:第六電容 C 6 : sixth capacitor
S 1:第一功率開關 S 1 : the first power switch
S 2:第二功率開關 S 2 : Second power switch
N p1:第一耦合電感一次側 N p 1 : the primary side of the first coupled inductor
N p2:第一耦合電感二次側 N p 2 : the secondary side of the first coupled inductor
L m1:第一磁化電感 L m 1 : the first magnetizing inductance
N s1:第二耦合電感一次側 N s 1 : the primary side of the second coupled inductor
N s2:第二耦合電感二次側 N s 2 : the secondary side of the second coupled inductor
L m2:第二磁化電感 L m 2 : second magnetizing inductance
L s :漏電感 L s : leakage inductance
D 1:第一二極體 D 1 : first diode
D 2:第二二極體 D 2 : Second diode
D 3:第三二極體 D 3 : the third diode
D 4:第四二極體 D 4 : Fourth diode
R o :負載 R o : load
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110121010A TWI765740B (en) | 2021-06-09 | 2021-06-09 | Symmetrical switching type high boost dc converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110121010A TWI765740B (en) | 2021-06-09 | 2021-06-09 | Symmetrical switching type high boost dc converter |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI765740B true TWI765740B (en) | 2022-05-21 |
TW202249406A TW202249406A (en) | 2022-12-16 |
Family
ID=82594535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110121010A TWI765740B (en) | 2021-06-09 | 2021-06-09 | Symmetrical switching type high boost dc converter |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI765740B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI839223B (en) * | 2023-05-17 | 2024-04-11 | 崑山科技大學 | High-boost dc converter |
TWI849537B (en) * | 2022-10-18 | 2024-07-21 | 崑山科技大學 | Symmetrical high voltage gain dc converter |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI863851B (en) * | 2024-04-11 | 2024-11-21 | 崑山科技大學 | High Voltage Boost DC Converter with Dual On-Ratio Control |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5059160B2 (en) * | 2010-04-19 | 2012-10-24 | 三菱電機株式会社 | DC / DC voltage converter |
CN104201888A (en) * | 2014-09-15 | 2014-12-10 | 盐城工学院 | Current control method of symmetrically-structured converter |
US9118259B2 (en) * | 2007-12-03 | 2015-08-25 | Texas Instruments Incorporated | Phase-shifted dual-bridge DC/DC converter with wide-range ZVS and zero circulating current |
CN105305829A (en) * | 2015-09-25 | 2016-02-03 | 北京理工大学 | Current type one-way DC-DC converter and symmetrical double PWM plus phase-shift control method |
US9318967B2 (en) * | 2014-02-28 | 2016-04-19 | Delta Electronics (Shanghai) Co., Ltd. | DC to DC converter and DC to DC conversion system |
US9627990B2 (en) * | 2012-04-20 | 2017-04-18 | Guangdong East Power Co., Ltd. | Non-isolated symmetric self-coupling 18-pulse rectifier power supply system |
CN107017780A (en) * | 2017-05-31 | 2017-08-04 | 青岛大学 | The isolated form DC DC booster converters and its control method of a kind of band pull-up active clamp branch road |
CN107147296A (en) * | 2017-05-31 | 2017-09-08 | 青岛大学 | An isolated DC‑DC boost converter with pull-down active clamping branch |
TWI601367B (en) * | 2016-10-05 | 2017-10-01 | A DC-DC Converter Based on Load Current Modulation Full-Bridge Control Mode |
-
2021
- 2021-06-09 TW TW110121010A patent/TWI765740B/en active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9118259B2 (en) * | 2007-12-03 | 2015-08-25 | Texas Instruments Incorporated | Phase-shifted dual-bridge DC/DC converter with wide-range ZVS and zero circulating current |
JP5059160B2 (en) * | 2010-04-19 | 2012-10-24 | 三菱電機株式会社 | DC / DC voltage converter |
US9627990B2 (en) * | 2012-04-20 | 2017-04-18 | Guangdong East Power Co., Ltd. | Non-isolated symmetric self-coupling 18-pulse rectifier power supply system |
US9318967B2 (en) * | 2014-02-28 | 2016-04-19 | Delta Electronics (Shanghai) Co., Ltd. | DC to DC converter and DC to DC conversion system |
CN104201888A (en) * | 2014-09-15 | 2014-12-10 | 盐城工学院 | Current control method of symmetrically-structured converter |
CN105305829A (en) * | 2015-09-25 | 2016-02-03 | 北京理工大学 | Current type one-way DC-DC converter and symmetrical double PWM plus phase-shift control method |
TWI601367B (en) * | 2016-10-05 | 2017-10-01 | A DC-DC Converter Based on Load Current Modulation Full-Bridge Control Mode | |
CN107017780A (en) * | 2017-05-31 | 2017-08-04 | 青岛大学 | The isolated form DC DC booster converters and its control method of a kind of band pull-up active clamp branch road |
CN107147296A (en) * | 2017-05-31 | 2017-09-08 | 青岛大学 | An isolated DC‑DC boost converter with pull-down active clamping branch |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI849537B (en) * | 2022-10-18 | 2024-07-21 | 崑山科技大學 | Symmetrical high voltage gain dc converter |
TWI839223B (en) * | 2023-05-17 | 2024-04-11 | 崑山科技大學 | High-boost dc converter |
Also Published As
Publication number | Publication date |
---|---|
TW202249406A (en) | 2022-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019136576A1 (en) | Series simultaneous power supply forward dc chopper-type single-stage multi-input high frequency link inverter | |
Tseng et al. | A high step-up converter with voltage-multiplier modules for sustainable energy applications | |
TWI765740B (en) | Symmetrical switching type high boost dc converter | |
TWI635697B (en) | Interleaved high-step-up zero-voltage switching dc-dc converter | |
TWI594554B (en) | Interleaved high efficiency high-step-up direct current transformer | |
CN102638164B (en) | High boost circuit, solar inverter and solar cell system | |
TWI664797B (en) | Dc power converter with high voltage gain | |
TWI625033B (en) | Interleaved direct-current boost device | |
CN108111044B (en) | Isolation flyback periodic wave type single-stage multi-input inverter with external parallel time-sharing selection switch | |
CN108199603B (en) | Multi-winding time-sharing power supply isolated flyback DC chopper type single-stage multi-input inverter | |
TW201733256A (en) | Interleaved high step-up DC-DC converter | |
CN109672332A (en) | A kind of zero ripple DC-DC converter of single tube high-gain | |
CN205847090U (en) | A hybrid quasi-switching step-up DC-DC converter | |
TWI687036B (en) | Ultra-high boosting converter | |
CN108023497B (en) | Series simultaneous power supply forward cycle conversion type single-stage multi-input high-frequency link inverter | |
CN108023496B (en) | Series simultaneous selection switch voltage type single-stage multi-input low-frequency link inverter | |
TWI832074B (en) | Interleaved high step-up dc converter | |
CN107994770A (en) | Single-stage current type converter with series multistage switch L.C. network | |
TWI849537B (en) | Symmetrical high voltage gain dc converter | |
TWI849539B (en) | Interleaved high-boost dc converter | |
Chen et al. | An interleaved high step-up DC-DC converter with cumulative voltage unit | |
Chorishiya et al. | A review: Multilevel hybrid ultra-boost converter topologies for pv solar applications | |
TWI839223B (en) | High-boost dc converter | |
TW202408140A (en) | High boost converter | |
TWI762396B (en) | High voltage conversion ratio dc converter |