[go: up one dir, main page]

TWI764692B - Antenna module and wireless access point - Google Patents

Antenna module and wireless access point

Info

Publication number
TWI764692B
TWI764692B TW110114798A TW110114798A TWI764692B TW I764692 B TWI764692 B TW I764692B TW 110114798 A TW110114798 A TW 110114798A TW 110114798 A TW110114798 A TW 110114798A TW I764692 B TWI764692 B TW I764692B
Authority
TW
Taiwan
Prior art keywords
antenna module
edge
port
acs
wireless access
Prior art date
Application number
TW110114798A
Other languages
Chinese (zh)
Other versions
TW202243332A (en
Inventor
默罕默德 埃得利斯 麥格勒
徐慶澄
唐震寰
Original Assignee
國立陽明交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立陽明交通大學 filed Critical 國立陽明交通大學
Priority to TW110114798A priority Critical patent/TWI764692B/en
Application granted granted Critical
Publication of TWI764692B publication Critical patent/TWI764692B/en
Publication of TW202243332A publication Critical patent/TW202243332A/en

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Transceivers (AREA)

Abstract

An antenna module includes a shared radiator and two asymmetric coplanar strip (ACS) feedlines being respectively adjacent to one side and the other side of the shared radiator, and the one side and the other side are orthogonal to each other such that the antenna module has an increased coverage area.

Description

天線模組及無線存取點 Antenna modules and wireless access points

本發明涉及天線模組及無線存取點,特別是具有一共享輻射體、一第一埠、一第二埠及二個非對稱式共平面帶狀線(Asymmetric coplanar strip,ACS)饋入線的天線模組及包括該天線模組之無線存取點。 The present invention relates to an antenna module and a wireless access point, in particular to an antenna module having a shared radiator, a first port, a second port and two asymmetric coplanar strip (ACS) feed lines An antenna module and a wireless access point including the antenna module.

寬頻需求促使學術界和工業界開發毫米波(mmWave)頻段收發機。為了提升收發機品質,5G毫米波(mmWave 5G)天線設計乃是重要的主題之一。目前5G毫米波傳輸的主要挑戰為高路徑損耗及穿透損耗。為了補償這些損耗,mmWave 5G天線於室外無線基地站須具有高增益特性,而對於室內無線存取點應具有中等增益、較小的實體尺寸以及寬角度覆蓋範圍。因此,正交場型分集式天線逐漸受到重視。 The need for broadband has prompted academia and industry to develop transceivers in the millimeter-wave (mmWave) band. In order to improve transceiver quality, 5G millimeter wave (mmWave 5G) antenna design is one of the important topics. At present, the main challenges of 5G mmWave transmission are high path loss and penetration loss. To compensate for these losses, mmWave 5G antennas must have high-gain characteristics for outdoor wireless base stations, and moderate gain, small physical size, and wide-angle coverage for indoor wireless access points. Therefore, orthogonal field-type diversity antennas have been paid more and more attention.

相較於傳統的共平面波導(CPW)天線,非對稱式共平面帶狀線(ACS)饋入天線,由具有單個不對稱接地平面的饋入線組成,可大幅降低面積。 Compared to traditional coplanar waveguide (CPW) antennas, asymmetric coplanar stripline (ACS) feed antennas, consisting of a feed line with a single asymmetric ground plane, can significantly reduce the area.

在習知技藝中已存在以5G毫米波頻率設計非對稱式共平面帶狀線饋入天線,具兩饋入端口以共享輻射 體(Shared Radiator)技術實現,可減少天線的實體尺寸。目前國際上雖已提出了幾種具有共享輻射體結構的天線設計,但是這些設計皆於低頻下工作,且具有相對較大的體積,並通過傳統的饋入方式(如微帶線)技術輸入能量。其中之一的設計還缺乏獨立可控的波束。亦有兩種設計則是在5G毫米波頻段採用共享孔徑(Share aperture)而不是共享輻射體的設計。而在上述已實現的設計中採用傳統的饋入技術與共享孔徑技術,因為其相對地大幅增加天線模組的體積,故相當不適合應用於5G毫米波無線存取點。如何而能克服上述天線模組的體積相對較大的缺陷,是一值得深思問題。 In the prior art, asymmetric coplanar stripline feed antennas have been designed at 5G mmWave frequencies, with two feed ports to share radiation The implementation of Shared Radiator technology can reduce the physical size of the antenna. Although several antenna designs with shared radiator structures have been proposed in the world, these designs all work at low frequencies, have relatively large volumes, and are input through traditional feeding methods (such as microstrip lines) technology. energy. One of the designs also lacked independently steerable beams. There are also two designs that use a shared aperture instead of a shared radiator in the 5G mmWave band. However, the conventional feeding technology and shared aperture technology are used in the above-mentioned designs, which are quite unsuitable for 5G mmWave wireless access points because they greatly increase the volume of the antenna module. How to overcome the relatively large volume defect of the above-mentioned antenna module is a question worth pondering.

職是之故,發明人鑒於習知技術之缺失,乃思及改良發明之意念,終能發明出本案之「天線模組及無線存取點」。 For this reason, in view of the lack of prior art, the inventor thought about the idea of improving the invention, and finally came up with the "antenna module and wireless access point" in this case.

本發明的主要目的在於提供一種結合非對稱式共平面帶狀線饋入技術與共享輻射體技術所發展出的雙埠正交場型分集天線模組,該天線模組具有一共享輻射體、一第一埠、一第二埠及二個ACS饋入線,其具有相對較小的體積、高增益與正交場型分集特性,可用以補償毫米波的高損耗,提升天線模組覆蓋率,因此該天線模組於毫米波無線存取點應用中具有優勢。 The main purpose of the present invention is to provide a dual-port orthogonal field diversity antenna module developed by combining asymmetric coplanar stripline feeding technology and shared radiator technology. The antenna module has a shared radiator, A first port, a second port and two ACS feed lines have relatively small volume, high gain and orthogonal field diversity characteristics, which can be used to compensate for the high loss of millimeter waves and improve the coverage of the antenna module. Therefore, the antenna module has advantages in the application of millimeter wave wireless access point.

本案之又一主要目的在於提供一種天線模組,包含一共享輻射體,具有一第一邊緣與一第二邊緣, 一第一埠,一第二埠,一第一ACS饋入線,自該第一埠饋入,且連接於該第一邊緣,以及一第二ACS饋入線,自該第二埠饋入,且連接於該第二邊緣,其中該第一邊緣與該第二邊緣間呈正交狀。 Another main purpose of the present application is to provide an antenna module, comprising a shared radiator, having a first edge and a second edge, a first port, a second port, a first ACS feed line fed from the first port and connected to the first edge, and a second ACS feed line fed from the second port, and connected to the second edge, wherein the first edge and the second edge are orthogonal.

本案之下一主要目的在於提供一種無線存取點,包含一本體,具有一第一水平方向,以及一如上所述之天線模組,設置於該本體內,具一第二水平方向,其中該第二與該第一水平方向間具有一第一倾斜角。 The next main purpose of the present application is to provide a wireless access point, comprising a body having a first horizontal direction, and an antenna module as described above, disposed in the body and having a second horizontal direction, wherein the There is a first inclination angle between the second and the first horizontal direction.

本案之再一主要目的在於提供一種天線模組,包含一共享輻射體,以及兩個ACS饋入線,分別鄰接於該共享輻射體的一側與另一側,且該一側與該另一側間呈正交狀,俾該天線模組有增加之一覆蓋範圍。 Another main purpose of this application is to provide an antenna module, which includes a shared radiator and two ACS feed lines, respectively adjacent to one side and the other side of the shared radiator, and the one side and the other side are respectively They are orthogonal, so that the antenna module has an increased coverage.

1:本案之天線模組 1: The antenna module of this case

11:共享輻射體 11: Shared Radiators

111:第一邊緣 111: First Edge

112:第二邊緣 112: Second Edge

113:階梯狀結構 113: Ladder-like structure

1131:第三邊緣/階梯狀邊緣 1131: Third Edge/Step Edge

12:第一埠 12: The first port

13:第二埠 13: Second port

14:第一非對稱式共平面帶狀線(ACS)饋入線/ACS饋入線 14: The first asymmetric coplanar stripline (ACS) feed line/ACS feed line

141:第一金屬走線 141: The first metal trace

142:第一垂直波紋結構 142: The first vertical corrugated structure

143:第一不對稱接地平面 143: First Asymmetric Ground Plane

144:第一空隙 144: First Void

15:第二ACS饋入線/ACS饋入線 15: Second ACS feed line/ACS feed line

151:第二金屬走線 151: Second metal trace

152:第二垂直波紋結構 152: Second Vertical Corrugated Structure

153:第二不對稱接地平面 153: Second asymmetric ground plane

154:第二空隙 154: Second void

2:本案之無線存取點 2: The wireless access point in this case

21:本體 21: Ontology

3:電路板/基板 3: circuit board/substrate

4:本案之第一天線模組 4: The first antenna module of this case

5:本案之第二天線模組 5: The second antenna module of this case

第一圖:其係顯示一依據本發明構想之較佳實施例的天線模組及其尺寸之示意圖。 Figure 1: It is a schematic diagram showing an antenna module according to a preferred embodiment of the present invention and its dimensions.

第二圖:其係顯示一依據本發明構想之較佳實施例的天線模組及其細部結構之示意圖。 Figure 2: It is a schematic diagram showing an antenna module and its detailed structure according to a preferred embodiment of the concept of the present invention.

第三圖:其係顯示一依據本發明構想之較佳實施例的天線模組之S參數的波形圖。 Figure 3: It is a waveform diagram showing the S-parameters of an antenna module according to a preferred embodiment of the present invention.

第四圖:其係顯示一依據本發明構想之較佳實施例的天線模組之阻抗頻寬與基板厚度無關的輸入反射係數相對於頻率的波形圖。 Figure 4: It is a waveform diagram showing the input reflection coefficient versus frequency for the impedance bandwidth of the antenna module according to the preferred embodiment of the concept of the present invention irrespective of the substrate thickness.

第五圖:其係顯示一依據本發明構想之較佳實施例的天線模組之隔離性受垂直波紋結構的衝擊之隔離性相對於頻率的波形圖。 Fig. 5: It is a waveform diagram showing the isolation of the antenna module according to the preferred embodiment of the present invention, which is impacted by the vertical corrugated structure versus frequency.

第六圖:其係顯示一依據本發明構想之較佳實施例的天線模組之增益和總效益相對於頻率的波形圖。 Figure 6: It is a waveform diagram showing the gain and total benefit versus frequency of an antenna module according to a preferred embodiment of the concept of the present invention.

第七圖(A)與(B):其係顯示一依據本發明構想之較佳實施例的天線模組於28GHz時分別由第一埠與第二埠饋入所產生在XY平面上的同極化和交叉極化的輻射方向圖。 Seventh Figures (A) and (B): It shows an antenna module according to a preferred embodiment of the concept of the present invention at 28GHz, respectively, fed from the first port and the second port to generate the same pole on the XY plane polarization and cross-polarized radiation patterns.

第七圖(C)與(D):其係顯示一依據本發明構想之較佳實施例的天線模組於31GHz時分別由第一埠與第二埠饋入所產生在XY平面上的同極化和交叉極化的輻射方向圖。 Seventh Figures (C) and (D): It shows an antenna module according to a preferred embodiment of the concept of the present invention at 31GHz respectively fed from the first port and the second port to generate the same pole on the XY plane polarization and cross-polarized radiation patterns.

第八圖(A)與(B):其係顯示一依據本發明構想之較佳實施例的天線模組於28GHz時分別由第一埠與第二埠饋入所產生在YZ平面上的同極化和交叉極化的輻射方向圖。 Figure 8 (A) and (B): It shows the same pole on the YZ plane generated by the first port and the second port respectively feeding the antenna module according to the preferred embodiment of the present invention at 28GHz polarization and cross-polarized radiation patterns.

第八圖(C)與(D):其係顯示一依據本發明構想之較佳實施例的天線模組於31GHz時分別由第一埠與第二埠饋入所產生在YZ平面上的同極化和交叉極化的輻射方向圖。 Figure 8 (C) and (D): It shows the same pole on the YZ plane generated by the first port and the second port respectively feeding the antenna module according to the preferred embodiment of the present invention at 31GHz polarization and cross-polarized radiation patterns.

第九圖(A):其係顯示將一依據本發明構想之較佳實施例的天線模組設置於一無線存取點內,可使整個房間都 被該天線模組所覆蓋的示意圖。 The ninth figure (A): it shows that an antenna module according to a preferred embodiment of the present invention is arranged in a wireless access point, so that the whole room can be Schematic diagram covered by the antenna module.

第九圖(B):其係顯示將一依據本發明構想之較佳實施例的天線模組設置於一無線存取點內,使兩者間具有一傾斜角,可提升該天線模組覆蓋率之示意圖。 The ninth figure (B): it shows that an antenna module according to a preferred embodiment of the present invention is arranged in a wireless access point, so that there is an inclination angle between the two, which can improve the coverage of the antenna module Schematic diagram of the rate.

第九圖(C):其係顯示將兩個依據本發明構想之較佳實施例的天線模組設置於一無線存取點內,使該兩個天線模組與該無線存取點間皆具有一傾斜角,以提升該兩個天線模組覆蓋率之示意圖。 The ninth figure (C): it shows that two antenna modules according to the preferred embodiment of the present invention are arranged in a wireless access point, so that the two antenna modules and the wireless access point are both A schematic diagram of a tilt angle to improve the coverage of the two antenna modules.

為了改善習知技藝中天線模組體積過大的缺陷,本案引入了非對稱式共平面帶狀線(Asymmetric coplanar strip,ACS)饋入技術,使天線模組達至相對較小的尺寸,同時在相對較小的尺寸下使用共享輻射體技術,藉由整合上述兩技術,發展出本案之天線模組1(參見第一圖與第二圖),其為一雙埠正交場型分集天線模組,該天線模組1具有高增益與正交場型分集特性,可用以補償毫米波的高損耗,提升天線模組覆蓋率,因此該天線模組1於毫米波無線存取點應用中具有優勢。 In order to improve the defect of the large volume of the antenna module in the prior art, an asymmetric coplanar strip (ACS) feeding technology is introduced in this case, so that the antenna module can reach a relatively small size, and at the same time Using the shared radiator technology in a relatively small size, by integrating the above two technologies, the antenna module 1 of the present application (refer to the first and second figures) is developed, which is a dual-port orthogonal field diversity antenna module. Group, the antenna module 1 has the characteristics of high gain and orthogonal field type diversity, which can be used to compensate the high loss of millimeter wave and improve the coverage of the antenna module. Therefore, the antenna module 1 has the advantages of millimeter wave wireless access point application Advantage.

第一圖是顯示一依據本發明構想之較佳實施例的天線模組及其尺寸之示意圖。在第一圖中該天線模組1具有一共享輻射體11、一第一埠12、一第二埠13、一第一非對稱式共平面帶狀線(ACS)饋入線14與一第二ACS饋入線15。依據本發明構想之較佳實施例的該天線模組1的 相關尺寸如第一圖所示。該天線模組1是設置於一電路板3上,且該電路板3是一基板。 The first figure is a schematic diagram showing an antenna module and its dimensions according to a preferred embodiment of the concept of the present invention. In the first figure, the antenna module 1 has a shared radiator 11, a first port 12, a second port 13, a first asymmetric coplanar stripline (ACS) feed line 14 and a second ACS feed line 15. According to the preferred embodiment of the present invention, the antenna module 1 The relevant dimensions are shown in the first image. The antenna module 1 is disposed on a circuit board 3, and the circuit board 3 is a substrate.

第二圖是顯示一依據本發明構想之較佳實施例的天線模組及其細部結構之示意圖。在第二圖中該天線模組1具有一共享輻射體11、一第一埠12、一第二埠13、一第一ACS饋入線14與一第二ACS饋入線15,其中該共享輻射體11具有一第一邊緣111、一第二邊緣112與具有一第三邊緣1131之一階梯狀結構(stepped/ladder like structure)113;該第一ACS饋入線14具有一第一金屬走線141、一第一垂直波紋結構142、一第一不對稱接地平面143與一第一空隙144;且該第二ACS饋入線15具有一第二金屬走線151、一第二垂直波紋結構152、一第二不對稱接地平面153與一第二空隙154。如同第一圖所示,該天線模組1是設置於一電路板3上,且該電路板3是一基板。 The second figure is a schematic diagram showing an antenna module and its detailed structure according to a preferred embodiment of the present invention. In the second figure, the antenna module 1 has a shared radiator 11 , a first port 12 , a second port 13 , a first ACS feed line 14 and a second ACS feed line 15 , wherein the shared radiator 11 has a first edge 111, a second edge 112 and a stepped/ladder like structure 113 with a third edge 1131; the first ACS feed line 14 has a first metal trace 141, a first vertical corrugated structure 142, a first asymmetric ground plane 143 and a first gap 144; and the second ACS feed line 15 has a second metal trace 151, a second vertical corrugated structure 152, a first Two asymmetric ground planes 153 and a second gap 154 . As shown in the first figure, the antenna module 1 is disposed on a circuit board 3, and the circuit board 3 is a substrate.

如第一圖與第二圖所示,本案提出了運作於5G毫米波(mmWave 5G)的本案之無線存取點2(參見第九圖(A)至(C))的該天線模組1。該天線模組1由一共享輻射體11與兩個非對稱式共平面帶狀線(Asymmetric coplanar strip,ACS)饋入線(14和15)組合而成。該天線模組1設計於厚度為5mil(0.127mm)的超薄PCB基板3上。該超薄基板3本質上具有靈活性,易於整合於運作於mmWave 5G的該存取點2。相較於傳統的CPW饋入技術,藉由ACS饋入技術減少共地面之面積,使天線總面積大幅減少,同時設計兩饋入端(第一埠12與第二埠13)以正交形式激發共 享輻射體11,以獲得更好的角度覆蓋範圍。因此,該天線模組1僅需約44.5mm2的總面積。相對於共享孔徑與共享輻射體,該天線模組1在面積與體積方面皆具優勢。 As shown in Figures 1 and 2, the present application proposes the antenna module 1 of the wireless access point 2 of the present application (see Figure 9 (A) to (C)) operating in 5G millimeter wave (mmWave 5G) . The antenna module 1 is composed of a shared radiator 11 and two asymmetric coplanar strip (ACS) feed lines (14 and 15). The antenna module 1 is designed on an ultra-thin PCB substrate 3 with a thickness of 5 mil (0.127 mm). The ultra-thin substrate 3 is inherently flexible and easy to integrate into the access point 2 operating in mmWave 5G. Compared with the traditional CPW feeding technology, the ACS feeding technology reduces the area of the common ground, which greatly reduces the total area of the antenna. At the same time, the two feeding ends (the first port 12 and the second port 13) are designed to be orthogonal Excite the shared radiator 11 for better angular coverage. Therefore, the antenna module 1 only needs a total area of about 44.5 mm 2 . Compared with the shared aperture and the shared radiator, the antenna module 1 has advantages in both area and volume.

如第二圖所示,該天線模組1設計於PCB電路板3上,該天線模組1包括共享輻射體11,該共享輻射體11可於不改變天線特性的情況下使總面積最小化。共享輻射體11包含階梯狀結構113以提升阻抗頻寬。每個饋入端(第一埠12或第二埠13)皆以ACS饋入線(14或15)饋入,各該ACS饋入線(14或15)則由金屬走線(141或151)和垂直波紋狀結構(142或152)與不對稱接地平面(143或153)組成。各該饋入線(14或15)可藉由調整金屬走線(141或151)與垂直波紋狀結構(142或152)和不對稱接地平面(143或153)之間的間隙(144或154)以獲得50Ω的特性阻抗。然而與常見之CPW饋入天線在端射(End-fire)中產生對稱波束不同,本案之以ACS饋入的該天線模組1由於不對稱的接地平面(143或153)易使波束產生傾斜。為了抵消波束傾斜,本案於共享輻射體11處設計一階梯狀結構113,抵銷波束傾斜且具有提升頻寬之效果。同時對於以ACS饋入線饋入之運作於5G毫米波的該天線模組1,該共享輻射體11需滿足指向性需求及阻抗匹配;然而該天線模組1不需額外的阻抗匹配網路,因此本案所提出之該天線模組1在面積上深具優勢。 As shown in the second figure, the antenna module 1 is designed on the PCB circuit board 3, and the antenna module 1 includes a shared radiator 11, which can minimize the total area without changing the characteristics of the antenna . The shared radiator 11 includes a stepped structure 113 to increase the impedance bandwidth. Each feed end (the first port 12 or the second port 13) is fed by an ACS feed line (14 or 15), and each of the ACS feed lines (14 or 15) is fed by a metal wire (141 or 151) and A vertical corrugated structure (142 or 152) is formed with an asymmetric ground plane (143 or 153). Each of the feed lines (14 or 15) can be adjusted by adjusting the gap (144 or 154) between the metal trace (141 or 151) and the vertical corrugated structure (142 or 152) and the asymmetric ground plane (143 or 153). to obtain a characteristic impedance of 50Ω. However, unlike the common CPW-fed antenna that generates a symmetrical beam in end-fire, the antenna module 1 fed by ACS in this case tends to tilt the beam due to the asymmetric ground plane (143 or 153). . In order to offset the beam tilt, a stepped structure 113 is designed at the shared radiator 11 in this case, which offsets the beam tilt and has the effect of increasing the bandwidth. At the same time, for the antenna module 1 operating in 5G millimeter waves fed by the ACS feed line, the shared radiator 11 needs to meet the directivity requirements and impedance matching; however, the antenna module 1 does not need an additional impedance matching network, Therefore, the antenna module 1 proposed in this case has great advantages in area.

第三圖是顯示一依據本發明構想之較佳實施例的天線模組之S參數的波形圖。在第三圖中,縱軸是dB量度,橫軸是頻率(GHz)。S12代表從第二埠13轉移到第一 埠12的電力,S21代表從第一埠12轉移到第二埠13的電力,S11是第一埠12的輸入反射係數,S22是第二埠13的輸入反射係數。由於通過第一埠12與第二埠13饋入的兩個ACS饋入線14與15的對稱性,兩個ACS饋入線14與15的S參數相同。亦即S12與S21相同,且S11與S22相同。該天線模組1適用於一25GHz至31GHz的5G毫米波頻段。 Figure 3 is a waveform diagram showing the S-parameters of an antenna module according to a preferred embodiment of the present invention. In the third graph, the vertical axis is the dB measure and the horizontal axis is the frequency (GHz). S12 represents transfer from the second port 13 to the first The power of port 12, S21 represents the power transferred from the first port 12 to the second port 13, S11 is the input reflection coefficient of the first port 12, and S22 is the input reflection coefficient of the second port 13. Due to the symmetry of the two ACS feed lines 14 and 15 fed through the first port 12 and the second port 13 , the S-parameters of the two ACS feed lines 14 and 15 are the same. That is, S12 is the same as S21, and S11 is the same as S22. The antenna module 1 is suitable for a 5G millimeter wave frequency band from 25GHz to 31GHz.

第四圖是顯示一依據本發明構想之較佳實施例的天線模組之阻抗頻寬與基板厚度無關的輸入反射係數相對於頻率的波形圖。如第四圖所示,因為本案所提出之包括兩個正交的ACS饋入線(14或15)之該天線模組1的阻抗頻寬與基板厚度無關;所以,當電路板厚度分別為0.127mm,0.254mm或0.508mm時,天線特性(輸入反射係數)不會因改變電路板(即基板)厚度而有顯著變化。 FIG. 4 is a waveform diagram showing the input reflection coefficient versus frequency of the impedance bandwidth independent of the substrate thickness of an antenna module according to a preferred embodiment of the concept of the present invention. As shown in Figure 4, because the impedance bandwidth of the antenna module 1 including two orthogonal ACS feed lines (14 or 15) proposed in this case has nothing to do with the thickness of the substrate; therefore, when the thickness of the circuit board is 0.127 mm, 0.254mm or 0.508mm, the antenna characteristics (input reflection coefficient) do not change significantly by changing the thickness of the circuit board (ie substrate).

第五圖是顯示一依據本發明構想之較佳實施例的天線模組之隔離性受垂直波紋結構的衝擊之隔離性相對於頻率的波形圖。在第五圖中顯示垂直波紋結構(142或152)對兩個ACS饋入線(14或15)間的隔離性之衝擊。如第五圖所示,當併入垂直波紋結構(142或152)時,隔離性幾乎增加了4dB。 FIG. 5 is a waveform diagram showing the isolation of the antenna module under the impact of the vertical corrugated structure with respect to frequency according to a preferred embodiment of the present invention. The impact of the vertical corrugated structure (142 or 152) on the isolation between the two ACS feed lines (14 or 15) is shown in the fifth figure. As shown in the fifth figure, when incorporating the vertical corrugated structure (142 or 152), the isolation increases by almost 4dB.

表一

Figure 110114798-A0101-12-0008-1
Table I
Figure 110114798-A0101-12-0008-1

表一比較在不對稱接地平面143和153中插入及不插入垂直波紋結構142和152的天線性能特徵,該垂直波紋結構142和152將電場引向孔徑方向,是指電場通過非對稱接地平面143和153,抑制洩漏波以提升第一埠12和第二埠13之隔離度。 Table 1 compares the antenna performance characteristics with and without vertical corrugated structures 142 and 152 inserted in the asymmetric ground planes 143 and 153, which direct the electric field to the aperture direction, which means that the electric field passes through the asymmetric ground plane 143 and 153 , suppressing leakage waves to improve the isolation between the first port 12 and the second port 13 .

第六圖是顯示一依據本發明構想之較佳實施例的天線模組之增益和總效益相對於頻率的波形圖。如第六圖所示,該天線模組1在天線的可用頻段內,獲得了大約7.2dBi的增益峰值,在整個工作頻帶上產生高增益和高波束完整性,平均效率約為80%,同時1-dB增益頻寬也很高。因此,該天線模組1在整個工作頻帶上具有高指向性。 FIG. 6 is a waveform diagram showing gain and total benefit versus frequency of an antenna module according to a preferred embodiment of the concept of the present invention. As shown in Figure 6, the antenna module 1 obtained a gain peak value of about 7.2dBi in the available frequency band of the antenna, resulting in high gain and high beam integrity over the entire operating frequency band, with an average efficiency of about 80%, while The 1-dB gain bandwidth is also high. Therefore, the antenna module 1 has high directivity in the entire working frequency band.

第七圖(A)與(B)是顯示一依據本發明構想之較佳實施例的天線模組於28GHz時分別由第一埠與第二埠饋入所產生在XY平面上的同極化和交叉極化的輻射方向圖。第七圖(C)與(D)是顯示一依據本發明構想之較佳實施例的天線模組於31GHz時分別由第一埠與第二埠饋入所產生在XY平面上的同極化和交叉極化的輻射方向圖。在第七圖(A)至(D)中,包含在E平面(XY平面)上的同極化和交叉極化輻射圖。在整個工作頻段內,交叉極化度小於13dB。同時在整個工作頻帶上獲得穩定的輻射頻寬。 Figure 7 (A) and (B) show the co-polarization sum on the XY plane generated by feeding the first port and the second port respectively at 28 GHz for an antenna module according to a preferred embodiment of the present invention. Cross-polarized radiation pattern. The seventh figures (C) and (D) show the co-polarization sum on the XY plane generated by the first port and the second port respectively feeding the antenna module according to the preferred embodiment of the present invention at 31GHz. Cross-polarized radiation pattern. In the seventh figures (A) to (D), co-polar and cross-polar radiation patterns on the E plane (XY plane) are included. In the whole working frequency band, the degree of cross polarization is less than 13dB. At the same time, a stable radiation bandwidth is obtained over the entire operating frequency band.

第八圖(A)與(B)是顯示一依據本發明構想之較佳實施例的天線模組於28GHz時分別由第一埠與第二埠饋入所產生在YZ平面上的同極化和交叉極化的輻射方向圖。第八圖(C)與(D)是顯示一依據本發明構想之較佳實施 例的天線模組於31GHz時分別由第一埠與第二埠饋入所產生在YZ平面上的同極化和交叉極化的輻射方向圖。在第八圖(A)至(D)中,包含在H平面(YZ平面)上的同極化和交叉極化輻射圖案。 The eighth figures (A) and (B) show the co-polarization sum on the YZ plane generated by the first port and the second port respectively feeding an antenna module according to a preferred embodiment of the present invention at 28 GHz. Cross-polarized radiation pattern. Eighth Figures (C) and (D) show a preferred implementation of the concept according to the present invention The antenna module of the example is fed through the first port and the second port respectively at 31GHz and generates co-polarized and cross-polarized radiation patterns on the YZ plane. In the eighth figures (A) to (D), co-polar and cross-polar radiation patterns on the H plane (YZ plane) are included.

第九圖(A)是顯示將一依據本發明構想之較佳實施例的天線模組設置於一無線存取點內,可使整個房間都被該天線模組所覆蓋的示意圖。如第九圖(A)所示,當該房間為一典型的房間時,使該天線模組1設置於該無線存取點2內,其將具有一廣角覆蓋的範圍,使該房間整個都被該天線模組1(參見第一圖與第二圖)所覆蓋。 Fig. 9(A) is a schematic diagram showing that an antenna module according to a preferred embodiment of the present invention is arranged in a wireless access point, so that the entire room can be covered by the antenna module. As shown in Figure 9 (A), when the room is a typical room, the antenna module 1 is set in the wireless access point 2, it will have a wide-angle coverage, so that the entire room is covered Covered by the antenna module 1 (see the first and second figures).

第九圖(B)是顯示將一依據本發明構想之較佳實施例的天線模組設置於一無線存取點內,使兩者間具有一傾斜角,可提升該天線模組覆蓋率之示意圖。如第九圖(B)所示,該傾斜角為θ。此處,設置於該無線存取點2內部之該天線模組為一本案之第一天線模組4及/或一本案之第二天線模組5(4或5皆為該天線模組1,參見第一圖、第二圖與第九圖(C))。 The ninth figure (B) shows that an antenna module according to a preferred embodiment of the present invention is arranged in a wireless access point, so that there is an inclination angle between the two, which can improve the coverage of the antenna module. Schematic. As shown in the ninth diagram (B), the inclination angle is θ. Here, the antenna module disposed inside the wireless access point 2 is the first antenna module 4 of a case and/or the second antenna module 5 of a case (both 4 and 5 are the antenna modules Group 1, see Figure 1, Figure 2 and Figure 9 (C)).

第九圖(C)是顯示將兩個依據本發明構想之較佳實施例的天線模組設置於一無線存取點內,使該兩天線模組與該無線存取點間皆具有一傾斜角,以提升該兩天線模組覆蓋率之示意圖。如第九圖(C)所示,該無線存取點2具有一本體21,在該本體21內,設置有一本案之第一天線模組4及一本案之第二天線模組5(參見第九圖(B))。 The ninth figure (C) shows that two antenna modules according to the preferred embodiment of the present invention are arranged in a wireless access point, so that there is a tilt between the two antenna modules and the wireless access point. A schematic diagram of increasing the coverage of the two antenna modules. As shown in FIG. 9 (C), the wireless access point 2 has a main body 21, and in the main body 21, a first antenna module 4 of a case and a second antenna module 5 of a case are arranged ( See Figure 9 (B)).

如第九圖(A)至(C)所示,將本案之(端射)第一天線模組4及/或本案之(端射)第二天線模組5設置於運作於毫米波(mmWave)的該無線存取點2內,可以使整個房間都被該無線存取點2內所設置的該第一天線模組4及/或該第二天線模組5所覆蓋。由於該第一天線模組4及/或該第二天線模組5輕薄而有彈性,易於整合於5G毫米波的饋入端。同時該第一天線模組4及/或該第二天線模組5具正交場型分集特性,使用者可使該第一天線模組4及/或該第二天線模組5的一第二水平方向於設置時,輕微傾斜於該無線存取點2內部的一第一水平方向,可使毫米波波束易於涵蓋該無線存取點2所設置之房間,以提升該天線模組4及/或該第二天線模組5的覆蓋率。由於該第一天線模組4及/或該第二天線模組5的較佳實施例之厚度為0.127mm,非常薄,因此可以在厚度為2mm的運作於mmWave 5G的該無線存取點2內部進行大約25度的傾斜。 As shown in Figure 9 (A) to (C), the (end-fire) first antenna module 4 of this application and/or the (end-fire) second antenna module 5 of this application are arranged to operate in millimeter waves In the wireless access point 2 of (mmWave), the entire room can be covered by the first antenna module 4 and/or the second antenna module 5 set in the wireless access point 2 . Since the first antenna module 4 and/or the second antenna module 5 are thin and flexible, they are easy to be integrated into the feeding end of 5G millimeter waves. At the same time, the first antenna module 4 and/or the second antenna module 5 have orthogonal field diversity characteristics, and the user can make the first antenna module 4 and/or the second antenna module A second horizontal direction of 5 is slightly inclined to a first horizontal direction inside the wireless access point 2 when it is installed, so that the millimeter wave beam can easily cover the room where the wireless access point 2 is installed, so as to enhance the antenna The coverage of module 4 and/or the second antenna module 5 . Since the thickness of the first antenna module 4 and/or the second antenna module 5 in the preferred embodiment is 0.127mm, which is very thin, the wireless access operating in mmWave 5G with a thickness of 2mm can be used. The inside of point 2 is tilted about 25 degrees.

如第一圖與第二圖所示,本發明提供該天線模組1,包含一共享輻射體11,具有一第一邊緣111與一第二邊緣112,一第一埠12,一第二埠13,一第一非對稱式共平面帶狀線(ACS)饋入線14,自該第一埠12饋入,且連接於該第一邊緣111,以及一第二ACS饋入線15,自該第二埠13饋入,且連接於該第二邊緣112,其中該第一邊緣111與該第二邊緣112間呈正交狀。 As shown in the first and second figures, the present invention provides the antenna module 1, which includes a shared radiator 11, has a first edge 111 and a second edge 112, a first port 12, and a second port 13. A first asymmetric coplanar stripline (ACS) feed line 14, fed from the first port 12, and connected to the first edge 111, and a second ACS feed line 15, fed from the first port 12; The two ports 13 are fed and connected to the second edge 112 , wherein the first edge 111 and the second edge 112 are orthogonal.

如上所述之該天線模組1,其中該共享輻射體11更包括具有一第三邊緣1131的一階梯狀結構131,該第三 邊緣1131的兩端是分別連接於該第一邊緣111的一端與該第二邊緣112的一端。 As described above in the antenna module 1, the shared radiator 11 further includes a stepped structure 131 having a third edge 1131, the third Two ends of the edge 1131 are respectively connected to one end of the first edge 111 and one end of the second edge 112 .

如上所述之該天線模組1,是設置於一電路板3上,該電路板3具有一厚度,該第一ACS饋入線14包括一第一金屬走線141、一第一垂直波紋結構142與一第一不對稱接地平面143,該第一金屬走線141連接於該第一邊緣111且鄰接於該第一垂直波紋結構142與該第一不對稱接地平面143,該第一垂直波紋結構142鄰接於該第一邊緣111及連接於該第一不對稱接地平面143,該第二ACS饋入線15包括一第二金屬走線151、一第二垂直波紋結構152與一第二不對稱接地平面153,該第二金屬走線151連接於該第二邊緣112且鄰接於該第二垂直波紋結構152與該第二不對稱接地平面153,該第一ACS饋入線14藉由調整該第一金屬走線141與該第一垂直波紋結構142和該第一不對稱接地平面143間的一第一空隙144的一第一寬度以獲得一第一特性阻抗,而該第二ACS饋入線15藉由調整該第二金屬走線151與該第二垂直波紋結構152和該第二不對稱接地平面153間的一第二空隙154的一第二寬度以獲得一第二特性阻抗(參見第一圖與第二圖)。 As described above, the antenna module 1 is disposed on a circuit board 3 , the circuit board 3 has a thickness, and the first ACS feed line 14 includes a first metal trace 141 and a first vertical corrugated structure 142 and a first asymmetric ground plane 143, the first metal trace 141 is connected to the first edge 111 and adjacent to the first vertical corrugated structure 142 and the first asymmetric ground plane 143, the first vertical corrugated structure 142 is adjacent to the first edge 111 and connected to the first asymmetric ground plane 143, the second ACS feed line 15 includes a second metal trace 151, a second vertical corrugated structure 152 and a second asymmetric ground The plane 153, the second metal trace 151 is connected to the second edge 112 and adjacent to the second vertical corrugated structure 152 and the second asymmetric ground plane 153, the first ACS feed line 14 is adjusted by adjusting the first A first width of a first gap 144 between the metal trace 141 and the first vertical corrugated structure 142 and the first asymmetric ground plane 143 is obtained to obtain a first characteristic impedance, and the second ACS feed line 15 uses A second characteristic impedance is obtained by adjusting a second width of a second gap 154 between the second metal trace 151 and the second vertical corrugated structure 152 and the second asymmetric ground plane 153 (see FIG. 1 ). with the second figure).

如上所述之天線模組1,是適用於一25GHz至31GHz的5G毫米波頻段。 The above-mentioned antenna module 1 is suitable for a 5G millimeter-wave frequency band of 25GHz to 31GHz.

本發明提供該無線存取點2,包含一本體21,具有一第一水平方向,以及該第一天線模組4,設置於該本體21內,具一第二水平方向,其中該第二水平方向與該 第一水平方向間具有一第一倾斜角θ(參見第九圖(A)至(C))。 The present invention provides the wireless access point 2, comprising a body 21 having a first horizontal direction, and the first antenna module 4 disposed in the body 21 and having a second horizontal direction, wherein the second horizontal direction with the There is a first inclination angle θ between the first horizontal directions (refer to the ninth FIGS. (A) to (C)).

如上述之該無線存取點2,更包括該第二天線模組5,該本體21具有一第一厚度,且該第一天線模組4與該第二天線模組5均具有一第二厚度,其中該無線存取點2是一運作於5G毫米波(mmWave 5G)的該無線存取點2,該第一厚度大於該第二厚度,該第二天線模組5具一第三水平方向,該第三水平方向與該第一水平方向間具有一第二傾斜角,該第一厚度為2mm,該第二厚度為0.127mm,且該第一傾斜角θ與該第二傾斜角θ皆小於等於25°(參見第九圖(A)至(C))。 As described above, the wireless access point 2 further includes the second antenna module 5 , the body 21 has a first thickness, and both the first antenna module 4 and the second antenna module 5 have a second thickness, wherein the wireless access point 2 is the wireless access point 2 operating in 5G millimeter wave (mmWave 5G), the first thickness is greater than the second thickness, and the second antenna module has 5 A third horizontal direction with a second inclination angle between the third horizontal direction and the first horizontal direction, the first thickness is 2mm, the second thickness is 0.127mm, and the first inclination angle θ is the same as the first inclination angle θ. Both of the two inclination angles θ are less than or equal to 25° (refer to the ninth diagrams (A) to (C)).

本發明提供該天線模組1,包含一共享輻射體11,以及兩個非對稱式共平面帶狀線(ACS)饋入線(14及15),分別鄰接於該共享輻射體11的一側111與另一側112,且該一側111與該另一側112間呈正交狀,俾該天線模組1有增加之一覆蓋範圍(參見第一圖、第二圖與第九圖(A))。 The present invention provides the antenna module 1 including a shared radiator 11 and two asymmetric coplanar stripline (ACS) feed lines ( 14 and 15 ) adjacent to one side 111 of the shared radiator 11 respectively and the other side 112, and the one side 111 and the other side 112 are orthogonal, so that the antenna module 1 has an increased coverage (see the first, second and ninth diagrams (A )).

如上所述之天線模組1,更包括一第一埠12與一第二埠13,其中該兩個ACS饋入線(14和15)分別自該第一埠12與該第二埠13饋入,且該兩個ACS饋入線(14和15)分別連接於該一側111與該另一側112,該共享輻射體11包括具有一階梯狀邊緣1131之一階梯狀結構113,且該階梯狀邊緣1131連接於該一側111與該另一側112。 The above-mentioned antenna module 1 further includes a first port 12 and a second port 13 , wherein the two ACS feed lines ( 14 and 15 ) are fed from the first port 12 and the second port 13 respectively , and the two ACS feed lines ( 14 and 15 ) are respectively connected to the one side 111 and the other side 112 , the shared radiator 11 includes a stepped structure 113 having a stepped edge 1131 , and the stepped The edge 1131 is connected to the one side 111 and the other side 112 .

如上所述之天線模組1,其中各該ACS饋入線(14或15)包括一金屬走線(141或151)、一垂直波紋結構(142或152)與一不對稱接地平面(143或153),各該不對稱接地平面(143或153)易使與其對應的各該ACS饋入線(14或15)於一端射時產生一波束傾斜,而該階梯狀結構113則是用於消除該波束傾斜,且用於提升一阻抗頻寬。 The antenna module 1 as described above, wherein each of the ACS feed lines (14 or 15) includes a metal trace (141 or 151), a vertical corrugated structure (142 or 152) and an asymmetric ground plane (143 or 153) ), each of the asymmetric ground planes (143 or 153) tends to cause the corresponding ACS feed lines (14 or 15) to generate a beam tilt when one end fires, and the stepped structure 113 is used to cancel the beam slope, and is used to increase an impedance bandwidth.

綜上所述,本發明提供一種結合非對稱式共平面帶狀線饋入技術與共享輻射體技術所發展出的雙埠正交場型分集天線模組,該天線模組具有一共享輻射體、一第一埠、一第二埠及二個ACS饋入線,其具有相對較小的體積、高增益與正交場型分集特性,可用以補償毫米波的高損耗,提升天線模組覆蓋率,因此本案之天線模組於毫米波無線存取點應用中具有優勢,故其確實具有新穎性與進步性。 In summary, the present invention provides a dual-port orthogonal field diversity antenna module developed by combining asymmetric coplanar stripline feeding technology and shared radiator technology, the antenna module has a shared radiator , a first port, a second port and two ACS feed lines, which have relatively small volume, high gain and orthogonal field diversity characteristics, which can be used to compensate for the high loss of millimeter waves and improve the coverage of the antenna module Therefore, the antenna module of this case has advantages in the application of millimeter wave wireless access points, so it is indeed novel and progressive.

是以,縱使本案已由上述之實施例所詳細敘述而可由熟悉本技藝之人士任施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護者。 Therefore, even though the case has been described in detail by the above-mentioned embodiments, and various modifications can be made by those who are familiar with the art, they will not deviate from the protection of the scope of the patent application.

1:本案之天線模組 1: The antenna module of this case

11:共享輻射體 11: Shared Radiators

111:第一邊緣 111: First Edge

112:第二邊緣 112: Second Edge

113:階梯狀結構 113: Ladder-like structure

1131:第三邊緣/階梯狀邊緣 1131: Third Edge/Step Edge

12:第一埠 12: The first port

13:第二埠 13: Second port

14:第一非對稱式共平面帶狀線(ACS)饋入線/ACS饋入線 14: The first asymmetric coplanar stripline (ACS) feed line/ACS feed line

141:第一金屬走線 141: The first metal trace

142:第一垂直波紋結構 142: The first vertical corrugated structure

143:第一不對稱接地平面 143: First Asymmetric Ground Plane

144:第一空隙 144: First Void

15:第二ACS饋入線/ACS饋入線 15: Second ACS feed line/ACS feed line

151:第二金屬走線 151: Second metal trace

152:第二垂直波紋結構 152: Second Vertical Corrugated Structure

153:第二不對稱接地平面 153: Second asymmetric ground plane

154:第二空隙 154: Second void

3:電路板/基板 3: circuit board/substrate

Claims (10)

一種天線模組,包含: An antenna module, comprising: 一共享輻射體,具有一第一邊緣與一第二邊緣; a shared radiator having a first edge and a second edge; 一第一埠; a first port; 一第二埠; a second port; 一第一非對稱式共平面帶狀線(ACS)饋入線,自該第一埠饋入,且連接於該第一邊緣;以及 a first asymmetric coplanar stripline (ACS) feed line fed from the first port and connected to the first edge; and 一第二ACS饋入線,自該第二埠饋入,且連接於該第二邊緣,其中該第一邊緣與該第二邊緣間呈正交狀。 A second ACS feeding line is fed from the second port and connected to the second edge, wherein the first edge and the second edge are orthogonal. 如請求項1所述之天線模組,其中該共享輻射體更包括具有一第三邊緣的一階梯狀結構,該第三邊緣的兩端是分別連接於該第一邊緣的一端與該第二邊緣的一端。 The antenna module of claim 1, wherein the shared radiator further comprises a stepped structure having a third edge, and two ends of the third edge are respectively connected to one end of the first edge and the second edge one end of the edge. 如請求項2所述之天線模組,其中該天線模組是設置於一電路板上,該電路板具有一厚度,該第一ACS饋入線包括一第一金屬走線、一第一垂直波紋結構與一第一不對稱接地平面,該第一金屬走線連接於該第一邊緣且鄰接於該第一垂直波紋結構與該第一不對稱接地平面,該第一垂直波紋結構鄰接於該第一邊緣及連接於該第一不對稱接地平面,該第二ACS饋入線包括一第二金屬走線、 一第二垂直波紋結構與一第二不對稱接地平面,該第二金屬走線連接於該第二邊緣且鄰接於該第二垂直波紋結構與該第二不對稱接地平面,該第一ACS饋入線藉由調整該第一金屬走線與該第一垂直波紋結構和該第一不對稱接地平面間的一第一空隙的一第一寬度以獲得一第一特性阻抗,而該第二ACS饋入線藉由調整該第二金屬走線與該第二垂直波紋結構和該第二不對稱接地平面間的一第二空隙的一第二寬度以獲得一第二特性阻抗。 The antenna module of claim 2, wherein the antenna module is disposed on a circuit board, the circuit board has a thickness, and the first ACS feed line includes a first metal trace, a first vertical corrugation structure and a first asymmetric ground plane, the first metal trace is connected to the first edge and adjacent to the first vertical corrugated structure and the first asymmetric ground plane, the first vertical corrugated structure is adjacent to the first an edge and connected to the first asymmetric ground plane, the second ACS feed line includes a second metal trace, a second vertical corrugated structure and a second asymmetric ground plane, the second metal trace is connected to the second edge and adjacent to the second vertical corrugated structure and the second asymmetric ground plane, the first ACS feeds The incoming line obtains a first characteristic impedance by adjusting a first width of a first gap between the first metal trace and the first vertical corrugated structure and the first asymmetric ground plane, and the second ACS feeds The incoming line obtains a second characteristic impedance by adjusting a second width of a second gap between the second metal trace and the second vertical corrugated structure and the second asymmetric ground plane. 如請求項3所述之天線模組,其中該電路板為一基板,該厚度為0.127mm,該天線模組可應用於一5G毫米波(mmWave 5G)無線存取點,該第一埠與該第二埠是以一正交形式激發該共享輻射體,該天線模組是一正交饋入的單平面非對稱式共平面帶狀線饋入天線,用於實現一正交場型分集。 The antenna module of claim 3, wherein the circuit board is a substrate, and the thickness is 0.127mm, the antenna module can be applied to a 5G millimeter wave (mmWave 5G) wireless access point, and the first port is connected to a The second port excites the shared radiator in an orthogonal form, and the antenna module is a single-plane asymmetric co-planar stripline-fed antenna with orthogonal feeding for realizing an orthogonal field diversity . 如請求項4所述之天線模組,其中該天線模組適用於一25GHz至31GHz的5G毫米波頻段。 The antenna module of claim 4, wherein the antenna module is suitable for a 5G millimeter-wave frequency band of 25GHz to 31GHz. 一種無線存取點,包含: A wireless access point comprising: 一本體,具有一第一水平方向;以及 a body having a first horizontal direction; and 一第一如請求項1所述之天線模組,設置於該本體內,具一第二水平方向,其中該第二水平方向與該第一水平方 向間具有一第一倾斜角。 A first antenna module according to claim 1, disposed in the body and having a second horizontal direction, wherein the second horizontal direction is the same as the first horizontal direction There is a first inclination angle between them. 如請求項6所述之無線存取點,更包括一第二如請求項1所述之天線模組,該本體具有一第一厚度,且該第一天線模組與該第二天線模組均具有一第二厚度,其中該無線存取點是一5G毫米波(mmWave 5G)無線存取點,該第一厚度大於該第二厚度,該第二天線模組具一第三水平方向,該第三水平方向與該第一水平方向間具有一第二傾斜角,該第一厚度為2mm,該第二厚度為0.127mm,且該第一傾斜角與該第二傾斜角皆小於等於25°。 The wireless access point according to claim 6, further comprising a second antenna module according to claim 1, the body has a first thickness, and the first antenna module and the second antenna The modules all have a second thickness, wherein the wireless access point is a 5G millimeter wave (mmWave 5G) wireless access point, the first thickness is greater than the second thickness, and the second antenna module has a third In the horizontal direction, there is a second inclination angle between the third horizontal direction and the first horizontal direction, the first thickness is 2 mm, the second thickness is 0.127 mm, and both the first inclination angle and the second inclination angle are less than or equal to 25°. 一種天線模組,包含: An antenna module, comprising: 一共享輻射體;以及 a shared radiator; and 兩個非對稱式共平面帶狀線(ACS)饋入線,分別鄰接於該共享輻射體的一側與另一側,且該一側與該另一側間呈正交狀,俾該天線模組有增加之一覆蓋範圍。 Two asymmetrical coplanar stripline (ACS) feed lines are respectively adjacent to one side and the other side of the shared radiator, and the one side and the other side are orthogonal, so that the antenna mode Groups have increased coverage by one. 如請求項8所述之天線模組,更包括一第一埠與一第二埠,其中該兩個ACS饋入線分別自該第一埠與該第二埠饋入,且該兩個ACS饋入線分別連接於該一側與該另一側,該共享輻射體包括具有一階梯狀邊緣之一階梯狀結構,且該階梯狀邊緣連接於該一側與該另一側。 The antenna module of claim 8, further comprising a first port and a second port, wherein the two ACS feed lines are fed from the first port and the second port respectively, and the two ACS feed lines The incoming wires are respectively connected to the one side and the other side, and the shared radiator includes a stepped structure with a stepped edge, and the stepped edge is connected to the one side and the other side. 如請求項9所述之天線模組,其中各該ACS 饋入線包括一金屬走線、一垂直波紋結構與一不對稱接地平面,各該不對稱接地平面易使與其對應的各該ACS饋入線於一端射時產生一波束傾斜,而該階梯狀結構則是用於消除該波束傾斜,且用於提升一阻抗頻寬。 The antenna module of claim 9, wherein each of the ACSs The feed line includes a metal trace, a vertical corrugated structure, and an asymmetric ground plane. Each of the asymmetric ground planes tends to cause the corresponding ACS feed lines to generate a beam inclination when fired at one end, and the stepped structure is is used to eliminate the beam tilt and to increase an impedance bandwidth.
TW110114798A 2021-04-23 2021-04-23 Antenna module and wireless access point TWI764692B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110114798A TWI764692B (en) 2021-04-23 2021-04-23 Antenna module and wireless access point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110114798A TWI764692B (en) 2021-04-23 2021-04-23 Antenna module and wireless access point

Publications (2)

Publication Number Publication Date
TWI764692B true TWI764692B (en) 2022-05-11
TW202243332A TW202243332A (en) 2022-11-01

Family

ID=82594243

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110114798A TWI764692B (en) 2021-04-23 2021-04-23 Antenna module and wireless access point

Country Status (1)

Country Link
TW (1) TWI764692B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI364875B (en) * 2007-12-18 2012-05-21 Univ Southern Taiwan A compact asymmetrical monopole antenna with coplanar waveguide-fed
TWM567964U (en) * 2018-05-24 2018-10-01 神準科技股份有限公司 Antenna device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI364875B (en) * 2007-12-18 2012-05-21 Univ Southern Taiwan A compact asymmetrical monopole antenna with coplanar waveguide-fed
TWM567964U (en) * 2018-05-24 2018-10-01 神準科技股份有限公司 Antenna device

Also Published As

Publication number Publication date
TW202243332A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
JP4400929B2 (en) Ultra-small ultra-wideband microstrip antenna
US6480167B2 (en) Flat panel array antenna
CN108933327A (en) A kind of improved broadband microstrip antenna unit
US20210126360A1 (en) Hybrid high gain antenna systems, devices, and methods
US11611154B2 (en) Printed impedance transformer for broadband dual-polarized antenna
CN114976665B (en) Broadband dual-polarized dipole antenna loaded with stable frequency selective surface radiation
CN113193347B (en) Dual-beam cavity-backed antenna based on artificial electromagnetic structure and cavity odd-mode excitation
CN113224527A (en) Low-frequency radiation unit for inhibiting pilot frequency scattering and base station antenna
CN109830802B (en) Millimeter wave dual-polarized patch antenna
US11342652B2 (en) 5G MMW dual-polarized antenna unit, antenna array and terminal device
CN106941210A (en) Ultra-wideband high-gain omnidirectional antenna and its ultra-wideband oscillator unit
CN107275776A (en) A kind of SIW gaps crossfeed array antenna system
WO2020233518A1 (en) Antenna unit and electronic device
CN108777355A (en) A kind of low section broad-band antenna
CN106356618B (en) A microwave high-frequency dual-polarization small base station panel antenna
CN113871865A (en) A Low Profile Wide Bandwidth Two-Dimensional Scanning Dual-Polarized Phased Array Antenna and Its Application
CN114784495A (en) Millimeter wave wide bandwidth wave beam patch antenna
CN215989247U (en) Differential feed cross polarization high-gain antenna
CN107706545A (en) A kind of CTS array antenna systems with large-angle scanning function
CN106450774A (en) Ultra-wideband high-gain yagi antenna
CN108736152A (en) A kind of minimized wide-band high-gain omni-directional antenna
TWI764692B (en) Antenna module and wireless access point
CN115173068B (en) Broadband circularly polarized substrate integrated waveguide horn antenna array and wireless communication equipment
CN207303352U (en) A kind of SIW gaps crossfeed array antenna system
CN107732440B (en) Ultra-wideband high-gain beam upward-tilting omnidirectional antenna