[go: up one dir, main page]

TWI763804B - 金屬支撐型電化學元件用之附電極層基板、電化學元件、電化學模組、固態氧化物型燃料電池及製造方法 - Google Patents

金屬支撐型電化學元件用之附電極層基板、電化學元件、電化學模組、固態氧化物型燃料電池及製造方法

Info

Publication number
TWI763804B
TWI763804B TW107109779A TW107109779A TWI763804B TW I763804 B TWI763804 B TW I763804B TW 107109779 A TW107109779 A TW 107109779A TW 107109779 A TW107109779 A TW 107109779A TW I763804 B TWI763804 B TW I763804B
Authority
TW
Taiwan
Prior art keywords
electrode layer
layer
electrochemical element
metal support
electrochemical
Prior art date
Application number
TW107109779A
Other languages
English (en)
Other versions
TW201840048A (zh
Inventor
越後満秋
大西久男
津田裕司
真鍋享平
南和徹
山崎修
Original Assignee
日商大阪瓦斯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商大阪瓦斯股份有限公司 filed Critical 日商大阪瓦斯股份有限公司
Publication of TW201840048A publication Critical patent/TW201840048A/zh
Application granted granted Critical
Publication of TWI763804B publication Critical patent/TWI763804B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8892Impregnation or coating of the catalyst layer, e.g. by an ionomer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1286Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

本發明提供可信賴性/耐久性優異,而且低成本的電化學元件。金屬支撐型電化學元件用之附電極層基板,具有金屬支撐體,及被形成於金屬支撐體上的電極層(2),電極層(2)具有表面粗糙度(Ra)為1.0μm以下的區域。

Description

金屬支撐型電化學元件用之附電極層基板、電化學元件、電化學模組、固態氧化物型燃料電池及製造方法
本發明係關於具有金屬支撐體與電極層之金屬支持型電化學元件用之附電極層基板等。
從前的金屬支撐型固態氧化物型燃料電池(SOFC),在燒結Fe-Cr系合金粉末而得的多孔質金屬支撐體之上,形成陽極電極層,於其上形成電解質層得到SOFC。 [先前技術文獻] [非專利文獻]
[非專利文獻1]Jong-Jin Choi and Dong-Soo Park, “Preparation of Metal-supported SOFC using Low Temperature Ceramic Coating Process”, Proceedings of 11th European SOFC & SOE Forum, A1502, Chapter 09 - Session B15 - 14/117- 20/117 (1-4 July 2014)
[發明所欲解決之課題]
然而,如非專利文獻1所示,在低溫區域形成氧化鋯系電解質,必須要準備在1300℃的高溫進行了燒成(firing)處理之陽極電極層。因此,金屬支撐體的損傷無可避免,此外,供避免由金屬支撐體毒害電池之元素擴散之昂貴的LST(LaSrTiO3 )防擴散層必須要藉由1200℃的燒成處理來設置,除了性能或可信賴性/耐久性以外,還有成本的問題。
本發明係有鑑於前述課題而完成的,目的在於提供性能/可信賴性/耐久性優異,而且低成本的電化學元件。 [供解決課題之手段]
供達成前述目的之金屬支撐型電化學元件用之附電極層基板之特徵構成,為具有金屬支撐體,及被形成於前述金屬支撐體上的電極層;前述電極層具有表面粗糙度(Ra)為1.0μm以下的區域。
根據前述特徵構成,成為適於在低溫區域之電解質層形成製程的電極層,不必設昂貴的LST防擴散層,就可以在金屬支撐體上形成具有電極層與電解質層的電化學元件。此外,即使電解質層為薄膜的場合,也因為電極層表面的平滑度高,可以使電解質層保持均勻,所以可構成性能/可信賴性/耐久性優異的電化學元件。此外,電極層表面的平滑度高(電極層表面的凹凸很少)的話,電極層與電解質層之間的間隙變少,可以構成密接性良好的性能/可信賴性/耐久性優異的電化學元件。又,前述電極層,具有表面粗糙度(Ra)為0.5μm以下的區域的話更佳,具有0.3μm以下的區域的話又更佳。這是因為電極層表面的平滑性變得越高,可以使前述效果更大的緣故。
供達成前述目的之金屬支撐型電化學元件用之附電極層基板之特徵構成,為具有金屬支撐體、被形成於前述金屬支撐體上的電極層、及被形成於前述電極層上的中間層;前述中間層具有表面粗糙度(Ra)為1.0μm以下的區域。
根據前述特徵構成,成為適於在低溫區域之電解質層形成製程的中間層,不必設昂貴的LST防擴散層,就可以在金屬支撐體上形成具有電極層與中間層與電解質層的電化學元件。此外,即使電解質層為薄膜的場合,也因為中間層表面的平滑度高,可以使電解質層保持均勻,所以可構成性能/可信賴性/耐久性優異的電化學元件。此外,中間層表面的平滑度高(中間層表面的凹凸很少)的話,中間層與電解質層之間的間隙變少,可以構成密接性良好的性能/可信賴性/耐久性優異的電化學元件。又,前述中間層,具有表面粗糙度(Ra)為0.5μm以下的區域的話更佳,具有0.3μm以下的區域的話又更佳。這是因為中間層表面的平滑性變得越高,可以使前述效果更大的緣故。
相關於本發明的金屬支撐型電化學元件用之附電極層基板之其他的特徵構成,在於在前述金屬支撐體之一方之面被形成前述電極層,前述金屬支撐體具有由一方之面貫通往另一方之面的貫通孔。
根據前述的特徵構成,可以使在電極層反應的氣體等由金屬支撐體之另一方的面來平順地供給,所以可實現高性能的電化學元件。
相關於本發明之金屬支持型電化學元件用之附電極層基板的其他特徵構成,為前述金屬支撐體為施以孔加工的金屬板。
根據前述的特徵構成,可以藉由孔加工產生的孔使在電極層反應的氣體等由金屬支撐體之另一方的面來平順地供給,所以可實現高性能的電化學元件。而且,可以容易製造具有貫通孔的金屬支撐體,是適宜的。進而,以金屬板為基板的話強度很高,可以實現可信賴性/耐久性優異的電化學元件。
具有前述金屬支撐型電化學元件用之附電極層基板、對極電極層、及被配置於前述電極層與前述對極電極層之間的電解質層的電化學元件,可信賴性/耐久性優異,且為低成本的電化學元件,是適宜的。
相關於本發明之電化學模組的特徵構成,為前述之電化學元件以複數層積的狀態配置。
根據前述之特徵構成,前述之電化學元件以複數層積的狀態配置,所以抑制材料成本與加工成本,同時可以得到精實的高性能的強度與可信賴性優異之電化學模組。
相關於本發明之電化學裝置的特徵構成,為至少具有前述之電化學模組與改質器,具有對前述電化學模組供給含有還原性成分的燃料氣體之燃料供給部,與由前述電化學模組取出電力之反相器。
根據前述特徵構成,具有電化學模組與改質器,而具有對電化學模組供給含有還原性成分的燃料氣體之燃料供給部,與由電化學模組取出電力之反相器,所以使用天然氣等既有的原燃料供給基礎設施,可以由耐久性/可信賴性以及信能優異的電化學模組取出電力,可以實現耐久性/可信賴性及性能均優異的電化學裝置。此外,變得容易構築把從電化學模組排出的未利用的燃料氣體再循環利用的系統,可以實現高效率的電化學裝置。
相關於本發明之能源系統的特徵構成,為具有前述之電化學裝置,與再利用由前述電化學裝置排出的熱之排熱利用部。
根據前述的特徵構成,因為具有電化學裝置,與再利用由電化學裝置排出的熱之排熱利用部,所以可以實現耐久性/可信賴性及性能優異,而且能源效率也優異的能源系統。此外,與利用由電化學裝置排出的未利用的燃料氣體之燃燒熱而發電的發電系統組合,也可以實現能源效率優異的混成系統。
相關於本發明之固態氧化物型燃料電池之特徵構成,為具備前述電化學元件,在額定運轉時於600℃以上850℃以下之溫度,以前述電化學元件產生發電反應。
根據前述的特徵構成的話,於額定運轉時在600℃以上850℃以下之溫度使產生發電反應,所以可發揮高的發電性能,而且可抑制金屬支持型電化學元件的劣化而長期間維持燃料電池的性能。又,在額定運轉時可以在650℃以上800℃以下的溫度區域運轉的話,於以天然氣等碳化氫係氣體為原燃料的燃料電池系統,可以構築以燃料電池的排熱來供應把原燃料變換為氫時所必要的熱之系統,可以提高燃料電池系統的發電性能,所以更佳。
相關於本發明之製造方法的特徵構成,為具有金屬支撐體,及被形成於前述金屬支撐體上的電極層的金屬支撐型電化學元件用之附電極層基板之製造方法,包含使前述電極層平滑化之電極層平滑化步驟。
根據前述的特徵構成,藉由電極層之平滑化步驟,電極層成為具有表面粗糙度(Ra)為1.0μm以下的區域者。亦即,根據前述特徵構成,成為適於在低溫區域之電解質層形成製程的電極層,不必設昂貴的LST防擴散層,就可以在金屬支撐體上形成具有電極層與電解質層的電化學元件。此外,即使電解質層為薄膜的場合,也因為電極層表面的平滑度高,可以使電解質層保持均勻,所以可形成性能/可信賴性/耐久性優異的電化學元件。此外,電極層表面的平滑度高(電極層表面的凹凸很少)的話,電極層與電解質層之間的間隙變少,可以形成密接性良好的性能/可信賴性/耐久性優異的電化學元件。又,前述電極層,成為具有表面粗糙度(Ra)為0.5μm以下的區域者為更佳,成為具有0.3μm以下的區域者又更佳。這是因為電極層表面的平滑性變得越高,可以形成前述效果更大的電化學元件的緣故。
相關於本發明的製造方法之其他的特徵構成,為包含使前述電極層之燒成(firing)在1100℃以下進行的電極層燒成步驟。
根據前述的特徵構成,藉著使電極層之燒成在1100℃以下進行,所以不會把金屬支撐體暴露於高溫,可以在金屬支撐體上形成電極層。亦即,可以形成抑制金屬支撐體的劣化,而且抑制由金屬支撐體毒害電極層或電解質層等電化學元件的構成要素之元素的擴散之性能/可信賴性/耐久性優異的電化學元件。此外,能夠以比從前更低的溫度燒成,製造成本的降低成為可能。進而,成為適於在金屬支撐體與電極層之間不必設昂貴的LST防擴散層,就可以在金屬支撐體上形成具有電極層與電解質層的電化學元件,所以可形成性能優異的電化學元件,而且製造成本的降低也成為可能。又,使電極層的燒成在1050℃以下進行為更佳,在1000℃以下進行又更佳。這是因為越使電極層的燒成溫度降低,越能抑制金屬基板的損傷/劣化,而形成電化學元件的緣故。此外,使電極層的燒成在800℃以上進行的話,可以確保電極層的強度所以較佳。
相關於本發明的製造方法之其他的特徵構成,為藉由壓縮成形來進行前述電極層平滑化步驟。
根據前述的特徵構成,使電極層之平滑化步驟藉由簡便的壓縮成形來進行,電極層成為具有表面粗糙度(Ra)為1.0μm以下的區域者。亦即,根據前述特徵構成,成為適於在低溫區域之電解質層形成製程的電極層,不必設昂貴的LST防擴散層,就可以在金屬支撐體上形成具有電極層與電解質層的電化學元件。此外,即使電解質層為薄膜的場合,也因為電極層表面的平滑度高,可以使電解質層保持均勻,所以可形成性能/可信賴性/耐久性優異的電化學元件。此外,電極層表面的平滑度高(電極層表面的凹凸很少)的話,電極層與電解質層之間的間隙變少,可以形成密接性良好的性能/可信賴性/耐久性優異的電化學元件。而且,製造成本的降低成為可能。
相關於本發明之製造方法的特徵構成,為具有金屬支撐體、被形成於前述金屬支撐體上的電極層、及被形成於前述電極層上的中間層之金屬支撐型電化學元件用之附電極層基板之製造方法,包含使前述中間層平滑化之中間層平滑化步驟。
根據前述的特徵構成,藉由中間層之平滑化步驟,中間層成為具有表面粗糙度(Ra)為1.0μm以下的區域者。亦即,根據前述特徵構成,成為適於在低溫區域之電解質層形成製程的中間層,不必設昂貴的LST防擴散層,就可以在金屬支撐體上形成具有電極層與中間層與電解質層的電化學元件。此外,即使電解質層為薄膜的場合,也因為中間層表面的平滑度高,可以使電解質層保持均勻,所以可形成性能/可信賴性/耐久性優異的電化學元件。此外,中間層表面的平滑度高(中間層表面的凹凸很少)的話,中間層與電解質間的間隙變少,可以形成密接性良好的性能/可信賴性/耐久性優異的電化學元件。又,前述中間層,成為具有表面粗糙度(Ra)為0.5μm以下的區域者為更佳,成為具有0.3μm以下的區域者又更佳。這是因為中間層表面的平滑性變得越高,可以形成前述效果更大的電化學元件的緣故。
相關於本發明的製造方法之其他的特徵構成,為包含使前述中間層之燒成在1100℃以下進行的中間層燒成步驟。
根據前述的特徵構成,藉著使中間層之燒成在1100℃以下進行,所以不會把金屬支撐體暴露於高溫,可以在金屬支撐體上形成中間層。亦即,可以形成抑制金屬支撐體的劣化,而且抑制由金屬支撐體毒害電極層或中間層或電解質層等電化學元件的構成要素之元素的擴散之性能/可信賴性/耐久性優異的電化學元件。此外,能夠以比從前更低的溫度燒成,製造成本的降低成為可能。進而,成為適於在金屬支撐體與電極層或中間層之間不必設昂貴的LST防擴散層,就可以在金屬支撐體上形成具有電極層與中間層與電解質層的電化學元件,所以可形成性能優異的電化學元件,而且製造成本的降低也成為可能。又,使電極層的燒成在1050℃以下進行為更佳,在1000℃以下進行又更佳。這是因為越使中間層的燒成溫度降低,越能抑制金屬基板的損傷/劣化,而形成電化學元件的緣故。此外,使中間層的燒成在800℃以上進行的話,可以確保中間層的強度所以較佳。
相關於本發明的製造方法之其他的特徵構成,為藉由壓縮成形來進行前述中間層平滑化步驟。
根據前述的特徵構成,使中間層之平滑化步驟藉由簡便的壓縮成形來進行,中間層成為具有表面粗糙度(Ra)為1.0μm以下的區域者。亦即,根據前述特徵構成,成為適於在低溫區域之電解質層形成製程的中間層,不必設昂貴的LST防擴散層,就可以在金屬支撐體上形成具有電極層與中間層與電解質層的電化學元件。此外,即使電解質層為薄膜的場合,也因為中間層表面的平滑度高,可以使電解質層保持均勻,所以可形成性能/可信賴性/耐久性優異的電化學元件。此外,中間層表面的平滑度高(中間層表面的凹凸很少)的話,可以形成中間層與電解質間的間隙變少,密接性良好的性能/可信賴性/耐久性優異的電化學元件。而且,製造成本的降低成為可能。
<第1實施形態>   以下,參照圖1,同時說明相關於本實施型態之電化學元件E及固態氧化物型燃料電池(Solid Oxide Fuel Cell:SOFC)。電化學元件E,例如做為接受含氫的燃料氣體與空氣的供給而發電的固態氧化物型燃料電池的構成要素來使用。又,以下在表示層的位置關係等的時候,會把例如由電解質層4來看把對極電極層6之側作為「上」或者「上側」,把電極層2之側作為「下」或者「下側」。此外,亦會把金屬基板1之被形成電極層2之側之面作為「表側」,把相反側之面作為「背側」。
(電化學元件)   電化學元件E,如圖1所示,具有金屬基板1(金屬支持體)、被形成於金屬基板1上的電極層2、被形成於電極層2上的中間層3、與被形成於中間層3上的電解質層4。接著,電化學元件E,進而具有被形成於電解質層4上的反應防止層5,與被形成於反應防止層5之上的對極電極層6。總之,對極電極層6被形成於電解質層4之上,反應防止層5被形成於電解質層4與對極電極層6之間。電極層2為多孔質,電解質層4為緻密。
(附電極層基板)   在本實施型態,金屬支撐型電化學元件用之附電極層基板B,被構成為具有金屬基板1(金屬支持體)、被形成於金屬基板1上的電極層2、被形成於電極層2上的中間層3。總之,在本實施型態,電化學元件E,被構成為具有附電極層基板B、電解質層4、反應防止層5、對極電極層6。
(金屬基板)   金屬基板1支撐電極層2、中間層3及電解質層4等,保持電化學元件E的強度,擔負著支持體的功能。作為金屬基板1的材料,使用電子傳導性、耐熱性、耐氧化性及耐腐蝕性優異的材料。例如,使用肥粒鐵系不銹鋼、沃斯田鐵系不銹鋼、鎳基合金等。特別是適合使用含鉻合金。又,在本實施型態,作為金屬支撐體使用板狀的金屬基板1,但作為金屬支撐體也可以使用其他形狀,例如箱狀、圓筒狀等形狀。   又,金屬基板1,作為支撐體只要在形成電化學元件時具有充分的強度即可,例如可以使用0.1mm~2mm程度,較佳為0.1mm~1mm程度,更佳為0.1mm~0.5mm程度之厚度。
金屬基板1,具有貫通表側之面與背側之面而設的複數貫通孔1a。又,例如,貫通孔1a可以藉由機械方式、化學方式或者光學之穿孔加工等,而設於金屬基板1。貫通孔1a,具有使氣體由金屬基板1的背側之面往表側之面透過的機能。為了使金屬基板1具有氣體透過性,可以使用多孔質金屬。例如,金屬基板1,也可以使用燒結金屬或發泡金屬。
於金屬基板1的表面,設有作為擴散抑制層的金屬氧化物層1b。亦即,在金屬基板1與後述的電極層2之間,被形成擴散抑制層。金屬氧化物層1b,不僅設在露出於金屬基板1的外部之面,也設在與電極層2之接觸面(界面)及貫通孔1a的內側之面。藉由此金屬氧化物層1b,可以抑制金屬基板1與電極層2之間的元素相互擴散。例如,作為金屬基板1使用含鉻的肥粒鐵系不銹鋼的場合,金屬氧化物層1b主要為鉻氧化物。接著,以鉻氧化物為主成分的金屬氧化物層1b,抑制金屬基板1的鉻原子等往電極層2或電解質層4擴散。金屬氧化物層1b的厚度,只要是可以兼顧防擴散性能夠高與電阻夠低之後度即可。例如,亞微米級(sub micron orde)為佳,具體而言,平均的厚度以0.3μm以上0.7μm以下程度為更佳。此外,最小厚度約0.1μm以上為更佳。   此外,最大厚度約1.1μm以下為佳。   金屬氧化物層1b可藉由種種手法來形成,但使金屬基板1的表面氧化成為金屬氧化物的手法適宜使用。此外,於金屬基板1的表面,藉由濺鍍法或PLD法等PVD法、CVD法、噴塗法(熔射法或氣溶膠沉積法、氣溶膠氣相沉積法、粉末噴射沉積法、微粒噴射沉積法、冷噴塗法等方法)等來形成金屬氧化物層1b亦可,藉由電鍍與氧化處理來形成亦可。進而,金屬氧化物層1b包含導電性高的尖晶石相等亦可。
作為金屬基板1使用肥粒鐵系不銹鋼的場合,與作為電極層2或電解質層4的材料使用的YSZ(釔安定氧化鋯)或GDC(釓摻雜氧化鈰,亦稱為CGO)等熱膨脹係數相近。亦即,低溫與高溫之溫度循環反覆進行的場合,電化學元件E也不容易受到損傷。因而,以可以實現長期耐久性優異的電化學元件E為佳。
(電極層)   電極層2,如圖1所示,在金屬基板1的表側之面且被設置貫通孔1a的區域更大的區域,以薄層的狀態設置。薄層的場合,可以使其厚度為例如1μm~100μm程度,較佳為5μm~50μm。使成為這樣的厚度,可以減低昂貴的電極層材料的使用量而謀求降低成本,同時可以確保充分的電極性能。被設置貫通孔1a的區域的全體為電極層2所覆蓋。總之,貫通孔1a被形成於金屬基板1之被形成電極層2的區域的內側。換句話說,所有的貫穿孔1a面對電極層2設置。
作為電極層2的材料,例如可以使用NiO-GDC、Ni-GDC、NiO-YSZ、Ni-YSZ、CuO-CeO2 、Cu-CeO2 等複合材。在這些例中,可以把GDC、YSZ、CeO2 稱為複合材之骨材。又,電極層2,以藉由低溫燒成法(例如不在比1100℃更高的高溫域進行燒成處理而使用在低溫域之燒成處理的濕式法)或是噴塗法(熔射法或氣溶膠沉積法、氣溶膠氣相沉積法、粉末噴射沉積法、微粒噴射沉積法、冷噴塗法等方法)PVD法(濺鍍法或脈衝雷射沉積法等),CVD法等來形成為較佳。藉由這些可以在低溫域使用的製程,不在例如比1100℃更高的高溫域之燒成,可以得到良好的電極層2。因此,不損傷金屬基板1,此外,可以抑制金屬基板1與電極層2之元素相互擴散,可實現耐久性優異的電化學元件所以較佳。進而,使用低溫燒成法的話,原料的操作變得容易所以更佳。
電極層2具有氣體透過性,所以內部及表面具有複數細孔。   亦即,電極層2,形成為多孔質之層。電極層2,例如以其緻密度為30%以上而未滿80%的方式形成。細孔的尺寸,可以適當選擇在進行電化學反應時適於使反應圓滑地進行之尺寸。又,所謂緻密度,是構成層的材料的空間占比,能夠以(1-空孔率)表示,此外,與相對密度同等。
(中間層)   中間層3,如圖1所示,能夠在覆蓋電極層2的狀態下,以薄層的狀態形成於電極層2之上。薄層的場合,可以使其厚度為例如1μm~100μm程度,較佳為2μm~50μm程度,更佳為4μm~25μm程度。使成為這樣的厚度,可以減低昂貴的中間層材料的使用量而謀求降低成本,同時可以確保充分的性能。作為中間層3的材料,例如,可以使用YSZ(釔安定氧化鋯)、SSZ(鈧安定氧化鋯)或GDC(釓摻雜氧化鈰)、YDC(釔摻雜氧化鈰)、YDC(釔摻雜氧化鈰)、SDC(釤摻雜氧化鈰)等。特別適合使用氧化鈰系之陶瓷。
中間層3,以藉由低溫燒成法(例如不在比1100℃更高的高溫域進行燒成處理而使用在低溫域之燒成處理的濕式法)或是噴塗法(熔射法或氣溶膠沉積法、氣溶膠氣相沉積法、粉末噴射沉積法、微粒噴射沉積法、冷噴塗法等方法)PVD法(濺鍍法或脈衝雷射沉積法等),CVD法等來形成為較佳。藉由這些可以在低溫域使用的成膜製程,不在例如比1100℃更高的高溫域之燒成,可以得到中間層3。因此,不損傷金屬基板1,可以抑制金屬基板1與電極層2之元素相互擴散,可實現耐久性優異的電化學元件E。此外,使用低溫燒成法的話,原料的操作變得容易所以更佳。
作為中間層3,以具有氧離子(氧化物離子)傳導性為佳。此外,具有氧離子(氧化物離子)與電子之混合傳導性為更佳。具有這些性質的中間層3,適合適用電化學元件E。
(中間層的表面粗糙度(Ra))   在本實施型態,中間層3具有表面粗糙度(Ra)為1.0μm以下的區域。該區域,亦可為中間層3的表面全體,亦可為一部分的區域。中間層3,藉由具有表面粗糙度(Ra)為1.0μm以下的區域,可以構成中間層3與電解質層4之密接性良好的性能/可信賴性/耐久性優異的電化學元件E。又,即使電解質層4為薄膜的場合,也因為電解質層4可以保持均勻,所以可構成性能/可信賴性/耐久性優異的電化學元件。又,中間層3,具有表面粗糙度(Ra)為0.5μm以下的區域的話更佳,具有0.3μm以下的區域的話又更佳。這是因為中間層3的表面粗糙度的平滑性變得越高,可以構成前述效果更優異的電化學元件E的緣故。
(電解質層)   電解質層4,如圖1所示,是在覆蓋電極層2及中間層3的狀態下,以薄層的狀態形成於中間層3之上。此外,也能夠以厚度10μm以下的薄膜狀態形成。詳言之,電解質層4,如圖1所示,係跨設於中間層3之上與金屬基板1之上。如此構成,藉由把電解質層4接合於金屬基板1,可以作為電化學元件全體在具有優異的牢固性。
此外,電解質層4,如圖1所示,設置於金屬基板1的表側之面且比被設置貫通孔1a的區域更大的區域。總之,貫通孔1a被形成於金屬基板1之被形成電解質層4的區域的內側。
此外,於電解質層4的周圍,可以抑制來自電極層2及中間層3之氣體的洩漏。進一步說明,在電化學元件E作為SOFC的構成要素使用的場合,在SOFC動作時,氣體由金屬基板1的背側通過貫通孔1a往電極層2供給。在電解質層4接於金屬基板1的部位,不設置密合墊等其他構件,就可以抑制氣體的洩漏。又,在本實施型態藉由電解質層4全部覆蓋電極層2的周圍,但在電極層2及中間層3的上部設電解質層4,在周圍設密合墊等的構成亦可。
作為電解質層4的材料,例如,可以使用YSZ(釔安定氧化鋯)、SSZ(鈧安定氧化鋯)或GDC(釓摻雜氧化鈰)、YDC(釔摻雜氧化鈰)、SDC(釤摻雜氧化鈰)、LSGM(鍶鎂摻雜鎵酸鑭)等。特別適合使用氧化鋯系之陶瓷。電解質層4採用氧化鋯系陶瓷的話,能夠讓使用電化學元件E的SOFC的工作溫度,比氧化鈰系陶瓷更為提高。例如把電化學元件E使用於SOFC的場合,作為電解質層4的材料使用如YSZ那樣在650℃程度以上的高溫域也可以發揮高的電解質性能的材料,系統的原燃料使用都市瓦斯或天然氣(LPG)等碳化氫系原燃料,使原燃料藉由水蒸氣改質等作為SOFC的陽極氣體的系統構成的話,可以構築把在SOFC的電池堆產生的熱用於原燃料氣體的改質之高效率的SOFC系統。
電解質層4,以藉由低溫燒成法(例如不超越1100℃的高溫域進行燒成處理而使用在低溫域之燒成處理的濕式法)或是噴塗法(熔射法或氣溶膠沉積法、氣溶膠氣相沉積法、粉末噴射沉積法、微粒噴射沉積法、冷噴塗法等方法)PVD法(濺鍍法或脈衝雷射沉積法等),CVD法等來形成為較佳。藉由這些可以在低溫域使用的成膜製程,不在例如比1100℃以上的高溫域之燒成,可以得到緻密且氣密性及氣體障壁性高的電解質層4。因此,可以抑制金屬基板1的損傷,此外,可以抑制金屬基板1與電極層2之元素相互擴散,可實現性能/耐久性優異的電化學元件E。特別是使用低溫燒成法或噴塗法等的話,可以實現低成本的元件所以較佳。進而,使用噴塗法的話,在低溫域容易得到緻密且氣密性及氣體障壁性高的電解質層所以更佳。
電解質層4遮蔽陽極氣體或陰極氣體之氣體洩漏,且呈現高的離子傳導性,所以被構成為緻密。電解質層4的緻密度以90%以上為佳,95%以上為更佳,98%以上又更佳。電解質層4為均勻的層的場合,其緻密度以95%以上為佳,98%以上為更佳。此外,電解質層4,被構成為複數之層狀的場合,其中至少一部分含有致密度98%以上之層(緻密電解質層)為佳,包含99%以上之層(緻密電解質層)更佳。如此緻密電解質層包含於電解質層之一部分的話,即使電解質層被構成為複數層狀的場合,也容易形成緻密且氣密性及氣體障壁性高的電解質層。
(反應防止層)   反應防止層5,可以在電解質層4之上以薄層的狀態形成。薄層的場合,可以使其厚度為例如1μm~100μm程度,較佳為2μm~50μm程度,更佳為4μm~25μm程度。使成為這樣的厚度,可以減低昂貴的反應防止層材料的使用量而謀求降低成本,同時可以確保充分的性能。作為反應防止層5之材料,只要是可以防止電解質層4的成分與對極電極層6的成分之間的反應之材料即可。例如使用氧化鈰系材料等。藉由把反應防止層5導入電解質層4與對極電極層6之間,有效果的抑制對極電極層6的構成材料與電解質層4的構成材料之反應,可以提高電化學元件E的性能的長期安定性。反應防止層5的形成,適當使用可以在1100℃以下的處理溫度下形成的方法來進行的話,可以抑制金屬基板1的損傷,此外可以抑制金屬基板1與電極層2之元素相互擴散,可實現性能/耐久性優異的電化學元件E,所以較佳。例如,可以適宜使用藉由低溫燒成法(例如不超越1100℃的高溫域進行燒成處理而使用在低溫域之燒成處理的濕式法),噴塗法(熔射法或氣溶膠沉積法、氣溶膠氣相沉積法、粉末噴射沉積法、微粒噴射沉積法、冷噴塗法等方法)PVD法(濺鍍法或脈衝雷射沉積法等),CVD法等來進行。特別是使用低溫燒成法或噴塗法等的話,可以實現低成本的元件所以較佳。進而,使用低溫燒成法的話,原料的操作變得容易所以更佳。
(對極電極層)   對極電極層6,係在電解質層4或者反應防止層5之上以薄層的狀態形成。薄層的場合,可以使其厚度為例如1μm~100μm程度,較佳為5μm~50μm。使成為這樣的厚度,可以減低昂貴的對極電極層材料的使用量而謀求降低成本,同時可以確保充分的電極性能。作為對極電極層6的材料,例如可以使用LSCF、LSM等複合氧化物。使用以上的材料構成的對極電極層6,作為陰極發揮機能。
又,對極電極層6的形成,適當使用可以在1100℃以下的處理溫度下形成的方法來進行的話,可以抑制金屬基板1的損傷,此外可以抑制金屬基板1與電極層2之元素相互擴散,可實現性能/耐久性優異的電化學元件E,所以較佳。例如,可以適宜使用藉由低溫燒成法(例如不超越1100℃的高溫域進行燒成處理而使用在低溫域之燒成處理的濕式法),噴塗法(熔射法或氣溶膠沉積法、氣溶膠氣相沉積法、粉末噴射沉積法、微粒噴射沉積法、冷噴塗法等方法)PVD法(濺鍍法或脈衝雷射沉積法等),CVD法等來進行。特別是使用低溫燒成法或噴塗法等的話,可以實現低成本的元件所以較佳。進而,使用低溫燒成法的話,原料的操作變得容易所以更佳。
(固態氧化物型燃料電池)   藉著如以上所述構成電化學元件E,可以把電化學元件E作為固態氧化物型燃料電池之發電胞來使用。例如,由金屬基板1的背側之面通過貫通孔1a把含氫的燃料氣體往電極層2供給,往成為電極層2的對極的對極電極層6供給空氣,例如在600℃以上850℃以下的溫度使其工作。如此進行的話,於對極電極層6包含於空氣的氧O2 與電子e- 反應產生氧離子O2- 。該氧離子O2- 通過電解質層4往電極層2移動。於電極層2,包含於被供給的燃料氣體的氫H2 與氧離子O2- 反應,產生水H2 O與電子e- 。藉由以上的反應,在電極層2與對極電極層6之間產生起電力。在此場合,電極層2作為SOFC的燃料極(陽極)發揮機能,對極電極層6作為空氣極(陰極)發揮機能。
(電化學元件之製造方法)   其次,說明相關於本實施型態之電化學元件E之製造方法。
(電極層形成步驟)   在電極層形成步驟,在金屬基板1的表側之面之比被設置貫通孔1a的區域更寬的區域,電極層2以薄膜的狀態形成。金屬基板1的貫通孔可藉由雷射加工等來設置。電極層2的形成,如前所述,可以使用低溫燒成法(在1100℃以下的低溫域進行燒成處理的濕式法),噴塗法(熔射法或氣溶膠沉積法、氣溶膠氣相沉積法、粉末噴射沉積法、微粒噴射沉積法、冷噴塗法等方法)PVD法(濺鍍法或脈衝雷射沉積法等),CVD法等來進行。無論使用哪一種方法的場合,為了抑制金屬基板1的劣化,都以在1100℃以下的溫度進行為佳。
以低溫燒成法進行電極層形成步驟的場合,具體而言如以下之例那樣進行。首先,混合電極層2的材料粉末與溶媒(分散媒)作成材料糊,塗布於金屬基板1的表側之面。接著,把電極層2壓縮成形(電極層平滑化步驟),在1100℃以下燒成(電極層燒成步驟)。電極層2的壓縮成形,例如可以藉由CIP(Cold Isostatic Pressing 、冷間靜水壓加壓)成形、輥加壓成形、RIP(Rubber Isostatic Pressing、橡膠等靜壓)成形等來進行。此外,電極層2的燒成,以在800℃以上1100℃以下之溫度進行為適宜。此外,電極層平滑化步驟與電極層燒成步驟的順序亦可替換。   又,在形成具有中間層的電化學元件的場合,省略電極層平滑化步驟或電極層燒成步驟,或是使電極層平滑化步驟或電極層燒成步驟包含於後述之中間層平滑化步驟或中間層燒成步驟亦可。   又,電極層平滑化步驟,也可以藉由施以包裹成形或整平處理、表面的切削/研磨處理等來進行。
(擴散抑制層形成步驟)   前述之電極層形成步驟之燒成步驟時,在金屬基板1的表面被形成金屬氧化物層1b(擴散抑制層)。又,於前述燒成步驟,包含使燒成氛圍為氧分壓低的氛圍條件之燒成步驟的話,元素之相互擴散抑制效果很高,形成電阻值低的優質的金屬氧化物層1b(擴散抑制層)所以較佳。使電極層形成步驟,包含不進行燒成的方法的塗布方法的場合亦可,包含另外的擴散抑制層形成步驟亦可。任一場合,都以在可抑制金屬基板1的損傷的1100℃以下的處理溫度下實施為佳。此外,後述之中間層形成步驟之燒成步驟時,在金屬基板1的表面被形成金屬氧化物層1b(擴散抑制層)亦可。
(中間層形成步驟)   在中間層形成步驟,是在覆蓋電極層2的狀態下,中間層3以薄層的狀態形成於電極層2之上。中間層3的形成,如前所述,可以使用低溫燒成法(在1100℃以下的低溫域進行燒成處理的濕式法),噴塗法(熔射法或氣溶膠沉積法、氣溶膠氣相沉積法、粉末噴射沉積法、微粒噴射沉積法、冷噴塗法等方法)PVD法(濺鍍法或脈衝雷射沉積法等),CVD法等來進行。無論使用哪一種方法的場合,為了抑制金屬基板1的劣化,都以在1100℃以下的溫度進行為佳。
以低溫燒成法進行中間層形成步驟的場合,具體而言如以下之例那樣進行。首先,混合中間層3的材料粉末與溶媒(分散媒)作成材料糊,塗布於金屬基板1的表側之面。接著,把中間層3壓縮成形(中間層平滑化步驟),在1100℃以下燒成(中間層燒成步驟)。中間層3的壓延,例如可以藉由CIP(Cold Isostatic Pressing 、冷間靜水壓加壓)成形、輥加壓成形、RIP(Rubber Isostatic Pressing、橡膠等靜壓)成形等來進行。此外,中間層的燒成,以在800℃以上1100℃以下之溫度進行為適宜。因為在這樣的溫度的話,可以抑制金屬基板1的損傷/劣化,形成強度高的中間層3的緣故。此外,使中間層3的燒成在1050℃以下進行為更佳,在1000℃以下進行又更佳。這是因為越使中間層3的燒成溫度降低,越能抑制金屬基板1的損傷/劣化,而形成電化學元件的緣故。此外,中間層平滑化步驟與中間層燒成步驟的順序亦可替換。   又,中間層平滑化步驟,也可以藉由施以包裹成形或整平處理、表面的切削/研磨處理等來進行。
(電解質層形成步驟)   在電解質層形成步驟,是在覆蓋電極層2及中間層3的狀態下,電解質層4以薄層的狀態形成於中間層3之上。此外,以厚度10μm以下的薄膜狀態形成亦可。電解質層4的形成,如前所述,可以使用低溫燒成法(在1100℃以下的低溫域進行燒成處理的濕式法),噴塗法(熔射法或氣溶膠沉積法、氣溶膠氣相沉積法、粉末噴射沉積法、微粒噴射沉積法、冷噴塗法等方法)PVD法(濺鍍法或脈衝雷射沉積法等),CVD法等來進行。無論使用哪一種方法的場合,為了抑制金屬基板1的劣化,都以在1100℃以下的溫度進行為佳。
為了在1100℃以下的溫度域形成緻密集氣體障壁性能高的,優質的電解質層4,以噴塗法進行電解質層形成步驟為佳。在此場合,使電解質層4的材料朝向金屬基板1的中間層3噴射,形成電解質層4。
(反應防止層形成步驟)   在反應防止層形成步驟,反應防止層5以薄層的狀態形成於電解質層4之上。反應防止層5的形成,如前所述,可以使用低溫燒成法,噴塗法(熔射法或氣溶膠沉積法、氣溶膠氣相沉積法、粉末噴射沉積法、微粒噴射沉積法、冷噴塗法等方法)PVD法(濺鍍法或脈衝雷射沉積法等),CVD法等來進行。無論使用哪一種方法的場合,為了抑制金屬基板1的劣化,都以在1100℃以下的溫度進行為佳。又,為了使反應防止層5的上側之面平坦,例如於反應防止層5形成後施以整平處理或切削/研磨處理表面,於濕式形成後燒成前,施以壓製加工亦可。
(對極電極層形成步驟)   在對極電極層形成步驟,對極電極層6以薄層的狀態形成於反應防止層5之上。對極電極層6的形成,如前所述,可以使用低溫燒成法,噴塗法(熔射法或氣溶膠沉積法、氣溶膠氣相沉積法、粉末噴射沉積法、微粒噴射沉積法、冷噴塗法等方法)PVD法(濺鍍法或脈衝雷射沉積法等),CVD法等來進行。無論使用哪一種方法的場合,為了抑制金屬基板1的劣化,都以在1100℃以下的溫度進行為佳。
如以上所述進行,可以製造電化學元件E。又,進行以上所述的電極層形成步驟及中間層形成步驟,可以製造金屬支撐型電化學元件用之附電極層基板B。亦即相關於本實施型態之製造方法,為具有金屬基板1(金屬支撐體)、被形成於金屬基板1上的電極層2、及被形成於電極層2上的中間層3之金屬支撐型電化學元件用之附電極層基板B之製造方法,包含平滑化中間層3的表面之中間層平滑化步驟,包含使中間層3的燒成在1100℃以下進行的中間層燒成步驟。
又,於電化學元件E,中間層3與反應防止層5,也可以是不具備任一方或者雙方的形態。亦即,電極層2與電解質層4接觸而形成的形態,或者電解質層4與對極電極層6接觸而形成的形態亦為可能。此場合在前述之製造方法,中間層形成步驟、反應防止層形成步驟被省略。又,追加形成其他層的步驟,或層積複數同種之層等也是可能的,在任一場合下,都以在1100℃以下的溫度進行為佳。
<實施例>   對厚度0.3mm、直徑25mm的圓形crofer22APU之金屬板,藉由雷射加工在中心起半徑2.5mm的區域設複數貫通孔1a,製作了金屬基板1。又,此時,金屬基板1的表面的貫通孔1a藉由雷射加工設置。
其次,混合60重量百分比的NiO粉末與40重量百分比的GDC粉末,加入有機結合劑與有機溶媒(分散媒)製作糊漿。使用該糊漿,在金屬基板1之中心起半徑3mm的區域層積了電極層2。又,電極層2之形成使用了網版印刷。接著對層積電極層2之金屬基板1,在950℃進行了燒成處理(電極層形成步驟、擴散抑制層形成步驟)。
其次,於GDC之微粉末加入有機結合劑與有機溶媒(分散媒)製作了糊漿。使用該糊漿,藉由網版印刷,在層積了電極層2的金屬基板1之中心起半徑5mm的區域層積了中間層3。其次,藉著對層積中間層3之金屬基板1,以300MPa的壓力進行了CIP成形之後,在1000℃進行燒成處理,形成表面平坦的中間層3(中間層形成步驟)。
在以上步驟得到的電極層2的厚度為約20μm,中間層3的厚度為約10μm。此外,如此層積了電極層2與中間層3的狀態之金屬基板1的He洩漏量,在0.2MPa之壓力下為11.5mL/分・cm2 之量。由此可知,層積電極層2與中間層3的金屬基板1成為具有氣體流通性的附電極層基板。
接著,把眾數徑(mode diameter)約0.7μm之8YSZ(釔安定氧化鋯)成分以4.1g/分的供給速度,往金屬基板1的中間層3之上,以覆蓋中間層3的方式在15mm×15mm的範圍以5mm/秒的掃描速度使基板移動同時噴射,形成了電解質層4(噴塗)。又,此時,金屬基板1不加熱(電解質層形成步驟)。
在以上步驟得到的電解質層4的厚度為3~4μm程度。如此層積了電極層2與中間層3與電解質層4的狀態之金屬基板1的He洩漏量,在0.2MPa之壓力下測定時,He洩漏量未達檢測下限(1.0mL/分・cm2 )。亦即,可知形成的電解質層4,具有氣體障壁性。
其次,於GDC之微粉末加入有機結合劑與有機溶媒(分散媒)製作了糊漿。使用該糊漿,藉由網版印刷,在電化學元件E的電解質層4之上,形成了反應防止層5。
其後,藉著對形成的反應防止層5之電化學元件E,以300MPa的壓力進行了CIP成形之後,在1000℃進行燒成處理,形成表面平坦的反應防止層5(反應防止層形成步驟)。
進而,混合GDC粉末與LSCF粉末,加入有機結合劑與有機溶媒(分散媒))製作糊漿。使用該糊漿,藉由網版印刷,在反應防止層5之上,形成了對極電極層6。最後,把形成了對極電極層6的金屬電化學元件E在900℃燒成(對極電極層形成步驟),得到電化學元件E。
得到的電化學元件E,對電極層2供給氫氣,對對極電極層6供給空氣,測定了作為固態氧化物型燃料電池胞之開電路電壓(OCV)。結果在750℃為1.07V。
此外,圖5係顯示此電化學元件E的剖面之電子顯微鏡照片。由電子顯微鏡照片可知,在中間層3之面向電解質層之側的表面粗糙度(Ra)為1.0μm以下的平滑的表面上被形成緻密的電解質層4,得到性能良好的固態氧化物型燃料電池胞(電化學元件E)。
針對同樣製作的5個試樣,藉由雷射顯微鏡測定了中間層3的表面粗糙度(Ra)。結果顯示於表1。
Figure 02_image001
不論哪個試樣,中間層3的表面粗糙度(Ra)都為1.0μm以下,是可以在中間層3之上形成良好的電解質層4、反應防止層5、對極電極層6的試樣。
其次,針對無法在中間層3上形成良好的電解質層4、反應防止層5、對極電極層6,在750℃不能得到1V以上的開電路電壓(OCV)的試樣,藉由雷射顯微鏡測定了中間層3的表面粗糙度(Ra)。結果顯示於表2。
Figure 02_image003
不論哪個試樣,中間層3的表面粗糙度(Ra)都為比1.0μm還大的值。   由以上結果,顯示藉著使中間層3的表面粗糙度(Ra)為1.0μm以下,可以達成良好的金屬支撐型電化學元件用之附電極層基板。
<第2實施形態>   相關於本實施型態之電化學元件E為不具備中間層3的形態,亦即電極層2與電解質層4接觸而形成的形態。亦即,在電化學元件E之製造方法,中間層形成步驟被省略。
相關於本實施型態之電化學元件E,具有金屬基板1(金屬支持體)、被形成於金屬基板1上的電極層2、被形成於電極層2上的電解質層4。接著,電化學元件E,進而具有被形成於電解質層4上的反應防止層5,與被形成於反應防止層5之上的對極電極層6。總之,對極電極層6被形成於電解質層4之上,反應防止層5被形成於電解質層4與對極電極層6之間。電極層2為多孔質,電解質層4為緻密。
(附電極層基板)   在本實施型態,金屬支撐型電化學元件用之附電極層基板B,被構成為具有金屬基板1(金屬支持體)、被形成於金屬基板1上的電極層2。總之,在本實施型態,電化學元件E,被構成為具有附電極層基板B、電解質層4、反應防止層5、對極電極層6。
在本實施型態,電極層2具有表面粗糙度(Ra)為1.0μm以下的區域。該區域,亦可為電極層2的表面全體,亦可為一部分的區域。電極層2,藉由具有表面粗糙度(Ra)為1.0μm以下的區域,可以構成電極層2與電解質層4之密接性良好的性能/可信賴性/耐久性優異的電化學元件E。又,即使電解質層4為薄膜的場合,也因為電解質層4可以保持均勻,所以可構成性能/可信賴性/耐久性優異的電化學元件。又,電極層2,具有表面粗糙度(Ra)為0.5μm以下的區域的話更佳,具有0.3μm以下的區域的話又更佳。這是因為電極層2的表面粗糙度的平滑性變得越高,可以構成前述效果更優異的電化學元件E的緣故。
(電化學元件之製造方法)   其次,說明相關於本實施型態之電化學元件E之製造方法。相關於本實施型態的電化學元件E不具有中間層3。亦即,在相關於本實施型態的電化學元件E的製造方法,依序進行電極層形成步驟(擴散抑制層形成步驟)、電解質層形成步驟、反應防止層形成步驟、對極電極層形成步驟。
(電極層形成步驟)   在電極層形成步驟,在金屬基板1的表側之面之比被設置貫通孔1a的區域更寬的區域,電極層2以薄膜的狀態形成。金屬基板1的貫通孔可藉由雷射加工等來設置。電極層2的形成,如前所述,可以使用低溫燒成法(在1100℃以下的低溫域進行燒成處理的濕式法),噴塗法(熔射法或氣溶膠沉積法、氣溶膠氣相沉積法、粉末噴射沉積法、微粒噴射沉積法、冷噴塗法等方法)PVD法(濺鍍法或脈衝雷射沉積法等),CVD法等來進行。無論使用哪一種方法的場合,為了抑制金屬基板1的劣化,都以在1100℃以下的溫度進行為佳。
以低溫燒成法進行電極層形成步驟的場合,具體而言如以下之例那樣進行。首先,混合電極層2的材料粉末與溶媒(分散媒)製作材料糊,塗布於金屬基板1的表側之面。接著,把電極層2壓縮成形(電極層平滑化步驟),在1100℃以下燒成(電極層燒成步驟)。電極層2的壓縮成形,例如可以藉由CIP(Cold Isostatic Pressing 、冷間靜水壓加壓)成形、輥加壓成形、RIP(Rubber Isostatic Pressing、橡膠等靜壓)成形等來進行。此外,電極層2的燒成,以在800℃以上1100℃以下之溫度進行為適宜。因為在這樣的溫度的話,可以抑制金屬基板1的損傷/劣化,形成強度高的電極層2的緣故。此外,使電極層2的燒成在1050℃以下進行為更佳,在1000℃以下進行又更佳。這是因為越使電極層2的燒成溫度降低,越能抑制金屬基板1的損傷/劣化,而形成電化學元件E的緣故。   又,電極層平滑化步驟,也可以藉由施以包裹成形或整平處理、表面的切削/研磨處理等來進行。
如以上所述進行,可以製造電化學元件E。又,進行以上所述的電極層形成步驟,可以製造金屬支撐型電化學元件用之附電極層基板B。亦即相關於本實施型態之製造方法,為具有金屬基板1(金屬支撐體)、被形成於金屬基板1上的電極層2之金屬支撐型電化學元件用之附電極層基板B之製造方法,包含平滑化電極層2的表面之電極層平滑化步驟,包含使電極層2的燒成在1100℃以下進行的低溫燒成步驟。
<實施例>   對厚度0.3mm、直徑25mm的圓形crofer22APU之金屬板,藉由雷射加工在中心起半徑2.5mm的區域設複數貫通孔1a,製作了金屬基板1。又,此時,金屬基板1的表面的貫通孔1a藉由雷射加工設置。
其次,混合60重量百分比的NiO粉末與40重量百分比的YSZ粉末,加入有機結合劑與有機溶媒(分散媒)製作糊漿。使用該糊漿,在金屬基板1之中心起半徑3mm的區域層積了電極層2。又,電極層2之形成使用了網版印刷。
其次,對層積電極層2之金屬基板1,以300MPa的壓力進行CIP成形之後,在1050℃進行了燒成處理(電極層形成步驟、擴散抑制層形成步驟)。
在以上步驟得到的電極層2的厚度為約20μm。此外,如此層積了電極層2的狀態之金屬基板1的He洩漏量,在0.1MPa之壓力下為4.3mL/分・cm2 。由此可知,層積電極層2的金屬基板1成為具有氣體流通性的附電極層基板。
接著,把眾數徑(mode diameter)約0.7μm之8YSZ(釔安定氧化鋯)成分以6.0g/分的供給速度,往金屬基板1的電極層2之上,以覆蓋電極層2的方式在15mm×15mm的範圍以5mm/秒的掃描速度使基板移動同時噴射,形成了電解質層4(噴塗)。又,此時,金屬基板1不加熱(電解質層形成步驟)。
在以上步驟得到的電解質層4的厚度為5~6μm程度。如此層積了電極層2與電解質層4的狀態之金屬基板1的He洩漏量,在0.2MPa之壓力下測定時,He洩漏量未達檢測下限(1.0mL/分・cm2 )。亦即,可知形成的電解質層4,具有氣體障壁性。
其次,於GDC之微粉末加入有機結合劑與有機溶媒(分散媒)製作了糊漿。使用該糊漿,藉由網版印刷,在電化學元件E的電解質層4之上,形成了反應防止層5。
其後,藉著對形成的反應防止層5之電化學元件E,以300MPa的壓力進行了CIP成形之後,在1000℃進行燒成處理,形成表面平坦的反應防止層5(反應防止層形成步驟)。
進而,混合GDC粉末與LSCF粉末,加入有機結合劑與有機溶媒製作糊漿。使用該糊漿,藉由網版印刷,在反應防止層5之上,形成了對極電極層6。最後,把形成了對極電極層6的金屬電化學元件E在900℃燒成(對極電極層形成步驟),得到電化學元件E。
得到的電化學元件E,對電極層2供給氫氣,對對極電極層6供給空氣,測定了作為固態氧化物型燃料電池胞之開電路電壓(OCV)。結果在750℃為1.05V。
針對同樣製作的其他試樣,藉由雷射顯微鏡測定了電極層2的表面粗糙度(Ra)。結果顯示於表2。
Figure 02_image005
試樣6的電極層2的表面粗糙度(Ra)為1.0μm以下,是可以在電極層2之上形成良好的電解質層4、反應防止層5、對極電極層6的試樣。   由以上結果,顯示藉著使電極層2的表面粗糙度(Ra)為1.0μm以下,可以達成良好的金屬支撐型電化學元件用之附電極層基板。
<第3實施形態>   使用圖2、圖3,說明相關於本實施型態的電化學元件E、電化學模組M、電化學裝置Y及能源系統Z。
相關於本實施型態的電化學元件E,如圖2所示,於金屬基板1的背面被安裝U字形構件7,金屬基板1與U字形構件7形成筒狀支撐體。
接著,電化學元件E層疊複數個,其間挾有集電構件26,從而構成電化學模組M。集電構件26被接合於電化學元件E的對極電極層6與U字形構件7,使二者導電連接。
電化學模組M,具有氣體歧管17、集電構件26、終端構件及電流導出部。被層積複數之電化學元件E,筒裝支撐體之一方的開口端部被連接於氣體歧管17,由氣體歧管17接受氣體的供給。供給的氣體,流通於筒狀支撐體的內部,通過金屬基板1的貫通孔1a供給至電極層2。
圖3顯示能源系統Z及電化學裝置Y的概要。   能源系統Z,為具有電化學裝置Y,與作為再利用由電化學裝置Y排出的熱之排熱利用部的熱交換器53。   電化學裝置Y,具有電化學模組M、脫硫器31與改質器34,具有對電化學模組M供給含有還原性成分的燃料氣體之燃料供給部,與由電化學模組M取出電力之反相器38。
詳言之,電化學裝置Y,具有:脫硫器31、改質水槽32、氣化器33、改質器34、送風機35、燃燒部36、反相器38、控制部39、收納容器40及電化學模組M。
脫硫器31,除去(脫硫)天然氣等的碳化氫系原燃料所含有的硫黃化合物成分。原燃料中含有硫黃化合物的場合,藉由具備脫硫器31,可以抑制硫黃化合物對改質器34或電化學元件E的影響。氣化器33,由改質水槽32所供給的改質水來產生水蒸氣。改質器34,使用以氣化器33產生的水蒸氣,把以脫硫器31脫硫的原料進行水蒸氣改質,產生含氫的改質氣體。
電化學模組M,使用由改質器34供給的改質氣體,與由送風機35供給的空氣,使產生電化學反應而發電。燃燒部36,使由電化學模組M排出的反應廢氣與空氣混合,燃燒掉反應廢氣中的可燃成分。
電化學模組M具有複數電化學元件E與氣體歧管17。複數電化學元件E以相互導電連接的狀態並列配置,電化學元件E之一方的端部(下端部)被固定於氣體歧管17。電化學元件E,使通過氣體歧管17供給的改質氣體,與由送風機35供給的空氣產生電化學反應而發電。
反相器38,調整電化學模組M之輸出電力,使其成為與由商用系統(省略圖示)所接受的電力相同的電壓以及相同的頻率。控制部39控制電化學裝置Y及能源系統Z的運轉。
氣化器33、改質器34、電化學模組M及燃燒部36被收容於收納容器40內。而改質器34,使用藉由在燃燒部36之反應廢氣的燃燒所產生的燃燒熱進行原燃料的改質處理。
原燃料,藉由升壓泵41的動作而通過原燃料供給路徑42供給至脫硫器31。改質水槽32的改質水,藉由改質水泵43的動作而通過改質水供給路徑44供給至氣化器33。接著,原燃料供給路徑42在比脫硫器31更下游側的部位,合流於改質水供給路徑44,在收納容器40外合流的改質水與原燃料被供給至收納容器40內所具備的氣化器33。
改質水以氣化器33氣化成為水蒸氣。包含以氣化器33產生的水蒸氣之原燃料,通過含水蒸汽原燃料供給路徑45供給至改質器34。原燃料以改質器34進行水蒸氣改質,產生以氫氣為主成分的改質氣體(具有還原性成分的第1氣體)。以改質器34產生的改質氣體,通過改質氣體供給路徑46供給至電化學模組M的氣體歧管17。
被供給到氣體歧管17的改質氣體,對複數電化學元件E分配,由電化學元件E與氣體歧管17之接續部亦即下端供給至電化學元件E。改質器體中的主要的氫(還原性成分)在電化學元件E使用於電化學反應。包含未用於反應的殘餘的氫氣的反應廢氣,由電化學元件E的上端往燃燒部36排出。
反應廢氣以燃燒部36燃燒,成為燃燒廢氣由燃燒廢氣排出口50往收納容器40的外部排出。於燃燒廢氣排出口50被配置燃燒觸媒部51(例如鉑系觸媒),燃燒除去包含於燃燒廢氣的一氧化碳或氫等還原性成分。由燃燒廢氣排出口50排出的燃燒廢氣,藉由燃燒廢氣排出路徑52送至熱交換器53。
熱交換器53,使燃燒部36之燃燒所產生的燃燒廢氣,與供給的冷水進行熱交換,產生溫水。亦即,熱交換器53,作為再利用由電化學裝置Y排出的熱之排熱利用部進行運作。
又,替代排熱利用部,而設置利用由電化學模組M(不燃燒地)排出的反應廢氣之反應廢氣利用部亦可。反應廢氣,含有在電化學元件E未用於反應的殘餘的氫氣。在反應廢氣利用部,利用殘餘的氫氣,進行根據燃燒之熱利用,或是根據燃料電池等地發電,達成能源的有效利用。 <第4實施形態>   圖4顯示電化學模組M的其他實施型態。相關於本實施型態之電化學模組M,把前述之電化學元件E層積構成電化學模組M,其間挾著胞間連接構件71。
胞間連接構件71,為具有導電性,且不具有氣體透過性之板狀的構件,於表面與背面,被形成相互正交的溝72。胞間連接構件71可以使用不銹鋼等金屬或金屬氧化物。
如圖4所示,其間挾著此胞間連接構件71而層積電化學元件E的話,可以通過溝72把氣體供給至電化學元件E。詳言之,一方之溝72成為第1氣體流道72a,對電化學元件E的表側,亦即對極電極層6供給氣體。另一方之溝72成為第2氣體流道72b,由電化學元件E的背側,亦即由金屬基板1之背側之面通過貫通孔1a往電極層2供給氣體。
將此電化學模組M作為燃料電池使其動作的場合,對第1氣體流道72a供給氧,對第2氣體流道72b供給氫。如此一來,在電化學元件E進行燃料電池之反應,產生起電力/電流。產生的電力,由層積的電化學元件E的兩端的胞間連接構件71,取出至電化學模組M的外部。
又,在本實施型態,在胞間連接構件71的表面與背面,形成相互正交的溝72,但是在胞間連接構件71的表面與背面,形成相互平行的溝72亦可。
(其他實施型態)   (1)在前述之實施型態,把電化學元件E使用於固態氧化物型燃料電池,但電化學元件E,也可利用於固態氧化物型電解胞,或利用固態氧化物之氧感測器等。
(2)在前述之實施型態,使用把金屬基板1作為支撐體脂金屬支撐型固態氧化物型燃料電池,但本發明亦可利用於把電極層2或者對極電極層6作為支撐體的電極支撐型固態氧化物型燃料電池或者把電解質層4作為支撐體之電解質支撐型固態氧化物型燃料電池。這些場合,可以使電極層2或對極電極層6,或者電解質層4成為必要的厚度,以得到作為支撐體的機能。
(3)在前述實施型態,作為電極層2的材料,例如使用NiO-GDC、Ni-GDC、NiO-YSZ、Ni-YSZ、CuO-CeO2 、Cu-CeO2 等複合材,作為對極電極層6的材料使用例如LSCF、LSM等複合氧化物。如此構成的電化學元件E,對電極層2供給氫氣作為燃料極(陽極, 正極),對對極電極層6供給空氣作為空氣極(陰極),可以作為固態氧化物型燃料電池胞使用。變更此構成,以能夠把電極層2作為空氣極,把對極電極層6作為燃料極的方式,來構成電化學元件E亦為可能。亦即,作為電極層2的材料使用例如LSCF、LSM等複合氧化物,作為對極電極層6的材料使用例如NiO-GDC、Ni-GDC、NiO-YSZ、Ni-YSZ、CuO-CeO2 、Cu-CeO2 等複合材。若是如此構成的電化學元件E的話,對電極層2供給空氣作為空氣極,對對極電極層6供給氫氣作為燃料極,可以把電化學元件E作為固態氧化物型燃料電池胞使用。
又,在前述實施型態揭示的構成,在不產生矛盾的前提下,可以與其他實施型態揭示的構成組合適用。此外,於本說明書揭示的實施型態僅為例示,本發明之實施型態並不以此為限,在不逸脫本發明的目的的範圍內可以適當改變。 [產業上利用可能性]
可利用作為電化學元件及固態氧化物型燃料電池胞。
1‧‧‧金屬基板(金屬支撐體)1a‧‧‧貫通孔2‧‧‧電極層3‧‧‧中間層4‧‧‧電解質層4a‧‧‧電解質層上側面5‧‧‧反應防止層6‧‧‧對極電極層B‧‧‧附電極層基板E‧‧‧電化學元件M‧‧‧電化學模組Y‧‧‧電化學裝置Z‧‧‧能源系統
圖1係顯示電化學元件的構成之概略圖。   圖2係顯示電化學元件及電化學模組的構成之概略圖。   圖3係顯示電化學裝置及能源系統的構成之概略圖。   圖4係顯示電化學模組的構成之概略圖。   圖5係顯示電化學元件的剖面之電子顯微鏡照片。
1‧‧‧金屬基板(金屬支撐體)
1a‧‧‧貫通孔
1b‧‧‧金屬氧化物層
2‧‧‧電極層
3‧‧‧中間層
4‧‧‧電解質層
5‧‧‧反應防止層
6‧‧‧對極電極層
E‧‧‧電化學元件

Claims (12)

  1. 一種金屬支撐型電化學元件用之附電極層基板,其特徵為具有金屬支撐體,及被形成於前述金屬支撐體上的電極層;前述電極層具有表面粗糙度(Ra)為0.3μm以下的區域。
  2. 一種金屬支撐型電化學元件用之附電極層基板,其特徵為具有係被施以孔加工的金屬板之金屬支撐體、被形成於前述金屬支撐體上的電極層、及被形成於前述電極層上的中間層;前述中間層具有表面粗糙度(Ra)為1.0μm以下的區域。
  3. 如申請專利範圍第1或2項之金屬支撐型電化學元件用之附電極層基板,其中於前述金屬支撐體之一方之面被形成前述電極層,前述金屬支撐體具有由一方之面貫通至另一方之面的貫通孔。
  4. 如申請專利範圍第1項之金屬支撐型電化學元件用之 附電極層基板,其中前述金屬支撐體為施以孔加工的金屬板。
  5. 一種電化學元件,其特徵為具有申請專利範圍第1至4項之任1項之金屬支撐型電化學元件用之附電極層基板、對極電極層、及被配置於前述電極層與前述對極電極層之間的電解質層。
  6. 一種電化學模組,其特徵為申請專利範圍第5項之電化學元件係以複數層積的狀態被配置。
  7. 一種固態氧化物型燃料電池,其特徵為具備申請專利範圍第5項之電化學元件,額定運轉時於600℃以上850℃以下之溫度,以前述電化學元件產生發電反應。
  8. 一種金屬支撐型電化學元件用之附電極層基板之製造方法,該基板具有金屬支撐體,及被形成於前述金屬支撐體上的電極層;其特徵為包含藉由壓縮成形使前述電極層平滑化之電極層平滑化步驟。
  9. 如申請專利範圍第8項之製造方法,其中包含使前述電極層之燒成(firing)在1100℃以下進行的電極層燒成步驟。
  10. 一種金屬支撐型電化學元件用之附電極層基板之製造方法,該基板具有金屬支撐體、被形成於前述金屬支撐體上的電極層、及被形成於前述電極層上的中間層;其特徵為包含使前述中間層平滑化之中間層平滑化步驟。
  11. 如申請專利範圍第10項之製造方法,其中包含使前述中間層之燒成在1100℃以下進行的中間層燒成步驟。
  12. 如申請專利範圍第10或11項之製造方法,其中藉由壓縮成形來進行前述中間層平滑化步驟。
TW107109779A 2017-03-22 2018-03-22 金屬支撐型電化學元件用之附電極層基板、電化學元件、電化學模組、固態氧化物型燃料電池及製造方法 TWI763804B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-056731 2017-03-22
JP2017056731A JP6910170B2 (ja) 2017-03-22 2017-03-22 金属支持型電気化学素子用の電極層付基板、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および製造方法

Publications (2)

Publication Number Publication Date
TW201840048A TW201840048A (zh) 2018-11-01
TWI763804B true TWI763804B (zh) 2022-05-11

Family

ID=63585470

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107109779A TWI763804B (zh) 2017-03-22 2018-03-22 金屬支撐型電化學元件用之附電極層基板、電化學元件、電化學模組、固態氧化物型燃料電池及製造方法

Country Status (8)

Country Link
US (2) US20210194014A1 (zh)
EP (1) EP3605692A4 (zh)
JP (1) JP6910170B2 (zh)
KR (2) KR102745793B1 (zh)
CN (1) CN110402514B (zh)
CA (1) CA3057434A1 (zh)
TW (1) TWI763804B (zh)
WO (1) WO2018174167A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7250910B2 (ja) * 2019-04-24 2023-04-03 京セラ株式会社 セル、セルスタック装置、モジュール及びモジュール収容装置
CN113355643A (zh) * 2021-08-10 2021-09-07 北京思伟特新能源科技有限公司 一种采用磁控溅射法制备金属支撑单体的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012361A (ja) * 2005-06-29 2007-01-18 Nissan Motor Co Ltd 固体酸化物形燃料電池
JP2010218759A (ja) * 2009-03-13 2010-09-30 Tokyo Electric Power Co Inc:The 金属支持型固体酸化物形燃料電池及びその製造方法
TW201131875A (en) * 2009-11-18 2011-09-16 Plansee Se Assembly for a fuel cell and method for the production thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030096147A1 (en) * 2001-11-21 2003-05-22 Badding Michael E. Solid oxide fuel cell stack and packet designs
US7763374B2 (en) * 2006-11-22 2010-07-27 Atomic Energy Council Membrane fuel cell electrodes incorporated with carbon nanomaterial-supported electrocatalysts and methods of making the same
JP2010009810A (ja) * 2008-06-25 2010-01-14 Dainippon Printing Co Ltd 燃料電池用セパレータの製造方法
JP5398904B2 (ja) * 2009-03-16 2014-01-29 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー 気孔傾斜構造のナノ気孔性層を含む燃料極支持型固体酸化物燃料電池及びその製造方法
JP5772125B2 (ja) * 2010-03-31 2015-09-02 大日本印刷株式会社 固体酸化物形燃料電池及びその製造方法
KR20120037839A (ko) * 2010-10-12 2012-04-20 삼성전자주식회사 막전극접합체, 이를 포함하는 고체산화물 연료전지 및 이의 제조방법
JP4962640B1 (ja) * 2011-07-22 2012-06-27 大日本印刷株式会社 固体酸化物形燃料電池
JP5814061B2 (ja) * 2011-09-30 2015-11-17 株式会社日本触媒 金属支持型固体酸化物形燃料電池用セル、それを用いた固体酸化物形燃料電池
KR20130123189A (ko) * 2012-05-02 2013-11-12 삼성전자주식회사 고체산화물 연료전지용 음극 지지체 및 그 제조방법과 이를 포함한 고체산화물 연료전지
DE102013008473A1 (de) * 2013-05-21 2014-11-27 Plansee Composite Materials Gmbh Brennstoffzelle
KR101674259B1 (ko) * 2013-09-27 2016-11-08 주식회사 엘지화학 고체 산화물 연료전지의 연료극 지지체 제조방법 및 고체 산화물 연료전지의 연료극 지지체
EP3444883B1 (en) * 2014-09-19 2023-05-10 Osaka Gas Co., Ltd. Method for producing an electrochemical element
JP6463203B2 (ja) * 2015-03-31 2019-01-30 大阪瓦斯株式会社 電気化学素子、それを備えた電気化学モジュール、電気化学装置およびエネルギーシステム
AT14455U3 (de) * 2015-07-14 2017-05-15 Plansee Se Elektrochemisches Modul
TWI558568B (zh) * 2015-11-03 2016-11-21 行政院原子能委員會核能研究所 透氣金屬基板、金屬支撐固態氧化物燃料電池及其製作方法
JP6378241B2 (ja) * 2016-04-15 2018-08-22 株式会社ノリタケカンパニーリミテド 固体酸化物形燃料電池用グリーンシートおよびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012361A (ja) * 2005-06-29 2007-01-18 Nissan Motor Co Ltd 固体酸化物形燃料電池
JP2010218759A (ja) * 2009-03-13 2010-09-30 Tokyo Electric Power Co Inc:The 金属支持型固体酸化物形燃料電池及びその製造方法
TW201131875A (en) * 2009-11-18 2011-09-16 Plansee Se Assembly for a fuel cell and method for the production thereof

Also Published As

Publication number Publication date
EP3605692A4 (en) 2021-01-06
JP6910170B2 (ja) 2021-07-28
CA3057434A1 (en) 2018-09-27
US20240047702A1 (en) 2024-02-08
WO2018174167A1 (ja) 2018-09-27
CN110402514B (zh) 2023-01-31
KR20240024311A (ko) 2024-02-23
JP2018160368A (ja) 2018-10-11
US20210194014A1 (en) 2021-06-24
EP3605692A1 (en) 2020-02-05
KR102745793B1 (ko) 2024-12-20
CN110402514A (zh) 2019-11-01
TW201840048A (zh) 2018-11-01
KR20190125305A (ko) 2019-11-06

Similar Documents

Publication Publication Date Title
TWI761479B (zh) 電化學元件、電化學模組、電化學裝置、能源系統、固態氧化物型燃料電池、及電化學元件之製造方法
US12110598B2 (en) Manufacturing method for alloy material, alloy material, electrochemical element, electrochemical module, electrochemical device, energy system and solid oxide fuel cell
JP7202061B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、および固体酸化物形燃料電池
US20240047702A1 (en) Substrate with Electrode Layer for Metal-Supported Electrochemical Element, Electrochemical Element, Electrochemical Module, Solid Oxide Fuel Cell and Manufacturing Method
TWI763812B (zh) 電化學裝置、能源系統、及固態氧化物型燃料電池
JP2020095984A (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子製造方法
US11677080B2 (en) Electrochemical element, electrochemical module, solid oxide fuel cell and manufacturing method
JP2018174116A (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法
JP2023148146A (ja) 金属支持型電気化学素子の製造方法、金属支持型電気化学素子、固体酸化物形燃料電池、固体酸化物形電解セル、電気化学モジュール、電気化学装置及びエネルギーシステム
JP2020095983A (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子製造方法