TWI759720B - 監視裝置、監視方法、伺服放大器、產業用控制器及工具機 - Google Patents
監視裝置、監視方法、伺服放大器、產業用控制器及工具機 Download PDFInfo
- Publication number
- TWI759720B TWI759720B TW109113040A TW109113040A TWI759720B TW I759720 B TWI759720 B TW I759720B TW 109113040 A TW109113040 A TW 109113040A TW 109113040 A TW109113040 A TW 109113040A TW I759720 B TWI759720 B TW I759720B
- Authority
- TW
- Taiwan
- Prior art keywords
- motor
- monitoring device
- current
- state
- tool
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/09—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
- H02P29/024—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Numerical Control (AREA)
- Machine Tool Sensing Apparatuses (AREA)
- Control Of Electric Motors In General (AREA)
- Control Of Multiple Motors (AREA)
Abstract
本發明之課題在於提供一種基於複數個驅動馬達之電流資訊而感度良好地判定機器狀態之異常之監視裝置及監視方法。
監視裝置具備:電流感測器,其對複數個驅動馬達之各者檢測二相之電流資訊;馬達資訊運算部,其根據電流資訊,運算對應之驅動馬達之轉矩電流或旋轉速度;特徵量運算部,其運算複數個驅動馬達中之與轉矩電流或旋轉速度相關之特徵量;狀態推定部,其基於複數個驅動馬達中處於相關關係之驅動馬達之特徵量,推定機器狀態;資料記憶部,其記錄基準值資料;及異常判定部,其基於所推定之機器狀態與基準值資料,判定異常狀態。
Description
本發明係關於一種監視之技術,尤其關於監視工具機等之機器狀態之裝置。
綜合加工機等工具機具有工具自動更換功能,可結合目的實施於1台中進行銑削、搪孔、開孔、攻絲等異種機加工之數值控制。又,工具機因於工具庫中收納多個切削工具,且可根據電腦數值控制之指令自動地進行加工,故用於各種零件加工。
然而,工具機中使用之工具存在隨著加工使用時間經過,刀尖磨耗,切削阻力增加,最終導致破損之情形。
於專利文獻1中揭示有如下技術,即,推定、算出作用於主軸馬達或Z軸(進給軸)馬達之電流之擾動轉矩ys與yz並記錄於資料表中,繼而,對ys與yz求出現狀推定值與移動變動閾值,將其等進行比較,判定工具之異常。
[專利文獻1] 日本專利特開2003-326438
於專利文獻1之段落號0033中記載有「基於主軸馬達之速度信號與對主軸馬達之轉矩指令值,推定作用於主軸馬達之擾動轉矩ys」、及「基於進給軸馬達之速度信號與進給軸馬達之轉矩指令值,推定作用於進給軸馬達之擾動轉矩yz」。
即,判定工具之異常需要驅動馬達之速度信號或轉矩指令值之類馬達控制資訊。因此,於專利文獻1中,因必須以某些構件提供馬達控制資訊,故於現有裝置之情形時,存在產生追加佈線等作業之課題。因此,要求基於馬達之電流資訊進行監視之技術,以避免追加佈線等,能夠使用現有裝置。
又,於工具機中,自大徑工具至小徑工具以相同之構成(驅動馬達)實施加工。於大徑工具之加工之情形時,加工負載較大,驅動馬達之電流亦較大。另一方面,於小徑工具之加工之情形時,加工負載較小,驅動馬達之電流亦較小。
如專利文獻1所示,若對每一進給軸馬達等各馬達推定擾動轉矩,則尤其於小徑工具之加工之情形時,於驅動主軸之主軸馬達(轉軸馬達)之電
流中,由加工引起之馬達電流變化變小。因此,亦淹沒於空轉(不加工)時之電流中,難以進行感度較佳之計測。
本發明之目的在於提供一種基於複數個驅動馬達之電流資訊,感度較佳地判定機器狀態之異常之監視裝置及監視方法。
本發明之較佳一例係一種監視裝置,其具備:電流感測器,其對複數個驅動馬達之各者,檢測二相之電流資訊;馬達資訊運算部,其根據上述電流資訊,運算對應之上述驅動馬達之轉矩電流或旋轉速度;特徵量運算部,其運算複數個上述驅動馬達中之與上述轉矩電流或上述旋轉速度相關之特徵量;狀態推定部,其基於複數個上述驅動馬達中處於相關關係中之上述驅動馬達之上述特徵量,推定機器狀態;資料記憶部,其記錄基準值資料;及異常判定部,其基於所推定之上述機器狀態與上述基準值資料,判定異常狀態。
本發明之較佳之另一例係一種監視方法,其係對複數個驅動馬達之各者,檢測二相之電流資訊,根據上述電流資訊,運算對應之上述驅動馬達之轉矩電流或旋轉速度,
運算複數個驅動馬達中之與上述轉矩電流或上述旋轉速度相關之特徵量,基於複數個上述驅動馬達中處於相關關係中之上述驅動馬達之上述特徵量,推定機器狀態,基於預先記錄之基準值資料與所推定之上述機器狀態,判定異常狀態。
根據本發明,可基於複數個驅動馬達之電流資訊,感度較佳地判定機器狀態之異常。
10:馬達
10-1~10-N:馬達
14:旋轉軸
16:工具
20:驅動裝置
22:變頻器
24:電流感測器
30:控制部
32:指令產生部
33:偏差運算部
34:向量控制部
36:dq/3Φ轉換部
38:3Φ/dq轉換部
40,150,160,170,190,210,220,230,250:監視裝置
41:電流感測器
42:馬達資訊運算部
42-1~42-N:馬達資訊運算部
44:特徵量運算部
45:狀態推定部
46:資料記憶部
47:異常判定部
52:3Φ/αβ轉換器
54:反正切轉換器
56:減法器
60:相位運算器
62:乘法器
64:乘法器
66:積分器
68:加法器
70:旋轉座標轉換器
72:積分器
74:乘法器
101:馬達控制系統
102:馬達控制系統
103:馬達控制系統
104:馬達控制系統
105:馬達控制系統
106:馬達驅動伺服放大器
107:馬達驅動伺服放大器
108:產業用控制器
109:工具機
180:驅動.監視裝置
240:資訊收集部
τ*:轉矩指令值
Iα,Iβ:交流電流
Id:激磁電流檢測值
Iq:轉矩電流檢測值
Ir1,Ir2:馬達轉矩電流
IrN:轉矩電流
ω1s:頻率信號
ωrs:機械頻率
ωrs1,ωrs2:機械頻率
Id*:激磁電流指令值
Iq*:轉矩電流指令值
Ir:直流量
IU,IW:電流檢測值
IU1,IW1:電流檢測值
IU2,IW2:電流檢測值
IUs:電流檢測值
IUN:電流檢測值
IWN:電流檢測值
IWs:電流檢測值
KiPLL:積分增益
KpPLL:比例增益
M0:工具磨耗度之極限
PLL_I:積分信號
PLL_P:比例信號
Vd*:激磁電壓指令值
Vq*:轉矩電壓指令值
θi:交流電流相位角
θi*:交流電流相位角檢測值
圖1係實施例1中之馬達控制系統之方塊圖。
圖2係實施例1中之監視裝置之方塊圖。
圖3係實施例1中之馬達資訊運算部之方塊圖。
圖4係表示實施例1中之工具機之構成例之圖。
圖5係表示實施例1中之因工具磨耗導致之加工品質下降及工具破損產生之機制之圖。
圖6係表示實施例1中之伴隨工具磨耗之馬達電流變化之圖。
圖7係實施例1中之來自馬達資訊之特徵量擷取之概略圖。
圖8係實施例1中之關於根據馬達電流資訊推定工具磨耗之方法之圖。
圖9係實施例1中之工具磨耗偵測例行程序之流程圖。
圖10係實施例2中之馬達控制系統之方塊圖。
圖11係實施例2中之監視裝置之方塊圖。
圖12係實施例2中使用複數個加工軸馬達之情形時之特徵量擷取之概略圖。
圖13係實施例3中之馬達控制系統之方塊圖。
圖14係實施例4中之馬達控制系統之方塊圖。
圖15係實施例5中之馬達控制系統之方塊圖。
圖16係實施例6中之馬達驅動伺服放大器之方塊圖。
圖17係實施例7中之馬達驅動伺服放大器之方塊圖。
圖18係實施例8中之產業用控制器之方塊圖。
圖19係實施例9中之工具機之概略圖。
以下,按照圖式對實施例進行說明。再者,於與各實施例對應之圖式中,相同構成物標註相同之數字編號。
圖1係實施例1之驅動工具機等裝置之工具之雙軸之馬達控制系統101之方塊圖。此處之雙軸馬達係設想鑽孔加工時之加工負載中存在相關關係之主軸馬達與進給軸馬達(Z軸馬達)。
於圖1中,馬達控制系統101具備馬達1之10-1、馬達2之10-2、驅動裝置20、監視裝置40及電流感測器41。驅動裝置20具備變頻器22、電流
感測器24及控制部30。
馬達10-1之旋轉軸14經由齒輪或滾珠螺桿等機械零件(未圖示)或直接連接地連接於工具16。又,馬達2亦直接或經由機構驅動工具16(未圖示)。各變頻器22基於各控制部30之控制,對馬達1之10-1或馬達2之10-2施加三相交流電壓。
控制部30具備CPU(Central Processing Unit,中央處理單元)、DSP(Digital Signal Processor,數位信號處理器)、RAM(Random Access Memory,隨機存取記憶體)、ROM(Read Only Memory,唯讀記憶體)等作為普通電腦之硬體,且ROM中儲存有由CPU執行之控制程式、由DSP執行之微程式及各種資料等。
於圖1中,控制部30之內部係以方塊表示由控制程式及微程式等實現之功能。即,控制部30具備指令產生部32、偏差運算部33、向量控制部34、dq/3Φ轉換部36及3Φ/dq轉換部38。
控制部30係藉由該等構成對馬達10進行向量控制,從而使馬達10-1之響應性提昇。
變頻器22對馬達10-1輸出U相、V相、W相之交流電流。電流感測器24檢測其中之二相之電流。即,於圖示之例中,檢測U相、W相之電流,並將其結果作為電流檢測值Ius、Iws輸出。
此處,設想以頻率f旋轉之旋轉座標,將該旋轉座標中正交之軸稱為d軸及q軸,將供給至馬達10-1之電流表現為該旋轉座標中之直流量。
q軸中之電流係決定馬達10-1之轉矩之電流分量,以下,將其稱為轉矩電流。又,d軸中之電流係成為馬達10-1之激磁電流之成分,以下,將其稱為激磁電流。
3Φ/dq轉換部38基於電流檢測值Ius、Iws,輸出激磁電流檢測值Id與轉矩電流檢測值Iq。指令產生部32自未圖示之上位裝置接收轉矩指令值τ*,並基於轉矩指令值τ*產生激磁電流指令值Id*與轉矩電流指令值Iq*。
偏差運算部33基於電流指令值Id*、Iq*及電流檢測值Id、Iq,輸出偏差Id*-Id、Iq*-Iq。向量控制部34基於偏差Id*-Id、Iq*-Iq等,輸出激磁電壓指令值Vd*與轉矩電壓指令值Vq*。
對向量控制部34之動作更詳細地進行說明,向量控制部34係對偏差Id*-Id、Iq*-Iq進行比例積分控制,求出相同速度之指令值即頻率指令ω1(未圖示)。
進而,向量控制部34藉由將頻率指令ω1進行積分運算而求出相位指令θ1(未圖示)。進而,向量控制部34對電流指令值Id*、Iq*構成之向量乘以馬達10-1之阻抗之向量,作為其結果,計算電壓指令值Vd*、Vq*。
dq/3Φ轉換部36基於旋轉座標系統之電壓指令值Vd*、Vq*,輸出用以驅動變頻器22之PWM(Pulse Width Modulation,脈寬調變)信號。變頻器22基於所供給之PWM信號,切換所供給之直流電壓(未圖示),對馬達10-1輸出U相、V相、W相之電壓。
<監視裝置40之構成>
圖2係監視裝置40之方塊圖。監視裝置40係與上述控制部30同樣地具備CPU、DSP、RAM、ROM等作為普通電腦之硬體,且ROM中儲存有由CPU執行之控制程式、由DSP執行之微程式及各種資料等。
於圖2中,監視裝置40之內部係以方塊表示由控制程式及微程式等實現之功能。即,監視裝置40具備馬達資訊運算部42、特徵量運算部44、狀態推定部45、資料記憶部46及異常判定部47。
馬達資訊運算部42自分別對應之電流感測器41獲取馬達1之10-1之U相之電流檢測值Iu1、W相之電流檢測值Iw1、馬達2之10-2之U相之電流檢測值Iu2及W相之電流檢測值Iw2。
繼而,馬達資訊運算部42基於該等檢測值,輸出各馬達轉矩電流(實部電流)Ir1、Ir2及機械頻率ωrs1、ωrs2(旋轉速度)。
此處,參照圖3,對自該等馬達資訊運算部42輸出之信號之意義進行
說明。圖3係馬達資訊運算部42之方塊圖。
馬達資訊運算部42具備3Φ/αβ轉換器52、反正切轉換器54(相位檢測部)、減法器56(PLL(Phase Locked Loop,鎖相迴路)運算部)、相位運算器60(PLL運算部、旋轉速度運算部、旋轉速度運算過程)、旋轉座標轉換器70、積分器72(PLL運算部)及乘法器74。進而,相位運算器60具備乘法器62、64、積分器66及加法器68。
3Φ/αβ轉換器52將電流檢測值Iu、Iw轉換為正交之二相之交流電流Iα、Iβ。反正切轉換器54基於該等交流電流Iα、Iβ,計算交流電流相位角檢測值θi*。
減法器56自交流電流相位角θi(詳情下文敍述)中減去交流電流相位角檢測值θi*。於相位運算器60,乘法器62對差值「θi*-θi」乘以特定之比例增益KpPLL。
乘法器62中之乘法結果成為上述比例信號PLL_P。又,乘法器64對差值「θi*-θi」乘以特定之積分增益KiPLL,積分器66將該乘法結果進行積分運算。
將積分器66中之積分結果稱為積分信號PLL_I。加法器68將比例信號PLL_P與積分信號PLL_I進行加法運算,將加法結果作為頻率信號ω1s輸出。
積分器72將頻率信號ω1s進行積分運算,輸出交流電流相位角θi。將交流電流相位角θi供給至減法器56,並且亦供給至旋轉座標轉換器70。
又,乘法器74將頻率信號ω1s乘以「2/P」(此處,P為馬達10之極數),將乘法結果作為機械頻率ωrs輸出。此處,機械頻率ωrs成為與馬達10(參照圖1)之實際速度(於感應馬達之情形時包含轉差[slip]之速度)對應之信號。
旋轉座標轉換器70將二相之交流電流Iα、Iβ轉換為以頻率信號ω1s旋轉之旋轉座標系統中之二軸之直流量Ir、Ii。
以此方式,減法器56、相位運算器60及積分器72作為PLL(Phase Locked Loop)運算部發揮功能,輸出如減法器56輸出之差值「θi*-θi」接近「0」之類的頻率信號ω1s及交流電流相位角θi。
特徵量運算部44擷取馬達之轉矩電流Ir之最大值、平均值、FFT(fast Fourier transform,快速傅立葉轉換)及馬達旋轉速度ωrs之最大值、平均值、FFT等特徵量。
狀態推定部45基於馬達轉矩電流Ir之最大值、平均值、FFT及馬達旋轉速度ωrs之最大值、平均值、FFT等特徵量,推定機器狀態。
推定狀態量與記錄於資料記憶部46之基準值資料進行比較,由異常判定部47檢測該狀態量是否異常。又,異常判定部47向外部輸出各種警報信號。
再者,警報信號為燈之點亮、警報器之鳴叫、或無線通信方法之電波發送等能夠通知管理者之方法即可。
本實施例中之監視裝置40於設置於苛刻之環境之情形時,較佳為收納於已實施防塵防水對策之監視裝置殼體。進而,將監視裝置40設置於變頻器22等產生雜訊之裝置之附近之情形時,較佳為對監視裝置40實施雜訊對策。
如上所述,監視裝置40可使用獨自之座標,僅根據流入存在相關關係之驅動馬達之電流資訊,藉由簡單之演算法,由交流轉換為直流,因此,用於判斷為異常之邊緣處理亦可於監視裝置內執行。藉此,其結果,資料量可大幅度削減,分析/診斷作業亦變得容易。
<工具磨耗度之推定>
圖4表示綜合加工機等工具機之工具驅動軸之一例。綜合加工機之種類根據主軸(轉軸)之方向大致分為臥式與立式,臥式係主軸安裝於水平方向上,立式係主軸安裝於垂直方向上。
主軸係安裝實施加工之加工品或工具且使之旋轉之該上具機中最主
要之軸。基本構造之立式綜合加工機一般進行3軸加工。
動作與自正面觀察機械時主軸於上下方向(Z軸)上動作且固定有加工品之工作台朝前後(Y軸)與左右(X軸)動作的床式之銑床相同。
進給軸因加工種類而變。例如,於鑽孔加工之情形時,Z軸成為進給軸,於銑削加工之情形時,不僅Z軸,而且X軸或Y軸亦成為進給軸。另一方面,5軸加工之立式綜合加工機可使用除了XYZ之3軸之軸向動作以外亦帶有工作台之旋轉(C軸)與傾斜角(B軸)的分度台,進行5軸加工(未圖示)。
即,加工中存在相關關係之馬達數因機器或加工內容而變。例如,於鑽孔加工之情形時,存在相關關係之馬達為主軸馬達與進給軸馬達(Z軸馬達),於銑削加工之情形時,存在相關關係之馬達為主軸馬達、進給軸馬達(X軸馬達、Y軸馬達、Z軸馬達)。
圖5表示伴隨工具磨耗之加工品質下降及工具破損產生之過程。存在工具隨著加工時間經過而刀尖磨耗,切削阻力增加,最終導致破損之情形。又,若工具磨耗繼續進行則加工精度變差,無法維持加工品所要求之特定之加工精度。
圖6係伴隨工具磨耗之主軸及進給軸之力與各軸中之馬達轉矩電流之變化。隨著工具磨耗繼續進行,工具之刀刃變得容易打滑,因此,主軸馬
達之負載減少,其結果,主軸馬達之轉矩電流減少。另一方面,工具之刀刃變得難以切入,因此,進給軸馬達之負載增大,其結果,進給軸馬達之轉矩電流增大。即,若監視主軸及進給軸馬達電流之變化,則可推定工具磨耗狀態。
圖7係擷取每一特定之加工區間中之主軸及進給軸之馬達轉矩電流及馬達旋轉速度之特徵量之概略圖。例如,隨著加工時間經過,擷取每一加工區間中之特定加工區間之轉矩電流之最大值、標準偏差、平均值、FFT及馬達旋轉速度之最大值、標準偏差、平均值、FFT等特徵量。
又,將特定1台馬達或存在相關關係之複數台馬達之轉矩電流值或旋轉速度值設為特徵量擷取之觸發點,運算指定區間之特徵量,藉此,可視需要調整取樣頻率或運算量。藉此,其結果,資料量可大幅度削減,分析/診斷作業亦變得容易。進而,可根據進給軸馬達之電流波形,判別加工動作種類,因此,可進行更準確之特徵量擷取。
進而,若根據工具徑或加工負載之變化,改變基於主軸馬達電流資訊及進給軸馬達電流資訊推定工具磨耗度之特徵量之組合,則可更準確地推定工具磨耗度。
圖8係對使用一般線性模型方法之工具磨耗度(上述機器狀態量)之推定方法進行說明之圖。作為一例,對磨耗度為工具刀刃之磨耗寬度之情形時之推定方法進行說明。
可對於計測工具磨耗寬度,基於自上述馬達電流資訊中擷取之特徵量,利用多變量分析等方法構築推定模型式。此處,推定模型式係表示複數個驅動馬達之上述中例示之特徵量與工具磨耗度之對應關係之運算式。一般線性模型所示之推定模型之一例如以下之(式1)所述。
Y=a+b×進給軸馬達轉矩電流之平均值+c×進給軸馬達旋轉速度之最大值+d×主軸馬達轉矩電流之平均值+e×主軸馬達旋轉速度之標準偏差…(式1)
此處,Y為根據推定模型式推定之工具磨耗度,a、b、c、d、e為常數。即,可基於存在相關關係之馬達電流資訊,推定工具磨耗度Y。
又,藉由根據加工負載之變化調整上述常數b、c、d、e(加權:貢獻度),可改變對目標變數Y之支配度,因此,可提昇推定精度。
例如,於圖7之鑽孔加工中,於大徑鑽孔器(加工負載大)之情形時,主軸馬達之轉矩電流及旋轉速度明顯地呈現磨耗之程度。因此,於大徑鑽孔器(加工負載大)之情形時,對主軸馬達之轉矩電流及旋轉速度進一步附進行加權(貢獻度)。
另一方面,於小徑鑽孔器(加工負載小)之情形時,進給軸馬達電流及旋轉速度明顯地呈現磨耗之程度。因此,於小徑鑽孔器(加工負載小)之情形時,若對進給軸馬達電流及旋轉速度進一步進行加權(貢獻度),則可更
高精度地推定鑽孔器磨耗。以此方式,根據作為對象機器之鑽孔器改變推定模型式,藉此,可感度較佳地推定機器之狀態。
若將推定模型之(式1)改寫為一般之函數式,則成為以下之(式2)。
Y(I、w、L)=g1(I1、w1)×k1(L)+g2(I2、w2)×k2(L)+…(式2)
此處,I為馬達轉矩電流,w為馬達旋轉速度,L為加工負載,g1為將馬達1之轉矩電流及旋轉速度設為變數之函數,g2為將馬達2之轉矩電流及旋轉速度設為變數之函數,k1為將加工負載設為變數之馬達1之函數,k2為將加工負載設為變數之馬達2之函數。
可使用基於存在相關關係之複數個馬達之電流資訊之複數個特徵量及根據負載L改變之係數(貢獻度),精度較佳地推定機器狀態。
又,此處之k1(L)、k2(L)、…亦可根據機器加工負載或加工模式,預先計測後保存於資料記憶部;根據機械學習等累積之資料提昇精度。
於實際運用時,工具磨耗度之極限M0由加工品質等決定。若不存在推定誤差或偏差,則推定工具磨耗度Y之上限成為與M0對應之Y1,若考慮推定偏差,則推定工具磨耗度之上限成為Y2。
即,若推定工具磨耗度Y超過Y2,則加工品成為不良品。藉由監視該推定工具磨耗度Y,可準確地掌握工具更換時期。又,此處,以一般線性模型方法為例進行了說明。只要為表示工具磨耗度與自馬達電流中擷取之
特徵量之關係之模型構築方法,則不必限於使用統計方法之模型等一般線性模型方法。
進而,藉由對累積所得之資料導入機械學習等,可實現更準確之工具磨耗度推定。根據以上內容,可基於存在相關關係之馬達電流資訊推定工具磨耗度,因此,可更準確地掌握工具之更換時期。又,藉由監視工具磨耗度,亦可防止工具破損之產生。
<實施例1之動作>
圖9係監視裝置40中執行之工具磨耗偵測例行程序之流程圖。該工具磨耗偵測例行程序係於每一特定之取樣週期執行。
於圖9中,工具磨耗偵測例行程序開始(START),執行馬達電流計測之處理(步驟S2)。繼而,監視裝置40(參照圖2)之馬達資訊運算部42自主軸等各軸之馬達之電流感測器41(參照圖1)獲取第1軸之馬達之電流檢測值IU1、IW1及第2軸之馬達之電流檢測值IU2、IW2。
繼而,收到第1軸之馬達及第2軸之馬達之電流檢測值,馬達資訊運算部42運算對應之第1軸之馬達10-1之轉矩電流Ir1及旋轉速度ωrs1、第2軸之馬達10-2之轉矩電流Ir2及旋轉速度ωrs2。
即,將各軸之馬達之轉矩電流Ir、機械頻率ωrs輸出(步驟S3)。
繼而,特徵量運算部44擷取特定區間之轉矩電流之最大值、標準偏
差、平均值、FFT及馬達旋轉速度之最大值、標準偏差、平均值、FFT等特徵量(步驟S4)。
繼而,狀態推定部45基於上述之推定模型,使用自資料記憶部46獲取之特徵量及與負載對應之相關馬達之貢獻度,執行(式1)之運算,算出工具磨耗度。(步驟S5)
將狀態推定部45之推定時使用之與負載對應之相關馬達之貢獻度或異常判定部47中使用之基準值預先記憶於資料記憶部46(步驟S6)。貢獻度或基準值亦可基於轉矩電流Ir進行更新。
進而,異常判定部47與基準值資料進行比較,判定轉矩電流Ir較設定極限值Ir0更低,且判定處於馬達旋轉狀態(ωrs>0)時(步驟S7為是),異常判定部47將表示工具為破損狀態之警報信號輸出至外部(步驟S9)。
異常判定部47判定磨耗度Y超過設定極限值Y2,且判定處於馬達旋轉狀態(ωrs>0)時(步驟S8為是),異常判定部47將表示工具為磨耗狀態之警報信號輸出至外部(步驟S10)。
又,於與兩者中之任一者均不相符之情形(步驟S7或步驟S8為否)時,本例行程序之處理結束(END)。
<實施例1之效果>
如上所述,根據本實施例,可基於存在相關關係之複數個馬達之至
少各2相之電流值IU、IW偵測工具磨耗狀態。即,可延長工具平均使用壽命而不追加加速度感測器或AE(Acoustic Emission,聲頻發射)感測器等。
又,藉由使工具磨耗度可視化,可一面實現工具維護之人工節省化,一面防止工具破損於未然。又,異常判定部47偵測到工具磨耗狀態時,輸出警報信號。藉此,可對管理者報告各種異常。
根據實施例1,可基於複數個驅動馬達之電流資訊,感度較佳地判定機器狀態之異常。
又,若工具之磨耗繼續進行則加工精度變差,從而無法維持加工品所要求之特定之加工精度,因此,切削加工中使用之工具因其個體差異導致甚至破損之壽命變動較大。因此,如將平均壽命設為目標以固定之加工數進行更換之類先前之壽命管理方法般,存在若為較平均壽命短之工具,則因加工性能降低導致產生製品不良之情形,但於本實施例中,可避免此種製品不良。
又,於本實施例中,若為較平均壽命長之工具,則可防止達到壽命之前進行更換導致之損失成本。
又,於馬達設置場所存在尺寸限制之情形或苛刻之環境條件下,難以追加設置偵測工具磨耗之加速度感測器或AE(Acoustic Emission)感測
器等,但根據本實施例,可不需要此種感測器。
進而,存在感測器之數量越增加,越難確保感測器群之可靠性,從而監視精度下降之問題,但根據本實施例,因不使用感測器,故可解決此種問題。
又,因不使用感測器,故維護性、可靠性大幅度提昇。具體而言,不僅可削減感測器之保養檢查作業,而且可防止伴隨感測器故障之系統失效於未然。又,可削減感測器用系統裝配佈線,因此,可削減作業成本,而且可消除佈線干擾等困擾。
圖10係實施例2之馬達控制系統102之方塊圖。再者,於以下之說明中,存在對與上述其他實施例之各部對應之部分標註相同之符號,且省略其說明之情形。
於圖10中,馬達控制系統102具備N台(N為3以上之自然數)馬達10-1~10-N、及經由旋轉軸14結合於該等馬達10-1~10-N之工具16。
又,於各馬達10-1~10-N之U相、W相安裝各2個(合計2N個)電流感測器41,其等之電流檢測值Iu1~IuN、Iw1~IwN供給至監視裝置150(工具磨耗度之監視裝置)。
對於監視裝置150之構成,如圖11所示,與實施例1之監視裝置40(參照圖2)中設置N個存在相關關係之馬達資訊運算部代替2個存在相關關係之馬達資訊運算部42之構成相同。
例如,亦存在將上述銑削加工之情形時之作為進給軸之Z軸、X軸或Y軸中之驅動馬達設為存在相關關係之驅動馬達之情形。
又,可將5軸加工之立式綜合加工機中之工作台之旋轉(C軸)與傾斜角(B軸)之驅動馬達包含於存在相關關係之驅動馬達中。本實施例之上述以外之構成及動作與實施例1大致相同。
圖12係對自複數個馬達之電流資訊中擷取與機器狀態相關之特徵量之情形進行說明之圖。與實施例1之圖8同樣地,例如可推定利用特徵量之一般線性模型等方法之機器狀態。於複雜加工之情形時,藉由使用存在利於加工負載之相關關係之複數個馬達電流資訊,可提昇機器狀態之推定精度。
圖13係實施例3之馬達控制系統103之方塊圖。再者,於以下之說明中,存在對與上述其他實施例之各部對應之部分標註相同之符號,且省略其說明之情形。
於圖13中,馬達控制系統103具備監視裝置160(機器狀態之監視裝
置)代替實施例1之監視裝置40(參照圖2)。監視裝置160之構成與監視裝置40之構成大致相同,但異常判定部47輸出工具磨耗警報信號(參照圖2),並且對驅動裝置20內之指令產生部32視需要輸出控制指令。
此處,控制指令係例如指示馬達10-1之停止或加速減速者,藉此,例如可實施最適合工具使用壽命延長或加工品質維持之運轉。
以此方式,根據本實施例,異常判定部47偵測到機器狀態之異常(工具之過度磨耗、破損等)後,對控制部30輸出使控制狀態變更之控制指令。作為該情形時之控制指令,存在驅動馬達之停止或降低旋轉速度之類控制指令。藉此,可將控制部30中之控制狀態變更為合適之狀態。
圖14係實施例4之馬達控制系統104之方塊圖。再者,於以下之說明中,存在對與上述其他實施例之各部對應之部分標註相同之符號並省略其說明之情形。
於圖14中,馬達控制系統104具備監視裝置170(機器狀態之監視裝置)代替實施例2之監視裝置40(參照圖11)。監視裝置170之構成與監視裝置150之構成大致相同,但異常判定部47輸出機器狀態異常警報信號(參照圖11),並且對驅動裝置20內之指令產生部32視需要輸出控制指令。
此處,控制指令係例如指示馬達10-1之停止或加速減速者,藉此,
可實施最適合工具使用壽命延長或加工品質維持之運轉。
以此方式,根據本實施例,異常判定部47偵測到機器狀態之異常(工具之過度磨耗、破損等)後,對控制部30輸出使控制狀態變更之控制指令。藉此,可將控制部30中之控制狀態變更為合適之狀態。
圖15係實施例5之馬達控制系統105之方塊圖。再者,於以下之說明中,存在對與上述其他實施例之各部對應之部分標註相同之符號並省略其說明之情形。
於圖15中,馬達控制系統105具備驅動.監視裝置180、馬達10-1~10-N、及經由旋轉軸14結合之工具16。驅動.監視裝置180具備控制部30、變頻器22及監視裝置190(機器狀態異常之偵測)。
控制部30、變頻器22之構成與實施例1(參照圖1)相同,監視裝置190之構成與實施例4之監視裝置170(參照圖14)之構成相同。因此,本實施例之驅動.監視裝置180具有將實施例4中之驅動裝置20及監視裝置170之功能合併而成之功能。再者,本實施例亦可藉由對現有之驅動裝置20(參照圖14)增設監視裝置190而構成。
圖16係實施例6之馬達驅動伺服放大器106之方塊圖。再者,於以下
之說明中,存在對與上述其他實施例之各部對應之部分標註相同之符號並省略其說明之情形。
於圖16中,伺服放大器106具備馬達10-1、旋轉軸14、工具16、伺服放大器106及監視裝置210。又,對馬達10-1之U相、W相安裝電流感測器41,將其等之電流檢測值Iu1、Iw1及來自伺服放大器2之馬達10-2之電流檢測值Iu2、Iw2供給至監視裝置210(機器狀態之監視裝置)。
就監視裝置210之構成而言,與如圖2所示於實施例1之監視裝置40(參照圖2)中設置有2個馬達資訊運算部42之構成相同。本實施例之上述以外之構成及動作與實施例1大致相同。
又,於本實施例中,說明了於對馬達供給電流之伺服放大器中組入偵測機器狀態異常之功能之實施例,但若於對馬達供給電流之變頻器中組入偵測機器異常之功能,則可同樣地構築偵測工具磨耗狀態之變頻器(未圖示)。
根據以上內容,可基於存在相關關係之複數個馬達電流資訊推定機器狀態,因此,可更準確地掌握機器之工具之更換時期或維護時期。
圖17係實施例7之馬達驅動伺服放大器107之方塊圖。再者,於以下之說明中,存在對與上述其他實施例之各部對應之部分標註相同之符號並
省略其說明之情形。
於圖17中,伺服放大器107具備N台(N為3以上之自然數)馬達10-1~10-N、旋轉軸14、工具16、伺服放大器107及監視裝置220。
就監視裝置220之構成而言,與如圖11所示設置N個馬達資訊運算部之構成相同。本實施例之上述以外之構成及動作與實施例1大致相同。
根據以上所述,可基於存在相關關係之複數個馬達之電流資訊推定機器狀態,因此,可更準確地掌握機器之工具之更換時期或維護時期。
圖18係實施例8之產業用控制器108之方塊圖。產業用控制器108係與網路化之工廠之生產線或設備聯合,實現機器人控制或來自各種感測器之設備機器資料之收集與上位之資訊系統之無縫之垂直整合。而且,產業用控制器108係將產業用電腦之功能與PLC(programmable logic controller,可程式化邏輯控制器)之開放整合開發環境聚合於一台。不僅控制工廠內之設備機器,而且藉由收集、分析資訊而實現工廠整體或供應鏈整體之最佳化。
再者,於以下之說明中,存在對與上述其他實施例之各部對應之部分標註相同之符號並省略其說明之情形。
於圖18中,產業用控制器108具備資訊收集部240與監視裝置230。又,各馬達10-1~10-N之電流檢測值Iu1~IuN、Iw1~IwN自變頻器或伺服放大器供給至資訊收集部240。
就監視裝置230之構成而言,與如圖11所示設置N個馬達資訊運算部之構成相同。本實施例之上述以外之構成及動作與實施例1大致相同。
根據以上所述,可根據連接於網路之複數個馬達之電流資訊,於產業用控制器中推定複數個機器之狀態,因此,可更有效率地實現各個工具更換時期之最佳化或維護之人工節省化。
圖19係實施例9之工具機之概略圖。再者,於以下之說明中,存在對與上述其他實施例之各部對應之部分標註相同之符號並省略其說明之情形。
於圖19中,工具機109係於其控制部中具備Z軸馬達伺服放大器、主軸馬達變頻器、X軸馬達伺服放大器、Y軸馬達伺服放大器、及監視裝置250。又,各軸馬達之電流檢測值自伺服放大器或變頻器供給至監視裝置。亦可自監視裝置將工具磨耗資訊輸出至工具機之控制操作畫面(面板),顯示警報或警告訊息(未圖示)。
根據以上所述,可基於工具機之存在相關關係之複數軸之馬達之電
流資訊推定工具之磨耗度,因此,可更有效率地實現各個工具更換時期之最佳化或維護之人工節省化。
不限於上述實施例,可進行各種變化。上述實施例係為了容易理解地說明本發明而例示者,不必限於具備所說明之所有構成者。
又,可將某實施例之構成之一部分置換為其他實施例之構成,亦可對某實施例之構成添加其他實施例之構成。又,可對各實施例之構成之一部分進行刪除或進行其他構成之追加、置換。
又,圖中所示之控制線或資訊線係表示考慮到說明所需者,並非表示製品上所需之所有控制線或資訊線。實際上亦可考慮將幾乎所有構成相互連接。對於上述實施例而言可能之變化係例如以下所述者。
(1)上述實施例中之控制部30、監視裝置40、150、160、170、190、210、220、230、250之硬體可由普通電腦實現,因此,亦可將圖2、圖3所示之演算法、與圖9所示之流程圖對應之程式等儲存於記憶媒體或經由傳輸路徑發佈。
(2)圖2、圖3所示之演算法或圖9所示之流程圖係於各實施例中作為使用程式之軟體處理進行了說明。然而,亦可將其一部分或全部置換為使用ASIC(Application Specific Integrated Circuit(特殊應用積體電路),面向特定用途之IC(Integrated Circuit,積體電路))或FPGA(field-
programmable gate array,場域可程式化閘陣列)等之硬體處理。
(3)於圖10等之構成中設置有複數個變頻器,但變頻器22亦可僅設置1台。
於上述實施例中,主要說明了對使用工具之加工適應之情形,但不僅於工具之加工時,於進行機器人之操作之情形時,亦可有效使用於偵測包括機器人之機器之狀態之異常。
於上述實施例中,以對變頻器、伺服放大器之適應例進行了說明,但亦可適應於DCBL(Direct Current Brushless,直流無刷)控制器等之電力轉換裝置。
40:監視裝置
42:馬達資訊運算部
44:特徵量運算部
45:狀態推定部
46:資料記憶部
47:異常判定部
Ir1,Ir2:馬達轉矩電流
ωrs1,ωrs2:機械頻率
IU1,IW1:電流檢測值
IU2,IW2:電流檢測值
Claims (12)
- 一種監視裝置,其特徵在於具備:電流感測器,其對複數個驅動馬達之各者檢測二相之電流資訊;馬達資訊運算部,其根據上述電流資訊,運算對應之上述驅動馬達之轉矩電流或旋轉速度;特徵量運算部,其運算複數個上述驅動馬達中之與上述轉矩電流或上述旋轉速度相關之特徵量;狀態推定部,其基於複數個上述驅動馬達中處於相關關係中之上述驅動馬達之上述特徵量,推定機器狀態;資料記憶部,其記錄基準值資料;及異常判定部,其基於所推定之上述機器狀態與上述基準值資料,判定異常狀態。
- 如請求項1之監視裝置,其中上述機器狀態係表示上述驅動馬達驅動之工具之磨耗度。
- 如請求項1之監視裝置,其中上述特徵量係上述驅動馬達之上述轉矩電流或上述驅動馬達之上述旋轉速度之最大值、標準偏差、平均值或快速傅立葉轉換(FFT)。
- 如請求項1之監視裝置,其中上述狀態推定部係 基於複數個上述驅動馬達之上述特徵量中與上述機器狀態處於相關關係中之複數個上述特徵量、及對上述特徵量進行加權之貢獻度,推定上述機器狀態。
- 如請求項4之監視裝置,其中上述驅動馬達係包含主軸馬達與進給軸馬達,上述狀態推定部係基於處於上述相關關係中之上述主軸馬達與上述進給軸馬達之上述特徵量,推定上述機器狀態。
- 如請求項1之監視裝置,其中上述異常判定部係於檢測到異常之情形時,對控制上述驅動馬達之控制部輸出控制指令。
- 如請求項1之監視裝置,其中上述特徵量運算部係將1台或存在相關關係之複數台上述驅動馬達之電流值或旋轉速度值設為擷取上述特徵量之觸發點,運算指定區間之上述特徵量。
- 如請求項4之監視裝置,其中上述狀態推定部係 將固定加工品之工作台之旋轉軸之上述驅動馬達及傾斜角之軸之上述驅動馬達之上述特徵量包括在內地推定上述機器狀態。
- 一種伺服放大器,其特徵在於具有:如請求項1之監視裝置,其輸入來自其他伺服放大器之上述電流資訊。
- 一種產業用控制器,其特徵在於具有:如請求項1之監視裝置;及資訊收集部,其收集來自複數個伺服放大器或變頻器之上述電流資訊。
- 一種工具機,其特徵在於:於其控制部具備:複數軸之馬達用之變頻器或伺服放大器;及如請求項1之監視裝置。
- 一種監視方法,其特徵在於:對複數個驅動馬達之各者,檢測二相之電流資訊,根據上述電流資訊,運算對應之上述驅動馬達之轉矩電流或旋轉速度,運算複數個上述驅動馬達中之與上述轉矩電流或上述旋轉速度相關之特徵量, 基於複數個上述驅動馬達中處於相關關係中之上述驅動馬達之上述特徵量,推定機器狀態,基於預先記錄之基準值資料與所推定之上述機器狀態,判定異常狀態。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-079449 | 2019-04-18 | ||
JP2019079449A JP7194069B2 (ja) | 2019-04-18 | 2019-04-18 | 監視装置、および監視方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202040918A TW202040918A (zh) | 2020-11-01 |
TWI759720B true TWI759720B (zh) | 2022-04-01 |
Family
ID=72838227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109113040A TWI759720B (zh) | 2019-04-18 | 2020-04-17 | 監視裝置、監視方法、伺服放大器、產業用控制器及工具機 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7194069B2 (zh) |
TW (1) | TWI759720B (zh) |
WO (1) | WO2020213265A1 (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7255427B2 (ja) * | 2019-09-02 | 2023-04-11 | 株式会社プロテリアル | 工作機械の監視システム |
JP7549035B2 (ja) | 2020-11-25 | 2024-09-10 | ファナック株式会社 | 工具損傷検出装置、およびコンピュータ読み取り可能な記憶媒体 |
JP7613084B2 (ja) | 2020-12-18 | 2025-01-15 | 株式会社プロテリアル | 加工監視システム |
CN113031521A (zh) * | 2021-03-08 | 2021-06-25 | 西门子工厂自动化工程有限公司 | 数控机床的刀具监控系统和方法 |
JP7649196B2 (ja) * | 2021-05-14 | 2025-03-19 | 株式会社日立産機システム | 電力変換装置 |
NL2029491B1 (en) | 2021-10-22 | 2023-05-19 | Univ Twente | Motor system, stepper motor and rotor |
TWI805093B (zh) * | 2021-11-24 | 2023-06-11 | 台中精機廠股份有限公司 | 人機介面機台控制系統 |
KR102534207B1 (ko) * | 2021-12-03 | 2023-05-17 | 이희관 | Cnc 공작기계의 이송속도 적응제어시 공구파손 및 공구마모 검출 장치 및 그 방법 |
JPWO2023119686A1 (zh) * | 2021-12-24 | 2023-06-29 | ||
DE112022006628T5 (de) * | 2022-04-25 | 2024-12-05 | Fanuc Corporation | Prüfdatenerfassungsvorrichtung, Prüfdatenerfassungsverfahren, Aufzeichnungsmedium und Steuerungsvorrichtung |
CN119141322B (zh) * | 2024-11-20 | 2025-01-24 | 四川钭进科技有限公司 | 一种基于数据分析的设备检测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003326438A (ja) * | 2002-02-28 | 2003-11-18 | Fanuc Ltd | 工具異常検出装置 |
TW201410416A (zh) * | 2012-05-04 | 2014-03-16 | Erowa Ag | 用以監控定位機器人之監控裝置,以及具有監控裝置之生產系統 |
JP2014194727A (ja) * | 2013-03-28 | 2014-10-09 | Toenec Corp | 回転機の良否診断システム |
WO2016084213A1 (ja) * | 2014-11-28 | 2016-06-02 | 株式会社日立産機システム | 監視装置と監視方法およびそれらを備える制御装置と制御方法 |
WO2016092871A1 (ja) * | 2014-12-10 | 2016-06-16 | 三菱電機株式会社 | 電動機の診断装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4695941A (en) * | 1985-07-29 | 1987-09-22 | General Electric Company | Loss of electrical feedback detector |
-
2019
- 2019-04-18 JP JP2019079449A patent/JP7194069B2/ja active Active
-
2020
- 2020-02-28 WO PCT/JP2020/008225 patent/WO2020213265A1/ja active Application Filing
- 2020-04-17 TW TW109113040A patent/TWI759720B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003326438A (ja) * | 2002-02-28 | 2003-11-18 | Fanuc Ltd | 工具異常検出装置 |
TW201410416A (zh) * | 2012-05-04 | 2014-03-16 | Erowa Ag | 用以監控定位機器人之監控裝置,以及具有監控裝置之生產系統 |
JP2014194727A (ja) * | 2013-03-28 | 2014-10-09 | Toenec Corp | 回転機の良否診断システム |
WO2016084213A1 (ja) * | 2014-11-28 | 2016-06-02 | 株式会社日立産機システム | 監視装置と監視方法およびそれらを備える制御装置と制御方法 |
WO2016092871A1 (ja) * | 2014-12-10 | 2016-06-16 | 三菱電機株式会社 | 電動機の診断装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7194069B2 (ja) | 2022-12-21 |
TW202040918A (zh) | 2020-11-01 |
JP2020178454A (ja) | 2020-10-29 |
WO2020213265A1 (ja) | 2020-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI759720B (zh) | 監視裝置、監視方法、伺服放大器、產業用控制器及工具機 | |
US6906491B2 (en) | Motor control equipment | |
JP2012254499A (ja) | 工作機械の加工異常検知装置及び加工異常検知方法 | |
CN111148609B (zh) | 异常产生的部位的推定方法和记录执行异常产生的部位的推定的程序的记录介质 | |
US11303236B2 (en) | Induction motor overheat monitoring method, induction motor monitoring device, and induction motor control system | |
CN100379141C (zh) | 矢量控制逆变器装置 | |
US11855520B2 (en) | Electric tool, control method, and program | |
JP4073902B2 (ja) | 電動弁装置の異常および劣化診断手法ならびに装置 | |
US20180375458A1 (en) | Anomaly diagnosing device and anomaly diagnosing method | |
WO2021240959A1 (ja) | 異常機器判定システム | |
CN110376970A (zh) | 参数决定辅助装置和记录有程序的计算机可读介质 | |
Miura et al. | A method of cutting power monitoring for feed axes in milling by power measurement device | |
JP6781845B2 (ja) | 工作機械の監視システム | |
JP2011259579A (ja) | サーボモータの健康警告装置およびその計算方法 | |
JP6457583B2 (ja) | 異常診断装置および異常診断方法 | |
JP7255427B2 (ja) | 工作機械の監視システム | |
JP5049084B2 (ja) | 負荷異常診断装置および負荷異常診断プログラム | |
JP2006158031A (ja) | モータ制御装置およびその制御方法 | |
JP7153879B2 (ja) | 電動工具 | |
WO2021176761A1 (ja) | 機器監視装置及び機器監視方法 | |
JPWO2018083746A1 (ja) | 設備診断装置および設備診断方法 | |
JP2004215455A (ja) | 多軸電動機制御装置の共振周波数検出装置 | |
JP2574740Y2 (ja) | エンコーダ結線チェッカ | |
CN110161844B (zh) | 参数决定辅助装置和记录有程序的计算机可读介质 | |
CN110161971B (zh) | 参数决定辅助装置和记录有程序的计算机可读介质 |