TWI751681B - Alignment marker of thin film solar cell and manufacturing method thereof - Google Patents
Alignment marker of thin film solar cell and manufacturing method thereof Download PDFInfo
- Publication number
- TWI751681B TWI751681B TW109130334A TW109130334A TWI751681B TW I751681 B TWI751681 B TW I751681B TW 109130334 A TW109130334 A TW 109130334A TW 109130334 A TW109130334 A TW 109130334A TW I751681 B TWI751681 B TW I751681B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- electrode
- material layer
- substrate
- electrode material
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
本發明是有關於一種對位標記及其製造方法,且特別是有關於一種薄膜太陽能電池的對位標記及其製造方法。The present invention relates to an alignment mark and a manufacturing method thereof, and in particular, to an alignment mark of a thin film solar cell and a manufacturing method thereof.
請參照圖3A以及圖3B,在太陽能電池的製程中,用於對準的對位標記1、2一般是由依序堆疊於基板1000上的第一電極層1100、光電轉換層1200(包括依序層疊的第一非本徵半導體層1220、本徵半導體層1240以及第二非本徵半導體層1260)以及第二電極層1300所組成。然而,對位標記在形成的過程中須歷經多個蝕刻製程,其中在第一電極層1100的形成過程中,其歷經的蝕刻製程將使自身被過度的側蝕或者使得已形成的第二電極層1300被部分的移除,其所產生的問題各自如圖3A以及圖3B所示。在此情況下,用於對準的對位標記1、2將因結構不完整而使對準的精度降低或者甚至出現對位標記1、2自基板1000上剝離的現象。Referring to FIGS. 3A and 3B , in the manufacturing process of the solar cell, the
本發明提供一種薄膜太陽能電池的對位標記的製造方法,其製成的對位標記具有完整的結構而使後續用於對準時具有準確的精度。此外,本發明提供的薄膜太陽能電池的對位標記可在製作薄膜太陽能電池的過程中同時形成,因此無需額外增加新的製程。The present invention provides a method for manufacturing an alignment mark of a thin-film solar cell, and the produced alignment mark has a complete structure, so that the alignment mark can be used for subsequent alignment with accurate precision. In addition, the alignment mark of the thin-film solar cell provided by the present invention can be simultaneously formed in the process of manufacturing the thin-film solar cell, so there is no need to add a new process.
本發明的薄膜太陽能電池的對位標記的製造方法包括以下步驟。首先,在基板上形成第一電極材料層,其中第一電極材料層遠離基板的表面上具有多個微結構。接著,在第一電極材料層上形成光電轉換層以及第二電極層,其中光電轉換層設置於第一電極材料層與第二電極層之間,且第一電極材料層在基板的法線方向上的正投影面大於第二電極層及光電轉換層在基板的法線方向上的正投影面。再來,在第一電極材料層上形成光阻層,其中光阻層覆蓋部分的第一電極材料層、第二電極層以及光電轉換層。然後,利用光阻層對第一電極材料層進行蝕刻製程,以形成第一電極層。The manufacturing method of the alignment mark of the thin film solar cell of the present invention includes the following steps. First, a first electrode material layer is formed on a substrate, wherein a surface of the first electrode material layer away from the substrate has a plurality of microstructures. Next, a photoelectric conversion layer and a second electrode layer are formed on the first electrode material layer, wherein the photoelectric conversion layer is disposed between the first electrode material layer and the second electrode layer, and the first electrode material layer is in the normal direction of the substrate The orthographic projection surface of the upper surface is larger than the orthographic projection surface of the second electrode layer and the photoelectric conversion layer in the normal direction of the substrate. Next, a photoresist layer is formed on the first electrode material layer, wherein the photoresist layer covers part of the first electrode material layer, the second electrode layer and the photoelectric conversion layer. Then, an etching process is performed on the first electrode material layer by using the photoresist layer to form a first electrode layer.
在本發明的一實施例中,上述的光阻層與部分的第一電極材料層的接觸部分在基板的法線方向上的正投影面具有至少大於1微米的寬度。In an embodiment of the present invention, the orthographic projection surface of the contact portion between the above-mentioned photoresist layer and part of the first electrode material layer in the normal direction of the substrate has a width of at least greater than 1 μm.
在本發明的一實施例中,上述的在基板上形成第一電極材料層的步驟中包括進行蝕刻製程。In an embodiment of the present invention, the above-mentioned step of forming the first electrode material layer on the substrate includes performing an etching process.
在本發明的一實施例中,上述的對第一電極材料層進行的蝕刻製程包括濕式蝕刻製程。In an embodiment of the present invention, the above-mentioned etching process for the first electrode material layer includes a wet etching process.
在本發明的一實施例中,上述的在第一電極材料層上形成光電轉換層以及第二電極層包括以下步驟。首先,在第一電極材料層上形成光電轉換材料層。接著,在光電轉換材料層上形成第二電極材料層。再來,依序對第二電極材料層以及光電轉換材料層進行蝕刻製程。In an embodiment of the present invention, the above-mentioned formation of the photoelectric conversion layer and the second electrode layer on the first electrode material layer includes the following steps. First, a photoelectric conversion material layer is formed on the first electrode material layer. Next, a second electrode material layer is formed on the photoelectric conversion material layer. Next, an etching process is sequentially performed on the second electrode material layer and the photoelectric conversion material layer.
在本發明的一實施例中,上述的對第二電極材料層進行的蝕刻製程包括濕式蝕刻製程。In an embodiment of the present invention, the above-mentioned etching process for the second electrode material layer includes a wet etching process.
在本發明的一實施例中,上述的對光電轉換材料層進行的蝕刻製程包括乾式蝕刻製程。In an embodiment of the present invention, the above-mentioned etching process for the photoelectric conversion material layer includes a dry etching process.
在本發明的一實施例中,上述的在形成第一電極層之後,移除光阻層。In an embodiment of the present invention, the photoresist layer is removed after the first electrode layer is formed.
本發明提供一種薄膜太陽能電池的對位標記,其具有完整的結構而使後續用於對準時具有準確的精度。The present invention provides an alignment mark for a thin film solar cell, which has a complete structure and can be used for subsequent alignment with accurate precision.
本發明的薄膜太陽能電池的對位標記包括依序設置於基板上的第一電極層、光電轉換層以及第二電極層,其中第一電極層在基板的法線方向上的正投影面大於第二電極層及光電轉換層在基板的法線方向上的正投影面。The alignment mark of the thin-film solar cell of the present invention includes a first electrode layer, a photoelectric conversion layer and a second electrode layer sequentially arranged on the substrate, wherein the orthographic projection surface of the first electrode layer in the normal direction of the substrate is larger than that of the first electrode layer in the normal direction of the substrate. The orthographic projection plane of the two electrode layers and the photoelectric conversion layer in the normal direction of the substrate.
在本發明的一實施例中,上述的第一電極層在基板的法線方向上的正投影面涵蓋第二電極層及光電轉換層在基板的法線方向上的正投影面。In an embodiment of the present invention, the orthographic plane of the first electrode layer in the normal direction of the substrate covers the orthographic plane of the second electrode layer and the photoelectric conversion layer in the normal direction of the substrate.
基於上述,本發明提供的薄膜太陽能電池的對位標記的製造方法藉由在對第一電極材料層進行蝕刻製程之前先形成覆蓋部分的第一電極材料層以及第二電極層的光阻層,可避免後續第一電極材料層在歷經蝕刻製程時使得第二電極層被部分的移除或者第一電極材料層被過度的側蝕,藉此使製成的對位標記具有完整的結構而使後續用於對準時具有準確的精度。Based on the above, the present invention provides a method for manufacturing an alignment mark of a thin film solar cell by forming a photoresist layer covering a portion of the first electrode material layer and the second electrode layer before performing the etching process on the first electrode material layer, It can avoid partial removal of the second electrode layer or excessive side etching of the first electrode material layer during the subsequent etching process of the first electrode material layer, so that the alignment mark produced has a complete structure and Subsequent use for alignment with accurate precision.
現將詳細地參考本發明的示範性實施例,示範性實施例的實例說明於附圖中。只要有可能,相同元件符號在圖式和描述中用來表示相同或相似部分。本發明亦可以各種不同的形式體現,而不應限於本文中所述的實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似的參考號碼表示相同或相似的元件,以下段落將不再一一贅述。另外,實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附圖的方向。因此,使用的方向用語是用來說明並非用來限制本發明。Reference will now be made in detail to the exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numerals are used in the drawings and description to refer to the same or like parts. The present invention may also be embodied in various forms and should not be limited to the embodiments described herein. The thicknesses of layers and regions in the drawings are exaggerated for clarity. The same or similar reference numerals denote the same or similar elements, and the detailed description in the following paragraphs will not be repeated. In addition, the directional terms mentioned in the embodiments, such as: up, down, left, right, front or rear, etc., only refer to the directions of the drawings. Accordingly, the directional terms used are illustrative and not limiting of the present invention.
圖1為本發明的一實施例的薄膜太陽能電池的對位標記的製造方法的流程圖。FIG. 1 is a flowchart of a method for manufacturing an alignment mark of a thin film solar cell according to an embodiment of the present invention.
請參照圖1,首先,在基板100上形成第一電極材料層110a。基板100例如是使用透明材料所製成,以利環境光可穿透其而進入薄膜太陽能電池的內部。在一些實施例中,基板100的材料包括玻璃、透明樹脂或其他合適的透明材料。上述的透明樹脂可例如是聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯、聚碳酸酯、聚醚或聚醯亞胺。在本實施例中,基板100的材料為玻璃。第一電極材料層110a的形成方法例如是利用物理氣相沉積法或化學氣相沉積法而全面性地形成於基板上。在一些實施例中,第一電極材料層110a的材料包括透明導電氧化物(Transparent Conductive Oxide;TCO)。舉例來說,第一電極材料層110a的材料可包括氧化銦錫(ITO)、摻雜鋁的氧化鋅(AZO)、氧化錫(SnO
2)或氧化銦(In
2O
3)。
Referring to FIG. 1 , first, a first
接著,對第一電極材料層110a進行蝕刻製程,以形成第一電極材料層110b,其中第一電極材料層110b遠離基板100的表面上具有多個微結構112。進行蝕刻製程的目的是使第一電極材料層110b遠離基板100的表面具有提高的表面粗糙度,因此,當環境光行進至其時會因該些微結構112而散射,經散射的環境光的行進路程將增加而達到全反射條件,藉此提高環境光的反射量。在一些實施例中,上述的蝕刻製程可包括濕式蝕刻製程、乾式蝕刻製程或其組合。在本實施例中是採用濕式蝕刻製程。Next, an etching process is performed on the first
再來,在第一電極材料層110b上形成光電轉換材料層120a。光電轉換材料層120a的形成方法例如是藉由化學氣相沉積法形成,但本發明並不限於此。在一些實施例中,光電轉換材料層120a的材料可包括單晶矽、多晶矽或非晶矽,即,本實施例經形成後的薄膜太陽能電池可為一種矽薄膜太陽能電池。在本實施例中,光電轉換材料層120a的材料為非晶矽。光電轉換材料層120a例如包括依序層疊的第一非本徵半導體材料層122a、本徵半導體材料層124a以及第二非本徵半導體材料層126a,其中第一非本徵半導體材料層122a具有第一摻雜類型,且第二非本徵半導體材料層126a具有第二摻雜類型。上述的第一摻雜類型與第二摻雜類型各自為P型與N型中的一者。在本實施例中,第一摻雜類型為P型,且第二摻雜類型為N型,但本發明並不限於此。Next, a photoelectric
然後,在光電轉換材料層120a上形成第二電極材料層130a。第二電極材料層130a的形成方法例如是藉由濺鍍法或化學氣相沉積法形成,但本發明並不限於此。第二電極材料層130a的材料例如是金屬、合金或金屬氧化物。舉例來說,第二電極材料層130a的材料包括鉬鉭或鉬鉭與鋁的組合。Then, a second
之後,依序對第二電極材料層130a與光電轉換材料層120a進行蝕刻製程,以各自形成第二電極層130以及光電轉換層120。在一些實施例中,上述的蝕刻製程可包括濕式蝕刻製程、乾式蝕刻製程或其組合。在本實施例中,對第二電極材料層130a進行的蝕刻製程是採用濕式蝕刻製程,且對光電轉換材料層120a進行的蝕刻製程是採用乾式蝕刻製程。另外,形成後的光電轉換層120包括依序層疊的第一非本徵半導體層122、本徵半導體層124以及第二非本徵半導體層126。另外,第一電極材料層110b在基板100的法線方向Z上的正投影面大於第二電極層130及光電轉換層120在基板100的法線方向Z上的正投影面。在本實施例中,第一電極材料層110b在基板100的法線方向Z上的正投影面涵蓋第二電極層130及光電轉換層120在基板100的法線方向Z上的正投影面,即,第二電極層130及光電轉換層120在基板100的法線方向Z上的正投影面的邊緣不會超出第一電極材料層110b在基板100的法線方向Z上的正投影面的邊緣。After that, an etching process is sequentially performed on the second
而後,在第一電極材料層110b上形成光阻層200,其中光阻層200覆蓋部分的第一電極材料層110b、第二電極層130以及光電轉換層120。詳細地說,光阻層200除了形成於第一電極材料層110b上,還形成於第二電極層130的頂表面、第二電極層130的側表面以及光電轉換層120的側表面上,基於此,在後續第一電極材料層110b歷經蝕刻製程時,光阻層200的設置可避免部分的第二電極層130亦因上述的蝕刻製程而被移除。光阻層200例如包括耐蝕刻的薄膜材料。在一些實施例中,光阻層200的材料可包括正型光阻材料或負型光阻材料,本發明並無特別限制。在本實施例中,光阻層200與部分的第一電極材料層110b的具有多個微結構112的表面接觸,其中光阻層200與部分的第一電極材料層110b的接觸部分在基板100的法線方向Z上的正投影面具有至少大於1微米的寬度w。在此情況下,光阻層200的設置可避免使後續第一電極材料層110b在歷經蝕刻製程時被過度的側蝕。Then, a
最後,對第一電極材料層110b進行蝕刻製程,以形成第一電極層110,且後續移除光阻層200。在一些實施例中,上述的蝕刻製程可包括濕式蝕刻製程、乾式蝕刻製程或其組合。在本實施例中,對第一電極材料層110b進行的蝕刻製程是採用濕式蝕刻製程。由於在前述步驟中設置有光阻層200,可避免部分的第二電極層130被移除,且使形成的第一電極層110具有完整的結構。在本實施例中,第一電極層110在基板100的法線方向Z上被第二電極層130暴露的部分具有至少大於1微米的寬度W。Finally, an etching process is performed on the first
至此,完成本實施例的薄膜太陽能電池的對位標記10的製作。So far, the fabrication of the
本實施例的薄膜太陽能電池的對位標記10的製造方法雖然是以上述方法為例進行說明,然而本發明的薄膜太陽能電池的對位標記的形成方法並不以此為限。Although the method of manufacturing the
基於上述,本實施例的薄膜太陽能電池的對位標記製造方法藉由在對第一電極材料層進行蝕刻製程之前先形成覆蓋部分的第一電極材料層以及第二電極層的光阻層,可避免後續第一電極材料層在歷經蝕刻製程時使得第二電極層被部分的移除或者第一電極材料層被過度的側蝕。Based on the above, the method for manufacturing an alignment mark for a thin film solar cell of the present embodiment is to form a photoresist layer covering a portion of the first electrode material layer and the second electrode layer before performing the etching process on the first electrode material layer. To avoid partial removal of the second electrode layer or excessive side etching of the first electrode material layer when the subsequent first electrode material layer undergoes an etching process.
請繼續參照圖1,在圖1繪示的最後步驟示出了的薄膜太陽能電池的對位標記10的局部剖面示意圖。本發明實施例的薄膜太陽能電池的對位標記10包括第一電極層110、光電轉換層120以及第二電極層130,其中第一電極層110、光電轉換層120以及第二電極層130依序設置於基板100上。基板100、第一電極層110、光電轉換層120以及第二電極層130具有的材料及其功能可參照前述實施例,於此不再贅述。在一些實施例中,光電轉換層120包括依序層疊的第一非本徵半導體層122、本徵半導體層124以及第二非本徵半導體層126,其中第一非本徵半導體層122以及第二非本徵半導體層126具有的摻雜類型可參照前述實施例,於此不再贅述。在本實施例中,第一電極層110在基板100的法線方向Z上被第二電極層130暴露的部分具有最小寬度W,其中最小寬度W至少大於1微米。另外,第一電極層110在基板100的法線方向Z上的正投影面大於第二電極層130及光電轉換層120在基板100的法線方向Z上的正投影面。在本實施例中,第一電極層110在基板100的法線方向Z上的正投影面涵蓋第二電極層130及光電轉換層120在基板100的法線方向Z上的正投影面,即,第二電極層130及光電轉換層120在基板100的法線方向Z上的正投影面的邊緣不會超出第一電極層110在基板100的法線方向Z上的正投影面的邊緣。基於此,本發明的薄膜太陽能電池的對位標記10可具有穩固的基底,其可避免對位標記10自基板100上剝離以具有良好的對準精度。Please continue to refer to FIG. 1 , which is a schematic partial cross-sectional view of the
請參照圖2A,圖2A繪示了本發明的一實施例的薄膜太陽能電池的對位標記的局部俯視示意圖。Please refer to FIG. 2A . FIG. 2A is a schematic top view of a partial top view of an alignment mark of a thin film solar cell according to an embodiment of the present invention.
在圖2A繪示的薄膜太陽能電池的對位標記10a中,第二電極層130在基板100的法線方向Z上的正投影為十字形,但本發明並不以此為限。如圖2A所示,第二電極層130由一個第一矩形130_a以及兩個第二矩形130_b組成,其中兩個第二矩形130_b各自位於第一矩形130_a的相對兩側邊且與第一矩形130a接觸。第一矩形130_a例如具有0.005~10毫米的長度以及0.005~10毫米的寬度。在本實施例中,第一矩形130_a具有0.05毫米的長度以及0.01毫米的寬度。第二矩形130_b例如具有0.005~10毫米的長度以及0.005~10毫米的寬度。在本實施例中,第二矩形130_b具有0.02毫米的長度以及0.01毫米的寬度。另外,在圖2A中,第一電極層110在基板100的法線方向Z上的正投影為正方形,但本發明並不以此為限。第一電極層110在基板100的法線方向Z上的正投影例如具有0.01~10毫米的邊長。在本實施例中,第一電極層110在基板100的法線方向Z上的正投影具有1毫米的邊長。在一些實施例中,第一電極層110在基板100的法線方向Z上被第二電極層130暴露的部分具有最小寬度W1,其中最小寬度W1至少大於1微米。In the
請參照圖2B,圖2B繪示了本發明的另一實施例的薄膜太陽能電池的對位標記的局部俯視示意圖。Please refer to FIG. 2B . FIG. 2B illustrates a partial top view of an alignment mark of a thin film solar cell according to another embodiment of the present invention.
在圖2B繪示的薄膜太陽能電池的對位標記10b中,第二電極層130在基板100的法線方向Z上的正投影為十字形與四個矩形的組合,但本發明並不以此為限。如圖2B所示,第二電極層130具有的十字形投影由一個第三矩形130_c以及兩個第四矩形130_d組成,其中兩個第四矩形130_d各自位於第三矩形130_c的相對兩側邊且與第三矩形130_c接觸。第二電極層130具有的四個矩形投影則由四個第五矩形130_e組成,該些第五矩形130_e各自位於由十字形投影劃分出的四個區域,且各自與十字形投影之間具有特定間隔。第三矩形130_c例如具有0.005~10毫米的長度以及0.005~10毫米的寬度。在本實施例中,第三矩形130_c具有0.05毫米的長度以及0.01毫米的寬度。第四矩形130_d例如具有0.005~10毫米的長度以及0.005~10毫米的寬度。在本實施例中,第四矩形130_d具有0.02毫米的長度以及0.01毫米的寬度。第五矩形130_e例如具有0.0025~5毫米的長度以及0.0025~5毫米的寬度。在本實施例中,第五矩形130_e具有0.05毫米的長度以及0.01毫米的寬度。另外,在圖2B中,第一電極層110在基板100的法線方向Z上的正投影為正方形,但本發明並不以此為限。第一電極層110在基板100的法線方向Z上的正投影例如具有0.01~10毫米的邊長。在本實施例中,第一電極層110在基板100的法線方向Z上的正投影具有0.07毫米的邊長。在一些實施例中,第一電極層110在基板100的法線方向Z上被第二電極層130暴露的部分具有最小寬度W2,其中最小寬度W2至少大於1微米。In the
請參照圖2C,圖2C繪示了圖2A示出的薄膜太陽能電池的對位標記的局部俯視示意圖的變形實施例。Please refer to FIG. 2C . FIG. 2C shows a modified embodiment of the partial top view of the alignment mark of the thin film solar cell shown in FIG. 2A .
圖2C示出的薄膜太陽能電池的對位標記10c與圖2A示出的薄膜太陽能電池的對位標記10a的主要差異在於:第一電極層110在基板100的法線方向Z上的正投影亦為十字形。在本實施例中,第一電極層110在基板100的法線方向Z上被第二電極層130暴露的部分皆具有實質上相同的寬度W3,其中最小寬度W3至少大於1微米。The main difference between the
綜上所述,本發明提供的薄膜太陽能電池的對位標記的製造方法藉由在對第一電極材料層進行蝕刻製程之前先形成覆蓋部分的第一電極材料層以及第二電極層的光阻層,可避免後續第一電極材料層在歷經蝕刻製程時使得第二電極層被部分的移除或者第一電極材料層被過度的側蝕,藉此使製成的對位標記具有完整的結構而使後續用於對準時具有準確的精度。此外,本發明提供的薄膜太陽能電池的對位標記可在製作薄膜太陽能電池的過程中同時形成,因此無需額外增加新的製程,可降低製作對位標記的製造成本。To sum up, the method for manufacturing the alignment mark of the thin film solar cell provided by the present invention is to form a photoresist covering a portion of the first electrode material layer and the second electrode layer before performing the etching process on the first electrode material layer. layer, which can avoid partial removal of the second electrode layer or excessive side etching of the first electrode material layer when the subsequent first electrode material layer undergoes an etching process, thereby enabling the alignment mark to have a complete structure. This enables accurate precision for subsequent use in alignment. In addition, the alignment mark of the thin-film solar cell provided by the present invention can be simultaneously formed during the process of manufacturing the thin-film solar cell, so there is no need to add a new process, and the manufacturing cost of the alignment mark can be reduced.
再者,在本發明提供的薄膜太陽能電池的對位標記中,第一電極層在基板的法線方向上被第二電極層暴露的部分具有最小寬度,其中最小寬度至少大於1微米。基於此,本發明的薄膜太陽能電池的對位標記可具有穩固的基底,其可避免對位標記自基板上剝離以具有良好的對準精度。Furthermore, in the alignment mark of the thin film solar cell provided by the present invention, the portion of the first electrode layer exposed by the second electrode layer in the normal direction of the substrate has a minimum width, wherein the minimum width is at least greater than 1 micron. Based on this, the alignment mark of the thin film solar cell of the present invention can have a stable base, which can avoid peeling of the alignment mark from the substrate to have good alignment accuracy.
1、2、10:對位標記
100、1000:基板
110、1100:第一電極層
110a、110b:第一電極材料層
112:微結構
120、1200:光電轉換層
120a:光電轉換材料層
122:第一非本徵半導體層
122a:第一非本徵半導體材料層
124:本徵半導體層
124a:本徵半導體材料層
126:第二非本徵半導體層
126a:第二非本徵半導體材料層
130、1300:第二電極層
130a:第二電極材料層
130_a:第一矩形
130_b:第二矩形
130_c:第三矩形
130_d:第四矩形
130_e:第五矩形
200:光阻層
w、W、W1、W2、W3:寬度
Z:法線方向
1, 2, 10:
圖1為本發明的一實施例的薄膜太陽能電池的對位標記的製造方法的流程圖。 圖2A繪示了本發明的一實施例的薄膜太陽能電池的對位標記的局部俯視示意圖。 圖2B繪示了本發明的另一實施例的薄膜太陽能電池的對位標記的局部俯視示意圖。 圖2C繪示了圖2A示出的薄膜太陽能電池的對位標記的局部俯視示意圖的變形實施例。 圖3A以及圖3B繪示了習知薄膜太陽能電池的對位標記的局部剖面示意圖。 FIG. 1 is a flowchart of a method for manufacturing an alignment mark of a thin film solar cell according to an embodiment of the present invention. FIG. 2A is a partial top schematic view of an alignment mark of a thin film solar cell according to an embodiment of the present invention. FIG. 2B is a partial top schematic view of an alignment mark of a thin film solar cell according to another embodiment of the present invention. FIG. 2C shows a modified example of a partial top view of the alignment mark of the thin film solar cell shown in FIG. 2A . 3A and 3B are schematic partial cross-sectional views of alignment marks of a conventional thin-film solar cell.
10:對位標記 10: Alignment mark
100:基板 100: Substrate
110:第一電極層 110: the first electrode layer
110a、110b:第一電極材料層 110a, 110b: first electrode material layer
112:微結構 112: Microstructure
120:光電轉換層 120: Photoelectric conversion layer
120a:光電轉換材料層 120a: Photoelectric conversion material layer
122:第一非本徵半導體層 122: the first extrinsic semiconductor layer
122a:第一非本徵半導體材料層 122a: the first extrinsic semiconductor material layer
124:本徵半導體層 124: Intrinsic semiconductor layer
124a:本徵半導體材料層 124a: Intrinsic semiconductor material layer
126:第二非本徵半導體層 126: the second extrinsic semiconductor layer
126a:第二非本徵半導體材料層 126a: the second extrinsic semiconductor material layer
130:第二電極層 130: the second electrode layer
130a:第二電極材料層 130a: second electrode material layer
200:光阻層 200: photoresist layer
w、W:寬度 w, W: width
Z:法線方向 Z: normal direction
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109130334A TWI751681B (en) | 2020-09-04 | 2020-09-04 | Alignment marker of thin film solar cell and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109130334A TWI751681B (en) | 2020-09-04 | 2020-09-04 | Alignment marker of thin film solar cell and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI751681B true TWI751681B (en) | 2022-01-01 |
TW202211494A TW202211494A (en) | 2022-03-16 |
Family
ID=80809191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109130334A TWI751681B (en) | 2020-09-04 | 2020-09-04 | Alignment marker of thin film solar cell and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI751681B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI845216B (en) * | 2023-03-21 | 2024-06-11 | 聯合再生能源股份有限公司 | Manufacturing method for electrode structure of solar cell |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004253473A (en) * | 2003-02-18 | 2004-09-09 | Sharp Corp | Process for fabricating thin film solar cell, thin film solar cell, and thin film solar cell module |
JP2004260014A (en) * | 2003-02-26 | 2004-09-16 | Kyocera Corp | Multilayer type thin film photoelectric conversion device |
TW201016749A (en) * | 2008-08-07 | 2010-05-01 | Mitsubishi Chem Corp | Polymer, fluorescent layer material, organic electroluminescence element material, composition for organic electroluminescence element, and organic electroluminescence element, solar cell element organic EL display and organic EL lighting, using the same |
US20110100414A1 (en) * | 2009-10-30 | 2011-05-05 | Taeho Moon | Thin film solar cell module |
CN103026508A (en) * | 2010-10-06 | 2013-04-03 | 三菱重工业株式会社 | Method for manufacturing photoelectric conversion device |
-
2020
- 2020-09-04 TW TW109130334A patent/TWI751681B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004253473A (en) * | 2003-02-18 | 2004-09-09 | Sharp Corp | Process for fabricating thin film solar cell, thin film solar cell, and thin film solar cell module |
JP2004260014A (en) * | 2003-02-26 | 2004-09-16 | Kyocera Corp | Multilayer type thin film photoelectric conversion device |
TW201016749A (en) * | 2008-08-07 | 2010-05-01 | Mitsubishi Chem Corp | Polymer, fluorescent layer material, organic electroluminescence element material, composition for organic electroluminescence element, and organic electroluminescence element, solar cell element organic EL display and organic EL lighting, using the same |
US20110100414A1 (en) * | 2009-10-30 | 2011-05-05 | Taeho Moon | Thin film solar cell module |
CN103026508A (en) * | 2010-10-06 | 2013-04-03 | 三菱重工业株式会社 | Method for manufacturing photoelectric conversion device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI845216B (en) * | 2023-03-21 | 2024-06-11 | 聯合再生能源股份有限公司 | Manufacturing method for electrode structure of solar cell |
Also Published As
Publication number | Publication date |
---|---|
TW202211494A (en) | 2022-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100908557B1 (en) | Thin film transistor having a channel containing zinc oxide and method of manufacturing the same | |
US20080115821A1 (en) | Multilayer transparent conductive oxide for improved chemical processing | |
US10510901B2 (en) | Thin film transistor and fabrication method thereof, array substrate and display device | |
CN102971859A (en) | Back contact solar cell and method for manufacturing back contact solar cell | |
JP2011023690A (en) | Method of aligning electrode pattern in selective emitter structure | |
CN101689575A (en) | Solar cell and method of manufacturing the same | |
CN105428367B (en) | Pixel structure and manufacturing method thereof | |
CN109742151A (en) | Thin film transistor and its manufacturing method, array substrate and display panel | |
TWI751681B (en) | Alignment marker of thin film solar cell and manufacturing method thereof | |
CN100565888C (en) | The photoetching method that is used for contacting thin-film semiconductor structures | |
CN112002636A (en) | Array substrate, preparation method thereof, and display panel | |
TWM607916U (en) | Alignment marker of thin film solar cell | |
CN1612320A (en) | Method for making optical semiconductor integrated circuit | |
JP2014072209A (en) | Photoelectric conversion element and photoelectric conversion element manufacturing method | |
WO2019242550A1 (en) | Solar cell and method for manufacturing same | |
CN102034891A (en) | Method for aligning electrode patterns of selective emitter structure | |
TWI735247B (en) | Front electrode layer of thin film solar cell and manufacturing method thereof | |
CN102569445A (en) | Solar cell unit and method for manufacturing the same | |
CN114574803A (en) | Mask, display panel manufacturing method and display panel | |
JP3105999B2 (en) | Solar cell manufacturing method | |
WO2021068165A1 (en) | Method for manufacturing display substrate motherboard, and display device | |
WO2014042109A1 (en) | Photoelectric conversion element and method for manufacturing photoelectric conversion element | |
TWI732444B (en) | Solar cell gentle slope structure and manufacturing method thereof | |
CN119050221B (en) | A kind of automotive grade light emitting diode chip and its preparation method | |
CN101989634A (en) | Alignment Method of Electrode Pattern of Selective Emitter Structure |