[go: up one dir, main page]

TWI636078B - Biomass thermoplastic polyurethane - Google Patents

Biomass thermoplastic polyurethane Download PDF

Info

Publication number
TWI636078B
TWI636078B TW106146226A TW106146226A TWI636078B TW I636078 B TWI636078 B TW I636078B TW 106146226 A TW106146226 A TW 106146226A TW 106146226 A TW106146226 A TW 106146226A TW I636078 B TWI636078 B TW I636078B
Authority
TW
Taiwan
Prior art keywords
polyol
biothermoplastic
weight
lignin
diisocyanate
Prior art date
Application number
TW106146226A
Other languages
Chinese (zh)
Other versions
TW201930410A (en
Inventor
莊文斌
蘇一哲
黃韵雅
江肇傑
謝承翰
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW106146226A priority Critical patent/TWI636078B/en
Priority to CN201811025122.0A priority patent/CN109970939A/en
Application granted granted Critical
Publication of TWI636078B publication Critical patent/TWI636078B/en
Publication of TW201930410A publication Critical patent/TW201930410A/en

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)

Abstract

本揭露提供一種生質熱可塑性聚氨酯。該生質熱可塑性聚氨酯係由一組合物反應所形成,該組合物包含:1-50重量份的改質木質素,其中該改質木質素的羥基值(OH value)係小於3mmol/g;50-99重量份的第一多元醇,其中該改質木質素與該第一多元醇的總重為100重量份;以及,40-60重量份二異氰酸酯。 The present disclosure provides a biomass thermoplastic polyurethane. The biothermoplastic polyurethane is formed by a reaction of a composition comprising: 1-50 parts by weight of modified lignin, wherein the modified lignin has a hydroxyl value (OH value) of less than 3 mmol/g; 50 to 99 parts by weight of the first polyol, wherein the total weight of the modified lignin and the first polyol is 100 parts by weight; and, 40 to 60 parts by weight of the diisocyanate.

Description

生質熱可塑性聚氨酯 Biomass thermoplastic polyurethane

本揭露關於一種生質熱可塑性聚氨酯。 The present disclosure relates to a biomass thermoplastic polyurethane.

熱塑性聚氨酯(thermoplastic polyurethane,TPU)由於其柔韌且高彈性,已廣泛應用於泡沫坐墊、保溫板、電子灌封膠、高性能粘合劑、表面塗層、包裝、表面密封劑以及合成纖維。 Thermoplastic polyurethane (TPU) has been widely used in foam cushions, insulation boards, electronic potting compounds, high performance adhesives, surface coatings, packaging, surface sealants and synthetic fibers due to its flexibility and high elasticity.

用於熱塑性聚氨酯生產的多元醇通常來自於石油產物。然而,由於環境問題,如今越來越多的工業製造方法正試圖用生物質產物來替代石油產物。其中,木質素作為一種多元醇生物質,可以很容易的從食品級和非食品級的生物質中提取得到,例如農業廢棄物或森林中的生物質。然而,直接將木質素與異氰酸酯反應合成熱塑性聚氨酯則會因為過度交聯而導致產物失去熱可塑性。 Polyols used in the production of thermoplastic polyurethanes are typically derived from petroleum products. However, due to environmental concerns, more and more industrial manufacturing methods are now attempting to replace petroleum products with biomass products. Among them, lignin, as a polyol biomass, can be easily extracted from food-grade and non-food-grade biomass, such as agricultural waste or biomass in forests. However, direct reaction of lignin with isocyanate to form a thermoplastic polyurethane results in loss of thermoplasticity due to excessive crosslinking.

因此,業界需要一種新穎的熱塑性聚氨酯,以解決習知技術所遭遇到的問題。 Therefore, the industry needs a novel thermoplastic polyurethane to solve the problems encountered in the prior art.

根據本揭露實施例,本揭露提供一種生質熱可塑性聚氨酯。該生質熱可塑性聚氨酯可由一組合物反應所形成,該組 合物包含:1-50重量份的改質木質素;50-99重量份的第一多元醇;以及,40-60重量份二異氰酸酯。其中,該改質木質素的羥基值(OH value)係小於3mmol/g,且該改質木質素與該第一多元醇的總重為100重量份。 According to an embodiment of the present disclosure, the present disclosure provides a biomass thermoplastic polyurethane. The biothermoplastic polyurethane can be formed by a reaction of a group of components, the group The composition comprises: 1 to 50 parts by weight of modified lignin; 50 to 99 parts by weight of the first polyol; and, 40 to 60 parts by weight of diisocyanate. Wherein, the modified lignin has a hydroxyl value (OH value) of less than 3 mmol/g, and the total weight of the modified lignin and the first polyol is 100 parts by weight.

本揭露實施例提供一種生質熱可塑性聚氨酯。本揭露利用特定比例的改質木質素(羥基值(OH value)小於3mmol/g)、多元醇、以及二異氰酸酯來製備生質熱可塑性聚氨酯,可使所得之生質熱可塑性聚氨酯具有較高的機械強度及耐磨耗性。此外,當添加未改質的木質素與多元醇及二異氰酸酯反應時,若木質素添加量過多,易導致木質素聚集使得所得產物機械強度下降。若木質素添加量不夠,則無法明顯改善所得產物的機械強度及耐磨性。由於本揭露使用羥基值(OH value)小於3mmol/g的改質木質素與多元醇及二異氰酸酯反應,當提昇木質素添加量時不會導致過度交聯,因此所得生質聚氨酯在具有明顯提昇的機械強度、及耐磨耗性的同時,還保有熱可塑性。 The disclosed embodiments provide a biomass thermoplastic polyurethane. The present disclosure utilizes a specific proportion of modified lignin (hydroxy value (OH value) less than 3 mmol / g), polyol, and diisocyanate to prepare a biothermoplastic polyurethane, which can make the obtained biothermoplastic polyurethane have higher Mechanical strength and wear resistance. Further, when unmodified lignin is added to react with a polyol and a diisocyanate, if the amount of lignin added is too large, lignin aggregation is liable to cause a decrease in mechanical strength of the obtained product. If the amount of lignin added is insufficient, the mechanical strength and wear resistance of the obtained product cannot be remarkably improved. Since the present invention uses a modified lignin having a hydroxyl value (OH value) of less than 3 mmol/g to react with a polyhydric alcohol and a diisocyanate, when the amount of lignin is increased, no excessive crosslinking is caused, and thus the resulting bio-based polyurethane has a significant improvement. At the same time of mechanical strength and wear resistance, it also retains thermoplasticity.

根據本揭露實施例,本揭露提供一種生質熱可塑性聚氨酯。該生質熱可塑性聚氨酯可由一組合物反應所形成,該組合物包含:1-50重量份(例如2-25重量份、10-30重量份、或10-20重量份)的改質木質素;50-99重量份(例如75-98重量份、70-90 重量份、或80-90重量份)的第一多元醇;以及,40-60重量份(例如45-55重量份)二異氰酸酯。其中,該改質木質素的羥基值(OH value)係小於約3mmol/g,且該改質木質素與該第一多元醇的總重可為100重量份。 According to an embodiment of the present disclosure, the present disclosure provides a biomass thermoplastic polyurethane. The biothermoplastic polyurethane may be formed by a reaction of a composition comprising: 1 to 50 parts by weight (for example, 2 to 25 parts by weight, 10 to 30 parts by weight, or 10 to 20 parts by weight) of modified lignin. 50-99 parts by weight (for example, 75-98 parts by weight, 70-90 Parts by weight, or 80 to 90 parts by weight, of the first polyol; and, 40 to 60 parts by weight (for example, 45 to 55 parts by weight) of the diisocyanate. Wherein, the modified lignin has a hydroxyl value (OH value) of less than about 3 mmol/g, and the total weight of the modified lignin and the first polyol may be 100 parts by weight.

根據本揭露實施例,該改質木質素可具有至少一封端官能基的木質素,且該封端官能基係與該木質素上羥基去氫所得之殘基鍵結。其中,該封端官能基(R1)係C1-4烷基、苯基、 、或,其中R2及R3係各自獨立為C1-4烷基; 以及,n係1、2、3或4。 According to an embodiment of the present disclosure, the modified lignin may have at least one terminal functional group of lignin, and the capping functional group is bonded to a residue obtained by dehydrogenating a hydroxyl group on the lignin. Wherein the capping functional group (R 1 ) is a C 1-4 alkyl group, a phenyl group, ,or Wherein R 2 and R 3 are each independently C 1-4 alkyl; and n is 1, 2, 3 or 4.

根據本揭露實施例,該C1-4烷基可為直鏈或分支(linear or branched)鏈的烷基。舉例來說,C1-4烷基可為甲基(methyl)、乙基(ethyl)、丙基(propyl)、異丙基(isopropyl)、正丁基(n-butyl)、叔丁基(t-butyl)、仲丁基(sec-butyl)、或異丁基(isobutyl)。 According to an embodiment of the present disclosure, the C 1-4 alkyl group may be a linear or branched chain alkyl group. For example, a C 1-4 alkyl group can be methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl ( T-butyl), sec-butyl, or isobutyl.

根據本揭露實施例,本揭露所述該改質木質素可具有式(I)所述結構 According to an embodiment of the present disclosure, the modified lignin of the present disclosure may have the structure of the formula (I)

其中,L係為去除i個羥基所留下之木質素殘基;R1 係C1-4烷基、苯基、、或,其中R2及R2係 各自獨立為C1-4烷基;以及,n係1、2、3或4:以及,3<i≦10(例如:3<i≦9、3<i≦7、3<i≦6、3<i≦5、3<i≦4.8、3<i≦4.6、3<i ≦4.4、3<i≦4.2、或3<i≦4.0)。 Wherein, L is a lignin residue left by removing i hydroxyl groups; R 1 is a C 1-4 alkyl group, a phenyl group, ,or Wherein R 2 and R 2 are each independently C 1-4 alkyl; and, n is 1, 2, 3 or 4: and 3 < i ≦ 10 (for example: 3 < i ≦ 9, 3 < i ≦ 7, 3 < i ≦ 6, 3 < i ≦ 5, 3 < i ≦ 4.8, 3 < i ≦ 4.6, 3 < i ≦ 4.4, 3 < i ≦ 4.2, or 3 < i ≦ 4.0).

根據本揭露實施例,用來形成改質木質素的木質素可為磺酸鹽木質素、鹼木質素、或上述之組合。根據本揭露實施例,該改質木質素的羥基值(OH value)可為約2mmol/g至2.9mmol/g,例如:2.1mmol/g至2.8mmol/g、2.2mmol/g至2.7mmol/g、或2.3mmol/g至2.6mmol/g。若改質木質素的羥基值(OH value)過高時,易導致PU交聯失去熱可塑特性;若改質木質素的羥基值(OH value)過低時,易導致分子量低物性差。 According to embodiments of the present disclosure, the lignin used to form the modified lignin may be a sulfonate lignin, an alkali lignin, or a combination thereof. According to an embodiment of the present disclosure, the modified lignin may have a hydroxyl value (OH value) of from about 2 mmol/g to 2.9 mmol/g, for example, from 2.1 mmol/g to 2.8 mmol/g, from 2.2 mmol/g to 2.7 mmol/ g, or 2.3 mmol/g to 2.6 mmol/g. If the hydroxyl value (OH value) of the modified lignin is too high, the PU cross-linking tends to lose the thermoplastic property; if the hydroxyl value (OH value) of the modified lignin is too low, the molecular weight is low and the physical properties are poor.

根據本揭露實施例,該第一多元醇係為聚合物多元醇。根據本揭露實施例,其中該第一多元醇之數目平均分子量可為500至100000,例如500至80000、1000至60000、2000至50000、或5000至40000。 According to an embodiment of the present disclosure, the first polyol is a polymer polyol. According to an embodiment of the present disclosure, the number average molecular weight of the first polyol may be from 500 to 100,000, such as from 500 to 80,000, from 1,000 to 60,000, from 2,000 to 50,000, or from 5,000 to 40,000.

根據本揭露實施例,該第一多元醇可為聚酯多元醇(polyester polyol)、或聚醚多元醇(polyether polyol)。根據本揭露實施例,該聚酯多元醇可為聚(乙二醇己二酸酯)二醇(poly(ethylene adipate)diol)、聚(1,4-丁二醇己二酸酯)二醇(poly(1,4-butylene adipate)diol)、聚(乙二醇十二酸酯)二醇(poly(ethylene dodecanoate)diol)、或聚(1,6-己二醇己二酸酯)二醇(poly(1,6-hexathylene adipate)diol)。 According to an embodiment of the present disclosure, the first polyol may be a polyester polyol, or a polyether polyol. According to an embodiment of the present disclosure, the polyester polyol may be poly(ethylene adipate) diol or poly(1,4-butanediol adipate) diol. (poly(1,4-butylene adipate) diol), poly(ethylene dodecanoate) diol, or poly(1,6-hexanediol adipate) Poly(1,6-hexathylene adipate) diol.

此外,根據本揭露實施例,該聚醚多元醇可為聚乙二醇(polyethylene glycol,PEG)、聚丙二醇(polypropylene glycol,PPG)、或聚四亞甲基醚二醇(polytetramethylene ether glycol,PTMEG)。 In addition, according to the embodiments of the present disclosure, the polyether polyol may be polyethylene glycol (PEG), polypropylene glycol (PPG), or polytetramethylene ether (polytetramethylene ether). Glycol, PTMEG).

根據本揭露實施例,本揭露所述組合物更包含一第二多元醇。其中,該第二多元醇與該第一多元醇不同。 According to an embodiment of the present disclosure, the composition of the present disclosure further comprises a second polyol. Wherein the second polyol is different from the first polyol.

根據本揭露實施例,該第二多元醇可為聚酯多元醇、聚醚多元醇、或C2-14之多元醇(polyol)。舉例來說,該第二多元醇可為聚(乙二醇己二酸酯)二醇(poly(ethylene adipate)diol)、聚(1,4-丁二醇己二酸酯)二醇(poly(1,4-butylene adipate)diol)、聚(乙二醇十二酸酯)二醇(poly(ethylene dodecanoate)diol)、聚(1,6-己二醇己二酸酯)二醇(poly(1,6-hexathylene adipate)diol)、聚乙二醇(polyethylene glycol,PEG)、聚丙二醇(polypropylene glycol,PPG)、聚四亞甲基醚二醇(polytetramethylene ether glycol,PTMEG)、乙二醇(ethylene glycol)、1,3-丙二醇(1,3-propylene glycol)、丙三醇(glycerol)、1,4-丁二醇(1,4-butylene glycol)、1,5-戊二醇(1,5-pentylene glycol)、新戊二醇(neo-pentylene glycol)、1,6-己二醇(1,6-hexylene glycol)、1,7-庚二醇(1,7-heptylene glycol)、1,8-辛二醇(1,8-octylene glycol)、1,9-壬二醇(1,9-nonylene glycol)、癸二醇(decylene glycol)、十一烷二醇(undecylene glycol)、十二烷二醇(dodecylene glycol)、十四烷二醇(tetradecylene glycol)、松香二醇(rosin-diol)、異山梨醇(isosorbide)、或2,5-呋喃二醇(2,5-furandiol)。根據本揭露實施例,該第二多元醇為聚酯多元醇或聚醚多元醇,且第二多元醇之數目平均分子量可為500至 100000,例如500至80000、1000至60000、2000至50000、或5000至40000。 According to an embodiment of the present disclosure, the second polyol may be a polyester polyol, a polyether polyol, or a C 2-14 polyol. For example, the second polyol may be poly(ethylene adipate) diol or poly(1,4-butanediol adipate) diol ( Poly(1,4-butylene adipate) diol, poly(ethylene dodecanoate) diol, poly(1,6-hexanediol adipate) diol ( Poly(1,6-hexathylene adipate) diol), polyethylene glycol (PEG), polypropylene glycol (PPG), polytetramethylene ether glycol (PTMEG), ethylene Ethylene glycol, 1,3-propylene glycol, glycerol, 1,4-butylene glycol, 1,5-pentanediol (1,5-pentylene glycol), neopentylene glycol, 1,6-hexylene glycol, 1,7-heptylene glycol , 1,8-octylene glycol, 1,9-nonylene glycol, decylene glycol, undecylene glycol ), dodecylene glycol, tetradecylene glycol, rosin-diol, isosorbide Isosorbide), or 2,5-furandiol. According to an embodiment of the present disclosure, the second polyol is a polyester polyol or a polyether polyol, and the number average molecular weight of the second polyol may be 500 to 100000, for example, 500 to 80,000, 1000 to 60,000, 2000 to 50000, or 5000 to 40,000.

根據本揭露實施例,該第二多元醇與該第一多元醇的重量比可為0.1至0.5(例如:0.11、0.13、0.15、0.2、0.22、0.25、0.27、或0.29),以同時提昇本揭露所述生質熱可塑性聚氨酯的機械強度、耐磨耗性、及耐水解性。 According to an embodiment of the present disclosure, the weight ratio of the second polyol to the first polyol may be 0.1 to 0.5 (for example, 0.11, 0.13, 0.15, 0.2, 0.22, 0.25, 0.27, or 0.29) to simultaneously The mechanical strength, the abrasion resistance, and the hydrolysis resistance of the biothermoplastic polyurethane of the present disclosure are improved.

根據本揭露實施例,該第一多元醇可為聚酯多元醇,以及該第二多元醇可為C2-14之多元醇(polyol);該第一多元醇可為聚酯多元醇,以及該第二多元醇可為聚醚多元醇;該第一多元醇可為聚醚多元醇,以及該第二多元醇可為C2-14之多元醇(polyol);或者,該第一多元醇可為聚醚多元醇,以及該第二多元醇可為聚酯多元醇。 According to an embodiment of the present disclosure, the first polyol may be a polyester polyol, and the second polyol may be a C 2-14 polyol; the first polyol may be a polyester polyol The alcohol, and the second polyol may be a polyether polyol; the first polyol may be a polyether polyol, and the second polyol may be a C 2-14 polyol; The first polyol may be a polyether polyol, and the second polyol may be a polyester polyol.

根據本揭露實施例,該二異氰酸酯可為二異氰酸六亞甲基酯(Hexamethylene Diisocyanate,HDI)、二異氰酸二苯甲烷(methylene diphenyl diisocyanate,MDI)、二異氰酸甲苯(toluene diisocyanate,TDI)、二異氰酸異佛爾酮(isophorone diisocyanate,IPDI)、1,5-萘基二異氰酸酯(1,5-naphthalene diisocyanate,NDI)、對-伸苯基二異氰酸酯(p-phenylene diisocyanate,PPDI)、或上述之組合。 According to an embodiment of the present disclosure, the diisocyanate may be Hexamethylene Diisocyanate (HDI), methylene diphenyl diisocyanate (MDI), toluene diisocyanate (toluene diisocyanate). , TDI), isophorone diisocyanate (IPDI), 1,5-naphthalene diisocyanate (NDI), p-phenylene diisocyanate , PPDI), or a combination of the above.

根據本揭露實施例,該組合物可包含二種或二種以上的二異氰酸酯。 According to embodiments of the present disclosure, the composition may comprise two or more diisocyanates.

根據本揭露實施例,本揭露所述改質木質素可以下 述步驟製備。首先,將木質素對鹼劑(alkali agent)反應,得到一混合物。接著,將封端劑(capping agent)加入該混合物中,反應後得到該改質木質素。 According to the disclosed embodiment, the modified lignin can be Prepare the steps. First, lignin is reacted with an alkali agent to obtain a mixture. Next, a capping agent is added to the mixture, and the modified lignin is obtained after the reaction.

值得注意的是,本揭露使用特定鹼劑,可選擇性拔除芳香羥基上的氫並保留脂族羥基(aliphatic hydroxyl)上OH的氫。因此,本揭露所述改質木質素其芳香封端劑官能基(封端劑官能基取代芳香羥基上的氫)的數量大於脂族封端劑官能基(封端劑官能基取代脂族羥基上的氫)的數量。 It is noted that the present disclosure uses a particular base agent to selectively extract hydrogen from the aromatic hydroxyl group and retain the hydrogen of the OH on the aliphatic hydroxyl. Therefore, the modified lignin has an aromatic terminal blocking agent functional group (the hydrogen of the terminal blocking agent functional group substituted for the aromatic hydroxyl group) is larger than the aliphatic terminal blocking agent functional group (the terminal blocking agent functional group replaces the aliphatic hydroxyl group) The number of hydrogen on the).

根據本揭露實施例,該鹼劑(alkali agent)可為氫氧化鈉、氫氧化鉀、碳酸銫、碳酸鉀、或上述之組合。根據本揭露實施例,該封端劑可為X-R1,其中X係為鹵素,而R1可為C1-4 烷基、苯基、、或,其中R2及R3係各自獨 立為C1-4烷基;以及,n係1、2、3或4。 According to an embodiment of the present disclosure, the alkali agent may be sodium hydroxide, potassium hydroxide, cesium carbonate, potassium carbonate, or a combination thereof. According to an embodiment of the present disclosure, the blocking agent may be XR 1 , wherein X is halogen, and R 1 may be C 1-4 alkyl, phenyl, ,or Wherein R 2 and R 3 are each independently C 1-4 alkyl; and n is 1, 2, 3 or 4.

根據本揭露實施例,本揭露所述生質熱可塑性聚氨酯的製備方式包含將上述組合物加熱反應,並進行熟成。根據本揭露實施例,本揭露所述組合物可更包含一0.01至5重量份的觸媒,該觸媒可為有機鉍觸媒、有機錫觸媒、或四級銨觸媒,其中該改質木質素與該第一多元醇的總重為100重量份。 According to an embodiment of the present disclosure, the preparation method of the biothermoplastic polyurethane of the present disclosure comprises heating the reaction of the above composition and performing aging. According to an embodiment of the present disclosure, the composition may further comprise 0.01 to 5 parts by weight of a catalyst, and the catalyst may be an organic tantalum catalyst, an organic tin catalyst, or a quaternary ammonium catalyst, wherein the modification The total weight of the lignin and the first polyol is 100 parts by weight.

為了讓本揭露之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數實施例,作詳細說明如下: The above and other objects, features, and advantages of the present invention will become more apparent and understood.

改質木質素的製備 Preparation of modified lignin

製備例1: Preparation Example 1:

將100重量份木質素(lignin,Mw:1000-1500,由稻殼萃取)加入一反應瓶中,並以丙酮溶解。充份攪拌後,將120重量份碳酸鉀(potassium carbonate)於室溫下加入該反應瓶中。接著,攪拌30分鐘後,在室溫下加入140重量份的碘甲烷(methyl iodide)於該反應瓶中,使得木質素中部份羥基轉換成甲氧基。在反應72小時後,加入大量水於該反應瓶中使得固體析出。過濾及乾燥後,得到改質木質素(1)。以核磁共振光譜計算出改質木質素(1)所殘留的羥基,結果如表1所示。 100 parts by weight of lignin (lignin, Mw: 1000-1500, extracted from rice hulls) was added to a reaction flask and dissolved in acetone. After thorough stirring, 120 parts by weight of potassium carbonate was added to the reaction flask at room temperature. Next, after stirring for 30 minutes, 140 parts by weight of methyl iodide was added to the reaction flask at room temperature to convert a part of the hydroxyl groups in the lignin to a methoxy group. After 72 hours of the reaction, a large amount of water was added to the reaction flask to precipitate a solid. After filtration and drying, modified lignin (1) is obtained. The hydroxyl groups remaining in the modified lignin (1) were calculated by nuclear magnetic resonance spectroscopy, and the results are shown in Table 1.

製備例2: Preparation Example 2:

依據製備例1所述改質木質素(1)的製備方法,除了將反應時間從72小時縮短至24小時,得到改質木質素(2)。以核磁共振光譜計算出改質木質素(2)所殘留的羥基,結果如表1所示。 According to the preparation method of the modified lignin (1) described in Preparation Example 1, except that the reaction time was shortened from 72 hours to 24 hours, modified lignin (2) was obtained. The hydroxyl groups remaining in the modified lignin (2) were calculated by nuclear magnetic resonance spectroscopy, and the results are shown in Table 1.

生質熱可塑性聚氨酯 Biomass thermoplastic polyurethane

實施例1 Example 1

將10重量份改質木質素(1)、及90重量份聚四亞甲基醚二醇(polytetramethylene ether glycol,PTMEG)(由Aldrich製造販售、數目平均分子量為1000-2000)置入一反應瓶中。在昇溫 至80℃後,真空除水一小時。在將反應瓶通入氬氣後,將13.5重量份1,4-丁二醇(1,4-butanediol)及1重量份有機鉍催化劑(由King Industries,Inc.製造及販售、商品編號為K348)加入至反應瓶。充份攪拌後,將46.68重量份二異氰酸異佛爾酮(isophorone diisocyanate、由Bayer製造及販售)加入至反應瓶,並持續攪拌。當反應瓶溫度上昇至90℃-100℃時,停止攪拌,並迅速將所得物倒入模具中,並將模具置於80℃烘箱內。烘烤16小時後,得到生質熱可塑性聚氨酯(1)。 10 parts by weight of modified lignin (1), and 90 parts by weight of polytetramethylene ether glycol (PTMEG) (sold by Aldrich, number average molecular weight 1000-2000) were placed in a reaction In the bottle. Warming up After 80 ° C, the water was removed by vacuum for one hour. After the reaction flask was purged with argon, 13.5 parts by weight of 1,4-butanediol and 1 part by weight of an organic ruthenium catalyst (manufactured and sold by King Industries, Inc., article numbered as K348) was added to the reaction flask. After thorough stirring, 46.68 parts by weight of isophorone diisocyanate (manufactured and sold by Bayer) was added to the reaction flask and stirring was continued. When the temperature of the reaction flask was raised to 90 ° C - 100 ° C, the stirring was stopped, and the resultant was quickly poured into a mold, and the mold was placed in an oven at 80 ° C. After baking for 16 hours, a biothermoplastic polyurethane (1) was obtained.

接著,將生質熱可塑性聚氨酯(1)溶於二甲基乙醯胺(dimethyl acetamide),並利用低溫烘箱烘烤成膜(烘烤溫度為60-80℃)。裁切成試片後,以萬能拉力機根據ASTM D412進行100%模數(100%modulus)、拉伸強度(tensile strength)、及拉伸伸長率(tensile elongation)的量測,結果如表2所示。 Next, the bio-thermoplastic polyurethane (1) was dissolved in dimethyl acetamide and baked into a film by a low-temperature oven (baking temperature: 60-80 ° C). After cutting into test pieces, the 100% modulus (tensile modulus), tensile strength, and tensile elongation were measured by a universal tensile machine according to ASTM D412. The results are shown in Table 2. Shown.

實施例2 Example 2

依實施例1所述生質熱可塑性聚氨酯(1)的製備方式進行,除了將改質木質素(1)由10重量份增加至20重量份、並將聚四亞甲基醚二醇由90重量份降低至80重量份,得到生質熱可塑性聚氨酯(2)。接著,將生質熱可塑性聚氨酯(2)溶於二甲基乙醯胺(dimethyl acetamide),並利用低溫烘箱烘烤成膜(烘烤溫度為60-80℃)。裁切成試片後,以萬能拉力機根據ASTM D412進行100%模數(100%modulus)、拉伸強度(tensile strength)、及拉伸伸長率(tensile elongation)的量測,結果如表2所示。 The preparation of the biothermoplastic polyurethane (1) according to Example 1 was carried out except that the modified lignin (1) was increased from 10 parts by weight to 20 parts by weight, and the polytetramethylene ether glycol was 90. The weight fraction was reduced to 80 parts by weight to obtain a biomass thermoplastic polyurethane (2). Next, the bio-thermoplastic polyurethane (2) was dissolved in dimethyl acetamide and baked into a film using a low-temperature oven (baking temperature: 60-80 ° C). After cutting into test pieces, the 100% modulus (tensile modulus), tensile strength, and tensile elongation were measured by a universal tensile machine according to ASTM D412. The results are shown in Table 2. Shown.

比較例1 Comparative example 1

將100重量份聚四亞甲基醚二醇(PTMEG)(由Aldrich製造販售、數目平均分子量為1000-2000)置入一反應瓶中。在昇溫至80℃後,真空除水一小時。在將反應瓶通入氬氣後,將13.5重量份1,4-丁二醇(1,4-butanediol)及1重量份有機鉍催化劑(由King Industries,Inc.製造及販售、商品編號為K348)加入至反應瓶。充份攪拌後,將46.68重量份二異氰酸異佛爾酮(isophorone diisocyanate、由Bayer製造及販售)加入至反應瓶,並持續攪拌。當反應瓶溫度上昇至90℃-100℃時,停止攪拌,並迅速將所得物倒入模具中,並將模具置於80℃烘箱內。烘烤16小時後,得到聚氨酯(1)。接著,將聚氨酯(1)溶於二甲基乙醯胺(dimethyl acetamide),並利用低溫烘箱烘烤成膜(烘烤溫度為60-80℃)。裁切成試片後,以萬能拉力機根據ASTM D412進行100%模數(100%modulus)、拉伸強度(tensile strength)、及拉伸伸長率(tensile elongation)的量測,結果如表2所示。 100 parts by weight of polytetramethylene ether glycol (PTMEG) (sold by Aldrich, number average molecular weight 1000-2000) was placed in a reaction flask. After warming to 80 ° C, water was removed by vacuum for one hour. After the reaction flask was purged with argon, 13.5 parts by weight of 1,4-butanediol and 1 part by weight of an organic ruthenium catalyst (manufactured and sold by King Industries, Inc., article numbered as K348) was added to the reaction flask. After thorough stirring, 46.68 parts by weight of isophorone diisocyanate (manufactured and sold by Bayer) was added to the reaction flask and stirring was continued. When the temperature of the reaction flask was raised to 90 ° C - 100 ° C, the stirring was stopped, and the resultant was quickly poured into a mold, and the mold was placed in an oven at 80 ° C. After baking for 16 hours, a polyurethane (1) was obtained. Next, the polyurethane (1) was dissolved in dimethyl acetamide, and baked into a film using a low-temperature oven (baking temperature: 60-80 ° C). After cutting into test pieces, the 100% modulus (tensile modulus), tensile strength, and tensile elongation were measured by a universal tensile machine according to ASTM D412. The results are shown in Table 2. Shown.

比較例2 Comparative example 2

依實施例2所述生質熱可塑性聚氨酯(2)的製備方式進行,除了將改質木質素(1)以改質木質素(2)取代。由於所得產物在熟成過程(90℃-100℃)即產生交聯硬化,不具熱可塑性,無法成膜。 The preparation of the biothermoplastic polyurethane (2) according to Example 2 was carried out except that the modified lignin (1) was substituted with the modified lignin (2). Since the obtained product is crosslinked and hardened during the ripening process (90 ° C - 100 ° C), it is not thermoplastic and cannot be formed into a film.

比較例3: Comparative Example 3:

依實施例2所述生質熱可塑性聚氨酯(2)的製備方式進行,除了將改質木質素(1)以未改質木質素(lignin,Mw:1000-1500,由稻殼萃取)(殘留之羥基值為6.0mmol/g)取 代。由於所得產物在熟成過程(90℃-100℃)即產生交聯硬化,不具熱可塑性,無法成膜。 The preparation method of the biothermoplastic polyurethane (2) according to Example 2 is carried out except that the modified lignin (1) is extracted from unmodified lignin (lignin, Mw: 1000-1500, from rice husk) (residue The hydroxyl value is 6.0 mmol/g) generation. Since the obtained product is crosslinked and hardened during the ripening process (90 ° C - 100 ° C), it is not thermoplastic and cannot be formed into a film.

由表2可知,與比較例1相比,添加改質木質素(1)(殘留之羥基值為2.5mmol/g)可大幅提昇所得生質熱可塑性聚氨酯的100%模數及抗拉強度。雖然,添加改質木質素(1)導致所得生質熱可塑性聚氨酯的拉伸伸長率下降,但仍維持在700%以上。 As is clear from Table 2, the addition of the modified lignin (1) (residual hydroxyl value of 2.5 mmol/g) compared with Comparative Example 1 greatly improved the 100% modulus and tensile strength of the obtained biothermoplastic polyurethane. Although the addition of the modified lignin (1) resulted in a decrease in the tensile elongation of the obtained biothermoplastic polyurethane, it was maintained at 700% or more.

抗磨耗測試 Abrasion resistance test

將比較例1所得之聚氨酯(1)及本揭露實施例2所得之生質熱可塑性聚氨酯(2)依據DIN 53516量測磨耗量(abrasion loss),結果如表3所示。 The polyurethane (1) obtained in Comparative Example 1 and the bio-thermoplastic polyurethane (2) obtained in Inventive Example 2 were measured for abrasion loss according to DIN 53516, and the results are shown in Table 3.

由表3可得知,藉由添加本揭露所述改質木質素,確實可提昇所得之生質熱可塑性聚氨酯的耐磨耗性。 As can be seen from Table 3, by adding the modified lignin of the present disclosure, the abrasion resistance of the resulting biothermoplastic polyurethane can be improved.

耐水解測試 Hydrolysis resistance test

將本揭露實施例2所得之生質熱可塑性聚氨酯(2)在80℃及95% RH進行35天耐水解測試(依據ASTM D882標準測試法),並量測生質熱可塑性聚氨酯(2)在進行耐水解測試前及後的100%模數變化率,結果如表4所示。100%模數變化率的計算方式如下: The biothermoplastic polyurethane (2) obtained in Example 2 was subjected to a hydrolysis resistance test at 80 ° C and 95% RH for 35 days (according to the ASTM D882 standard test method), and the biomass thermoplastic polyurethane (2) was measured. The 100% modulus change rate before and after the hydrolysis resistance test was carried out, and the results are shown in Table 4. The 100% modulus change rate is calculated as follows:

由表4可得知,藉由添加本揭露所述改質木質素,本揭露所述之生質熱可塑性聚氨酯其具有良好的耐候性,即使在高溫高濕環境下其機械性質仍不會劣化。 It can be seen from Table 4 that by adding the modified lignin of the present disclosure, the biothermoplastic polyurethane of the present disclosure has good weather resistance, and its mechanical properties are not deteriorated even under high temperature and high humidity environment. .

雖然本揭露已以數個實施例揭露如上,然其並非用以限定本揭露,任何本技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 The present disclosure has been disclosed in the above several embodiments, but it is not intended to limit the disclosure, and any one skilled in the art can make any changes and refinements without departing from the spirit and scope of the disclosure. Therefore, the scope of protection of this disclosure is subject to the definition of the scope of the patent application.

Claims (13)

一種生質熱可塑性聚氨酯,係由一組合物反應所形成,該組合物包含:1-50重量份的改質木質素,其中該改質木質素的羥基值(OH value)係2mmol/g至2.9mmol/g;50-99重量份的第一多元醇,其中該改質木質素與該第一多元醇的總重為100重量份;以及40-60重量份二異氰酸酯。 A bio-thermoplastic polyurethane formed by a reaction of a composition comprising: 1-50 parts by weight of modified lignin, wherein the modified lignin has a hydroxyl value (OH value) of 2 mmol/g to 2.9 mmol/g; 50 to 99 parts by weight of the first polyol, wherein the total weight of the modified lignin and the first polyol is 100 parts by weight; and 40 to 60 parts by weight of diisocyanate. 如申請專利範圍第1項所述之生質熱可塑性聚氨酯,其中該改質木質素係具有至少一封端官能基(R1)的木質素,且該封端官能基(R1)係與該木質素上羥基去氫所得之殘基鍵結,其中該 封端官能基(R1)係C1-4烷基、苯基、、或, 其中R2及R3係各自獨立為C1-4烷基;以及,n係1、2、3或4。 The first item of the raw patent thermoplastic polyurethane mass range, wherein the lignin-based modified lignin at least one terminal functional group (R 1), and the blocked functional group (R 1) and lines Residue bond obtained by dehydrogenation of a hydroxyl group on the lignin, wherein the capping functional group (R 1 ) is a C 1-4 alkyl group, a phenyl group, ,or Wherein R 2 and R 3 are each independently C 1-4 alkyl; and n is 1, 2, 3 or 4. 如申請專利範圍第2項所述之生質熱可塑性聚氨酯,其中該木質素係磺酸鹽木質素、鹼木質素、或上述之組合。 The biothermoplastic polyurethane according to claim 2, wherein the lignin is a sulfonate lignin, an alkali lignin, or a combination thereof. 如申請專利範圍第1項所述之生質熱可塑性聚氨酯,其中該第一多元醇係為聚合物多元醇。 The biothermoplastic polyurethane according to claim 1, wherein the first polyol is a polymer polyol. 如申請專利範圍第4項所述之生質熱可塑性聚氨酯,其中該第一多元醇係聚酯多元醇(polyester polyol)、或聚醚多元醇(polyether polyol)。 The biothermoplastic polyurethane according to claim 4, wherein the first polyol is a polyester polyol or a polyether polyol. 如申請專利範圍第1項所述之生質熱可塑性聚氨酯,其 中該組合物更包含一第二多元醇,其中該第二多元醇與該第一多元醇不同。 The biothermoplastic polyurethane according to claim 1, wherein The composition further comprises a second polyol, wherein the second polyol is different from the first polyol. 如申請專利範圍第6項所述之生質熱可塑性聚氨酯,其中該第二多元醇係聚酯多元醇、聚醚多元醇、或C2-14之多元醇(polyol)。 The biothermoplastic polyurethane according to claim 6, wherein the second polyol is a polyester polyol, a polyether polyol, or a C 2-14 polyol. 如申請專利範圍第6項所述之生質熱可塑性聚氨酯,其中該第二多元醇與該第一多元醇的重量比係0.1至0.5。 The biothermoplastic polyurethane according to claim 6, wherein the weight ratio of the second polyol to the first polyol is from 0.1 to 0.5. 如申請專利範圍第8項所述之生質熱可塑性聚氨酯,其中該第一多元醇係聚酯多元醇,以及該第二多元醇係C2-14之多元醇(polyol)。 The biothermoplastic polyurethane according to claim 8, wherein the first polyol is a polyester polyol, and the second polyol is a polyether of C 2-14 . 如申請專利範圍第8項所述之生質熱可塑性聚氨酯,其中該第一多元醇係聚酯多元醇,以及該第二多元醇係聚醚多元醇。 The biothermoplastic polyurethane according to claim 8, wherein the first polyol is a polyester polyol, and the second polyol polyether polyol. 如申請專利範圍第8項所述之生質熱可塑性聚氨酯,其中該第一多元醇係聚醚多元醇,以及該第二多元醇係C2-14之多元醇(polyol)。 The biothermoplastic polyurethane according to claim 8, wherein the first polyol-based polyether polyol and the second polyol-based C 2-14 polyol. 如申請專利範圍第8項所述之生質熱可塑性聚氨酯,其中該第一多元醇係聚醚多元醇,以及該第二多元醇係聚酯多元醇。 The biothermoplastic polyurethane according to claim 8, wherein the first polyol-based polyether polyol and the second polyol-based polyester polyol. 如申請專利範圍第1項所述之生質熱可塑性聚氨酯,其中該二異氰酸酯係二異氰酸六亞甲基酯(Hexamethylene Diisocyanate,HDI)、二異氰酸二苯甲烷(methylene diphenyl diisocyanate,MDI)、二異氰酸甲苯(toluene diisocyanate,TDI)、二異氰酸異佛爾酮(isophorone diisocyanate,IPDI)、1,5-萘基二異氰酸酯(1,5-naphthalene diisocyanate,NDI)、對-伸苯基二異氰酸酯(p-phenylene diisocyanate,PPDI)、或上述之組合。 The biothermoplastic polyurethane according to claim 1, wherein the diisocyanate is Hexamethylene Diisocyanate (HDI) or diethylene diphenylmethane (methylene diphenyl). Diisocyanate, MDI), toluene diisocyanate (TDI), isophorone diisocyanate (IPDI), 1,5-naphthalene diisocyanate (NDI) , p-phenylene diisocyanate (PPDI), or a combination thereof.
TW106146226A 2017-12-28 2017-12-28 Biomass thermoplastic polyurethane TWI636078B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW106146226A TWI636078B (en) 2017-12-28 2017-12-28 Biomass thermoplastic polyurethane
CN201811025122.0A CN109970939A (en) 2017-12-28 2018-09-04 Biomass thermoplastic polyurethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106146226A TWI636078B (en) 2017-12-28 2017-12-28 Biomass thermoplastic polyurethane

Publications (2)

Publication Number Publication Date
TWI636078B true TWI636078B (en) 2018-09-21
TW201930410A TW201930410A (en) 2019-08-01

Family

ID=64452948

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106146226A TWI636078B (en) 2017-12-28 2017-12-28 Biomass thermoplastic polyurethane

Country Status (1)

Country Link
TW (1) TWI636078B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101696261A (en) * 2009-10-29 2010-04-21 华南理工大学 Lignin polyurethane and preparation method thereof
CN103224628A (en) * 2013-05-24 2013-07-31 济南圣泉集团股份有限公司 Hydroxymethylated lignin and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101696261A (en) * 2009-10-29 2010-04-21 华南理工大学 Lignin polyurethane and preparation method thereof
CN103224628A (en) * 2013-05-24 2013-07-31 济南圣泉集团股份有限公司 Hydroxymethylated lignin and application thereof

Also Published As

Publication number Publication date
TW201930410A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
US10414852B2 (en) Biomass thermoplastic polyurethane
CN109970939A (en) Biomass thermoplastic polyurethane
CN104448197B (en) The synthetic method of the Heat-resistant Polyurethane Elastomers
KR102306302B1 (en) Bio polyol and fabricating method of the same
CA2632507A1 (en) Process for the preparation of thermoplastic polyurethanes based on 1,5-naphthalene-diisocyanate
JP7083825B2 (en) Method for Producing Biopolyester Polyol, Biopolyester Polyol and Biopolyurethane Resin
CN114269803B (en) One-part polyurethane prepolymer composition
JP2020512430A (en) A process for producing polyurethanes exhibiting low blooming effect and good low temperature flexibility based on urethane-containing polymeric hydroxyl compounds.
Javni et al. Thermoplastic polyurethanes with isosorbide chain extender
EP3484937A1 (en) Cast urethanes made from low free monomer prepolymer with polycarbonate backbone
CN110922557B (en) High-hardness thermoplastic polyurethane elastomer and preparation method thereof
KR101313713B1 (en) compositions of polyurethane resin has anti-hydrolysis property, Manufacturing method of polyurethane resin using the same and polyurethane adhesive with polyurethane resin
TWI636078B (en) Biomass thermoplastic polyurethane
KR20020081591A (en) THERMOPLASTIC POLYURETHANE ELASTOMERS(TPUs) PREPARED WITH POLYTRIMETHYLENE CARBONATE SOFT SEGMENT
KR20160099563A (en) Polyurethane/polyureas
CN109929500B (en) Method for preparing polyurethane hot melt adhesive, polyurethane hot melt adhesive and processed product
TWI855152B (en) Thermoplastic polyurethane composition
EP3077439B1 (en) Storage stable polyol composition for polyurethane elastomers
JP5906492B2 (en) Alkali resistant resin composition
RU2523797C2 (en) Method of producing thermoplastic polyurethane elastomer
KR20220131747A (en) High-solids water-dispersion polyurethane manufacturing method with excellent hydrolysis resistance
KR101686774B1 (en) A process for PPDI based polyurethane elastomers and PPDI based polyurethane elastomers thereby the same that
Kayalvizhi et al. Synthesis and Characterization of Poly (urethane-urea) based on Functionalized Polystyrene and MDI
TW202500618A (en) Polyurethane resin composition
US20230192906A1 (en) Polyrotaxane having group that has chain formed by having circular molecule have propyleneoxy repeating unit