[go: up one dir, main page]

CN109970939A - Biomass thermoplastic polyurethane - Google Patents

Biomass thermoplastic polyurethane Download PDF

Info

Publication number
CN109970939A
CN109970939A CN201811025122.0A CN201811025122A CN109970939A CN 109970939 A CN109970939 A CN 109970939A CN 201811025122 A CN201811025122 A CN 201811025122A CN 109970939 A CN109970939 A CN 109970939A
Authority
CN
China
Prior art keywords
polyol
thermoplastic polyurethane
weight
biomass
lignin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811025122.0A
Other languages
Chinese (zh)
Inventor
庄文斌
苏一哲
黄韵雅
江肇杰
谢承翰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TW106146226A external-priority patent/TWI636078B/en
Priority claimed from US15/857,208 external-priority patent/US10414852B2/en
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN109970939A publication Critical patent/CN109970939A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4081Mixtures of compounds of group C08G18/64 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6492Lignin containing materials; Wood resins; Wood tars; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

A kind of biomass thermoplastic polyurethane.The biomass thermoplastic polyurethane is formed by composition reaction, and the composition includes: the modified lignin resin of 1~50 parts by weight, wherein the hydroxyl value (OH value) of the modified lignin resin is less than 3mmol/g;First polyalcohol of 50~99 parts by weight, wherein the gross weight of the modified lignin resin and first polyalcohol is 100 parts by weight;And 40~60 parts by weight diisocyanate.

Description

生物质热可塑性聚氨酯Biomass thermoplastic polyurethane

技术领域technical field

本发明具体涉及一种生物质热可塑性聚氨酯。The present invention specifically relates to a biomass thermoplastic polyurethane.

背景技术Background technique

热塑性聚氨酯(thermoplastic polyurethane,TPU)由于其柔韧且高弹性,已广泛应用于泡沫坐垫、保温板、电子灌封胶、高性能粘合剂、表面涂层、包装、表面密封剂以及合成纤维。Thermoplastic polyurethane (TPU) has been widely used in foam cushions, thermal insulation boards, electronic potting compounds, high-performance adhesives, surface coatings, packaging, surface sealants and synthetic fibers due to its flexibility and high elasticity.

用于热塑性聚氨酯生产的多元醇通常来自于石油产物。然而,由于环境问题,如今越来越多的工业制造方法正试图用生物质产物来替代石油产物。其中,木质素作为一种多元醇生物质,可以很容易的从食品级和非食品级的生物质中提取得到,例如农业废弃物或森林中的生物质。然而,直接将木质素与异氰酸酯反应合成热塑性聚氨酯则会因为过度交联而导致产物失去热可塑性。The polyols used in thermoplastic polyurethane production are usually derived from petroleum products. However, due to environmental concerns, more and more industrial manufacturing methods are now attempting to replace petroleum products with biomass products. Among them, lignin, as a polyol biomass, can be easily extracted from food-grade and non-food-grade biomass, such as agricultural waste or forest biomass. However, the direct reaction of lignin and isocyanate to synthesize thermoplastic polyurethane will lead to the loss of thermoplasticity of the product due to excessive crosslinking.

因此,业界需要一种新颖的热塑性聚氨酯,以解决已知技术所遭遇到的问题。Therefore, the industry needs a novel thermoplastic polyurethane that solves the problems encountered with known technologies.

发明内容SUMMARY OF THE INVENTION

在本发明的一些实施例中,本发明提供一种生物质热可塑性聚氨酯。所述生物质热可塑性聚氨酯由一组合物反应所形成,所述组合物包含:1~50重量份的改性木质素;50~99重量份的第一多元醇;以及,40~60重量份二异氰酸酯。其中,所述改性木质素的羟基值(OH value)小于3mmol/g,且所述改性木质素与所述第一多元醇的总重为100重量份。In some embodiments of the present invention, the present invention provides a biomass thermoplastic polyurethane. The biomass thermoplastic polyurethane is formed by reacting a composition comprising: 1-50 parts by weight of modified lignin; 50-99 parts by weight of a first polyol; and 40-60 parts by weight parts of diisocyanate. Wherein, the hydroxyl value (OH value) of the modified lignin is less than 3 mmol/g, and the total weight of the modified lignin and the first polyol is 100 parts by weight.

具体实施方式Detailed ways

本发明实施例提供一种生物质热可塑性聚氨酯。本发明利用特定比例的改性木质素(羟基值(OH value)小于3mmol/g)、多元醇、以及二异氰酸酯来制备生物质热可塑性聚氨酯,可使所得的生物质热可塑性聚氨酯具有较高的机械强度及耐磨耗性。此外,当添加未改性的木质素与多元醇及二异氰酸酯反应时,若木质素添加量过多,易导致过度交联失去热可塑特性。若木质素添加量不够,则无法明显改善所得产物的机械强度及耐磨性。由于本发明使用羟基值(OH value)小于3mmol/g的改性木质素与多元醇及二异氰酸酯反应,当提升木质素添加量时不会导致过度交联,因此所得生物质聚氨酯在具有明显提升的机械强度、及耐磨耗性的同时,还保有热可塑性。The embodiment of the present invention provides a biomass thermoplastic polyurethane. The present invention utilizes a specific proportion of modified lignin (OH value (OH value) less than 3 mmol/g), polyol and diisocyanate to prepare biomass thermoplastic polyurethane, so that the obtained biomass thermoplastic polyurethane has higher Mechanical strength and wear resistance. In addition, when adding unmodified lignin to react with polyols and diisocyanates, if the amount of lignin added is too large, it will easily lead to excessive crosslinking and loss of thermoplastic properties. If the amount of lignin added is insufficient, the mechanical strength and abrasion resistance of the obtained product cannot be significantly improved. Since the present invention uses modified lignin with a hydroxyl value (OH value) of less than 3 mmol/g to react with polyols and diisocyanates, excessive crosslinking will not be caused when the amount of lignin added is increased, so the obtained biomass polyurethane has a significantly improved High mechanical strength and wear resistance while maintaining thermoplasticity.

在本发明的一些实施例中,本发明提供一种生物质热可塑性聚氨酯。所述生物质热可塑性聚氨酯由一组合物反应所形成,所述组合物包含:1~50重量份(例如2~25重量份、10~30重量份或10~20重量份)的改性木质素;50~99重量份(例如75~98重量份、70~90重量份或80-90重量份)的第一多元醇;以及,40~60重量份(例如45~55重量份)二异氰酸酯。其中,所述改性木质素的羟基值(OH value)小于约3mmol/g,且所述改性木质素与所述第一多元醇的总重为100重量份。In some embodiments of the present invention, the present invention provides a biomass thermoplastic polyurethane. The biomass thermoplastic polyurethane is formed by reacting a composition, and the composition comprises: 1-50 parts by weight (for example, 2-25 parts by weight, 10-30 parts by weight or 10-20 parts by weight) of modified wood element; 50-99 parts by weight (for example, 75-98 parts by weight, 70-90 parts by weight, or 80-90 parts by weight) of the first polyol; and, 40-60 parts by weight (for example, 45-55 parts by weight) two Isocyanates. Wherein, the hydroxyl value (OH value) of the modified lignin is less than about 3 mmol/g, and the total weight of the modified lignin and the first polyol is 100 parts by weight.

在本发明的一些实施例中,所述改性木质素可具有至少一封端官能基的木质素,且所述封端官能基为与所述木质素上羟基去氢所得的残基键结。其中,所述封端官能基(R1)为C1-4烷基、苯基、 其中R2及R3各自独立为C1-4烷基;以及,n为1、2、3或4。In some embodiments of the present invention, the modified lignin may have lignin with at least end-capped functional groups, and the end-capped functional groups are bonded to residues obtained by dehydrogenation of hydroxyl groups on the lignin . Wherein, the end capping functional group (R 1 ) is C 1-4 alkyl, phenyl, wherein R 2 and R 3 are each independently C 1-4 alkyl; and, n is 1, 2, 3, or 4.

在本发明的一些实施例中,所述C1-4烷基为直链或分支(linear or branched)链的烷基。举例来说,C1-4烷基为甲基(methyl)、乙基(ethyl)、丙基(propyl)、异丙基(isopropyl)、正丁基(n-butyl)、叔丁基(t-butyl)、仲丁基(sec-butyl)或异丁基(isobutyl)。In some embodiments of the present invention, the C 1-4 alkyl group is a linear or branched chain alkyl group. For example, C 1-4 alkyl is methyl (methyl), ethyl (ethyl), propyl (propyl), isopropyl (isopropyl), n-butyl (n-butyl), tert-butyl (t-butyl) -butyl), sec-butyl (sec-butyl) or isobutyl (isobutyl).

在本发明的一些实施例中,本发明所述所述改性木质素可具有式(I)所述结构In some embodiments of the present invention, the modified lignin of the present invention may have the structure of formula (I)

其中,L为去除i个羟基所留下的木质素残基;R1为C1-4烷基、苯基、其中R2及R3各自独立地为C1-4烷基;以及,n为1、2、3或4;3<i≤10(例如:3<i≤9、3<i≤7、3<i≤6、3<i≤5、3<i≤4.8、3<i≤4.6、3<i≤4.4、3<i≤4.2或3<i≤4.0)。Wherein, L is the lignin residue left by removing i hydroxyl groups; R 1 is C 1-4 alkyl, phenyl, wherein R 2 and R 3 are each independently C 1-4 alkyl; and, n is 1, 2, 3, or 4; 3<i≤10 (eg: 3<i≤9, 3<i≤7, 3 <i≤6, 3<i≤5, 3<i≤4.8, 3<i≤4.6, 3<i≤4.4, 3<i≤4.2 or 3<i≤4.0).

在本发明的一些实施例中,用来形成改性木质素的木质素为磺酸盐木质素、碱木质素或上述的组合。在本发明的一些实施例中,所述改性木质素的羟基值(OH value)为约2~2.9mmol/g,例如:2.1~2.8mmol/g、2.2~2.7mmol/g或2.3~2.6mmol/g。若改性木质素的羟基值(OH value)过高时,易导致PU交联失去热可塑特性;若改性木质素的羟基值(OHvalue)过低时,易导致分子量低物性差。In some embodiments of the present invention, the lignin used to form the modified lignin is sulfonate lignin, alkali lignin, or a combination thereof. In some embodiments of the present invention, the modified lignin has a hydroxyl value (OH value) of about 2-2.9 mmol/g, for example: 2.1-2.8 mmol/g, 2.2-2.7 mmol/g or 2.3-2.6 mmol/g. If the hydroxyl value (OH value) of the modified lignin is too high, it is easy to cause the PU crosslinking to lose its thermoplastic properties; if the hydroxyl value (OH value) of the modified lignin is too low, it is easy to lead to low molecular weight and poor physical properties.

在本发明的一些实施例中,所述第一多元醇为为聚合物多元醇。在本发明的一些实施例中,其中所述第一多元醇的数目平均分子量为500~100000,例如500~80000、1000~60000、2000~50000或5000~40000。In some embodiments of the present invention, the first polyol is a polymer polyol. In some embodiments of the present invention, the number average molecular weight of the first polyol is 500-100,000, such as 500-80,000, 1,000-60,000, 2,000-50,000 or 5,000-40,000.

在本发明的一些实施例中,所述第一多元醇为聚酯多元醇(polyester polyol)或聚醚多元醇(polyether polyol)。在本发明的一些实施例中,所述聚酯多元醇为聚(乙二醇己二酸酯)二醇(poly(ethylene adipate)diol)、聚(1,4-丁二醇己二酸酯)二醇(poly(1,4-butylene adipate)diol)、聚(乙二醇十二酸酯)二醇(poly(ethylene dodecanoate)diol)或聚(1,6-己二醇己二酸酯)二醇(poly(1,6-hexathyleneadipate)diol)。In some embodiments of the present invention, the first polyol is a polyester polyol or a polyether polyol. In some embodiments of the present invention, the polyester polyol is poly(ethylene adipate) diol, poly(1,4-butanediol adipate) ) diol (poly(1,4-butylene adipate)diol), poly(ethylene dodecanoate)diol or poly(1,6-hexanediol adipate) ) diol (poly(1,6-hexathyleneadipate)diol).

此外,在本发明的一些实施例中,所述聚醚多元醇为聚乙二醇(polyethyleneglycol,PEG)、聚丙二醇(polypropylene glycol,PPG)或聚四亚甲基醚二醇(polytetramethylene ether glycol,PTMEG)。In addition, in some embodiments of the present invention, the polyether polyol is polyethylene glycol (PEG), polypropylene glycol (PPG) or polytetramethylene ether glycol (polytetramethylene ether glycol, PTMEG).

在本发明的一些实施例中,本发明所述组合物还包含一第二多元醇。其中,所述第二多元醇与所述第一多元醇不同。In some embodiments of the present invention, the compositions of the present invention further comprise a second polyol. Wherein, the second polyol is different from the first polyol.

在本发明的一些实施例中,所述第二多元醇为聚酯多元醇、聚醚多元醇或C2-14的多元醇(polyol)。举例来说,所述第二多元醇为聚(乙二醇己二酸酯)二醇(poly(ethyleneadipate)diol)、聚(1,4-丁二醇己二酸酯)二醇(poly(1,4-butylene adipate)diol)、聚(乙二醇十二酸酯)二醇(poly(ethylene dodecanoate)diol)、聚(1,6-己二醇己二酸酯)二醇(poly(1,6-hexathyleneadipate)diol)、聚乙二醇(polyethylene glycol,PEG)、聚丙二醇(polypropylene glycol,PPG)、聚四亚甲基醚二醇(polytetramethylene etherglycol,PTMEG)、乙二醇(ethylene glycol)、1,3-丙二醇(1,3-propylene glycol)、丙三醇(glycerol)、1,4-丁二醇(1,4-butylene glycol)、1,5-戊二醇(1,5-pentylene glycol)、新戊二醇(neo-pentylene glycol)、1,6-己二醇(1,6-hexylene glycol)、1,7-庚二醇(1,7-heptylene glycol)、1,8-辛二醇(1,8-octylene glycol)、1,9-壬二醇(1,9-nonyleneglycol)、癸二醇(decylene glycol)、十一烷二醇(undecylene glycol)、十二烷二醇(dodecylene glycol)、十四烷二醇(tetradecylene glycol)、松香二醇(rosin-diol)、异山梨醇(isosorbide)或2,5-呋喃二醇(2,5-furandiol)。在本发明的一些实施例中,所述第二多元醇为聚酯多元醇或聚醚多元醇,且第二多元醇的数目平均分子量为500至100000,例如500~80000、1000~60000、2000~50000或5000~40000。In some embodiments of the present invention, the second polyol is a polyester polyol, a polyether polyol, or a C 2-14 polyol. For example, the second polyol is poly(ethyleneadipate)diol, poly(1,4-butanediol adipate)diol (1,4-butylene adipate)diol), poly(ethylene dodecanoate)diol, poly(1,6-hexanediol adipate)diol (poly(ethylene dodecanoate)diol) (1,6-hexathyleneadipate)diol), polyethylene glycol (PEG), polypropylene glycol (PPG), polytetramethylene ether glycol (PTMEG), ethylene glycol (ethylene glycol) 1,3-propylene glycol), 1,3-propylene glycol (1,3-propylene glycol), glycerol (glycerol), 1,4-butanediol (1,4-butylene glycol), 1,5-pentanediol (1, 5-pentylene glycol), neopentylene glycol (neo-pentylene glycol), 1,6-hexanediol (1,6-hexylene glycol), 1,7-heptylene glycol (1,7-heptylene glycol), 1 , 8-octylene glycol (1,8-octylene glycol), 1,9-nonylene glycol (1,9-nonylene glycol), decylene glycol (decylene glycol), undecane glycol (undecylene glycol), dodecylene glycol Dodecylene glycol, tetradecylene glycol, rosin-diol, isosorbide or 2,5-furandiol. In some embodiments of the present invention, the second polyol is a polyester polyol or a polyether polyol, and the number average molecular weight of the second polyol is 500-100,000, such as 500-80,000, 1,000-60,000 , 2000~50000 or 5000~40000.

在本发明的一些实施例中,所述第二多元醇与所述第一多元醇的重量比为0.1~0.5(例如:0.11、0.13、0.15、0.2、0.22、0.25、0.27或0.29),以同时提升本发明所述生物质热可塑性聚氨酯的机械强度、耐磨耗性、及耐水解性。In some embodiments of the present invention, the weight ratio of the second polyol to the first polyol is 0.1-0.5 (eg: 0.11, 0.13, 0.15, 0.2, 0.22, 0.25, 0.27 or 0.29) , so as to simultaneously improve the mechanical strength, abrasion resistance and hydrolysis resistance of the biomass thermoplastic polyurethane of the present invention.

在本发明的一些实施例中,所述第一多元醇为聚酯多元醇,所述第二多元醇为C2-14的多元醇(polyol);所述第一多元醇为聚酯多元醇,所述第二多元醇为聚醚多元醇;所述第一多元醇为聚醚多元醇,所述第二多元醇为C2-14的多元醇(polyol);或者,所述第一多元醇为聚醚多元醇,以及所述第二多元醇为聚酯多元醇。In some embodiments of the present invention, the first polyol is a polyester polyol, the second polyol is a C 2-14 polyol (polyol); the first polyol is a polyol an ester polyol, the second polyol is a polyether polyol; the first polyol is a polyether polyol, and the second polyol is a C 2-14 polyol; or , the first polyol is a polyether polyol, and the second polyol is a polyester polyol.

在本发明的一些实施例中,所述二异氰酸酯为二异氰酸六亚甲基酯(HexamethyleneDiisocyanate,HDI)、二异氰酸二苯甲烷(methylenediphenyldiisocyanate,MDI)、二异氰酸甲苯(toluene diisocyanate,TDI)、二异氰酸异佛尔酮(isophoronediisocyanate,IPDI)、1,5-萘基二异氰酸酯(1,5-naphthalenediisocyanate,NDI)、对-伸苯基二异氰酸酯(p-phenylene diisocyanate,PPDI)或上述的组合。In some embodiments of the present invention, the diisocyanate is hexamethylene diisocyanate (HexamethyleneDiisocyanate, HDI), methylenediphenyldiisocyanate (MDI), toluene diisocyanate (toluene diisocyanate) , TDI), isophorone diisocyanate (isophoronediisocyanate, IPDI), 1,5-naphthyl diisocyanate (1,5-naphthalenediisocyanate, NDI), p-phenylene diisocyanate (p-phenylene diisocyanate, PPDI) ) or a combination of the above.

在本发明的一些实施例中,所述组合物包含二种或二种以上的二异氰酸酯。In some embodiments of the present invention, the composition comprises two or more diisocyanates.

在本发明的一些实施例中,本发明所述改性木质素可以下述步骤制备。首先,将木质素对碱剂(alkali agent)反应,得到一混合物。接着,将封端剂(capping agent)加入所述混合物中,反应后得到所述改性木质素。In some embodiments of the present invention, the modified lignin of the present invention can be prepared by the following steps. First, lignin is reacted with an alkali agent to obtain a mixture. Next, a capping agent is added to the mixture, and the modified lignin is obtained after the reaction.

值得注意的是,本发明使用特定碱剂,可选择性拔除芳香羟基上的氢并保留脂族羟基(aliphatic hydroxyl)上OH的氢。因此,本发明所述改性木质素其芳香封端剂官能基(封端剂官能基取代芳香羟基上的氢)的数量大于脂族封端剂官能基(封端剂官能基取代脂族羟基上的氢)的数量。It is worth noting that the present invention uses a specific alkaline agent, which can selectively remove the hydrogen on the aromatic hydroxyl group and retain the hydrogen on the OH on the aliphatic hydroxyl group. Therefore, the modified lignin of the present invention has more aromatic end-capping agent functional groups (capping agent functional groups substituted for hydrogen on aromatic hydroxyl groups) than aliphatic end-capping agent functional groups (capping agent functional groups substituted for aliphatic hydroxyl groups) the amount of hydrogen on it).

在本发明的一些实施例中,所述碱剂(alkali agent)为氢氧化钠、氢氧化钾、碳酸铯、碳酸钾或上述的组合。在本发明的一些实施例中,所述封端剂为X-R1,其中X为为卤素,而R1为C1-4烷基、苯基、 其中R2及R3各自独立为C1-4烷基;以及,n为1、2、3或4。In some embodiments of the present invention, the alkali agent is sodium hydroxide, potassium hydroxide, cesium carbonate, potassium carbonate or a combination thereof. In some embodiments of the present invention, the capping agent is XR 1 , wherein X is halogen, and R 1 is C 1-4 alkyl, phenyl, wherein R 2 and R 3 are each independently C 1-4 alkyl; and, n is 1, 2, 3, or 4.

在本发明的一些实施例中,本发明所述生物质热可塑性聚氨酯的制备方式包含将上述组合物加热反应,并进行熟成。在本发明的一些实施例中,本发明所述组合物可还包含一0.01~5重量份的触媒,所述触媒为有机铋触媒、有机锡触媒或四级铵触媒,其中所述改性木质素与所述第一多元醇的总重为100重量份。In some embodiments of the present invention, the preparation method of the biomass thermoplastic polyurethane of the present invention comprises heating and reacting the above-mentioned composition, and aging. In some embodiments of the present invention, the composition of the present invention may further comprise 0.01-5 parts by weight of a catalyst, the catalyst is an organobismuth catalyst, an organotin catalyst or a quaternary ammonium catalyst, wherein the modified wood The total weight of the element and the first polyol is 100 parts by weight.

为了让本发明的上述和其他目的、特征、和优点能更明显易懂,下文特举数实施例,作详细说明如下:In order to make the above-mentioned and other purposes, features, and advantages of the present invention more obvious and easy to understand, the following specific examples are given and described in detail as follows:

改性木质素的制备Preparation of modified lignin

制备例1Preparation Example 1

将100重量份木质素(lignin,Mw:1000~1500,由稻壳萃取)加入一反应瓶中,并以丙酮溶解。充分搅拌后,将120重量份碳酸钾(potassium carbonate)于室温下加入所述反应瓶中。接着,搅拌30min后,在室温下加入140重量份的碘甲烷(methyl iodide)于所述反应瓶中,使得木质素中部分羟基转换成甲氧基。在反应72h后,加入大量水于所述反应瓶中使得固体析出。过滤及干燥后,得到改性木质素(1)。以核磁共振光谱计算出改性木质素(1)所残留的羟基,结果如表1所示。100 parts by weight of lignin (lignin, Mw: 1000-1500, extracted from rice husks) was added to a reaction flask and dissolved in acetone. After fully stirring, 120 parts by weight of potassium carbonate (potassium carbonate) was added to the reaction flask at room temperature. Next, after stirring for 30 min, 140 parts by weight of methyl iodide was added to the reaction flask at room temperature, so that some of the hydroxyl groups in the lignin were converted into methoxy groups. After 72 hours of reaction, a large amount of water was added to the reaction flask to cause solid precipitation. After filtration and drying, modified lignin (1) was obtained. The hydroxyl groups remaining in the modified lignin (1) were calculated by nuclear magnetic resonance spectroscopy, and the results are shown in Table 1.

制备例2Preparation Example 2

依据制备例1所述改性木质素(1)的制备方法,除了将反应时间从72h缩短至24h,得到改性木质素(2)。以核磁共振光谱计算出改性木质素(2)所残留的羟基,结果如表1所示。According to the preparation method of the modified lignin (1) described in Preparation Example 1, except that the reaction time was shortened from 72h to 24h, the modified lignin (2) was obtained. The hydroxyl groups remaining in the modified lignin (2) were calculated by nuclear magnetic resonance spectroscopy, and the results are shown in Table 1.

表1Table 1

脂族羟基aliphatic hydroxyl 芳香羟基Aromatic hydroxyl 羟基值总合Total hydroxyl value 木质素lignin 4.04.0 2.02.0 6.0mmol/g6.0mmol/g 改性木质素(1)Modified Lignin(1) 2.02.0 0.50.5 2.5mmol/g2.5mmol/g 改性木质素(2)Modified Lignin(2) 2.42.4 0.90.9 3.3mmol/g3.3mmol/g

生物质热可塑性聚氨酯Biomass thermoplastic polyurethane

实施例1Example 1

将10重量份改性木质素(1)及90重量份聚四亚甲基醚二醇(polytetramethyleneether glycol,PTMEG)(由Aldrich制售、数目平均分子量为1000~2000)置入一反应瓶中。在升温至80℃后,真空除水一h。在将反应瓶通入氩气后,将13.5重量份1,4-丁二醇(1,4-butanediol)及1重量份有机铋催化剂(由King Industries,Inc.制造及贩卖、商品编号为K348)加入至反应瓶。充分搅拌后,将46.68重量份二异氰酸异佛尔酮(isophoronediisocyanate、由Bayer制售)加入至反应瓶,并持续搅拌。当反应瓶温度上升至90℃-100℃时,停止搅拌,并迅速将所得物倒入模具中,并将模具置于80℃烘箱内。烘烤16h后,得到生物质热可塑性聚氨酯(1)。10 parts by weight of modified lignin (1) and 90 parts by weight of polytetramethylene ether glycol (PTMEG) (manufactured and sold by Aldrich, number average molecular weight of 1000-2000) were put into a reaction flask. After warming to 80°C, water was removed in vacuo for one hour. After the reaction flask was filled with argon, 13.5 parts by weight of 1,4-butanediol (1,4-butanediol) and 1 part by weight of an organic bismuth catalyst (manufactured and sold by King Industries, Inc., product number K348 ) was added to the reaction flask. After stirring sufficiently, 46.68 parts by weight of isophorone diisocyanate (manufactured and sold by Bayer) was added to the reaction flask, and stirring was continued. When the temperature of the reaction flask rose to 90°C-100°C, the stirring was stopped, and the resultant was quickly poured into a mold, and the mold was placed in an 80°C oven. After baking for 16 hours, biomass thermoplastic polyurethane (1) was obtained.

接着,将生物质热可塑性聚氨酯(1)溶于二甲基乙酰胺(dimethyl acetamide),并利用低温烘箱烘烤成膜(烘烤温度为60-80℃)。裁切成试片后,以万能拉力机根据ASTMD412进行100%模数(100%modulus)、拉伸强度(tensile strength)及拉伸伸长率(tensile elongation)的测量,结果如表2所示。Next, the biomass thermoplastic polyurethane (1) is dissolved in dimethyl acetamide, and is baked in a low-temperature oven to form a film (baking temperature is 60-80° C.). After cutting into test pieces, the 100% modulus (100% modulus), tensile strength (tensile strength) and tensile elongation (tensile elongation) were measured with a universal tensile machine according to ASTMD412. The results are shown in Table 2. .

实施例2Example 2

依实施例1所述生物质热可塑性聚氨酯(1)的制备方式进行,除了将改性木质素(1)由10重量份增加至20重量份、并将聚四亚甲基醚二醇由90重量份降低至80重量份,得到生物质热可塑性聚氨酯(2)。接着,将生物质热可塑性聚氨酯(2)溶于二甲基乙酰胺(dimethyl acetamide),并利用低温烘箱烘烤成膜(烘烤温度为60-80℃)。裁切成试片后,以万能拉力机根据ASTM D412进行100%模数(100%modulus)、拉伸强度(tensilestrength)及拉伸伸长率(tensile elongation)的测量,结果如表2所示。The preparation method of biomass thermoplastic polyurethane (1) described in Example 1 was carried out, except that the modified lignin (1) was increased from 10 parts by weight to 20 parts by weight, and the polytetramethylene ether glycol was changed from 90 parts by weight to 20 parts by weight. The parts by weight were reduced to 80 parts by weight to obtain biomass thermoplastic polyurethane (2). Next, the biomass thermoplastic polyurethane (2) is dissolved in dimethyl acetamide, and is baked in a low-temperature oven to form a film (baking temperature is 60-80° C.). After cutting into test pieces, the 100% modulus (100% modulus), tensile strength (tensilestrength) and tensile elongation (tensile elongation) were measured with a universal tensile machine according to ASTM D412. The results are shown in Table 2. .

比较例1Comparative Example 1

将100重量份聚四亚甲基醚二醇(PTMEG)(由Aldrich制造贩卖、数目平均分子量为1000-2000)置入一反应瓶中。在升温至80℃后,真空除水1h。在将反应瓶通入氩气后,将13.5重量份1,4-丁二醇(1,4-butanediol)及1重量份有机铋催化剂(由King Industries,Inc.制造及贩卖、商品编号为K348)加入至反应瓶。充分搅拌后,将46.68重量份二异氰酸异佛尔酮(isophoronediisocyanate、由Bayer制造及贩卖)加入至反应瓶,并持续搅拌。当反应瓶温度上升至90℃-100℃时,停止搅拌,并迅速将所得物倒入模具中,并将模具置于80℃烘箱内。烘烤16h后,得到聚氨酯(1)。接着,将聚氨酯(1)溶于二甲基乙酰胺(dimethylacetamide),并利用低温烘箱烘烤成膜(烘烤温度为60-80℃)。裁切成试片后,以万能拉力机根据ASTM D412进行100%模数(100%modulus)、拉伸强度(tensile strength)及拉伸伸长率(tensile elongation)的测量,结果如表2所示。100 parts by weight of polytetramethylene ether glycol (PTMEG) (manufactured and sold by Aldrich, number average molecular weight of 1000-2000) was placed in a reaction flask. After warming to 80°C, water was removed in vacuo for 1 h. After the reaction flask was filled with argon, 13.5 parts by weight of 1,4-butanediol (1,4-butanediol) and 1 part by weight of an organic bismuth catalyst (manufactured and sold by King Industries, Inc., product number K348 ) was added to the reaction flask. After fully stirring, 46.68 parts by weight of isophorone diisocyanate (isophorone diisocyanate, manufactured and sold by Bayer) was added to the reaction flask, and stirring was continued. When the temperature of the reaction flask rose to 90°C-100°C, the stirring was stopped, and the resultant was quickly poured into a mold, and the mold was placed in an 80°C oven. After baking for 16 h, polyurethane (1) was obtained. Next, the polyurethane (1) is dissolved in dimethylacetamide, and is baked in a low-temperature oven to form a film (baking temperature is 60-80° C.). After cutting into test pieces, the 100% modulus (100% modulus), tensile strength (tensile strength) and tensile elongation (tensile elongation) were measured with a universal tensile machine according to ASTM D412. The results are shown in Table 2. Show.

比较例2Comparative Example 2

依实施例2所述生物质热可塑性聚氨酯(2)的制备方式进行,除了将改性木质素(1)以改性木质素(2)取代。由于所得产物在熟成过程(90℃-100℃)即产生交联硬化,不具热可塑性,无法成膜。The preparation method of the biomass thermoplastic polyurethane (2) described in Example 2 was carried out, except that the modified lignin (1) was replaced by the modified lignin (2). Since the obtained product is cross-linked and hardened during the aging process (90°C-100°C), it has no thermoplasticity and cannot form a film.

比较例3:Comparative Example 3:

依实施例2所述生物质热可塑性聚氨酯(2)的制备方式进行,除了将改性木质素(1)以未改性木质素(lignin,Mw:1000~1500,由稻壳萃取)(残留的羟基值为6.0mmol/g)取代。由于所得产物在熟成过程(90℃-100℃)即产生交联硬化,不具热可塑性,无法成膜。The preparation method of biomass thermoplastic polyurethane (2) described in Example 2 was carried out, except that the modified lignin (1) was changed to unmodified lignin (lignin, Mw: 1000-1500, extracted from rice husk) (residual The hydroxyl value of 6.0 mmol/g) was substituted. Since the obtained product is cross-linked and hardened during the aging process (90°C-100°C), it has no thermoplasticity and cannot form a film.

表2Table 2

由表2可知,与比较例1相比,添加改性木质素(1)(残留的羟基值为2.5mmol/g)可大幅提升所得生物质热可塑性聚氨酯的100%模数及抗拉强度。虽然,添加改性木质素(1)导致所得生物质热可塑性聚氨酯的拉伸伸长率下降,但仍维持在700%以上。It can be seen from Table 2 that compared with Comparative Example 1, the addition of modified lignin (1) (residual hydroxyl value of 2.5 mmol/g) can greatly improve the 100% modulus and tensile strength of the obtained biomass thermoplastic polyurethane. Although the addition of modified lignin (1) resulted in a decrease in the tensile elongation of the resulting biomass thermoplastic polyurethane, it remained above 700%.

抗磨耗测试Wear resistance test

将比较例1所得的聚氨酯(1)及本发明实施例2所得的生物质热可塑性聚氨酯(2)依据DIN 53516测量磨耗量(abrasion loss),结果如表3所示。The polyurethane (1) obtained in Comparative Example 1 and the biomass thermoplastic polyurethane (2) obtained in Example 2 of the present invention were measured for abrasion loss according to DIN 53516, and the results are shown in Table 3.

表3table 3

磨耗量(mm<sup>3</sup>)Wear (mm<sup>3</sup>) 聚氨酯(1)Polyurethane (1) 86.186.1 生物质热可塑性聚氨酯(2)Biomass Thermoplastic Polyurethane(2) 76.676.6

由表3可得知,通过添加本发明所述改性木质素,确实可提升所得的生物质热可塑性聚氨酯的耐磨耗性。It can be seen from Table 3 that by adding the modified lignin of the present invention, the abrasion resistance of the obtained biomass thermoplastic polyurethane can be indeed improved.

耐水解测试Hydrolysis resistance test

将本发明实施例2所得的生物质热可塑性聚氨酯(2)在80℃及95%RH进行35天耐水解测试(依据ASTM D882标准测试法),并测量生物质热可塑性聚氨酯(2)在进行耐水解测试前及后的100%模数变化率,结果如表4所示。100%模数变化率的计算方式如下:The biomass thermoplastic polyurethane (2) obtained in Example 2 of the present invention was subjected to a 35-day hydrolysis resistance test (according to the ASTM D882 standard test method) at 80° C. and 95% RH, and the biomass thermoplastic polyurethane (2) was measured during the process. The 100% modulus change rate before and after the hydrolysis resistance test, the results are shown in Table 4. The 100% modulo rate of change is calculated as follows:

表4Table 4

100%模数变化率100% Modulus rate of change 生物质热可塑性聚氨酯(2)Biomass Thermoplastic Polyurethane(2) ~0%~0%

由表4可得知,通过添加本发明所述改性木质素,本发明所述的生物质热可塑性聚氨酯其具有良好的耐候性,即使在高温高湿环境下其机械性质仍不会劣化。It can be seen from Table 4 that by adding the modified lignin of the present invention, the biomass thermoplastic polyurethane of the present invention has good weather resistance, and its mechanical properties will not deteriorate even in a high temperature and high humidity environment.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above-mentioned specific embodiments are only specific embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principle of the present invention, any modifications, equivalent replacements, improvements, etc. made should be included within the protection scope of the present invention.

Claims (14)

1.一种生物质热可塑性聚氨酯,由一组合物反应所形成,所述组合物包含:1. A biomass thermoplastic polyurethane formed by the reaction of a composition comprising: 1~50重量份的改性木质素,其中所述改性木质素的羟基值(OH value)小于3mmol/g;1-50 parts by weight of modified lignin, wherein the modified lignin has a hydroxyl value (OH value) of less than 3 mmol/g; 50~99重量份的第一多元醇,其中所述改性木质素与所述第一多元醇的总重为100重量份;以及50-99 parts by weight of the first polyol, wherein the total weight of the modified lignin and the first polyol is 100 parts by weight; and 40~60重量份二异氰酸酯。40-60 parts by weight of diisocyanate. 2.根据权利要求1所述的生物质热可塑性聚氨酯,其中,所述改性木质素为具有至少一封端官能基(R1)的木质素,且所述封端官能基(R1)与所述木质素上羟基去氢所得的残基键结,其中所述封端官能基(R1)为C1-4烷基、苯基、其中R2及R3各自独立为C1-4烷基;其中,n为1、2、3或4。2 . The biomass thermoplastic polyurethane according to claim 1 , wherein the modified lignin is lignin having at least a capping functional group (R1), and the capping functional group (R1) is a The residues obtained by dehydrogenation of hydroxyl groups on the lignin are bonded, wherein the end capping functional group (R 1 ) is C 1-4 alkyl, phenyl, wherein R 2 and R 3 are each independently C 1-4 alkyl; wherein, n is 1, 2, 3 or 4. 3.根据权利要求2所述的生物质热可塑性聚氨酯,其中,所述木质素为磺酸盐木质素、碱木质素或上述的组合。3. The biomass thermoplastic polyurethane according to claim 2, wherein the lignin is sulfonate lignin, alkali lignin or a combination thereof. 4.根据权利要求1所述的生物质热可塑性聚氨酯,其中,所述改性木质素的羟基值(OHvalue)为2~2.9mmol/g。4 . The biomass thermoplastic polyurethane according to claim 1 , wherein the modified lignin has a hydroxyl value (OH value) of 2 to 2.9 mmol/g. 5 . 5.根据权利要求1所述的生物质热可塑性聚氨酯,其中,所述第一多元醇为聚合物多元醇。5. The biomass thermoplastic polyurethane of claim 1, wherein the first polyol is a polymer polyol. 6.根据权利要求5所述的生物质热可塑性聚氨酯,其中,所述第一多元醇为聚酯多元醇(polyester polyol)或聚醚多元醇(polyether polyol)。6. The biomass thermoplastic polyurethane of claim 5, wherein the first polyol is a polyester polyol or a polyether polyol. 7.根据权利要求1所述的生物质热可塑性聚氨酯,其中,所述组合物还包含一第二多元醇,其中所述第二多元醇与所述第一多元醇不同。7. The biomass thermoplastic polyurethane of claim 1, wherein the composition further comprises a second polyol, wherein the second polyol is different from the first polyol. 8.根据权利要求7所述的生物质热可塑性聚氨酯,其中,所述第二多元醇为聚酯多元醇、聚醚多元醇或C2-14的多元醇(polyol)。8. The biomass thermoplastic polyurethane of claim 7, wherein the second polyol is a polyester polyol, a polyether polyol, or a C2-14 polyol. 9.根据权利要求7所述的生物质热可塑性聚氨酯,其中,所述第二多元醇与所述第一多元醇的重量比为0.1~0.5。9 . The biomass thermoplastic polyurethane according to claim 7 , wherein the weight ratio of the second polyol to the first polyol is 0.1˜0.5. 10 . 10.根据权利要求7所述的生物质热可塑性聚氨酯,其中,所述第一多元醇为聚酯多元醇,以及所述第二多元醇为C2-14的多元醇(polyol)。10. The biomass thermoplastic polyurethane of claim 7, wherein the first polyol is a polyester polyol, and the second polyol is a C2-14 polyol. 11.根据权利要求7所述的生物质热可塑性聚氨酯,其中,所述第一多元醇为聚酯多元醇,所述第二多元醇为聚醚多元醇。11. The biomass thermoplastic polyurethane of claim 7, wherein the first polyol is a polyester polyol and the second polyol is a polyether polyol. 12.根据权利要求7所述的生物质热可塑性聚氨酯,其中,所述第一多元醇为聚醚多元醇以及所述第二多元醇为C2-14的多元醇(polyol)。12. The biomass thermoplastic polyurethane of claim 7, wherein the first polyol is a polyether polyol and the second polyol is a C2-14 polyol. 13.根据权利要求7所述的生物质热可塑性聚氨酯,其中,所述第一多元醇为聚醚多元醇,以及所述第二多元醇为聚酯多元醇。13. The biomass thermoplastic polyurethane of claim 7, wherein the first polyol is a polyether polyol and the second polyol is a polyester polyol. 14.根据权利要求1所述的生物质热可塑性聚氨酯,其中,所述二异氰酸酯为二异氰酸六亚甲基酯(HexamethyleneDiisocyanate,HDI)、二异氰酸二苯甲烷(methylenediphenyldiisocyanate,MDI)、二异氰酸甲苯(toluene diisocyanate,TDI)、二异氰酸异佛尔酮(isophoronediisocyanate,IPDI)、1,5-萘基二异氰酸酯(1,5-naphthalenediisocyanate,NDI)、对-伸苯基二异氰酸酯(p-phenylene diisocyanate,PPDI)或上述的组合。14. The biomass thermoplastic polyurethane according to claim 1, wherein the diisocyanate is hexamethylene diisocyanate (HexamethyleneDiisocyanate, HDI), methylenediphenyldiisocyanate (MDI), toluene diisocyanate (TDI), isophorone diisocyanate (IPDI), 1,5-naphthalenediisocyanate (NDI), p-phenylene diisocyanate Isocyanate (p-phenylene diisocyanate, PPDI) or a combination of the above.
CN201811025122.0A 2017-12-28 2018-09-04 Biomass thermoplastic polyurethane Pending CN109970939A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW106146226 2017-12-28
TW106146226A TWI636078B (en) 2017-12-28 2017-12-28 Biomass thermoplastic polyurethane
US15/857,208 US10414852B2 (en) 2017-12-28 2017-12-28 Biomass thermoplastic polyurethane
US15/857,208 2017-12-28

Publications (1)

Publication Number Publication Date
CN109970939A true CN109970939A (en) 2019-07-05

Family

ID=67076022

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811025122.0A Pending CN109970939A (en) 2017-12-28 2018-09-04 Biomass thermoplastic polyurethane

Country Status (1)

Country Link
CN (1) CN109970939A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110790889A (en) * 2019-11-20 2020-02-14 苏州市雄林新材料科技有限公司 Polarity-controllable TPU film and preparation method thereof
CN114573784A (en) * 2022-03-14 2022-06-03 西安交通大学 Lignin-based thermoplastic polyurethane elastomer material and preparation method thereof
CN114685758A (en) * 2020-12-28 2022-07-01 财团法人工业技术研究院 Biomass polyol composition, foaming composition and foaming material
US20220371991A1 (en) * 2021-05-04 2022-11-24 Sohi PATEL Synthesis of a polyurethane foam incorporating industrial byproducts or waste
WO2023198656A1 (en) * 2022-04-11 2023-10-19 Basf Se Lignin based tpu composition, methods of preparing thereof and uses thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101696261A (en) * 2009-10-29 2010-04-21 华南理工大学 Lignin polyurethane and preparation method thereof
CN103183801A (en) * 2013-03-20 2013-07-03 中国林业科学研究院林产化学工业研究所 Method for preparing polyurethane film by CIMV wheat straw lignin
US20130255216A1 (en) * 2012-02-21 2013-10-03 North Carolina State University High value lignin derivatives, polymers, and copolymers and use thereof in thermoplastic, thermoset, composite, and carbon fiber applications
WO2014021887A1 (en) * 2012-08-01 2014-02-06 Empire Technology Development Llc Water based lignin epoxy resins, methods of using and making the same
EP2860209A1 (en) * 2013-10-14 2015-04-15 Solvay SA Process for the preparation of biopolymer compositions
CN104744659A (en) * 2013-12-27 2015-07-01 财团法人工业技术研究院 Biomass polyol composition and biomass polyurethane foaming material
CN105622957A (en) * 2014-11-05 2016-06-01 中国石油化工集团公司 Lignin polyether polyol preparation method
US20170253689A1 (en) * 2014-11-25 2017-09-07 Cj Cheiljedang Corporation Rigid polyurethane foam and preparation method thereof
CN108559046A (en) * 2018-01-09 2018-09-21 长春工业大学 A kind of ozonisation modified lignin resin polyurethane and preparation method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101696261A (en) * 2009-10-29 2010-04-21 华南理工大学 Lignin polyurethane and preparation method thereof
US20130255216A1 (en) * 2012-02-21 2013-10-03 North Carolina State University High value lignin derivatives, polymers, and copolymers and use thereof in thermoplastic, thermoset, composite, and carbon fiber applications
WO2014021887A1 (en) * 2012-08-01 2014-02-06 Empire Technology Development Llc Water based lignin epoxy resins, methods of using and making the same
CN103183801A (en) * 2013-03-20 2013-07-03 中国林业科学研究院林产化学工业研究所 Method for preparing polyurethane film by CIMV wheat straw lignin
EP2860209A1 (en) * 2013-10-14 2015-04-15 Solvay SA Process for the preparation of biopolymer compositions
CN104744659A (en) * 2013-12-27 2015-07-01 财团法人工业技术研究院 Biomass polyol composition and biomass polyurethane foaming material
CN105622957A (en) * 2014-11-05 2016-06-01 中国石油化工集团公司 Lignin polyether polyol preparation method
US20170253689A1 (en) * 2014-11-25 2017-09-07 Cj Cheiljedang Corporation Rigid polyurethane foam and preparation method thereof
CN108559046A (en) * 2018-01-09 2018-09-21 长春工业大学 A kind of ozonisation modified lignin resin polyurethane and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HEONYOUNG JEONG等: "Preparation and Characterization of Thermoplastic Polyurethanes Using Partially Acetylated Kraft Lignin", 《FIBERS AND POLYMERS》 *
刘全校: "木素型聚氨酯的合成与性能研究", 《中国塑料》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110790889A (en) * 2019-11-20 2020-02-14 苏州市雄林新材料科技有限公司 Polarity-controllable TPU film and preparation method thereof
CN114685758A (en) * 2020-12-28 2022-07-01 财团法人工业技术研究院 Biomass polyol composition, foaming composition and foaming material
US20220371991A1 (en) * 2021-05-04 2022-11-24 Sohi PATEL Synthesis of a polyurethane foam incorporating industrial byproducts or waste
CN114573784A (en) * 2022-03-14 2022-06-03 西安交通大学 Lignin-based thermoplastic polyurethane elastomer material and preparation method thereof
WO2023198656A1 (en) * 2022-04-11 2023-10-19 Basf Se Lignin based tpu composition, methods of preparing thereof and uses thereof

Similar Documents

Publication Publication Date Title
CN109970939A (en) Biomass thermoplastic polyurethane
US10414852B2 (en) Biomass thermoplastic polyurethane
JP7306985B2 (en) polysaccharide-containing polyurethane polymer
JP5684227B2 (en) Thermoplastic polyurethane with reduced tendency to bloom
CN104448197B (en) The synthetic method of the Heat-resistant Polyurethane Elastomers
CN102181136A (en) Polyether polyurethane elastomer toughened polylactic acid alloy and preparation method thereof
TW201307416A (en) Thermoplastic polyurethane with reduced tendency to bloom from a bio-based glycol
CN110603281B (en) Preparation method of biological polyether polyol, biological polyether polyol and biological polyurethane resin
CN114269803B (en) One-part polyurethane prepolymer composition
CN112126036A (en) Disulfide bond-based biodegradable cross-linked self-repairing polyurethane and preparation method thereof
JP2020512430A (en) A process for producing polyurethanes exhibiting low blooming effect and good low temperature flexibility based on urethane-containing polymeric hydroxyl compounds.
JPS588414B2 (en) One-shot manufacturing method for photo-stable non-foamed polyurethane
JP2007217678A (en) Thermoplastic polyurethane resin composition and moisture-permeable film
KR101313713B1 (en) compositions of polyurethane resin has anti-hydrolysis property, Manufacturing method of polyurethane resin using the same and polyurethane adhesive with polyurethane resin
TWI636078B (en) Biomass thermoplastic polyurethane
CN110845838A (en) Polycarbonate type polyurethane film and its preparation
CN115819712B (en) Thermoplastic polyurethane elastomer with low dielectric property, preparation method and application thereof
Moon et al. Effect of chain extenders on polyurethanes containing both poly (butylene succinate) and poly (ethylene glycol) as soft segments
JPWO2020045325A1 (en) Polyrotaxane, a thermosetting composition having the polyrotaxane, and a thermosetting crosslinked product, and a method for producing polyrotaxane and a method for producing a thermosetting crosslinked product.
CN110951064B (en) Phthalocyanine metal salt modified polyurethane elastomer and preparation method thereof
CN115160534A (en) Aqueous polyurethane
CN113929861B (en) Heat-insulating transparent low-hardness polyurethane elastomer composition and preparation method thereof
CN110951071B (en) Phthalocyanine metal salt modified polyol and preparation method and application thereof
JP2023076216A (en) Thermoplastic resin composition
JPH0971627A (en) Polyurethane foam

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190705