TWI603443B - Heat dissipation device - Google Patents
Heat dissipation device Download PDFInfo
- Publication number
- TWI603443B TWI603443B TW105131589A TW105131589A TWI603443B TW I603443 B TWI603443 B TW I603443B TW 105131589 A TW105131589 A TW 105131589A TW 105131589 A TW105131589 A TW 105131589A TW I603443 B TWI603443 B TW I603443B
- Authority
- TW
- Taiwan
- Prior art keywords
- heat
- thermal contact
- contact portion
- fins
- groove
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
- H05K7/20409—Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Description
本發明係關於一種散熱裝置,特別是一種鰭片具凹槽的散熱裝置。The invention relates to a heat dissipating device, in particular to a heat dissipating device with fins and grooves.
隨著電子領域之技術不斷演進,所生產出之電子元件的效能也不斷提升。然而,一般來說電子元件的效能提升,其所產生的熱量將相應增加。這些熱量不斷累積於電子元件上而導致電子元件本身的溫度升高。若無法有效將熱量自電子元件排除,讓電子元件的溫度下降,則將會使電子元件發生當機,甚或燒毀。因此,現在電子業普遍上會面臨到的問題是如何在效能提升的同時有效地排除熱量。As the technology in the electronics field continues to evolve, the performance of the electronic components produced continues to increase. However, in general, the performance of electronic components is increased, and the amount of heat generated by them will increase accordingly. This heat is constantly accumulated on the electronic components, causing the temperature of the electronic components themselves to rise. If the heat cannot be effectively removed from the electronic components and the temperature of the electronic components is lowered, the electronic components will be destroyed or even burned. Therefore, the problem that the electronics industry now generally faces is how to effectively eliminate heat while improving efficiency.
一般來說,業界係透過液冷式散熱裝置及氣冷式散熱裝置來排除電子元件所產生之熱量。液冷式散熱裝置之散熱原理係指利用壓縮機或幫浦驅動冷卻管內之冷卻流體與電子元件進行熱交換以排除電子元件之熱量。氣冷式散熱裝置之散熱原理係指利用風扇導引冷空氣流經熱接觸於電子元件上的散熱鰭片,以對散熱鰭片進行散熱。與液冷式散熱裝置相比,由於氣冷式散熱裝置無需裝設壓縮機、幫浦及冷卻流體而具有成本上之優勢,因此業界普遍利用氣冷式散熱裝置來排除電子元件的熱量。In general, the industry uses liquid-cooled heat sinks and air-cooled heat sinks to eliminate the heat generated by electronic components. The heat dissipation principle of the liquid-cooled heat sink means that the cooling fluid in the cooling pipe is driven by the compressor or the pump to exchange heat with the electronic components to eliminate the heat of the electronic components. The heat dissipation principle of the air-cooled heat sink refers to the use of a fan to guide the cold air through the heat-dissipating fins that are in thermal contact with the electronic components to dissipate the heat-dissipating fins. Compared with liquid-cooled heat sinks, air-cooled heat sinks are cost-effective without the need for compressors, pumps, and cooling fluids. Therefore, air-cooled heat sinks are commonly used in the industry to remove heat from electronic components.
氣冷式散熱裝置通常為一個金屬底板上延伸出多個金屬鰭片,以增大散熱表面積。熱源的熱量先透過金屬底板傳導到金屬鰭片,再透過金屬鰭片把熱量散到空氣中帶走。由於電子元件的所有熱量皆由金屬底板傳導到金屬鰭片上,因此金屬鰭片的散熱效果受限制於金屬底板的傳熱效果。Air-cooled heat sinks typically have a plurality of metal fins extending over a metal base plate to increase the heat dissipation surface area. The heat of the heat source is first conducted through the metal base plate to the metal fins, and then the heat is dissipated into the air through the metal fins. Since all the heat of the electronic component is conducted from the metal substrate to the metal fin, the heat dissipation effect of the metal fin is limited to the heat transfer effect of the metal substrate.
本發明在於提供一種散熱裝置,藉以解決先前技術中金屬鰭片的散熱效果受限制於金屬底板的傳熱效果的問題。The present invention provides a heat dissipating device for solving the problem that the heat dissipation effect of the metal fin in the prior art is limited to the heat transfer effect of the metal base plate.
本發明之一實施例所揭露之散熱裝置包含一導熱塊及多個第一鰭片。導熱塊具有一第一熱接觸部及相對的一第二熱接觸部與一第三熱接觸部。第二熱接觸部與第三熱接觸部分別連接於第一熱接觸部並呈相對設置,且第二熱接觸部及第三熱接觸部分別和第一熱接觸部所夾設的一第一夾角與一第二夾角皆為鈍角。這些第一鰭片各具有一凹槽及形成凹槽的一槽底部、一第一槽側面及一第二槽側面。第一槽側面與第二槽側面分別連接於槽底部並呈相對設置。導熱塊穿過各凹槽,且這些槽底部、這些第一槽側面及這些第二槽側面分別熱接觸於第一熱接觸部、第二熱接觸部及第三熱接觸部。The heat dissipation device disclosed in one embodiment of the present invention includes a heat conducting block and a plurality of first fins. The heat conducting block has a first thermal contact portion and an opposite second thermal contact portion and a third thermal contact portion. The second thermal contact portion and the third thermal contact portion are respectively connected to the first thermal contact portion and disposed opposite to each other, and the first thermal contact portion and the third thermal contact portion are respectively disposed first with the first thermal contact portion The angle between the angle and the second angle is an obtuse angle. Each of the first fins has a groove and a groove bottom forming a groove, a first groove side and a second groove side. The first groove side surface and the second groove side surface are respectively connected to the bottom of the groove and are oppositely disposed. The heat conducting block passes through the grooves, and the bottoms of the grooves, the first groove side surfaces and the second groove side surfaces are in thermal contact with the first thermal contact portion, the second thermal contact portion and the third thermal contact portion, respectively.
根據上述實施例之散熱裝置,透過導熱塊穿過第一鰭片,使得熱源所發出的熱量除了透過導熱基板橫向傳遞至第一鰭片之兩側外,更透過導熱塊直向傳遞至第一鰭片較遠離導熱基板之一側。因此,熱源所發出的熱量能較快速地傳至第一鰭片之各角落,以提升散熱裝置的散熱速度。According to the heat dissipating device of the above embodiment, the heat radiating block passes through the first fin, so that the heat generated by the heat source is transmitted to the first side of the first fin through the heat conducting substrate, and is directly transmitted to the first through the heat conducting block. The fins are farther away from one side of the thermally conductive substrate. Therefore, the heat generated by the heat source can be transmitted to the corners of the first fin faster to improve the heat dissipation speed of the heat sink.
此外,透過傾斜之第二熱接觸部與第三熱接觸部的導引而更快速地往第一鰭片之兩側流。如此一來,散熱氣流能較順暢地自氣流道之上緣流入,以及自氣流道之左右兩側流出。也就是說,散熱氣流較不易受到導熱基板回彈的氣流干擾而降低散熱氣流的流動順暢度。如此一來,將可進一步地提升散熱裝置的散熱速度。In addition, the second heat contact portion and the third heat contact portion are guided to flow toward the sides of the first fin more quickly. In this way, the heat-dissipating airflow can smoothly flow from the upper edge of the airflow path and flow out from the left and right sides of the airflow path. That is to say, the heat dissipation airflow is less susceptible to the airflow rebounded by the thermally conductive substrate, thereby reducing the flow smoothness of the heat dissipation airflow. In this way, the heat dissipation speed of the heat sink can be further improved.
以上關於本發明內容的說明及以下實施方式的說明係用以示範與解釋本發明的原理,並且提供本發明的專利申請範圍更進一步的解釋。The above description of the present invention and the following description of the embodiments are intended to illustrate and explain the principles of the invention, and to provide a further explanation of the scope of the invention.
請參閱圖1至圖4。圖1為根據本發明第一實施例之散熱裝置的立體示意圖。圖2為圖1之散熱裝置移除風扇的分解示意圖。圖3為圖2之側視示意圖。圖4為圖2之剖面示意圖。Please refer to Figure 1 to Figure 4. 1 is a perspective view of a heat sink according to a first embodiment of the present invention. 2 is an exploded perspective view of the heat sink removing fan of FIG. 1. Figure 3 is a side elevational view of Figure 2. Figure 4 is a schematic cross-sectional view of Figure 2.
如圖1與圖2所示,本實施例之散熱裝置10包含一導熱基板100、一導熱塊200、多個第一鰭片300、多個第二鰭片400、多個熱管500及多個風扇600。As shown in FIG. 1 and FIG. 2 , the heat dissipation device 10 of the present embodiment includes a heat conductive substrate 100 , a heat conducting block 200 , a plurality of first fins 300 , a plurality of second fins 400 , a plurality of heat pipes 500 , and a plurality of Fan 600.
如圖2與圖4所示,導熱基板100的材質例如為金、銀、銅、鋁等導熱係數高的金屬。導熱塊200的材質例如為金、銀、銅、鋁等導熱係數高的金屬。導熱塊200具有一第一熱接觸部210及相對的一第二熱接觸部220與一第三熱接觸部230。在本實施例中,第一熱接觸部210為面狀結構,第二熱接觸部220與第三熱接觸部230分別連接於第一熱接觸部210的相對兩側,且第二熱接觸部220及第三熱接觸部230分別和第一熱接觸部210所夾設的第一夾角θ1與第二夾角θ2皆為鈍角,使第二熱接觸部220與第三熱接觸部230、第一熱接觸部210及導熱基板100形成截面類似梯形的結構。在本實施例中,二夾角θ1、θ2的角度為相等,但並不以此為限,在其他實施例中,二夾角θ1、θ2的角度也可以為相異。As shown in FIG. 2 and FIG. 4, the material of the heat conductive substrate 100 is, for example, a metal having a high thermal conductivity such as gold, silver, copper or aluminum. The material of the heat transfer block 200 is, for example, a metal having a high thermal conductivity such as gold, silver, copper or aluminum. The heat conducting block 200 has a first thermal contact portion 210 and an opposite second thermal contact portion 220 and a third thermal contact portion 230. In this embodiment, the first thermal contact portion 210 is a planar structure, and the second thermal contact portion 220 and the third thermal contact portion 230 are respectively connected to opposite sides of the first thermal contact portion 210, and the second thermal contact portion is The first angle θ1 and the second angle θ2 of the second thermal contact portion 230 and the first thermal contact portion 210 are respectively obtuse angles, so that the second thermal contact portion 220 and the third thermal contact portion 230 are first. The thermal contact portion 210 and the thermally conductive substrate 100 form a structure having a trapezoidal cross section. In the present embodiment, the angles of the two angles θ1 and θ2 are equal, but not limited thereto. In other embodiments, the angles of the two angles θ1 and θ2 may also be different.
在本實施例中,第一夾角介於115至145度,以及第二夾角介於115至145度。In this embodiment, the first included angle is between 115 and 145 degrees and the second included angle is between 115 and 145 degrees.
本實施例中,第一熱接觸部210、第二熱接觸部220及第三熱接觸部230皆為面狀結構,以透過傾斜的第二接觸面220與第三熱接觸部230來引導散熱氣流F(請見圖5)往兩旁流。In this embodiment, the first thermal contact portion 210, the second thermal contact portion 220, and the third thermal contact portion 230 are all planar structures to guide the heat dissipation through the inclined second contact surface 220 and the third thermal contact portion 230. Airflow F (see Figure 5) flows to both sides.
如圖2至圖4所示,這些第一鰭片300構成的鰭片組具有一底面305、一凹槽310、一槽底部311、一第一槽側面312及一第二槽側面313。凹槽310自底面305朝向槽底部311凹陷。本實施例中,槽底部311為一面狀結構,第一槽側面312與第二槽側面313分別相對於槽底部311呈傾斜設置。第一槽側面312與第二槽側面313分別連接於槽底部311之相對兩側,且槽底部311、第一槽側面312與第二槽側面313圍繞出凹槽310。此外,導熱塊200穿過各凹槽310,凹槽310的形狀與導熱塊200的形狀相配合,其中底面305熱接觸於導熱基板100,以及這些槽底部311、這些第一槽側面312及這些第二槽側面313分別熱接觸於第一熱接觸部210、第二熱接觸部220及第三熱接觸部230。As shown in FIG. 2 to FIG. 4 , the fin sets formed by the first fins 300 have a bottom surface 305 , a groove 310 , a groove bottom 311 , a first groove side 312 , and a second groove side 313 . The groove 310 is recessed from the bottom surface 305 toward the groove bottom 311. In this embodiment, the bottom portion 311 of the groove is a one-sided structure, and the first groove side surface 312 and the second groove side surface 313 are inclined with respect to the groove bottom portion 311, respectively. The first groove side surface 312 and the second groove side surface 313 are respectively connected to opposite sides of the groove bottom portion 311, and the groove bottom portion 311, the first groove side surface 312 and the second groove side surface 313 surround the groove 310. In addition, the heat conducting block 200 passes through the grooves 310, and the shape of the groove 310 matches the shape of the heat conducting block 200, wherein the bottom surface 305 is in thermal contact with the heat conducting substrate 100, and the groove bottom 311, the first groove side surfaces 312, and the like The second groove side surface 313 is in thermal contact with the first thermal contact portion 210, the second thermal contact portion 220, and the third thermal contact portion 230, respectively.
在本實施例中,第一鰭片300之凹槽310的深度D與第一鰭片300的高度H的比例可以為例如大約90%左右。以及,第一鰭片300之第一熱接觸部311的寬度W2與第一鰭片300的寬度W1的比例可以為例如大約35%左右。In the present embodiment, the ratio of the depth D of the groove 310 of the first fin 300 to the height H of the first fin 300 may be, for example, about 90%. And, the ratio of the width W2 of the first thermal contact portion 311 of the first fin 300 to the width W1 of the first fin 300 may be, for example, about 35%.
如圖2與圖3所示,這些第二鰭片400,並列設置於這些第一鰭片300旁,且遮蓋最靠近第二鰭片400之第一鰭片300的凹槽310及位於凹槽的導熱塊200。換言之,這些第二鰭片400不像第一鰭片300具有凹槽310供導熱塊200穿設。As shown in FIG. 2 and FIG. 3 , the second fins 400 are disposed side by side of the first fins 300 and cover the recesses 310 of the first fins 300 closest to the second fins 400 and are located in the grooves. Thermal block 200. In other words, these second fins 400 do not have grooves 310 for the heat conducting blocks 200 to pass through like the first fins 300.
此外,上述相鄰的第一鰭片300保持間距,相鄰第二鰭片400亦保持間距,以在相鄰第一鰭片300之間以及相鄰第二鰭片400之間形成多個氣流道350。In addition, the adjacent first fins 300 are spaced apart, and the adjacent second fins 400 are also spaced apart to form a plurality of airflows between adjacent first fins 300 and adjacent second fins 400. Road 350.
如圖2至圖4所示,這些熱管500各具有一吸熱段510、一放熱段520及連接吸熱段510和放熱段520的連接段530。吸熱段510較放熱段520靠近導熱基板100,在一些實施例中,吸熱段510與導熱基板100接觸,或者是採熱管直觸技術,即吸熱段510具有一平面且該平面直接接觸導熱基板100。在本實施例中,導熱塊200、第一鰭片300及第二鰭片400均設有通孔,吸熱段510的長度小於放熱段520,部分熱管500之吸熱段510通過導熱塊200的通孔插設於導熱塊200,部分熱管500之放熱段520通過第一鰭片300的通孔插設於第一鰭片300並通過第二鰭片400的通孔插設於第二鰭片400,而部分熱管500之吸熱段510與部分放熱段520皆插設於導熱塊200。As shown in FIG. 2 to FIG. 4, each of the heat pipes 500 has a heat absorption section 510, a heat release section 520, and a connection section 530 connecting the heat absorption section 510 and the heat release section 520. The heat absorbing section 510 is closer to the heat conductive substrate 100 than the heat releasing section 520. In some embodiments, the heat absorbing section 510 is in contact with the heat conductive substrate 100, or the heat collecting tube direct touch technology, that is, the heat absorbing section 510 has a plane and the plane directly contacts the heat conductive substrate 100. . In this embodiment, the heat conducting block 200, the first fin 300, and the second fin 400 are each provided with a through hole. The length of the heat absorbing section 510 is smaller than the heat releasing section 520, and the heat absorbing section 510 of the part of the heat pipe 500 passes through the heat conducting block 200. The heat dissipation block 520 is inserted into the heat dissipation block 200 , and the heat dissipation portion 520 of the heat pipe 500 is inserted into the first fin 300 through the through hole of the first fin 300 and inserted into the second fin 400 through the through hole of the second fin 400 . The heat absorbing section 510 and the partial heat releasing section 520 of the part of the heat pipe 500 are inserted into the heat conducting block 200.
如圖1與圖5所示,二風扇600皆位於這些第一鰭片300的遠離導熱基板100之一側。在本實施例中,二風扇600於這些第一鰭片300之二投影未和同一氣流道350重疊,以避免二風扇600所產生之氣流於同一氣流道350中互相干擾。As shown in FIG. 1 and FIG. 5 , the two fans 600 are located on one side of the first fins 300 away from the heat conductive substrate 100 . In this embodiment, the two projections of the two fans 600 on the first fins 300 do not overlap with the same airflow path 350 to prevent the airflow generated by the two fans 600 from interfering with each other in the same airflow channel 350.
值得注意的是,上述實施例中的導熱基板100、第二鰭片400、熱管500及風扇600並非用以限制本發明,在其他實施例中,散熱裝置也可以僅包含導熱塊200與第一鰭片300,而導熱塊200直接熱接觸熱源。It is to be noted that the heat-conducting substrate 100, the second fins 400, the heat pipe 500 and the fan 600 in the above embodiments are not intended to limit the present invention. In other embodiments, the heat-dissipating device may only include the heat-conducting block 200 and the first The fins 300, while the thermally conductive block 200 is in direct thermal contact with the heat source.
在另一實施例中,第一熱接觸部210為線狀結構,相應地,槽底部311也為線狀結構。即,導熱塊200的第一熱接觸部210實際上為一條邊,使得第二熱接觸部220、第三熱接觸部230及導熱基板100形成截面類似三角形的結構,此時不存在第一角度、第二角度,而是第二熱接觸部220和第三熱接觸部230直接形成一角度,例如一鈍角;相應地,第一鰭片300構成的鰭片組所具有的槽底部311實際上為一條邊,使得凹槽310呈類似三角形形狀,並與導熱塊200的形狀相配合,使導熱塊200可恰好容置於凹槽310內。In another embodiment, the first thermal contact portion 210 is a linear structure, and correspondingly, the groove bottom portion 311 is also a linear structure. That is, the first thermal contact portion 210 of the thermal block 200 is actually one side, so that the second thermal contact portion 220, the third thermal contact portion 230, and the thermally conductive substrate 100 form a structure having a triangular cross section, and the first angle does not exist at this time. The second angle, but the second thermal contact portion 220 and the third thermal contact portion 230 directly form an angle, such as an obtuse angle; correspondingly, the fin portion 311 formed by the first fin 300 has a groove bottom 311 actually The one side is such that the groove 310 has a triangular shape and cooperates with the shape of the heat conducting block 200 so that the heat conducting block 200 can be accommodated in the groove 310.
請參閱圖5。圖5為圖1之散熱裝置設置於熱源的使用示意圖。Please refer to Figure 5. FIG. 5 is a schematic view showing the use of the heat sink of FIG. 1 in a heat source.
如圖5所示,散熱裝置10之導熱基板100熱接觸於電路板20上之熱源22。此熱源22例如為中央處理器、南橋、北橋等晶片。As shown in FIG. 5, the thermally conductive substrate 100 of the heat sink 10 is in thermal contact with the heat source 22 on the circuit board 20. The heat source 22 is, for example, a central processing unit, a south bridge, a north bridge or the like.
由於熱源22所發出的熱量除了透過導熱基板100橫向傳遞至第一鰭片300之兩側外,更透過導熱塊200直向傳遞至第一鰭片300較遠離導熱基板100之一側。因此,熱源22所發出的熱量能較快速地傳至第一鰭片300之各角落,以提升散熱裝置10的散熱速度。The heat generated by the heat source 22 is transmitted to the first fin 300 through the heat conducting block 200 to the side of the first fin 300 and is farther away from the heat conducting substrate 100 than the one side of the heat conducting substrate 100. Therefore, the heat generated by the heat source 22 can be transmitted to the corners of the first fin 300 relatively quickly to improve the heat dissipation speed of the heat sink 10.
此外,風扇600在運轉時,風扇600所形成之散熱氣流F不單是筆直地朝向導熱基板100流,更會受到傾斜之第二熱接觸部220與第三熱接觸部230的導引而更快速地往第一鰭片300之兩側流。如此一來,散熱氣流F能較順暢地自氣流道350之上緣流入,以及自氣流道350之左右兩側流出。也就是說,散熱氣流F較不易受到導熱基板100回彈的氣流干擾而降低散熱氣流F的流動順暢度。如此一來,將可進一步地提升散熱裝置10的散熱速度。In addition, when the fan 600 is in operation, the heat dissipation airflow F formed by the fan 600 not only flows straight toward the heat conductive substrate 100, but is also more rapidly guided by the inclined second thermal contact portion 220 and the third thermal contact portion 230. The ground flows to the sides of the first fin 300. As a result, the heat-dissipating airflow F can smoothly flow from the upper edge of the airflow path 350 and flow out from the left and right sides of the airflow path 350. That is to say, the heat dissipation airflow F is less susceptible to the airflow rebounded by the thermally conductive substrate 100, and the flow smoothness of the heat dissipation airflow F is reduced. In this way, the heat dissipation speed of the heat sink 10 can be further improved.
根據上述實施例之散熱裝置,透過導熱塊穿過第一鰭片,使得熱源所發出的熱量除了透過導熱基板橫向傳遞至第一鰭片之兩側外,更透過導熱塊直向傳遞至第一鰭片較遠離導熱基板之一側。因此,熱源所發出的熱量能較快速地傳至第一鰭片之各角落,以提升散熱裝置的散熱速度。According to the heat dissipating device of the above embodiment, the heat radiating block passes through the first fin, so that the heat generated by the heat source is transmitted to the first side of the first fin through the heat conducting substrate, and is directly transmitted to the first through the heat conducting block. The fins are farther away from one side of the thermally conductive substrate. Therefore, the heat generated by the heat source can be transmitted to the corners of the first fin faster to improve the heat dissipation speed of the heat sink.
此外,透過傾斜之第二熱接觸部與第三熱接觸部的導引而更快速地往第一鰭片之兩側流。如此一來,散熱氣流能較順暢地自氣流道之上緣流入,以及自氣流道之左右兩側流出。也就是說,散熱氣流較不易受到導熱基板回彈的氣流干擾而降低散熱氣流的流動順暢度。如此一來,將可進一步地提升散熱裝置的散熱速度。In addition, the second heat contact portion and the third heat contact portion are guided to flow toward the sides of the first fin more quickly. In this way, the heat-dissipating airflow can smoothly flow from the upper edge of the airflow path and flow out from the left and right sides of the airflow path. That is to say, the heat dissipation airflow is less susceptible to the airflow rebounded by the thermally conductive substrate, thereby reducing the flow smoothness of the heat dissipation airflow. In this way, the heat dissipation speed of the heat sink can be further improved.
散熱方式包括傳熱和散熱兩個階段。熱管是良好的熱交換器,本發明中,用大截面積的金屬(如前述之導熱塊)和熱管的組合,將熱源和鰭片連接在一起,起到了增加傳熱路徑截面積的作用,加強了鰭片散熱效率。並且由於接近熱源的地方溫度相當幾種,此處是傳統散熱的瓶頸,通過本案的導熱塊和熱管的結合使得該傳熱瓶頸處得以解決。另外,在散熱方面,使溫度較高的熱管和導熱塊分佈在遠離風扇軸心的高速流區,流速粵高,空氣溫度越低,即空氣與鰭片的溫差越大,藉此可以提高散熱的效率。The heat dissipation method includes two stages of heat transfer and heat dissipation. The heat pipe is a good heat exchanger. In the present invention, a combination of a large cross-sectional area metal (such as the above-mentioned heat conducting block) and a heat pipe connects the heat source and the fins together, thereby increasing the cross-sectional area of the heat transfer path. Enhanced fin heat dissipation efficiency. And because there are quite a few temperatures close to the heat source, here is the bottleneck of the traditional heat dissipation, and the heat transfer bottleneck is solved by the combination of the heat conducting block and the heat pipe in the present case. In addition, in terms of heat dissipation, the heat pipe and the heat conducting block having a higher temperature are distributed in a high-speed flow region away from the fan axis, the flow rate is high, and the air temperature is lower, that is, the temperature difference between the air and the fin is larger, thereby improving heat dissipation. s efficiency.
如前,本發明中導熱塊的兩個傾斜設置的熱接觸面有助於兩側導風,防止產生亂流,其次,降溫度較高的導熱塊的兩傾斜面(即熱接觸面)設置在風速最高的風扇中心的兩側,有助於散熱,再次,通過導熱塊可以增加熱管相關傳熱路徑,藉此加強傳熱效率。As before, in the present invention, the two obliquely disposed thermal contact faces of the heat conducting block contribute to the air guiding on both sides to prevent turbulent flow, and secondly, the two inclined faces (ie, the thermal contact faces) of the heat conducting block having a lower temperature drop are disposed. On both sides of the center of the fan with the highest wind speed, it helps to dissipate heat. Again, the heat transfer block can increase the heat transfer path associated with the heat pipe, thereby enhancing heat transfer efficiency.
雖然本發明以前述之較佳實施例揭露如上,然其並非用以限定本發明,任何熟習相像技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。While the present invention has been described above in terms of the preferred embodiments thereof, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The patent protection scope of the invention is subject to the definition of the scope of the patent application attached to the specification.
10‧‧‧散熱裝置
20‧‧‧電路板
22‧‧‧熱源
100‧‧‧導熱基板
200‧‧‧導熱塊
210‧‧‧第一熱接觸部
220‧‧‧第二熱接觸部
230‧‧‧第三熱接觸部
300‧‧‧第一鰭片
305‧‧‧底面
310‧‧‧凹槽
311‧‧‧槽底部
312‧‧‧第一槽側面
313‧‧‧第二槽側面
350‧‧‧氣流道
400‧‧‧第二鰭片
500‧‧‧熱管
510‧‧‧吸熱段
511‧‧‧底面
520‧‧‧放熱段
530‧‧‧連接段
600‧‧‧風扇
θ1、θ2‧‧‧夾角
D‧‧‧深度
H‧‧‧高度
W1、W2‧‧‧寬度
F‧‧‧散熱氣流10‧‧‧heating device
20‧‧‧ boards
22‧‧‧heat source
100‧‧‧thermal substrate
200‧‧‧thermal block
210‧‧‧First Thermal Contact
220‧‧‧Second Thermal Contact
230‧‧‧ Third Thermal Contact
300‧‧‧First fin
305‧‧‧ bottom
310‧‧‧ Groove
311‧‧‧ bottom of the trough
312‧‧‧ first groove side
313‧‧‧Second groove side
350‧‧ Airflow
400‧‧‧second fin
500‧‧‧ heat pipe
510‧‧‧heat absorption section
511‧‧‧ bottom
520‧‧‧heating section
530‧‧‧Connection section
600‧‧‧Fan θ1, θ2‧‧‧ angle
D‧‧‧Deep
H‧‧‧ Height
W1, W2‧‧‧ width
F‧‧‧heating airflow
圖1為根據本發明第一實施例之散熱裝置的立體示意圖。 圖2為圖1之散熱裝置移除風扇後的分解示意圖。 圖3為圖2之側視示意圖。 圖4為圖2之剖面示意圖。 圖5為圖1之散熱裝置設置於熱源的使用示意圖。1 is a perspective view of a heat sink according to a first embodiment of the present invention. 2 is an exploded perspective view of the heat sink of FIG. 1 after the fan is removed. Figure 3 is a side elevational view of Figure 2. Figure 4 is a schematic cross-sectional view of Figure 2. FIG. 5 is a schematic view showing the use of the heat sink of FIG. 1 in a heat source.
100‧‧‧導熱基板 100‧‧‧thermal substrate
200‧‧‧導熱塊 200‧‧‧thermal block
210‧‧‧第一熱接觸部 210‧‧‧First Thermal Contact
220‧‧‧第二熱接觸部 220‧‧‧Second Thermal Contact
230‧‧‧第三熱接觸部 230‧‧‧ Third Thermal Contact
300‧‧‧第一鰭片 300‧‧‧First fin
305‧‧‧底面 305‧‧‧ bottom
310‧‧‧凹槽 310‧‧‧ Groove
311‧‧‧槽底部 311‧‧‧ bottom of the trough
312‧‧‧第一槽側面 312‧‧‧ first groove side
313‧‧‧第二槽側面 313‧‧‧Second groove side
500‧‧‧熱管 500‧‧‧ heat pipe
510‧‧‧吸熱段 510‧‧‧heat absorption section
511‧‧‧底面 511‧‧‧ bottom
520‧‧‧放熱段 520‧‧‧heating section
θ1、θ2‧‧‧夾角 Θ1, θ2‧‧‧ angle
D‧‧‧深度 D‧‧‧Deep
H‧‧‧高度 H‧‧‧ Height
W1、W2‧‧‧寬度 W1, W2‧‧‧ width
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
??201610852482.2 | 2016-09-27 | ||
CN201610852482.2A CN107872941B (en) | 2016-09-27 | 2016-09-27 | Heat sink device |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI603443B true TWI603443B (en) | 2017-10-21 |
TW201813028A TW201813028A (en) | 2018-04-01 |
Family
ID=61011037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105131589A TWI603443B (en) | 2016-09-27 | 2016-09-30 | Heat dissipation device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107872941B (en) |
TW (1) | TWI603443B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM617967U (en) * | 2020-07-20 | 2021-10-01 | 雙鴻科技股份有限公司 | Heat dissipation device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM245473U (en) * | 2003-05-07 | 2004-10-01 | Chaun Choung Technology Corp | Alignment structure of heat dissipating device |
TWM247923U (en) * | 2003-12-24 | 2004-10-21 | Chaun Choung Technology Corp | Improved heat sink body structure with uniform temperature in heat conduction |
TW201312074A (en) * | 2011-09-02 | 2013-03-16 | Giga Byte Tech Co Ltd | Heat sink |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6382306B1 (en) * | 2000-08-15 | 2002-05-07 | Hul Chun Hsu | Geometrical streamline flow guiding and heat-dissipating structure |
US6816373B2 (en) * | 2002-10-04 | 2004-11-09 | Hon Hai Precision Ind. Co., Ltd. | Heat dissipation device |
TWM243830U (en) * | 2003-09-12 | 2004-09-11 | Hon Hai Prec Ind Co Ltd | Liquid cooling apparatus |
CN2664184Y (en) * | 2003-11-17 | 2004-12-15 | 鸿富锦精密工业(深圳)有限公司 | Heat sink |
US7647960B2 (en) * | 2006-02-08 | 2010-01-19 | Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. | Heat dissipation device |
-
2016
- 2016-09-27 CN CN201610852482.2A patent/CN107872941B/en active Active
- 2016-09-30 TW TW105131589A patent/TWI603443B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM245473U (en) * | 2003-05-07 | 2004-10-01 | Chaun Choung Technology Corp | Alignment structure of heat dissipating device |
TWM247923U (en) * | 2003-12-24 | 2004-10-21 | Chaun Choung Technology Corp | Improved heat sink body structure with uniform temperature in heat conduction |
TW201312074A (en) * | 2011-09-02 | 2013-03-16 | Giga Byte Tech Co Ltd | Heat sink |
Also Published As
Publication number | Publication date |
---|---|
TW201813028A (en) | 2018-04-01 |
CN107872941B (en) | 2019-10-22 |
CN107872941A (en) | 2018-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7520316B2 (en) | Heat sink with heat pipes | |
US7448438B2 (en) | Heat pipe type heat dissipation device | |
TWI495424B (en) | Heat dissipation device and electronic device having the same | |
JP6279980B2 (en) | Liquid cooling system | |
US7289322B2 (en) | Heat sink | |
TWM511069U (en) | Liquid-cooled head and heat dissipation system thereof | |
TWI588437B (en) | Heat dissipator and heat dissipating device | |
US7286357B2 (en) | Computer system with cooling device for CPU | |
CN102036536B (en) | Heat sink device | |
US11982500B2 (en) | Heat sink | |
US20070095508A1 (en) | Heat dissipation device having louvered heat-dissipating fins | |
US8490680B2 (en) | Plate cooling fin with slotted projections | |
TWI603443B (en) | Heat dissipation device | |
CN203423886U (en) | Heat radiation module | |
TWI837610B (en) | Devices of drawing out surface heat of electronic components | |
CN102819300A (en) | Heat sink and electronic device structure | |
US20150068719A1 (en) | Heat sink | |
TW201239594A (en) | Cooling device | |
US8644023B2 (en) | Heat dissipation device and electronic device using the same | |
KR101013666B1 (en) | Computer heat sink | |
US20130014921A1 (en) | Air flow guiding structure | |
CN106211704B (en) | Combined heat radiation module | |
TW201835520A (en) | Heat dissipation fin set | |
JP5400690B2 (en) | heatsink | |
TWI469726B (en) | Electronic device |